2017-12-20 Thomas Koenig <tkoenig@gcc.gnu.org>
[official-gcc.git] / gcc / dwarf2out.c
blob1fa76d08af105eac1c7c87a339e829685fe10465
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
33 information. */
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "target.h"
62 #include "function.h"
63 #include "rtl.h"
64 #include "tree.h"
65 #include "memmodel.h"
66 #include "tm_p.h"
67 #include "stringpool.h"
68 #include "insn-config.h"
69 #include "ira.h"
70 #include "cgraph.h"
71 #include "diagnostic.h"
72 #include "fold-const.h"
73 #include "stor-layout.h"
74 #include "varasm.h"
75 #include "version.h"
76 #include "flags.h"
77 #include "rtlhash.h"
78 #include "reload.h"
79 #include "output.h"
80 #include "expr.h"
81 #include "dwarf2out.h"
82 #include "dwarf2asm.h"
83 #include "toplev.h"
84 #include "md5.h"
85 #include "tree-pretty-print.h"
86 #include "print-rtl.h"
87 #include "debug.h"
88 #include "common/common-target.h"
89 #include "langhooks.h"
90 #include "lra.h"
91 #include "dumpfile.h"
92 #include "opts.h"
93 #include "tree-dfa.h"
94 #include "gdb/gdb-index.h"
95 #include "rtl-iter.h"
96 #include "stringpool.h"
97 #include "attribs.h"
99 static void dwarf2out_source_line (unsigned int, unsigned int, const char *,
100 int, bool);
101 static rtx_insn *last_var_location_insn;
102 static rtx_insn *cached_next_real_insn;
103 static void dwarf2out_decl (tree);
105 #ifndef XCOFF_DEBUGGING_INFO
106 #define XCOFF_DEBUGGING_INFO 0
107 #endif
109 #ifndef HAVE_XCOFF_DWARF_EXTRAS
110 #define HAVE_XCOFF_DWARF_EXTRAS 0
111 #endif
113 #ifdef VMS_DEBUGGING_INFO
114 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
116 /* Define this macro to be a nonzero value if the directory specifications
117 which are output in the debug info should end with a separator. */
118 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
119 /* Define this macro to evaluate to a nonzero value if GCC should refrain
120 from generating indirect strings in DWARF2 debug information, for instance
121 if your target is stuck with an old version of GDB that is unable to
122 process them properly or uses VMS Debug. */
123 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
124 #else
125 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
126 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
127 #endif
129 /* ??? Poison these here until it can be done generically. They've been
130 totally replaced in this file; make sure it stays that way. */
131 #undef DWARF2_UNWIND_INFO
132 #undef DWARF2_FRAME_INFO
133 #if (GCC_VERSION >= 3000)
134 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
135 #endif
137 /* The size of the target's pointer type. */
138 #ifndef PTR_SIZE
139 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
140 #endif
142 /* Array of RTXes referenced by the debugging information, which therefore
143 must be kept around forever. */
144 static GTY(()) vec<rtx, va_gc> *used_rtx_array;
146 /* A pointer to the base of a list of incomplete types which might be
147 completed at some later time. incomplete_types_list needs to be a
148 vec<tree, va_gc> *because we want to tell the garbage collector about
149 it. */
150 static GTY(()) vec<tree, va_gc> *incomplete_types;
152 /* A pointer to the base of a table of references to declaration
153 scopes. This table is a display which tracks the nesting
154 of declaration scopes at the current scope and containing
155 scopes. This table is used to find the proper place to
156 define type declaration DIE's. */
157 static GTY(()) vec<tree, va_gc> *decl_scope_table;
159 /* Pointers to various DWARF2 sections. */
160 static GTY(()) section *debug_info_section;
161 static GTY(()) section *debug_skeleton_info_section;
162 static GTY(()) section *debug_abbrev_section;
163 static GTY(()) section *debug_skeleton_abbrev_section;
164 static GTY(()) section *debug_aranges_section;
165 static GTY(()) section *debug_addr_section;
166 static GTY(()) section *debug_macinfo_section;
167 static const char *debug_macinfo_section_name;
168 static unsigned macinfo_label_base = 1;
169 static GTY(()) section *debug_line_section;
170 static GTY(()) section *debug_skeleton_line_section;
171 static GTY(()) section *debug_loc_section;
172 static GTY(()) section *debug_pubnames_section;
173 static GTY(()) section *debug_pubtypes_section;
174 static GTY(()) section *debug_str_section;
175 static GTY(()) section *debug_line_str_section;
176 static GTY(()) section *debug_str_dwo_section;
177 static GTY(()) section *debug_str_offsets_section;
178 static GTY(()) section *debug_ranges_section;
179 static GTY(()) section *debug_frame_section;
181 /* Maximum size (in bytes) of an artificially generated label. */
182 #define MAX_ARTIFICIAL_LABEL_BYTES 40
184 /* According to the (draft) DWARF 3 specification, the initial length
185 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
186 bytes are 0xffffffff, followed by the length stored in the next 8
187 bytes.
189 However, the SGI/MIPS ABI uses an initial length which is equal to
190 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
192 #ifndef DWARF_INITIAL_LENGTH_SIZE
193 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
194 #endif
196 #ifndef DWARF_INITIAL_LENGTH_SIZE_STR
197 #define DWARF_INITIAL_LENGTH_SIZE_STR (DWARF_OFFSET_SIZE == 4 ? "-4" : "-12")
198 #endif
200 /* Round SIZE up to the nearest BOUNDARY. */
201 #define DWARF_ROUND(SIZE,BOUNDARY) \
202 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
204 /* CIE identifier. */
205 #if HOST_BITS_PER_WIDE_INT >= 64
206 #define DWARF_CIE_ID \
207 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
208 #else
209 #define DWARF_CIE_ID DW_CIE_ID
210 #endif
213 /* A vector for a table that contains frame description
214 information for each routine. */
215 #define NOT_INDEXED (-1U)
216 #define NO_INDEX_ASSIGNED (-2U)
218 static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec;
220 struct GTY((for_user)) indirect_string_node {
221 const char *str;
222 unsigned int refcount;
223 enum dwarf_form form;
224 char *label;
225 unsigned int index;
228 struct indirect_string_hasher : ggc_ptr_hash<indirect_string_node>
230 typedef const char *compare_type;
232 static hashval_t hash (indirect_string_node *);
233 static bool equal (indirect_string_node *, const char *);
236 static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash;
238 static GTY (()) hash_table<indirect_string_hasher> *debug_line_str_hash;
240 /* With split_debug_info, both the comp_dir and dwo_name go in the
241 main object file, rather than the dwo, similar to the force_direct
242 parameter elsewhere but with additional complications:
244 1) The string is needed in both the main object file and the dwo.
245 That is, the comp_dir and dwo_name will appear in both places.
247 2) Strings can use four forms: DW_FORM_string, DW_FORM_strp,
248 DW_FORM_line_strp or DW_FORM_GNU_str_index.
250 3) GCC chooses the form to use late, depending on the size and
251 reference count.
253 Rather than forcing the all debug string handling functions and
254 callers to deal with these complications, simply use a separate,
255 special-cased string table for any attribute that should go in the
256 main object file. This limits the complexity to just the places
257 that need it. */
259 static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash;
261 static GTY(()) int dw2_string_counter;
263 /* True if the compilation unit places functions in more than one section. */
264 static GTY(()) bool have_multiple_function_sections = false;
266 /* Whether the default text and cold text sections have been used at all. */
267 static GTY(()) bool text_section_used = false;
268 static GTY(()) bool cold_text_section_used = false;
270 /* The default cold text section. */
271 static GTY(()) section *cold_text_section;
273 /* The DIE for C++14 'auto' in a function return type. */
274 static GTY(()) dw_die_ref auto_die;
276 /* The DIE for C++14 'decltype(auto)' in a function return type. */
277 static GTY(()) dw_die_ref decltype_auto_die;
279 /* Forward declarations for functions defined in this file. */
281 static void output_call_frame_info (int);
282 static void dwarf2out_note_section_used (void);
284 /* Personality decl of current unit. Used only when assembler does not support
285 personality CFI. */
286 static GTY(()) rtx current_unit_personality;
288 /* Whether an eh_frame section is required. */
289 static GTY(()) bool do_eh_frame = false;
291 /* .debug_rnglists next index. */
292 static unsigned int rnglist_idx;
294 /* Data and reference forms for relocatable data. */
295 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
296 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
298 #ifndef DEBUG_FRAME_SECTION
299 #define DEBUG_FRAME_SECTION ".debug_frame"
300 #endif
302 #ifndef FUNC_BEGIN_LABEL
303 #define FUNC_BEGIN_LABEL "LFB"
304 #endif
306 #ifndef FUNC_END_LABEL
307 #define FUNC_END_LABEL "LFE"
308 #endif
310 #ifndef PROLOGUE_END_LABEL
311 #define PROLOGUE_END_LABEL "LPE"
312 #endif
314 #ifndef EPILOGUE_BEGIN_LABEL
315 #define EPILOGUE_BEGIN_LABEL "LEB"
316 #endif
318 #ifndef FRAME_BEGIN_LABEL
319 #define FRAME_BEGIN_LABEL "Lframe"
320 #endif
321 #define CIE_AFTER_SIZE_LABEL "LSCIE"
322 #define CIE_END_LABEL "LECIE"
323 #define FDE_LABEL "LSFDE"
324 #define FDE_AFTER_SIZE_LABEL "LASFDE"
325 #define FDE_END_LABEL "LEFDE"
326 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
327 #define LINE_NUMBER_END_LABEL "LELT"
328 #define LN_PROLOG_AS_LABEL "LASLTP"
329 #define LN_PROLOG_END_LABEL "LELTP"
330 #define DIE_LABEL_PREFIX "DW"
332 /* Match the base name of a file to the base name of a compilation unit. */
334 static int
335 matches_main_base (const char *path)
337 /* Cache the last query. */
338 static const char *last_path = NULL;
339 static int last_match = 0;
340 if (path != last_path)
342 const char *base;
343 int length = base_of_path (path, &base);
344 last_path = path;
345 last_match = (length == main_input_baselength
346 && memcmp (base, main_input_basename, length) == 0);
348 return last_match;
351 #ifdef DEBUG_DEBUG_STRUCT
353 static int
354 dump_struct_debug (tree type, enum debug_info_usage usage,
355 enum debug_struct_file criterion, int generic,
356 int matches, int result)
358 /* Find the type name. */
359 tree type_decl = TYPE_STUB_DECL (type);
360 tree t = type_decl;
361 const char *name = 0;
362 if (TREE_CODE (t) == TYPE_DECL)
363 t = DECL_NAME (t);
364 if (t)
365 name = IDENTIFIER_POINTER (t);
367 fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n",
368 criterion,
369 DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
370 matches ? "bas" : "hdr",
371 generic ? "gen" : "ord",
372 usage == DINFO_USAGE_DFN ? ";" :
373 usage == DINFO_USAGE_DIR_USE ? "." : "*",
374 result,
375 (void*) type_decl, name);
376 return result;
378 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
379 dump_struct_debug (type, usage, criterion, generic, matches, result)
381 #else
383 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
384 (result)
386 #endif
388 /* Get the number of HOST_WIDE_INTs needed to represent the precision
389 of the number. Some constants have a large uniform precision, so
390 we get the precision needed for the actual value of the number. */
392 static unsigned int
393 get_full_len (const wide_int &op)
395 int prec = wi::min_precision (op, UNSIGNED);
396 return ((prec + HOST_BITS_PER_WIDE_INT - 1)
397 / HOST_BITS_PER_WIDE_INT);
400 static bool
401 should_emit_struct_debug (tree type, enum debug_info_usage usage)
403 enum debug_struct_file criterion;
404 tree type_decl;
405 bool generic = lang_hooks.types.generic_p (type);
407 if (generic)
408 criterion = debug_struct_generic[usage];
409 else
410 criterion = debug_struct_ordinary[usage];
412 if (criterion == DINFO_STRUCT_FILE_NONE)
413 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
414 if (criterion == DINFO_STRUCT_FILE_ANY)
415 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
417 type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));
419 if (type_decl != NULL)
421 if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
422 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
424 if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
425 return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
428 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
431 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
432 switch to the data section instead, and write out a synthetic start label
433 for collect2 the first time around. */
435 static void
436 switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED)
438 if (eh_frame_section == 0)
440 int flags;
442 if (EH_TABLES_CAN_BE_READ_ONLY)
444 int fde_encoding;
445 int per_encoding;
446 int lsda_encoding;
448 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
449 /*global=*/0);
450 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
451 /*global=*/1);
452 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
453 /*global=*/0);
454 flags = ((! flag_pic
455 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
456 && (fde_encoding & 0x70) != DW_EH_PE_aligned
457 && (per_encoding & 0x70) != DW_EH_PE_absptr
458 && (per_encoding & 0x70) != DW_EH_PE_aligned
459 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
460 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
461 ? 0 : SECTION_WRITE);
463 else
464 flags = SECTION_WRITE;
466 #ifdef EH_FRAME_SECTION_NAME
467 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
468 #else
469 eh_frame_section = ((flags == SECTION_WRITE)
470 ? data_section : readonly_data_section);
471 #endif /* EH_FRAME_SECTION_NAME */
474 switch_to_section (eh_frame_section);
476 #ifdef EH_FRAME_THROUGH_COLLECT2
477 /* We have no special eh_frame section. Emit special labels to guide
478 collect2. */
479 if (!back)
481 tree label = get_file_function_name ("F");
482 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
483 targetm.asm_out.globalize_label (asm_out_file,
484 IDENTIFIER_POINTER (label));
485 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
487 #endif
490 /* Switch [BACK] to the eh or debug frame table section, depending on
491 FOR_EH. */
493 static void
494 switch_to_frame_table_section (int for_eh, bool back)
496 if (for_eh)
497 switch_to_eh_frame_section (back);
498 else
500 if (!debug_frame_section)
501 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
502 SECTION_DEBUG, NULL);
503 switch_to_section (debug_frame_section);
507 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
509 enum dw_cfi_oprnd_type
510 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
512 switch (cfi)
514 case DW_CFA_nop:
515 case DW_CFA_GNU_window_save:
516 case DW_CFA_remember_state:
517 case DW_CFA_restore_state:
518 return dw_cfi_oprnd_unused;
520 case DW_CFA_set_loc:
521 case DW_CFA_advance_loc1:
522 case DW_CFA_advance_loc2:
523 case DW_CFA_advance_loc4:
524 case DW_CFA_MIPS_advance_loc8:
525 return dw_cfi_oprnd_addr;
527 case DW_CFA_offset:
528 case DW_CFA_offset_extended:
529 case DW_CFA_def_cfa:
530 case DW_CFA_offset_extended_sf:
531 case DW_CFA_def_cfa_sf:
532 case DW_CFA_restore:
533 case DW_CFA_restore_extended:
534 case DW_CFA_undefined:
535 case DW_CFA_same_value:
536 case DW_CFA_def_cfa_register:
537 case DW_CFA_register:
538 case DW_CFA_expression:
539 case DW_CFA_val_expression:
540 return dw_cfi_oprnd_reg_num;
542 case DW_CFA_def_cfa_offset:
543 case DW_CFA_GNU_args_size:
544 case DW_CFA_def_cfa_offset_sf:
545 return dw_cfi_oprnd_offset;
547 case DW_CFA_def_cfa_expression:
548 return dw_cfi_oprnd_loc;
550 default:
551 gcc_unreachable ();
555 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
557 enum dw_cfi_oprnd_type
558 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
560 switch (cfi)
562 case DW_CFA_def_cfa:
563 case DW_CFA_def_cfa_sf:
564 case DW_CFA_offset:
565 case DW_CFA_offset_extended_sf:
566 case DW_CFA_offset_extended:
567 return dw_cfi_oprnd_offset;
569 case DW_CFA_register:
570 return dw_cfi_oprnd_reg_num;
572 case DW_CFA_expression:
573 case DW_CFA_val_expression:
574 return dw_cfi_oprnd_loc;
576 case DW_CFA_def_cfa_expression:
577 return dw_cfi_oprnd_cfa_loc;
579 default:
580 return dw_cfi_oprnd_unused;
584 /* Output one FDE. */
586 static void
587 output_fde (dw_fde_ref fde, bool for_eh, bool second,
588 char *section_start_label, int fde_encoding, char *augmentation,
589 bool any_lsda_needed, int lsda_encoding)
591 const char *begin, *end;
592 static unsigned int j;
593 char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
595 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
596 /* empty */ 0);
597 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
598 for_eh + j);
599 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
600 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
601 if (!XCOFF_DEBUGGING_INFO || for_eh)
603 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
604 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
605 " indicating 64-bit DWARF extension");
606 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
607 "FDE Length");
609 ASM_OUTPUT_LABEL (asm_out_file, l1);
611 if (for_eh)
612 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
613 else
614 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
615 debug_frame_section, "FDE CIE offset");
617 begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
618 end = second ? fde->dw_fde_second_end : fde->dw_fde_end;
620 if (for_eh)
622 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
623 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
624 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
625 "FDE initial location");
626 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
627 end, begin, "FDE address range");
629 else
631 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
632 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
635 if (augmentation[0])
637 if (any_lsda_needed)
639 int size = size_of_encoded_value (lsda_encoding);
641 if (lsda_encoding == DW_EH_PE_aligned)
643 int offset = ( 4 /* Length */
644 + 4 /* CIE offset */
645 + 2 * size_of_encoded_value (fde_encoding)
646 + 1 /* Augmentation size */ );
647 int pad = -offset & (PTR_SIZE - 1);
649 size += pad;
650 gcc_assert (size_of_uleb128 (size) == 1);
653 dw2_asm_output_data_uleb128 (size, "Augmentation size");
655 if (fde->uses_eh_lsda)
657 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
658 fde->funcdef_number);
659 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
660 gen_rtx_SYMBOL_REF (Pmode, l1),
661 false,
662 "Language Specific Data Area");
664 else
666 if (lsda_encoding == DW_EH_PE_aligned)
667 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
668 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
669 "Language Specific Data Area (none)");
672 else
673 dw2_asm_output_data_uleb128 (0, "Augmentation size");
676 /* Loop through the Call Frame Instructions associated with this FDE. */
677 fde->dw_fde_current_label = begin;
679 size_t from, until, i;
681 from = 0;
682 until = vec_safe_length (fde->dw_fde_cfi);
684 if (fde->dw_fde_second_begin == NULL)
686 else if (!second)
687 until = fde->dw_fde_switch_cfi_index;
688 else
689 from = fde->dw_fde_switch_cfi_index;
691 for (i = from; i < until; i++)
692 output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh);
695 /* If we are to emit a ref/link from function bodies to their frame tables,
696 do it now. This is typically performed to make sure that tables
697 associated with functions are dragged with them and not discarded in
698 garbage collecting links. We need to do this on a per function basis to
699 cope with -ffunction-sections. */
701 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
702 /* Switch to the function section, emit the ref to the tables, and
703 switch *back* into the table section. */
704 switch_to_section (function_section (fde->decl));
705 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
706 switch_to_frame_table_section (for_eh, true);
707 #endif
709 /* Pad the FDE out to an address sized boundary. */
710 ASM_OUTPUT_ALIGN (asm_out_file,
711 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
712 ASM_OUTPUT_LABEL (asm_out_file, l2);
714 j += 2;
717 /* Return true if frame description entry FDE is needed for EH. */
719 static bool
720 fde_needed_for_eh_p (dw_fde_ref fde)
722 if (flag_asynchronous_unwind_tables)
723 return true;
725 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
726 return true;
728 if (fde->uses_eh_lsda)
729 return true;
731 /* If exceptions are enabled, we have collected nothrow info. */
732 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
733 return false;
735 return true;
738 /* Output the call frame information used to record information
739 that relates to calculating the frame pointer, and records the
740 location of saved registers. */
742 static void
743 output_call_frame_info (int for_eh)
745 unsigned int i;
746 dw_fde_ref fde;
747 dw_cfi_ref cfi;
748 char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
749 char section_start_label[MAX_ARTIFICIAL_LABEL_BYTES];
750 bool any_lsda_needed = false;
751 char augmentation[6];
752 int augmentation_size;
753 int fde_encoding = DW_EH_PE_absptr;
754 int per_encoding = DW_EH_PE_absptr;
755 int lsda_encoding = DW_EH_PE_absptr;
756 int return_reg;
757 rtx personality = NULL;
758 int dw_cie_version;
760 /* Don't emit a CIE if there won't be any FDEs. */
761 if (!fde_vec)
762 return;
764 /* Nothing to do if the assembler's doing it all. */
765 if (dwarf2out_do_cfi_asm ())
766 return;
768 /* If we don't have any functions we'll want to unwind out of, don't emit
769 any EH unwind information. If we make FDEs linkonce, we may have to
770 emit an empty label for an FDE that wouldn't otherwise be emitted. We
771 want to avoid having an FDE kept around when the function it refers to
772 is discarded. Example where this matters: a primary function template
773 in C++ requires EH information, an explicit specialization doesn't. */
774 if (for_eh)
776 bool any_eh_needed = false;
778 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
780 if (fde->uses_eh_lsda)
781 any_eh_needed = any_lsda_needed = true;
782 else if (fde_needed_for_eh_p (fde))
783 any_eh_needed = true;
784 else if (TARGET_USES_WEAK_UNWIND_INFO)
785 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
788 if (!any_eh_needed)
789 return;
792 /* We're going to be generating comments, so turn on app. */
793 if (flag_debug_asm)
794 app_enable ();
796 /* Switch to the proper frame section, first time. */
797 switch_to_frame_table_section (for_eh, false);
799 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
800 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
802 /* Output the CIE. */
803 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
804 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
805 if (!XCOFF_DEBUGGING_INFO || for_eh)
807 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
808 dw2_asm_output_data (4, 0xffffffff,
809 "Initial length escape value indicating 64-bit DWARF extension");
810 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
811 "Length of Common Information Entry");
813 ASM_OUTPUT_LABEL (asm_out_file, l1);
815 /* Now that the CIE pointer is PC-relative for EH,
816 use 0 to identify the CIE. */
817 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
818 (for_eh ? 0 : DWARF_CIE_ID),
819 "CIE Identifier Tag");
821 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
822 use CIE version 1, unless that would produce incorrect results
823 due to overflowing the return register column. */
824 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
825 dw_cie_version = 1;
826 if (return_reg >= 256 || dwarf_version > 2)
827 dw_cie_version = 3;
828 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
830 augmentation[0] = 0;
831 augmentation_size = 0;
833 personality = current_unit_personality;
834 if (for_eh)
836 char *p;
838 /* Augmentation:
839 z Indicates that a uleb128 is present to size the
840 augmentation section.
841 L Indicates the encoding (and thus presence) of
842 an LSDA pointer in the FDE augmentation.
843 R Indicates a non-default pointer encoding for
844 FDE code pointers.
845 P Indicates the presence of an encoding + language
846 personality routine in the CIE augmentation. */
848 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
849 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
850 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
852 p = augmentation + 1;
853 if (personality)
855 *p++ = 'P';
856 augmentation_size += 1 + size_of_encoded_value (per_encoding);
857 assemble_external_libcall (personality);
859 if (any_lsda_needed)
861 *p++ = 'L';
862 augmentation_size += 1;
864 if (fde_encoding != DW_EH_PE_absptr)
866 *p++ = 'R';
867 augmentation_size += 1;
869 if (p > augmentation + 1)
871 augmentation[0] = 'z';
872 *p = '\0';
875 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
876 if (personality && per_encoding == DW_EH_PE_aligned)
878 int offset = ( 4 /* Length */
879 + 4 /* CIE Id */
880 + 1 /* CIE version */
881 + strlen (augmentation) + 1 /* Augmentation */
882 + size_of_uleb128 (1) /* Code alignment */
883 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
884 + 1 /* RA column */
885 + 1 /* Augmentation size */
886 + 1 /* Personality encoding */ );
887 int pad = -offset & (PTR_SIZE - 1);
889 augmentation_size += pad;
891 /* Augmentations should be small, so there's scarce need to
892 iterate for a solution. Die if we exceed one uleb128 byte. */
893 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
897 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
898 if (dw_cie_version >= 4)
900 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
901 dw2_asm_output_data (1, 0, "CIE Segment Size");
903 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
904 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
905 "CIE Data Alignment Factor");
907 if (dw_cie_version == 1)
908 dw2_asm_output_data (1, return_reg, "CIE RA Column");
909 else
910 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
912 if (augmentation[0])
914 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
915 if (personality)
917 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
918 eh_data_format_name (per_encoding));
919 dw2_asm_output_encoded_addr_rtx (per_encoding,
920 personality,
921 true, NULL);
924 if (any_lsda_needed)
925 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
926 eh_data_format_name (lsda_encoding));
928 if (fde_encoding != DW_EH_PE_absptr)
929 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
930 eh_data_format_name (fde_encoding));
933 FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi)
934 output_cfi (cfi, NULL, for_eh);
936 /* Pad the CIE out to an address sized boundary. */
937 ASM_OUTPUT_ALIGN (asm_out_file,
938 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
939 ASM_OUTPUT_LABEL (asm_out_file, l2);
941 /* Loop through all of the FDE's. */
942 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
944 unsigned int k;
946 /* Don't emit EH unwind info for leaf functions that don't need it. */
947 if (for_eh && !fde_needed_for_eh_p (fde))
948 continue;
950 for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
951 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
952 augmentation, any_lsda_needed, lsda_encoding);
955 if (for_eh && targetm.terminate_dw2_eh_frame_info)
956 dw2_asm_output_data (4, 0, "End of Table");
958 /* Turn off app to make assembly quicker. */
959 if (flag_debug_asm)
960 app_disable ();
963 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
965 static void
966 dwarf2out_do_cfi_startproc (bool second)
968 int enc;
969 rtx ref;
971 fprintf (asm_out_file, "\t.cfi_startproc\n");
973 /* .cfi_personality and .cfi_lsda are only relevant to DWARF2
974 eh unwinders. */
975 if (targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
976 return;
978 rtx personality = get_personality_function (current_function_decl);
980 if (personality)
982 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
983 ref = personality;
985 /* ??? The GAS support isn't entirely consistent. We have to
986 handle indirect support ourselves, but PC-relative is done
987 in the assembler. Further, the assembler can't handle any
988 of the weirder relocation types. */
989 if (enc & DW_EH_PE_indirect)
990 ref = dw2_force_const_mem (ref, true);
992 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
993 output_addr_const (asm_out_file, ref);
994 fputc ('\n', asm_out_file);
997 if (crtl->uses_eh_lsda)
999 char lab[MAX_ARTIFICIAL_LABEL_BYTES];
1001 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1002 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
1003 current_function_funcdef_no);
1004 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
1005 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
1007 if (enc & DW_EH_PE_indirect)
1008 ref = dw2_force_const_mem (ref, true);
1010 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
1011 output_addr_const (asm_out_file, ref);
1012 fputc ('\n', asm_out_file);
1016 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1017 this allocation may be done before pass_final. */
1019 dw_fde_ref
1020 dwarf2out_alloc_current_fde (void)
1022 dw_fde_ref fde;
1024 fde = ggc_cleared_alloc<dw_fde_node> ();
1025 fde->decl = current_function_decl;
1026 fde->funcdef_number = current_function_funcdef_no;
1027 fde->fde_index = vec_safe_length (fde_vec);
1028 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
1029 fde->uses_eh_lsda = crtl->uses_eh_lsda;
1030 fde->nothrow = crtl->nothrow;
1031 fde->drap_reg = INVALID_REGNUM;
1032 fde->vdrap_reg = INVALID_REGNUM;
1034 /* Record the FDE associated with this function. */
1035 cfun->fde = fde;
1036 vec_safe_push (fde_vec, fde);
1038 return fde;
1041 /* Output a marker (i.e. a label) for the beginning of a function, before
1042 the prologue. */
1044 void
1045 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
1046 unsigned int column ATTRIBUTE_UNUSED,
1047 const char *file ATTRIBUTE_UNUSED)
1049 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1050 char * dup_label;
1051 dw_fde_ref fde;
1052 section *fnsec;
1053 bool do_frame;
1055 current_function_func_begin_label = NULL;
1057 do_frame = dwarf2out_do_frame ();
1059 /* ??? current_function_func_begin_label is also used by except.c for
1060 call-site information. We must emit this label if it might be used. */
1061 if (!do_frame
1062 && (!flag_exceptions
1063 || targetm_common.except_unwind_info (&global_options) == UI_SJLJ))
1064 return;
1066 fnsec = function_section (current_function_decl);
1067 switch_to_section (fnsec);
1068 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
1069 current_function_funcdef_no);
1070 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
1071 current_function_funcdef_no);
1072 dup_label = xstrdup (label);
1073 current_function_func_begin_label = dup_label;
1075 /* We can elide FDE allocation if we're not emitting frame unwind info. */
1076 if (!do_frame)
1077 return;
1079 /* Unlike the debug version, the EH version of frame unwind info is a per-
1080 function setting so we need to record whether we need it for the unit. */
1081 do_eh_frame |= dwarf2out_do_eh_frame ();
1083 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1084 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1085 would include pass_dwarf2_frame. If we've not created the FDE yet,
1086 do so now. */
1087 fde = cfun->fde;
1088 if (fde == NULL)
1089 fde = dwarf2out_alloc_current_fde ();
1091 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1092 fde->dw_fde_begin = dup_label;
1093 fde->dw_fde_current_label = dup_label;
1094 fde->in_std_section = (fnsec == text_section
1095 || (cold_text_section && fnsec == cold_text_section));
1097 /* We only want to output line number information for the genuine dwarf2
1098 prologue case, not the eh frame case. */
1099 #ifdef DWARF2_DEBUGGING_INFO
1100 if (file)
1101 dwarf2out_source_line (line, column, file, 0, true);
1102 #endif
1104 if (dwarf2out_do_cfi_asm ())
1105 dwarf2out_do_cfi_startproc (false);
1106 else
1108 rtx personality = get_personality_function (current_function_decl);
1109 if (!current_unit_personality)
1110 current_unit_personality = personality;
1112 /* We cannot keep a current personality per function as without CFI
1113 asm, at the point where we emit the CFI data, there is no current
1114 function anymore. */
1115 if (personality && current_unit_personality != personality)
1116 sorry ("multiple EH personalities are supported only with assemblers "
1117 "supporting .cfi_personality directive");
1121 /* Output a marker (i.e. a label) for the end of the generated code
1122 for a function prologue. This gets called *after* the prologue code has
1123 been generated. */
1125 void
1126 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
1127 const char *file ATTRIBUTE_UNUSED)
1129 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1131 /* Output a label to mark the endpoint of the code generated for this
1132 function. */
1133 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
1134 current_function_funcdef_no);
1135 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
1136 current_function_funcdef_no);
1137 cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
1140 /* Output a marker (i.e. a label) for the beginning of the generated code
1141 for a function epilogue. This gets called *before* the prologue code has
1142 been generated. */
1144 void
1145 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1146 const char *file ATTRIBUTE_UNUSED)
1148 dw_fde_ref fde = cfun->fde;
1149 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1151 if (fde->dw_fde_vms_begin_epilogue)
1152 return;
1154 /* Output a label to mark the endpoint of the code generated for this
1155 function. */
1156 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
1157 current_function_funcdef_no);
1158 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
1159 current_function_funcdef_no);
1160 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
1163 /* Output a marker (i.e. a label) for the absolute end of the generated code
1164 for a function definition. This gets called *after* the epilogue code has
1165 been generated. */
1167 void
1168 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1169 const char *file ATTRIBUTE_UNUSED)
1171 dw_fde_ref fde;
1172 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1174 last_var_location_insn = NULL;
1175 cached_next_real_insn = NULL;
1177 if (dwarf2out_do_cfi_asm ())
1178 fprintf (asm_out_file, "\t.cfi_endproc\n");
1180 /* Output a label to mark the endpoint of the code generated for this
1181 function. */
1182 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
1183 current_function_funcdef_no);
1184 ASM_OUTPUT_LABEL (asm_out_file, label);
1185 fde = cfun->fde;
1186 gcc_assert (fde != NULL);
1187 if (fde->dw_fde_second_begin == NULL)
1188 fde->dw_fde_end = xstrdup (label);
1191 void
1192 dwarf2out_frame_finish (void)
1194 /* Output call frame information. */
1195 if (targetm.debug_unwind_info () == UI_DWARF2)
1196 output_call_frame_info (0);
1198 /* Output another copy for the unwinder. */
1199 if (do_eh_frame)
1200 output_call_frame_info (1);
1203 /* Note that the current function section is being used for code. */
1205 static void
1206 dwarf2out_note_section_used (void)
1208 section *sec = current_function_section ();
1209 if (sec == text_section)
1210 text_section_used = true;
1211 else if (sec == cold_text_section)
1212 cold_text_section_used = true;
1215 static void var_location_switch_text_section (void);
1216 static void set_cur_line_info_table (section *);
1218 void
1219 dwarf2out_switch_text_section (void)
1221 section *sect;
1222 dw_fde_ref fde = cfun->fde;
1224 gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);
1226 if (!in_cold_section_p)
1228 fde->dw_fde_end = crtl->subsections.cold_section_end_label;
1229 fde->dw_fde_second_begin = crtl->subsections.hot_section_label;
1230 fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
1232 else
1234 fde->dw_fde_end = crtl->subsections.hot_section_end_label;
1235 fde->dw_fde_second_begin = crtl->subsections.cold_section_label;
1236 fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
1238 have_multiple_function_sections = true;
1240 /* There is no need to mark used sections when not debugging. */
1241 if (cold_text_section != NULL)
1242 dwarf2out_note_section_used ();
1244 if (dwarf2out_do_cfi_asm ())
1245 fprintf (asm_out_file, "\t.cfi_endproc\n");
1247 /* Now do the real section switch. */
1248 sect = current_function_section ();
1249 switch_to_section (sect);
1251 fde->second_in_std_section
1252 = (sect == text_section
1253 || (cold_text_section && sect == cold_text_section));
1255 if (dwarf2out_do_cfi_asm ())
1256 dwarf2out_do_cfi_startproc (true);
1258 var_location_switch_text_section ();
1260 if (cold_text_section != NULL)
1261 set_cur_line_info_table (sect);
1264 /* And now, the subset of the debugging information support code necessary
1265 for emitting location expressions. */
1267 /* Data about a single source file. */
1268 struct GTY((for_user)) dwarf_file_data {
1269 const char * filename;
1270 int emitted_number;
1273 /* Describe an entry into the .debug_addr section. */
1275 enum ate_kind {
1276 ate_kind_rtx,
1277 ate_kind_rtx_dtprel,
1278 ate_kind_label
1281 struct GTY((for_user)) addr_table_entry {
1282 enum ate_kind kind;
1283 unsigned int refcount;
1284 unsigned int index;
1285 union addr_table_entry_struct_union
1287 rtx GTY ((tag ("0"))) rtl;
1288 char * GTY ((tag ("1"))) label;
1290 GTY ((desc ("%1.kind"))) addr;
1293 /* Location lists are ranges + location descriptions for that range,
1294 so you can track variables that are in different places over
1295 their entire life. */
1296 typedef struct GTY(()) dw_loc_list_struct {
1297 dw_loc_list_ref dw_loc_next;
1298 const char *begin; /* Label and addr_entry for start of range */
1299 addr_table_entry *begin_entry;
1300 const char *end; /* Label for end of range */
1301 char *ll_symbol; /* Label for beginning of location list.
1302 Only on head of list */
1303 const char *section; /* Section this loclist is relative to */
1304 dw_loc_descr_ref expr;
1305 hashval_t hash;
1306 /* True if all addresses in this and subsequent lists are known to be
1307 resolved. */
1308 bool resolved_addr;
1309 /* True if this list has been replaced by dw_loc_next. */
1310 bool replaced;
1311 /* True if it has been emitted into .debug_loc* / .debug_loclists*
1312 section. */
1313 unsigned char emitted : 1;
1314 /* True if hash field is index rather than hash value. */
1315 unsigned char num_assigned : 1;
1316 /* True if .debug_loclists.dwo offset has been emitted for it already. */
1317 unsigned char offset_emitted : 1;
1318 /* True if note_variable_value_in_expr has been called on it. */
1319 unsigned char noted_variable_value : 1;
1320 /* True if the range should be emitted even if begin and end
1321 are the same. */
1322 bool force;
1323 } dw_loc_list_node;
1325 static dw_loc_descr_ref int_loc_descriptor (poly_int64);
1326 static dw_loc_descr_ref uint_loc_descriptor (unsigned HOST_WIDE_INT);
1328 /* Convert a DWARF stack opcode into its string name. */
1330 static const char *
1331 dwarf_stack_op_name (unsigned int op)
1333 const char *name = get_DW_OP_name (op);
1335 if (name != NULL)
1336 return name;
1338 return "OP_<unknown>";
1341 /* Return a pointer to a newly allocated location description. Location
1342 descriptions are simple expression terms that can be strung
1343 together to form more complicated location (address) descriptions. */
1345 static inline dw_loc_descr_ref
1346 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
1347 unsigned HOST_WIDE_INT oprnd2)
1349 dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> ();
1351 descr->dw_loc_opc = op;
1352 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
1353 descr->dw_loc_oprnd1.val_entry = NULL;
1354 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
1355 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
1356 descr->dw_loc_oprnd2.val_entry = NULL;
1357 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
1359 return descr;
1362 /* Add a location description term to a location description expression. */
1364 static inline void
1365 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
1367 dw_loc_descr_ref *d;
1369 /* Find the end of the chain. */
1370 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
1373 *d = descr;
1376 /* Compare two location operands for exact equality. */
1378 static bool
1379 dw_val_equal_p (dw_val_node *a, dw_val_node *b)
1381 if (a->val_class != b->val_class)
1382 return false;
1383 switch (a->val_class)
1385 case dw_val_class_none:
1386 return true;
1387 case dw_val_class_addr:
1388 return rtx_equal_p (a->v.val_addr, b->v.val_addr);
1390 case dw_val_class_offset:
1391 case dw_val_class_unsigned_const:
1392 case dw_val_class_const:
1393 case dw_val_class_unsigned_const_implicit:
1394 case dw_val_class_const_implicit:
1395 case dw_val_class_range_list:
1396 /* These are all HOST_WIDE_INT, signed or unsigned. */
1397 return a->v.val_unsigned == b->v.val_unsigned;
1399 case dw_val_class_loc:
1400 return a->v.val_loc == b->v.val_loc;
1401 case dw_val_class_loc_list:
1402 return a->v.val_loc_list == b->v.val_loc_list;
1403 case dw_val_class_die_ref:
1404 return a->v.val_die_ref.die == b->v.val_die_ref.die;
1405 case dw_val_class_fde_ref:
1406 return a->v.val_fde_index == b->v.val_fde_index;
1407 case dw_val_class_lbl_id:
1408 case dw_val_class_lineptr:
1409 case dw_val_class_macptr:
1410 case dw_val_class_loclistsptr:
1411 case dw_val_class_high_pc:
1412 return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
1413 case dw_val_class_str:
1414 return a->v.val_str == b->v.val_str;
1415 case dw_val_class_flag:
1416 return a->v.val_flag == b->v.val_flag;
1417 case dw_val_class_file:
1418 case dw_val_class_file_implicit:
1419 return a->v.val_file == b->v.val_file;
1420 case dw_val_class_decl_ref:
1421 return a->v.val_decl_ref == b->v.val_decl_ref;
1423 case dw_val_class_const_double:
1424 return (a->v.val_double.high == b->v.val_double.high
1425 && a->v.val_double.low == b->v.val_double.low);
1427 case dw_val_class_wide_int:
1428 return *a->v.val_wide == *b->v.val_wide;
1430 case dw_val_class_vec:
1432 size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
1433 size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;
1435 return (a_len == b_len
1436 && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
1439 case dw_val_class_data8:
1440 return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;
1442 case dw_val_class_vms_delta:
1443 return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
1444 && !strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1));
1446 case dw_val_class_discr_value:
1447 return (a->v.val_discr_value.pos == b->v.val_discr_value.pos
1448 && a->v.val_discr_value.v.uval == b->v.val_discr_value.v.uval);
1449 case dw_val_class_discr_list:
1450 /* It makes no sense comparing two discriminant value lists. */
1451 return false;
1453 gcc_unreachable ();
1456 /* Compare two location atoms for exact equality. */
1458 static bool
1459 loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
1461 if (a->dw_loc_opc != b->dw_loc_opc)
1462 return false;
1464 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1465 address size, but since we always allocate cleared storage it
1466 should be zero for other types of locations. */
1467 if (a->dtprel != b->dtprel)
1468 return false;
1470 return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
1471 && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
1474 /* Compare two complete location expressions for exact equality. */
1476 bool
1477 loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
1479 while (1)
1481 if (a == b)
1482 return true;
1483 if (a == NULL || b == NULL)
1484 return false;
1485 if (!loc_descr_equal_p_1 (a, b))
1486 return false;
1488 a = a->dw_loc_next;
1489 b = b->dw_loc_next;
1494 /* Add a constant POLY_OFFSET to a location expression. */
1496 static void
1497 loc_descr_plus_const (dw_loc_descr_ref *list_head, poly_int64 poly_offset)
1499 dw_loc_descr_ref loc;
1500 HOST_WIDE_INT *p;
1502 gcc_assert (*list_head != NULL);
1504 if (known_eq (poly_offset, 0))
1505 return;
1507 /* Find the end of the chain. */
1508 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
1511 HOST_WIDE_INT offset;
1512 if (!poly_offset.is_constant (&offset))
1514 loc->dw_loc_next = int_loc_descriptor (poly_offset);
1515 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_plus, 0, 0));
1516 return;
1519 p = NULL;
1520 if (loc->dw_loc_opc == DW_OP_fbreg
1521 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
1522 p = &loc->dw_loc_oprnd1.v.val_int;
1523 else if (loc->dw_loc_opc == DW_OP_bregx)
1524 p = &loc->dw_loc_oprnd2.v.val_int;
1526 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1527 offset. Don't optimize if an signed integer overflow would happen. */
1528 if (p != NULL
1529 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
1530 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
1531 *p += offset;
1533 else if (offset > 0)
1534 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
1536 else
1538 loc->dw_loc_next
1539 = uint_loc_descriptor (-(unsigned HOST_WIDE_INT) offset);
1540 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
1544 /* Return a pointer to a newly allocated location description for
1545 REG and OFFSET. */
1547 static inline dw_loc_descr_ref
1548 new_reg_loc_descr (unsigned int reg, poly_int64 offset)
1550 HOST_WIDE_INT const_offset;
1551 if (offset.is_constant (&const_offset))
1553 if (reg <= 31)
1554 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
1555 const_offset, 0);
1556 else
1557 return new_loc_descr (DW_OP_bregx, reg, const_offset);
1559 else
1561 dw_loc_descr_ref ret = new_reg_loc_descr (reg, 0);
1562 loc_descr_plus_const (&ret, offset);
1563 return ret;
1567 /* Add a constant OFFSET to a location list. */
1569 static void
1570 loc_list_plus_const (dw_loc_list_ref list_head, poly_int64 offset)
1572 dw_loc_list_ref d;
1573 for (d = list_head; d != NULL; d = d->dw_loc_next)
1574 loc_descr_plus_const (&d->expr, offset);
1577 #define DWARF_REF_SIZE \
1578 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1580 /* The number of bits that can be encoded by largest DW_FORM_dataN.
