* config.gcc: Remove MASK_JUMP_IN_DELAY from target_cpu_default2.
[official-gcc.git] / gcc / resource.c
blobbc69739e4c9beb7175c7989c6303d755481d82b0
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "vec.h"
31 #include "machmode.h"
32 #include "input.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "resource.h"
38 #include "except.h"
39 #include "insn-attr.h"
40 #include "params.h"
41 #include "df.h"
43 /* This structure is used to record liveness information at the targets or
44 fallthrough insns of branches. We will most likely need the information
45 at targets again, so save them in a hash table rather than recomputing them
46 each time. */
48 struct target_info
50 int uid; /* INSN_UID of target. */
51 struct target_info *next; /* Next info for same hash bucket. */
52 HARD_REG_SET live_regs; /* Registers live at target. */
53 int block; /* Basic block number containing target. */
54 int bb_tick; /* Generation count of basic block info. */
57 #define TARGET_HASH_PRIME 257
59 /* Indicates what resources are required at the beginning of the epilogue. */
60 static struct resources start_of_epilogue_needs;
62 /* Indicates what resources are required at function end. */
63 static struct resources end_of_function_needs;
65 /* Define the hash table itself. */
66 static struct target_info **target_hash_table = NULL;
68 /* For each basic block, we maintain a generation number of its basic
69 block info, which is updated each time we move an insn from the
70 target of a jump. This is the generation number indexed by block
71 number. */
73 static int *bb_ticks;
75 /* Marks registers possibly live at the current place being scanned by
76 mark_target_live_regs. Also used by update_live_status. */
78 static HARD_REG_SET current_live_regs;
80 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
81 Also only used by the next two functions. */
83 static HARD_REG_SET pending_dead_regs;
85 static void update_live_status (rtx, const_rtx, void *);
86 static int find_basic_block (rtx_insn *, int);
87 static rtx_insn *next_insn_no_annul (rtx_insn *);
88 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
89 rtx *, int, struct resources,
90 struct resources);
92 /* Utility function called from mark_target_live_regs via note_stores.
93 It deadens any CLOBBERed registers and livens any SET registers. */
95 static void
96 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
98 int first_regno, last_regno;
99 int i;
101 if (!REG_P (dest)
102 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
103 return;
105 if (GET_CODE (dest) == SUBREG)
107 first_regno = subreg_regno (dest);
108 last_regno = first_regno + subreg_nregs (dest);
111 else
113 first_regno = REGNO (dest);
114 last_regno = END_HARD_REGNO (dest);
117 if (GET_CODE (x) == CLOBBER)
118 for (i = first_regno; i < last_regno; i++)
119 CLEAR_HARD_REG_BIT (current_live_regs, i);
120 else
121 for (i = first_regno; i < last_regno; i++)
123 SET_HARD_REG_BIT (current_live_regs, i);
124 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
128 /* Find the number of the basic block with correct live register
129 information that starts closest to INSN. Return -1 if we couldn't
130 find such a basic block or the beginning is more than
131 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
132 an unlimited search.
134 The delay slot filling code destroys the control-flow graph so,
135 instead of finding the basic block containing INSN, we search
136 backwards toward a BARRIER where the live register information is
137 correct. */
139 static int
140 find_basic_block (rtx_insn *insn, int search_limit)
142 /* Scan backwards to the previous BARRIER. Then see if we can find a
143 label that starts a basic block. Return the basic block number. */
144 for (insn = prev_nonnote_insn (insn);
145 insn && !BARRIER_P (insn) && search_limit != 0;
146 insn = prev_nonnote_insn (insn), --search_limit)
149 /* The closest BARRIER is too far away. */
150 if (search_limit == 0)
151 return -1;
153 /* The start of the function. */
154 else if (insn == 0)
155 return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
157 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
158 anything other than a CODE_LABEL or note, we can't find this code. */
159 for (insn = next_nonnote_insn (insn);
160 insn && LABEL_P (insn);
161 insn = next_nonnote_insn (insn))
162 if (BLOCK_FOR_INSN (insn))
163 return BLOCK_FOR_INSN (insn)->index;
165 return -1;
168 /* Similar to next_insn, but ignores insns in the delay slots of
169 an annulled branch. */
171 static rtx_insn *
172 next_insn_no_annul (rtx_insn *insn)
174 if (insn)
176 /* If INSN is an annulled branch, skip any insns from the target