1581 In DWARF4 and earlier it is DW_FORM_data8 with 64 bits, in DWARF5
1582 DW_FORM_data16 with 128 bits. */
1583 #define DWARF_LARGEST_DATA_FORM_BITS \
1584 (dwarf_version >= 5 ? 128 : 64)
1586 /* Utility inline function for construction of ops that were GNU extension
1587 before DWARF 5. */
1588 static inline enum dwarf_location_atom
1589 dwarf_OP (enum dwarf_location_atom op)
1591 switch (op)
1593 case DW_OP_implicit_pointer:
1594 if (dwarf_version < 5)
1595 return DW_OP_GNU_implicit_pointer;
1596 break;
1598 case DW_OP_entry_value:
1599 if (dwarf_version < 5)
1600 return DW_OP_GNU_entry_value;
1601 break;
1603 case DW_OP_const_type:
1604 if (dwarf_version < 5)
1605 return DW_OP_GNU_const_type;
1606 break;
1608 case DW_OP_regval_type:
1609 if (dwarf_version < 5)
1610 return DW_OP_GNU_regval_type;
1611 break;
1613 case DW_OP_deref_type:
1614 if (dwarf_version < 5)
1615 return DW_OP_GNU_deref_type;
1616 break;
1618 case DW_OP_convert:
1619 if (dwarf_version < 5)
1620 return DW_OP_GNU_convert;
1621 break;
1623 case DW_OP_reinterpret:
1624 if (dwarf_version < 5)
1625 return DW_OP_GNU_reinterpret;
1626 break;
1628 default:
1629 break;
1631 return op;
1634 /* Similarly for attributes. */
1635 static inline enum dwarf_attribute
1636 dwarf_AT (enum dwarf_attribute at)
1638 switch (at)
1640 case DW_AT_call_return_pc:
1641 if (dwarf_version < 5)
1642 return DW_AT_low_pc;
1643 break;
1645 case DW_AT_call_tail_call:
1646 if (dwarf_version < 5)
1647 return DW_AT_GNU_tail_call;
1648 break;
1650 case DW_AT_call_origin:
1651 if (dwarf_version < 5)
1652 return DW_AT_abstract_origin;
1653 break;
1655 case DW_AT_call_target:
1656 if (dwarf_version < 5)
1657 return DW_AT_GNU_call_site_target;
1658 break;
1660 case DW_AT_call_target_clobbered:
1661 if (dwarf_version < 5)
1662 return DW_AT_GNU_call_site_target_clobbered;
1663 break;
1665 case DW_AT_call_parameter:
1666 if (dwarf_version < 5)
1667 return DW_AT_abstract_origin;
1668 break;
1670 case DW_AT_call_value:
1671 if (dwarf_version < 5)
1672 return DW_AT_GNU_call_site_value;
1673 break;
1675 case DW_AT_call_data_value:
1676 if (dwarf_version < 5)
1677 return DW_AT_GNU_call_site_data_value;
1678 break;
1680 case DW_AT_call_all_calls:
1681 if (dwarf_version < 5)
1682 return DW_AT_GNU_all_call_sites;
1683 break;
1685 case DW_AT_call_all_tail_calls:
1686 if (dwarf_version < 5)
1687 return DW_AT_GNU_all_tail_call_sites;
1688 break;
1690 case DW_AT_dwo_name:
1691 if (dwarf_version < 5)
1692 return DW_AT_GNU_dwo_name;
1693 break;
1695 default:
1696 break;
1698 return at;
1701 /* And similarly for tags. */
1702 static inline enum dwarf_tag
1703 dwarf_TAG (enum dwarf_tag tag)
1705 switch (tag)
1707 case DW_TAG_call_site:
1708 if (dwarf_version < 5)
1709 return DW_TAG_GNU_call_site;
1710 break;
1712 case DW_TAG_call_site_parameter:
1713 if (dwarf_version < 5)
1714 return DW_TAG_GNU_call_site_parameter;
1715 break;
1717 default:
1718 break;
1720 return tag;
1723 static unsigned long int get_base_type_offset (dw_die_ref);
1725 /* Return the size of a location descriptor. */
1727 static unsigned long
1728 size_of_loc_descr (dw_loc_descr_ref loc)
1730 unsigned long size = 1;
1732 switch (loc->dw_loc_opc)
1734 case DW_OP_addr:
1735 size += DWARF2_ADDR_SIZE;
1736 break;
1737 case DW_OP_GNU_addr_index:
1738 case DW_OP_GNU_const_index:
1739 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
1740 size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index);
1741 break;
1742 case DW_OP_const1u:
1743 case DW_OP_const1s:
1744 size += 1;
1745 break;
1746 case DW_OP_const2u:
1747 case DW_OP_const2s:
1748 size += 2;
1749 break;
1750 case DW_OP_const4u:
1751 case DW_OP_const4s:
1752 size += 4;
1753 break;
1754 case DW_OP_const8u:
1755 case DW_OP_const8s:
1756 size += 8;
1757 break;
1758 case DW_OP_constu:
1759 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1760 break;
1761 case DW_OP_consts:
1762 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1763 break;
1764 case DW_OP_pick:
1765 size += 1;
1766 break;
1767 case DW_OP_plus_uconst:
1768 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1769 break;
1770 case DW_OP_skip:
1771 case DW_OP_bra:
1772 size += 2;
1773 break;
1774 case DW_OP_breg0:
1775 case DW_OP_breg1:
1776 case DW_OP_breg2:
1777 case DW_OP_breg3:
1778 case DW_OP_breg4:
1779 case DW_OP_breg5:
1780 case DW_OP_breg6:
1781 case DW_OP_breg7:
1782 case DW_OP_breg8:
1783 case DW_OP_breg9:
1784 case DW_OP_breg10:
1785 case DW_OP_breg11:
1786 case DW_OP_breg12:
1787 case DW_OP_breg13:
1788 case DW_OP_breg14:
1789 case DW_OP_breg15:
1790 case DW_OP_breg16:
1791 case DW_OP_breg17:
1792 case DW_OP_breg18:
1793 case DW_OP_breg19:
1794 case DW_OP_breg20:
1795 case DW_OP_breg21:
1796 case DW_OP_breg22:
1797 case DW_OP_breg23:
1798 case DW_OP_breg24:
1799 case DW_OP_breg25:
1800 case DW_OP_breg26:
1801 case DW_OP_breg27:
1802 case DW_OP_breg28:
1803 case DW_OP_breg29:
1804 case DW_OP_breg30:
1805 case DW_OP_breg31:
1806 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1807 break;
1808 case DW_OP_regx:
1809 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1810 break;
1811 case DW_OP_fbreg:
1812 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1813 break;
1814 case DW_OP_bregx:
1815 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1816 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1817 break;
1818 case DW_OP_piece:
1819 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1820 break;
1821 case DW_OP_bit_piece:
1822 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1823 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
1824 break;
1825 case DW_OP_deref_size:
1826 case DW_OP_xderef_size:
1827 size += 1;
1828 break;
1829 case DW_OP_call2:
1830 size += 2;
1831 break;
1832 case DW_OP_call4:
1833 size += 4;
1834 break;
1835 case DW_OP_call_ref:
1836 case DW_OP_GNU_variable_value:
1837 size += DWARF_REF_SIZE;
1838 break;
1839 case DW_OP_implicit_value:
1840 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1841 + loc->dw_loc_oprnd1.v.val_unsigned;
1842 break;
1843 case DW_OP_implicit_pointer:
1844 case DW_OP_GNU_implicit_pointer:
1845 size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1846 break;
1847 case DW_OP_entry_value:
1848 case DW_OP_GNU_entry_value:
1850 unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
1851 size += size_of_uleb128 (op_size) + op_size;
1852 break;
1854 case DW_OP_const_type:
1855 case DW_OP_GNU_const_type:
1857 unsigned long o
1858 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1859 size += size_of_uleb128 (o) + 1;
1860 switch (loc->dw_loc_oprnd2.val_class)
1862 case dw_val_class_vec:
1863 size += loc->dw_loc_oprnd2.v.val_vec.length
1864 * loc->dw_loc_oprnd2.v.val_vec.elt_size;
1865 break;
1866 case dw_val_class_const:
1867 size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1868 break;
1869 case dw_val_class_const_double:
1870 size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT;
1871 break;
1872 case dw_val_class_wide_int:
1873 size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide)
1874 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
1875 break;
1876 default:
1877 gcc_unreachable ();
1879 break;
1881 case DW_OP_regval_type:
1882 case DW_OP_GNU_regval_type:
1884 unsigned long o
1885 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1886 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1887 + size_of_uleb128 (o);
1889 break;
1890 case DW_OP_deref_type:
1891 case DW_OP_GNU_deref_type:
1893 unsigned long o
1894 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1895 size += 1 + size_of_uleb128 (o);
1897 break;
1898 case DW_OP_convert:
1899 case DW_OP_reinterpret:
1900 case DW_OP_GNU_convert:
1901 case DW_OP_GNU_reinterpret:
1902 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
1903 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1904 else
1906 unsigned long o
1907 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1908 size += size_of_uleb128 (o);
1910 break;
1911 case DW_OP_GNU_parameter_ref:
1912 size += 4;
1913 break;
1914 default:
1915 break;
1918 return size;
1921 /* Return the size of a series of location descriptors. */
1923 unsigned long
1924 size_of_locs (dw_loc_descr_ref loc)
1926 dw_loc_descr_ref l;
1927 unsigned long size;
1929 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1930 field, to avoid writing to a PCH file. */
1931 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1933 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
1934 break;
1935 size += size_of_loc_descr (l);
1937 if (! l)
1938 return size;
1940 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1942 l->dw_loc_addr = size;
1943 size += size_of_loc_descr (l);
1946 return size;
1949 /* Return the size of the value in a DW_AT_discr_value attribute. */
1951 static int
1952 size_of_discr_value (dw_discr_value *discr_value)
1954 if (discr_value->pos)
1955 return size_of_uleb128 (discr_value->v.uval);
1956 else
1957 return size_of_sleb128 (discr_value->v.sval);
1960 /* Return the size of the value in a DW_AT_discr_list attribute. */
1962 static int
1963 size_of_discr_list (dw_discr_list_ref discr_list)
1965 int size = 0;
1967 for (dw_discr_list_ref list = discr_list;
1968 list != NULL;
1969 list = list->dw_discr_next)
1971 /* One byte for the discriminant value descriptor, and then one or two
1972 LEB128 numbers, depending on whether it's a single case label or a
1973 range label. */
1974 size += 1;
1975 size += size_of_discr_value (&list->dw_discr_lower_bound);
1976 if (list->dw_discr_range != 0)
1977 size += size_of_discr_value (&list->dw_discr_upper_bound);
1979 return size;
1982 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
1983 static void get_ref_die_offset_label (char *, dw_die_ref);
1984 static unsigned long int get_ref_die_offset (dw_die_ref);
1986 /* Output location description stack opcode's operands (if any).
1987 The for_eh_or_skip parameter controls whether register numbers are
1988 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1989 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1990 info). This should be suppressed for the cases that have not been converted
1991 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1993 static void
1994 output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
1996 dw_val_ref val1 = &loc->dw_loc_oprnd1;
1997 dw_val_ref val2 = &loc->dw_loc_oprnd2;
1999 switch (loc->dw_loc_opc)
2001 #ifdef DWARF2_DEBUGGING_INFO
2002 case DW_OP_const2u:
2003 case DW_OP_const2s:
2004 dw2_asm_output_data (2, val1->v.val_int, NULL);
2005 break;
2006 case DW_OP_const4u:
2007 if (loc->dtprel)
2009 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
2010 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
2011 val1->v.val_addr);
2012 fputc ('\n', asm_out_file);
2013 break;
2015 /* FALLTHRU */
2016 case DW_OP_const4s:
2017 dw2_asm_output_data (4, val1->v.val_int, NULL);
2018 break;
2019 case DW_OP_const8u:
2020 if (loc->dtprel)
2022 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
2023 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
2024 val1->v.val_addr);
2025 fputc ('\n', asm_out_file);
2026 break;
2028 /* FALLTHRU */
2029 case DW_OP_const8s:
2030 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2031 dw2_asm_output_data (8, val1->v.val_int, NULL);
2032 break;
2033 case DW_OP_skip:
2034 case DW_OP_bra:
2036 int offset;
2038 gcc_assert (val1->val_class == dw_val_class_loc);
2039 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2041 dw2_asm_output_data (2, offset, NULL);
2043 break;
2044 case DW_OP_implicit_value:
2045 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2046 switch (val2->val_class)
2048 case dw_val_class_const:
2049 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
2050 break;
2051 case dw_val_class_vec:
2053 unsigned int elt_size = val2->v.val_vec.elt_size;
2054 unsigned int len = val2->v.val_vec.length;
2055 unsigned int i;
2056 unsigned char *p;
2058 if (elt_size > sizeof (HOST_WIDE_INT))
2060 elt_size /= 2;
2061 len *= 2;
2063 for (i = 0, p = (unsigned char *) val2->v.val_vec.array;
2064 i < len;
2065 i++, p += elt_size)
2066 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2067 "fp or vector constant word %u", i);
2069 break;
2070 case dw_val_class_const_double:
2072 unsigned HOST_WIDE_INT first, second;
2074 if (WORDS_BIG_ENDIAN)
2076 first = val2->v.val_double.high;
2077 second = val2->v.val_double.low;
2079 else
2081 first = val2->v.val_double.low;
2082 second = val2->v.val_double.high;
2084 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2085 first, NULL);
2086 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2087 second, NULL);
2089 break;
2090 case dw_val_class_wide_int:
2092 int i;
2093 int len = get_full_len (*val2->v.val_wide);
2094 if (WORDS_BIG_ENDIAN)
2095 for (i = len - 1; i >= 0; --i)
2096 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2097 val2->v.val_wide->elt (i), NULL);
2098 else
2099 for (i = 0; i < len; ++i)
2100 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2101 val2->v.val_wide->elt (i), NULL);
2103 break;
2104 case dw_val_class_addr:
2105 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
2106 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
2107 break;
2108 default:
2109 gcc_unreachable ();
2111 break;
2112 #else
2113 case DW_OP_const2u:
2114 case DW_OP_const2s:
2115 case DW_OP_const4u:
2116 case DW_OP_const4s:
2117 case DW_OP_const8u:
2118 case DW_OP_const8s:
2119 case DW_OP_skip:
2120 case DW_OP_bra:
2121 case DW_OP_implicit_value:
2122 /* We currently don't make any attempt to make sure these are
2123 aligned properly like we do for the main unwind info, so
2124 don't support emitting things larger than a byte if we're
2125 only doing unwinding. */
2126 gcc_unreachable ();
2127 #endif
2128 case DW_OP_const1u:
2129 case DW_OP_const1s:
2130 dw2_asm_output_data (1, val1->v.val_int, NULL);
2131 break;
2132 case DW_OP_constu:
2133 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2134 break;
2135 case DW_OP_consts:
2136 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2137 break;
2138 case DW_OP_pick:
2139 dw2_asm_output_data (1, val1->v.val_int, NULL);
2140 break;
2141 case DW_OP_plus_uconst:
2142 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2143 break;
2144 case DW_OP_breg0:
2145 case DW_OP_breg1:
2146 case DW_OP_breg2:
2147 case DW_OP_breg3:
2148 case DW_OP_breg4:
2149 case DW_OP_breg5:
2150 case DW_OP_breg6:
2151 case DW_OP_breg7:
2152 case DW_OP_breg8:
2153 case DW_OP_breg9:
2154 case DW_OP_breg10:
2155 case DW_OP_breg11:
2156 case DW_OP_breg12:
2157 case DW_OP_breg13:
2158 case DW_OP_breg14:
2159 case DW_OP_breg15:
2160 case DW_OP_breg16:
2161 case DW_OP_breg17:
2162 case DW_OP_breg18:
2163 case DW_OP_breg19:
2164 case DW_OP_breg20:
2165 case DW_OP_breg21:
2166 case DW_OP_breg22:
2167 case DW_OP_breg23:
2168 case DW_OP_breg24:
2169 case DW_OP_breg25:
2170 case DW_OP_breg26:
2171 case DW_OP_breg27:
2172 case DW_OP_breg28:
2173 case DW_OP_breg29:
2174 case DW_OP_breg30:
2175 case DW_OP_breg31:
2176 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2177 break;
2178 case DW_OP_regx:
2180 unsigned r = val1->v.val_unsigned;
2181 if (for_eh_or_skip >= 0)
2182 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2183 gcc_assert (size_of_uleb128 (r)
2184 == size_of_uleb128 (val1->v.val_unsigned));
2185 dw2_asm_output_data_uleb128 (r, NULL);
2187 break;
2188 case DW_OP_fbreg:
2189 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2190 break;
2191 case DW_OP_bregx:
2193 unsigned r = val1->v.val_unsigned;
2194 if (for_eh_or_skip >= 0)
2195 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2196 gcc_assert (size_of_uleb128 (r)
2197 == size_of_uleb128 (val1->v.val_unsigned));
2198 dw2_asm_output_data_uleb128 (r, NULL);
2199 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2201 break;
2202 case DW_OP_piece:
2203 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2204 break;
2205 case DW_OP_bit_piece:
2206 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2207 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
2208 break;
2209 case DW_OP_deref_size:
2210 case DW_OP_xderef_size:
2211 dw2_asm_output_data (1, val1->v.val_int, NULL);
2212 break;
2214 case DW_OP_addr:
2215 if (loc->dtprel)
2217 if (targetm.asm_out.output_dwarf_dtprel)
2219 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
2220 DWARF2_ADDR_SIZE,
2221 val1->v.val_addr);
2222 fputc ('\n', asm_out_file);
2224 else
2225 gcc_unreachable ();
2227 else
2229 #ifdef DWARF2_DEBUGGING_INFO
2230 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2231 #else
2232 gcc_unreachable ();
2233 #endif
2235 break;
2237 case DW_OP_GNU_addr_index:
2238 case DW_OP_GNU_const_index:
2239 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
2240 dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index,
2241 "(index into .debug_addr)");
2242 break;
2244 case DW_OP_call2:
2245 case DW_OP_call4:
2247 unsigned long die_offset
2248 = get_ref_die_offset (val1->v.val_die_ref.die);
2249 /* Make sure the offset has been computed and that we can encode it as
2250 an operand. */
2251 gcc_assert (die_offset > 0
2252 && die_offset <= (loc->dw_loc_opc == DW_OP_call2
2253 ? 0xffff
2254 : 0xffffffff));
2255 dw2_asm_output_data ((loc->dw_loc_opc == DW_OP_call2) ? 2 : 4,
2256 die_offset, NULL);
2258 break;
2260 case DW_OP_call_ref:
2261 case DW_OP_GNU_variable_value:
2263 char label[MAX_ARTIFICIAL_LABEL_BYTES
2264 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2265 gcc_assert (val1->val_class == dw_val_class_die_ref);
2266 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2267 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2269 break;
2271 case DW_OP_implicit_pointer:
2272 case DW_OP_GNU_implicit_pointer:
2274 char label[MAX_ARTIFICIAL_LABEL_BYTES
2275 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2276 gcc_assert (val1->val_class == dw_val_class_die_ref);
2277 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2278 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2279 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2281 break;
2283 case DW_OP_entry_value:
2284 case DW_OP_GNU_entry_value:
2285 dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
2286 output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
2287 break;
2289 case DW_OP_const_type:
2290 case DW_OP_GNU_const_type:
2292 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
2293 gcc_assert (o);
2294 dw2_asm_output_data_uleb128 (o, NULL);
2295 switch (val2->val_class)
2297 case dw_val_class_const:
2298 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2299 dw2_asm_output_data (1, l, NULL);
2300 dw2_asm_output_data (l, val2->v.val_int, NULL);
2301 break;
2302 case dw_val_class_vec:
2304 unsigned int elt_size = val2->v.val_vec.elt_size;
2305 unsigned int len = val2->v.val_vec.length;
2306 unsigned int i;
2307 unsigned char *p;
2309 l = len * elt_size;
2310 dw2_asm_output_data (1, l, NULL);
2311 if (elt_size > sizeof (HOST_WIDE_INT))
2313 elt_size /= 2;
2314 len *= 2;
2316 for (i = 0, p = (unsigned char *) val2->v.val_vec.array;
2317 i < len;
2318 i++, p += elt_size)
2319 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2320 "fp or vector constant word %u", i);
2322 break;
2323 case dw_val_class_const_double:
2325 unsigned HOST_WIDE_INT first, second;
2326 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2328 dw2_asm_output_data (1, 2 * l, NULL);
2329 if (WORDS_BIG_ENDIAN)
2331 first = val2->v.val_double.high;
2332 second = val2->v.val_double.low;
2334 else
2336 first = val2->v.val_double.low;
2337 second = val2->v.val_double.high;
2339 dw2_asm_output_data (l, first, NULL);
2340 dw2_asm_output_data (l, second, NULL);
2342 break;
2343 case dw_val_class_wide_int:
2345 int i;
2346 int len = get_full_len (*val2->v.val_wide);
2347 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2349 dw2_asm_output_data (1, len * l, NULL);
2350 if (WORDS_BIG_ENDIAN)
2351 for (i = len - 1; i >= 0; --i)
2352 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2353 else
2354 for (i = 0; i < len; ++i)
2355 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2357 break;
2358 default:
2359 gcc_unreachable ();
2362 break;
2363 case DW_OP_regval_type:
2364 case DW_OP_GNU_regval_type:
2366 unsigned r = val1->v.val_unsigned;
2367 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2368 gcc_assert (o);
2369 if (for_eh_or_skip >= 0)
2371 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2372 gcc_assert (size_of_uleb128 (r)
2373 == size_of_uleb128 (val1->v.val_unsigned));
2375 dw2_asm_output_data_uleb128 (r, NULL);
2376 dw2_asm_output_data_uleb128 (o, NULL);
2378 break;
2379 case DW_OP_deref_type:
2380 case DW_OP_GNU_deref_type:
2382 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2383 gcc_assert (o);
2384 dw2_asm_output_data (1, val1->v.val_int, NULL);
2385 dw2_asm_output_data_uleb128 (o, NULL);
2387 break;
2388 case DW_OP_convert:
2389 case DW_OP_reinterpret:
2390 case DW_OP_GNU_convert:
2391 case DW_OP_GNU_reinterpret:
2392 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
2393 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2394 else
2396 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
2397 gcc_assert (o);
2398 dw2_asm_output_data_uleb128 (o, NULL);
2400 break;
2402 case DW_OP_GNU_parameter_ref:
2404 unsigned long o;
2405 gcc_assert (val1->val_class == dw_val_class_die_ref);
2406 o = get_ref_die_offset (val1->v.val_die_ref.die);
2407 dw2_asm_output_data (4, o, NULL);
2409 break;
2411 default:
2412 /* Other codes have no operands. */
2413 break;
2417 /* Output a sequence of location operations.
2418 The for_eh_or_skip parameter controls whether register numbers are
2419 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2420 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2421 info). This should be suppressed for the cases that have not been converted
2422 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2424 void
2425 output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
2427 for (; loc != NULL; loc = loc->dw_loc_next)
2429 enum dwarf_location_atom opc = loc->dw_loc_opc;
2430 /* Output the opcode. */
2431 if (for_eh_or_skip >= 0
2432 && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2434 unsigned r = (opc - DW_OP_breg0);
2435 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2436 gcc_assert (r <= 31);
2437 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2439 else if (for_eh_or_skip >= 0
2440 && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2442 unsigned r = (opc - DW_OP_reg0);
2443 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2444 gcc_assert (r <= 31);
2445 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2448 dw2_asm_output_data (1, opc,
2449 "%s", dwarf_stack_op_name (opc));
2451 /* Output the operand(s) (if any). */
2452 output_loc_operands (loc, for_eh_or_skip);
2456 /* Output location description stack opcode's operands (if any).
2457 The output is single bytes on a line, suitable for .cfi_escape. */
2459 static void
2460 output_loc_operands_raw (dw_loc_descr_ref loc)
2462 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2463 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2465 switch (loc->dw_loc_opc)
2467 case DW_OP_addr:
2468 case DW_OP_GNU_addr_index:
2469 case DW_OP_GNU_const_index:
2470 case DW_OP_implicit_value:
2471 /* We cannot output addresses in .cfi_escape, only bytes. */
2472 gcc_unreachable ();
2474 case DW_OP_const1u:
2475 case DW_OP_const1s:
2476 case DW_OP_pick:
2477 case DW_OP_deref_size:
2478 case DW_OP_xderef_size:
2479 fputc (',', asm_out_file);
2480 dw2_asm_output_data_raw (1, val1->v.val_int);
2481 break;
2483 case DW_OP_const2u:
2484 case DW_OP_const2s:
2485 fputc (',', asm_out_file);
2486 dw2_asm_output_data_raw (2, val1->v.val_int);
2487 break;
2489 case DW_OP_const4u:
2490 case DW_OP_const4s:
2491 fputc (',', asm_out_file);
2492 dw2_asm_output_data_raw (4, val1->v.val_int);
2493 break;
2495 case DW_OP_const8u:
2496 case DW_OP_const8s:
2497 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2498 fputc (',', asm_out_file);
2499 dw2_asm_output_data_raw (8, val1->v.val_int);
2500 break;
2502 case DW_OP_skip:
2503 case DW_OP_bra:
2505 int offset;
2507 gcc_assert (val1->val_class == dw_val_class_loc);
2508 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2510 fputc (',', asm_out_file);
2511 dw2_asm_output_data_raw (2, offset);
2513 break;
2515 case DW_OP_regx:
2517 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2518 gcc_assert (size_of_uleb128 (r)
2519 == size_of_uleb128 (val1->v.val_unsigned));
2520 fputc (',', asm_out_file);
2521 dw2_asm_output_data_uleb128_raw (r);
2523 break;
2525 case DW_OP_constu:
2526 case DW_OP_plus_uconst:
2527 case DW_OP_piece:
2528 fputc (',', asm_out_file);
2529 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2530 break;
2532 case DW_OP_bit_piece:
2533 fputc (',', asm_out_file);
2534 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2535 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
2536 break;
2538 case DW_OP_consts:
2539 case DW_OP_breg0:
2540 case DW_OP_breg1:
2541 case DW_OP_breg2:
2542 case DW_OP_breg3:
2543 case DW_OP_breg4:
2544 case DW_OP_breg5:
2545 case DW_OP_breg6:
2546 case DW_OP_breg7:
2547 case DW_OP_breg8:
2548 case DW_OP_breg9:
2549 case DW_OP_breg10:
2550 case DW_OP_breg11:
2551 case DW_OP_breg12:
2552 case DW_OP_breg13:
2553 case DW_OP_breg14:
2554 case DW_OP_breg15:
2555 case DW_OP_breg16:
2556 case DW_OP_breg17:
2557 case DW_OP_breg18:
2558 case DW_OP_breg19:
2559 case DW_OP_breg20:
2560 case DW_OP_breg21:
2561 case DW_OP_breg22:
2562 case DW_OP_breg23:
2563 case DW_OP_breg24:
2564 case DW_OP_breg25:
2565 case DW_OP_breg26:
2566 case DW_OP_breg27:
2567 case DW_OP_breg28:
2568 case DW_OP_breg29:
2569 case DW_OP_breg30:
2570 case DW_OP_breg31:
2571 case DW_OP_fbreg:
2572 fputc (',', asm_out_file);
2573 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
2574 break;
2576 case DW_OP_bregx:
2578 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2579 gcc_assert (size_of_uleb128 (r)
2580 == size_of_uleb128 (val1->v.val_unsigned));
2581 fputc (',', asm_out_file);
2582 dw2_asm_output_data_uleb128_raw (r);
2583 fputc (',', asm_out_file);
2584 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
2586 break;
2588 case DW_OP_implicit_pointer:
2589 case DW_OP_entry_value:
2590 case DW_OP_const_type:
2591 case DW_OP_regval_type:
2592 case DW_OP_deref_type:
2593 case DW_OP_convert:
2594 case DW_OP_reinterpret:
2595 case DW_OP_GNU_implicit_pointer:
2596 case DW_OP_GNU_entry_value:
2597 case DW_OP_GNU_const_type:
2598 case DW_OP_GNU_regval_type:
2599 case DW_OP_GNU_deref_type:
2600 case DW_OP_GNU_convert:
2601 case DW_OP_GNU_reinterpret:
2602 case DW_OP_GNU_parameter_ref:
2603 gcc_unreachable ();
2604 break;
2606 default:
2607 /* Other codes have no operands. */
2608 break;
2612 void
2613 output_loc_sequence_raw (dw_loc_descr_ref loc)
2615 while (1)
2617 enum dwarf_location_atom opc = loc->dw_loc_opc;
2618 /* Output the opcode. */
2619 if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2621 unsigned r = (opc - DW_OP_breg0);
2622 r = DWARF2_FRAME_REG_OUT (r, 1);
2623 gcc_assert (r <= 31);
2624 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2626 else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2628 unsigned r = (opc - DW_OP_reg0);
2629 r = DWARF2_FRAME_REG_OUT (r, 1);
2630 gcc_assert (r <= 31);
2631 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2633 /* Output the opcode. */
2634 fprintf (asm_out_file, "%#x", opc);
2635 output_loc_operands_raw (loc);
2637 if (!loc->dw_loc_next)
2638 break;
2639 loc = loc->dw_loc_next;
2641 fputc (',', asm_out_file);
2645 /* This function builds a dwarf location descriptor sequence from a
2646 dw_cfa_location, adding the given OFFSET to the result of the
2647 expression. */
2649 struct dw_loc_descr_node *
2650 build_cfa_loc (dw_cfa_location *cfa, poly_int64 offset)
2652 struct dw_loc_descr_node *head, *tmp;
2654 offset += cfa->offset;
2656 if (cfa->indirect)
2658 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
2659 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2660 head->dw_loc_oprnd1.val_entry = NULL;
2661 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2662 add_loc_descr (&head, tmp);
2663 loc_descr_plus_const (&head, offset);
2665 else
2666 head = new_reg_loc_descr (cfa->reg, offset);
2668 return head;
2671 /* This function builds a dwarf location descriptor sequence for
2672 the address at OFFSET from the CFA when stack is aligned to
2673 ALIGNMENT byte. */
2675 struct dw_loc_descr_node *
2676 build_cfa_aligned_loc (dw_cfa_location *cfa,
2677 poly_int64 offset, HOST_WIDE_INT alignment)
2679 struct dw_loc_descr_node *head;
2680 unsigned int dwarf_fp
2681 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2683 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2684 if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
2686 head = new_reg_loc_descr (dwarf_fp, 0);
2687 add_loc_descr (&head, int_loc_descriptor (alignment));
2688 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
2689 loc_descr_plus_const (&head, offset);
2691 else
2692 head = new_reg_loc_descr (dwarf_fp, offset);
2693 return head;
2696 /* And now, the support for symbolic debugging information. */
2698 /* .debug_str support. */
2700 static void dwarf2out_init (const char *);
2701 static void dwarf2out_finish (const char *);
2702 static void dwarf2out_early_finish (const char *);
2703 static void dwarf2out_assembly_start (void);
2704 static void dwarf2out_define (unsigned int, const char *);
2705 static void dwarf2out_undef (unsigned int, const char *);
2706 static void dwarf2out_start_source_file (unsigned, const char *);
2707 static void dwarf2out_end_source_file (unsigned);
2708 static void dwarf2out_function_decl (tree);
2709 static void dwarf2out_begin_block (unsigned, unsigned);
2710 static void dwarf2out_end_block (unsigned, unsigned);
2711 static bool dwarf2out_ignore_block (const_tree);
2712 static void dwarf2out_early_global_decl (tree);
2713 static void dwarf2out_late_global_decl (tree);
2714 static void dwarf2out_type_decl (tree, int);
2715 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool, bool);
2716 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
2717 dw_die_ref);
2718 static void dwarf2out_abstract_function (tree);
2719 static void dwarf2out_var_location (rtx_insn *);
2720 static void dwarf2out_size_function (tree);
2721 static void dwarf2out_begin_function (tree);
2722 static void dwarf2out_end_function (unsigned int);
2723 static void dwarf2out_register_main_translation_unit (tree unit);
2724 static void dwarf2out_set_name (tree, tree);
2725 static void dwarf2out_register_external_die (tree decl, const char *sym,
2726 unsigned HOST_WIDE_INT off);
2727 static bool dwarf2out_die_ref_for_decl (tree decl, const char **sym,
2728 unsigned HOST_WIDE_INT *off);
2730 /* The debug hooks structure. */
2732 const struct gcc_debug_hooks dwarf2_debug_hooks =
2734 dwarf2out_init,
2735 dwarf2out_finish,
2736 dwarf2out_early_finish,
2737 dwarf2out_assembly_start,
2738 dwarf2out_define,
2739 dwarf2out_undef,
2740 dwarf2out_start_source_file,
2741 dwarf2out_end_source_file,
2742 dwarf2out_begin_block,
2743 dwarf2out_end_block,
2744 dwarf2out_ignore_block,
2745 dwarf2out_source_line,
2746 dwarf2out_begin_prologue,
2747 #if VMS_DEBUGGING_INFO
2748 dwarf2out_vms_end_prologue,
2749 dwarf2out_vms_begin_epilogue,
2750 #else
2751 debug_nothing_int_charstar,
2752 debug_nothing_int_charstar,
2753 #endif
2754 dwarf2out_end_epilogue,
2755 dwarf2out_begin_function,
2756 dwarf2out_end_function, /* end_function */
2757 dwarf2out_register_main_translation_unit,
2758 dwarf2out_function_decl, /* function_decl */
2759 dwarf2out_early_global_decl,
2760 dwarf2out_late_global_decl,
2761 dwarf2out_type_decl, /* type_decl */
2762 dwarf2out_imported_module_or_decl,
2763 dwarf2out_die_ref_for_decl,
2764 dwarf2out_register_external_die,
2765 debug_nothing_tree, /* deferred_inline_function */
2766 /* The DWARF 2 backend tries to reduce debugging bloat by not
2767 emitting the abstract description of inline functions until
2768 something tries to reference them. */
2769 dwarf2out_abstract_function, /* outlining_inline_function */
2770 debug_nothing_rtx_code_label, /* label */
2771 debug_nothing_int, /* handle_pch */
2772 dwarf2out_var_location,
2773 debug_nothing_tree, /* inline_entry */
2774 dwarf2out_size_function, /* size_function */
2775 dwarf2out_switch_text_section,
2776 dwarf2out_set_name,
2777 1, /* start_end_main_source_file */
2778 TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
2781 const struct gcc_debug_hooks dwarf2_lineno_debug_hooks =
2783 dwarf2out_init,
2784 debug_nothing_charstar,
2785 debug_nothing_charstar,
2786 dwarf2out_assembly_start,
2787 debug_nothing_int_charstar,
2788 debug_nothing_int_charstar,
2789 debug_nothing_int_charstar,
2790 debug_nothing_int,
2791 debug_nothing_int_int, /* begin_block */
2792 debug_nothing_int_int, /* end_block */
2793 debug_true_const_tree, /* ignore_block */
2794 dwarf2out_source_line, /* source_line */
2795 debug_nothing_int_int_charstar, /* begin_prologue */
2796 debug_nothing_int_charstar, /* end_prologue */
2797 debug_nothing_int_charstar, /* begin_epilogue */
2798 debug_nothing_int_charstar, /* end_epilogue */
2799 debug_nothing_tree, /* begin_function */
2800 debug_nothing_int, /* end_function */
2801 debug_nothing_tree, /* register_main_translation_unit */
2802 debug_nothing_tree, /* function_decl */
2803 debug_nothing_tree, /* early_global_decl */
2804 debug_nothing_tree, /* late_global_decl */
2805 debug_nothing_tree_int, /* type_decl */
2806 debug_nothing_tree_tree_tree_bool_bool,/* imported_module_or_decl */
2807 debug_false_tree_charstarstar_uhwistar,/* die_ref_for_decl */
2808 debug_nothing_tree_charstar_uhwi, /* register_external_die */
2809 debug_nothing_tree, /* deferred_inline_function */
2810 debug_nothing_tree, /* outlining_inline_function */
2811 debug_nothing_rtx_code_label, /* label */
2812 debug_nothing_int, /* handle_pch */
2813 debug_nothing_rtx_insn, /* var_location */
2814 debug_nothing_tree, /* inline_entry */
2815 debug_nothing_tree, /* size_function */
2816 debug_nothing_void, /* switch_text_section */
2817 debug_nothing_tree_tree, /* set_name */
2818 0, /* start_end_main_source_file */
2819 TYPE_SYMTAB_IS_ADDRESS /* tree_type_symtab_field */
2822 /* NOTE: In the comments in this file, many references are made to
2823 "Debugging Information Entries". This term is abbreviated as `DIE'
2824 throughout the remainder of this file. */
2826 /* An internal representation of the DWARF output is built, and then
2827 walked to generate the DWARF debugging info. The walk of the internal
2828 representation is done after the entire program has been compiled.
2829 The types below are used to describe the internal representation. */
2831 /* Whether to put type DIEs into their own section .debug_types instead
2832 of making them part of the .debug_info section. Only supported for
2833 Dwarf V4 or higher and the user didn't disable them through
2834 -fno-debug-types-section. It is more efficient to put them in a
2835 separate comdat sections since the linker will then be able to
2836 remove duplicates. But not all tools support .debug_types sections
2837 yet. For Dwarf V5 or higher .debug_types doesn't exist any more,
2838 it is DW_UT_type unit type in .debug_info section. */
2840 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2842 /* Various DIE's use offsets relative to the beginning of the
2843 .debug_info section to refer to each other. */
2845 typedef long int dw_offset;
2847 struct comdat_type_node;
2849 /* The entries in the line_info table more-or-less mirror the opcodes
2850 that are used in the real dwarf line table. Arrays of these entries
2851 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2852 supported. */
2854 enum dw_line_info_opcode {
2855 /* Emit DW_LNE_set_address; the operand is the label index. */
2856 LI_set_address,
2858 /* Emit a row to the matrix with the given line. This may be done
2859 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2860 special opcodes. */
2861 LI_set_line,
2863 /* Emit a DW_LNS_set_file. */
2864 LI_set_file,
2866 /* Emit a DW_LNS_set_column. */
2867 LI_set_column,
2869 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2870 LI_negate_stmt,
2872 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2873 LI_set_prologue_end,
2874 LI_set_epilogue_begin,
2876 /* Emit a DW_LNE_set_discriminator. */
2877 LI_set_discriminator
2880 typedef struct GTY(()) dw_line_info_struct {
2881 enum dw_line_info_opcode opcode;
2882 unsigned int val;
2883 } dw_line_info_entry;
2886 struct GTY(()) dw_line_info_table {
2887 /* The label that marks the end of this section. */
2888 const char *end_label;
2890 /* The values for the last row of the matrix, as collected in the table.
2891 These are used to minimize the changes to the next row. */
2892 unsigned int file_num;
2893 unsigned int line_num;
2894 unsigned int column_num;
2895 int discrim_num;
2896 bool is_stmt;
2897 bool in_use;
2899 vec<dw_line_info_entry, va_gc> *entries;
2903 /* Each DIE attribute has a field specifying the attribute kind,
2904 a link to the next attribute in the chain, and an attribute value.
2905 Attributes are typically linked below the DIE they modify. */
2907 typedef struct GTY(()) dw_attr_struct {
2908 enum dwarf_attribute dw_attr;
2909 dw_val_node dw_attr_val;
2911 dw_attr_node;
2914 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2915 The children of each node form a circular list linked by
2916 die_sib. die_child points to the node *before* the "first" child node. */
2918 typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct {
2919 union die_symbol_or_type_node
2921 const char * GTY ((tag ("0"))) die_symbol;
2922 comdat_type_node *GTY ((tag ("1"))) die_type_node;
2924 GTY ((desc ("%0.comdat_type_p"))) die_id;
2925 vec<dw_attr_node, va_gc> *die_attr;
2926 dw_die_ref die_parent;
2927 dw_die_ref die_child;
2928 dw_die_ref die_sib;
2929 dw_die_ref die_definition; /* ref from a specification to its definition */
2930 dw_offset die_offset;
2931 unsigned long die_abbrev;
2932 int die_mark;
2933 unsigned int decl_id;
2934 enum dwarf_tag die_tag;
2935 /* Die is used and must not be pruned as unused. */
2936 BOOL_BITFIELD die_perennial_p : 1;
2937 BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */
2938 /* For an external ref to die_symbol if die_offset contains an extra
2939 offset to that symbol. */
2940 BOOL_BITFIELD with_offset : 1;
2941 /* Whether this DIE was removed from the DIE tree, for example via
2942 prune_unused_types. We don't consider those present from the
2943 DIE lookup routines. */
2944 BOOL_BITFIELD removed : 1;
2945 /* Lots of spare bits. */
2947 die_node;
2949 /* Set to TRUE while dwarf2out_early_global_decl is running. */
2950 static bool early_dwarf;
2951 static bool early_dwarf_finished;
2952 struct set_early_dwarf {
2953 bool saved;
2954 set_early_dwarf () : saved(early_dwarf)
2956 gcc_assert (! early_dwarf_finished);
2957 early_dwarf = true;
2959 ~set_early_dwarf () { early_dwarf = saved; }
2962 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2963 #define FOR_EACH_CHILD(die, c, expr) do { \
2964 c = die->die_child; \
2965 if (c) do { \
2966 c = c->die_sib; \
2967 expr; \
2968 } while (c != die->die_child); \
2969 } while (0)
2971 /* The pubname structure */
2973 typedef struct GTY(()) pubname_struct {
2974 dw_die_ref die;
2975 const char *name;
2977 pubname_entry;
2980 struct GTY(()) dw_ranges {
2981 const char *label;
2982 /* If this is positive, it's a block number, otherwise it's a
2983 bitwise-negated index into dw_ranges_by_label. */
2984 int num;
2985 /* Index for the range list for DW_FORM_rnglistx. */
2986 unsigned int idx : 31;
2987 /* True if this range might be possibly in a different section
2988 from previous entry. */
2989 unsigned int maybe_new_sec : 1;
2992 /* A structure to hold a macinfo entry. */
2994 typedef struct GTY(()) macinfo_struct {
2995 unsigned char code;
2996 unsigned HOST_WIDE_INT lineno;
2997 const char *info;
2999 macinfo_entry;
3002 struct GTY(()) dw_ranges_by_label {
3003 const char *begin;
3004 const char *end;
3007 /* The comdat type node structure. */
3008 struct GTY(()) comdat_type_node
3010 dw_die_ref root_die;
3011 dw_die_ref type_die;
3012 dw_die_ref skeleton_die;
3013 char signature[DWARF_TYPE_SIGNATURE_SIZE];
3014 comdat_type_node *next;
3017 /* A list of DIEs for which we can't determine ancestry (parent_die
3018 field) just yet. Later in dwarf2out_finish we will fill in the
3019 missing bits. */
3020 typedef struct GTY(()) limbo_die_struct {
3021 dw_die_ref die;
3022 /* The tree for which this DIE was created. We use this to
3023 determine ancestry later. */
3024 tree created_for;
3025 struct limbo_die_struct *next;
3027 limbo_die_node;
3029 typedef struct skeleton_chain_struct
3031 dw_die_ref old_die;
3032 dw_die_ref new_die;
3033 struct skeleton_chain_struct *parent;
3035 skeleton_chain_node;
3037 /* Define a macro which returns nonzero for a TYPE_DECL which was
3038 implicitly generated for a type.
3040 Note that, unlike the C front-end (which generates a NULL named
3041 TYPE_DECL node for each complete tagged type, each array type,
3042 and each function type node created) the C++ front-end generates
3043 a _named_ TYPE_DECL node for each tagged type node created.
3044 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3045 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
3046 front-end, but for each type, tagged or not. */
3048 #define TYPE_DECL_IS_STUB(decl) \
3049 (DECL_NAME (decl) == NULL_TREE \
3050 || (DECL_ARTIFICIAL (decl) \
3051 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3052 /* This is necessary for stub decls that \
3053 appear in nested inline functions. */ \
3054 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3055 && (decl_ultimate_origin (decl) \
3056 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3058 /* Information concerning the compilation unit's programming
3059 language, and compiler version. */
3061 /* Fixed size portion of the DWARF compilation unit header. */
3062 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3063 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE \
3064 + (dwarf_version >= 5 ? 4 : 3))
3066 /* Fixed size portion of the DWARF comdat type unit header. */
3067 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
3068 (DWARF_COMPILE_UNIT_HEADER_SIZE \
3069 + DWARF_TYPE_SIGNATURE_SIZE + DWARF_OFFSET_SIZE)
3071 /* Fixed size portion of the DWARF skeleton compilation unit header. */
3072 #define DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE \
3073 (DWARF_COMPILE_UNIT_HEADER_SIZE + (dwarf_version >= 5 ? 8 : 0))
3075 /* Fixed size portion of public names info. */
3076 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3078 /* Fixed size portion of the address range info. */
3079 #define DWARF_ARANGES_HEADER_SIZE \
3080 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3081 DWARF2_ADDR_SIZE * 2) \
3082 - DWARF_INITIAL_LENGTH_SIZE)
3084 /* Size of padding portion in the address range info. It must be
3085 aligned to twice the pointer size. */
3086 #define DWARF_ARANGES_PAD_SIZE \
3087 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3088 DWARF2_ADDR_SIZE * 2) \
3089 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3091 /* Use assembler line directives if available. */
3092 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3093 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3094 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3095 #else
3096 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3097 #endif
3098 #endif
3100 /* Minimum line offset in a special line info. opcode.
3101 This value was chosen to give a reasonable range of values. */
3102 #define DWARF_LINE_BASE -10
3104 /* First special line opcode - leave room for the standard opcodes. */
3105 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
3107 /* Range of line offsets in a special line info. opcode. */
3108 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3110 /* Flag that indicates the initial value of the is_stmt_start flag.
3111 In the present implementation, we do not mark any lines as
3112 the beginning of a source statement, because that information
3113 is not made available by the GCC front-end. */
3114 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3116 /* Maximum number of operations per instruction bundle. */
3117 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
3118 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
3119 #endif
3121 /* This location is used by calc_die_sizes() to keep track
3122 the offset of each DIE within the .debug_info section. */
3123 static unsigned long next_die_offset;
3125 /* Record the root of the DIE's built for the current compilation unit. */
3126 static GTY(()) dw_die_ref single_comp_unit_die;
3128 /* A list of type DIEs that have been separated into comdat sections. */
3129 static GTY(()) comdat_type_node *comdat_type_list;
3131 /* A list of CU DIEs that have been separated. */
3132 static GTY(()) limbo_die_node *cu_die_list;
3134 /* A list of DIEs with a NULL parent waiting to be relocated. */
3135 static GTY(()) limbo_die_node *limbo_die_list;
3137 /* A list of DIEs for which we may have to generate
3138 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
3139 static GTY(()) limbo_die_node *deferred_asm_name;
3141 struct dwarf_file_hasher : ggc_ptr_hash<dwarf_file_data>
3143 typedef const char *compare_type;
3145 static hashval_t hash (dwarf_file_data *);
3146 static bool equal (dwarf_file_data *, const char *);
3149 /* Filenames referenced by this compilation unit. */
3150 static GTY(()) hash_table<dwarf_file_hasher> *file_table;
3152 struct decl_die_hasher : ggc_ptr_hash<die_node>
3154 typedef tree compare_type;
3156 static hashval_t hash (die_node *);
3157 static bool equal (die_node *, tree);
3159 /* A hash table of references to DIE's that describe declarations.
3160 The key is a DECL_UID() which is a unique number identifying each decl. */
3161 static GTY (()) hash_table<decl_die_hasher> *decl_die_table;
3163 struct GTY ((for_user)) variable_value_struct {
3164 unsigned int decl_id;
3165 vec<dw_die_ref, va_gc> *dies;
3168 struct variable_value_hasher : ggc_ptr_hash<variable_value_struct>
3170 typedef tree compare_type;
3172 static hashval_t hash (variable_value_struct *);
3173 static bool equal (variable_value_struct *, tree);
3175 /* A hash table of DIEs that contain DW_OP_GNU_variable_value with
3176 dw_val_class_decl_ref class, indexed by FUNCTION_DECLs which is
3177 DECL_CONTEXT of the referenced VAR_DECLs. */
3178 static GTY (()) hash_table<variable_value_hasher> *variable_value_hash;
3180 struct block_die_hasher : ggc_ptr_hash<die_struct>
3182 static hashval_t hash (die_struct *);
3183 static bool equal (die_struct *, die_struct *);
3186 /* A hash table of references to DIE's that describe COMMON blocks.
3187 The key is DECL_UID() ^ die_parent. */
3188 static GTY (()) hash_table<block_die_hasher> *common_block_die_table;
3190 typedef struct GTY(()) die_arg_entry_struct {
3191 dw_die_ref die;
3192 tree arg;
3193 } die_arg_entry;
3196 /* Node of the variable location list. */
3197 struct GTY ((chain_next ("%h.next"))) var_loc_node {
3198 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
3199 EXPR_LIST chain. For small bitsizes, bitsize is encoded
3200 in mode of the EXPR_LIST node and first EXPR_LIST operand
3201 is either NOTE_INSN_VAR_LOCATION for a piece with a known
3202 location or NULL for padding. For larger bitsizes,
3203 mode is 0 and first operand is a CONCAT with bitsize
3204 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
3205 NULL as second operand. */
3206 rtx GTY (()) loc;
3207 const char * GTY (()) label;
3208 struct var_loc_node * GTY (()) next;
3211 /* Variable location list. */
3212 struct GTY ((for_user)) var_loc_list_def {
3213 struct var_loc_node * GTY (()) first;
3215 /* Pointer to the last but one or last element of the
3216 chained list. If the list is empty, both first and
3217 last are NULL, if the list contains just one node
3218 or the last node certainly is not redundant, it points
3219 to the last node, otherwise points to the last but one.
3220 Do not mark it for GC because it is marked through the chain. */
3221 struct var_loc_node * GTY ((skip ("%h"))) last;
3223 /* Pointer to the last element before section switch,
3224 if NULL, either sections weren't switched or first
3225 is after section switch. */
3226 struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;
3228 /* DECL_UID of the variable decl. */
3229 unsigned int decl_id;
3231 typedef struct var_loc_list_def var_loc_list;
3233 /* Call argument location list. */
3234 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
3235 rtx GTY (()) call_arg_loc_note;
3236 const char * GTY (()) label;
3237 tree GTY (()) block;
3238 bool tail_call_p;
3239 rtx GTY (()) symbol_ref;
3240 struct call_arg_loc_node * GTY (()) next;
3244 struct decl_loc_hasher : ggc_ptr_hash<var_loc_list>
3246 typedef const_tree compare_type;
3248 static hashval_t hash (var_loc_list *);
3249 static bool equal (var_loc_list *, const_tree);
3252 /* Table of decl location linked lists. */
3253 static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table;
3255 /* Head and tail of call_arg_loc chain. */
3256 static GTY (()) struct call_arg_loc_node *call_arg_locations;
3257 static struct call_arg_loc_node *call_arg_loc_last;
3259 /* Number of call sites in the current function. */
3260 static int call_site_count = -1;
3261 /* Number of tail call sites in the current function. */
3262 static int tail_call_site_count = -1;
3264 /* A cached location list. */
3265 struct GTY ((for_user)) cached_dw_loc_list_def {
3266 /* The DECL_UID of the decl that this entry describes. */
3267 unsigned int decl_id;
3269 /* The cached location list. */
3270 dw_loc_list_ref loc_list;
3272 typedef struct cached_dw_loc_list_def cached_dw_loc_list;
3274 struct dw_loc_list_hasher : ggc_ptr_hash<cached_dw_loc_list>
3277 typedef const_tree compare_type;
3279 static hashval_t hash (cached_dw_loc_list *);
3280 static bool equal (cached_dw_loc_list *, const_tree);
3283 /* Table of cached location lists. */
3284 static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table;
3286 /* A vector of references to DIE's that are uniquely identified by their tag,
3287 presence/absence of children DIE's, and list of attribute/value pairs. */
3288 static GTY(()) vec<dw_die_ref, va_gc> *abbrev_die_table;
3290 /* A hash map to remember the stack usage for DWARF procedures. The value
3291 stored is the stack size difference between before the DWARF procedure
3292 invokation and after it returned. In other words, for a DWARF procedure
3293 that consumes N stack slots and that pushes M ones, this stores M - N. */
3294 static hash_map<dw_die_ref, int> *dwarf_proc_stack_usage_map;
3296 /* A global counter for generating labels for line number data. */
3297 static unsigned int line_info_label_num;
3299 /* The current table to which we should emit line number information
3300 for the current function. This will be set up at the beginning of
3301 assembly for the function. */
3302 static GTY(()) dw_line_info_table *cur_line_info_table;
3304 /* The two default tables of line number info. */
3305 static GTY(()) dw_line_info_table *text_section_line_info;
3306 static GTY(()) dw_line_info_table *cold_text_section_line_info;
3308 /* The set of all non-default tables of line number info. */
3309 static GTY(()) vec<dw_line_info_table *, va_gc> *separate_line_info;
3311 /* A flag to tell pubnames/types export if there is an info section to
3312 refer to. */
3313 static bool info_section_emitted;
3315 /* A pointer to the base of a table that contains a list of publicly
3316 accessible names. */
3317 static GTY (()) vec<pubname_entry, va_gc> *pubname_table;
3319 /* A pointer to the base of a table that contains a list of publicly
3320 accessible types. */
3321 static GTY (()) vec<pubname_entry, va_gc> *pubtype_table;
3323 /* A pointer to the base of a table that contains a list of macro
3324 defines/undefines (and file start/end markers). */
3325 static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table;
3327 /* True if .debug_macinfo or .debug_macros section is going to be
3328 emitted. */
3329 #define have_macinfo \
3330 ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \
3331 && debug_info_level >= DINFO_LEVEL_VERBOSE \
3332 && !macinfo_table->is_empty ())
3334 /* Vector of dies for which we should generate .debug_ranges info. */
3335 static GTY (()) vec<dw_ranges, va_gc> *ranges_table;
3337 /* Vector of pairs of labels referenced in ranges_table. */
3338 static GTY (()) vec<dw_ranges_by_label, va_gc> *ranges_by_label;
3340 /* Whether we have location lists that need outputting */
3341 static GTY(()) bool have_location_lists;
3343 /* Unique label counter. */
3344 static GTY(()) unsigned int loclabel_num;
3346 /* Unique label counter for point-of-call tables. */
3347 static GTY(()) unsigned int poc_label_num;
3349 /* The last file entry emitted by maybe_emit_file(). */
3350 static GTY(()) struct dwarf_file_data * last_emitted_file;
3352 /* Number of internal labels generated by gen_internal_sym(). */
3353 static GTY(()) int label_num;
3355 static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table;
3357 /* Instances of generic types for which we need to generate debug
3358 info that describe their generic parameters and arguments. That
3359 generation needs to happen once all types are properly laid out so
3360 we do it at the end of compilation. */
3361 static GTY(()) vec<tree, va_gc> *generic_type_instances;
3363 /* Offset from the "steady-state frame pointer" to the frame base,
3364 within the current function. */
3365 static poly_int64 frame_pointer_fb_offset;
3366 static bool frame_pointer_fb_offset_valid;
3368 static vec<dw_die_ref> base_types;
3370 /* Flags to represent a set of attribute classes for attributes that represent
3371 a scalar value (bounds, pointers, ...). */
3372 enum dw_scalar_form
3374 dw_scalar_form_constant = 0x01,
3375 dw_scalar_form_exprloc = 0x02,
3376 dw_scalar_form_reference = 0x04
3379 /* Forward declarations for functions defined in this file. */
3381 static int is_pseudo_reg (const_rtx);
3382 static tree type_main_variant (tree);
3383 static int is_tagged_type (const_tree);
3384 static const char *dwarf_tag_name (unsigned);
3385 static const char *dwarf_attr_name (unsigned);
3386 static const char *dwarf_form_name (unsigned);
3387 static tree decl_ultimate_origin (const_tree);
3388 static tree decl_class_context (tree);
3389 static void add_dwarf_attr (dw_die_ref, dw_attr_node *);
3390 static inline enum dw_val_class AT_class (dw_attr_node *);
3391 static inline unsigned int AT_index (dw_attr_node *);
3392 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3393 static inline unsigned AT_flag (dw_attr_node *);
3394 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3395 static inline HOST_WIDE_INT AT_int (dw_attr_node *);
3396 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3397 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_node *);
3398 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
3399 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
3400 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3401 unsigned int, unsigned char *);
3402 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
3403 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3404 static inline const char *AT_string (dw_attr_node *);
3405 static enum dwarf_form AT_string_form (dw_attr_node *);
3406 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3407 static void add_AT_specification (dw_die_ref, dw_die_ref);
3408 static inline dw_die_ref AT_ref (dw_attr_node *);
3409 static inline int AT_ref_external (dw_attr_node *);
3410 static inline void set_AT_ref_external (dw_attr_node *, int);
3411 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3412 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3413 static inline dw_loc_descr_ref AT_loc (dw_attr_node *);
3414 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3415 dw_loc_list_ref);
3416 static inline dw_loc_list_ref AT_loc_list (dw_attr_node *);
3417 static addr_table_entry *add_addr_table_entry (void *, enum ate_kind);
3418 static void remove_addr_table_entry (addr_table_entry *);
3419 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool);
3420 static inline rtx AT_addr (dw_attr_node *);
3421 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3422 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
3423 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3424 static void add_AT_loclistsptr (dw_die_ref, enum dwarf_attribute,
3425 const char *);
3426 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3427 unsigned HOST_WIDE_INT);
3428 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3429 unsigned long, bool);
3430 static inline const char *AT_lbl (dw_attr_node *);
3431 static dw_attr_node *get_AT (dw_die_ref, enum dwarf_attribute);
3432 static const char *get_AT_low_pc (dw_die_ref);
3433 static const char *get_AT_hi_pc (dw_die_ref);
3434 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3435 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3436 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3437 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3438 static bool is_cxx (void);
3439 static bool is_cxx (const_tree);
3440 static bool is_fortran (void);
3441 static bool is_ada (void);
3442 static bool remove_AT (dw_die_ref, enum dwarf_attribute);
3443 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3444 static void add_child_die (dw_die_ref, dw_die_ref);
3445 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3446 static dw_die_ref lookup_type_die (tree);
3447 static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
3448 static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
3449 static void equate_type_number_to_die (tree, dw_die_ref);
3450 static dw_die_ref lookup_decl_die (tree);
3451 static var_loc_list *lookup_decl_loc (const_tree);
3452 static void equate_decl_number_to_die (tree, dw_die_ref);
3453 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
3454 static void print_spaces (FILE *);
3455 static void print_die (dw_die_ref, FILE *);
3456 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3457 static void attr_checksum (dw_attr_node *, struct md5_ctx *, int *);
3458 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3459 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
3460 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
3461 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
3462 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_node *,
3463 struct md5_ctx *, int *);
3464 struct checksum_attributes;
3465 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
3466 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
3467 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
3468 static void generate_type_signature (dw_die_ref, comdat_type_node *);
3469 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3470 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
3471 static int same_attr_p (dw_attr_node *, dw_attr_node *, int *);
3472 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3473 static int is_type_die (dw_die_ref);
3474 static int is_comdat_die (dw_die_ref);
3475 static inline bool is_template_instantiation (dw_die_ref);
3476 static int is_declaration_die (dw_die_ref);
3477 static int should_move_die_to_comdat (dw_die_ref);
3478 static dw_die_ref clone_as_declaration (dw_die_ref);
3479 static dw_die_ref clone_die (dw_die_ref);
3480 static dw_die_ref clone_tree (dw_die_ref);
3481 static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
3482 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
3483 static void generate_skeleton_bottom_up (skeleton_chain_node *);
3484 static dw_die_ref generate_skeleton (dw_die_ref);
3485 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
3486 dw_die_ref,
3487 dw_die_ref);
3488 static void break_out_comdat_types (dw_die_ref);
3489 static void copy_decls_for_unworthy_types (dw_die_ref);
3491 static void add_sibling_attributes (dw_die_ref);
3492 static void output_location_lists (dw_die_ref);
3493 static int constant_size (unsigned HOST_WIDE_INT);
3494 static unsigned long size_of_die (dw_die_ref);
3495 static void calc_die_sizes (dw_die_ref);
3496 static void calc_base_type_die_sizes (void);
3497 static void mark_dies (dw_die_ref);
3498 static void unmark_dies (dw_die_ref);
3499 static void unmark_all_dies (dw_die_ref);
3500 static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *);
3501 static unsigned long size_of_aranges (void);
3502 static enum dwarf_form value_format (dw_attr_node *);
3503 static void output_value_format (dw_attr_node *);
3504 static void output_abbrev_section (void);
3505 static void output_die_abbrevs (unsigned long, dw_die_ref);
3506 static void output_die (dw_die_ref);
3507 static void output_compilation_unit_header (enum dwarf_unit_type);
3508 static void output_comp_unit (dw_die_ref, int, const unsigned char *);
3509 static void output_comdat_type_unit (comdat_type_node *);
3510 static const char *dwarf2_name (tree, int);
3511 static void add_pubname (tree, dw_die_ref);
3512 static void add_enumerator_pubname (const char *, dw_die_ref);
3513 static void add_pubname_string (const char *, dw_die_ref);
3514 static void add_pubtype (tree, dw_die_ref);
3515 static void output_pubnames (vec<pubname_entry, va_gc> *);
3516 static void output_aranges (void);
3517 static unsigned int add_ranges (const_tree, bool = false);
3518 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
3519 bool *, bool);
3520 static void output_ranges (void);
3521 static dw_line_info_table *new_line_info_table (void);
3522 static void output_line_info (bool);
3523 static void output_file_names (void);
3524 static dw_die_ref base_type_die (tree, bool);
3525 static int is_base_type (tree);
3526 static dw_die_ref subrange_type_die (tree, tree, tree, tree, dw_die_ref);
3527 static int decl_quals (const_tree);
3528 static dw_die_ref modified_type_die (tree, int, bool, dw_die_ref);
3529 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
3530 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
3531 static int type_is_enum (const_tree);
3532 static unsigned int dbx_reg_number (const_rtx);
3533 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3534 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
3535 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
3536 enum var_init_status);
3537 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
3538 enum var_init_status);
3539 static dw_loc_descr_ref based_loc_descr (rtx, poly_int64,
3540 enum var_init_status);
3541 static int is_based_loc (const_rtx);
3542 static bool resolve_one_addr (rtx *);
3543 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
3544 enum var_init_status);
3545 static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode,
3546 enum var_init_status);
3547 struct loc_descr_context;
3548 static void add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref);
3549 static void add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list);
3550 static dw_loc_list_ref loc_list_from_tree (tree, int,
3551 struct loc_descr_context *);
3552 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int,
3553 struct loc_descr_context *);
3554 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3555 static tree field_type (const_tree);
3556 static unsigned int simple_type_align_in_bits (const_tree);
3557 static unsigned int simple_decl_align_in_bits (const_tree);
3558 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
3559 struct vlr_context;
3560 static dw_loc_descr_ref field_byte_offset (const_tree, struct vlr_context *,
3561 HOST_WIDE_INT *);
3562 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3563 dw_loc_list_ref);
3564 static void add_data_member_location_attribute (dw_die_ref, tree,
3565 struct vlr_context *);
3566 static bool add_const_value_attribute (dw_die_ref, rtx);
3567 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3568 static void insert_wide_int (const wide_int &, unsigned char *, int);
3569 static void insert_float (const_rtx, unsigned char *);
3570 static rtx rtl_for_decl_location (tree);
3571 static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool);
3572 static bool tree_add_const_value_attribute (dw_die_ref, tree);
3573 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
3574 static void add_name_attribute (dw_die_ref, const char *);
3575 static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
3576 static void add_comp_dir_attribute (dw_die_ref);
3577 static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int,
3578 struct loc_descr_context *);
3579 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree,
3580 struct loc_descr_context *);
3581 static void add_subscript_info (dw_die_ref, tree, bool);
3582 static void add_byte_size_attribute (dw_die_ref, tree);
3583 static void add_alignment_attribute (dw_die_ref, tree);
3584 static inline void add_bit_offset_attribute (dw_die_ref, tree,
3585 struct vlr_context *);
3586 static void add_bit_size_attribute (dw_die_ref, tree);
3587 static void add_prototyped_attribute (dw_die_ref, tree);
3588 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
3589 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3590 static void add_src_coords_attributes (dw_die_ref, tree);
3591 static void add_name_and_src_coords_attributes (dw_die_ref, tree, bool = false);
3592 static void add_discr_value (dw_die_ref, dw_discr_value *);
3593 static void add_discr_list (dw_die_ref, dw_discr_list_ref);
3594 static inline dw_discr_list_ref AT_discr_list (dw_attr_node *);
3595 static void push_decl_scope (tree);
3596 static void pop_decl_scope (void);
3597 static dw_die_ref scope_die_for (tree, dw_die_ref);
3598 static inline int local_scope_p (dw_die_ref);
3599 static inline int class_scope_p (dw_die_ref);
3600 static inline int class_or_namespace_scope_p (dw_die_ref);
3601 static void add_type_attribute (dw_die_ref, tree, int, bool, dw_die_ref);
3602 static void add_calling_convention_attribute (dw_die_ref, tree);
3603 static const char *type_tag (const_tree);
3604 static tree member_declared_type (const_tree);
3605 #if 0
3606 static const char *decl_start_label (tree);
3607 #endif
3608 static void gen_array_type_die (tree, dw_die_ref);
3609 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
3610 #if 0
3611 static void gen_entry_point_die (tree, dw_die_ref);
3612 #endif
3613 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3614 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
3615 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
3616 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3617 static void gen_formal_types_die (tree, dw_die_ref);
3618 static void gen_subprogram_die (tree, dw_die_ref);
3619 static void gen_variable_die (tree, tree, dw_die_ref);
3620 static void gen_const_die (tree, dw_die_ref);
3621 static void gen_label_die (tree, dw_die_ref);
3622 static void gen_lexical_block_die (tree, dw_die_ref);
3623 static void gen_inlined_subroutine_die (tree, dw_die_ref);
3624 static void gen_field_die (tree, struct vlr_context *, dw_die_ref);
3625 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3626 static dw_die_ref gen_compile_unit_die (const char *);
3627 static void gen_inheritance_die (tree, tree, tree, dw_die_ref);
3628 static void gen_member_die (tree, dw_die_ref);
3629 static void gen_struct_or_union_type_die (tree, dw_die_ref,
3630 enum debug_info_usage);
3631 static void gen_subroutine_type_die (tree, dw_die_ref);
3632 static void gen_typedef_die (tree, dw_die_ref);
3633 static void gen_type_die (tree, dw_die_ref);
3634 static void gen_block_die (tree, dw_die_ref);
3635 static void decls_for_scope (tree, dw_die_ref);
3636 static bool is_naming_typedef_decl (const_tree);
3637 static inline dw_die_ref get_context_die (tree);
3638 static void gen_namespace_die (tree, dw_die_ref);
3639 static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree);
3640 static dw_die_ref gen_decl_die (tree, tree, struct vlr_context *, dw_die_ref);
3641 static dw_die_ref force_decl_die (tree);
3642 static dw_die_ref force_type_die (tree);
3643 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3644 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
3645 static struct dwarf_file_data * lookup_filename (const char *);
3646 static void retry_incomplete_types (void);
3647 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3648 static void gen_generic_params_dies (tree);
3649 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
3650 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
3651 static void splice_child_die (dw_die_ref, dw_die_ref);
3652 static int file_info_cmp (const void *, const void *);
3653 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3654 const char *, const char *);
3655 static void output_loc_list (dw_loc_list_ref);
3656 static char *gen_internal_sym (const char *);
3657 static bool want_pubnames (void);
3659 static void prune_unmark_dies (dw_die_ref);
3660 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
3661 static void prune_unused_types_mark (dw_die_ref, int);
3662 static void prune_unused_types_walk (dw_die_ref);
3663 static void prune_unused_types_walk_attribs (dw_die_ref);
3664 static void prune_unused_types_prune (dw_die_ref);
3665 static void prune_unused_types (void);
3666 static int maybe_emit_file (struct dwarf_file_data *fd);
3667 static inline const char *AT_vms_delta1 (dw_attr_node *);
3668 static inline const char *AT_vms_delta2 (dw_attr_node *);
3669 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
3670 const char *, const char *);
3671 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
3672 static void gen_remaining_tmpl_value_param_die_attribute (void);
3673 static bool generic_type_p (tree);
3674 static void schedule_generic_params_dies_gen (tree t);
3675 static void gen_scheduled_generic_parms_dies (void);
3676 static void resolve_variable_values (void);
3678 static const char *comp_dir_string (void);
3680 static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &);
3682 /* enum for tracking thread-local variables whose address is really an offset
3683 relative to the TLS pointer, which will need link-time relocation, but will
3684 not need relocation by the DWARF consumer. */
3686 enum dtprel_bool
3688 dtprel_false = 0,
3689 dtprel_true = 1
3692 /* Return the operator to use for an address of a variable. For dtprel_true, we
3693 use DW_OP_const*. For regular variables, which need both link-time
3694 relocation and consumer-level relocation (e.g., to account for shared objects
3695 loaded at a random address), we use DW_OP_addr*. */
3697 static inline enum dwarf_location_atom
3698 dw_addr_op (enum dtprel_bool dtprel)
3700 if (dtprel == dtprel_true)
3701 return (dwarf_split_debug_info ? DW_OP_GNU_const_index
3702 : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u));
3703 else
3704 return dwarf_split_debug_info ? DW_OP_GNU_addr_index : DW_OP_addr;
3707 /* Return a pointer to a newly allocated address location description. If
3708 dwarf_split_debug_info is true, then record the address with the appropriate
3709 relocation. */
3710 static inline dw_loc_descr_ref
3711 new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel)
3713 dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0);
3715 ref->dw_loc_oprnd1.val_class = dw_val_class_addr;
3716 ref->dw_loc_oprnd1.v.val_addr = addr;
3717 ref->dtprel = dtprel;
3718 if (dwarf_split_debug_info)
3719 ref->dw_loc_oprnd1.val_entry
3720 = add_addr_table_entry (addr,
3721 dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx);
3722 else
3723 ref->dw_loc_oprnd1.val_entry = NULL;
3725 return ref;
3728 /* Section names used to hold DWARF debugging information. */
3730 #ifndef DEBUG_INFO_SECTION
3731 #define DEBUG_INFO_SECTION ".debug_info"
3732 #endif
3733 #ifndef DEBUG_DWO_INFO_SECTION
3734 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
3735 #endif
3736 #ifndef DEBUG_LTO_INFO_SECTION
3737 #define DEBUG_LTO_INFO_SECTION ".gnu.debuglto_.debug_info"
3738 #endif
3739 #ifndef DEBUG_LTO_DWO_INFO_SECTION
3740 #define DEBUG_LTO_DWO_INFO_SECTION ".gnu.debuglto_.debug_info.dwo"
3741 #endif
3742 #ifndef DEBUG_ABBREV_SECTION
3743 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3744 #endif
3745 #ifndef DEBUG_LTO_ABBREV_SECTION
3746 #define DEBUG_LTO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev"
3747 #endif
3748 #ifndef DEBUG_DWO_ABBREV_SECTION
3749 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
3750 #endif
3751 #ifndef DEBUG_LTO_DWO_ABBREV_SECTION
3752 #define DEBUG_LTO_DWO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev.dwo"
3753 #endif
3754 #ifndef DEBUG_ARANGES_SECTION
3755 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3756 #endif
3757 #ifndef DEBUG_ADDR_SECTION
3758 #define DEBUG_ADDR_SECTION ".debug_addr"
3759 #endif
3760 #ifndef DEBUG_MACINFO_SECTION
3761 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3762 #endif
3763 #ifndef DEBUG_LTO_MACINFO_SECTION
3764 #define DEBUG_LTO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo"
3765 #endif
3766 #ifndef DEBUG_DWO_MACINFO_SECTION
3767 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
3768 #endif
3769 #ifndef DEBUG_LTO_DWO_MACINFO_SECTION
3770 #define DEBUG_LTO_DWO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo.dwo"
3771 #endif
3772 #ifndef DEBUG_MACRO_SECTION
3773 #define DEBUG_MACRO_SECTION ".debug_macro"
3774 #endif
3775 #ifndef DEBUG_LTO_MACRO_SECTION
3776 #define DEBUG_LTO_MACRO_SECTION ".gnu.debuglto_.debug_macro"
3777 #endif
3778 #ifndef DEBUG_DWO_MACRO_SECTION
3779 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
3780 #endif
3781 #ifndef DEBUG_LTO_DWO_MACRO_SECTION
3782 #define DEBUG_LTO_DWO_MACRO_SECTION ".gnu.debuglto_.debug_macro.dwo"
3783 #endif
3784 #ifndef DEBUG_LINE_SECTION
3785 #define DEBUG_LINE_SECTION ".debug_line"
3786 #endif
3787 #ifndef DEBUG_LTO_LINE_SECTION
3788 #define DEBUG_LTO_LINE_SECTION ".gnu.debuglto_.debug_line"
3789 #endif
3790 #ifndef DEBUG_DWO_LINE_SECTION
3791 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
3792 #endif
3793 #ifndef DEBUG_LTO_DWO_LINE_SECTION
3794 #define DEBUG_LTO_DWO_LINE_SECTION ".gnu.debuglto_.debug_line.dwo"
3795 #endif
3796 #ifndef DEBUG_LOC_SECTION
3797 #define DEBUG_LOC_SECTION ".debug_loc"
3798 #endif
3799 #ifndef DEBUG_DWO_LOC_SECTION
3800 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
3801 #endif
3802 #ifndef DEBUG_LOCLISTS_SECTION
3803 #define DEBUG_LOCLISTS_SECTION ".debug_loclists"
3804 #endif
3805 #ifndef DEBUG_DWO_LOCLISTS_SECTION
3806 #define DEBUG_DWO_LOCLISTS_SECTION ".debug_loclists.dwo"
3807 #endif
3808 #ifndef DEBUG_PUBNAMES_SECTION
3809 #define DEBUG_PUBNAMES_SECTION \
3810 ((debug_generate_pub_sections == 2) \
3811 ? ".debug_gnu_pubnames" : ".debug_pubnames")
3812 #endif
3813 #ifndef DEBUG_PUBTYPES_SECTION
3814 #define DEBUG_PUBTYPES_SECTION \
3815 ((debug_generate_pub_sections == 2) \
3816 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
3817 #endif
3818 #ifndef DEBUG_STR_OFFSETS_SECTION
3819 #define DEBUG_STR_OFFSETS_SECTION ".debug_str_offsets"
3820 #endif
3821 #ifndef DEBUG_DWO_STR_OFFSETS_SECTION
3822 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
3823 #endif
3824 #ifndef DEBUG_LTO_DWO_STR_OFFSETS_SECTION
3825 #define DEBUG_LTO_DWO_STR_OFFSETS_SECTION ".gnu.debuglto_.debug_str_offsets.dwo"
3826 #endif
3827 #ifndef DEBUG_STR_SECTION
3828 #define DEBUG_STR_SECTION ".debug_str"
3829 #endif
3830 #ifndef DEBUG_LTO_STR_SECTION
3831 #define DEBUG_LTO_STR_SECTION ".gnu.debuglto_.debug_str"
3832 #endif
3833 #ifndef DEBUG_STR_DWO_SECTION
3834 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
3835 #endif
3836 #ifndef DEBUG_LTO_STR_DWO_SECTION
3837 #define DEBUG_LTO_STR_DWO_SECTION ".gnu.debuglto_.debug_str.dwo"
3838 #endif
3839 #ifndef DEBUG_RANGES_SECTION
3840 #define DEBUG_RANGES_SECTION ".debug_ranges"
3841 #endif
3842 #ifndef DEBUG_RNGLISTS_SECTION
3843 #define DEBUG_RNGLISTS_SECTION ".debug_rnglists"
3844 #endif
3845 #ifndef DEBUG_LINE_STR_SECTION
3846 #define DEBUG_LINE_STR_SECTION ".debug_line_str"
3847 #endif
3848 #ifndef DEBUG_LTO_LINE_STR_SECTION
3849 #define DEBUG_LTO_LINE_STR_SECTION ".gnu.debuglto_.debug_line_str"
3850 #endif
3852 /* Standard ELF section names for compiled code and data. */
3853 #ifndef TEXT_SECTION_NAME
3854 #define TEXT_SECTION_NAME ".text"
3855 #endif
3857 /* Section flags for .debug_str section. */
3858 #define DEBUG_STR_SECTION_FLAGS \
3859 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3860 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3861 : SECTION_DEBUG)
3863 /* Section flags for .debug_str.dwo section. */
3864 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
3866 /* Attribute used to refer to the macro section. */
3867 #define DEBUG_MACRO_ATTRIBUTE (dwarf_version >= 5 ? DW_AT_macros \
3868 : dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros)
3870 /* Labels we insert at beginning sections we can reference instead of
3871 the section names themselves. */
3873 #ifndef TEXT_SECTION_LABEL
3874 #define TEXT_SECTION_LABEL "Ltext"
3875 #endif
3876 #ifndef COLD_TEXT_SECTION_LABEL
3877 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3878 #endif
3879 #ifndef DEBUG_LINE_SECTION_LABEL
3880 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3881 #endif
3882 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
3883 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
3884 #endif
3885 #ifndef DEBUG_INFO_SECTION_LABEL
3886 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3887 #endif
3888 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
3889 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
3890 #endif
3891 #ifndef DEBUG_ABBREV_SECTION_LABEL
3892 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3893 #endif
3894 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
3895 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
3896 #endif
3897 #ifndef DEBUG_ADDR_SECTION_LABEL
3898 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
3899 #endif
3900 #ifndef DEBUG_LOC_SECTION_LABEL
3901 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3902 #endif
3903 #ifndef DEBUG_RANGES_SECTION_LABEL
3904 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3905 #endif
3906 #ifndef DEBUG_MACINFO_SECTION_LABEL
3907 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3908 #endif
3909 #ifndef DEBUG_MACRO_SECTION_LABEL
3910 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3911 #endif
3912 #define SKELETON_COMP_DIE_ABBREV 1
3913 #define SKELETON_TYPE_DIE_ABBREV 2
3915 /* Definitions of defaults for formats and names of various special
3916 (artificial) labels which may be generated within this file (when the -g
3917 options is used and DWARF2_DEBUGGING_INFO is in effect.
3918 If necessary, these may be overridden from within the tm.h file, but
3919 typically, overriding these defaults is unnecessary. */
3921 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3922 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3923 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3924 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3925 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3926 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3927 static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3928 static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3929 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3930 static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3931 static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3932 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3933 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3934 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3935 static char ranges_base_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3937 #ifndef TEXT_END_LABEL
3938 #define TEXT_END_LABEL "Letext"
3939 #endif
3940 #ifndef COLD_END_LABEL
3941 #define COLD_END_LABEL "Letext_cold"
3942 #endif
3943 #ifndef BLOCK_BEGIN_LABEL
3944 #define BLOCK_BEGIN_LABEL "LBB"
3945 #endif
3946 #ifndef BLOCK_END_LABEL
3947 #define BLOCK_END_LABEL "LBE"
3948 #endif
3949 #ifndef LINE_CODE_LABEL
3950 #define LINE_CODE_LABEL "LM"
3951 #endif
3954 /* Return the root of the DIE's built for the current compilation unit. */
3955 static dw_die_ref
3956 comp_unit_die (void)
3958 if (!single_comp_unit_die)
3959 single_comp_unit_die = gen_compile_unit_die (NULL);
3960 return single_comp_unit_die;
3963 /* We allow a language front-end to designate a function that is to be
3964 called to "demangle" any name before it is put into a DIE. */
3966 static const char *(*demangle_name_func) (const char *);
3968 void
3969 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3971 demangle_name_func = func;
3974 /* Test if rtl node points to a pseudo register. */
3976 static inline int
3977 is_pseudo_reg (const_rtx rtl)
3979 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3980 || (GET_CODE (rtl) == SUBREG
3981 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3984 /* Return a reference to a type, with its const and volatile qualifiers
3985 removed. */
3987 static inline tree
3988 type_main_variant (tree type)
3990 type = TYPE_MAIN_VARIANT (type);
3992 /* ??? There really should be only one main variant among any group of
3993 variants of a given type (and all of the MAIN_VARIANT values for all
3994 members of the group should point to that one type) but sometimes the C
3995 front-end messes this up for array types, so we work around that bug
3996 here. */
3997 if (TREE_CODE (type) == ARRAY_TYPE)
3998 while (type != TYPE_MAIN_VARIANT (type))
3999 type = TYPE_MAIN_VARIANT (type);
4001 return type;
4004 /* Return nonzero if the given type node represents a tagged type. */
4006 static inline int
4007 is_tagged_type (const_tree type)
4009 enum tree_code code = TREE_CODE (type);
4011 return (code == RECORD_TYPE || code == UNION_TYPE
4012 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4015 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
4017 static void
4018 get_ref_die_offset_label (char *label, dw_die_ref ref)
4020 sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
4023 /* Return die_offset of a DIE reference to a base type. */
4025 static unsigned long int
4026 get_base_type_offset (dw_die_ref ref)
4028 if (ref->die_offset)
4029 return ref->die_offset;
4030 if (comp_unit_die ()->die_abbrev)
4032 calc_base_type_die_sizes ();
4033 gcc_assert (ref->die_offset);
4035 return ref->die_offset;
4038 /* Return die_offset of a DIE reference other than base type. */
4040 static unsigned long int
4041 get_ref_die_offset (dw_die_ref ref)
4043 gcc_assert (ref->die_offset);
4044 return ref->die_offset;
4047 /* Convert a DIE tag into its string name. */
4049 static const char *
4050 dwarf_tag_name (unsigned int tag)
4052 const char *name = get_DW_TAG_name (tag);
4054 if (name != NULL)
4055 return name;
4057 return "DW_TAG_<unknown>";
4060 /* Convert a DWARF attribute code into its string name. */
4062 static const char *
4063 dwarf_attr_name (unsigned int attr)
4065 const char *name;
4067 switch (attr)
4069 #if VMS_DEBUGGING_INFO
4070 case DW_AT_HP_prologue:
4071 return "DW_AT_HP_prologue";
4072 #else
4073 case DW_AT_MIPS_loop_unroll_factor:
4074 return "DW_AT_MIPS_loop_unroll_factor";
4075 #endif
4077 #if VMS_DEBUGGING_INFO
4078 case DW_AT_HP_epilogue:
4079 return "DW_AT_HP_epilogue";
4080 #else
4081 case DW_AT_MIPS_stride:
4082 return "DW_AT_MIPS_stride";
4083 #endif
4086 name = get_DW_AT_name (attr);
4088 if (name != NULL)
4089 return name;
4091 return "DW_AT_<unknown>";
4094 /* Convert a DWARF value form code into its string name. */
4096 static const char *
4097 dwarf_form_name (unsigned int form)
4099 const char *name = get_DW_FORM_name (form);
4101 if (name != NULL)
4102 return name;
4104 return "DW_FORM_<unknown>";
4107 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4108 instance of an inlined instance of a decl which is local to an inline
4109 function, so we have to trace all of the way back through the origin chain
4110 to find out what sort of node actually served as the original seed for the
4111 given block. */
4113 static tree
4114 decl_ultimate_origin (const_tree decl)
4116 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4117 return NULL_TREE;
4119 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
4120 we're trying to output the abstract instance of this function. */
4121 if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4122 return NULL_TREE;
4124 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4125 most distant ancestor, this should never happen. */
4126 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4128 return DECL_ABSTRACT_ORIGIN (decl);
4131 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4132 of a virtual function may refer to a base class, so we check the 'this'
4133 parameter. */
4135 static tree
4136 decl_class_context (tree decl)
4138 tree context = NULL_TREE;
4140 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4141 context = DECL_CONTEXT (decl);
4142 else
4143 context = TYPE_MAIN_VARIANT
4144 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4146 if (context && !TYPE_P (context))
4147 context = NULL_TREE;
4149 return context;
4152 /* Add an attribute/value pair to a DIE. */
4154 static inline void
4155 add_dwarf_attr (dw_die_ref die, dw_attr_node *attr)
4157 /* Maybe this should be an assert? */
4158 if (die == NULL)
4159 return;
4161 if (flag_checking)
4163 /* Check we do not add duplicate attrs. Can't use get_AT here
4164 because that recurses to the specification/abstract origin DIE. */
4165 dw_attr_node *a;
4166 unsigned ix;
4167 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4168 gcc_assert (a->dw_attr != attr->dw_attr);
4171 vec_safe_reserve (die->die_attr, 1);
4172 vec_safe_push (die->die_attr, *attr);
4175 static inline enum dw_val_class
4176 AT_class (dw_attr_node *a)
4178 return a->dw_attr_val.val_class;
4181 /* Return the index for any attribute that will be referenced with a
4182 DW_FORM_GNU_addr_index or DW_FORM_GNU_str_index. String indices
4183 are stored in dw_attr_val.v.val_str for reference counting
4184 pruning. */
4186 static inline unsigned int
4187 AT_index (dw_attr_node *a)
4189 if (AT_class (a) == dw_val_class_str)
4190 return a->dw_attr_val.v.val_str->index;
4191 else if (a->dw_attr_val.val_entry != NULL)
4192 return a->dw_attr_val.val_entry->index;
4193 return NOT_INDEXED;
4196 /* Add a flag value attribute to a DIE. */
4198 static inline void
4199 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4201 dw_attr_node attr;
4203 attr.dw_attr = attr_kind;
4204 attr.dw_attr_val.val_class = dw_val_class_flag;
4205 attr.dw_attr_val.val_entry = NULL;
4206 attr.dw_attr_val.v.val_flag = flag;
4207 add_dwarf_attr (die, &attr);
4210 static inline unsigned
4211 AT_flag (dw_attr_node *a)
4213 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4214 return a->dw_attr_val.v.val_flag;
4217 /* Add a signed integer attribute value to a DIE. */
4219 static inline void
4220 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4222 dw_attr_node attr;
4224 attr.dw_attr = attr_kind;
4225 attr.dw_attr_val.val_class = dw_val_class_const;
4226 attr.dw_attr_val.val_entry = NULL;
4227 attr.dw_attr_val.v.val_int = int_val;
4228 add_dwarf_attr (die, &attr);
4231 static inline HOST_WIDE_INT
4232 AT_int (dw_attr_node *a)
4234 gcc_assert (a && (AT_class (a) == dw_val_class_const
4235 || AT_class (a) == dw_val_class_const_implicit));
4236 return a->dw_attr_val.v.val_int;
4239 /* Add an unsigned integer attribute value to a DIE. */
4241 static inline void
4242 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4243 unsigned HOST_WIDE_INT unsigned_val)
4245 dw_attr_node attr;
4247 attr.dw_attr = attr_kind;
4248 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4249 attr.dw_attr_val.val_entry = NULL;
4250 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4251 add_dwarf_attr (die, &attr);
4254 static inline unsigned HOST_WIDE_INT
4255 AT_unsigned (dw_attr_node *a)
4257 gcc_assert (a && (AT_class (a) == dw_val_class_unsigned_const
4258 || AT_class (a) == dw_val_class_unsigned_const_implicit));
4259 return a->dw_attr_val.v.val_unsigned;
4262 /* Add an unsigned wide integer attribute value to a DIE. */
4264 static inline void
4265 add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind,
4266 const wide_int& w)
4268 dw_attr_node attr;
4270 attr.dw_attr = attr_kind;
4271 attr.dw_attr_val.val_class = dw_val_class_wide_int;
4272 attr.dw_attr_val.val_entry = NULL;
4273 attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> ();
4274 *attr.dw_attr_val.v.val_wide = w;
4275 add_dwarf_attr (die, &attr);
4278 /* Add an unsigned double integer attribute value to a DIE. */
4280 static inline void
4281 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
4282 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
4284 dw_attr_node attr;
4286 attr.dw_attr = attr_kind;
4287 attr.dw_attr_val.val_class = dw_val_class_const_double;
4288 attr.dw_attr_val.val_entry = NULL;
4289 attr.dw_attr_val.v.val_double.high = high;
4290 attr.dw_attr_val.v.val_double.low = low;
4291 add_dwarf_attr (die, &attr);
4294 /* Add a floating point attribute value to a DIE and return it. */
4296 static inline void
4297 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4298 unsigned int length, unsigned int elt_size, unsigned char *array)
4300 dw_attr_node attr;
4302 attr.dw_attr = attr_kind;
4303 attr.dw_attr_val.val_class = dw_val_class_vec;
4304 attr.dw_attr_val.val_entry = NULL;
4305 attr.dw_attr_val.v.val_vec.length = length;
4306 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4307 attr.dw_attr_val.v.val_vec.array = array;
4308 add_dwarf_attr (die, &attr);
4311 /* Add an 8-byte data attribute value to a DIE. */
4313 static inline void
4314 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
4315 unsigned char data8[8])
4317 dw_attr_node attr;
4319 attr.dw_attr = attr_kind;
4320 attr.dw_attr_val.val_class = dw_val_class_data8;
4321 attr.dw_attr_val.val_entry = NULL;
4322 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
4323 add_dwarf_attr (die, &attr);
4326 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
4327 dwarf_split_debug_info, address attributes in dies destined for the
4328 final executable have force_direct set to avoid using indexed
4329 references. */
4331 static inline void
4332 add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high,
4333 bool force_direct)
4335 dw_attr_node attr;
4336 char * lbl_id;
4338 lbl_id = xstrdup (lbl_low);
4339 attr.dw_attr = DW_AT_low_pc;
4340 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4341 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4342 if (dwarf_split_debug_info && !force_direct)
4343 attr.dw_attr_val.val_entry
4344 = add_addr_table_entry (lbl_id, ate_kind_label);
4345 else
4346 attr.dw_attr_val.val_entry = NULL;
4347 add_dwarf_attr (die, &attr);
4349 attr.dw_attr = DW_AT_high_pc;
4350 if (dwarf_version < 4)
4351 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4352 else
4353 attr.dw_attr_val.val_class = dw_val_class_high_pc;
4354 lbl_id = xstrdup (lbl_high);
4355 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4356 if (attr.dw_attr_val.val_class == dw_val_class_lbl_id
4357 && dwarf_split_debug_info && !force_direct)
4358 attr.dw_attr_val.val_entry
4359 = add_addr_table_entry (lbl_id, ate_kind_label);
4360 else
4361 attr.dw_attr_val.val_entry = NULL;
4362 add_dwarf_attr (die, &attr);
4365 /* Hash and equality functions for debug_str_hash. */
4367 hashval_t
4368 indirect_string_hasher::hash (indirect_string_node *x)
4370 return htab_hash_string (x->str);
4373 bool
4374 indirect_string_hasher::equal (indirect_string_node *x1, const char *x2)
4376 return strcmp (x1->str, x2) == 0;
4379 /* Add STR to the given string hash table. */
4381 static struct indirect_string_node *
4382 find_AT_string_in_table (const char *str,
4383 hash_table<indirect_string_hasher> *table)
4385 struct indirect_string_node *node;
4387 indirect_string_node **slot
4388 = table->find_slot_with_hash (str, htab_hash_string (str), INSERT);
4389 if (*slot == NULL)
4391 node = ggc_cleared_alloc<indirect_string_node> ();
4392 node->str = ggc_strdup (str);
4393 *slot = node;
4395 else
4396 node = *slot;
4398 node->refcount++;
4399 return node;
4402 /* Add STR to the indirect string hash table. */
4404 static struct indirect_string_node *
4405 find_AT_string (const char *str)
4407 if (! debug_str_hash)
4408 debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10);
4410 return find_AT_string_in_table (str, debug_str_hash);
4413 /* Add a string attribute value to a DIE. */
4415 static inline void
4416 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4418 dw_attr_node attr;
4419 struct indirect_string_node *node;
4421 node = find_AT_string (str);
4423 attr.dw_attr = attr_kind;
4424 attr.dw_attr_val.val_class = dw_val_class_str;
4425 attr.dw_attr_val.val_entry = NULL;
4426 attr.dw_attr_val.v.val_str = node;
4427 add_dwarf_attr (die, &attr);
4430 static inline const char *
4431 AT_string (dw_attr_node *a)
4433 gcc_assert (a && AT_class (a) == dw_val_class_str);
4434 return a->dw_attr_val.v.val_str->str;
4437 /* Call this function directly to bypass AT_string_form's logic to put
4438 the string inline in the die. */
4440 static void
4441 set_indirect_string (struct indirect_string_node *node)
4443 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4444 /* Already indirect is a no op. */
4445 if (node->form == DW_FORM_strp
4446 || node->form == DW_FORM_line_strp
4447 || node->form == DW_FORM_GNU_str_index)
4449 gcc_assert (node->label);
4450 return;
4452 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4453 ++dw2_string_counter;
4454 node->label = xstrdup (label);
4456 if (!dwarf_split_debug_info)
4458 node->form = DW_FORM_strp;
4459 node->index = NOT_INDEXED;
4461 else
4463 node->form = DW_FORM_GNU_str_index;
4464 node->index = NO_INDEX_ASSIGNED;
4468 /* A helper function for dwarf2out_finish, called to reset indirect
4469 string decisions done for early LTO dwarf output before fat object
4470 dwarf output. */
4473 reset_indirect_string (indirect_string_node **h, void *)
4475 struct indirect_string_node *node = *h;
4476 if (node->form == DW_FORM_strp || node->form == DW_FORM_GNU_str_index)
4478 free (node->label);
4479 node->label = NULL;
4480 node->form = (dwarf_form) 0;
4481 node->index = 0;
4483 return 1;
4486 /* Find out whether a string should be output inline in DIE
4487 or out-of-line in .debug_str section. */
4489 static enum dwarf_form
4490 find_string_form (struct indirect_string_node *node)
4492 unsigned int len;
4494 if (node->form)
4495 return node->form;
4497 len = strlen (node->str) + 1;
4499 /* If the string is shorter or equal to the size of the reference, it is
4500 always better to put it inline. */
4501 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4502 return node->form = DW_FORM_string;
4504 /* If we cannot expect the linker to merge strings in .debug_str
4505 section, only put it into .debug_str if it is worth even in this
4506 single module. */
4507 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4508 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
4509 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
4510 return node->form = DW_FORM_string;
4512 set_indirect_string (node);
4514 return node->form;
4517 /* Find out whether the string referenced from the attribute should be
4518 output inline in DIE or out-of-line in .debug_str section. */
4520 static enum dwarf_form
4521 AT_string_form (dw_attr_node *a)
4523 gcc_assert (a && AT_class (a) == dw_val_class_str);
4524 return find_string_form (a->dw_attr_val.v.val_str);
4527 /* Add a DIE reference attribute value to a DIE. */
4529 static inline void
4530 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4532 dw_attr_node attr;
4533 gcc_checking_assert (targ_die != NULL);
4535 /* With LTO we can end up trying to reference something we didn't create
4536 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4537 if (targ_die == NULL)
4538 return;
4540 attr.dw_attr = attr_kind;
4541 attr.dw_attr_val.val_class = dw_val_class_die_ref;
4542 attr.dw_attr_val.val_entry = NULL;
4543 attr.dw_attr_val.v.val_die_ref.die = targ_die;
4544 attr.dw_attr_val.v.val_die_ref.external = 0;
4545 add_dwarf_attr (die, &attr);
4548 /* Change DIE reference REF to point to NEW_DIE instead. */
4550 static inline void
4551 change_AT_die_ref (dw_attr_node *ref, dw_die_ref new_die)
4553 gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref);
4554 ref->dw_attr_val.v.val_die_ref.die = new_die;
4555 ref->dw_attr_val.v.val_die_ref.external = 0;
4558 /* Add an AT_specification attribute to a DIE, and also make the back
4559 pointer from the specification to the definition. */
4561 static inline void
4562 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4564 add_AT_die_ref (die, DW_AT_specification, targ_die);
4565 gcc_assert (!targ_die->die_definition);
4566 targ_die->die_definition = die;
4569 static inline dw_die_ref
4570 AT_ref (dw_attr_node *a)
4572 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4573 return a->dw_attr_val.v.val_die_ref.die;
4576 static inline int
4577 AT_ref_external (dw_attr_node *a)
4579 if (a && AT_class (a) == dw_val_class_die_ref)
4580 return a->dw_attr_val.v.val_die_ref.external;
4582 return 0;
4585 static inline void
4586 set_AT_ref_external (dw_attr_node *a, int i)
4588 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4589 a->dw_attr_val.v.val_die_ref.external = i;
4592 /* Add an FDE reference attribute value to a DIE. */
4594 static inline void
4595 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4597 dw_attr_node attr;
4599 attr.dw_attr = attr_kind;
4600 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
4601 attr.dw_attr_val.val_entry = NULL;
4602 attr.dw_attr_val.v.val_fde_index = targ_fde;
4603 add_dwarf_attr (die, &attr);
4606 /* Add a location description attribute value to a DIE. */
4608 static inline void
4609 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4611 dw_attr_node attr;
4613 attr.dw_attr = attr_kind;
4614 attr.dw_attr_val.val_class = dw_val_class_loc;
4615 attr.dw_attr_val.val_entry = NULL;
4616 attr.dw_attr_val.v.val_loc = loc;
4617 add_dwarf_attr (die, &attr);
4620 static inline dw_loc_descr_ref
4621 AT_loc (dw_attr_node *a)
4623 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4624 return a->dw_attr_val.v.val_loc;
4627 static inline void
4628 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4630 dw_attr_node attr;
4632 if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS)
4633 return;
4635 attr.dw_attr = attr_kind;
4636 attr.dw_attr_val.val_class = dw_val_class_loc_list;
4637 attr.dw_attr_val.val_entry = NULL;
4638 attr.dw_attr_val.v.val_loc_list = loc_list;
4639 add_dwarf_attr (die, &attr);
4640 have_location_lists = true;
4643 static inline dw_loc_list_ref
4644 AT_loc_list (dw_attr_node *a)
4646 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4647 return a->dw_attr_val.v.val_loc_list;
4650 static inline dw_loc_list_ref *
4651 AT_loc_list_ptr (dw_attr_node *a)
4653 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4654 return &a->dw_attr_val.v.val_loc_list;
4657 struct addr_hasher : ggc_ptr_hash<addr_table_entry>
4659 static hashval_t hash (addr_table_entry *);
4660 static bool equal (addr_table_entry *, addr_table_entry *);
4663 /* Table of entries into the .debug_addr section. */
4665 static GTY (()) hash_table<addr_hasher> *addr_index_table;
4667 /* Hash an address_table_entry. */
4669 hashval_t
4670 addr_hasher::hash (addr_table_entry *a)
4672 inchash::hash hstate;
4673 switch (a->kind)
4675 case ate_kind_rtx:
4676 hstate.add_int (0);
4677 break;
4678 case ate_kind_rtx_dtprel:
4679 hstate.add_int (1);
4680 break;
4681 case ate_kind_label:
4682 return htab_hash_string (a->addr.label);
4683 default:
4684 gcc_unreachable ();
4686 inchash::add_rtx (a->addr.rtl, hstate);
4687 return hstate.end ();
4690 /* Determine equality for two address_table_entries. */
4692 bool
4693 addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2)
4695 if (a1->kind != a2->kind)
4696 return 0;
4697 switch (a1->kind)
4699 case ate_kind_rtx:
4700 case ate_kind_rtx_dtprel:
4701 return rtx_equal_p (a1->addr.rtl, a2->addr.rtl);
4702 case ate_kind_label:
4703 return strcmp (a1->addr.label, a2->addr.label) == 0;
4704 default:
4705 gcc_unreachable ();
4709 /* Initialize an addr_table_entry. */
4711 void
4712 init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr)
4714 e->kind = kind;
4715 switch (kind)
4717 case ate_kind_rtx:
4718 case ate_kind_rtx_dtprel:
4719 e->addr.rtl = (rtx) addr;
4720 break;
4721 case ate_kind_label:
4722 e->addr.label = (char *) addr;
4723 break;
4725 e->refcount = 0;
4726 e->index = NO_INDEX_ASSIGNED;
4729 /* Add attr to the address table entry to the table. Defer setting an
4730 index until output time. */
4732 static addr_table_entry *
4733 add_addr_table_entry (void *addr, enum ate_kind kind)
4735 addr_table_entry *node;
4736 addr_table_entry finder;
4738 gcc_assert (dwarf_split_debug_info);
4739 if (! addr_index_table)
4740 addr_index_table = hash_table<addr_hasher>::create_ggc (10);
4741 init_addr_table_entry (&finder, kind, addr);
4742 addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT);
4744 if (*slot == HTAB_EMPTY_ENTRY)
4746 node = ggc_cleared_alloc<addr_table_entry> ();
4747 init_addr_table_entry (node, kind, addr);
4748 *slot = node;
4750 else
4751 node = *slot;
4753 node->refcount++;
4754 return node;
4757 /* Remove an entry from the addr table by decrementing its refcount.