177 of the branch. */
178 if (JUMP_P (insn)
179 && INSN_ANNULLED_BRANCH_P (insn)
180 && NEXT_INSN (PREV_INSN (insn)) != insn)
182 rtx_insn *next = NEXT_INSN (insn);
184 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
185 && INSN_FROM_TARGET_P (next))
187 insn = next;
188 next = NEXT_INSN (insn);
192 insn = NEXT_INSN (insn);
193 if (insn && NONJUMP_INSN_P (insn)
194 && GET_CODE (PATTERN (insn)) == SEQUENCE)
195 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
198 return insn;
201 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
202 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
203 is TRUE, resources used by the called routine will be included for
204 CALL_INSNs. */
206 void
207 mark_referenced_resources (rtx x, struct resources *res,
208 bool include_delayed_effects)
210 enum rtx_code code = GET_CODE (x);
211 int i, j;
212 unsigned int r;
213 const char *format_ptr;
215 /* Handle leaf items for which we set resource flags. Also, special-case
216 CALL, SET and CLOBBER operators. */
217 switch (code)
219 case CONST:
220 CASE_CONST_ANY:
221 case PC:
222 case SYMBOL_REF:
223 case LABEL_REF:
224 return;
226 case SUBREG:
227 if (!REG_P (SUBREG_REG (x)))
228 mark_referenced_resources (SUBREG_REG (x), res, false);
229 else
231 unsigned int regno = subreg_regno (x);
232 unsigned int last_regno = regno + subreg_nregs (x);
234 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
235 for (r = regno; r < last_regno; r++)
236 SET_HARD_REG_BIT (res->regs, r);
238 return;
240 case REG:
241 gcc_assert (HARD_REGISTER_P (x));
242 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
243 return;
245 case MEM:
246 /* If this memory shouldn't change, it really isn't referencing
247 memory. */
248 if (! MEM_READONLY_P (x))
249 res->memory = 1;
250 res->volatil |= MEM_VOLATILE_P (x);
252 /* Mark registers used to access memory. */
253 mark_referenced_resources (XEXP (x, 0), res, false);
254 return;
256 case CC0:
257 res->cc = 1;
258 return;
260 case UNSPEC_VOLATILE:
261 case TRAP_IF:
262 case ASM_INPUT:
263 /* Traditional asm's are always volatile. */
264 res->volatil = 1;
265 break;
267 case ASM_OPERANDS:
268 res->volatil |= MEM_VOLATILE_P (x);
270 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
271 We can not just fall through here since then we would be confused
272 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
273 traditional asms unlike their normal usage. */
275 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
276 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
277 return;
279 case CALL:
280 /* The first operand will be a (MEM (xxx)) but doesn't really reference
281 memory. The second operand may be referenced, though. */
282 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
283 mark_referenced_resources (XEXP (x, 1), res, false);
284 return;
286 case SET:
287 /* Usually, the first operand of SET is set, not referenced. But
288 registers used to access memory are referenced. SET_DEST is
289 also referenced if it is a ZERO_EXTRACT. */
291 mark_referenced_resources (SET_SRC (x), res, false);
293 x = SET_DEST (x);
294 if (GET_CODE (x) == ZERO_EXTRACT
295 || GET_CODE (x) == STRICT_LOW_PART)
296 mark_referenced_resources (x, res, false);
297 else if (GET_CODE (x) == SUBREG)
298 x = SUBREG_REG (x);
299 if (MEM_P (x))
300 mark_referenced_resources (XEXP (x, 0), res, false);
301 return;
303 case CLOBBER:
304 return;
306 case CALL_INSN:
307 if (include_delayed_effects)
309 /* A CALL references memory, the frame pointer if it exists, the
310 stack pointer, any global registers and any registers given in
311 USE insns immediately in front of the CALL.
313 However, we may have moved some of the parameter loading insns
314 into the delay slot of this CALL. If so, the USE's for them
315 don't count and should be skipped. */
316 rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
317 rtx_sequence *sequence = 0;
318 int seq_size = 0;
319 int i;
321 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
322 if (NEXT_INSN (insn) != x)
324 sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
325 seq_size = sequence->len ();
326 gcc_assert (GET_CODE (sequence) == SEQUENCE);
329 res->memory = 1;
330 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
331 if (frame_pointer_needed)
333 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
334 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
335 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
336 #endif
339 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
340 if (global_regs[i])
341 SET_HARD_REG_BIT (res->regs, i);
343 /* Check for a REG_SETJMP. If it exists, then we must
344 assume that this call can need any register.