4758 Strictly, decrementing the refcount would be enough, but the
4759 assertion that the entry is actually in the table has found
4760 bugs. */
4762 static void
4763 remove_addr_table_entry (addr_table_entry *entry)
4765 gcc_assert (dwarf_split_debug_info && addr_index_table);
4766 /* After an index is assigned, the table is frozen. */
4767 gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
4768 entry->refcount--;
4771 /* Given a location list, remove all addresses it refers to from the
4772 address_table. */
4774 static void
4775 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr)
4777 for (; descr; descr = descr->dw_loc_next)
4778 if (descr->dw_loc_oprnd1.val_entry != NULL)
4780 gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED);
4781 remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry);
4785 /* A helper function for dwarf2out_finish called through
4786 htab_traverse. Assign an addr_table_entry its index. All entries
4787 must be collected into the table when this function is called,
4788 because the indexing code relies on htab_traverse to traverse nodes
4789 in the same order for each run. */
4792 index_addr_table_entry (addr_table_entry **h, unsigned int *index)
4794 addr_table_entry *node = *h;
4796 /* Don't index unreferenced nodes. */
4797 if (node->refcount == 0)
4798 return 1;
4800 gcc_assert (node->index == NO_INDEX_ASSIGNED);
4801 node->index = *index;
4802 *index += 1;
4804 return 1;
4807 /* Add an address constant attribute value to a DIE. When using
4808 dwarf_split_debug_info, address attributes in dies destined for the
4809 final executable should be direct references--setting the parameter
4810 force_direct ensures this behavior. */
4812 static inline void
4813 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr,
4814 bool force_direct)
4816 dw_attr_node attr;
4818 attr.dw_attr = attr_kind;
4819 attr.dw_attr_val.val_class = dw_val_class_addr;
4820 attr.dw_attr_val.v.val_addr = addr;
4821 if (dwarf_split_debug_info && !force_direct)
4822 attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx);
4823 else
4824 attr.dw_attr_val.val_entry = NULL;
4825 add_dwarf_attr (die, &attr);
4828 /* Get the RTX from to an address DIE attribute. */
4830 static inline rtx
4831 AT_addr (dw_attr_node *a)
4833 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4834 return a->dw_attr_val.v.val_addr;
4837 /* Add a file attribute value to a DIE. */
4839 static inline void
4840 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
4841 struct dwarf_file_data *fd)
4843 dw_attr_node attr;
4845 attr.dw_attr = attr_kind;
4846 attr.dw_attr_val.val_class = dw_val_class_file;
4847 attr.dw_attr_val.val_entry = NULL;
4848 attr.dw_attr_val.v.val_file = fd;
4849 add_dwarf_attr (die, &attr);
4852 /* Get the dwarf_file_data from a file DIE attribute. */
4854 static inline struct dwarf_file_data *
4855 AT_file (dw_attr_node *a)
4857 gcc_assert (a && (AT_class (a) == dw_val_class_file
4858 || AT_class (a) == dw_val_class_file_implicit));
4859 return a->dw_attr_val.v.val_file;
4862 /* Add a vms delta attribute value to a DIE. */
4864 static inline void
4865 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
4866 const char *lbl1, const char *lbl2)
4868 dw_attr_node attr;
4870 attr.dw_attr = attr_kind;
4871 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
4872 attr.dw_attr_val.val_entry = NULL;
4873 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
4874 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
4875 add_dwarf_attr (die, &attr);
4878 /* Add a label identifier attribute value to a DIE. */
4880 static inline void
4881 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind,
4882 const char *lbl_id)
4884 dw_attr_node attr;
4886 attr.dw_attr = attr_kind;
4887 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4888 attr.dw_attr_val.val_entry = NULL;
4889 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4890 if (dwarf_split_debug_info)
4891 attr.dw_attr_val.val_entry
4892 = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id,
4893 ate_kind_label);
4894 add_dwarf_attr (die, &attr);
4897 /* Add a section offset attribute value to a DIE, an offset into the
4898 debug_line section. */
4900 static inline void
4901 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4902 const char *label)
4904 dw_attr_node attr;
4906 attr.dw_attr = attr_kind;
4907 attr.dw_attr_val.val_class = dw_val_class_lineptr;
4908 attr.dw_attr_val.val_entry = NULL;
4909 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4910 add_dwarf_attr (die, &attr);
4913 /* Add a section offset attribute value to a DIE, an offset into the
4914 debug_loclists section. */
4916 static inline void
4917 add_AT_loclistsptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4918 const char *label)
4920 dw_attr_node attr;
4922 attr.dw_attr = attr_kind;
4923 attr.dw_attr_val.val_class = dw_val_class_loclistsptr;
4924 attr.dw_attr_val.val_entry = NULL;
4925 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4926 add_dwarf_attr (die, &attr);
4929 /* Add a section offset attribute value to a DIE, an offset into the
4930 debug_macinfo section. */
4932 static inline void
4933 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4934 const char *label)
4936 dw_attr_node attr;
4938 attr.dw_attr = attr_kind;
4939 attr.dw_attr_val.val_class = dw_val_class_macptr;
4940 attr.dw_attr_val.val_entry = NULL;
4941 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4942 add_dwarf_attr (die, &attr);
4945 /* Add an offset attribute value to a DIE. */
4947 static inline void
4948 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4949 unsigned HOST_WIDE_INT offset)
4951 dw_attr_node attr;
4953 attr.dw_attr = attr_kind;
4954 attr.dw_attr_val.val_class = dw_val_class_offset;
4955 attr.dw_attr_val.val_entry = NULL;
4956 attr.dw_attr_val.v.val_offset = offset;
4957 add_dwarf_attr (die, &attr);
4960 /* Add a range_list attribute value to a DIE. When using
4961 dwarf_split_debug_info, address attributes in dies destined for the
4962 final executable should be direct references--setting the parameter
4963 force_direct ensures this behavior. */
4965 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
4966 #define RELOCATED_OFFSET (NULL)
4968 static void
4969 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4970 long unsigned int offset, bool force_direct)
4972 dw_attr_node attr;
4974 attr.dw_attr = attr_kind;
4975 attr.dw_attr_val.val_class = dw_val_class_range_list;
4976 /* For the range_list attribute, use val_entry to store whether the
4977 offset should follow split-debug-info or normal semantics. This
4978 value is read in output_range_list_offset. */
4979 if (dwarf_split_debug_info && !force_direct)
4980 attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET;
4981 else
4982 attr.dw_attr_val.val_entry = RELOCATED_OFFSET;
4983 attr.dw_attr_val.v.val_offset = offset;
4984 add_dwarf_attr (die, &attr);
4987 /* Return the start label of a delta attribute. */
4989 static inline const char *
4990 AT_vms_delta1 (dw_attr_node *a)
4992 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4993 return a->dw_attr_val.v.val_vms_delta.lbl1;
4996 /* Return the end label of a delta attribute. */
4998 static inline const char *
4999 AT_vms_delta2 (dw_attr_node *a)
5001 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
5002 return a->dw_attr_val.v.val_vms_delta.lbl2;
5005 static inline const char *
5006 AT_lbl (dw_attr_node *a)
5008 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5009 || AT_class (a) == dw_val_class_lineptr
5010 || AT_class (a) == dw_val_class_macptr
5011 || AT_class (a) == dw_val_class_loclistsptr
5012 || AT_class (a) == dw_val_class_high_pc));
5013 return a->dw_attr_val.v.val_lbl_id;
5016 /* Get the attribute of type attr_kind. */
5018 static dw_attr_node *
5019 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5021 dw_attr_node *a;
5022 unsigned ix;
5023 dw_die_ref spec = NULL;
5025 if (! die)
5026 return NULL;
5028 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5029 if (a->dw_attr == attr_kind)
5030 return a;
5031 else if (a->dw_attr == DW_AT_specification
5032 || a->dw_attr == DW_AT_abstract_origin)
5033 spec = AT_ref (a);
5035 if (spec)
5036 return get_AT (spec, attr_kind);
5038 return NULL;
5041 /* Returns the parent of the declaration of DIE. */
5043 static dw_die_ref
5044 get_die_parent (dw_die_ref die)
5046 dw_die_ref t;
5048 if (!die)
5049 return NULL;
5051 if ((t = get_AT_ref (die, DW_AT_abstract_origin))
5052 || (t = get_AT_ref (die, DW_AT_specification)))
5053 die = t;
5055 return die->die_parent;
5058 /* Return the "low pc" attribute value, typically associated with a subprogram
5059 DIE. Return null if the "low pc" attribute is either not present, or if it
5060 cannot be represented as an assembler label identifier. */
5062 static inline const char *
5063 get_AT_low_pc (dw_die_ref die)
5065 dw_attr_node *a = get_AT (die, DW_AT_low_pc);
5067 return a ? AT_lbl (a) : NULL;
5070 /* Return the "high pc" attribute value, typically associated with a subprogram
5071 DIE. Return null if the "high pc" attribute is either not present, or if it
5072 cannot be represented as an assembler label identifier. */
5074 static inline const char *
5075 get_AT_hi_pc (dw_die_ref die)
5077 dw_attr_node *a = get_AT (die, DW_AT_high_pc);
5079 return a ? AT_lbl (a) : NULL;
5082 /* Return the value of the string attribute designated by ATTR_KIND, or
5083 NULL if it is not present. */
5085 static inline const char *
5086 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5088 dw_attr_node *a = get_AT (die, attr_kind);
5090 return a ? AT_string (a) : NULL;
5093 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5094 if it is not present. */
5096 static inline int
5097 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5099 dw_attr_node *a = get_AT (die, attr_kind);
5101 return a ? AT_flag (a) : 0;
5104 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5105 if it is not present. */
5107 static inline unsigned
5108 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5110 dw_attr_node *a = get_AT (die, attr_kind);
5112 return a ? AT_unsigned (a) : 0;
5115 static inline dw_die_ref
5116 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5118 dw_attr_node *a = get_AT (die, attr_kind);
5120 return a ? AT_ref (a) : NULL;
5123 static inline struct dwarf_file_data *
5124 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5126 dw_attr_node *a = get_AT (die, attr_kind);
5128 return a ? AT_file (a) : NULL;
5131 /* Return TRUE if the language is C++. */
5133 static inline bool
5134 is_cxx (void)
5136 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
5138 return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus
5139 || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14);
5142 /* Return TRUE if DECL was created by the C++ frontend. */
5144 static bool
5145 is_cxx (const_tree decl)
5147 if (in_lto_p)
5149 const_tree context = get_ultimate_context (decl);
5150 if (context && TRANSLATION_UNIT_LANGUAGE (context))
5151 return strncmp (TRANSLATION_UNIT_LANGUAGE (context), "GNU C++", 7) == 0;
5153 return is_cxx ();
5156 /* Return TRUE if the language is Fortran. */
5158 static inline bool
5159 is_fortran (void)
5161 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
5163 return (lang == DW_LANG_Fortran77
5164 || lang == DW_LANG_Fortran90
5165 || lang == DW_LANG_Fortran95
5166 || lang == DW_LANG_Fortran03
5167 || lang == DW_LANG_Fortran08);
5170 static inline bool
5171 is_fortran (const_tree decl)
5173 if (in_lto_p)
5175 const_tree context = get_ultimate_context (decl);
5176 if (context && TRANSLATION_UNIT_LANGUAGE (context))
5177 return (strncmp (TRANSLATION_UNIT_LANGUAGE (context),
5178 "GNU Fortran", 11) == 0
5179 || strcmp (TRANSLATION_UNIT_LANGUAGE (context),
5180 "GNU F77") == 0);
5182 return is_fortran ();
5185 /* Return TRUE if the language is Ada. */
5187 static inline bool
5188 is_ada (void)
5190 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
5192 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5195 /* Remove the specified attribute if present. Return TRUE if removal
5196 was successful. */
5198 static bool
5199 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5201 dw_attr_node *a;
5202 unsigned ix;
5204 if (! die)
5205 return false;
5207 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5208 if (a->dw_attr == attr_kind)
5210 if (AT_class (a) == dw_val_class_str)
5211 if (a->dw_attr_val.v.val_str->refcount)
5212 a->dw_attr_val.v.val_str->refcount--;
5214 /* vec::ordered_remove should help reduce the number of abbrevs
5215 that are needed. */
5216 die->die_attr->ordered_remove (ix);
5217 return true;
5219 return false;
5222 /* Remove CHILD from its parent. PREV must have the property that
5223 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5225 static void
5226 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5228 gcc_assert (child->die_parent == prev->die_parent);
5229 gcc_assert (prev->die_sib == child);
5230 if (prev == child)
5232 gcc_assert (child->die_parent->die_child == child);
5233 prev = NULL;
5235 else
5236 prev->die_sib = child->die_sib;
5237 if (child->die_parent->die_child == child)
5238 child->die_parent->die_child = prev;
5239 child->die_sib = NULL;
5242 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
5243 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
5245 static void
5246 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
5248 dw_die_ref parent = old_child->die_parent;
5250 gcc_assert (parent == prev->die_parent);
5251 gcc_assert (prev->die_sib == old_child);
5253 new_child->die_parent = parent;
5254 if (prev == old_child)
5256 gcc_assert (parent->die_child == old_child);
5257 new_child->die_sib = new_child;
5259 else
5261 prev->die_sib = new_child;
5262 new_child->die_sib = old_child->die_sib;
5264 if (old_child->die_parent->die_child == old_child)
5265 old_child->die_parent->die_child = new_child;
5266 old_child->die_sib = NULL;
5269 /* Move all children from OLD_PARENT to NEW_PARENT. */
5271 static void
5272 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
5274 dw_die_ref c;
5275 new_parent->die_child = old_parent->die_child;
5276 old_parent->die_child = NULL;
5277 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
5280 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5281 matches TAG. */
5283 static void
5284 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5286 dw_die_ref c;
5288 c = die->die_child;
5289 if (c) do {
5290 dw_die_ref prev = c;
5291 c = c->die_sib;
5292 while (c->die_tag == tag)
5294 remove_child_with_prev (c, prev);
5295 c->die_parent = NULL;
5296 /* Might have removed every child. */
5297 if (die->die_child == NULL)
5298 return;
5299 c = prev->die_sib;
5301 } while (c != die->die_child);
5304 /* Add a CHILD_DIE as the last child of DIE. */
5306 static void
5307 add_child_die (dw_die_ref die, dw_die_ref child_die)
5309 /* FIXME this should probably be an assert. */
5310 if (! die || ! child_die)
5311 return;
5312 gcc_assert (die != child_die);
5314 child_die->die_parent = die;
5315 if (die->die_child)
5317 child_die->die_sib = die->die_child->die_sib;
5318 die->die_child->die_sib = child_die;
5320 else
5321 child_die->die_sib = child_die;
5322 die->die_child = child_die;
5325 /* Like add_child_die, but put CHILD_DIE after AFTER_DIE. */
5327 static void
5328 add_child_die_after (dw_die_ref die, dw_die_ref child_die,
5329 dw_die_ref after_die)
5331 gcc_assert (die
5332 && child_die
5333 && after_die
5334 && die->die_child
5335 && die != child_die);
5337 child_die->die_parent = die;
5338 child_die->die_sib = after_die->die_sib;
5339 after_die->die_sib = child_die;
5340 if (die->die_child == after_die)
5341 die->die_child = child_die;
5344 /* Unassociate CHILD from its parent, and make its parent be
5345 NEW_PARENT. */
5347 static void
5348 reparent_child (dw_die_ref child, dw_die_ref new_parent)
5350 for (dw_die_ref p = child->die_parent->die_child; ; p = p->die_sib)
5351 if (p->die_sib == child)
5353 remove_child_with_prev (child, p);
5354 break;
5356 add_child_die (new_parent, child);
5359 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5360 is the specification, to the end of PARENT's list of children.
5361 This is done by removing and re-adding it. */
5363 static void
5364 splice_child_die (dw_die_ref parent, dw_die_ref child)
5366 /* We want the declaration DIE from inside the class, not the
5367 specification DIE at toplevel. */
5368 if (child->die_parent != parent)
5370 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5372 if (tmp)
5373 child = tmp;
5376 gcc_assert (child->die_parent == parent
5377 || (child->die_parent
5378 == get_AT_ref (parent, DW_AT_specification)));
5380 reparent_child (child, parent);
5383 /* Create and return a new die with TAG_VALUE as tag. */
5385 static inline dw_die_ref
5386 new_die_raw (enum dwarf_tag tag_value)
5388 dw_die_ref die = ggc_cleared_alloc<die_node> ();
5389 die->die_tag = tag_value;
5390 return die;
5393 /* Create and return a new die with a parent of PARENT_DIE. If
5394 PARENT_DIE is NULL, the new DIE is placed in limbo and an
5395 associated tree T must be supplied to determine parenthood
5396 later. */
5398 static inline dw_die_ref
5399 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5401 dw_die_ref die = new_die_raw (tag_value);
5403 if (parent_die != NULL)
5404 add_child_die (parent_die, die);
5405 else
5407 limbo_die_node *limbo_node;
5409 /* No DIEs created after early dwarf should end up in limbo,
5410 because the limbo list should not persist past LTO
5411 streaming. */
5412 if (tag_value != DW_TAG_compile_unit
5413 /* These are allowed because they're generated while
5414 breaking out COMDAT units late. */
5415 && tag_value != DW_TAG_type_unit
5416 && tag_value != DW_TAG_skeleton_unit
5417 && !early_dwarf
5418 /* Allow nested functions to live in limbo because they will
5419 only temporarily live there, as decls_for_scope will fix
5420 them up. */
5421 && (TREE_CODE (t) != FUNCTION_DECL
5422 || !decl_function_context (t))
5423 /* Same as nested functions above but for types. Types that
5424 are local to a function will be fixed in
5425 decls_for_scope. */
5426 && (!RECORD_OR_UNION_TYPE_P (t)
5427 || !TYPE_CONTEXT (t)
5428 || TREE_CODE (TYPE_CONTEXT (t)) != FUNCTION_DECL)
5429 /* FIXME debug-early: Allow late limbo DIE creation for LTO,
5430 especially in the ltrans stage, but once we implement LTO
5431 dwarf streaming, we should remove this exception. */
5432 && !in_lto_p)
5434 fprintf (stderr, "symbol ended up in limbo too late:");
5435 debug_generic_stmt (t);
5436 gcc_unreachable ();
5439 limbo_node = ggc_cleared_alloc<limbo_die_node> ();
5440 limbo_node->die = die;
5441 limbo_node->created_for = t;
5442 limbo_node->next = limbo_die_list;
5443 limbo_die_list = limbo_node;
5446 return die;
5449 /* Return the DIE associated with the given type specifier. */
5451 static inline dw_die_ref
5452 lookup_type_die (tree type)
5454 dw_die_ref die = TYPE_SYMTAB_DIE (type);
5455 if (die && die->removed)
5457 TYPE_SYMTAB_DIE (type) = NULL;
5458 return NULL;
5460 return die;
5463 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
5464 anonymous type named by the typedef TYPE_DIE, return the DIE of the
5465 anonymous type instead the one of the naming typedef. */
5467 static inline dw_die_ref
5468 strip_naming_typedef (tree type, dw_die_ref type_die)
5470 if (type
5471 && TREE_CODE (type) == RECORD_TYPE
5472 && type_die
5473 && type_die->die_tag == DW_TAG_typedef
5474 && is_naming_typedef_decl (TYPE_NAME (type)))
5475 type_die = get_AT_ref (type_die, DW_AT_type);
5476 return type_die;
5479 /* Like lookup_type_die, but if type is an anonymous type named by a
5480 typedef[1], return the DIE of the anonymous type instead the one of
5481 the naming typedef. This is because in gen_typedef_die, we did
5482 equate the anonymous struct named by the typedef with the DIE of
5483 the naming typedef. So by default, lookup_type_die on an anonymous
5484 struct yields the DIE of the naming typedef.
5486 [1]: Read the comment of is_naming_typedef_decl to learn about what
5487 a naming typedef is. */
5489 static inline dw_die_ref
5490 lookup_type_die_strip_naming_typedef (tree type)
5492 dw_die_ref die = lookup_type_die (type);
5493 return strip_naming_typedef (type, die);
5496 /* Equate a DIE to a given type specifier. */
5498 static inline void
5499 equate_type_number_to_die (tree type, dw_die_ref type_die)
5501 TYPE_SYMTAB_DIE (type) = type_die;
5504 /* Returns a hash value for X (which really is a die_struct). */
5506 inline hashval_t
5507 decl_die_hasher::hash (die_node *x)
5509 return (hashval_t) x->decl_id;
5512 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5514 inline bool
5515 decl_die_hasher::equal (die_node *x, tree y)
5517 return (x->decl_id == DECL_UID (y));
5520 /* Return the DIE associated with a given declaration. */
5522 static inline dw_die_ref
5523 lookup_decl_die (tree decl)
5525 dw_die_ref *die = decl_die_table->find_slot_with_hash (decl, DECL_UID (decl),
5526 NO_INSERT);
5527 if (!die)
5528 return NULL;
5529 if ((*die)->removed)
5531 decl_die_table->clear_slot (die);
5532 return NULL;
5534 return *die;
5538 /* For DECL which might have early dwarf output query a SYMBOL + OFFSET
5539 style reference. Return true if we found one refering to a DIE for
5540 DECL, otherwise return false. */
5542 static bool
5543 dwarf2out_die_ref_for_decl (tree decl, const char **sym,
5544 unsigned HOST_WIDE_INT *off)
5546 dw_die_ref die;
5548 if (flag_wpa && !decl_die_table)
5549 return false;
5551 if (TREE_CODE (decl) == BLOCK)
5552 die = BLOCK_DIE (decl);
5553 else
5554 die = lookup_decl_die (decl);
5555 if (!die)
5556 return false;
5558 /* During WPA stage we currently use DIEs to store the
5559 decl <-> label + offset map. That's quite inefficient but it
5560 works for now. */
5561 if (flag_wpa)
5563 dw_die_ref ref = get_AT_ref (die, DW_AT_abstract_origin);
5564 if (!ref)
5566 gcc_assert (die == comp_unit_die ());
5567 return false;
5569 *off = ref->die_offset;
5570 *sym = ref->die_id.die_symbol;
5571 return true;
5574 /* Similar to get_ref_die_offset_label, but using the "correct"
5575 label. */
5576 *off = die->die_offset;
5577 while (die->die_parent)
5578 die = die->die_parent;
5579 /* For the containing CU DIE we compute a die_symbol in
5580 compute_comp_unit_symbol. */
5581 gcc_assert (die->die_tag == DW_TAG_compile_unit
5582 && die->die_id.die_symbol != NULL);
5583 *sym = die->die_id.die_symbol;
5584 return true;
5587 /* Add a reference of kind ATTR_KIND to a DIE at SYMBOL + OFFSET to DIE. */
5589 static void
5590 add_AT_external_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind,
5591 const char *symbol, HOST_WIDE_INT offset)
5593 /* Create a fake DIE that contains the reference. Don't use
5594 new_die because we don't want to end up in the limbo list. */
5595 dw_die_ref ref = new_die_raw (die->die_tag);
5596 ref->die_id.die_symbol = IDENTIFIER_POINTER (get_identifier (symbol));
5597 ref->die_offset = offset;
5598 ref->with_offset = 1;
5599 add_AT_die_ref (die, attr_kind, ref);
5602 /* Create a DIE for DECL if required and add a reference to a DIE
5603 at SYMBOL + OFFSET which contains attributes dumped early. */
5605 static void
5606 dwarf2out_register_external_die (tree decl, const char *sym,
5607 unsigned HOST_WIDE_INT off)
5609 if (debug_info_level == DINFO_LEVEL_NONE)
5610 return;
5612 if (flag_wpa && !decl_die_table)
5613 decl_die_table = hash_table<decl_die_hasher>::create_ggc (1000);
5615 dw_die_ref die
5616 = TREE_CODE (decl) == BLOCK ? BLOCK_DIE (decl) : lookup_decl_die (decl);
5617 gcc_assert (!die);
5619 tree ctx;
5620 dw_die_ref parent = NULL;
5621 /* Need to lookup a DIE for the decls context - the containing
5622 function or translation unit. */
5623 if (TREE_CODE (decl) == BLOCK)
5625 ctx = BLOCK_SUPERCONTEXT (decl);
5626 /* ??? We do not output DIEs for all scopes thus skip as
5627 many DIEs as needed. */
5628 while (TREE_CODE (ctx) == BLOCK
5629 && !BLOCK_DIE (ctx))
5630 ctx = BLOCK_SUPERCONTEXT (ctx);
5632 else
5633 ctx = DECL_CONTEXT (decl);
5634 while (ctx && TYPE_P (ctx))
5635 ctx = TYPE_CONTEXT (ctx);
5636 if (ctx)
5638 if (TREE_CODE (ctx) == BLOCK)
5639 parent = BLOCK_DIE (ctx);
5640 else if (TREE_CODE (ctx) == TRANSLATION_UNIT_DECL
5641 /* Keep the 1:1 association during WPA. */
5642 && !flag_wpa)
5643 /* Otherwise all late annotations go to the main CU which
5644 imports the original CUs. */
5645 parent = comp_unit_die ();
5646 else if (TREE_CODE (ctx) == FUNCTION_DECL
5647 && TREE_CODE (decl) != PARM_DECL
5648 && TREE_CODE (decl) != BLOCK)
5649 /* Leave function local entities parent determination to when
5650 we process scope vars. */
5652 else
5653 parent = lookup_decl_die (ctx);
5655 else
5656 /* In some cases the FEs fail to set DECL_CONTEXT properly.
5657 Handle this case gracefully by globalizing stuff. */
5658 parent = comp_unit_die ();
5659 /* Create a DIE "stub". */
5660 switch (TREE_CODE (decl))
5662 case TRANSLATION_UNIT_DECL:
5663 if (! flag_wpa)
5665 die = comp_unit_die ();
5666 dw_die_ref import = new_die (DW_TAG_imported_unit, die, NULL_TREE);
5667 add_AT_external_die_ref (import, DW_AT_import, sym, off);
5668 /* We re-target all CU decls to the LTRANS CU DIE, so no need
5669 to create a DIE for the original CUs. */
5670 return;
5672 /* Keep the 1:1 association during WPA. */
5673 die = new_die (DW_TAG_compile_unit, NULL, decl);
5674 break;
5675 case NAMESPACE_DECL:
5676 if (is_fortran (decl))
5677 die = new_die (DW_TAG_module, parent, decl);
5678 else
5679 die = new_die (DW_TAG_namespace, parent, decl);
5680 break;
5681 case FUNCTION_DECL:
5682 die = new_die (DW_TAG_subprogram, parent, decl);
5683 break;
5684 case VAR_DECL:
5685 die = new_die (DW_TAG_variable, parent, decl);
5686 break;
5687 case RESULT_DECL:
5688 die = new_die (DW_TAG_variable, parent, decl);
5689 break;
5690 case PARM_DECL:
5691 die = new_die (DW_TAG_formal_parameter, parent, decl);
5692 break;
5693 case CONST_DECL:
5694 die = new_die (DW_TAG_constant, parent, decl);
5695 break;
5696 case LABEL_DECL:
5697 die = new_die (DW_TAG_label, parent, decl);
5698 break;
5699 case BLOCK:
5700 die = new_die (DW_TAG_lexical_block, parent, decl);
5701 break;
5702 default:
5703 gcc_unreachable ();
5705 if (TREE_CODE (decl) == BLOCK)
5706 BLOCK_DIE (decl) = die;
5707 else
5708 equate_decl_number_to_die (decl, die);
5710 /* Add a reference to the DIE providing early debug at $sym + off. */
5711 add_AT_external_die_ref (die, DW_AT_abstract_origin, sym, off);
5714 /* Returns a hash value for X (which really is a var_loc_list). */
5716 inline hashval_t
5717 decl_loc_hasher::hash (var_loc_list *x)
5719 return (hashval_t) x->decl_id;
5722 /* Return nonzero if decl_id of var_loc_list X is the same as
5723 UID of decl *Y. */
5725 inline bool
5726 decl_loc_hasher::equal (var_loc_list *x, const_tree y)
5728 return (x->decl_id == DECL_UID (y));
5731 /* Return the var_loc list associated with a given declaration. */
5733 static inline var_loc_list *
5734 lookup_decl_loc (const_tree decl)
5736 if (!decl_loc_table)
5737 return NULL;
5738 return decl_loc_table->find_with_hash (decl, DECL_UID (decl));
5741 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5743 inline hashval_t
5744 dw_loc_list_hasher::hash (cached_dw_loc_list *x)
5746 return (hashval_t) x->decl_id;
5749 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5750 UID of decl *Y. */
5752 inline bool
5753 dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y)
5755 return (x->decl_id == DECL_UID (y));
5758 /* Equate a DIE to a particular declaration. */
5760 static void
5761 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5763 unsigned int decl_id = DECL_UID (decl);
5765 *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die;
5766 decl_die->decl_id = decl_id;
5769 /* Return how many bits covers PIECE EXPR_LIST. */
5771 static HOST_WIDE_INT
5772 decl_piece_bitsize (rtx piece)
5774 int ret = (int) GET_MODE (piece);
5775 if (ret)
5776 return ret;
5777 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
5778 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
5779 return INTVAL (XEXP (XEXP (piece, 0), 0));
5782 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5784 static rtx *
5785 decl_piece_varloc_ptr (rtx piece)
5787 if ((int) GET_MODE (piece))
5788 return &XEXP (piece, 0);
5789 else
5790 return &XEXP (XEXP (piece, 0), 1);
5793 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5794 Next is the chain of following piece nodes. */
5796 static rtx_expr_list *
5797 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
5799 if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE)
5800 return alloc_EXPR_LIST (bitsize, loc_note, next);
5801 else
5802 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
5803 GEN_INT (bitsize),
5804 loc_note), next);
5807 /* Return rtx that should be stored into loc field for
5808 LOC_NOTE and BITPOS/BITSIZE. */
5810 static rtx
5811 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
5812 HOST_WIDE_INT bitsize)
5814 if (bitsize != -1)
5816 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
5817 if (bitpos != 0)
5818 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
5820 return loc_note;
5823 /* This function either modifies location piece list *DEST in
5824 place (if SRC and INNER is NULL), or copies location piece list
5825 *SRC to *DEST while modifying it. Location BITPOS is modified
5826 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5827 not copied and if needed some padding around it is added.
5828 When modifying in place, DEST should point to EXPR_LIST where
5829 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5830 to the start of the whole list and INNER points to the EXPR_LIST
5831 where earlier pieces cover PIECE_BITPOS bits. */
5833 static void
5834 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
5835 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
5836 HOST_WIDE_INT bitsize, rtx loc_note)
5838 HOST_WIDE_INT diff;
5839 bool copy = inner != NULL;
5841 if (copy)
5843 /* First copy all nodes preceding the current bitpos. */
5844 while (src != inner)
5846 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5847 decl_piece_bitsize (*src), NULL_RTX);
5848 dest = &XEXP (*dest, 1);
5849 src = &XEXP (*src, 1);
5852 /* Add padding if needed. */
5853 if (bitpos != piece_bitpos)
5855 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
5856 copy ? NULL_RTX : *dest);
5857 dest = &XEXP (*dest, 1);
5859 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
5861 gcc_assert (!copy);
5862 /* A piece with correct bitpos and bitsize already exist,
5863 just update the location for it and return. */
5864 *decl_piece_varloc_ptr (*dest) = loc_note;
5865 return;
5867 /* Add the piece that changed. */
5868 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
5869 dest = &XEXP (*dest, 1);
5870 /* Skip over pieces that overlap it. */
5871 diff = bitpos - piece_bitpos + bitsize;
5872 if (!copy)
5873 src = dest;
5874 while (diff > 0 && *src)
5876 rtx piece = *src;
5877 diff -= decl_piece_bitsize (piece);
5878 if (copy)
5879 src = &XEXP (piece, 1);
5880 else
5882 *src = XEXP (piece, 1);
5883 free_EXPR_LIST_node (piece);
5886 /* Add padding if needed. */
5887 if (diff < 0 && *src)
5889 if (!copy)
5890 dest = src;
5891 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
5892 dest = &XEXP (*dest, 1);
5894 if (!copy)
5895 return;
5896 /* Finally copy all nodes following it. */
5897 while (*src)
5899 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5900 decl_piece_bitsize (*src), NULL_RTX);
5901 dest = &XEXP (*dest, 1);
5902 src = &XEXP (*src, 1);
5906 /* Add a variable location node to the linked list for DECL. */
5908 static struct var_loc_node *
5909 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
5911 unsigned int decl_id;
5912 var_loc_list *temp;
5913 struct var_loc_node *loc = NULL;
5914 HOST_WIDE_INT bitsize = -1, bitpos = -1;
5916 if (VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
5918 tree realdecl = DECL_DEBUG_EXPR (decl);
5919 if (handled_component_p (realdecl)
5920 || (TREE_CODE (realdecl) == MEM_REF
5921 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5923 bool reverse;
5924 tree innerdecl = get_ref_base_and_extent_hwi (realdecl, &bitpos,
5925 &bitsize, &reverse);
5926 if (!innerdecl
5927 || !DECL_P (innerdecl)
5928 || DECL_IGNORED_P (innerdecl)
5929 || TREE_STATIC (innerdecl)
5930 || bitsize == 0
5931 || bitpos + bitsize > 256)
5932 return NULL;
5933 decl = innerdecl;
5937 decl_id = DECL_UID (decl);
5938 var_loc_list **slot
5939 = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT);
5940 if (*slot == NULL)
5942 temp = ggc_cleared_alloc<var_loc_list> ();
5943 temp->decl_id = decl_id;
5944 *slot = temp;
5946 else
5947 temp = *slot;
5949 /* For PARM_DECLs try to keep around the original incoming value,
5950 even if that means we'll emit a zero-range .debug_loc entry. */
5951 if (temp->last
5952 && temp->first == temp->last
5953 && TREE_CODE (decl) == PARM_DECL
5954 && NOTE_P (temp->first->loc)
5955 && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
5956 && DECL_INCOMING_RTL (decl)
5957 && NOTE_VAR_LOCATION_LOC (temp->first->loc)
5958 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
5959 == GET_CODE (DECL_INCOMING_RTL (decl))
5960 && prev_real_insn (as_a<rtx_insn *> (temp->first->loc)) == NULL_RTX
5961 && (bitsize != -1
5962 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
5963 NOTE_VAR_LOCATION_LOC (loc_note))
5964 || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
5965 != NOTE_VAR_LOCATION_STATUS (loc_note))))
5967 loc = ggc_cleared_alloc<var_loc_node> ();
5968 temp->first->next = loc;
5969 temp->last = loc;
5970 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5972 else if (temp->last)
5974 struct var_loc_node *last = temp->last, *unused = NULL;
5975 rtx *piece_loc = NULL, last_loc_note;
5976 HOST_WIDE_INT piece_bitpos = 0;
5977 if (last->next)
5979 last = last->next;
5980 gcc_assert (last->next == NULL);
5982 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
5984 piece_loc = &last->loc;
5987 HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc);
5988 if (piece_bitpos + cur_bitsize > bitpos)
5989 break;
5990 piece_bitpos += cur_bitsize;
5991 piece_loc = &XEXP (*piece_loc, 1);
5993 while (*piece_loc);
5995 /* TEMP->LAST here is either pointer to the last but one or
5996 last element in the chained list, LAST is pointer to the
5997 last element. */
5998 if (label && strcmp (last->label, label) == 0)
6000 /* For SRA optimized variables if there weren't any real
6001 insns since last note, just modify the last node. */
6002 if (piece_loc != NULL)
6004 adjust_piece_list (piece_loc, NULL, NULL,
6005 bitpos, piece_bitpos, bitsize, loc_note);
6006 return NULL;
6008 /* If the last note doesn't cover any instructions, remove it. */
6009 if (temp->last != last)
6011 temp->last->next = NULL;
6012 unused = last;
6013 last = temp->last;
6014 gcc_assert (strcmp (last->label, label) != 0);
6016 else
6018 gcc_assert (temp->first == temp->last
6019 || (temp->first->next == temp->last
6020 && TREE_CODE (decl) == PARM_DECL));
6021 memset (temp->last, '\0', sizeof (*temp->last));
6022 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
6023 return temp->last;
6026 if (bitsize == -1 && NOTE_P (last->loc))
6027 last_loc_note = last->loc;
6028 else if (piece_loc != NULL
6029 && *piece_loc != NULL_RTX
6030 && piece_bitpos == bitpos
6031 && decl_piece_bitsize (*piece_loc) == bitsize)
6032 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
6033 else
6034 last_loc_note = NULL_RTX;
6035 /* If the current location is the same as the end of the list,
6036 and either both or neither of the locations is uninitialized,
6037 we have nothing to do. */
6038 if (last_loc_note == NULL_RTX
6039 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
6040 NOTE_VAR_LOCATION_LOC (loc_note)))
6041 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
6042 != NOTE_VAR_LOCATION_STATUS (loc_note))
6043 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
6044 == VAR_INIT_STATUS_UNINITIALIZED)
6045 || (NOTE_VAR_LOCATION_STATUS (loc_note)
6046 == VAR_INIT_STATUS_UNINITIALIZED))))
6048 /* Add LOC to the end of list and update LAST. If the last
6049 element of the list has been removed above, reuse its
6050 memory for the new node, otherwise allocate a new one. */
6051 if (unused)
6053 loc = unused;
6054 memset (loc, '\0', sizeof (*loc));
6056 else
6057 loc = ggc_cleared_alloc<var_loc_node> ();
6058 if (bitsize == -1 || piece_loc == NULL)
6059 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
6060 else
6061 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
6062 bitpos, piece_bitpos, bitsize, loc_note);
6063 last->next = loc;
6064 /* Ensure TEMP->LAST will point either to the new last but one
6065 element of the chain, or to the last element in it. */
6066 if (last != temp->last)
6067 temp->last = last;
6069 else if (unused)
6070 ggc_free (unused);
6072 else
6074 loc = ggc_cleared_alloc<var_loc_node> ();
6075 temp->first = loc;
6076 temp->last = loc;
6077 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
6079 return loc;
6082 /* Keep track of the number of spaces used to indent the
6083 output of the debugging routines that print the structure of
6084 the DIE internal representation. */
6085 static int print_indent;
6087 /* Indent the line the number of spaces given by print_indent. */
6089 static inline void
6090 print_spaces (FILE *outfile)
6092 fprintf (outfile, "%*s", print_indent, "");
6095 /* Print a type signature in hex. */
6097 static inline void
6098 print_signature (FILE *outfile, char *sig)
6100 int i;
6102 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
6103 fprintf (outfile, "%02x", sig[i] & 0xff);
6106 static inline void
6107 print_discr_value (FILE *outfile, dw_discr_value *discr_value)
6109 if (discr_value->pos)
6110 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, discr_value->v.sval);
6111 else
6112 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, discr_value->v.uval);
6115 static void print_loc_descr (dw_loc_descr_ref, FILE *);
6117 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
6118 RECURSE, output location descriptor operations. */
6120 static void
6121 print_dw_val (dw_val_node *val, bool recurse, FILE *outfile)
6123 switch (val->val_class)
6125 case dw_val_class_addr:
6126 fprintf (outfile, "address");
6127 break;
6128 case dw_val_class_offset:
6129 fprintf (outfile, "offset");
6130 break;
6131 case dw_val_class_loc:
6132 fprintf (outfile, "location descriptor");
6133 if (val->v.val_loc == NULL)
6134 fprintf (outfile, " -> <null>\n");
6135 else if (recurse)
6137 fprintf (outfile, ":\n");
6138 print_indent += 4;
6139 print_loc_descr (val->v.val_loc, outfile);
6140 print_indent -= 4;
6142 else
6143 fprintf (outfile, " (%p)\n", (void *) val->v.val_loc);
6144 break;
6145 case dw_val_class_loc_list:
6146 fprintf (outfile, "location list -> label:%s",
6147 val->v.val_loc_list->ll_symbol);
6148 break;
6149 case dw_val_class_range_list:
6150 fprintf (outfile, "range list");
6151 break;
6152 case dw_val_class_const:
6153 case dw_val_class_const_implicit:
6154 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int);
6155 break;
6156 case dw_val_class_unsigned_const:
6157 case dw_val_class_unsigned_const_implicit:
6158 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned);
6159 break;
6160 case dw_val_class_const_double:
6161 fprintf (outfile, "constant (" HOST_WIDE_INT_PRINT_DEC","\
6162 HOST_WIDE_INT_PRINT_UNSIGNED")",
6163 val->v.val_double.high,
6164 val->v.val_double.low);
6165 break;
6166 case dw_val_class_wide_int:
6168 int i = val->v.val_wide->get_len ();
6169 fprintf (outfile, "constant (");
6170 gcc_assert (i > 0);
6171 if (val->v.val_wide->elt (i - 1) == 0)
6172 fprintf (outfile, "0x");
6173 fprintf (outfile, HOST_WIDE_INT_PRINT_HEX,
6174 val->v.val_wide->elt (--i));
6175 while (--i >= 0)
6176 fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX,
6177 val->v.val_wide->elt (i));
6178 fprintf (outfile, ")");
6179 break;
6181 case dw_val_class_vec:
6182 fprintf (outfile, "floating-point or vector constant");
6183 break;
6184 case dw_val_class_flag:
6185 fprintf (outfile, "%u", val->v.val_flag);
6186 break;
6187 case dw_val_class_die_ref:
6188 if (val->v.val_die_ref.die != NULL)
6190 dw_die_ref die = val->v.val_die_ref.die;
6192 if (die->comdat_type_p)
6194 fprintf (outfile, "die -> signature: ");
6195 print_signature (outfile,
6196 die->die_id.die_type_node->signature);
6198 else if (die->die_id.die_symbol)
6200 fprintf (outfile, "die -> label: %s", die->die_id.die_symbol);
6201 if (die->with_offset)
6202 fprintf (outfile, " + %ld", die->die_offset);
6204 else
6205 fprintf (outfile, "die -> %ld", die->die_offset);
6206 fprintf (outfile, " (%p)", (void *) die);
6208 else
6209 fprintf (outfile, "die -> <null>");
6210 break;
6211 case dw_val_class_vms_delta:
6212 fprintf (outfile, "delta: @slotcount(%s-%s)",
6213 val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1);
6214 break;
6215 case dw_val_class_lbl_id:
6216 case dw_val_class_lineptr:
6217 case dw_val_class_macptr:
6218 case dw_val_class_loclistsptr:
6219 case dw_val_class_high_pc:
6220 fprintf (outfile, "label: %s", val->v.val_lbl_id);
6221 break;
6222 case dw_val_class_str:
6223 if (val->v.val_str->str != NULL)
6224 fprintf (outfile, "\"%s\"", val->v.val_str->str);
6225 else
6226 fprintf (outfile, "<null>");
6227 break;
6228 case dw_val_class_file:
6229 case dw_val_class_file_implicit:
6230 fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename,
6231 val->v.val_file->emitted_number);
6232 break;
6233 case dw_val_class_data8:
6235 int i;
6237 for (i = 0; i < 8; i++)
6238 fprintf (outfile, "%02x", val->v.val_data8[i]);
6239 break;
6241 case dw_val_class_discr_value:
6242 print_discr_value (outfile, &val->v.val_discr_value);
6243 break;
6244 case dw_val_class_discr_list:
6245 for (dw_discr_list_ref node = val->v.val_discr_list;
6246 node != NULL;
6247 node = node->dw_discr_next)
6249 if (node->dw_discr_range)
6251 fprintf (outfile, " .. ");
6252 print_discr_value (outfile, &node->dw_discr_lower_bound);
6253 print_discr_value (outfile, &node->dw_discr_upper_bound);
6255 else
6256 print_discr_value (outfile, &node->dw_discr_lower_bound);
6258 if (node->dw_discr_next != NULL)
6259 fprintf (outfile, " | ");
6261 default:
6262 break;
6266 /* Likewise, for a DIE attribute. */
6268 static void
6269 print_attribute (dw_attr_node *a, bool recurse, FILE *outfile)
6271 print_dw_val (&a->dw_attr_val, recurse, outfile);
6275 /* Print the list of operands in the LOC location description to OUTFILE. This
6276 routine is a debugging aid only. */
6278 static void
6279 print_loc_descr (dw_loc_descr_ref loc, FILE *outfile)
6281 dw_loc_descr_ref l = loc;
6283 if (loc == NULL)
6285 print_spaces (outfile);
6286 fprintf (outfile, "<null>\n");
6287 return;
6290 for (l = loc; l != NULL; l = l->dw_loc_next)
6292 print_spaces (outfile);
6293 fprintf (outfile, "(%p) %s",
6294 (void *) l,
6295 dwarf_stack_op_name (l->dw_loc_opc));
6296 if (l->dw_loc_oprnd1.val_class != dw_val_class_none)
6298 fprintf (outfile, " ");
6299 print_dw_val (&l->dw_loc_oprnd1, false, outfile);
6301 if (l->dw_loc_oprnd2.val_class != dw_val_class_none)
6303 fprintf (outfile, ", ");
6304 print_dw_val (&l->dw_loc_oprnd2, false, outfile);
6306 fprintf (outfile, "\n");
6310 /* Print the information associated with a given DIE, and its children.
6311 This routine is a debugging aid only. */
6313 static void
6314 print_die (dw_die_ref die, FILE *outfile)
6316 dw_attr_node *a;
6317 dw_die_ref c;
6318 unsigned ix;
6320 print_spaces (outfile);
6321 fprintf (outfile, "DIE %4ld: %s (%p)\n",
6322 die->die_offset, dwarf_tag_name (die->die_tag),
6323 (void*) die);
6324 print_spaces (outfile);
6325 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
6326 fprintf (outfile, " offset: %ld", die->die_offset);
6327 fprintf (outfile, " mark: %d\n", die->die_mark);
6329 if (die->comdat_type_p)
6331 print_spaces (outfile);
6332 fprintf (outfile, " signature: ");
6333 print_signature (outfile, die->die_id.die_type_node->signature);
6334 fprintf (outfile, "\n");
6337 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6339 print_spaces (outfile);
6340 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
6342 print_attribute (a, true, outfile);
6343 fprintf (outfile, "\n");
6346 if (die->die_child != NULL)
6348 print_indent += 4;
6349 FOR_EACH_CHILD (die, c, print_die (c, outfile));
6350 print_indent -= 4;
6352 if (print_indent == 0)
6353 fprintf (outfile, "\n");
6356 /* Print the list of operations in the LOC location description. */
6358 DEBUG_FUNCTION void
6359 debug_dwarf_loc_descr (dw_loc_descr_ref loc)
6361 print_loc_descr (loc, stderr);
6364 /* Print the information collected for a given DIE. */
6366 DEBUG_FUNCTION void
6367 debug_dwarf_die (dw_die_ref die)
6369 print_die (die, stderr);
6372 DEBUG_FUNCTION void
6373 debug (die_struct &ref)
6375 print_die (&ref, stderr);
6378 DEBUG_FUNCTION void
6379 debug (die_struct *ptr)
6381 if (ptr)
6382 debug (*ptr);
6383 else
6384 fprintf (stderr, "<nil>\n");
6388 /* Print all DWARF information collected for the compilation unit.