346 This is done to be more conservative about how we handle setjmp.
347 We assume that they both use and set all registers. Using all
348 registers ensures that a register will not be considered dead
349 just because it crosses a setjmp call. A register should be
350 considered dead only if the setjmp call returns nonzero. */
351 if (find_reg_note (x, REG_SETJMP, NULL))
352 SET_HARD_REG_SET (res->regs);
355 rtx link;
357 for (link = CALL_INSN_FUNCTION_USAGE (x);
358 link;
359 link = XEXP (link, 1))
360 if (GET_CODE (XEXP (link, 0)) == USE)
362 for (i = 1; i < seq_size; i++)
364 rtx slot_pat = PATTERN (sequence->element (i));
365 if (GET_CODE (slot_pat) == SET
366 && rtx_equal_p (SET_DEST (slot_pat),
367 XEXP (XEXP (link, 0), 0)))
368 break;
370 if (i >= seq_size)
371 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
372 res, false);
377 /* ... fall through to other INSN processing ... */
379 case INSN:
380 case JUMP_INSN:
382 if (GET_CODE (PATTERN (x)) == COND_EXEC)
383 /* In addition to the usual references, also consider all outputs
384 as referenced, to compensate for mark_set_resources treating
385 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
386 handling, execpt that we got a partial incidence instead of a partial
387 width. */
388 mark_set_resources (x, res, 0,
389 include_delayed_effects
390 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
392 #ifdef INSN_REFERENCES_ARE_DELAYED
393 if (! include_delayed_effects
394 && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
395 return;
396 #endif
398 /* No special processing, just speed up. */
399 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
400 return;
402 default:
403 break;
406 /* Process each sub-expression and flag what it needs. */
407 format_ptr = GET_RTX_FORMAT (code);
408 for (i = 0; i < GET_RTX_LENGTH (code); i++)
409 switch (*format_ptr++)
411 case 'e':
412 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
413 break;
415 case 'E':
416 for (j = 0; j < XVECLEN (x, i); j++)
417 mark_referenced_resources (XVECEXP (x, i, j), res,
418 include_delayed_effects);
419 break;
423 /* A subroutine of mark_target_live_regs. Search forward from TARGET
424 looking for registers that are set before they are used. These are dead.
425 Stop after passing a few conditional jumps, and/or a small
426 number of unconditional branches. */
428 static rtx_insn *
429 find_dead_or_set_registers (rtx_insn *target, struct resources *res,
430 rtx *jump_target, int jump_count,
431 struct resources set, struct resources needed)
433 HARD_REG_SET scratch;
434 rtx_insn *insn;
435 rtx_insn *next_insn;
436 rtx_insn *jump_insn = 0;
437 int i;
439 for (insn = target; insn; insn = next_insn)
441 rtx_insn *this_jump_insn = insn;
443 next_insn = NEXT_INSN (insn);
445 /* If this instruction can throw an exception, then we don't
446 know where we might end up next. That means that we have to
447 assume that whatever we have already marked as live really is
448 live. */
449 if (can_throw_internal (insn))
450 break;
452 switch (GET_CODE (insn))
454 case CODE_LABEL:
455 /* After a label, any pending dead registers that weren't yet
456 used can be made dead. */
457 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
458 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
459 CLEAR_HARD_REG_SET (pending_dead_regs);
461 continue;
463 case BARRIER:
464 case NOTE:
465 continue;
467 case INSN:
468 if (GET_CODE (PATTERN (insn)) == USE)
470 /* If INSN is a USE made by update_block, we care about the
471 underlying insn. Any registers set by the underlying insn
472 are live since the insn is being done somewhere else. */
473 if (INSN_P (XEXP (PATTERN (insn), 0)))
474 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
475 MARK_SRC_DEST_CALL);
477 /* All other USE insns are to be ignored. */
478 continue;
480 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
481 continue;
482 else if (rtx_sequence *seq =
483 dyn_cast <rtx_sequence *> (PATTERN (insn)))
485 /* An unconditional jump can be used to fill the delay slot
486 of a call, so search for a JUMP_INSN in any position. */
487 for (i = 0; i < seq->len (); i++)
489 this_jump_insn = seq->insn (i);
490 if (JUMP_P (this_jump_insn))
491 break;
495 default:
496 break;
499 if (JUMP_P (this_jump_insn))
501 if (jump_count++ < 10)
503 if (any_uncondjump_p (this_jump_insn)
504 || ANY_RETURN_P (PATTERN (this_jump_insn)))
506 rtx lab_or_return = JUMP_LABEL (this_jump_insn);
507 if (ANY_RETURN_P (lab_or_return))
508 next_insn = NULL;
509 else
510 next_insn = as_a <rtx_insn *> (lab_or_return);
511 if (jump_insn == 0)
513 jump_insn = insn;
514 if (jump_target)
515 *jump_target = JUMP_LABEL (this_jump_insn);
518 else if (any_condjump_p (this_jump_insn))
520 struct resources target_set, target_res;
521 struct resources fallthrough_res;
523 /* We can handle conditional branches here by following
524 both paths, and then IOR the results of the two paths
525 together, which will give us registers that are dead
526 on both paths. Since this is expensive, we give it
527 a much higher cost than unconditional branches. The
528 cost was chosen so that we will follow at most 1
529 conditional branch. */
531 jump_count += 4;
532 if (jump_count >= 10)
533 break;
535 mark_referenced_resources (insn, &needed, true);
537 /* For an annulled branch, mark_set_resources ignores slots
538 filled by instructions from the target. This is correct
539 if the branch is not taken. Since we are following both
540 paths from the branch, we must also compute correct info
541 if the branch is taken. We do this by inverting all of
542 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
543 and then inverting the INSN_FROM_TARGET_P bits again. */
545 if (GET_CODE (PATTERN (insn)) == SEQUENCE
546 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
548 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
549 for (i = 1; i < seq->len (); i++)
550 INSN_FROM_TARGET_P (seq->element (i))
551 = ! INSN_FROM_TARGET_P (seq->element (i));
553 target_set = set;
554 mark_set_resources (insn, &target_set, 0,
555 MARK_SRC_DEST_CALL);
557 for (i = 1; i < seq->len (); i++)
558 INSN_FROM_TARGET_P (seq->element (i))
559 = ! INSN_FROM_TARGET_P (seq->element (i));
561 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
563 else
565 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
566 target_set = set;
569 target_res = *res;
570 COPY_HARD_REG_SET (scratch, target_set.regs);
571 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
572 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
574 fallthrough_res = *res;
575 COPY_HARD_REG_SET (scratch, set.regs);
576 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
577 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
579 if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
580 find_dead_or_set_registers (JUMP_LABEL_AS_INSN (this_jump_insn),
581 &target_res, 0, jump_count,
582 target_set, needed);
583 find_dead_or_set_registers (next_insn,
584 &fallthrough_res, 0, jump_count,
585 set, needed);
586 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
587 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
588 break;
590 else
591 break;
593 else
595 /* Don't try this optimization if we expired our jump count
596 above, since that would mean there may be an infinite loop
597 in the function being compiled. */
598 jump_insn = 0;
599 break;
603 mark_referenced_resources (insn, &needed, true);
604 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
606 COPY_HARD_REG_SET (scratch, set.regs);
607 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
608 AND_COMPL_HARD_REG_SET (res->regs, scratch);
611 return jump_insn;
614 /* Given X, a part of an insn, and a pointer to a `struct resource',
615 RES, indicate which resources are modified by the insn. If
616 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
617 set by the called routine.
619 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
620 objects are being referenced instead of set.
622 We never mark the insn as modifying the condition code unless it explicitly
623 SETs CC0 even though this is not totally correct. The reason for this is
624 that we require a SET of CC0 to immediately precede the reference to CC0.