6389 This routine is a debugging aid only. */
6391 DEBUG_FUNCTION void
6392 debug_dwarf (void)
6394 print_indent = 0;
6395 print_die (comp_unit_die (), stderr);
6398 /* Verify the DIE tree structure. */
6400 DEBUG_FUNCTION void
6401 verify_die (dw_die_ref die)
6403 gcc_assert (!die->die_mark);
6404 if (die->die_parent == NULL
6405 && die->die_sib == NULL)
6406 return;
6407 /* Verify the die_sib list is cyclic. */
6408 dw_die_ref x = die;
6411 x->die_mark = 1;
6412 x = x->die_sib;
6414 while (x && !x->die_mark);
6415 gcc_assert (x == die);
6416 x = die;
6419 /* Verify all dies have the same parent. */
6420 gcc_assert (x->die_parent == die->die_parent);
6421 if (x->die_child)
6423 /* Verify the child has the proper parent and recurse. */
6424 gcc_assert (x->die_child->die_parent == x);
6425 verify_die (x->die_child);
6427 x->die_mark = 0;
6428 x = x->die_sib;
6430 while (x && x->die_mark);
6433 /* Sanity checks on DIEs. */
6435 static void
6436 check_die (dw_die_ref die)
6438 unsigned ix;
6439 dw_attr_node *a;
6440 bool inline_found = false;
6441 int n_location = 0, n_low_pc = 0, n_high_pc = 0, n_artificial = 0;
6442 int n_decl_line = 0, n_decl_column = 0, n_decl_file = 0;
6443 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6445 switch (a->dw_attr)
6447 case DW_AT_inline:
6448 if (a->dw_attr_val.v.val_unsigned)
6449 inline_found = true;
6450 break;
6451 case DW_AT_location:
6452 ++n_location;
6453 break;
6454 case DW_AT_low_pc:
6455 ++n_low_pc;
6456 break;
6457 case DW_AT_high_pc:
6458 ++n_high_pc;
6459 break;
6460 case DW_AT_artificial:
6461 ++n_artificial;
6462 break;
6463 case DW_AT_decl_column:
6464 ++n_decl_column;
6465 break;
6466 case DW_AT_decl_line:
6467 ++n_decl_line;
6468 break;
6469 case DW_AT_decl_file:
6470 ++n_decl_file;
6471 break;
6472 default:
6473 break;
6476 if (n_location > 1 || n_low_pc > 1 || n_high_pc > 1 || n_artificial > 1
6477 || n_decl_column > 1 || n_decl_line > 1 || n_decl_file > 1)
6479 fprintf (stderr, "Duplicate attributes in DIE:\n");
6480 debug_dwarf_die (die);
6481 gcc_unreachable ();
6483 if (inline_found)
6485 /* A debugging information entry that is a member of an abstract
6486 instance tree [that has DW_AT_inline] should not contain any
6487 attributes which describe aspects of the subroutine which vary
6488 between distinct inlined expansions or distinct out-of-line
6489 expansions. */
6490 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6491 gcc_assert (a->dw_attr != DW_AT_low_pc
6492 && a->dw_attr != DW_AT_high_pc
6493 && a->dw_attr != DW_AT_location
6494 && a->dw_attr != DW_AT_frame_base
6495 && a->dw_attr != DW_AT_call_all_calls
6496 && a->dw_attr != DW_AT_GNU_all_call_sites);
6500 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6501 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6502 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
6504 /* Calculate the checksum of a location expression. */
6506 static inline void
6507 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6509 int tem;
6510 inchash::hash hstate;
6511 hashval_t hash;
6513 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
6514 CHECKSUM (tem);
6515 hash_loc_operands (loc, hstate);
6516 hash = hstate.end();
6517 CHECKSUM (hash);
6520 /* Calculate the checksum of an attribute. */
6522 static void
6523 attr_checksum (dw_attr_node *at, struct md5_ctx *ctx, int *mark)
6525 dw_loc_descr_ref loc;
6526 rtx r;
6528 CHECKSUM (at->dw_attr);
6530 /* We don't care that this was compiled with a different compiler
6531 snapshot; if the output is the same, that's what matters. */
6532 if (at->dw_attr == DW_AT_producer)
6533 return;
6535 switch (AT_class (at))
6537 case dw_val_class_const:
6538 case dw_val_class_const_implicit:
6539 CHECKSUM (at->dw_attr_val.v.val_int);
6540 break;
6541 case dw_val_class_unsigned_const:
6542 case dw_val_class_unsigned_const_implicit:
6543 CHECKSUM (at->dw_attr_val.v.val_unsigned);
6544 break;
6545 case dw_val_class_const_double:
6546 CHECKSUM (at->dw_attr_val.v.val_double);
6547 break;
6548 case dw_val_class_wide_int:
6549 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6550 get_full_len (*at->dw_attr_val.v.val_wide)
6551 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6552 break;
6553 case dw_val_class_vec:
6554 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6555 (at->dw_attr_val.v.val_vec.length
6556 * at->dw_attr_val.v.val_vec.elt_size));
6557 break;
6558 case dw_val_class_flag:
6559 CHECKSUM (at->dw_attr_val.v.val_flag);
6560 break;
6561 case dw_val_class_str:
6562 CHECKSUM_STRING (AT_string (at));
6563 break;
6565 case dw_val_class_addr:
6566 r = AT_addr (at);
6567 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6568 CHECKSUM_STRING (XSTR (r, 0));
6569 break;
6571 case dw_val_class_offset:
6572 CHECKSUM (at->dw_attr_val.v.val_offset);
6573 break;
6575 case dw_val_class_loc:
6576 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6577 loc_checksum (loc, ctx);
6578 break;
6580 case dw_val_class_die_ref:
6581 die_checksum (AT_ref (at), ctx, mark);
6582 break;
6584 case dw_val_class_fde_ref:
6585 case dw_val_class_vms_delta:
6586 case dw_val_class_lbl_id:
6587 case dw_val_class_lineptr:
6588 case dw_val_class_macptr:
6589 case dw_val_class_loclistsptr:
6590 case dw_val_class_high_pc:
6591 break;
6593 case dw_val_class_file:
6594 case dw_val_class_file_implicit:
6595 CHECKSUM_STRING (AT_file (at)->filename);
6596 break;
6598 case dw_val_class_data8:
6599 CHECKSUM (at->dw_attr_val.v.val_data8);
6600 break;
6602 default:
6603 break;
6607 /* Calculate the checksum of a DIE. */
6609 static void
6610 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6612 dw_die_ref c;
6613 dw_attr_node *a;
6614 unsigned ix;
6616 /* To avoid infinite recursion. */
6617 if (die->die_mark)
6619 CHECKSUM (die->die_mark);
6620 return;
6622 die->die_mark = ++(*mark);
6624 CHECKSUM (die->die_tag);
6626 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6627 attr_checksum (a, ctx, mark);
6629 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6632 #undef CHECKSUM
6633 #undef CHECKSUM_BLOCK
6634 #undef CHECKSUM_STRING
6636 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
6637 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6638 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6639 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
6640 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
6641 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
6642 #define CHECKSUM_ATTR(FOO) \
6643 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
6645 /* Calculate the checksum of a number in signed LEB128 format. */
6647 static void
6648 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
6650 unsigned char byte;
6651 bool more;
6653 while (1)
6655 byte = (value & 0x7f);
6656 value >>= 7;
6657 more = !((value == 0 && (byte & 0x40) == 0)
6658 || (value == -1 && (byte & 0x40) != 0));
6659 if (more)
6660 byte |= 0x80;
6661 CHECKSUM (byte);
6662 if (!more)
6663 break;
6667 /* Calculate the checksum of a number in unsigned LEB128 format. */
6669 static void
6670 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
6672 while (1)
6674 unsigned char byte = (value & 0x7f);
6675 value >>= 7;
6676 if (value != 0)
6677 /* More bytes to follow. */
6678 byte |= 0x80;
6679 CHECKSUM (byte);
6680 if (value == 0)
6681 break;
6685 /* Checksum the context of the DIE. This adds the names of any
6686 surrounding namespaces or structures to the checksum. */
6688 static void
6689 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
6691 const char *name;
6692 dw_die_ref spec;
6693 int tag = die->die_tag;
6695 if (tag != DW_TAG_namespace
6696 && tag != DW_TAG_structure_type
6697 && tag != DW_TAG_class_type)
6698 return;
6700 name = get_AT_string (die, DW_AT_name);
6702 spec = get_AT_ref (die, DW_AT_specification);
6703 if (spec != NULL)
6704 die = spec;
6706 if (die->die_parent != NULL)
6707 checksum_die_context (die->die_parent, ctx);
6709 CHECKSUM_ULEB128 ('C');
6710 CHECKSUM_ULEB128 (tag);
6711 if (name != NULL)
6712 CHECKSUM_STRING (name);
6715 /* Calculate the checksum of a location expression. */
6717 static inline void
6718 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6720 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
6721 were emitted as a DW_FORM_sdata instead of a location expression. */
6722 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
6724 CHECKSUM_ULEB128 (DW_FORM_sdata);
6725 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
6726 return;
6729 /* Otherwise, just checksum the raw location expression. */
6730 while (loc != NULL)
6732 inchash::hash hstate;
6733 hashval_t hash;
6735 CHECKSUM_ULEB128 (loc->dtprel);
6736 CHECKSUM_ULEB128 (loc->dw_loc_opc);
6737 hash_loc_operands (loc, hstate);
6738 hash = hstate.end ();
6739 CHECKSUM (hash);
6740 loc = loc->dw_loc_next;
6744 /* Calculate the checksum of an attribute. */
6746 static void
6747 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_node *at,
6748 struct md5_ctx *ctx, int *mark)
6750 dw_loc_descr_ref loc;
6751 rtx r;
6753 if (AT_class (at) == dw_val_class_die_ref)
6755 dw_die_ref target_die = AT_ref (at);
6757 /* For pointer and reference types, we checksum only the (qualified)
6758 name of the target type (if there is a name). For friend entries,
6759 we checksum only the (qualified) name of the target type or function.
6760 This allows the checksum to remain the same whether the target type
6761 is complete or not. */
6762 if ((at->dw_attr == DW_AT_type
6763 && (tag == DW_TAG_pointer_type
6764 || tag == DW_TAG_reference_type
6765 || tag == DW_TAG_rvalue_reference_type
6766 || tag == DW_TAG_ptr_to_member_type))
6767 || (at->dw_attr == DW_AT_friend
6768 && tag == DW_TAG_friend))
6770 dw_attr_node *name_attr = get_AT (target_die, DW_AT_name);
6772 if (name_attr != NULL)
6774 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6776 if (decl == NULL)
6777 decl = target_die;
6778 CHECKSUM_ULEB128 ('N');
6779 CHECKSUM_ULEB128 (at->dw_attr);
6780 if (decl->die_parent != NULL)
6781 checksum_die_context (decl->die_parent, ctx);
6782 CHECKSUM_ULEB128 ('E');
6783 CHECKSUM_STRING (AT_string (name_attr));
6784 return;
6788 /* For all other references to another DIE, we check to see if the
6789 target DIE has already been visited. If it has, we emit a
6790 backward reference; if not, we descend recursively. */
6791 if (target_die->die_mark > 0)
6793 CHECKSUM_ULEB128 ('R');
6794 CHECKSUM_ULEB128 (at->dw_attr);
6795 CHECKSUM_ULEB128 (target_die->die_mark);
6797 else
6799 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6801 if (decl == NULL)
6802 decl = target_die;
6803 target_die->die_mark = ++(*mark);
6804 CHECKSUM_ULEB128 ('T');
6805 CHECKSUM_ULEB128 (at->dw_attr);
6806 if (decl->die_parent != NULL)
6807 checksum_die_context (decl->die_parent, ctx);
6808 die_checksum_ordered (target_die, ctx, mark);
6810 return;
6813 CHECKSUM_ULEB128 ('A');
6814 CHECKSUM_ULEB128 (at->dw_attr);
6816 switch (AT_class (at))
6818 case dw_val_class_const:
6819 case dw_val_class_const_implicit:
6820 CHECKSUM_ULEB128 (DW_FORM_sdata);
6821 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
6822 break;
6824 case dw_val_class_unsigned_const:
6825 case dw_val_class_unsigned_const_implicit:
6826 CHECKSUM_ULEB128 (DW_FORM_sdata);
6827 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
6828 break;
6830 case dw_val_class_const_double:
6831 CHECKSUM_ULEB128 (DW_FORM_block);
6832 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
6833 CHECKSUM (at->dw_attr_val.v.val_double);
6834 break;
6836 case dw_val_class_wide_int:
6837 CHECKSUM_ULEB128 (DW_FORM_block);
6838 CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide)
6839 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
6840 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6841 get_full_len (*at->dw_attr_val.v.val_wide)
6842 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6843 break;
6845 case dw_val_class_vec:
6846 CHECKSUM_ULEB128 (DW_FORM_block);
6847 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length
6848 * at->dw_attr_val.v.val_vec.elt_size);
6849 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6850 (at->dw_attr_val.v.val_vec.length
6851 * at->dw_attr_val.v.val_vec.elt_size));
6852 break;
6854 case dw_val_class_flag:
6855 CHECKSUM_ULEB128 (DW_FORM_flag);
6856 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
6857 break;
6859 case dw_val_class_str:
6860 CHECKSUM_ULEB128 (DW_FORM_string);
6861 CHECKSUM_STRING (AT_string (at));
6862 break;
6864 case dw_val_class_addr:
6865 r = AT_addr (at);
6866 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6867 CHECKSUM_ULEB128 (DW_FORM_string);
6868 CHECKSUM_STRING (XSTR (r, 0));
6869 break;
6871 case dw_val_class_offset:
6872 CHECKSUM_ULEB128 (DW_FORM_sdata);
6873 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
6874 break;
6876 case dw_val_class_loc:
6877 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6878 loc_checksum_ordered (loc, ctx);
6879 break;
6881 case dw_val_class_fde_ref:
6882 case dw_val_class_lbl_id:
6883 case dw_val_class_lineptr:
6884 case dw_val_class_macptr:
6885 case dw_val_class_loclistsptr:
6886 case dw_val_class_high_pc:
6887 break;
6889 case dw_val_class_file:
6890 case dw_val_class_file_implicit:
6891 CHECKSUM_ULEB128 (DW_FORM_string);
6892 CHECKSUM_STRING (AT_file (at)->filename);
6893 break;
6895 case dw_val_class_data8:
6896 CHECKSUM (at->dw_attr_val.v.val_data8);
6897 break;
6899 default:
6900 break;
6904 struct checksum_attributes
6906 dw_attr_node *at_name;
6907 dw_attr_node *at_type;
6908 dw_attr_node *at_friend;
6909 dw_attr_node *at_accessibility;
6910 dw_attr_node *at_address_class;
6911 dw_attr_node *at_alignment;
6912 dw_attr_node *at_allocated;
6913 dw_attr_node *at_artificial;
6914 dw_attr_node *at_associated;
6915 dw_attr_node *at_binary_scale;
6916 dw_attr_node *at_bit_offset;
6917 dw_attr_node *at_bit_size;
6918 dw_attr_node *at_bit_stride;
6919 dw_attr_node *at_byte_size;
6920 dw_attr_node *at_byte_stride;
6921 dw_attr_node *at_const_value;
6922 dw_attr_node *at_containing_type;
6923 dw_attr_node *at_count;
6924 dw_attr_node *at_data_location;
6925 dw_attr_node *at_data_member_location;
6926 dw_attr_node *at_decimal_scale;
6927 dw_attr_node *at_decimal_sign;
6928 dw_attr_node *at_default_value;
6929 dw_attr_node *at_digit_count;
6930 dw_attr_node *at_discr;
6931 dw_attr_node *at_discr_list;
6932 dw_attr_node *at_discr_value;
6933 dw_attr_node *at_encoding;
6934 dw_attr_node *at_endianity;
6935 dw_attr_node *at_explicit;
6936 dw_attr_node *at_is_optional;
6937 dw_attr_node *at_location;
6938 dw_attr_node *at_lower_bound;
6939 dw_attr_node *at_mutable;
6940 dw_attr_node *at_ordering;
6941 dw_attr_node *at_picture_string;
6942 dw_attr_node *at_prototyped;
6943 dw_attr_node *at_small;
6944 dw_attr_node *at_segment;
6945 dw_attr_node *at_string_length;
6946 dw_attr_node *at_string_length_bit_size;
6947 dw_attr_node *at_string_length_byte_size;
6948 dw_attr_node *at_threads_scaled;
6949 dw_attr_node *at_upper_bound;
6950 dw_attr_node *at_use_location;
6951 dw_attr_node *at_use_UTF8;
6952 dw_attr_node *at_variable_parameter;
6953 dw_attr_node *at_virtuality;
6954 dw_attr_node *at_visibility;
6955 dw_attr_node *at_vtable_elem_location;
6958 /* Collect the attributes that we will want to use for the checksum. */
6960 static void
6961 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
6963 dw_attr_node *a;
6964 unsigned ix;
6966 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6968 switch (a->dw_attr)
6970 case DW_AT_name:
6971 attrs->at_name = a;
6972 break;
6973 case DW_AT_type:
6974 attrs->at_type = a;
6975 break;
6976 case DW_AT_friend:
6977 attrs->at_friend = a;
6978 break;
6979 case DW_AT_accessibility:
6980 attrs->at_accessibility = a;
6981 break;
6982 case DW_AT_address_class:
6983 attrs->at_address_class = a;
6984 break;
6985 case DW_AT_alignment:
6986 attrs->at_alignment = a;
6987 break;
6988 case DW_AT_allocated:
6989 attrs->at_allocated = a;
6990 break;
6991 case DW_AT_artificial:
6992 attrs->at_artificial = a;
6993 break;
6994 case DW_AT_associated:
6995 attrs->at_associated = a;
6996 break;
6997 case DW_AT_binary_scale:
6998 attrs->at_binary_scale = a;
6999 break;
7000 case DW_AT_bit_offset:
7001 attrs->at_bit_offset = a;
7002 break;
7003 case DW_AT_bit_size:
7004 attrs->at_bit_size = a;
7005 break;
7006 case DW_AT_bit_stride:
7007 attrs->at_bit_stride = a;
7008 break;
7009 case DW_AT_byte_size:
7010 attrs->at_byte_size = a;
7011 break;
7012 case DW_AT_byte_stride:
7013 attrs->at_byte_stride = a;
7014 break;
7015 case DW_AT_const_value:
7016 attrs->at_const_value = a;
7017 break;
7018 case DW_AT_containing_type:
7019 attrs->at_containing_type = a;
7020 break;
7021 case DW_AT_count:
7022 attrs->at_count = a;
7023 break;
7024 case DW_AT_data_location:
7025 attrs->at_data_location = a;
7026 break;
7027 case DW_AT_data_member_location:
7028 attrs->at_data_member_location = a;
7029 break;
7030 case DW_AT_decimal_scale:
7031 attrs->at_decimal_scale = a;
7032 break;
7033 case DW_AT_decimal_sign:
7034 attrs->at_decimal_sign = a;
7035 break;
7036 case DW_AT_default_value:
7037 attrs->at_default_value = a;
7038 break;
7039 case DW_AT_digit_count:
7040 attrs->at_digit_count = a;
7041 break;
7042 case DW_AT_discr:
7043 attrs->at_discr = a;
7044 break;
7045 case DW_AT_discr_list:
7046 attrs->at_discr_list = a;
7047 break;
7048 case DW_AT_discr_value:
7049 attrs->at_discr_value = a;
7050 break;
7051 case DW_AT_encoding:
7052 attrs->at_encoding = a;
7053 break;
7054 case DW_AT_endianity:
7055 attrs->at_endianity = a;
7056 break;
7057 case DW_AT_explicit:
7058 attrs->at_explicit = a;
7059 break;
7060 case DW_AT_is_optional:
7061 attrs->at_is_optional = a;
7062 break;
7063 case DW_AT_location:
7064 attrs->at_location = a;
7065 break;
7066 case DW_AT_lower_bound:
7067 attrs->at_lower_bound = a;
7068 break;
7069 case DW_AT_mutable:
7070 attrs->at_mutable = a;
7071 break;
7072 case DW_AT_ordering:
7073 attrs->at_ordering = a;
7074 break;
7075 case DW_AT_picture_string:
7076 attrs->at_picture_string = a;
7077 break;
7078 case DW_AT_prototyped:
7079 attrs->at_prototyped = a;
7080 break;
7081 case DW_AT_small:
7082 attrs->at_small = a;
7083 break;
7084 case DW_AT_segment:
7085 attrs->at_segment = a;
7086 break;
7087 case DW_AT_string_length:
7088 attrs->at_string_length = a;
7089 break;
7090 case DW_AT_string_length_bit_size:
7091 attrs->at_string_length_bit_size = a;
7092 break;
7093 case DW_AT_string_length_byte_size:
7094 attrs->at_string_length_byte_size = a;
7095 break;
7096 case DW_AT_threads_scaled:
7097 attrs->at_threads_scaled = a;
7098 break;
7099 case DW_AT_upper_bound:
7100 attrs->at_upper_bound = a;
7101 break;
7102 case DW_AT_use_location:
7103 attrs->at_use_location = a;
7104 break;
7105 case DW_AT_use_UTF8:
7106 attrs->at_use_UTF8 = a;
7107 break;
7108 case DW_AT_variable_parameter:
7109 attrs->at_variable_parameter = a;
7110 break;
7111 case DW_AT_virtuality:
7112 attrs->at_virtuality = a;
7113 break;
7114 case DW_AT_visibility:
7115 attrs->at_visibility = a;
7116 break;
7117 case DW_AT_vtable_elem_location:
7118 attrs->at_vtable_elem_location = a;
7119 break;
7120 default:
7121 break;
7126 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
7128 static void
7129 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
7131 dw_die_ref c;
7132 dw_die_ref decl;
7133 struct checksum_attributes attrs;
7135 CHECKSUM_ULEB128 ('D');
7136 CHECKSUM_ULEB128 (die->die_tag);
7138 memset (&attrs, 0, sizeof (attrs));
7140 decl = get_AT_ref (die, DW_AT_specification);
7141 if (decl != NULL)
7142 collect_checksum_attributes (&attrs, decl);
7143 collect_checksum_attributes (&attrs, die);
7145 CHECKSUM_ATTR (attrs.at_name);
7146 CHECKSUM_ATTR (attrs.at_accessibility);
7147 CHECKSUM_ATTR (attrs.at_address_class);
7148 CHECKSUM_ATTR (attrs.at_allocated);
7149 CHECKSUM_ATTR (attrs.at_artificial);
7150 CHECKSUM_ATTR (attrs.at_associated);
7151 CHECKSUM_ATTR (attrs.at_binary_scale);
7152 CHECKSUM_ATTR (attrs.at_bit_offset);
7153 CHECKSUM_ATTR (attrs.at_bit_size);
7154 CHECKSUM_ATTR (attrs.at_bit_stride);
7155 CHECKSUM_ATTR (attrs.at_byte_size);
7156 CHECKSUM_ATTR (attrs.at_byte_stride);
7157 CHECKSUM_ATTR (attrs.at_const_value);
7158 CHECKSUM_ATTR (attrs.at_containing_type);
7159 CHECKSUM_ATTR (attrs.at_count);
7160 CHECKSUM_ATTR (attrs.at_data_location);
7161 CHECKSUM_ATTR (attrs.at_data_member_location);
7162 CHECKSUM_ATTR (attrs.at_decimal_scale);
7163 CHECKSUM_ATTR (attrs.at_decimal_sign);
7164 CHECKSUM_ATTR (attrs.at_default_value);
7165 CHECKSUM_ATTR (attrs.at_digit_count);
7166 CHECKSUM_ATTR (attrs.at_discr);
7167 CHECKSUM_ATTR (attrs.at_discr_list);
7168 CHECKSUM_ATTR (attrs.at_discr_value);
7169 CHECKSUM_ATTR (attrs.at_encoding);
7170 CHECKSUM_ATTR (attrs.at_endianity);
7171 CHECKSUM_ATTR (attrs.at_explicit);
7172 CHECKSUM_ATTR (attrs.at_is_optional);
7173 CHECKSUM_ATTR (attrs.at_location);
7174 CHECKSUM_ATTR (attrs.at_lower_bound);
7175 CHECKSUM_ATTR (attrs.at_mutable);
7176 CHECKSUM_ATTR (attrs.at_ordering);
7177 CHECKSUM_ATTR (attrs.at_picture_string);
7178 CHECKSUM_ATTR (attrs.at_prototyped);
7179 CHECKSUM_ATTR (attrs.at_small);
7180 CHECKSUM_ATTR (attrs.at_segment);
7181 CHECKSUM_ATTR (attrs.at_string_length);
7182 CHECKSUM_ATTR (attrs.at_string_length_bit_size);
7183 CHECKSUM_ATTR (attrs.at_string_length_byte_size);
7184 CHECKSUM_ATTR (attrs.at_threads_scaled);
7185 CHECKSUM_ATTR (attrs.at_upper_bound);
7186 CHECKSUM_ATTR (attrs.at_use_location);
7187 CHECKSUM_ATTR (attrs.at_use_UTF8);
7188 CHECKSUM_ATTR (attrs.at_variable_parameter);
7189 CHECKSUM_ATTR (attrs.at_virtuality);
7190 CHECKSUM_ATTR (attrs.at_visibility);
7191 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
7192 CHECKSUM_ATTR (attrs.at_type);
7193 CHECKSUM_ATTR (attrs.at_friend);
7194 CHECKSUM_ATTR (attrs.at_alignment);
7196 /* Checksum the child DIEs. */
7197 c = die->die_child;
7198 if (c) do {
7199 dw_attr_node *name_attr;
7201 c = c->die_sib;
7202 name_attr = get_AT (c, DW_AT_name);
7203 if (is_template_instantiation (c))
7205 /* Ignore instantiations of member type and function templates. */
7207 else if (name_attr != NULL
7208 && (is_type_die (c) || c->die_tag == DW_TAG_subprogram))
7210 /* Use a shallow checksum for named nested types and member
7211 functions. */
7212 CHECKSUM_ULEB128 ('S');
7213 CHECKSUM_ULEB128 (c->die_tag);
7214 CHECKSUM_STRING (AT_string (name_attr));
7216 else
7218 /* Use a deep checksum for other children. */
7219 /* Mark this DIE so it gets processed when unmarking. */
7220 if (c->die_mark == 0)
7221 c->die_mark = -1;
7222 die_checksum_ordered (c, ctx, mark);
7224 } while (c != die->die_child);
7226 CHECKSUM_ULEB128 (0);
7229 /* Add a type name and tag to a hash. */
7230 static void
7231 die_odr_checksum (int tag, const char *name, md5_ctx *ctx)
7233 CHECKSUM_ULEB128 (tag);
7234 CHECKSUM_STRING (name);
7237 #undef CHECKSUM
7238 #undef CHECKSUM_STRING
7239 #undef CHECKSUM_ATTR
7240 #undef CHECKSUM_LEB128
7241 #undef CHECKSUM_ULEB128
7243 /* Generate the type signature for DIE. This is computed by generating an
7244 MD5 checksum over the DIE's tag, its relevant attributes, and its
7245 children. Attributes that are references to other DIEs are processed
7246 by recursion, using the MARK field to prevent infinite recursion.
7247 If the DIE is nested inside a namespace or another type, we also
7248 need to include that context in the signature. The lower 64 bits
7249 of the resulting MD5 checksum comprise the signature. */
7251 static void
7252 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
7254 int mark;
7255 const char *name;
7256 unsigned char checksum[16];
7257 struct md5_ctx ctx;
7258 dw_die_ref decl;
7259 dw_die_ref parent;
7261 name = get_AT_string (die, DW_AT_name);
7262 decl = get_AT_ref (die, DW_AT_specification);
7263 parent = get_die_parent (die);
7265 /* First, compute a signature for just the type name (and its surrounding
7266 context, if any. This is stored in the type unit DIE for link-time
7267 ODR (one-definition rule) checking. */
7269 if (is_cxx () && name != NULL)
7271 md5_init_ctx (&ctx);
7273 /* Checksum the names of surrounding namespaces and structures. */
7274 if (parent != NULL)
7275 checksum_die_context (parent, &ctx);
7277 /* Checksum the current DIE. */
7278 die_odr_checksum (die->die_tag, name, &ctx);
7279 md5_finish_ctx (&ctx, checksum);
7281 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
7284 /* Next, compute the complete type signature. */
7286 md5_init_ctx (&ctx);
7287 mark = 1;
7288 die->die_mark = mark;
7290 /* Checksum the names of surrounding namespaces and structures. */
7291 if (parent != NULL)
7292 checksum_die_context (parent, &ctx);
7294 /* Checksum the DIE and its children. */
7295 die_checksum_ordered (die, &ctx, &mark);
7296 unmark_all_dies (die);
7297 md5_finish_ctx (&ctx, checksum);
7299 /* Store the signature in the type node and link the type DIE and the
7300 type node together. */
7301 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
7302 DWARF_TYPE_SIGNATURE_SIZE);
7303 die->comdat_type_p = true;
7304 die->die_id.die_type_node = type_node;
7305 type_node->type_die = die;
7307 /* If the DIE is a specification, link its declaration to the type node
7308 as well. */
7309 if (decl != NULL)
7311 decl->comdat_type_p = true;
7312 decl->die_id.die_type_node = type_node;
7316 /* Do the location expressions look same? */
7317 static inline int
7318 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
7320 return loc1->dw_loc_opc == loc2->dw_loc_opc
7321 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
7322 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
7325 /* Do the values look the same? */
7326 static int
7327 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
7329 dw_loc_descr_ref loc1, loc2;
7330 rtx r1, r2;
7332 if (v1->val_class != v2->val_class)
7333 return 0;
7335 switch (v1->val_class)
7337 case dw_val_class_const:
7338 case dw_val_class_const_implicit:
7339 return v1->v.val_int == v2->v.val_int;
7340 case dw_val_class_unsigned_const:
7341 case dw_val_class_unsigned_const_implicit:
7342 return v1->v.val_unsigned == v2->v.val_unsigned;
7343 case dw_val_class_const_double:
7344 return v1->v.val_double.high == v2->v.val_double.high
7345 && v1->v.val_double.low == v2->v.val_double.low;
7346 case dw_val_class_wide_int:
7347 return *v1->v.val_wide == *v2->v.val_wide;
7348 case dw_val_class_vec:
7349 if (v1->v.val_vec.length != v2->v.val_vec.length
7350 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
7351 return 0;
7352 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
7353 v1->v.val_vec.length * v1->v.val_vec.elt_size))
7354 return 0;
7355 return 1;
7356 case dw_val_class_flag:
7357 return v1->v.val_flag == v2->v.val_flag;
7358 case dw_val_class_str:
7359 return !strcmp (v1->v.val_str->str, v2->v.val_str->str);
7361 case dw_val_class_addr:
7362 r1 = v1->v.val_addr;
7363 r2 = v2->v.val_addr;
7364 if (GET_CODE (r1) != GET_CODE (r2))
7365 return 0;
7366 return !rtx_equal_p (r1, r2);
7368 case dw_val_class_offset:
7369 return v1->v.val_offset == v2->v.val_offset;
7371 case dw_val_class_loc:
7372 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
7373 loc1 && loc2;
7374 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
7375 if (!same_loc_p (loc1, loc2, mark))
7376 return 0;
7377 return !loc1 && !loc2;
7379 case dw_val_class_die_ref:
7380 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
7382 case dw_val_class_fde_ref:
7383 case dw_val_class_vms_delta:
7384 case dw_val_class_lbl_id:
7385 case dw_val_class_lineptr:
7386 case dw_val_class_macptr:
7387 case dw_val_class_loclistsptr:
7388 case dw_val_class_high_pc:
7389 return 1;
7391 case dw_val_class_file:
7392 case dw_val_class_file_implicit:
7393 return v1->v.val_file == v2->v.val_file;
7395 case dw_val_class_data8:
7396 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
7398 default:
7399 return 1;
7403 /* Do the attributes look the same? */
7405 static int
7406 same_attr_p (dw_attr_node *at1, dw_attr_node *at2, int *mark)
7408 if (at1->dw_attr != at2->dw_attr)
7409 return 0;
7411 /* We don't care that this was compiled with a different compiler
7412 snapshot; if the output is the same, that's what matters. */
7413 if (at1->dw_attr == DW_AT_producer)
7414 return 1;
7416 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
7419 /* Do the dies look the same? */
7421 static int
7422 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
7424 dw_die_ref c1, c2;
7425 dw_attr_node *a1;
7426 unsigned ix;
7428 /* To avoid infinite recursion. */
7429 if (die1->die_mark)
7430 return die1->die_mark == die2->die_mark;
7431 die1->die_mark = die2->die_mark = ++(*mark);
7433 if (die1->die_tag != die2->die_tag)
7434 return 0;
7436 if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr))
7437 return 0;
7439 FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1)
7440 if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark))
7441 return 0;
7443 c1 = die1->die_child;
7444 c2 = die2->die_child;
7445 if (! c1)
7447 if (c2)
7448 return 0;
7450 else
7451 for (;;)
7453 if (!same_die_p (c1, c2, mark))
7454 return 0;
7455 c1 = c1->die_sib;
7456 c2 = c2->die_sib;
7457 if (c1 == die1->die_child)
7459 if (c2 == die2->die_child)
7460 break;
7461 else
7462 return 0;
7466 return 1;
7469 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
7470 children, and set die_symbol. */
7472 static void
7473 compute_comp_unit_symbol (dw_die_ref unit_die)
7475 const char *die_name = get_AT_string (unit_die, DW_AT_name);
7476 const char *base = die_name ? lbasename (die_name) : "anonymous";
7477 char *name = XALLOCAVEC (char, strlen (base) + 64);
7478 char *p;
7479 int i, mark;
7480 unsigned char checksum[16];
7481 struct md5_ctx ctx;
7483 /* Compute the checksum of the DIE, then append part of it as hex digits to
7484 the name filename of the unit. */
7486 md5_init_ctx (&ctx);
7487 mark = 0;
7488 die_checksum (unit_die, &ctx, &mark);
7489 unmark_all_dies (unit_die);
7490 md5_finish_ctx (&ctx, checksum);
7492 /* When we this for comp_unit_die () we have a DW_AT_name that might
7493 not start with a letter but with anything valid for filenames and
7494 clean_symbol_name doesn't fix that up. Prepend 'g' if the first
7495 character is not a letter. */
7496 sprintf (name, "%s%s.", ISALPHA (*base) ? "" : "g", base);
7497 clean_symbol_name (name);
7499 p = name + strlen (name);
7500 for (i = 0; i < 4; i++)
7502 sprintf (p, "%.2x", checksum[i]);
7503 p += 2;
7506 unit_die->die_id.die_symbol = xstrdup (name);
7509 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
7511 static int
7512 is_type_die (dw_die_ref die)
7514 switch (die->die_tag)
7516 case DW_TAG_array_type:
7517 case DW_TAG_class_type:
7518 case DW_TAG_interface_type:
7519 case DW_TAG_enumeration_type:
7520 case DW_TAG_pointer_type:
7521 case DW_TAG_reference_type:
7522 case DW_TAG_rvalue_reference_type:
7523 case DW_TAG_string_type:
7524 case DW_TAG_structure_type:
7525 case DW_TAG_subroutine_type:
7526 case DW_TAG_union_type:
7527 case DW_TAG_ptr_to_member_type:
7528 case DW_TAG_set_type:
7529 case DW_TAG_subrange_type:
7530 case DW_TAG_base_type:
7531 case DW_TAG_const_type:
7532 case DW_TAG_file_type:
7533 case DW_TAG_packed_type:
7534 case DW_TAG_volatile_type:
7535 case DW_TAG_typedef:
7536 return 1;
7537 default:
7538 return 0;
7542 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
7543 Basically, we want to choose the bits that are likely to be shared between
7544 compilations (types) and leave out the bits that are specific to individual
7545 compilations (functions). */
7547 static int
7548 is_comdat_die (dw_die_ref c)
7550 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
7551 we do for stabs. The advantage is a greater likelihood of sharing between
7552 objects that don't include headers in the same order (and therefore would
7553 put the base types in a different comdat). jason 8/28/00 */
7555 if (c->die_tag == DW_TAG_base_type)
7556 return 0;
7558 if (c->die_tag == DW_TAG_pointer_type
7559 || c->die_tag == DW_TAG_reference_type
7560 || c->die_tag == DW_TAG_rvalue_reference_type
7561 || c->die_tag == DW_TAG_const_type
7562 || c->die_tag == DW_TAG_volatile_type)
7564 dw_die_ref t = get_AT_ref (c, DW_AT_type);
7566 return t ? is_comdat_die (t) : 0;
7569 return is_type_die (c);
7572 /* Returns true iff C is a compile-unit DIE. */
7574 static inline bool
7575 is_cu_die (dw_die_ref c)
7577 return c && (c->die_tag == DW_TAG_compile_unit
7578 || c->die_tag == DW_TAG_skeleton_unit);
7581 /* Returns true iff C is a unit DIE of some sort. */
7583 static inline bool
7584 is_unit_die (dw_die_ref c)
7586 return c && (c->die_tag == DW_TAG_compile_unit
7587 || c->die_tag == DW_TAG_partial_unit
7588 || c->die_tag == DW_TAG_type_unit
7589 || c->die_tag == DW_TAG_skeleton_unit);
7592 /* Returns true iff C is a namespace DIE. */
7594 static inline bool
7595 is_namespace_die (dw_die_ref c)
7597 return c && c->die_tag == DW_TAG_namespace;
7600 /* Returns true iff C is a class or structure DIE. */
7602 static inline bool
7603 is_class_die (dw_die_ref c)
7605 return c && (c->die_tag == DW_TAG_class_type
7606 || c->die_tag == DW_TAG_structure_type);
7609 /* Return non-zero if this DIE is a template parameter. */
7611 static inline bool
7612 is_template_parameter (dw_die_ref die)
7614 switch (die->die_tag)
7616 case DW_TAG_template_type_param:
7617 case DW_TAG_template_value_param:
7618 case DW_TAG_GNU_template_template_param:
7619 case DW_TAG_GNU_template_parameter_pack:
7620 return true;
7621 default:
7622 return false;
7626 /* Return non-zero if this DIE represents a template instantiation. */
7628 static inline bool
7629 is_template_instantiation (dw_die_ref die)
7631 dw_die_ref c;
7633 if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram)
7634 return false;
7635 FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true);
7636 return false;
7639 static char *
7640 gen_internal_sym (const char *prefix)
7642 char buf[MAX_ARTIFICIAL_LABEL_BYTES];
7644 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
7645 return xstrdup (buf);
7648 /* Return non-zero if this DIE is a declaration. */
7650 static int
7651 is_declaration_die (dw_die_ref die)
7653 dw_attr_node *a;
7654 unsigned ix;
7656 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7657 if (a->dw_attr == DW_AT_declaration)
7658 return 1;
7660 return 0;
7663 /* Return non-zero if this DIE is nested inside a subprogram. */
7665 static int
7666 is_nested_in_subprogram (dw_die_ref die)
7668 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
7670 if (decl == NULL)
7671 decl = die;
7672 return local_scope_p (decl);
7675 /* Return non-zero if this DIE contains a defining declaration of a
7676 subprogram. */
7678 static int
7679 contains_subprogram_definition (dw_die_ref die)
7681 dw_die_ref c;
7683 if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
7684 return 1;
7685 FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1);
7686 return 0;
7689 /* Return non-zero if this is a type DIE that should be moved to a
7690 COMDAT .debug_types section or .debug_info section with DW_UT_*type
7691 unit type. */
7693 static int
7694 should_move_die_to_comdat (dw_die_ref die)
7696 switch (die->die_tag)
7698 case DW_TAG_class_type:
7699 case DW_TAG_structure_type:
7700 case DW_TAG_enumeration_type:
7701 case DW_TAG_union_type:
7702 /* Don't move declarations, inlined instances, types nested in a
7703 subprogram, or types that contain subprogram definitions. */
7704 if (is_declaration_die (die)
7705 || get_AT (die, DW_AT_abstract_origin)
7706 || is_nested_in_subprogram (die)
7707 || contains_subprogram_definition (die))
7708 return 0;
7709 return 1;
7710 case DW_TAG_array_type:
7711 case DW_TAG_interface_type:
7712 case DW_TAG_pointer_type:
7713 case DW_TAG_reference_type:
7714 case DW_TAG_rvalue_reference_type:
7715 case DW_TAG_string_type:
7716 case DW_TAG_subroutine_type:
7717 case DW_TAG_ptr_to_member_type:
7718 case DW_TAG_set_type:
7719 case DW_TAG_subrange_type:
7720 case DW_TAG_base_type:
7721 case DW_TAG_const_type:
7722 case DW_TAG_file_type:
7723 case DW_TAG_packed_type:
7724 case DW_TAG_volatile_type:
7725 case DW_TAG_typedef:
7726 default:
7727 return 0;
7731 /* Make a clone of DIE. */
7733 static dw_die_ref
7734 clone_die (dw_die_ref die)
7736 dw_die_ref clone = new_die_raw (die->die_tag);
7737 dw_attr_node *a;
7738 unsigned ix;
7740 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7741 add_dwarf_attr (clone, a);
7743 return clone;
7746 /* Make a clone of the tree rooted at DIE. */
7748 static dw_die_ref
7749 clone_tree (dw_die_ref die)
7751 dw_die_ref c;
7752 dw_die_ref clone = clone_die (die);
7754 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c)));
7756 return clone;
7759 /* Make a clone of DIE as a declaration. */
7761 static dw_die_ref
7762 clone_as_declaration (dw_die_ref die)
7764 dw_die_ref clone;
7765 dw_die_ref decl;
7766 dw_attr_node *a;
7767 unsigned ix;
7769 /* If the DIE is already a declaration, just clone it. */
7770 if (is_declaration_die (die))
7771 return clone_die (die);
7773 /* If the DIE is a specification, just clone its declaration DIE. */
7774 decl = get_AT_ref (die, DW_AT_specification);
7775 if (decl != NULL)
7777 clone = clone_die (decl);
7778 if (die->comdat_type_p)
7779 add_AT_die_ref (clone, DW_AT_signature, die);
7780 return clone;
7783 clone = new_die_raw (die->die_tag);
7785 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7787 /* We don't want to copy over all attributes.
7788 For example we don't want DW_AT_byte_size because otherwise we will no
7789 longer have a declaration and GDB will treat it as a definition. */
7791 switch (a->dw_attr)
7793 case DW_AT_abstract_origin:
7794 case DW_AT_artificial:
7795 case DW_AT_containing_type:
7796 case DW_AT_external:
7797 case DW_AT_name:
7798 case DW_AT_type:
7799 case DW_AT_virtuality:
7800 case DW_AT_linkage_name:
7801 case DW_AT_MIPS_linkage_name:
7802 add_dwarf_attr (clone, a);
7803 break;
7804 case DW_AT_byte_size:
7805 case DW_AT_alignment:
7806 default:
7807 break;
7811 if (die->comdat_type_p)
7812 add_AT_die_ref (clone, DW_AT_signature, die);
7814 add_AT_flag (clone, DW_AT_declaration, 1);
7815 return clone;
7819 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7821 struct decl_table_entry
7823 dw_die_ref orig;
7824 dw_die_ref copy;
7827 /* Helpers to manipulate hash table of copied declarations. */
7829 /* Hashtable helpers. */
7831 struct decl_table_entry_hasher : free_ptr_hash <decl_table_entry>
7833 typedef die_struct *compare_type;
7834 static inline hashval_t hash (const decl_table_entry *);
7835 static inline bool equal (const decl_table_entry *, const die_struct *);
7838 inline hashval_t
7839 decl_table_entry_hasher::hash (const decl_table_entry *entry)
7841 return htab_hash_pointer (entry->orig);
7844 inline bool
7845 decl_table_entry_hasher::equal (const decl_table_entry *entry1,
7846 const die_struct *entry2)
7848 return entry1->orig == entry2;
7851 typedef hash_table<decl_table_entry_hasher> decl_hash_type;
7853 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7854 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7855 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7856 to check if the ancestor has already been copied into UNIT. */
7858 static dw_die_ref
7859 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die,
7860 decl_hash_type *decl_table)
7862 dw_die_ref parent = die->die_parent;
7863 dw_die_ref new_parent = unit;
7864 dw_die_ref copy;
7865 decl_table_entry **slot = NULL;
7866 struct decl_table_entry *entry = NULL;
7868 if (decl_table)
7870 /* Check if the entry has already been copied to UNIT. */
7871 slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die),
7872 INSERT);
7873 if (*slot != HTAB_EMPTY_ENTRY)
7875 entry = *slot;
7876 return entry->copy;
7879 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7880 entry = XCNEW (struct decl_table_entry);
7881 entry->orig = die;
7882 entry->copy = NULL;
7883 *slot = entry;
7886 if (parent != NULL)
7888 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
7889 if (spec != NULL)
7890 parent = spec;
7891 if (!is_unit_die (parent))
7892 new_parent = copy_ancestor_tree (unit, parent, decl_table);
7895 copy = clone_as_declaration (die);
7896 add_child_die (new_parent, copy);
7898 if (decl_table)
7900 /* Record the pointer to the copy. */
7901 entry->copy = copy;
7904 return copy;
7906 /* Copy the declaration context to the new type unit DIE. This includes
7907 any surrounding namespace or type declarations. If the DIE has an
7908 AT_specification attribute, it also includes attributes and children
7909 attached to the specification, and returns a pointer to the original
7910 parent of the declaration DIE. Returns NULL otherwise. */
7912 static dw_die_ref
7913 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
7915 dw_die_ref decl;
7916 dw_die_ref new_decl;
7917 dw_die_ref orig_parent = NULL;
7919 decl = get_AT_ref (die, DW_AT_specification);
7920 if (decl == NULL)
7921 decl = die;
7922 else
7924 unsigned ix;
7925 dw_die_ref c;
7926 dw_attr_node *a;
7928 /* The original DIE will be changed to a declaration, and must
7929 be moved to be a child of the original declaration DIE. */
7930 orig_parent = decl->die_parent;
7932 /* Copy the type node pointer from the new DIE to the original
7933 declaration DIE so we can forward references later. */
7934 decl->comdat_type_p = true;
7935 decl->die_id.die_type_node = die->die_id.die_type_node;
7937 remove_AT (die, DW_AT_specification);
7939 FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a)
7941 if (a->dw_attr != DW_AT_name
7942 && a->dw_attr != DW_AT_declaration
7943 && a->dw_attr != DW_AT_external)
7944 add_dwarf_attr (die, a);
7947 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c)));
7950 if (decl->die_parent != NULL
7951 && !is_unit_die (decl->die_parent))
7953 new_decl = copy_ancestor_tree (unit, decl, NULL);
7954 if (new_decl != NULL)
7956 remove_AT (new_decl, DW_AT_signature);
7957 add_AT_specification (die, new_decl);
7961 return orig_parent;
7964 /* Generate the skeleton ancestor tree for the given NODE, then clone
7965 the DIE and add the clone into the tree. */
7967 static void
7968 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
7970 if (node->new_die != NULL)
7971 return;
7973 node->new_die = clone_as_declaration (node->old_die);
7975 if (node->parent != NULL)
7977 generate_skeleton_ancestor_tree (node->parent);
7978 add_child_die (node->parent->new_die, node->new_die);
7982 /* Generate a skeleton tree of DIEs containing any declarations that are
7983 found in the original tree. We traverse the tree looking for declaration
7984 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7986 static void
7987 generate_skeleton_bottom_up (skeleton_chain_node *parent)
7989 skeleton_chain_node node;
7990 dw_die_ref c;
7991 dw_die_ref first;
7992 dw_die_ref prev = NULL;
7993 dw_die_ref next = NULL;
7995 node.parent = parent;
7997 first = c = parent->old_die->die_child;
7998 if (c)
7999 next = c->die_sib;
8000 if (c) do {
8001 if (prev == NULL || prev->die_sib == c)
8002 prev = c;
8003 c = next;
8004 next = (c == first ? NULL : c->die_sib);
8005 node.old_die = c;
8006 node.new_die = NULL;
8007 if (is_declaration_die (c))
8009 if (is_template_instantiation (c))
8011 /* Instantiated templates do not need to be cloned into the
8012 type unit. Just move the DIE and its children back to
8013 the skeleton tree (in the main CU). */
8014 remove_child_with_prev (c, prev);
8015 add_child_die (parent->new_die, c);
8016 c = prev;
8018 else if (c->comdat_type_p)
8020 /* This is the skeleton of earlier break_out_comdat_types
8021 type. Clone the existing DIE, but keep the children
8022 under the original (which is in the main CU). */
8023 dw_die_ref clone = clone_die (c);
8025 replace_child (c, clone, prev);
8026 generate_skeleton_ancestor_tree (parent);
8027 add_child_die (parent->new_die, c);
8028 c = clone;
8029 continue;
8031 else
8033 /* Clone the existing DIE, move the original to the skeleton
8034 tree (which is in the main CU), and put the clone, with
8035 all the original's children, where the original came from
8036 (which is about to be moved to the type unit). */
8037 dw_die_ref clone = clone_die (c);
8038 move_all_children (c, clone);
8040 /* If the original has a DW_AT_object_pointer attribute,
8041 it would now point to a child DIE just moved to the
8042 cloned tree, so we need to remove that attribute from
8043 the original. */
8044 remove_AT (c, DW_AT_object_pointer);
8046 replace_child (c, clone, prev);
8047 generate_skeleton_ancestor_tree (parent);
8048 add_child_die (parent->new_die, c);
8049 node.old_die = clone;
8050 node.new_die = c;
8051 c = clone;
8054 generate_skeleton_bottom_up (&node);
8055 } while (next != NULL);
8058 /* Wrapper function for generate_skeleton_bottom_up. */
8060 static dw_die_ref
8061 generate_skeleton (dw_die_ref die)
8063 skeleton_chain_node node;
8065 node.old_die = die;
8066 node.new_die = NULL;
8067 node.parent = NULL;
8069 /* If this type definition is nested inside another type,
8070 and is not an instantiation of a template, always leave
8071 at least a declaration in its place. */
8072 if (die->die_parent != NULL
8073 && is_type_die (die->die_parent)
8074 && !is_template_instantiation (die))
8075 node.new_die = clone_as_declaration (die);
8077 generate_skeleton_bottom_up (&node);
8078 return node.new_die;
8081 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
8082 declaration. The original DIE is moved to a new compile unit so that
8083 existing references to it follow it to the new location. If any of the
8084 original DIE's descendants is a declaration, we need to replace the
8085 original DIE with a skeleton tree and move the declarations back into the
8086 skeleton tree. */
8088 static dw_die_ref
8089 remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
8090 dw_die_ref prev)
8092 dw_die_ref skeleton, orig_parent;
8094 /* Copy the declaration context to the type unit DIE. If the returned
8095 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
8096 that DIE. */
8097 orig_parent = copy_declaration_context (unit, child);
8099 skeleton = generate_skeleton (child);
8100 if (skeleton == NULL)
8101 remove_child_with_prev (child, prev);
8102 else
8104 skeleton->comdat_type_p = true;
8105 skeleton->die_id.die_type_node = child->die_id.die_type_node;
8107 /* If the original DIE was a specification, we need to put
8108 the skeleton under the parent DIE of the declaration.