625 So if some other insn sets CC0 as a side-effect, we know it cannot affect
626 our computation and thus may be placed in a delay slot. */
628 void
629 mark_set_resources (rtx x, struct resources *res, int in_dest,
630 enum mark_resource_type mark_type)
632 enum rtx_code code;
633 int i, j;
634 unsigned int r;
635 const char *format_ptr;
637 restart:
639 code = GET_CODE (x);
641 switch (code)
643 case NOTE:
644 case BARRIER:
645 case CODE_LABEL:
646 case USE:
647 CASE_CONST_ANY:
648 case LABEL_REF:
649 case SYMBOL_REF:
650 case CONST:
651 case PC:
652 /* These don't set any resources. */
653 return;
655 case CC0:
656 if (in_dest)
657 res->cc = 1;
658 return;
660 case CALL_INSN:
661 /* Called routine modifies the condition code, memory, any registers
662 that aren't saved across calls, global registers and anything
663 explicitly CLOBBERed immediately after the CALL_INSN. */
665 if (mark_type == MARK_SRC_DEST_CALL)
667 rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
668 rtx link;
669 HARD_REG_SET regs;
671 res->cc = res->memory = 1;
673 get_call_reg_set_usage (call_insn, &regs, regs_invalidated_by_call);
674 IOR_HARD_REG_SET (res->regs, regs);
676 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
677 link; link = XEXP (link, 1))
678 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
679 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
680 MARK_SRC_DEST);
682 /* Check for a REG_SETJMP. If it exists, then we must
683 assume that this call can clobber any register. */
684 if (find_reg_note (call_insn, REG_SETJMP, NULL))
685 SET_HARD_REG_SET (res->regs);
688 /* ... and also what its RTL says it modifies, if anything. */
690 case JUMP_INSN:
691 case INSN:
693 /* An insn consisting of just a CLOBBER (or USE) is just for flow
694 and doesn't actually do anything, so we ignore it. */
696 #ifdef INSN_SETS_ARE_DELAYED
697 if (mark_type != MARK_SRC_DEST_CALL
698 && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
699 return;
700 #endif
702 x = PATTERN (x);
703 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
704 goto restart;
705 return;
707 case SET:
708 /* If the source of a SET is a CALL, this is actually done by
709 the called routine. So only include it if we are to include the
710 effects of the calling routine. */
712 mark_set_resources (SET_DEST (x), res,
713 (mark_type == MARK_SRC_DEST_CALL
714 || GET_CODE (SET_SRC (x)) != CALL),
715 mark_type);
717 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
718 return;
720 case CLOBBER:
721 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
722 return;
724 case SEQUENCE:
726 rtx_sequence *seq = as_a <rtx_sequence *> (x);
727 rtx control = seq->element (0);
728 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
730 mark_set_resources (control, res, 0, mark_type);
731 for (i = seq->len () - 1; i >= 0; --i)
733 rtx elt = seq->element (i);
734 if (!annul_p && INSN_FROM_TARGET_P (elt))
735 mark_set_resources (elt, res, 0, mark_type);
738 return;
740 case POST_INC:
741 case PRE_INC:
742 case POST_DEC:
743 case PRE_DEC:
744 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
745 return;
747 case PRE_MODIFY:
748 case POST_MODIFY:
749 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
750 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
751 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
752 return;
754 case SIGN_EXTRACT:
755 case ZERO_EXTRACT:
756 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
757 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
758 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
759 return;
761 case MEM:
762 if (in_dest)
764 res->memory = 1;
765 res->volatil |= MEM_VOLATILE_P (x);
768 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
769 return;
771 case SUBREG:
772 if (in_dest)
774 if (!REG_P (SUBREG_REG (x)))
775 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
776 else
778 unsigned int regno = subreg_regno (x);
779 unsigned int last_regno = regno + subreg_nregs (x);
781 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
782 for (r = regno; r < last_regno; r++)
783 SET_HARD_REG_BIT (res->regs, r);
786 return;
788 case REG:
789 if (in_dest)
791 gcc_assert (HARD_REGISTER_P (x));
792 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
794 return;
796 case UNSPEC_VOLATILE:
797 case ASM_INPUT:
798 /* Traditional asm's are always volatile. */
799 res->volatil = 1;
800 return;
802 case TRAP_IF:
803 res->volatil = 1;
804 break;
806 case ASM_OPERANDS:
807 res->volatil |= MEM_VOLATILE_P (x);
809 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
810 We can not just fall through here since then we would be confused
811 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
812 traditional asms unlike their normal usage. */
814 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
815 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
816 MARK_SRC_DEST);
817 return;
819 default:
820 break;
823 /* Process each sub-expression and flag what it needs. */
824 format_ptr = GET_RTX_FORMAT (code);
825 for (i = 0; i < GET_RTX_LENGTH (code); i++)
826 switch (*format_ptr++)
828 case 'e':
829 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
830 break;
832 case 'E':
833 for (j = 0; j < XVECLEN (x, i); j++)
834 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
835 break;
839 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
841 static bool
842 return_insn_p (const_rtx insn)
844 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
845 return true;
847 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
848 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
850 return false;
853 /* Set the resources that are live at TARGET.
855 If TARGET is zero, we refer to the end of the current function and can
856 return our precomputed value.
858 Otherwise, we try to find out what is live by consulting the basic block
859 information. This is tricky, because we must consider the actions of
860 reload and jump optimization, which occur after the basic block information
861 has been computed.
863 Accordingly, we proceed as follows::
865 We find the previous BARRIER and look at all immediately following labels
866 (with no intervening active insns) to see if any of them start a basic
867 block. If we hit the start of the function first, we use block 0.
869 Once we have found a basic block and a corresponding first insn, we can
870 accurately compute the live status (by starting at a label following a
871 BARRIER, we are immune to actions taken by reload and jump.) Then we
872 scan all insns between that point and our target. For each CLOBBER (or
873 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
874 registers are dead. For a SET, mark them as live.
876 We have to be careful when using REG_DEAD notes because they are not
877 updated by such things as find_equiv_reg. So keep track of registers
878 marked as dead that haven't been assigned to, and mark them dead at the
879 next CODE_LABEL since reload and jump won't propagate values across labels.
881 If we cannot find the start of a basic block (should be a very rare
882 case, if it can happen at all), mark everything as potentially live.
884 Next, scan forward from TARGET looking for things set or clobbered
885 before they are used. These are not live.
887 Because we can be called many times on the same target, save our results
888 in a hash table indexed by INSN_UID. This is only done if the function
889 init_resource_info () was invoked before we are called. */
891 void
892 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
894 int b = -1;
895 unsigned int i;
896 struct target_info *tinfo = NULL;
897 rtx_insn *insn;
898 rtx jump_insn = 0;
899 rtx jump_target;
900 HARD_REG_SET scratch;
901 struct resources set, needed;
903 /* Handle end of function. */
904 if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
906 *res = end_of_function_needs;
907 return;
910 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
911 instruction. */
912 rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
914 /* Handle return insn. */
915 if (return_insn_p (target))
917 *res = end_of_function_needs;
918 mark_referenced_resources (target, res, false);
919 return;
922 /* We have to assume memory is needed, but the CC isn't. */
923 res->memory = 1;
924 res->volatil = 0;
925 res->cc = 0;
927 /* See if we have computed this value already. */
928 if (target_hash_table != NULL)
930 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
931 tinfo; tinfo = tinfo->next)
932 if (tinfo->uid == INSN_UID (target))
933 break;
935 /* Start by getting the basic block number. If we have saved
936 information, we can get it from there unless the insn at the
937 start of the basic block has been deleted. */
938 if (tinfo && tinfo->block != -1
939 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
940 b = tinfo->block;
943 if (b == -1)
944 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
946 if (target_hash_table != NULL)
948 if (tinfo)
950 /* If the information is up-to-date, use it. Otherwise, we will
951 update it below. */
952 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
954 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
955 return;
958 else
960 /* Allocate a place to put our results and chain it into the
961 hash table. */
962 tinfo = XNEW (struct target_info);
963 tinfo->uid = INSN_UID (target);
964 tinfo->block = b;
965 tinfo->next
966 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
967 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
971 CLEAR_HARD_REG_SET (pending_dead_regs);
973 /* If we found a basic block, get the live registers from it and update
974 them with anything set or killed between its start and the insn before
975 TARGET; this custom life analysis is really about registers so we need
976 to use the LR problem. Otherwise, we must assume everything is live. */
977 if (b != -1)
979 regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
980 rtx_insn *start_insn, *stop_insn;
982 /* Compute hard regs live at start of block. */
983 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
985 /* Get starting and ending insn, handling the case where each might
986 be a SEQUENCE. */
987 start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
988 insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
989 stop_insn = target;
991 if (NONJUMP_INSN_P (start_insn)
992 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
993 start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
995 if (NONJUMP_INSN_P (stop_insn)
996 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
997 stop_insn = next_insn (PREV_INSN (stop_insn));
999 for (insn = start_insn; insn != stop_insn;
1000 insn = next_insn_no_annul (insn))
1002 rtx link;
1003 rtx_insn *real_insn = insn;
1004 enum rtx_code code = GET_CODE (insn);
1006 if (DEBUG_INSN_P (insn))
1007 continue;
1009 /* If this insn is from the target of a branch, it isn't going to
1010 be used in the sequel. If it is used in both cases, this
1011 test will not be true. */