8109 This leaves the original declaration in the tree, but
8110 it will be pruned later since there are no longer any
8111 references to it. */
8112 if (orig_parent != NULL)
8114 remove_child_with_prev (child, prev);
8115 add_child_die (orig_parent, skeleton);
8117 else
8118 replace_child (child, skeleton, prev);
8121 return skeleton;
8124 static void
8125 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
8126 comdat_type_node *type_node,
8127 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs);
8129 /* Helper for copy_dwarf_procs_ref_in_dies. Make a copy of the DIE DWARF
8130 procedure, put it under TYPE_NODE and return the copy. Continue looking for
8131 DWARF procedure references in the DW_AT_location attribute. */
8133 static dw_die_ref
8134 copy_dwarf_procedure (dw_die_ref die,
8135 comdat_type_node *type_node,
8136 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
8138 gcc_assert (die->die_tag == DW_TAG_dwarf_procedure);
8140 /* DWARF procedures are not supposed to have children... */
8141 gcc_assert (die->die_child == NULL);
8143 /* ... and they are supposed to have only one attribute: DW_AT_location. */
8144 gcc_assert (vec_safe_length (die->die_attr) == 1
8145 && ((*die->die_attr)[0].dw_attr == DW_AT_location));
8147 /* Do not copy more than once DWARF procedures. */
8148 bool existed;
8149 dw_die_ref &die_copy = copied_dwarf_procs.get_or_insert (die, &existed);
8150 if (existed)
8151 return die_copy;
8153 die_copy = clone_die (die);
8154 add_child_die (type_node->root_die, die_copy);
8155 copy_dwarf_procs_ref_in_attrs (die_copy, type_node, copied_dwarf_procs);
8156 return die_copy;
8159 /* Helper for copy_dwarf_procs_ref_in_dies. Look for references to DWARF
8160 procedures in DIE's attributes. */
8162 static void
8163 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
8164 comdat_type_node *type_node,
8165 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
8167 dw_attr_node *a;
8168 unsigned i;
8170 FOR_EACH_VEC_SAFE_ELT (die->die_attr, i, a)
8172 dw_loc_descr_ref loc;
8174 if (a->dw_attr_val.val_class != dw_val_class_loc)
8175 continue;
8177 for (loc = a->dw_attr_val.v.val_loc; loc != NULL; loc = loc->dw_loc_next)
8179 switch (loc->dw_loc_opc)
8181 case DW_OP_call2:
8182 case DW_OP_call4:
8183 case DW_OP_call_ref:
8184 gcc_assert (loc->dw_loc_oprnd1.val_class
8185 == dw_val_class_die_ref);
8186 loc->dw_loc_oprnd1.v.val_die_ref.die
8187 = copy_dwarf_procedure (loc->dw_loc_oprnd1.v.val_die_ref.die,
8188 type_node,
8189 copied_dwarf_procs);
8191 default:
8192 break;
8198 /* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and
8199 rewrite references to point to the copies.
8201 References are looked for in DIE's attributes and recursively in all its
8202 children attributes that are location descriptions. COPIED_DWARF_PROCS is a
8203 mapping from old DWARF procedures to their copy. It is used not to copy
8204 twice the same DWARF procedure under TYPE_NODE. */
8206 static void
8207 copy_dwarf_procs_ref_in_dies (dw_die_ref die,
8208 comdat_type_node *type_node,
8209 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
8211 dw_die_ref c;
8213 copy_dwarf_procs_ref_in_attrs (die, type_node, copied_dwarf_procs);
8214 FOR_EACH_CHILD (die, c, copy_dwarf_procs_ref_in_dies (c,
8215 type_node,
8216 copied_dwarf_procs));
8219 /* Traverse the DIE and set up additional .debug_types or .debug_info
8220 DW_UT_*type sections for each type worthy of being placed in a COMDAT
8221 section. */
8223 static void
8224 break_out_comdat_types (dw_die_ref die)
8226 dw_die_ref c;
8227 dw_die_ref first;
8228 dw_die_ref prev = NULL;
8229 dw_die_ref next = NULL;
8230 dw_die_ref unit = NULL;
8232 first = c = die->die_child;
8233 if (c)
8234 next = c->die_sib;
8235 if (c) do {
8236 if (prev == NULL || prev->die_sib == c)
8237 prev = c;
8238 c = next;
8239 next = (c == first ? NULL : c->die_sib);
8240 if (should_move_die_to_comdat (c))
8242 dw_die_ref replacement;
8243 comdat_type_node *type_node;
8245 /* Break out nested types into their own type units. */
8246 break_out_comdat_types (c);
8248 /* Create a new type unit DIE as the root for the new tree, and
8249 add it to the list of comdat types. */
8250 unit = new_die (DW_TAG_type_unit, NULL, NULL);
8251 add_AT_unsigned (unit, DW_AT_language,
8252 get_AT_unsigned (comp_unit_die (), DW_AT_language));
8253 type_node = ggc_cleared_alloc<comdat_type_node> ();
8254 type_node->root_die = unit;
8255 type_node->next = comdat_type_list;
8256 comdat_type_list = type_node;
8258 /* Generate the type signature. */
8259 generate_type_signature (c, type_node);
8261 /* Copy the declaration context, attributes, and children of the
8262 declaration into the new type unit DIE, then remove this DIE
8263 from the main CU (or replace it with a skeleton if necessary). */
8264 replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
8265 type_node->skeleton_die = replacement;
8267 /* Add the DIE to the new compunit. */
8268 add_child_die (unit, c);
8270 /* Types can reference DWARF procedures for type size or data location
8271 expressions. Calls in DWARF expressions cannot target procedures
8272 that are not in the same section. So we must copy DWARF procedures
8273 along with this type and then rewrite references to them. */
8274 hash_map<dw_die_ref, dw_die_ref> copied_dwarf_procs;
8275 copy_dwarf_procs_ref_in_dies (c, type_node, copied_dwarf_procs);
8277 if (replacement != NULL)
8278 c = replacement;
8280 else if (c->die_tag == DW_TAG_namespace
8281 || c->die_tag == DW_TAG_class_type
8282 || c->die_tag == DW_TAG_structure_type
8283 || c->die_tag == DW_TAG_union_type)
8285 /* Look for nested types that can be broken out. */
8286 break_out_comdat_types (c);
8288 } while (next != NULL);
8291 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
8292 Enter all the cloned children into the hash table decl_table. */
8294 static dw_die_ref
8295 clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table)
8297 dw_die_ref c;
8298 dw_die_ref clone;
8299 struct decl_table_entry *entry;
8300 decl_table_entry **slot;
8302 if (die->die_tag == DW_TAG_subprogram)
8303 clone = clone_as_declaration (die);
8304 else
8305 clone = clone_die (die);
8307 slot = decl_table->find_slot_with_hash (die,
8308 htab_hash_pointer (die), INSERT);
8310 /* Assert that DIE isn't in the hash table yet. If it would be there
8311 before, the ancestors would be necessarily there as well, therefore
8312 clone_tree_partial wouldn't be called. */
8313 gcc_assert (*slot == HTAB_EMPTY_ENTRY);
8315 entry = XCNEW (struct decl_table_entry);
8316 entry->orig = die;
8317 entry->copy = clone;
8318 *slot = entry;
8320 if (die->die_tag != DW_TAG_subprogram)
8321 FOR_EACH_CHILD (die, c,
8322 add_child_die (clone, clone_tree_partial (c, decl_table)));
8324 return clone;
8327 /* Walk the DIE and its children, looking for references to incomplete
8328 or trivial types that are unmarked (i.e., that are not in the current
8329 type_unit). */
8331 static void
8332 copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table)
8334 dw_die_ref c;
8335 dw_attr_node *a;
8336 unsigned ix;
8338 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8340 if (AT_class (a) == dw_val_class_die_ref)
8342 dw_die_ref targ = AT_ref (a);
8343 decl_table_entry **slot;
8344 struct decl_table_entry *entry;
8346 if (targ->die_mark != 0 || targ->comdat_type_p)
8347 continue;
8349 slot = decl_table->find_slot_with_hash (targ,
8350 htab_hash_pointer (targ),
8351 INSERT);
8353 if (*slot != HTAB_EMPTY_ENTRY)
8355 /* TARG has already been copied, so we just need to
8356 modify the reference to point to the copy. */
8357 entry = *slot;
8358 a->dw_attr_val.v.val_die_ref.die = entry->copy;
8360 else
8362 dw_die_ref parent = unit;
8363 dw_die_ref copy = clone_die (targ);
8365 /* Record in DECL_TABLE that TARG has been copied.
8366 Need to do this now, before the recursive call,
8367 because DECL_TABLE may be expanded and SLOT
8368 would no longer be a valid pointer. */
8369 entry = XCNEW (struct decl_table_entry);
8370 entry->orig = targ;
8371 entry->copy = copy;
8372 *slot = entry;
8374 /* If TARG is not a declaration DIE, we need to copy its
8375 children. */
8376 if (!is_declaration_die (targ))
8378 FOR_EACH_CHILD (
8379 targ, c,
8380 add_child_die (copy,
8381 clone_tree_partial (c, decl_table)));
8384 /* Make sure the cloned tree is marked as part of the
8385 type unit. */
8386 mark_dies (copy);
8388 /* If TARG has surrounding context, copy its ancestor tree
8389 into the new type unit. */
8390 if (targ->die_parent != NULL
8391 && !is_unit_die (targ->die_parent))
8392 parent = copy_ancestor_tree (unit, targ->die_parent,
8393 decl_table);
8395 add_child_die (parent, copy);
8396 a->dw_attr_val.v.val_die_ref.die = copy;
8398 /* Make sure the newly-copied DIE is walked. If it was
8399 installed in a previously-added context, it won't
8400 get visited otherwise. */
8401 if (parent != unit)
8403 /* Find the highest point of the newly-added tree,
8404 mark each node along the way, and walk from there. */
8405 parent->die_mark = 1;
8406 while (parent->die_parent
8407 && parent->die_parent->die_mark == 0)
8409 parent = parent->die_parent;
8410 parent->die_mark = 1;
8412 copy_decls_walk (unit, parent, decl_table);
8418 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
8421 /* Copy declarations for "unworthy" types into the new comdat section.
8422 Incomplete types, modified types, and certain other types aren't broken
8423 out into comdat sections of their own, so they don't have a signature,
8424 and we need to copy the declaration into the same section so that we
8425 don't have an external reference. */
8427 static void
8428 copy_decls_for_unworthy_types (dw_die_ref unit)
8430 mark_dies (unit);
8431 decl_hash_type decl_table (10);
8432 copy_decls_walk (unit, unit, &decl_table);
8433 unmark_dies (unit);
8436 /* Traverse the DIE and add a sibling attribute if it may have the
8437 effect of speeding up access to siblings. To save some space,
8438 avoid generating sibling attributes for DIE's without children. */
8440 static void
8441 add_sibling_attributes (dw_die_ref die)
8443 dw_die_ref c;
8445 if (! die->die_child)
8446 return;
8448 if (die->die_parent && die != die->die_parent->die_child)
8449 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
8451 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
8454 /* Output all location lists for the DIE and its children. */
8456 static void
8457 output_location_lists (dw_die_ref die)
8459 dw_die_ref c;
8460 dw_attr_node *a;
8461 unsigned ix;
8463 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8464 if (AT_class (a) == dw_val_class_loc_list)
8465 output_loc_list (AT_loc_list (a));
8467 FOR_EACH_CHILD (die, c, output_location_lists (c));
8470 /* During assign_location_list_indexes and output_loclists_offset the
8471 current index, after it the number of assigned indexes (i.e. how
8472 large the .debug_loclists* offset table should be). */
8473 static unsigned int loc_list_idx;
8475 /* Output all location list offsets for the DIE and its children. */
8477 static void
8478 output_loclists_offsets (dw_die_ref die)
8480 dw_die_ref c;
8481 dw_attr_node *a;
8482 unsigned ix;
8484 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8485 if (AT_class (a) == dw_val_class_loc_list)
8487 dw_loc_list_ref l = AT_loc_list (a);
8488 if (l->offset_emitted)
8489 continue;
8490 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l->ll_symbol,
8491 loc_section_label, NULL);
8492 gcc_assert (l->hash == loc_list_idx);
8493 loc_list_idx++;
8494 l->offset_emitted = true;
8497 FOR_EACH_CHILD (die, c, output_loclists_offsets (c));
8500 /* Recursively set indexes of location lists. */
8502 static void
8503 assign_location_list_indexes (dw_die_ref die)
8505 dw_die_ref c;
8506 dw_attr_node *a;
8507 unsigned ix;
8509 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8510 if (AT_class (a) == dw_val_class_loc_list)
8512 dw_loc_list_ref list = AT_loc_list (a);
8513 if (!list->num_assigned)
8515 list->num_assigned = true;
8516 list->hash = loc_list_idx++;
8520 FOR_EACH_CHILD (die, c, assign_location_list_indexes (c));
8523 /* We want to limit the number of external references, because they are
8524 larger than local references: a relocation takes multiple words, and
8525 even a sig8 reference is always eight bytes, whereas a local reference
8526 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
8527 So if we encounter multiple external references to the same type DIE, we
8528 make a local typedef stub for it and redirect all references there.
8530 This is the element of the hash table for keeping track of these
8531 references. */
8533 struct external_ref
8535 dw_die_ref type;
8536 dw_die_ref stub;
8537 unsigned n_refs;
8540 /* Hashtable helpers. */
8542 struct external_ref_hasher : free_ptr_hash <external_ref>
8544 static inline hashval_t hash (const external_ref *);
8545 static inline bool equal (const external_ref *, const external_ref *);
8548 inline hashval_t
8549 external_ref_hasher::hash (const external_ref *r)
8551 dw_die_ref die = r->type;
8552 hashval_t h = 0;
8554 /* We can't use the address of the DIE for hashing, because
8555 that will make the order of the stub DIEs non-deterministic. */
8556 if (! die->comdat_type_p)
8557 /* We have a symbol; use it to compute a hash. */
8558 h = htab_hash_string (die->die_id.die_symbol);
8559 else
8561 /* We have a type signature; use a subset of the bits as the hash.
8562 The 8-byte signature is at least as large as hashval_t. */
8563 comdat_type_node *type_node = die->die_id.die_type_node;
8564 memcpy (&h, type_node->signature, sizeof (h));
8566 return h;
8569 inline bool
8570 external_ref_hasher::equal (const external_ref *r1, const external_ref *r2)
8572 return r1->type == r2->type;
8575 typedef hash_table<external_ref_hasher> external_ref_hash_type;
8577 /* Return a pointer to the external_ref for references to DIE. */
8579 static struct external_ref *
8580 lookup_external_ref (external_ref_hash_type *map, dw_die_ref die)
8582 struct external_ref ref, *ref_p;
8583 external_ref **slot;
8585 ref.type = die;
8586 slot = map->find_slot (&ref, INSERT);
8587 if (*slot != HTAB_EMPTY_ENTRY)
8588 return *slot;
8590 ref_p = XCNEW (struct external_ref);
8591 ref_p->type = die;
8592 *slot = ref_p;
8593 return ref_p;
8596 /* Subroutine of optimize_external_refs, below.
8598 If we see a type skeleton, record it as our stub. If we see external
8599 references, remember how many we've seen. */
8601 static void
8602 optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map)
8604 dw_die_ref c;
8605 dw_attr_node *a;
8606 unsigned ix;
8607 struct external_ref *ref_p;
8609 if (is_type_die (die)
8610 && (c = get_AT_ref (die, DW_AT_signature)))
8612 /* This is a local skeleton; use it for local references. */
8613 ref_p = lookup_external_ref (map, c);
8614 ref_p->stub = die;
8617 /* Scan the DIE references, and remember any that refer to DIEs from
8618 other CUs (i.e. those which are not marked). */
8619 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8620 if (AT_class (a) == dw_val_class_die_ref
8621 && (c = AT_ref (a))->die_mark == 0
8622 && is_type_die (c))
8624 ref_p = lookup_external_ref (map, c);
8625 ref_p->n_refs++;
8628 FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map));
8631 /* htab_traverse callback function for optimize_external_refs, below. SLOT
8632 points to an external_ref, DATA is the CU we're processing. If we don't
8633 already have a local stub, and we have multiple refs, build a stub. */
8636 dwarf2_build_local_stub (external_ref **slot, dw_die_ref data)
8638 struct external_ref *ref_p = *slot;
8640 if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict)
8642 /* We have multiple references to this type, so build a small stub.
8643 Both of these forms are a bit dodgy from the perspective of the
8644 DWARF standard, since technically they should have names. */
8645 dw_die_ref cu = data;
8646 dw_die_ref type = ref_p->type;
8647 dw_die_ref stub = NULL;
8649 if (type->comdat_type_p)
8651 /* If we refer to this type via sig8, use AT_signature. */
8652 stub = new_die (type->die_tag, cu, NULL_TREE);
8653 add_AT_die_ref (stub, DW_AT_signature, type);
8655 else
8657 /* Otherwise, use a typedef with no name. */
8658 stub = new_die (DW_TAG_typedef, cu, NULL_TREE);
8659 add_AT_die_ref (stub, DW_AT_type, type);
8662 stub->die_mark++;
8663 ref_p->stub = stub;
8665 return 1;
8668 /* DIE is a unit; look through all the DIE references to see if there are
8669 any external references to types, and if so, create local stubs for
8670 them which will be applied in build_abbrev_table. This is useful because
8671 references to local DIEs are smaller. */
8673 static external_ref_hash_type *
8674 optimize_external_refs (dw_die_ref die)
8676 external_ref_hash_type *map = new external_ref_hash_type (10);
8677 optimize_external_refs_1 (die, map);
8678 map->traverse <dw_die_ref, dwarf2_build_local_stub> (die);
8679 return map;
8682 /* The following 3 variables are temporaries that are computed only during the
8683 build_abbrev_table call and used and released during the following
8684 optimize_abbrev_table call. */
8686 /* First abbrev_id that can be optimized based on usage. */
8687 static unsigned int abbrev_opt_start;
8689 /* Maximum abbrev_id of a base type plus one (we can't optimize DIEs with
8690 abbrev_id smaller than this, because they must be already sized
8691 during build_abbrev_table). */
8692 static unsigned int abbrev_opt_base_type_end;
8694 /* Vector of usage counts during build_abbrev_table. Indexed by
8695 abbrev_id - abbrev_opt_start. */
8696 static vec<unsigned int> abbrev_usage_count;
8698 /* Vector of all DIEs added with die_abbrev >= abbrev_opt_start. */
8699 static vec<dw_die_ref> sorted_abbrev_dies;
8701 /* The format of each DIE (and its attribute value pairs) is encoded in an
8702 abbreviation table. This routine builds the abbreviation table and assigns
8703 a unique abbreviation id for each abbreviation entry. The children of each
8704 die are visited recursively. */
8706 static void
8707 build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map)
8709 unsigned int abbrev_id = 0;
8710 dw_die_ref c;
8711 dw_attr_node *a;
8712 unsigned ix;
8713 dw_die_ref abbrev;
8715 /* Scan the DIE references, and replace any that refer to
8716 DIEs from other CUs (i.e. those which are not marked) with
8717 the local stubs we built in optimize_external_refs. */
8718 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8719 if (AT_class (a) == dw_val_class_die_ref
8720 && (c = AT_ref (a))->die_mark == 0)
8722 struct external_ref *ref_p;
8723 gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol);
8725 ref_p = lookup_external_ref (extern_map, c);
8726 if (ref_p->stub && ref_p->stub != die)
8727 change_AT_die_ref (a, ref_p->stub);
8728 else
8729 /* We aren't changing this reference, so mark it external. */
8730 set_AT_ref_external (a, 1);
8733 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev)
8735 dw_attr_node *die_a, *abbrev_a;
8736 unsigned ix;
8737 bool ok = true;
8739 if (abbrev_id == 0)
8740 continue;
8741 if (abbrev->die_tag != die->die_tag)
8742 continue;
8743 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
8744 continue;
8746 if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr))
8747 continue;
8749 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a)
8751 abbrev_a = &(*abbrev->die_attr)[ix];
8752 if ((abbrev_a->dw_attr != die_a->dw_attr)
8753 || (value_format (abbrev_a) != value_format (die_a)))
8755 ok = false;
8756 break;
8759 if (ok)
8760 break;
8763 if (abbrev_id >= vec_safe_length (abbrev_die_table))
8765 vec_safe_push (abbrev_die_table, die);
8766 if (abbrev_opt_start)
8767 abbrev_usage_count.safe_push (0);
8769 if (abbrev_opt_start && abbrev_id >= abbrev_opt_start)
8771 abbrev_usage_count[abbrev_id - abbrev_opt_start]++;
8772 sorted_abbrev_dies.safe_push (die);
8775 die->die_abbrev = abbrev_id;
8776 FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map));
8779 /* Callback function for sorted_abbrev_dies vector sorting. We sort
8780 by die_abbrev's usage count, from the most commonly used
8781 abbreviation to the least. */
8783 static int
8784 die_abbrev_cmp (const void *p1, const void *p2)
8786 dw_die_ref die1 = *(const dw_die_ref *) p1;
8787 dw_die_ref die2 = *(const dw_die_ref *) p2;
8789 gcc_checking_assert (die1->die_abbrev >= abbrev_opt_start);
8790 gcc_checking_assert (die2->die_abbrev >= abbrev_opt_start);
8792 if (die1->die_abbrev >= abbrev_opt_base_type_end
8793 && die2->die_abbrev >= abbrev_opt_base_type_end)
8795 if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start]
8796 > abbrev_usage_count[die2->die_abbrev - abbrev_opt_start])
8797 return -1;
8798 if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start]
8799 < abbrev_usage_count[die2->die_abbrev - abbrev_opt_start])
8800 return 1;
8803 /* Stabilize the sort. */
8804 if (die1->die_abbrev < die2->die_abbrev)
8805 return -1;
8806 if (die1->die_abbrev > die2->die_abbrev)
8807 return 1;
8809 return 0;
8812 /* Convert dw_val_class_const and dw_val_class_unsigned_const class attributes
8813 of DIEs in between sorted_abbrev_dies[first_id] and abbrev_dies[end_id - 1]
8814 into dw_val_class_const_implicit or
8815 dw_val_class_unsigned_const_implicit. */
8817 static void
8818 optimize_implicit_const (unsigned int first_id, unsigned int end,
8819 vec<bool> &implicit_consts)
8821 /* It never makes sense if there is just one DIE using the abbreviation. */
8822 if (end < first_id + 2)
8823 return;
8825 dw_attr_node *a;
8826 unsigned ix, i;
8827 dw_die_ref die = sorted_abbrev_dies[first_id];
8828 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8829 if (implicit_consts[ix])
8831 enum dw_val_class new_class = dw_val_class_none;
8832 switch (AT_class (a))
8834 case dw_val_class_unsigned_const:
8835 if ((HOST_WIDE_INT) AT_unsigned (a) < 0)
8836 continue;
8838 /* The .debug_abbrev section will grow by
8839 size_of_sleb128 (AT_unsigned (a)) and we avoid the constants
8840 in all the DIEs using that abbreviation. */
8841 if (constant_size (AT_unsigned (a)) * (end - first_id)
8842 <= (unsigned) size_of_sleb128 (AT_unsigned (a)))
8843 continue;
8845 new_class = dw_val_class_unsigned_const_implicit;
8846 break;
8848 case dw_val_class_const:
8849 new_class = dw_val_class_const_implicit;
8850 break;
8852 case dw_val_class_file:
8853 new_class = dw_val_class_file_implicit;
8854 break;
8856 default:
8857 continue;
8859 for (i = first_id; i < end; i++)
8860 (*sorted_abbrev_dies[i]->die_attr)[ix].dw_attr_val.val_class
8861 = new_class;
8865 /* Attempt to optimize abbreviation table from abbrev_opt_start
8866 abbreviation above. */
8868 static void
8869 optimize_abbrev_table (void)
8871 if (abbrev_opt_start
8872 && vec_safe_length (abbrev_die_table) > abbrev_opt_start
8873 && (dwarf_version >= 5 || vec_safe_length (abbrev_die_table) > 127))
8875 auto_vec<bool, 32> implicit_consts;
8876 sorted_abbrev_dies.qsort (die_abbrev_cmp);
8878 unsigned int abbrev_id = abbrev_opt_start - 1;
8879 unsigned int first_id = ~0U;
8880 unsigned int last_abbrev_id = 0;
8881 unsigned int i;
8882 dw_die_ref die;
8883 if (abbrev_opt_base_type_end > abbrev_opt_start)
8884 abbrev_id = abbrev_opt_base_type_end - 1;
8885 /* Reassign abbreviation ids from abbrev_opt_start above, so that
8886 most commonly used abbreviations come first. */
8887 FOR_EACH_VEC_ELT (sorted_abbrev_dies, i, die)
8889 dw_attr_node *a;
8890 unsigned ix;
8892 /* If calc_base_type_die_sizes has been called, the CU and
8893 base types after it can't be optimized, because we've already
8894 calculated their DIE offsets. We've sorted them first. */
8895 if (die->die_abbrev < abbrev_opt_base_type_end)
8896 continue;
8897 if (die->die_abbrev != last_abbrev_id)
8899 last_abbrev_id = die->die_abbrev;
8900 if (dwarf_version >= 5 && first_id != ~0U)
8901 optimize_implicit_const (first_id, i, implicit_consts);
8902 abbrev_id++;
8903 (*abbrev_die_table)[abbrev_id] = die;
8904 if (dwarf_version >= 5)
8906 first_id = i;
8907 implicit_consts.truncate (0);
8909 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8910 switch (AT_class (a))
8912 case dw_val_class_const:
8913 case dw_val_class_unsigned_const:
8914 case dw_val_class_file:
8915 implicit_consts.safe_push (true);
8916 break;
8917 default:
8918 implicit_consts.safe_push (false);
8919 break;
8923 else if (dwarf_version >= 5)
8925 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8926 if (!implicit_consts[ix])
8927 continue;
8928 else
8930 dw_attr_node *other_a
8931 = &(*(*abbrev_die_table)[abbrev_id]->die_attr)[ix];
8932 if (!dw_val_equal_p (&a->dw_attr_val,
8933 &other_a->dw_attr_val))
8934 implicit_consts[ix] = false;
8937 die->die_abbrev = abbrev_id;
8939 gcc_assert (abbrev_id == vec_safe_length (abbrev_die_table) - 1);
8940 if (dwarf_version >= 5 && first_id != ~0U)
8941 optimize_implicit_const (first_id, i, implicit_consts);
8944 abbrev_opt_start = 0;
8945 abbrev_opt_base_type_end = 0;
8946 abbrev_usage_count.release ();
8947 sorted_abbrev_dies.release ();
8950 /* Return the power-of-two number of bytes necessary to represent VALUE. */
8952 static int
8953 constant_size (unsigned HOST_WIDE_INT value)
8955 int log;
8957 if (value == 0)
8958 log = 0;
8959 else
8960 log = floor_log2 (value);
8962 log = log / 8;
8963 log = 1 << (floor_log2 (log) + 1);
8965 return log;
8968 /* Return the size of a DIE as it is represented in the
8969 .debug_info section. */
8971 static unsigned long
8972 size_of_die (dw_die_ref die)
8974 unsigned long size = 0;
8975 dw_attr_node *a;
8976 unsigned ix;
8977 enum dwarf_form form;
8979 size += size_of_uleb128 (die->die_abbrev);
8980 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8982 switch (AT_class (a))
8984 case dw_val_class_addr:
8985 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8987 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8988 size += size_of_uleb128 (AT_index (a));
8990 else
8991 size += DWARF2_ADDR_SIZE;
8992 break;
8993 case dw_val_class_offset:
8994 size += DWARF_OFFSET_SIZE;
8995 break;
8996 case dw_val_class_loc:
8998 unsigned long lsize = size_of_locs (AT_loc (a));
9000 /* Block length. */
9001 if (dwarf_version >= 4)
9002 size += size_of_uleb128 (lsize);
9003 else
9004 size += constant_size (lsize);
9005 size += lsize;
9007 break;
9008 case dw_val_class_loc_list:
9009 if (dwarf_split_debug_info && dwarf_version >= 5)
9011 gcc_assert (AT_loc_list (a)->num_assigned);
9012 size += size_of_uleb128 (AT_loc_list (a)->hash);
9014 else
9015 size += DWARF_OFFSET_SIZE;
9016 break;
9017 case dw_val_class_range_list:
9018 if (value_format (a) == DW_FORM_rnglistx)
9020 gcc_assert (rnglist_idx);
9021 dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
9022 size += size_of_uleb128 (r->idx);
9024 else
9025 size += DWARF_OFFSET_SIZE;
9026 break;
9027 case dw_val_class_const:
9028 size += size_of_sleb128 (AT_int (a));
9029 break;
9030 case dw_val_class_unsigned_const:
9032 int csize = constant_size (AT_unsigned (a));
9033 if (dwarf_version == 3
9034 && a->dw_attr == DW_AT_data_member_location
9035 && csize >= 4)
9036 size += size_of_uleb128 (AT_unsigned (a));
9037 else
9038 size += csize;
9040 break;
9041 case dw_val_class_const_implicit:
9042 case dw_val_class_unsigned_const_implicit:
9043 case dw_val_class_file_implicit:
9044 /* These occupy no size in the DIE, just an extra sleb128 in
9045 .debug_abbrev. */
9046 break;
9047 case dw_val_class_const_double:
9048 size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR;
9049 if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS)
9050 size++; /* block */
9051 break;
9052 case dw_val_class_wide_int:
9053 size += (get_full_len (*a->dw_attr_val.v.val_wide)
9054 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
9055 if (get_full_len (*a->dw_attr_val.v.val_wide)
9056 * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS)
9057 size++; /* block */
9058 break;
9059 case dw_val_class_vec:
9060 size += constant_size (a->dw_attr_val.v.val_vec.length
9061 * a->dw_attr_val.v.val_vec.elt_size)
9062 + a->dw_attr_val.v.val_vec.length
9063 * a->dw_attr_val.v.val_vec.elt_size; /* block */
9064 break;
9065 case dw_val_class_flag:
9066 if (dwarf_version >= 4)
9067 /* Currently all add_AT_flag calls pass in 1 as last argument,
9068 so DW_FORM_flag_present can be used. If that ever changes,
9069 we'll need to use DW_FORM_flag and have some optimization
9070 in build_abbrev_table that will change those to
9071 DW_FORM_flag_present if it is set to 1 in all DIEs using
9072 the same abbrev entry. */
9073 gcc_assert (a->dw_attr_val.v.val_flag == 1);
9074 else
9075 size += 1;
9076 break;
9077 case dw_val_class_die_ref:
9078 if (AT_ref_external (a))
9080 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
9081 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
9082 is sized by target address length, whereas in DWARF3
9083 it's always sized as an offset. */
9084 if (use_debug_types)
9085 size += DWARF_TYPE_SIGNATURE_SIZE;
9086 else if (dwarf_version == 2)
9087 size += DWARF2_ADDR_SIZE;
9088 else
9089 size += DWARF_OFFSET_SIZE;
9091 else
9092 size += DWARF_OFFSET_SIZE;
9093 break;
9094 case dw_val_class_fde_ref:
9095 size += DWARF_OFFSET_SIZE;
9096 break;
9097 case dw_val_class_lbl_id:
9098 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
9100 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
9101 size += size_of_uleb128 (AT_index (a));
9103 else
9104 size += DWARF2_ADDR_SIZE;
9105 break;
9106 case dw_val_class_lineptr:
9107 case dw_val_class_macptr:
9108 case dw_val_class_loclistsptr:
9109 size += DWARF_OFFSET_SIZE;
9110 break;
9111 case dw_val_class_str:
9112 form = AT_string_form (a);
9113 if (form == DW_FORM_strp || form == DW_FORM_line_strp)
9114 size += DWARF_OFFSET_SIZE;
9115 else if (form == DW_FORM_GNU_str_index)
9116 size += size_of_uleb128 (AT_index (a));
9117 else
9118 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
9119 break;
9120 case dw_val_class_file:
9121 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
9122 break;
9123 case dw_val_class_data8:
9124 size += 8;
9125 break;
9126 case dw_val_class_vms_delta:
9127 size += DWARF_OFFSET_SIZE;
9128 break;
9129 case dw_val_class_high_pc:
9130 size += DWARF2_ADDR_SIZE;
9131 break;
9132 case dw_val_class_discr_value:
9133 size += size_of_discr_value (&a->dw_attr_val.v.val_discr_value);
9134 break;
9135 case dw_val_class_discr_list:
9137 unsigned block_size = size_of_discr_list (AT_discr_list (a));
9139 /* This is a block, so we have the block length and then its
9140 data. */
9141 size += constant_size (block_size) + block_size;
9143 break;
9144 default:
9145 gcc_unreachable ();
9149 return size;
9152 /* Size the debugging information associated with a given DIE. Visits the
9153 DIE's children recursively. Updates the global variable next_die_offset, on
9154 each time through. Uses the current value of next_die_offset to update the
9155 die_offset field in each DIE. */
9157 static void
9158 calc_die_sizes (dw_die_ref die)
9160 dw_die_ref c;
9162 gcc_assert (die->die_offset == 0
9163 || (unsigned long int) die->die_offset == next_die_offset);
9164 die->die_offset = next_die_offset;
9165 next_die_offset += size_of_die (die);
9167 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
9169 if (die->die_child != NULL)
9170 /* Count the null byte used to terminate sibling lists. */
9171 next_die_offset += 1;
9174 /* Size just the base type children at the start of the CU.
9175 This is needed because build_abbrev needs to size locs
9176 and sizing of type based stack ops needs to know die_offset
9177 values for the base types. */
9179 static void
9180 calc_base_type_die_sizes (void)
9182 unsigned long die_offset = (dwarf_split_debug_info
9183 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
9184 : DWARF_COMPILE_UNIT_HEADER_SIZE);
9185 unsigned int i;
9186 dw_die_ref base_type;
9187 #if ENABLE_ASSERT_CHECKING
9188 dw_die_ref prev = comp_unit_die ()->die_child;
9189 #endif
9191 die_offset += size_of_die (comp_unit_die ());
9192 for (i = 0; base_types.iterate (i, &base_type); i++)
9194 #if ENABLE_ASSERT_CHECKING
9195 gcc_assert (base_type->die_offset == 0
9196 && prev->die_sib == base_type
9197 && base_type->die_child == NULL
9198 && base_type->die_abbrev);
9199 prev = base_type;
9200 #endif
9201 if (abbrev_opt_start
9202 && base_type->die_abbrev >= abbrev_opt_base_type_end)
9203 abbrev_opt_base_type_end = base_type->die_abbrev + 1;
9204 base_type->die_offset = die_offset;
9205 die_offset += size_of_die (base_type);
9209 /* Set the marks for a die and its children. We do this so
9210 that we know whether or not a reference needs to use FORM_ref_addr; only
9211 DIEs in the same CU will be marked. We used to clear out the offset
9212 and use that as the flag, but ran into ordering problems. */
9214 static void
9215 mark_dies (dw_die_ref die)
9217 dw_die_ref c;
9219 gcc_assert (!die->die_mark);
9221 die->die_mark = 1;
9222 FOR_EACH_CHILD (die, c, mark_dies (c));
9225 /* Clear the marks for a die and its children. */
9227 static void
9228 unmark_dies (dw_die_ref die)
9230 dw_die_ref c;
9232 if (! use_debug_types)
9233 gcc_assert (die->die_mark);
9235 die->die_mark = 0;
9236 FOR_EACH_CHILD (die, c, unmark_dies (c));
9239 /* Clear the marks for a die, its children and referred dies. */
9241 static void
9242 unmark_all_dies (dw_die_ref die)
9244 dw_die_ref c;
9245 dw_attr_node *a;
9246 unsigned ix;
9248 if (!die->die_mark)
9249 return;
9250 die->die_mark = 0;
9252 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
9254 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
9255 if (AT_class (a) == dw_val_class_die_ref)
9256 unmark_all_dies (AT_ref (a));
9259 /* Calculate if the entry should appear in the final output file. It may be
9260 from a pruned a type. */
9262 static bool
9263 include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p)
9265 /* By limiting gnu pubnames to definitions only, gold can generate a
9266 gdb index without entries for declarations, which don't include
9267 enough information to be useful. */
9268 if (debug_generate_pub_sections == 2 && is_declaration_die (p->die))
9269 return false;
9271 if (table == pubname_table)
9273 /* Enumerator names are part of the pubname table, but the
9274 parent DW_TAG_enumeration_type die may have been pruned.
9275 Don't output them if that is the case. */
9276 if (p->die->die_tag == DW_TAG_enumerator &&
9277 (p->die->die_parent == NULL
9278 || !p->die->die_parent->die_perennial_p))
9279 return false;
9281 /* Everything else in the pubname table is included. */
9282 return true;
9285 /* The pubtypes table shouldn't include types that have been
9286 pruned. */
9287 return (p->die->die_offset != 0
9288 || !flag_eliminate_unused_debug_types);
9291 /* Return the size of the .debug_pubnames or .debug_pubtypes table
9292 generated for the compilation unit. */
9294 static unsigned long
9295 size_of_pubnames (vec<pubname_entry, va_gc> *names)
9297 unsigned long size;
9298 unsigned i;
9299 pubname_entry *p;
9300 int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0;
9302 size = DWARF_PUBNAMES_HEADER_SIZE;
9303 FOR_EACH_VEC_ELT (*names, i, p)
9304 if (include_pubname_in_output (names, p))
9305 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1 + space_for_flags;
9307 size += DWARF_OFFSET_SIZE;
9308 return size;
9311 /* Return the size of the information in the .debug_aranges section. */
9313 static unsigned long
9314 size_of_aranges (void)
9316 unsigned long size;
9318 size = DWARF_ARANGES_HEADER_SIZE;
9320 /* Count the address/length pair for this compilation unit. */
9321 if (text_section_used)
9322 size += 2 * DWARF2_ADDR_SIZE;
9323 if (cold_text_section_used)
9324 size += 2 * DWARF2_ADDR_SIZE;
9325 if (have_multiple_function_sections)
9327 unsigned fde_idx;
9328 dw_fde_ref fde;
9330 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
9332 if (DECL_IGNORED_P (fde->decl))
9333 continue;
9334 if (!fde->in_std_section)
9335 size += 2 * DWARF2_ADDR_SIZE;
9336 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
9337 size += 2 * DWARF2_ADDR_SIZE;
9341 /* Count the two zero words used to terminated the address range table. */
9342 size += 2 * DWARF2_ADDR_SIZE;
9343 return size;
9346 /* Select the encoding of an attribute value. */
9348 static enum dwarf_form
9349 value_format (dw_attr_node *a)
9351 switch (AT_class (a))
9353 case dw_val_class_addr:
9354 /* Only very few attributes allow DW_FORM_addr. */
9355 switch (a->dw_attr)
9357 case DW_AT_low_pc:
9358 case DW_AT_high_pc:
9359 case DW_AT_entry_pc:
9360 case DW_AT_trampoline:
9361 return (AT_index (a) == NOT_INDEXED
9362 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
9363 default:
9364 break;
9366 switch (DWARF2_ADDR_SIZE)
9368 case 1:
9369 return DW_FORM_data1;
9370 case 2:
9371 return DW_FORM_data2;
9372 case 4:
9373 return DW_FORM_data4;
9374 case 8:
9375 return DW_FORM_data8;
9376 default:
9377 gcc_unreachable ();
9379 case dw_val_class_loc_list:
9380 if (dwarf_split_debug_info
9381 && dwarf_version >= 5
9382 && AT_loc_list (a)->num_assigned)
9383 return DW_FORM_loclistx;
9384 /* FALLTHRU */
9385 case dw_val_class_range_list:
9386 /* For range lists in DWARF 5, use DW_FORM_rnglistx from .debug_info.dwo
9387 but in .debug_info use DW_FORM_sec_offset, which is shorter if we
9388 care about sizes of .debug* sections in shared libraries and
9389 executables and don't take into account relocations that affect just
9390 relocatable objects - for DW_FORM_rnglistx we'd have to emit offset
9391 table in the .debug_rnglists section. */
9392 if (dwarf_split_debug_info
9393 && dwarf_version >= 5
9394 && AT_class (a) == dw_val_class_range_list
9395 && rnglist_idx
9396 && a->dw_attr_val.val_entry != RELOCATED_OFFSET)
9397 return DW_FORM_rnglistx;
9398 if (dwarf_version >= 4)
9399 return DW_FORM_sec_offset;
9400 /* FALLTHRU */
9401 case dw_val_class_vms_delta:
9402 case dw_val_class_offset:
9403 switch (DWARF_OFFSET_SIZE)
9405 case 4:
9406 return DW_FORM_data4;
9407 case 8:
9408 return DW_FORM_data8;
9409 default:
9410 gcc_unreachable ();
9412 case dw_val_class_loc:
9413 if (dwarf_version >= 4)
9414 return DW_FORM_exprloc;
9415 switch (constant_size (size_of_locs (AT_loc (a))))
9417 case 1:
9418 return DW_FORM_block1;
9419 case 2:
9420 return DW_FORM_block2;
9421 case 4:
9422 return DW_FORM_block4;
9423 default:
9424 gcc_unreachable ();
9426 case dw_val_class_const:
9427 return DW_FORM_sdata;
9428 case dw_val_class_unsigned_const:
9429 switch (constant_size (AT_unsigned (a)))
9431 case 1:
9432 return DW_FORM_data1;
9433 case 2:
9434 return DW_FORM_data2;
9435 case 4:
9436 /* In DWARF3 DW_AT_data_member_location with
9437 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
9438 constant, so we need to use DW_FORM_udata if we need
9439 a large constant. */
9440 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
9441 return DW_FORM_udata;
9442 return DW_FORM_data4;
9443 case 8:
9444 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
9445 return DW_FORM_udata;
9446 return DW_FORM_data8;
9447 default:
9448 gcc_unreachable ();
9450 case dw_val_class_const_implicit:
9451 case dw_val_class_unsigned_const_implicit:
9452 case dw_val_class_file_implicit:
9453 return DW_FORM_implicit_const;
9454 case dw_val_class_const_double:
9455 switch (HOST_BITS_PER_WIDE_INT)
9457 case 8:
9458 return DW_FORM_data2;
9459 case 16:
9460 return DW_FORM_data4;
9461 case 32:
9462 return DW_FORM_data8;
9463 case 64:
9464 if (dwarf_version >= 5)
9465 return DW_FORM_data16;
9466 /* FALLTHRU */
9467 default:
9468 return DW_FORM_block1;
9470 case dw_val_class_wide_int:
9471 switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT)
9473 case 8:
9474 return DW_FORM_data1;
9475 case 16:
9476 return DW_FORM_data2;
9477 case 32:
9478 return DW_FORM_data4;
9479 case 64:
9480 return DW_FORM_data8;
9481 case 128:
9482 if (dwarf_version >= 5)
9483 return DW_FORM_data16;
9484 /* FALLTHRU */
9485 default:
9486 return DW_FORM_block1;
9488 case dw_val_class_vec:
9489 switch (constant_size (a->dw_attr_val.v.val_vec.length
9490 * a->dw_attr_val.v.val_vec.elt_size))
9492 case 1:
9493 return DW_FORM_block1;
9494 case 2:
9495 return DW_FORM_block2;
9496 case 4:
9497 return DW_FORM_block4;
9498 default:
9499 gcc_unreachable ();
9501 case dw_val_class_flag:
9502 if (dwarf_version >= 4)
9504 /* Currently all add_AT_flag calls pass in 1 as last argument,
9505 so DW_FORM_flag_present can be used. If that ever changes,
9506 we'll need to use DW_FORM_flag and have some optimization
9507 in build_abbrev_table that will change those to
9508 DW_FORM_flag_present if it is set to 1 in all DIEs using
9509 the same abbrev entry. */
9510 gcc_assert (a->dw_attr_val.v.val_flag == 1);
9511 return DW_FORM_flag_present;
9513 return DW_FORM_flag;
9514 case dw_val_class_die_ref:
9515 if (AT_ref_external (a))
9516 return use_debug_types ? DW_FORM_ref_sig8 : DW_FORM_ref_addr;
9517 else
9518 return DW_FORM_ref;
9519 case dw_val_class_fde_ref:
9520 return DW_FORM_data;
9521 case dw_val_class_lbl_id:
9522 return (AT_index (a) == NOT_INDEXED
9523 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
9524 case dw_val_class_lineptr:
9525 case dw_val_class_macptr:
9526 case dw_val_class_loclistsptr:
9527 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
9528 case dw_val_class_str:
9529 return AT_string_form (a);
9530 case dw_val_class_file:
9531 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
9533 case 1:
9534 return DW_FORM_data1;
9535 case 2:
9536 return DW_FORM_data2;
9537 case 4:
9538 return DW_FORM_data4;
9539 default:
9540 gcc_unreachable ();
9543 case dw_val_class_data8:
9544 return DW_FORM_data8;
9546 case dw_val_class_high_pc:
9547 switch (DWARF2_ADDR_SIZE)
9549 case 1:
9550 return DW_FORM_data1;
9551 case 2:
9552 return DW_FORM_data2;
9553 case 4:
9554 return DW_FORM_data4;
9555 case 8:
9556 return DW_FORM_data8;
9557 default:
9558 gcc_unreachable ();
9561 case dw_val_class_discr_value:
9562 return (a->dw_attr_val.v.val_discr_value.pos
9563 ? DW_FORM_udata
9564 : DW_FORM_sdata);
9565 case dw_val_class_discr_list:
9566 switch (constant_size (size_of_discr_list (AT_discr_list (a))))
9568 case 1:
9569 return DW_FORM_block1;
9570 case 2:
9571 return DW_FORM_block2;
9572 case 4:
9573 return DW_FORM_block4;
9574 default:
9575 gcc_unreachable ();
9578 default:
9579 gcc_unreachable ();
9583 /* Output the encoding of an attribute value. */
9585 static void
9586 output_value_format (dw_attr_node *a)
9588 enum dwarf_form form = value_format (a);
9590 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
9593 /* Given a die and id, produce the appropriate abbreviations. */
9595 static void
9596 output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev)
9598 unsigned ix;
9599 dw_attr_node *a_attr;
9601 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
9602 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
9603 dwarf_tag_name (abbrev->die_tag));
9605 if (abbrev->die_child != NULL)
9606 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
9607 else
9608 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
9610 for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++)
9612 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
9613 dwarf_attr_name (a_attr->dw_attr));
9614 output_value_format (a_attr);
9615 if (value_format (a_attr) == DW_FORM_implicit_const)
9617 if (AT_class (a_attr) == dw_val_class_file_implicit)
9619 int f = maybe_emit_file (a_attr->dw_attr_val.v.val_file);
9620 const char *filename = a_attr->dw_attr_val.v.val_file->filename;
9621 dw2_asm_output_data_sleb128 (f, "(%s)", filename);
9623 else
9624 dw2_asm_output_data_sleb128 (a_attr->dw_attr_val.v.val_int, NULL);
9628 dw2_asm_output_data (1, 0, NULL);
9629 dw2_asm_output_data (1, 0, NULL);
9633 /* Output the .debug_abbrev section which defines the DIE abbreviation
9634 table. */
9636 static void
9637 output_abbrev_section (void)
9639 unsigned int abbrev_id;
9640 dw_die_ref abbrev;
9642 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev)
9643 if (abbrev_id != 0)
9644 output_die_abbrevs (abbrev_id, abbrev);
9646 /* Terminate the table. */
9647 dw2_asm_output_data (1, 0, NULL);
9650 /* Return a new location list, given the begin and end range, and the
9651 expression. */
9653 static inline dw_loc_list_ref
9654 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
9655 const char *section)
9657 dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> ();
9659 retlist->begin = begin;
9660 retlist->begin_entry = NULL;
9661 retlist->end = end;
9662 retlist->expr = expr;
9663 retlist->section = section;
9665 return retlist;
9668 /* Generate a new internal symbol for this location list node, if it
9669 hasn't got one yet. */
9671 static inline void
9672 gen_llsym (dw_loc_list_ref list)
9674 gcc_assert (!list->ll_symbol);
9675 list->ll_symbol = gen_internal_sym ("LLST");
9678 /* Output the location list given to us. */
9680 static void
9681 output_loc_list (dw_loc_list_ref list_head)
9683 if (list_head->emitted)
9684 return;
9685 list_head->emitted = true;
9687 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
9689 dw_loc_list_ref curr = list_head;
9690 const char *last_section = NULL;
9691 const char *base_label = NULL;
9693 /* Walk the location list, and output each range + expression. */
9694 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
9696 unsigned long size;
9697 /* Don't output an entry that starts and ends at the same address. */
9698 if (strcmp (curr->begin, curr->end) == 0 && !curr->force)
9699 continue;
9700 size = size_of_locs (curr->expr);
9701 /* If the expression is too large, drop it on the floor. We could
9702 perhaps put it into DW_TAG_dwarf_procedure and refer to that
9703 in the expression, but >= 64KB expressions for a single value
9704 in a single range are unlikely very useful. */
9705 if (dwarf_version < 5 && size > 0xffff)
9706 continue;
9707 if (dwarf_version >= 5)
9709 if (dwarf_split_debug_info)
9711 /* For -gsplit-dwarf, emit DW_LLE_starx_length, which has
9712 uleb128 index into .debug_addr and uleb128 length. */
9713 dw2_asm_output_data (1, DW_LLE_startx_length,
9714 "DW_LLE_startx_length (%s)",
9715 list_head->ll_symbol);
9716 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
9717 "Location list range start index "
9718 "(%s)", curr->begin);
9719 /* FIXME: This will ICE ifndef HAVE_AS_LEB128.
9720 For that case we probably need to emit DW_LLE_startx_endx,
9721 but we'd need 2 .debug_addr entries rather than just one. */
9722 dw2_asm_output_delta_uleb128 (curr->end, curr->begin,
9723 "Location list length (%s)",
9724 list_head->ll_symbol);
9726 else if (!have_multiple_function_sections && HAVE_AS_LEB128)
9728 /* If all code is in .text section, the base address is
9729 already provided by the CU attributes. Use
9730 DW_LLE_offset_pair where both addresses are uleb128 encoded
9731 offsets against that base. */
9732 dw2_asm_output_data (1, DW_LLE_offset_pair,
9733 "DW_LLE_offset_pair (%s)",
9734 list_head->ll_symbol);
9735 dw2_asm_output_delta_uleb128 (curr->begin, curr->section,
9736 "Location list begin address (%s)",
9737 list_head->ll_symbol);
9738 dw2_asm_output_delta_uleb128 (curr->end, curr->section,
9739 "Location list end address (%s)",
9740 list_head->ll_symbol);
9742 else if (HAVE_AS_LEB128)
9744 /* Otherwise, find out how many consecutive entries could share
9745 the same base entry. If just one, emit DW_LLE_start_length,
9746 otherwise emit DW_LLE_base_address for the base address
9747 followed by a series of DW_LLE_offset_pair. */
9748 if (last_section == NULL || curr->section != last_section)
9750 dw_loc_list_ref curr2;
9751 for (curr2 = curr->dw_loc_next; curr2 != NULL;
9752 curr2 = curr2->dw_loc_next)
9754 if (strcmp (curr2->begin, curr2->end) == 0
9755 && !curr2->force)
9756 continue;
9757 break;
9759 if (curr2 == NULL || curr->section != curr2->section)
9760 last_section = NULL;
9761 else
9763 last_section = curr->section;
9764 base_label = curr->begin;
9765 dw2_asm_output_data (1, DW_LLE_base_address,
9766 "DW_LLE_base_address (%s)",
9767 list_head->ll_symbol);
9768 dw2_asm_output_addr (DWARF2_ADDR_SIZE, base_label,
9769 "Base address (%s)",
9770 list_head->ll_symbol);
9773 /* Only one entry with the same base address. Use
9774 DW_LLE_start_length with absolute address and uleb128
9775 length. */
9776 if (last_section == NULL)
9778 dw2_asm_output_data (1, DW_LLE_start_length,
9779 "DW_LLE_start_length (%s)",
9780 list_head->ll_symbol);
9781 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9782 "Location list begin address (%s)",
9783 list_head->ll_symbol);
9784 dw2_asm_output_delta_uleb128 (curr->end, curr->begin,
9785 "Location list length "
9786 "(%s)", list_head->ll_symbol);
9788 /* Otherwise emit DW_LLE_offset_pair, relative to above emitted
9789 DW_LLE_base_address. */
9790 else
9792 dw2_asm_output_data (1, DW_LLE_offset_pair,
9793 "DW_LLE_offset_pair (%s)",
9794 list_head->ll_symbol);
9795 dw2_asm_output_delta_uleb128 (curr->begin, base_label,
9796 "Location list begin address "
9797 "(%s)", list_head->ll_symbol);
9798 dw2_asm_output_delta_uleb128 (curr->end, base_label,
9799 "Location list end address "
9800 "(%s)", list_head->ll_symbol);
9803 /* The assembler does not support .uleb128 directive. Emit
9804 DW_LLE_start_end with a pair of absolute addresses. */
9805 else
9807 dw2_asm_output_data (1, DW_LLE_start_end,
9808 "DW_LLE_start_end (%s)",
9809 list_head->ll_symbol);
9810 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9811 "Location list begin address (%s)",
9812 list_head->ll_symbol);
9813 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
9814 "Location list end address (%s)",
9815 list_head->ll_symbol);
9818 else if (dwarf_split_debug_info)
9820 /* For -gsplit-dwarf -gdwarf-{2,3,4} emit index into .debug_addr
9821 and 4 byte length. */
9822 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry,
9823 "Location list start/length entry (%s)",
9824 list_head->ll_symbol);
9825 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
9826 "Location list range start index (%s)",
9827 curr->begin);
9828 /* The length field is 4 bytes. If we ever need to support
9829 an 8-byte length, we can add a new DW_LLE code or fall back
9830 to DW_LLE_GNU_start_end_entry. */
9831 dw2_asm_output_delta (4, curr->end, curr->begin,
9832 "Location list range length (%s)",
9833 list_head->ll_symbol);
9835 else if (!have_multiple_function_sections)
9837 /* Pair of relative addresses against start of text section. */
9838 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
9839 "Location list begin address (%s)",
9840 list_head->ll_symbol);
9841 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
9842 "Location list end address (%s)",
9843 list_head->ll_symbol);
9845 else
9847 /* Pair of absolute addresses. */
9848 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9849 "Location list begin address (%s)",
9850 list_head->ll_symbol);
9851 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
9852 "Location list end address (%s)",
9853 list_head->ll_symbol);
9856 /* Output the block length for this list of location operations. */
9857 if (dwarf_version >= 5)
9858 dw2_asm_output_data_uleb128 (size, "Location expression size");
9859 else
9861 gcc_assert (size <= 0xffff);
9862 dw2_asm_output_data (2, size, "Location expression size");
9865 output_loc_sequence (curr->expr, -1);
9868 /* And finally list termination. */
9869 if (dwarf_version >= 5)
9870 dw2_asm_output_data (1, DW_LLE_end_of_list,
9871 "DW_LLE_end_of_list (%s)", list_head->ll_symbol);
9872 else if (dwarf_split_debug_info)
9873 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry,
9874 "Location list terminator (%s)",
9875 list_head->ll_symbol);
9876 else
9878 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9879 "Location list terminator begin (%s)",
9880 list_head->ll_symbol);
9881 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9882 "Location list terminator end (%s)",
9883 list_head->ll_symbol);
9887 /* Output a range_list offset into the .debug_ranges or .debug_rnglists
9888 section. Emit a relocated reference if val_entry is NULL, otherwise,
9889 emit an indirect reference. */
9891 static void
9892 output_range_list_offset (dw_attr_node *a)
9894 const char *name = dwarf_attr_name (a->dw_attr);
9896 if (a->dw_attr_val.val_entry == RELOCATED_OFFSET)
9898 if (dwarf_version >= 5)
9900 dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
9901 dw2_asm_output_offset (DWARF_OFFSET_SIZE, r->label,
9902 debug_ranges_section, "%s", name);
9904 else
9906 char *p = strchr (ranges_section_label, '\0');
9907 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
9908 a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE);
9909 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
9910 debug_ranges_section, "%s", name);
9911 *p = '\0';
9914 else if (dwarf_version >= 5)
9916 dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
9917 gcc_assert (rnglist_idx);
9918 dw2_asm_output_data_uleb128 (r->idx, "%s", name);
9920 else
9921 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9922 a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE,
9923 "%s (offset from %s)", name, ranges_section_label);
9926 /* Output the offset into the debug_loc section. */
9928 static void
9929 output_loc_list_offset (dw_attr_node *a)
9931 char *sym = AT_loc_list (a)->ll_symbol;
9933 gcc_assert (sym);
9934 if (!dwarf_split_debug_info)
9935 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
9936 "%s", dwarf_attr_name (a->dw_attr));
9937 else if (dwarf_version >= 5)
9939 gcc_assert (AT_loc_list (a)->num_assigned);
9940 dw2_asm_output_data_uleb128 (AT_loc_list (a)->hash, "%s (%s)",
9941 dwarf_attr_name (a->dw_attr),
9942 sym);
9944 else
9945 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym, loc_section_label,
9946 "%s", dwarf_attr_name (a->dw_attr));
9949 /* Output an attribute's index or value appropriately. */
9951 static void
9952 output_attr_index_or_value (dw_attr_node *a)
9954 const char *name = dwarf_attr_name (a->dw_attr);
9956 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
9958 dw2_asm_output_data_uleb128 (AT_index (a), "%s", name);
9959 return;
9961 switch (AT_class (a))
9963 case dw_val_class_addr:
9964 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
9965 break;
9966 case dw_val_class_high_pc:
9967 case dw_val_class_lbl_id:
9968 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
9969 break;
9970 default:
9971 gcc_unreachable ();
9975 /* Output a type signature. */
9977 static inline void
9978 output_signature (const char *sig, const char *name)
9980 int i;
9982 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9983 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
9986 /* Output a discriminant value. */
9988 static inline void
9989 output_discr_value (dw_discr_value *discr_value, const char *name)
9991 if (discr_value->pos)
9992 dw2_asm_output_data_uleb128 (discr_value->v.uval, "%s", name);
9993 else
9994 dw2_asm_output_data_sleb128 (discr_value->v.sval, "%s", name);
9997 /* Output the DIE and its attributes. Called recursively to generate
9998 the definitions of each child DIE. */
10000 static void
10001 output_die (dw_die_ref die)
10003 dw_attr_node *a;
10004 dw_die_ref c;
10005 unsigned long size;
10006 unsigned ix;
10008 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
10009 (unsigned long)die->die_offset,
10010 dwarf_tag_name (die->die_tag));
10012 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
10014 const char *name = dwarf_attr_name (a->dw_attr);
10016 switch (AT_class (a))
10018 case dw_val_class_addr:
10019 output_attr_index_or_value (a);
10020 break;
10022 case dw_val_class_offset:
10023 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
10024 "%s", name);
10025 break;
10027 case dw_val_class_range_list:
10028 output_range_list_offset (a);
10029 break;
10031 case dw_val_class_loc:
10032 size = size_of_locs (AT_loc (a));
10034 /* Output the block length for this list of location operations. */
10035 if (dwarf_version >= 4)
10036 dw2_asm_output_data_uleb128 (size, "%s", name);
10037 else
10038 dw2_asm_output_data (constant_size (size), size, "%s", name);
10040 output_loc_sequence (AT_loc (a), -1);
10041 break;
10043 case dw_val_class_const:
10044 /* ??? It would be slightly more efficient to use a scheme like is
10045 used for unsigned constants below, but gdb 4.x does not sign
10046 extend. Gdb 5.x does sign extend. */
10047 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
10048 break;
10050 case dw_val_class_unsigned_const:
10052 int csize = constant_size (AT_unsigned (a));
10053 if (dwarf_version == 3
10054 && a->dw_attr == DW_AT_data_member_location
10055 && csize >= 4)
10056 dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
10057 else
10058 dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
10060 break;
10062 case dw_val_class_const_implicit:
10063 if (flag_debug_asm)
10064 fprintf (asm_out_file, "\t\t\t%s %s ("
10065 HOST_WIDE_INT_PRINT_DEC ")\n",
10066 ASM_COMMENT_START, name, AT_int (a));
10067 break;
10069 case dw_val_class_unsigned_const_implicit:
10070 if (flag_debug_asm)
10071 fprintf (asm_out_file, "\t\t\t%s %s ("
10072 HOST_WIDE_INT_PRINT_HEX ")\n",
10073 ASM_COMMENT_START, name, AT_unsigned (a));
10074 break;
10076 case dw_val_class_const_double:
10078 unsigned HOST_WIDE_INT first, second;
10080 if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS)
10081 dw2_asm_output_data (1,
10082 HOST_BITS_PER_DOUBLE_INT
10083 / HOST_BITS_PER_CHAR,
10084 NULL);
10086 if (WORDS_BIG_ENDIAN)
10088 first = a->dw_attr_val.v.val_double.high;
10089 second = a->dw_attr_val.v.val_double.low;
10091 else
10093 first = a->dw_attr_val.v.val_double.low;
10094 second = a->dw_attr_val.v.val_double.high;
10097 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10098 first, "%s", name);
10099 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10100 second, NULL);
10102 break;
10104 case dw_val_class_wide_int:
10106 int i;
10107 int len = get_full_len (*a->dw_attr_val.v.val_wide);
10108 int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
10109 if (len * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS)
10110 dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide)
10111 * l, NULL);
10113 if (WORDS_BIG_ENDIAN)
10114 for (i = len - 1; i >= 0; --i)
10116 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
10117 "%s", name);
10118 name = "";
10120 else
10121 for (i = 0; i < len; ++i)
10123 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
10124 "%s", name);
10125 name = "";
10128 break;
10130 case dw_val_class_vec:
10132 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
10133 unsigned int len = a->dw_attr_val.v.val_vec.length;
10134 unsigned int i;
10135 unsigned char *p;
10137 dw2_asm_output_data (constant_size (len * elt_size),
10138 len * elt_size, "%s", name);
10139 if (elt_size > sizeof (HOST_WIDE_INT))
10141 elt_size /= 2;
10142 len *= 2;
10144 for (i = 0, p = (unsigned char *) a->dw_attr_val.v.val_vec.array;
10145 i < len;
10146 i++, p += elt_size)
10147 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
10148 "fp or vector constant word %u", i);
10149 break;
10152 case dw_val_class_flag:
10153 if (dwarf_version >= 4)
10155 /* Currently all add_AT_flag calls pass in 1 as last argument,
10156 so DW_FORM_flag_present can be used. If that ever changes,
10157 we'll need to use DW_FORM_flag and have some optimization
10158 in build_abbrev_table that will change those to
10159 DW_FORM_flag_present if it is set to 1 in all DIEs using
10160 the same abbrev entry. */
10161 gcc_assert (AT_flag (a) == 1);
10162 if (flag_debug_asm)
10163 fprintf (asm_out_file, "\t\t\t%s %s\n",
10164 ASM_COMMENT_START, name);
10165 break;
10167 dw2_asm_output_data (1, AT_flag (a), "%s", name);
10168 break;
10170 case dw_val_class_loc_list:
10171 output_loc_list_offset (a);
10172 break;
10174 case dw_val_class_die_ref:
10175 if (AT_ref_external (a))
10177 if (AT_ref (a)->comdat_type_p)
10179 comdat_type_node *type_node
10180 = AT_ref (a)->die_id.die_type_node;
10182 gcc_assert (type_node);
10183 output_signature (type_node->signature, name);
10185 else
10187 const char *sym = AT_ref (a)->die_id.die_symbol;
10188 int size;
10190 gcc_assert (sym);
10191 /* In DWARF2, DW_FORM_ref_addr is sized by target address
10192 length, whereas in DWARF3 it's always sized as an
10193 offset. */
10194 if (dwarf_version == 2)
10195 size = DWARF2_ADDR_SIZE;
10196 else
10197 size = DWARF_OFFSET_SIZE;
10198 /* ??? We cannot unconditionally output die_offset if
10199 non-zero - others might create references to those
10200 DIEs via symbols.
10201 And we do not clear its DIE offset after outputting it
10202 (and the label refers to the actual DIEs, not the
10203 DWARF CU unit header which is when using label + offset
10204 would be the correct thing to do).
10205 ??? This is the reason for the with_offset flag. */
10206 if (AT_ref (a)->with_offset)
10207 dw2_asm_output_offset (size, sym, AT_ref (a)->die_offset,
10208 debug_info_section, "%s", name);
10209 else
10210 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
10211 name);
10214 else
10216 gcc_assert (AT_ref (a)->die_offset);
10217 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
10218 "%s", name);
10220 break;
10222 case dw_val_class_fde_ref:
10224 char l1[MAX_ARTIFICIAL_LABEL_BYTES];
10226 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
10227 a->dw_attr_val.v.val_fde_index * 2);
10228 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
10229 "%s", name);
10231 break;
10233 case dw_val_class_vms_delta:
10234 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
10235 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
10236 AT_vms_delta2 (a), AT_vms_delta1 (a),
10237 "%s", name);
10238 #else
10239 dw2_asm_output_delta (DWARF_OFFSET_SIZE,
10240 AT_vms_delta2 (a), AT_vms_delta1 (a),
10241 "%s", name);
10242 #endif
10243 break;
10245 case dw_val_class_lbl_id:
10246 output_attr_index_or_value (a);
10247 break;
10249 case dw_val_class_lineptr:
10250 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10251 debug_line_section, "%s", name);
10252 break;
10254 case dw_val_class_macptr:
10255 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10256 debug_macinfo_section, "%s", name);
10257 break;
10259 case dw_val_class_loclistsptr:
10260 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10261 debug_loc_section, "%s", name);
10262 break;
10264 case dw_val_class_str:
10265 if (a->dw_attr_val.v.val_str->form == DW_FORM_strp)
10266 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
10267 a->dw_attr_val.v.val_str->label,
10268 debug_str_section,
10269 "%s: \"%s\"", name, AT_string (a));
10270 else if (a->dw_attr_val.v.val_str->form == DW_FORM_line_strp)
10271 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
10272 a->dw_attr_val.v.val_str->label,
10273 debug_line_str_section,
10274 "%s: \"%s\"", name, AT_string (a));
10275 else if (a->dw_attr_val.v.val_str->form == DW_FORM_GNU_str_index)
10276 dw2_asm_output_data_uleb128 (AT_index (a),
10277 "%s: \"%s\"", name, AT_string (a));
10278 else
10279 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
10280 break;
10282 case dw_val_class_file:
10284 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
10286 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
10287 a->dw_attr_val.v.val_file->filename);
10288 break;
10291 case dw_val_class_file_implicit:
10292 if (flag_debug_asm)
10293 fprintf (asm_out_file, "\t\t\t%s %s (%d, %s)\n",
10294 ASM_COMMENT_START, name,
10295 maybe_emit_file (a->dw_attr_val.v.val_file),
10296 a->dw_attr_val.v.val_file->filename);
10297 break;
10299 case dw_val_class_data8:
10301 int i;
10303 for (i = 0; i < 8; i++)
10304 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
10305 i == 0 ? "%s" : NULL, name);
10306 break;
10309 case dw_val_class_high_pc:
10310 dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a),
10311 get_AT_low_pc (die), "DW_AT_high_pc");
10312 break;
10314 case dw_val_class_discr_value:
10315 output_discr_value (&a->dw_attr_val.v.val_discr_value, name);
10316 break;
10318 case dw_val_class_discr_list:
10320 dw_discr_list_ref list = AT_discr_list (a);
10321 const int size = size_of_discr_list (list);
10323 /* This is a block, so output its length first. */
10324 dw2_asm_output_data (constant_size (size), size,
10325 "%s: block size", name);
10327 for (; list != NULL; list = list->dw_discr_next)
10329 /* One byte for the discriminant value descriptor, and then as
10330 many LEB128 numbers as required. */
10331 if (list->dw_discr_range)
10332 dw2_asm_output_data (1, DW_DSC_range,
10333 "%s: DW_DSC_range", name);
10334 else
10335 dw2_asm_output_data (1, DW_DSC_label,
10336 "%s: DW_DSC_label", name);
10338 output_discr_value (&list->dw_discr_lower_bound, name);
10339 if (list->dw_discr_range)
10340 output_discr_value (&list->dw_discr_upper_bound, name);
10342 break;
10345 default:
10346 gcc_unreachable ();
10350 FOR_EACH_CHILD (die, c, output_die (c));
10352 /* Add null byte to terminate sibling list. */
10353 if (die->die_child != NULL)
10354 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
10355 (unsigned long) die->die_offset);
10358 /* Output the compilation unit that appears at the beginning of the
10359 .debug_info section, and precedes the DIE descriptions. */
10361 static void
10362 output_compilation_unit_header (enum dwarf_unit_type ut)
10364 if (!XCOFF_DEBUGGING_INFO)
10366 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10367 dw2_asm_output_data (4, 0xffffffff,
10368 "Initial length escape value indicating 64-bit DWARF extension");
10369 dw2_asm_output_data (DWARF_OFFSET_SIZE,
10370 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
10371 "Length of Compilation Unit Info");
10374 dw2_asm_output_data (2, dwarf_version, "DWARF version number");
10375 if (dwarf_version >= 5)
10377 const char *name;
10378 switch (ut)
10380 case DW_UT_compile: name = "DW_UT_compile"; break;
10381 case DW_UT_type: name = "DW_UT_type"; break;
10382 case DW_UT_split_compile: name = "DW_UT_split_compile"; break;
10383 case DW_UT_split_type: name = "DW_UT_split_type"; break;
10384 default: gcc_unreachable ();
10386 dw2_asm_output_data (1, ut, "%s", name);
10387 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10389 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
10390 debug_abbrev_section,
10391 "Offset Into Abbrev. Section");
10392 if (dwarf_version < 5)
10393 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10396 /* Output the compilation unit DIE and its children. */
10398 static void
10399 output_comp_unit (dw_die_ref die, int output_if_empty,
10400 const unsigned char *dwo_id)
10402 const char *secname, *oldsym;
10403 char *tmp;
10405 /* Unless we are outputting main CU, we may throw away empty ones. */
10406 if (!output_if_empty && die->die_child == NULL)
10407 return;
10409 /* Even if there are no children of this DIE, we must output the information
10410 about the compilation unit. Otherwise, on an empty translation unit, we
10411 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
10412 will then complain when examining the file. First mark all the DIEs in
10413 this CU so we know which get local refs. */
10414 mark_dies (die);
10416 external_ref_hash_type *extern_map = optimize_external_refs (die);
10418 /* For now, optimize only the main CU, in order to optimize the rest
10419 we'd need to see all of them earlier. Leave the rest for post-linking
10420 tools like DWZ. */
10421 if (die == comp_unit_die ())
10422 abbrev_opt_start = vec_safe_length (abbrev_die_table);
10424 build_abbrev_table (die, extern_map);
10426 optimize_abbrev_table ();
10428 delete extern_map;
10430 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10431 next_die_offset = (dwo_id
10432 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
10433 : DWARF_COMPILE_UNIT_HEADER_SIZE);
10434 calc_die_sizes (die);
10436 oldsym = die->die_id.die_symbol;
10437 if (oldsym && die->comdat_type_p)
10439 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
10441 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
10442 secname = tmp;
10443 die->die_id.die_symbol = NULL;
10444 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
10446 else
10448 switch_to_section (debug_info_section);
10449 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
10450 info_section_emitted = true;
10453 /* For LTO cross unit DIE refs we want a symbol on the start of the
10454 debuginfo section, not on the CU DIE. */
10455 if ((flag_generate_lto || flag_generate_offload) && oldsym)
10457 /* ??? No way to get visibility assembled without a decl. */
10458 tree decl = build_decl (UNKNOWN_LOCATION, VAR_DECL,
10459 get_identifier (oldsym), char_type_node);
10460 TREE_PUBLIC (decl) = true;
10461 TREE_STATIC (decl) = true;
10462 DECL_ARTIFICIAL (decl) = true;
10463 DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
10464 DECL_VISIBILITY_SPECIFIED (decl) = true;
10465 targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
10466 #ifdef ASM_WEAKEN_LABEL
10467 /* We prefer a .weak because that handles duplicates from duplicate
10468 archive members in a graceful way. */
10469 ASM_WEAKEN_LABEL (asm_out_file, oldsym);
10470 #else
10471 targetm.asm_out.globalize_label (asm_out_file, oldsym);
10472 #endif
10473 ASM_OUTPUT_LABEL (asm_out_file, oldsym);
10476 /* Output debugging information. */
10477 output_compilation_unit_header (dwo_id
10478 ? DW_UT_split_compile : DW_UT_compile);
10479 if (dwarf_version >= 5)
10481 if (dwo_id != NULL)
10482 for (int i = 0; i < 8; i++)
10483 dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL);
10485 output_die (die);
10487 /* Leave the marks on the main CU, so we can check them in
10488 output_pubnames. */
10489 if (oldsym)
10491 unmark_dies (die);
10492 die->die_id.die_symbol = oldsym;
10496 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
10497 and .debug_pubtypes. This is configured per-target, but can be
10498 overridden by the -gpubnames or -gno-pubnames options. */
10500 static inline bool
10501 want_pubnames (void)
10503 if (debug_info_level <= DINFO_LEVEL_TERSE)
10504 return false;
10505 if (debug_generate_pub_sections != -1)
10506 return debug_generate_pub_sections;
10507 return targetm.want_debug_pub_sections;
10510 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
10512 static void
10513 add_AT_pubnames (dw_die_ref die)
10515 if (want_pubnames ())
10516 add_AT_flag (die, DW_AT_GNU_pubnames, 1);
10519 /* Add a string attribute value to a skeleton DIE. */
10521 static inline void
10522 add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
10523 const char *str)
10525 dw_attr_node attr;
10526 struct indirect_string_node *node;
10528 if (! skeleton_debug_str_hash)
10529 skeleton_debug_str_hash
10530 = hash_table<indirect_string_hasher>::create_ggc (10);
10532 node = find_AT_string_in_table (str, skeleton_debug_str_hash);
10533 find_string_form (node);
10534 if (node->form == DW_FORM_GNU_str_index)
10535 node->form = DW_FORM_strp;
10537 attr.dw_attr = attr_kind;
10538 attr.dw_attr_val.val_class = dw_val_class_str;
10539 attr.dw_attr_val.val_entry = NULL;
10540 attr.dw_attr_val.v.val_str = node;
10541 add_dwarf_attr (die, &attr);
10544 /* Helper function to generate top-level dies for skeleton debug_info and
10545 debug_types. */
10547 static void
10548 add_top_level_skeleton_die_attrs (dw_die_ref die)
10550 const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL);
10551 const char *comp_dir = comp_dir_string ();
10553 add_skeleton_AT_string (die, dwarf_AT (DW_AT_dwo_name), dwo_file_name);
10554 if (comp_dir != NULL)
10555 add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir);
10556 add_AT_pubnames (die);
10557 add_AT_lineptr (die, DW_AT_GNU_addr_base, debug_addr_section_label);
10560 /* Output skeleton debug sections that point to the dwo file. */
10562 static void
10563 output_skeleton_debug_sections (dw_die_ref comp_unit,
10564 const unsigned char *dwo_id)
10566 /* These attributes will be found in the full debug_info section. */
10567 remove_AT (comp_unit, DW_AT_producer);
10568 remove_AT (comp_unit, DW_AT_language);
10570 switch_to_section (debug_skeleton_info_section);
10571 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label);
10573 /* Produce the skeleton compilation-unit header. This one differs enough from
10574 a normal CU header that it's better not to call output_compilation_unit
10575 header. */
10576 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10577 dw2_asm_output_data (4, 0xffffffff,
10578 "Initial length escape value indicating 64-bit "
10579 "DWARF extension");
10581 dw2_asm_output_data (DWARF_OFFSET_SIZE,
10582 DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
10583 - DWARF_INITIAL_LENGTH_SIZE
10584 + size_of_die (comp_unit),
10585 "Length of Compilation Unit Info");
10586 dw2_asm_output_data (2, dwarf_version, "DWARF version number");
10587 if (dwarf_version >= 5)
10589 dw2_asm_output_data (1, DW_UT_skeleton, "DW_UT_skeleton");
10590 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10592 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_abbrev_section_label,
10593 debug_skeleton_abbrev_section,
10594 "Offset Into Abbrev. Section");
10595 if (dwarf_version < 5)
10596 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10597 else
10598 for (int i = 0; i < 8; i++)
10599 dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL);
10601 comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV;
10602 output_die (comp_unit);
10604 /* Build the skeleton debug_abbrev section. */
10605 switch_to_section (debug_skeleton_abbrev_section);
10606 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label);
10608 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit);
10610 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
10613 /* Output a comdat type unit DIE and its children. */
10615 static void
10616 output_comdat_type_unit (comdat_type_node *node)
10618 const char *secname;
10619 char *tmp;
10620 int i;
10621 #if defined (OBJECT_FORMAT_ELF)
10622 tree comdat_key;
10623 #endif
10625 /* First mark all the DIEs in this CU so we know which get local refs. */
10626 mark_dies (node->root_die);
10628 external_ref_hash_type *extern_map = optimize_external_refs (node->root_die);
10630 build_abbrev_table (node->root_die, extern_map);
10632 delete extern_map;
10633 extern_map = NULL;
10635 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10636 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
10637 calc_die_sizes (node->root_die);
10639 #if defined (OBJECT_FORMAT_ELF)
10640 if (dwarf_version >= 5)
10642 if (!dwarf_split_debug_info)
10643 secname = ".debug_info";
10644 else
10645 secname = ".debug_info.dwo";
10647 else if (!dwarf_split_debug_info)
10648 secname = ".debug_types";
10649 else
10650 secname = ".debug_types.dwo";
10652 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
10653 sprintf (tmp, dwarf_version >= 5 ? "wi." : "wt.");
10654 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10655 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
10656 comdat_key = get_identifier (tmp);
10657 targetm.asm_out.named_section (secname,
10658 SECTION_DEBUG | SECTION_LINKONCE,
10659 comdat_key);
10660 #else
10661 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
10662 sprintf (tmp, (dwarf_version >= 5
10663 ? ".gnu.linkonce.wi." : ".gnu.linkonce.wt."));
10664 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10665 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
10666 secname = tmp;
10667 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
10668 #endif
10670 /* Output debugging information. */
10671 output_compilation_unit_header (dwarf_split_debug_info
10672 ? DW_UT_split_type : DW_UT_type);
10673 output_signature (node->signature, "Type Signature");
10674 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
10675 "Offset to Type DIE");
10676 output_die (node->root_die);
10678 unmark_dies (node->root_die);
10681 /* Return the DWARF2/3 pubname associated with a decl. */
10683 static const char *
10684 dwarf2_name (tree decl, int scope)
10686 if (DECL_NAMELESS (decl))
10687 return NULL;
10688 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
10691 /* Add a new entry to .debug_pubnames if appropriate. */
10693 static void
10694 add_pubname_string (const char *str, dw_die_ref die)
10696 pubname_entry e;
10698 e.die = die;
10699 e.name = xstrdup (str);
10700 vec_safe_push (pubname_table, e);
10703 static void
10704 add_pubname (tree decl, dw_die_ref die)
10706 if (!want_pubnames ())
10707 return;
10709 /* Don't add items to the table when we expect that the consumer will have
10710 just read the enclosing die. For example, if the consumer is looking at a
10711 class_member, it will either be inside the class already, or will have just
10712 looked up the class to find the member. Either way, searching the class is
10713 faster than searching the index. */
10714 if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent))
10715 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
10717 const char *name = dwarf2_name (decl, 1);
10719 if (name)
10720 add_pubname_string (name, die);
10724 /* Add an enumerator to the pubnames section. */
10726 static void
10727 add_enumerator_pubname (const char *scope_name, dw_die_ref die)
10729 pubname_entry e;
10731 gcc_assert (scope_name);
10732 e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL);
10733 e.die = die;
10734 vec_safe_push (pubname_table, e);
10737 /* Add a new entry to .debug_pubtypes if appropriate. */
10739 static void
10740 add_pubtype (tree decl, dw_die_ref die)
10742 pubname_entry e;
10744 if (!want_pubnames ())
10745 return;
10747 if ((TREE_PUBLIC (decl)
10748 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
10749 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
10751 tree scope = NULL;
10752 const char *scope_name = "";
10753 const char *sep = is_cxx () ? "::" : ".";
10754 const char *name;
10756 scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL;
10757 if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
10759 scope_name = lang_hooks.dwarf_name (scope, 1);
10760 if (scope_name != NULL && scope_name[0] != '\0')
10761 scope_name = concat (scope_name, sep, NULL);
10762 else
10763 scope_name = "";
10766 if (TYPE_P (decl))
10767 name = type_tag (decl);
10768 else
10769 name = lang_hooks.dwarf_name (decl, 1);
10771 /* If we don't have a name for the type, there's no point in adding
10772 it to the table. */
10773 if (name != NULL && name[0] != '\0')
10775 e.die = die;
10776 e.name = concat (scope_name, name, NULL);
10777 vec_safe_push (pubtype_table, e);
10780 /* Although it might be more consistent to add the pubinfo for the
10781 enumerators as their dies are created, they should only be added if the
10782 enum type meets the criteria above. So rather than re-check the parent
10783 enum type whenever an enumerator die is created, just output them all
10784 here. This isn't protected by the name conditional because anonymous
10785 enums don't have names. */
10786 if (die->die_tag == DW_TAG_enumeration_type)
10788 dw_die_ref c;
10790 FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c));
10795 /* Output a single entry in the pubnames table. */
10797 static void
10798 output_pubname (dw_offset die_offset, pubname_entry *entry)
10800 dw_die_ref die = entry->die;
10801 int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1;
10803 dw2_asm_output_data (DWARF_OFFSET_SIZE, die_offset, "DIE offset");
10805 if (debug_generate_pub_sections == 2)
10807 /* This logic follows gdb's method for determining the value of the flag
10808 byte. */
10809 uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE;
10810 switch (die->die_tag)
10812 case DW_TAG_typedef:
10813 case DW_TAG_base_type:
10814 case DW_TAG_subrange_type:
10815 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
10816 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
10817 break;
10818 case DW_TAG_enumerator:
10819 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10820 GDB_INDEX_SYMBOL_KIND_VARIABLE);
10821 if (!is_cxx ())
10822 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
10823 break;
10824 case DW_TAG_subprogram:
10825 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10826 GDB_INDEX_SYMBOL_KIND_FUNCTION);
10827 if (!is_ada ())
10828 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
10829 break;
10830 case DW_TAG_constant:
10831 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10832 GDB_INDEX_SYMBOL_KIND_VARIABLE);
10833 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
10834 break;
10835 case DW_TAG_variable:
10836 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10837 GDB_INDEX_SYMBOL_KIND_VARIABLE);
10838 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
10839 break;
10840 case DW_TAG_namespace:
10841 case DW_TAG_imported_declaration:
10842 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
10843 break;
10844 case DW_TAG_class_type:
10845 case DW_TAG_interface_type:
10846 case DW_TAG_structure_type:
10847 case DW_TAG_union_type:
10848 case DW_TAG_enumeration_type:
10849 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
10850 if (!is_cxx ())
10851 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
10852 break;
10853 default:
10854 /* An unusual tag. Leave the flag-byte empty. */
10855 break;
10857 dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE,
10858 "GDB-index flags");
10861 dw2_asm_output_nstring (entry->name, -1, "external name");
10865 /* Output the public names table used to speed up access to externally
10866 visible names; or the public types table used to find type definitions. */
10868 static void
10869 output_pubnames (vec<pubname_entry, va_gc> *names)
10871 unsigned i;
10872 unsigned long pubnames_length = size_of_pubnames (names);
10873 pubname_entry *pub;
10875 if (!XCOFF_DEBUGGING_INFO)
10877 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10878 dw2_asm_output_data (4, 0xffffffff,
10879 "Initial length escape value indicating 64-bit DWARF extension");
10880 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
10881 "Pub Info Length");
10884 /* Version number for pubnames/pubtypes is independent of dwarf version. */
10885 dw2_asm_output_data (2, 2, "DWARF Version");
10887 if (dwarf_split_debug_info)
10888 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
10889 debug_skeleton_info_section,
10890 "Offset of Compilation Unit Info");
10891 else
10892 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10893 debug_info_section,
10894 "Offset of Compilation Unit Info");
10895 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
10896 "Compilation Unit Length");
10898 FOR_EACH_VEC_ELT (*names, i, pub)
10900 if (include_pubname_in_output (names, pub))
10902 dw_offset die_offset = pub->die->die_offset;
10904 /* We shouldn't see pubnames for DIEs outside of the main CU. */
10905 if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator)
10906 gcc_assert (pub->die->die_mark);
10908 /* If we're putting types in their own .debug_types sections,
10909 the .debug_pubtypes table will still point to the compile
10910 unit (not the type unit), so we want to use the offset of
10911 the skeleton DIE (if there is one). */
10912 if (pub->die->comdat_type_p && names == pubtype_table)
10914 comdat_type_node *type_node = pub->die->die_id.die_type_node;
10916 if (type_node != NULL)
10917 die_offset = (type_node->skeleton_die != NULL
10918 ? type_node->skeleton_die->die_offset
10919 : comp_unit_die ()->die_offset);
10922 output_pubname (die_offset, pub);
10926 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
10929 /* Output public names and types tables if necessary. */
10931 static void
10932 output_pubtables (void)
10934 if (!want_pubnames () || !info_section_emitted)
10935 return;
10937 switch_to_section (debug_pubnames_section);
10938 output_pubnames (pubname_table);
10939 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
10940 It shouldn't hurt to emit it always, since pure DWARF2 consumers
10941 simply won't look for the section. */
10942 switch_to_section (debug_pubtypes_section);
10943 output_pubnames (pubtype_table);
10947 /* Output the information that goes into the .debug_aranges table.
10948 Namely, define the beginning and ending address range of the
10949 text section generated for this compilation unit. */
10951 static void
10952 output_aranges (void)
10954 unsigned i;
10955 unsigned long aranges_length = size_of_aranges ();
10957 if (!XCOFF_DEBUGGING_INFO)
10959 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10960 dw2_asm_output_data (4, 0xffffffff,
10961 "Initial length escape value indicating 64-bit DWARF extension");
10962 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
10963 "Length of Address Ranges Info");
10966 /* Version number for aranges is still 2, even up to DWARF5. */
10967 dw2_asm_output_data (2, 2, "DWARF Version");
10968 if (dwarf_split_debug_info)
10969 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
10970 debug_skeleton_info_section,
10971 "Offset of Compilation Unit Info");
10972 else
10973 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10974 debug_info_section,
10975 "Offset of Compilation Unit Info");
10976 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
10977 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
10979 /* We need to align to twice the pointer size here. */
10980 if (DWARF_ARANGES_PAD_SIZE)
10982 /* Pad using a 2 byte words so that padding is correct for any
10983 pointer size. */
10984 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
10985 2 * DWARF2_ADDR_SIZE);
10986 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
10987 dw2_asm_output_data (2, 0, NULL);
10990 /* It is necessary not to output these entries if the sections were
10991 not used; if the sections were not used, the length will be 0 and
10992 the address may end up as 0 if the section is discarded by ld
10993 --gc-sections, leaving an invalid (0, 0) entry that can be
10994 confused with the terminator. */
10995 if (text_section_used)
10997 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
10998 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
10999 text_section_label, "Length");
11001 if (cold_text_section_used)
11003 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
11004 "Address");
11005 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
11006 cold_text_section_label, "Length");
11009 if (have_multiple_function_sections)
11011 unsigned fde_idx;
11012 dw_fde_ref fde;
11014 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
11016 if (DECL_IGNORED_P (fde->decl))
11017 continue;
11018 if (!fde->in_std_section)
11020 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
11021 "Address");
11022 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
11023 fde->dw_fde_begin, "Length");
11025 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
11027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
11028 "Address");
11029 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
11030 fde->dw_fde_second_begin, "Length");
11035 /* Output the terminator words. */
11036 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11037 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11040 /* Add a new entry to .debug_ranges. Return its index into
11041 ranges_table vector. */
11043 static unsigned int
11044 add_ranges_num (int num, bool maybe_new_sec)
11046 dw_ranges r = { NULL, num, 0, maybe_new_sec };
11047 vec_safe_push (ranges_table, r);
11048 return vec_safe_length (ranges_table) - 1;
11051 /* Add a new entry to .debug_ranges corresponding to a block, or a
11052 range terminator if BLOCK is NULL. MAYBE_NEW_SEC is true if
11053 this entry might be in a different section from previous range. */
11055 static unsigned int
11056 add_ranges (const_tree block, bool maybe_new_sec)
11058 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0, maybe_new_sec);
11061 /* Note that (*rnglist_table)[offset] is either a head of a rnglist
11062 chain, or middle entry of a chain that will be directly referred to. */
11064 static void
11065 note_rnglist_head (unsigned int offset)
11067 if (dwarf_version < 5 || (*ranges_table)[offset].label)
11068 return;
11069 (*ranges_table)[offset].label = gen_internal_sym ("LLRL");
11072 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
11073 When using dwarf_split_debug_info, address attributes in dies destined
11074 for the final executable should be direct references--setting the
11075 parameter force_direct ensures this behavior. */
11077 static void
11078 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
11079 bool *added, bool force_direct)
11081 unsigned int in_use = vec_safe_length (ranges_by_label);
11082 unsigned int offset;
11083 dw_ranges_by_label rbl = { begin, end };
11084 vec_safe_push (ranges_by_label, rbl);
11085 offset = add_ranges_num (-(int)in_use - 1, true);
11086 if (!*added)
11088 add_AT_range_list (die, DW_AT_ranges, offset, force_direct);
11089 *added = true;
11090 note_rnglist_head (offset);
11094 /* Emit .debug_ranges section. */
11096 static void
11097 output_ranges (void)
11099 unsigned i;
11100 static const char *const start_fmt = "Offset %#x";
11101 const char *fmt = start_fmt;
11102 dw_ranges *r;
11104 switch_to_section (debug_ranges_section);
11105 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
11106 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11108 int block_num = r->num;
11110 if (block_num > 0)
11112 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
11113 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
11115 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
11116 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
11118 /* If all code is in the text section, then the compilation
11119 unit base address defaults to DW_AT_low_pc, which is the
11120 base of the text section. */
11121 if (!have_multiple_function_sections)
11123 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
11124 text_section_label,
11125 fmt, i * 2 * DWARF2_ADDR_SIZE);
11126 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
11127 text_section_label, NULL);
11130 /* Otherwise, the compilation unit base address is zero,
11131 which allows us to use absolute addresses, and not worry
11132 about whether the target supports cross-section
11133 arithmetic. */
11134 else
11136 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11137 fmt, i * 2 * DWARF2_ADDR_SIZE);
11138 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
11141 fmt = NULL;
11144 /* Negative block_num stands for an index into ranges_by_label. */
11145 else if (block_num < 0)
11147 int lab_idx = - block_num - 1;
11149 if (!have_multiple_function_sections)
11151 gcc_unreachable ();
11152 #if 0
11153 /* If we ever use add_ranges_by_labels () for a single
11154 function section, all we have to do is to take out
11155 the #if 0 above. */
11156 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11157 (*ranges_by_label)[lab_idx].begin,
11158 text_section_label,
11159 fmt, i * 2 * DWARF2_ADDR_SIZE);
11160 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11161 (*ranges_by_label)[lab_idx].end,
11162 text_section_label, NULL);
11163 #endif
11165 else
11167 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11168 (*ranges_by_label)[lab_idx].begin,
11169 fmt, i * 2 * DWARF2_ADDR_SIZE);
11170 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11171 (*ranges_by_label)[lab_idx].end,
11172 NULL);
11175 else
11177 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11178 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11179 fmt = start_fmt;
11184 /* Non-zero if .debug_line_str should be used for .debug_line section
11185 strings or strings that are likely shareable with those. */
11186 #define DWARF5_USE_DEBUG_LINE_STR \
11187 (!DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET \
11188 && (DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) != 0 \
11189 /* FIXME: there is no .debug_line_str.dwo section, \
11190 for -gsplit-dwarf we should use DW_FORM_strx instead. */ \
11191 && !dwarf_split_debug_info)
11193 /* Assign .debug_rnglists indexes. */
11195 static void
11196 index_rnglists (void)
11198 unsigned i;
11199 dw_ranges *r;
11201 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11202 if (r->label)
11203 r->idx = rnglist_idx++;
11206 /* Emit .debug_rnglists section. */
11208 static void
11209 output_rnglists (unsigned generation)
11211 unsigned i;
11212 dw_ranges *r;
11213 char l1[MAX_ARTIFICIAL_LABEL_BYTES];
11214 char l2[MAX_ARTIFICIAL_LABEL_BYTES];
11215 char basebuf[MAX_ARTIFICIAL_LABEL_BYTES];
11217 switch_to_section (debug_ranges_section);
11218 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
11219 /* There are up to 4 unique ranges labels per generation.