1012 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1013 && INSN_FROM_TARGET_P (insn))
1014 continue;
1016 /* If this insn is a USE made by update_block, we care about the
1017 underlying insn. */
1018 if (code == INSN
1019 && GET_CODE (PATTERN (insn)) == USE
1020 && INSN_P (XEXP (PATTERN (insn), 0)))
1021 real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
1023 if (CALL_P (real_insn))
1025 /* Values in call-clobbered registers survive a COND_EXEC CALL
1026 if that is not executed; this matters for resoure use because
1027 they may be used by a complementarily (or more strictly)
1028 predicated instruction, or if the CALL is NORETURN. */
1029 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1031 HARD_REG_SET regs_invalidated_by_this_call;
1032 get_call_reg_set_usage (real_insn,
1033 &regs_invalidated_by_this_call,
1034 regs_invalidated_by_call);
1035 /* CALL clobbers all call-used regs that aren't fixed except
1036 sp, ap, and fp. Do this before setting the result of the
1037 call live. */
1038 AND_COMPL_HARD_REG_SET (current_live_regs,
1039 regs_invalidated_by_this_call);
1042 /* A CALL_INSN sets any global register live, since it may
1043 have been modified by the call. */
1044 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1045 if (global_regs[i])
1046 SET_HARD_REG_BIT (current_live_regs, i);
1049 /* Mark anything killed in an insn to be deadened at the next
1050 label. Ignore USE insns; the only REG_DEAD notes will be for
1051 parameters. But they might be early. A CALL_INSN will usually
1052 clobber registers used for parameters. It isn't worth bothering
1053 with the unlikely case when it won't. */
1054 if ((NONJUMP_INSN_P (real_insn)
1055 && GET_CODE (PATTERN (real_insn)) != USE
1056 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1057 || JUMP_P (real_insn)
1058 || CALL_P (real_insn))
1060 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1061 if (REG_NOTE_KIND (link) == REG_DEAD
1062 && REG_P (XEXP (link, 0))
1063 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1064 add_to_hard_reg_set (&pending_dead_regs,
1065 GET_MODE (XEXP (link, 0)),
1066 REGNO (XEXP (link, 0)));
1068 note_stores (PATTERN (real_insn), update_live_status, NULL);
1070 /* If any registers were unused after this insn, kill them.
1071 These notes will always be accurate. */
1072 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1073 if (REG_NOTE_KIND (link) == REG_UNUSED
1074 && REG_P (XEXP (link, 0))
1075 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1076 remove_from_hard_reg_set (&current_live_regs,
1077 GET_MODE (XEXP (link, 0)),
1078 REGNO (XEXP (link, 0)));
1081 else if (LABEL_P (real_insn))
1083 basic_block bb;
1085 /* A label clobbers the pending dead registers since neither
1086 reload nor jump will propagate a value across a label. */
1087 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1088 CLEAR_HARD_REG_SET (pending_dead_regs);
1090 /* We must conservatively assume that all registers that used
1091 to be live here still are. The fallthrough edge may have
1092 left a live register uninitialized. */
1093 bb = BLOCK_FOR_INSN (real_insn);
1094 if (bb)
1096 HARD_REG_SET extra_live;
1098 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1099 IOR_HARD_REG_SET (current_live_regs, extra_live);
1103 /* The beginning of the epilogue corresponds to the end of the
1104 RTL chain when there are no epilogue insns. Certain resources
1105 are implicitly required at that point. */
1106 else if (NOTE_P (real_insn)
1107 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1108 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1111 COPY_HARD_REG_SET (res->regs, current_live_regs);
1112 if (tinfo != NULL)
1114 tinfo->block = b;
1115 tinfo->bb_tick = bb_ticks[b];
1118 else
1119 /* We didn't find the start of a basic block. Assume everything
1120 in use. This should happen only extremely rarely. */
1121 SET_HARD_REG_SET (res->regs);
1123 CLEAR_RESOURCE (&set);
1124 CLEAR_RESOURCE (&needed);
1126 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1127 set, needed);
1129 /* If we hit an unconditional branch, we have another way of finding out
1130 what is live: we can see what is live at the branch target and include
1131 anything used but not set before the branch. We add the live
1132 resources found using the test below to those found until now. */
1134 if (jump_insn)
1136 struct resources new_resources;
1137 rtx_insn *stop_insn = next_active_insn (jump_insn);
1139 if (!ANY_RETURN_P (jump_target))
1140 jump_target = next_active_insn (jump_target);
1141 mark_target_live_regs (insns, jump_target, &new_resources);
1142 CLEAR_RESOURCE (&set);
1143 CLEAR_RESOURCE (&needed);
1145 /* Include JUMP_INSN in the needed registers. */
1146 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1148 mark_referenced_resources (insn, &needed, true);
1150 COPY_HARD_REG_SET (scratch, needed.regs);
1151 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1152 IOR_HARD_REG_SET (new_resources.regs, scratch);
1154 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1157 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1160 if (tinfo != NULL)
1162 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1166 /* Initialize the resources required by mark_target_live_regs ().
1167 This should be invoked before the first call to mark_target_live_regs. */
1169 void
1170 init_resource_info (rtx_insn *epilogue_insn)
1172 int i;
1173 basic_block bb;
1175 /* Indicate what resources are required to be valid at the end of the current
1176 function. The condition code never is and memory always is.
1177 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1178 and there is an epilogue that restores the original stack pointer
1179 from the frame pointer. Registers used to return the function value
1180 are needed. Registers holding global variables are needed. */
1182 end_of_function_needs.cc = 0;
1183 end_of_function_needs.memory = 1;
1184 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1186 if (frame_pointer_needed)
1188 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1189 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1190 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1191 #endif
1193 if (!(frame_pointer_needed
1194 && EXIT_IGNORE_STACK
1195 && epilogue_insn
1196 && !crtl->sp_is_unchanging))
1197 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1199 if (crtl->return_rtx != 0)
1200 mark_referenced_resources (crtl->return_rtx,
1201 &end_of_function_needs, true);
1203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1204 if (global_regs[i]
1205 #ifdef EPILOGUE_USES
1206 || EPILOGUE_USES (i)
1207 #endif
1209 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1211 /* The registers required to be live at the end of the function are
1212 represented in the flow information as being dead just prior to
1213 reaching the end of the function. For example, the return of a value
1214 might be represented by a USE of the return register immediately
1215 followed by an unconditional jump to the return label where the
1216 return label is the end of the RTL chain. The end of the RTL chain
1217 is then taken to mean that the return register is live.
1219 This sequence is no longer maintained when epilogue instructions are
1220 added to the RTL chain. To reconstruct the original meaning, the
1221 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1222 point where these registers become live (start_of_epilogue_needs).
1223 If epilogue instructions are present, the registers set by those
1224 instructions won't have been processed by flow. Thus, those
1225 registers are additionally required at the end of the RTL chain
1226 (end_of_function_needs). */
1228 start_of_epilogue_needs = end_of_function_needs;
1230 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1232 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1233 MARK_SRC_DEST_CALL);
1234 if (return_insn_p (epilogue_insn))
1235 break;
1238 /* Allocate and initialize the tables used by mark_target_live_regs. */
1239 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1240 bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
1242 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1243 FOR_EACH_BB_FN (bb, cfun)
1244 if (LABEL_P (BB_HEAD (bb)))
1245 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1248 /* Free up the resources allocated to mark_target_live_regs (). This
1249 should be invoked after the last call to mark_target_live_regs (). */
1251 void
1252 free_resource_info (void)
1254 basic_block bb;
1256 if (target_hash_table != NULL)
1258 int i;
1260 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1262 struct target_info *ti = target_hash_table[i];
1264 while (ti)
1266 struct target_info *next = ti->next;
1267 free (ti);
1268 ti = next;
1272 free (target_hash_table);
1273 target_hash_table = NULL;
1276 if (bb_ticks != NULL)
1278 free (bb_ticks);
1279 bb_ticks = NULL;
1282 FOR_EACH_BB_FN (bb, cfun)
1283 if (LABEL_P (BB_HEAD (bb)))
1284 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1287 /* Clear any hashed information that we have stored for INSN. */
1289 void
1290 clear_hashed_info_for_insn (rtx_insn *insn)
1292 struct target_info *tinfo;
1294 if (target_hash_table != NULL)
1296 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1297 tinfo; tinfo = tinfo->next)
1298 if (tinfo->uid == INSN_UID (insn))
1299 break;
1301 if (tinfo)
1302 tinfo->block = -1;
1306 /* Increment the tick count for the basic block that contains INSN. */
1308 void
1309 incr_ticks_for_insn (rtx_insn *insn)
1311 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1313 if (b != -1)
1314 bb_ticks[b]++;
1317 /* Add TRIAL to the set of resources used at the end of the current
1318 function. */
1319 void
1320 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1322 mark_referenced_resources (trial, &end_of_function_needs,
1323 include_delayed_effects);