11220 See also init_sections_and_labels. */
11221 ASM_GENERATE_INTERNAL_LABEL (l1, DEBUG_RANGES_SECTION_LABEL,
11222 2 + generation * 4);
11223 ASM_GENERATE_INTERNAL_LABEL (l2, DEBUG_RANGES_SECTION_LABEL,
11224 3 + generation * 4);
11225 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11226 dw2_asm_output_data (4, 0xffffffff,
11227 "Initial length escape value indicating "
11228 "64-bit DWARF extension");
11229 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
11230 "Length of Range Lists");
11231 ASM_OUTPUT_LABEL (asm_out_file, l1);
11232 dw2_asm_output_data (2, dwarf_version, "DWARF Version");
11233 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
11234 dw2_asm_output_data (1, 0, "Segment Size");
11235 /* Emit the offset table only for -gsplit-dwarf. If we don't care
11236 about relocation sizes and primarily care about the size of .debug*
11237 sections in linked shared libraries and executables, then
11238 the offset table plus corresponding DW_FORM_rnglistx uleb128 indexes
11239 into it are usually larger than just DW_FORM_sec_offset offsets
11240 into the .debug_rnglists section. */
11241 dw2_asm_output_data (4, dwarf_split_debug_info ? rnglist_idx : 0,
11242 "Offset Entry Count");
11243 if (dwarf_split_debug_info)
11245 ASM_OUTPUT_LABEL (asm_out_file, ranges_base_label);
11246 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11247 if (r->label)
11248 dw2_asm_output_delta (DWARF_OFFSET_SIZE, r->label,
11249 ranges_base_label, NULL);
11252 const char *lab = "";
11253 unsigned int len = vec_safe_length (ranges_table);
11254 const char *base = NULL;
11255 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11257 int block_num = r->num;
11259 if (r->label)
11261 ASM_OUTPUT_LABEL (asm_out_file, r->label);
11262 lab = r->label;
11264 if (HAVE_AS_LEB128 && (r->label || r->maybe_new_sec))
11265 base = NULL;
11266 if (block_num > 0)
11268 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
11269 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
11271 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
11272 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
11274 if (HAVE_AS_LEB128)
11276 /* If all code is in the text section, then the compilation
11277 unit base address defaults to DW_AT_low_pc, which is the
11278 base of the text section. */
11279 if (!have_multiple_function_sections)
11281 dw2_asm_output_data (1, DW_RLE_offset_pair,
11282 "DW_RLE_offset_pair (%s)", lab);
11283 dw2_asm_output_delta_uleb128 (blabel, text_section_label,
11284 "Range begin address (%s)", lab);
11285 dw2_asm_output_delta_uleb128 (elabel, text_section_label,
11286 "Range end address (%s)", lab);
11287 continue;
11289 if (base == NULL)
11291 dw_ranges *r2 = NULL;
11292 if (i < len - 1)
11293 r2 = &(*ranges_table)[i + 1];
11294 if (r2
11295 && r2->num != 0
11296 && r2->label == NULL
11297 && !r2->maybe_new_sec)
11299 dw2_asm_output_data (1, DW_RLE_base_address,
11300 "DW_RLE_base_address (%s)", lab);
11301 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11302 "Base address (%s)", lab);
11303 strcpy (basebuf, blabel);
11304 base = basebuf;
11307 if (base)
11309 dw2_asm_output_data (1, DW_RLE_offset_pair,
11310 "DW_RLE_offset_pair (%s)", lab);
11311 dw2_asm_output_delta_uleb128 (blabel, base,
11312 "Range begin address (%s)", lab);
11313 dw2_asm_output_delta_uleb128 (elabel, base,
11314 "Range end address (%s)", lab);
11315 continue;
11317 dw2_asm_output_data (1, DW_RLE_start_length,
11318 "DW_RLE_start_length (%s)", lab);
11319 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11320 "Range begin address (%s)", lab);
11321 dw2_asm_output_delta_uleb128 (elabel, blabel,
11322 "Range length (%s)", lab);
11324 else
11326 dw2_asm_output_data (1, DW_RLE_start_end,
11327 "DW_RLE_start_end (%s)", lab);
11328 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11329 "Range begin address (%s)", lab);
11330 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel,
11331 "Range end address (%s)", lab);
11335 /* Negative block_num stands for an index into ranges_by_label. */
11336 else if (block_num < 0)
11338 int lab_idx = - block_num - 1;
11339 const char *blabel = (*ranges_by_label)[lab_idx].begin;
11340 const char *elabel = (*ranges_by_label)[lab_idx].end;
11342 if (!have_multiple_function_sections)
11343 gcc_unreachable ();
11344 if (HAVE_AS_LEB128)
11346 dw2_asm_output_data (1, DW_RLE_start_length,
11347 "DW_RLE_start_length (%s)", lab);
11348 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11349 "Range begin address (%s)", lab);
11350 dw2_asm_output_delta_uleb128 (elabel, blabel,
11351 "Range length (%s)", lab);
11353 else
11355 dw2_asm_output_data (1, DW_RLE_start_end,
11356 "DW_RLE_start_end (%s)", lab);
11357 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11358 "Range begin address (%s)", lab);
11359 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel,
11360 "Range end address (%s)", lab);
11363 else
11364 dw2_asm_output_data (1, DW_RLE_end_of_list,
11365 "DW_RLE_end_of_list (%s)", lab);
11367 ASM_OUTPUT_LABEL (asm_out_file, l2);
11370 /* Data structure containing information about input files. */
11371 struct file_info
11373 const char *path; /* Complete file name. */
11374 const char *fname; /* File name part. */
11375 int length; /* Length of entire string. */
11376 struct dwarf_file_data * file_idx; /* Index in input file table. */
11377 int dir_idx; /* Index in directory table. */
11380 /* Data structure containing information about directories with source
11381 files. */
11382 struct dir_info
11384 const char *path; /* Path including directory name. */
11385 int length; /* Path length. */
11386 int prefix; /* Index of directory entry which is a prefix. */
11387 int count; /* Number of files in this directory. */
11388 int dir_idx; /* Index of directory used as base. */
11391 /* Callback function for file_info comparison. We sort by looking at
11392 the directories in the path. */
11394 static int
11395 file_info_cmp (const void *p1, const void *p2)
11397 const struct file_info *const s1 = (const struct file_info *) p1;
11398 const struct file_info *const s2 = (const struct file_info *) p2;
11399 const unsigned char *cp1;
11400 const unsigned char *cp2;
11402 /* Take care of file names without directories. We need to make sure that
11403 we return consistent values to qsort since some will get confused if
11404 we return the same value when identical operands are passed in opposite
11405 orders. So if neither has a directory, return 0 and otherwise return
11406 1 or -1 depending on which one has the directory. */
11407 if ((s1->path == s1->fname || s2->path == s2->fname))
11408 return (s2->path == s2->fname) - (s1->path == s1->fname);
11410 cp1 = (const unsigned char *) s1->path;
11411 cp2 = (const unsigned char *) s2->path;
11413 while (1)
11415 ++cp1;
11416 ++cp2;
11417 /* Reached the end of the first path? If so, handle like above. */
11418 if ((cp1 == (const unsigned char *) s1->fname)
11419 || (cp2 == (const unsigned char *) s2->fname))
11420 return ((cp2 == (const unsigned char *) s2->fname)
11421 - (cp1 == (const unsigned char *) s1->fname));
11423 /* Character of current path component the same? */
11424 else if (*cp1 != *cp2)
11425 return *cp1 - *cp2;
11429 struct file_name_acquire_data
11431 struct file_info *files;
11432 int used_files;
11433 int max_files;
11436 /* Traversal function for the hash table. */
11439 file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad)
11441 struct dwarf_file_data *d = *slot;
11442 struct file_info *fi;
11443 const char *f;
11445 gcc_assert (fnad->max_files >= d->emitted_number);
11447 if (! d->emitted_number)
11448 return 1;
11450 gcc_assert (fnad->max_files != fnad->used_files);
11452 fi = fnad->files + fnad->used_files++;
11454 /* Skip all leading "./". */
11455 f = d->filename;
11456 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
11457 f += 2;
11459 /* Create a new array entry. */
11460 fi->path = f;
11461 fi->length = strlen (f);
11462 fi->file_idx = d;
11464 /* Search for the file name part. */
11465 f = strrchr (f, DIR_SEPARATOR);
11466 #if defined (DIR_SEPARATOR_2)
11468 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
11470 if (g != NULL)
11472 if (f == NULL || f < g)
11473 f = g;
11476 #endif
11478 fi->fname = f == NULL ? fi->path : f + 1;
11479 return 1;
11482 /* Helper function for output_file_names. Emit a FORM encoded
11483 string STR, with assembly comment start ENTRY_KIND and
11484 index IDX */
11486 static void
11487 output_line_string (enum dwarf_form form, const char *str,
11488 const char *entry_kind, unsigned int idx)
11490 switch (form)
11492 case DW_FORM_string:
11493 dw2_asm_output_nstring (str, -1, "%s: %#x", entry_kind, idx);
11494 break;
11495 case DW_FORM_line_strp:
11496 if (!debug_line_str_hash)
11497 debug_line_str_hash
11498 = hash_table<indirect_string_hasher>::create_ggc (10);
11500 struct indirect_string_node *node;
11501 node = find_AT_string_in_table (str, debug_line_str_hash);
11502 set_indirect_string (node);
11503 node->form = form;
11504 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
11505 debug_line_str_section, "%s: %#x: \"%s\"",
11506 entry_kind, 0, node->str);
11507 break;
11508 default:
11509 gcc_unreachable ();
11513 /* Output the directory table and the file name table. We try to minimize
11514 the total amount of memory needed. A heuristic is used to avoid large
11515 slowdowns with many input files. */
11517 static void
11518 output_file_names (void)
11520 struct file_name_acquire_data fnad;
11521 int numfiles;
11522 struct file_info *files;
11523 struct dir_info *dirs;
11524 int *saved;
11525 int *savehere;
11526 int *backmap;
11527 int ndirs;
11528 int idx_offset;
11529 int i;
11531 if (!last_emitted_file)
11533 if (dwarf_version >= 5)
11535 dw2_asm_output_data (1, 0, "Directory entry format count");
11536 dw2_asm_output_data_uleb128 (0, "Directories count");
11537 dw2_asm_output_data (1, 0, "File name entry format count");
11538 dw2_asm_output_data_uleb128 (0, "File names count");
11540 else
11542 dw2_asm_output_data (1, 0, "End directory table");
11543 dw2_asm_output_data (1, 0, "End file name table");
11545 return;
11548 numfiles = last_emitted_file->emitted_number;
11550 /* Allocate the various arrays we need. */
11551 files = XALLOCAVEC (struct file_info, numfiles);
11552 dirs = XALLOCAVEC (struct dir_info, numfiles);
11554 fnad.files = files;
11555 fnad.used_files = 0;
11556 fnad.max_files = numfiles;
11557 file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad);
11558 gcc_assert (fnad.used_files == fnad.max_files);
11560 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
11562 /* Find all the different directories used. */
11563 dirs[0].path = files[0].path;
11564 dirs[0].length = files[0].fname - files[0].path;
11565 dirs[0].prefix = -1;
11566 dirs[0].count = 1;
11567 dirs[0].dir_idx = 0;
11568 files[0].dir_idx = 0;
11569 ndirs = 1;
11571 for (i = 1; i < numfiles; i++)
11572 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
11573 && memcmp (dirs[ndirs - 1].path, files[i].path,
11574 dirs[ndirs - 1].length) == 0)
11576 /* Same directory as last entry. */
11577 files[i].dir_idx = ndirs - 1;
11578 ++dirs[ndirs - 1].count;
11580 else
11582 int j;
11584 /* This is a new directory. */
11585 dirs[ndirs].path = files[i].path;
11586 dirs[ndirs].length = files[i].fname - files[i].path;
11587 dirs[ndirs].count = 1;
11588 dirs[ndirs].dir_idx = ndirs;
11589 files[i].dir_idx = ndirs;
11591 /* Search for a prefix. */
11592 dirs[ndirs].prefix = -1;
11593 for (j = 0; j < ndirs; j++)
11594 if (dirs[j].length < dirs[ndirs].length
11595 && dirs[j].length > 1
11596 && (dirs[ndirs].prefix == -1
11597 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
11598 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
11599 dirs[ndirs].prefix = j;
11601 ++ndirs;
11604 /* Now to the actual work. We have to find a subset of the directories which
11605 allow expressing the file name using references to the directory table
11606 with the least amount of characters. We do not do an exhaustive search
11607 where we would have to check out every combination of every single
11608 possible prefix. Instead we use a heuristic which provides nearly optimal
11609 results in most cases and never is much off. */
11610 saved = XALLOCAVEC (int, ndirs);
11611 savehere = XALLOCAVEC (int, ndirs);
11613 memset (saved, '\0', ndirs * sizeof (saved[0]));
11614 for (i = 0; i < ndirs; i++)
11616 int j;
11617 int total;
11619 /* We can always save some space for the current directory. But this
11620 does not mean it will be enough to justify adding the directory. */
11621 savehere[i] = dirs[i].length;
11622 total = (savehere[i] - saved[i]) * dirs[i].count;
11624 for (j = i + 1; j < ndirs; j++)
11626 savehere[j] = 0;
11627 if (saved[j] < dirs[i].length)
11629 /* Determine whether the dirs[i] path is a prefix of the
11630 dirs[j] path. */
11631 int k;
11633 k = dirs[j].prefix;
11634 while (k != -1 && k != (int) i)
11635 k = dirs[k].prefix;
11637 if (k == (int) i)
11639 /* Yes it is. We can possibly save some memory by
11640 writing the filenames in dirs[j] relative to
11641 dirs[i]. */
11642 savehere[j] = dirs[i].length;
11643 total += (savehere[j] - saved[j]) * dirs[j].count;
11648 /* Check whether we can save enough to justify adding the dirs[i]
11649 directory. */
11650 if (total > dirs[i].length + 1)
11652 /* It's worthwhile adding. */
11653 for (j = i; j < ndirs; j++)
11654 if (savehere[j] > 0)
11656 /* Remember how much we saved for this directory so far. */
11657 saved[j] = savehere[j];
11659 /* Remember the prefix directory. */
11660 dirs[j].dir_idx = i;
11665 /* Emit the directory name table. */
11666 idx_offset = dirs[0].length > 0 ? 1 : 0;
11667 enum dwarf_form str_form = DW_FORM_string;
11668 enum dwarf_form idx_form = DW_FORM_udata;
11669 if (dwarf_version >= 5)
11671 const char *comp_dir = comp_dir_string ();
11672 if (comp_dir == NULL)
11673 comp_dir = "";
11674 dw2_asm_output_data (1, 1, "Directory entry format count");
11675 if (DWARF5_USE_DEBUG_LINE_STR)
11676 str_form = DW_FORM_line_strp;
11677 dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
11678 dw2_asm_output_data_uleb128 (str_form, "%s",
11679 get_DW_FORM_name (str_form));
11680 dw2_asm_output_data_uleb128 (ndirs + idx_offset, "Directories count");
11681 if (str_form == DW_FORM_string)
11683 dw2_asm_output_nstring (comp_dir, -1, "Directory Entry: %#x", 0);
11684 for (i = 1 - idx_offset; i < ndirs; i++)
11685 dw2_asm_output_nstring (dirs[i].path,
11686 dirs[i].length
11687 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
11688 "Directory Entry: %#x", i + idx_offset);
11690 else
11692 output_line_string (str_form, comp_dir, "Directory Entry", 0);
11693 for (i = 1 - idx_offset; i < ndirs; i++)
11695 const char *str
11696 = ggc_alloc_string (dirs[i].path,
11697 dirs[i].length
11698 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR);
11699 output_line_string (str_form, str, "Directory Entry",
11700 (unsigned) i + idx_offset);
11704 else
11706 for (i = 1 - idx_offset; i < ndirs; i++)
11707 dw2_asm_output_nstring (dirs[i].path,
11708 dirs[i].length
11709 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
11710 "Directory Entry: %#x", i + idx_offset);
11712 dw2_asm_output_data (1, 0, "End directory table");
11715 /* We have to emit them in the order of emitted_number since that's
11716 used in the debug info generation. To do this efficiently we
11717 generate a back-mapping of the indices first. */
11718 backmap = XALLOCAVEC (int, numfiles);
11719 for (i = 0; i < numfiles; i++)
11720 backmap[files[i].file_idx->emitted_number - 1] = i;
11722 if (dwarf_version >= 5)
11724 const char *filename0 = get_AT_string (comp_unit_die (), DW_AT_name);
11725 if (filename0 == NULL)
11726 filename0 = "";
11727 /* DW_LNCT_directory_index can use DW_FORM_udata, DW_FORM_data1 and
11728 DW_FORM_data2. Choose one based on the number of directories
11729 and how much space would they occupy in each encoding.
11730 If we have at most 256 directories, all indexes fit into
11731 a single byte, so DW_FORM_data1 is most compact (if there
11732 are at most 128 directories, DW_FORM_udata would be as
11733 compact as that, but not shorter and slower to decode). */
11734 if (ndirs + idx_offset <= 256)
11735 idx_form = DW_FORM_data1;
11736 /* If there are more than 65536 directories, we have to use
11737 DW_FORM_udata, DW_FORM_data2 can't refer to them.
11738 Otherwise, compute what space would occupy if all the indexes
11739 used DW_FORM_udata - sum - and compare that to how large would
11740 be DW_FORM_data2 encoding, and pick the more efficient one. */
11741 else if (ndirs + idx_offset <= 65536)
11743 unsigned HOST_WIDE_INT sum = 1;
11744 for (i = 0; i < numfiles; i++)
11746 int file_idx = backmap[i];
11747 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
11748 sum += size_of_uleb128 (dir_idx);
11750 if (sum >= HOST_WIDE_INT_UC (2) * (numfiles + 1))
11751 idx_form = DW_FORM_data2;
11753 #ifdef VMS_DEBUGGING_INFO
11754 dw2_asm_output_data (1, 4, "File name entry format count");
11755 #else
11756 dw2_asm_output_data (1, 2, "File name entry format count");
11757 #endif
11758 dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
11759 dw2_asm_output_data_uleb128 (str_form, "%s",
11760 get_DW_FORM_name (str_form));
11761 dw2_asm_output_data_uleb128 (DW_LNCT_directory_index,
11762 "DW_LNCT_directory_index");
11763 dw2_asm_output_data_uleb128 (idx_form, "%s",
11764 get_DW_FORM_name (idx_form));
11765 #ifdef VMS_DEBUGGING_INFO
11766 dw2_asm_output_data_uleb128 (DW_LNCT_timestamp, "DW_LNCT_timestamp");
11767 dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
11768 dw2_asm_output_data_uleb128 (DW_LNCT_size, "DW_LNCT_size");
11769 dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
11770 #endif
11771 dw2_asm_output_data_uleb128 (numfiles + 1, "File names count");
11773 output_line_string (str_form, filename0, "File Entry", 0);
11775 /* Include directory index. */
11776 if (idx_form != DW_FORM_udata)
11777 dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
11778 0, NULL);
11779 else
11780 dw2_asm_output_data_uleb128 (0, NULL);
11782 #ifdef VMS_DEBUGGING_INFO
11783 dw2_asm_output_data_uleb128 (0, NULL);
11784 dw2_asm_output_data_uleb128 (0, NULL);
11785 #endif
11788 /* Now write all the file names. */
11789 for (i = 0; i < numfiles; i++)
11791 int file_idx = backmap[i];
11792 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
11794 #ifdef VMS_DEBUGGING_INFO
11795 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
11797 /* Setting these fields can lead to debugger miscomparisons,
11798 but VMS Debug requires them to be set correctly. */
11800 int ver;
11801 long long cdt;
11802 long siz;
11803 int maxfilelen = (strlen (files[file_idx].path)
11804 + dirs[dir_idx].length
11805 + MAX_VMS_VERSION_LEN + 1);
11806 char *filebuf = XALLOCAVEC (char, maxfilelen);
11808 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
11809 snprintf (filebuf, maxfilelen, "%s;%d",
11810 files[file_idx].path + dirs[dir_idx].length, ver);
11812 output_line_string (str_form, filebuf, "File Entry", (unsigned) i + 1);
11814 /* Include directory index. */
11815 if (dwarf_version >= 5 && idx_form != DW_FORM_udata)
11816 dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
11817 dir_idx + idx_offset, NULL);
11818 else
11819 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11821 /* Modification time. */
11822 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path,
11823 &cdt, 0, 0, 0) == 0)
11824 ? cdt : 0, NULL);
11826 /* File length in bytes. */
11827 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path,
11828 0, &siz, 0, 0) == 0)
11829 ? siz : 0, NULL);
11830 #else
11831 output_line_string (str_form,
11832 files[file_idx].path + dirs[dir_idx].length,
11833 "File Entry", (unsigned) i + 1);
11835 /* Include directory index. */
11836 if (dwarf_version >= 5 && idx_form != DW_FORM_udata)
11837 dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
11838 dir_idx + idx_offset, NULL);
11839 else
11840 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11842 if (dwarf_version >= 5)
11843 continue;
11845 /* Modification time. */
11846 dw2_asm_output_data_uleb128 (0, NULL);
11848 /* File length in bytes. */
11849 dw2_asm_output_data_uleb128 (0, NULL);
11850 #endif /* VMS_DEBUGGING_INFO */
11853 if (dwarf_version < 5)
11854 dw2_asm_output_data (1, 0, "End file name table");
11858 /* Output one line number table into the .debug_line section. */
11860 static void
11861 output_one_line_info_table (dw_line_info_table *table)
11863 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
11864 unsigned int current_line = 1;
11865 bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
11866 dw_line_info_entry *ent;
11867 size_t i;
11869 FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent)
11871 switch (ent->opcode)
11873 case LI_set_address:
11874 /* ??? Unfortunately, we have little choice here currently, and
11875 must always use the most general form. GCC does not know the
11876 address delta itself, so we can't use DW_LNS_advance_pc. Many
11877 ports do have length attributes which will give an upper bound
11878 on the address range. We could perhaps use length attributes
11879 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
11880 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
11882 /* This can handle any delta. This takes
11883 4+DWARF2_ADDR_SIZE bytes. */
11884 dw2_asm_output_data (1, 0, "set address %s", line_label);
11885 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11886 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11887 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
11888 break;
11890 case LI_set_line:
11891 if (ent->val == current_line)
11893 /* We still need to start a new row, so output a copy insn. */
11894 dw2_asm_output_data (1, DW_LNS_copy,
11895 "copy line %u", current_line);
11897 else
11899 int line_offset = ent->val - current_line;
11900 int line_delta = line_offset - DWARF_LINE_BASE;
11902 current_line = ent->val;
11903 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
11905 /* This can handle deltas from -10 to 234, using the current
11906 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
11907 This takes 1 byte. */
11908 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
11909 "line %u", current_line);
11911 else
11913 /* This can handle any delta. This takes at least 4 bytes,
11914 depending on the value being encoded. */
11915 dw2_asm_output_data (1, DW_LNS_advance_line,
11916 "advance to line %u", current_line);
11917 dw2_asm_output_data_sleb128 (line_offset, NULL);
11918 dw2_asm_output_data (1, DW_LNS_copy, NULL);
11921 break;
11923 case LI_set_file:
11924 dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
11925 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
11926 break;
11928 case LI_set_column:
11929 dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
11930 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
11931 break;
11933 case LI_negate_stmt:
11934 current_is_stmt = !current_is_stmt;
11935 dw2_asm_output_data (1, DW_LNS_negate_stmt,
11936 "is_stmt %d", current_is_stmt);
11937 break;
11939 case LI_set_prologue_end:
11940 dw2_asm_output_data (1, DW_LNS_set_prologue_end,
11941 "set prologue end");
11942 break;
11944 case LI_set_epilogue_begin:
11945 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
11946 "set epilogue begin");
11947 break;
11949 case LI_set_discriminator:
11950 dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
11951 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
11952 dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
11953 dw2_asm_output_data_uleb128 (ent->val, NULL);
11954 break;
11958 /* Emit debug info for the address of the end of the table. */
11959 dw2_asm_output_data (1, 0, "set address %s", table->end_label);
11960 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11961 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11962 dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);
11964 dw2_asm_output_data (1, 0, "end sequence");
11965 dw2_asm_output_data_uleb128 (1, NULL);
11966 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
11969 /* Output the source line number correspondence information. This
11970 information goes into the .debug_line section. */
11972 static void
11973 output_line_info (bool prologue_only)
11975 static unsigned int generation;
11976 char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
11977 char p1[MAX_ARTIFICIAL_LABEL_BYTES], p2[MAX_ARTIFICIAL_LABEL_BYTES];
11978 bool saw_one = false;
11979 int opc;
11981 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, generation);
11982 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, generation);
11983 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, generation);
11984 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, generation++);
11986 if (!XCOFF_DEBUGGING_INFO)
11988 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11989 dw2_asm_output_data (4, 0xffffffff,
11990 "Initial length escape value indicating 64-bit DWARF extension");
11991 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
11992 "Length of Source Line Info");
11995 ASM_OUTPUT_LABEL (asm_out_file, l1);
11997 dw2_asm_output_data (2, dwarf_version, "DWARF Version");
11998 if (dwarf_version >= 5)
12000 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
12001 dw2_asm_output_data (1, 0, "Segment Size");
12003 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
12004 ASM_OUTPUT_LABEL (asm_out_file, p1);
12006 /* Define the architecture-dependent minimum instruction length (in bytes).
12007 In this implementation of DWARF, this field is used for information
12008 purposes only. Since GCC generates assembly language, we have no
12009 a priori knowledge of how many instruction bytes are generated for each
12010 source line, and therefore can use only the DW_LNE_set_address and
12011 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
12012 this as '1', which is "correct enough" for all architectures,
12013 and don't let the target override. */
12014 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
12016 if (dwarf_version >= 4)
12017 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
12018 "Maximum Operations Per Instruction");
12019 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
12020 "Default is_stmt_start flag");
12021 dw2_asm_output_data (1, DWARF_LINE_BASE,
12022 "Line Base Value (Special Opcodes)");
12023 dw2_asm_output_data (1, DWARF_LINE_RANGE,
12024 "Line Range Value (Special Opcodes)");
12025 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
12026 "Special Opcode Base");
12028 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
12030 int n_op_args;
12031 switch (opc)
12033 case DW_LNS_advance_pc:
12034 case DW_LNS_advance_line:
12035 case DW_LNS_set_file:
12036 case DW_LNS_set_column:
12037 case DW_LNS_fixed_advance_pc:
12038 case DW_LNS_set_isa:
12039 n_op_args = 1;
12040 break;
12041 default:
12042 n_op_args = 0;
12043 break;
12046 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
12047 opc, n_op_args);
12050 /* Write out the information about the files we use. */
12051 output_file_names ();
12052 ASM_OUTPUT_LABEL (asm_out_file, p2);
12053 if (prologue_only)
12055 /* Output the marker for the end of the line number info. */
12056 ASM_OUTPUT_LABEL (asm_out_file, l2);
12057 return;
12060 if (separate_line_info)
12062 dw_line_info_table *table;
12063 size_t i;
12065 FOR_EACH_VEC_ELT (*separate_line_info, i, table)
12066 if (table->in_use)
12068 output_one_line_info_table (table);
12069 saw_one = true;
12072 if (cold_text_section_line_info && cold_text_section_line_info->in_use)
12074 output_one_line_info_table (cold_text_section_line_info);
12075 saw_one = true;
12078 /* ??? Some Darwin linkers crash on a .debug_line section with no
12079 sequences. Further, merely a DW_LNE_end_sequence entry is not
12080 sufficient -- the address column must also be initialized.
12081 Make sure to output at least one set_address/end_sequence pair,
12082 choosing .text since that section is always present. */
12083 if (text_section_line_info->in_use || !saw_one)
12084 output_one_line_info_table (text_section_line_info);
12086 /* Output the marker for the end of the line number info. */
12087 ASM_OUTPUT_LABEL (asm_out_file, l2);
12090 /* Return true if DW_AT_endianity should be emitted according to REVERSE. */
12092 static inline bool
12093 need_endianity_attribute_p (bool reverse)
12095 return reverse && (dwarf_version >= 3 || !dwarf_strict);
12098 /* Given a pointer to a tree node for some base type, return a pointer to
12099 a DIE that describes the given type. REVERSE is true if the type is
12100 to be interpreted in the reverse storage order wrt the target order.
12102 This routine must only be called for GCC type nodes that correspond to
12103 Dwarf base (fundamental) types. */
12105 static dw_die_ref
12106 base_type_die (tree type, bool reverse)
12108 dw_die_ref base_type_result;
12109 enum dwarf_type encoding;
12110 bool fpt_used = false;
12111 struct fixed_point_type_info fpt_info;
12112 tree type_bias = NULL_TREE;
12114 /* If this is a subtype that should not be emitted as a subrange type,
12115 use the base type. See subrange_type_for_debug_p. */
12116 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
12117 type = TREE_TYPE (type);
12119 switch (TREE_CODE (type))
12121 case INTEGER_TYPE:
12122 if ((dwarf_version >= 4 || !dwarf_strict)
12123 && TYPE_NAME (type)
12124 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12125 && DECL_IS_BUILTIN (TYPE_NAME (type))
12126 && DECL_NAME (TYPE_NAME (type)))
12128 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
12129 if (strcmp (name, "char16_t") == 0
12130 || strcmp (name, "char32_t") == 0)
12132 encoding = DW_ATE_UTF;
12133 break;
12136 if ((dwarf_version >= 3 || !dwarf_strict)
12137 && lang_hooks.types.get_fixed_point_type_info)
12139 memset (&fpt_info, 0, sizeof (fpt_info));
12140 if (lang_hooks.types.get_fixed_point_type_info (type, &fpt_info))
12142 fpt_used = true;
12143 encoding = ((TYPE_UNSIGNED (type))
12144 ? DW_ATE_unsigned_fixed
12145 : DW_ATE_signed_fixed);
12146 break;
12149 if (TYPE_STRING_FLAG (type))
12151 if (TYPE_UNSIGNED (type))
12152 encoding = DW_ATE_unsigned_char;
12153 else
12154 encoding = DW_ATE_signed_char;
12156 else if (TYPE_UNSIGNED (type))
12157 encoding = DW_ATE_unsigned;
12158 else
12159 encoding = DW_ATE_signed;
12161 if (!dwarf_strict
12162 && lang_hooks.types.get_type_bias)
12163 type_bias = lang_hooks.types.get_type_bias (type);
12164 break;
12166 case REAL_TYPE:
12167 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
12169 if (dwarf_version >= 3 || !dwarf_strict)
12170 encoding = DW_ATE_decimal_float;
12171 else
12172 encoding = DW_ATE_lo_user;
12174 else
12175 encoding = DW_ATE_float;
12176 break;
12178 case FIXED_POINT_TYPE:
12179 if (!(dwarf_version >= 3 || !dwarf_strict))
12180 encoding = DW_ATE_lo_user;
12181 else if (TYPE_UNSIGNED (type))
12182 encoding = DW_ATE_unsigned_fixed;
12183 else
12184 encoding = DW_ATE_signed_fixed;
12185 break;
12187 /* Dwarf2 doesn't know anything about complex ints, so use
12188 a user defined type for it. */
12189 case COMPLEX_TYPE:
12190 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
12191 encoding = DW_ATE_complex_float;
12192 else
12193 encoding = DW_ATE_lo_user;
12194 break;
12196 case BOOLEAN_TYPE:
12197 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
12198 encoding = DW_ATE_boolean;
12199 break;
12201 default:
12202 /* No other TREE_CODEs are Dwarf fundamental types. */
12203 gcc_unreachable ();
12206 base_type_result = new_die_raw (DW_TAG_base_type);
12208 add_AT_unsigned (base_type_result, DW_AT_byte_size,
12209 int_size_in_bytes (type));
12210 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
12212 if (need_endianity_attribute_p (reverse))
12213 add_AT_unsigned (base_type_result, DW_AT_endianity,
12214 BYTES_BIG_ENDIAN ? DW_END_little : DW_END_big);
12216 add_alignment_attribute (base_type_result, type);
12218 if (fpt_used)
12220 switch (fpt_info.scale_factor_kind)
12222 case fixed_point_scale_factor_binary:
12223 add_AT_int (base_type_result, DW_AT_binary_scale,
12224 fpt_info.scale_factor.binary);
12225 break;
12227 case fixed_point_scale_factor_decimal:
12228 add_AT_int (base_type_result, DW_AT_decimal_scale,
12229 fpt_info.scale_factor.decimal);
12230 break;
12232 case fixed_point_scale_factor_arbitrary:
12233 /* Arbitrary scale factors cannot be described in standard DWARF,
12234 yet. */
12235 if (!dwarf_strict)
12237 /* Describe the scale factor as a rational constant. */
12238 const dw_die_ref scale_factor
12239 = new_die (DW_TAG_constant, comp_unit_die (), type);
12241 add_AT_unsigned (scale_factor, DW_AT_GNU_numerator,
12242 fpt_info.scale_factor.arbitrary.numerator);
12243 add_AT_int (scale_factor, DW_AT_GNU_denominator,
12244 fpt_info.scale_factor.arbitrary.denominator);
12246 add_AT_die_ref (base_type_result, DW_AT_small, scale_factor);
12248 break;
12250 default:
12251 gcc_unreachable ();
12255 if (type_bias)
12256 add_scalar_info (base_type_result, DW_AT_GNU_bias, type_bias,
12257 dw_scalar_form_constant
12258 | dw_scalar_form_exprloc
12259 | dw_scalar_form_reference,
12260 NULL);
12262 return base_type_result;
12265 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
12266 named 'auto' in its type: return true for it, false otherwise. */
12268 static inline bool
12269 is_cxx_auto (tree type)
12271 if (is_cxx ())
12273 tree name = TYPE_IDENTIFIER (type);
12274 if (name == get_identifier ("auto")
12275 || name == get_identifier ("decltype(auto)"))
12276 return true;
12278 return false;
12281 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
12282 given input type is a Dwarf "fundamental" type. Otherwise return null. */
12284 static inline int
12285 is_base_type (tree type)
12287 switch (TREE_CODE (type))
12289 case INTEGER_TYPE:
12290 case REAL_TYPE:
12291 case FIXED_POINT_TYPE:
12292 case COMPLEX_TYPE:
12293 case BOOLEAN_TYPE:
12294 case POINTER_BOUNDS_TYPE:
12295 return 1;
12297 case VOID_TYPE:
12298 case ARRAY_TYPE:
12299 case RECORD_TYPE:
12300 case UNION_TYPE:
12301 case QUAL_UNION_TYPE:
12302 case ENUMERAL_TYPE:
12303 case FUNCTION_TYPE:
12304 case METHOD_TYPE:
12305 case POINTER_TYPE:
12306 case REFERENCE_TYPE:
12307 case NULLPTR_TYPE:
12308 case OFFSET_TYPE:
12309 case LANG_TYPE:
12310 case VECTOR_TYPE:
12311 return 0;
12313 default:
12314 if (is_cxx_auto (type))
12315 return 0;
12316 gcc_unreachable ();
12319 return 0;
12322 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
12323 node, return the size in bits for the type if it is a constant, or else
12324 return the alignment for the type if the type's size is not constant, or
12325 else return BITS_PER_WORD if the type actually turns out to be an
12326 ERROR_MARK node. */
12328 static inline unsigned HOST_WIDE_INT
12329 simple_type_size_in_bits (const_tree type)
12331 if (TREE_CODE (type) == ERROR_MARK)
12332 return BITS_PER_WORD;
12333 else if (TYPE_SIZE (type) == NULL_TREE)
12334 return 0;
12335 else if (tree_fits_uhwi_p (TYPE_SIZE (type)))
12336 return tree_to_uhwi (TYPE_SIZE (type));
12337 else
12338 return TYPE_ALIGN (type);
12341 /* Similarly, but return an offset_int instead of UHWI. */
12343 static inline offset_int
12344 offset_int_type_size_in_bits (const_tree type)
12346 if (TREE_CODE (type) == ERROR_MARK)
12347 return BITS_PER_WORD;
12348 else if (TYPE_SIZE (type) == NULL_TREE)
12349 return 0;
12350 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
12351 return wi::to_offset (TYPE_SIZE (type));
12352 else
12353 return TYPE_ALIGN (type);
12356 /* Given a pointer to a tree node for a subrange type, return a pointer
12357 to a DIE that describes the given type. */
12359 static dw_die_ref
12360 subrange_type_die (tree type, tree low, tree high, tree bias,
12361 dw_die_ref context_die)
12363 dw_die_ref subrange_die;
12364 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
12366 if (context_die == NULL)
12367 context_die = comp_unit_die ();
12369 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
12371 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
12373 /* The size of the subrange type and its base type do not match,
12374 so we need to generate a size attribute for the subrange type. */
12375 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
12378 add_alignment_attribute (subrange_die, type);
12380 if (low)
12381 add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL);
12382 if (high)
12383 add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL);
12384 if (bias && !dwarf_strict)
12385 add_scalar_info (subrange_die, DW_AT_GNU_bias, bias,
12386 dw_scalar_form_constant
12387 | dw_scalar_form_exprloc
12388 | dw_scalar_form_reference,
12389 NULL);
12391 return subrange_die;
12394 /* Returns the (const and/or volatile) cv_qualifiers associated with
12395 the decl node. This will normally be augmented with the
12396 cv_qualifiers of the underlying type in add_type_attribute. */
12398 static int
12399 decl_quals (const_tree decl)
12401 return ((TREE_READONLY (decl)
12402 /* The C++ front-end correctly marks reference-typed
12403 variables as readonly, but from a language (and debug
12404 info) standpoint they are not const-qualified. */
12405 && TREE_CODE (TREE_TYPE (decl)) != REFERENCE_TYPE
12406 ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED)
12407 | (TREE_THIS_VOLATILE (decl)
12408 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED));
12411 /* Determine the TYPE whose qualifiers match the largest strict subset
12412 of the given TYPE_QUALS, and return its qualifiers. Ignore all
12413 qualifiers outside QUAL_MASK. */
12415 static int
12416 get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask)
12418 tree t;
12419 int best_rank = 0, best_qual = 0, max_rank;
12421 type_quals &= qual_mask;
12422 max_rank = popcount_hwi (type_quals) - 1;
12424 for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank;
12425 t = TYPE_NEXT_VARIANT (t))
12427 int q = TYPE_QUALS (t) & qual_mask;
12429 if ((q & type_quals) == q && q != type_quals
12430 && check_base_type (t, type))
12432 int rank = popcount_hwi (q);
12434 if (rank > best_rank)
12436 best_rank = rank;
12437 best_qual = q;
12442 return best_qual;
12445 struct dwarf_qual_info_t { int q; enum dwarf_tag t; };
12446 static const dwarf_qual_info_t dwarf_qual_info[] =
12448 { TYPE_QUAL_CONST, DW_TAG_const_type },
12449 { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type },
12450 { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type },
12451 { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type }
12453 static const unsigned int dwarf_qual_info_size
12454 = sizeof (dwarf_qual_info) / sizeof (dwarf_qual_info[0]);
12456 /* If DIE is a qualified DIE of some base DIE with the same parent,
12457 return the base DIE, otherwise return NULL. Set MASK to the
12458 qualifiers added compared to the returned DIE. */
12460 static dw_die_ref
12461 qualified_die_p (dw_die_ref die, int *mask, unsigned int depth)
12463 unsigned int i;
12464 for (i = 0; i < dwarf_qual_info_size; i++)
12465 if (die->die_tag == dwarf_qual_info[i].t)
12466 break;
12467 if (i == dwarf_qual_info_size)
12468 return NULL;
12469 if (vec_safe_length (die->die_attr) != 1)
12470 return NULL;
12471 dw_die_ref type = get_AT_ref (die, DW_AT_type);
12472 if (type == NULL || type->die_parent != die->die_parent)
12473 return NULL;
12474 *mask |= dwarf_qual_info[i].q;
12475 if (depth)
12477 dw_die_ref ret = qualified_die_p (type, mask, depth - 1);
12478 if (ret)
12479 return ret;
12481 return type;
12484 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
12485 entry that chains the modifiers specified by CV_QUALS in front of the
12486 given type. REVERSE is true if the type is to be interpreted in the
12487 reverse storage order wrt the target order. */
12489 static dw_die_ref
12490 modified_type_die (tree type, int cv_quals, bool reverse,
12491 dw_die_ref context_die)
12493 enum tree_code code = TREE_CODE (type);
12494 dw_die_ref mod_type_die;
12495 dw_die_ref sub_die = NULL;
12496 tree item_type = NULL;
12497 tree qualified_type;
12498 tree name, low, high;
12499 dw_die_ref mod_scope;
12500 /* Only these cv-qualifiers are currently handled. */
12501 const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE
12502 | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC |
12503 ENCODE_QUAL_ADDR_SPACE(~0U));
12504 const bool reverse_base_type
12505 = need_endianity_attribute_p (reverse) && is_base_type (type);
12507 if (code == ERROR_MARK)
12508 return NULL;
12510 if (lang_hooks.types.get_debug_type)
12512 tree debug_type = lang_hooks.types.get_debug_type (type);
12514 if (debug_type != NULL_TREE && debug_type != type)
12515 return modified_type_die (debug_type, cv_quals, reverse, context_die);
12518 cv_quals &= cv_qual_mask;
12520 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
12521 tag modifier (and not an attribute) old consumers won't be able
12522 to handle it. */
12523 if (dwarf_version < 3)
12524 cv_quals &= ~TYPE_QUAL_RESTRICT;
12526 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
12527 if (dwarf_version < 5)
12528 cv_quals &= ~TYPE_QUAL_ATOMIC;
12530 /* See if we already have the appropriately qualified variant of
12531 this type. */
12532 qualified_type = get_qualified_type (type, cv_quals);
12534 if (qualified_type == sizetype)
12536 /* Try not to expose the internal sizetype type's name. */
12537 if (TYPE_NAME (qualified_type)
12538 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
12540 tree t = TREE_TYPE (TYPE_NAME (qualified_type));
12542 gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
12543 && (TYPE_PRECISION (t)
12544 == TYPE_PRECISION (qualified_type))
12545 && (TYPE_UNSIGNED (t)
12546 == TYPE_UNSIGNED (qualified_type)));
12547 qualified_type = t;
12549 else if (qualified_type == sizetype
12550 && TREE_CODE (sizetype) == TREE_CODE (size_type_node)
12551 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (size_type_node)
12552 && TYPE_UNSIGNED (sizetype) == TYPE_UNSIGNED (size_type_node))
12553 qualified_type = size_type_node;
12556 /* If we do, then we can just use its DIE, if it exists. */
12557 if (qualified_type)
12559 mod_type_die = lookup_type_die (qualified_type);
12561 /* DW_AT_endianity doesn't come from a qualifier on the type, so it is
12562 dealt with specially: the DIE with the attribute, if it exists, is
12563 placed immediately after the regular DIE for the same base type. */
12564 if (mod_type_die
12565 && (!reverse_base_type
12566 || ((mod_type_die = mod_type_die->die_sib) != NULL
12567 && get_AT_unsigned (mod_type_die, DW_AT_endianity))))
12568 return mod_type_die;
12571 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
12573 /* Handle C typedef types. */
12574 if (name
12575 && TREE_CODE (name) == TYPE_DECL
12576 && DECL_ORIGINAL_TYPE (name)
12577 && !DECL_ARTIFICIAL (name))
12579 tree dtype = TREE_TYPE (name);
12581 /* Skip the typedef for base types with DW_AT_endianity, no big deal. */
12582 if (qualified_type == dtype && !reverse_base_type)
12584 tree origin = decl_ultimate_origin (name);
12586 /* Typedef variants that have an abstract origin don't get their own
12587 type DIE (see gen_typedef_die), so fall back on the ultimate
12588 abstract origin instead. */
12589 if (origin != NULL && origin != name)
12590 return modified_type_die (TREE_TYPE (origin), cv_quals, reverse,
12591 context_die);
12593 /* For a named type, use the typedef. */
12594 gen_type_die (qualified_type, context_die);
12595 return lookup_type_die (qualified_type);
12597 else
12599 int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype);
12600 dquals &= cv_qual_mask;
12601 if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED
12602 || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type))
12603 /* cv-unqualified version of named type. Just use
12604 the unnamed type to which it refers. */
12605 return modified_type_die (DECL_ORIGINAL_TYPE (name), cv_quals,
12606 reverse, context_die);
12607 /* Else cv-qualified version of named type; fall through. */
12611 mod_scope = scope_die_for (type, context_die);
12613 if (cv_quals)
12615 int sub_quals = 0, first_quals = 0;
12616 unsigned i;
12617 dw_die_ref first = NULL, last = NULL;
12619 /* Determine a lesser qualified type that most closely matches
12620 this one. Then generate DW_TAG_* entries for the remaining
12621 qualifiers. */
12622 sub_quals = get_nearest_type_subqualifiers (type, cv_quals,
12623 cv_qual_mask);
12624 if (sub_quals && use_debug_types)
12626 bool needed = false;
12627 /* If emitting type units, make sure the order of qualifiers
12628 is canonical. Thus, start from unqualified type if
12629 an earlier qualifier is missing in sub_quals, but some later
12630 one is present there. */
12631 for (i = 0; i < dwarf_qual_info_size; i++)
12632 if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
12633 needed = true;
12634 else if (needed && (dwarf_qual_info[i].q & cv_quals))
12636 sub_quals = 0;
12637 break;
12640 mod_type_die = modified_type_die (type, sub_quals, reverse, context_die);
12641 if (mod_scope && mod_type_die && mod_type_die->die_parent == mod_scope)
12643 /* As not all intermediate qualified DIEs have corresponding
12644 tree types, ensure that qualified DIEs in the same scope
12645 as their DW_AT_type are emitted after their DW_AT_type,
12646 only with other qualified DIEs for the same type possibly
12647 in between them. Determine the range of such qualified
12648 DIEs now (first being the base type, last being corresponding
12649 last qualified DIE for it). */
12650 unsigned int count = 0;
12651 first = qualified_die_p (mod_type_die, &first_quals,
12652 dwarf_qual_info_size);
12653 if (first == NULL)
12654 first = mod_type_die;
12655 gcc_assert ((first_quals & ~sub_quals) == 0);
12656 for (count = 0, last = first;
12657 count < (1U << dwarf_qual_info_size);
12658 count++, last = last->die_sib)
12660 int quals = 0;
12661 if (last == mod_scope->die_child)
12662 break;
12663 if (qualified_die_p (last->die_sib, &quals, dwarf_qual_info_size)
12664 != first)
12665 break;
12669 for (i = 0; i < dwarf_qual_info_size; i++)
12670 if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
12672 dw_die_ref d;
12673 if (first && first != last)
12675 for (d = first->die_sib; ; d = d->die_sib)
12677 int quals = 0;
12678 qualified_die_p (d, &quals, dwarf_qual_info_size);
12679 if (quals == (first_quals | dwarf_qual_info[i].q))
12680 break;
12681 if (d == last)
12683 d = NULL;
12684 break;
12687 if (d)
12689 mod_type_die = d;
12690 continue;
12693 if (first)
12695 d = new_die_raw (dwarf_qual_info[i].t);
12696 add_child_die_after (mod_scope, d, last);
12697 last = d;
12699 else
12700 d = new_die (dwarf_qual_info[i].t, mod_scope, type);
12701 if (mod_type_die)
12702 add_AT_die_ref (d, DW_AT_type, mod_type_die);
12703 mod_type_die = d;
12704 first_quals |= dwarf_qual_info[i].q;
12707 else if (code == POINTER_TYPE || code == REFERENCE_TYPE)
12709 dwarf_tag tag = DW_TAG_pointer_type;
12710 if (code == REFERENCE_TYPE)
12712 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
12713 tag = DW_TAG_rvalue_reference_type;
12714 else
12715 tag = DW_TAG_reference_type;
12717 mod_type_die = new_die (tag, mod_scope, type);
12719 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
12720 simple_type_size_in_bits (type) / BITS_PER_UNIT);
12721 add_alignment_attribute (mod_type_die, type);
12722 item_type = TREE_TYPE (type);
12724 addr_space_t as = TYPE_ADDR_SPACE (item_type);
12725 if (!ADDR_SPACE_GENERIC_P (as))
12727 int action = targetm.addr_space.debug (as);
12728 if (action >= 0)
12730 /* Positive values indicate an address_class. */
12731 add_AT_unsigned (mod_type_die, DW_AT_address_class, action);
12733 else
12735 /* Negative values indicate an (inverted) segment base reg. */
12736 dw_loc_descr_ref d
12737 = one_reg_loc_descriptor (~action, VAR_INIT_STATUS_INITIALIZED);
12738 add_AT_loc (mod_type_die, DW_AT_segment, d);
12742 else if (code == INTEGER_TYPE
12743 && TREE_TYPE (type) != NULL_TREE
12744 && subrange_type_for_debug_p (type, &low, &high))
12746 tree bias = NULL_TREE;
12747 if (lang_hooks.types.get_type_bias)
12748 bias = lang_hooks.types.get_type_bias (type);
12749 mod_type_die = subrange_type_die (type, low, high, bias, context_die);
12750 item_type = TREE_TYPE (type);
12752 else if (is_base_type (type))
12754 mod_type_die = base_type_die (type, reverse);
12756 /* The DIE with DW_AT_endianity is placed right after the naked DIE. */
12757 if (reverse_base_type)
12759 dw_die_ref after_die
12760 = modified_type_die (type, cv_quals, false, context_die);
12761 add_child_die_after (comp_unit_die (), mod_type_die, after_die);
12763 else
12764 add_child_die (comp_unit_die (), mod_type_die);
12766 add_pubtype (type, mod_type_die);
12768 else
12770 gen_type_die (type, context_die);
12772 /* We have to get the type_main_variant here (and pass that to the
12773 `lookup_type_die' routine) because the ..._TYPE node we have
12774 might simply be a *copy* of some original type node (where the
12775 copy was created to help us keep track of typedef names) and
12776 that copy might have a different TYPE_UID from the original
12777 ..._TYPE node. */
12778 if (TREE_CODE (type) == FUNCTION_TYPE
12779 || TREE_CODE (type) == METHOD_TYPE)
12781 /* For function/method types, can't just use type_main_variant here,
12782 because that can have different ref-qualifiers for C++,
12783 but try to canonicalize. */
12784 tree main = TYPE_MAIN_VARIANT (type);
12785 for (tree t = main; t; t = TYPE_NEXT_VARIANT (t))
12786 if (TYPE_QUALS_NO_ADDR_SPACE (t) == 0
12787 && check_base_type (t, main)
12788 && check_lang_type (t, type))
12789 return lookup_type_die (t);
12790 return lookup_type_die (type);
12792 else if (TREE_CODE (type) != VECTOR_TYPE
12793 && TREE_CODE (type) != ARRAY_TYPE)
12794 return lookup_type_die (type_main_variant (type));
12795 else
12796 /* Vectors have the debugging information in the type,
12797 not the main variant. */
12798 return lookup_type_die (type);
12801 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
12802 don't output a DW_TAG_typedef, since there isn't one in the
12803 user's program; just attach a DW_AT_name to the type.
12804 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
12805 if the base type already has the same name. */
12806 if (name
12807 && ((TREE_CODE (name) != TYPE_DECL
12808 && (qualified_type == TYPE_MAIN_VARIANT (type)
12809 || (cv_quals == TYPE_UNQUALIFIED)))
12810 || (TREE_CODE (name) == TYPE_DECL
12811 && TREE_TYPE (name) == qualified_type
12812 && DECL_NAME (name))))
12814 if (TREE_CODE (name) == TYPE_DECL)
12815 /* Could just call add_name_and_src_coords_attributes here,
12816 but since this is a builtin type it doesn't have any
12817 useful source coordinates anyway. */
12818 name = DECL_NAME (name);
12819 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
12821 /* This probably indicates a bug. */
12822 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
12824 name = TYPE_IDENTIFIER (type);
12825 add_name_attribute (mod_type_die,
12826 name ? IDENTIFIER_POINTER (name) : "__unknown__");
12829 if (qualified_type && !reverse_base_type)
12830 equate_type_number_to_die (qualified_type, mod_type_die);
12832 if (item_type)
12833 /* We must do this after the equate_type_number_to_die call, in case
12834 this is a recursive type. This ensures that the modified_type_die
12835 recursion will terminate even if the type is recursive. Recursive
12836 types are possible in Ada. */
12837 sub_die = modified_type_die (item_type,
12838 TYPE_QUALS_NO_ADDR_SPACE (item_type),
12839 reverse,
12840 context_die);
12842 if (sub_die != NULL)
12843 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
12845 add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
12846 if (TYPE_ARTIFICIAL (type))
12847 add_AT_flag (mod_type_die, DW_AT_artificial, 1);
12849 return mod_type_die;
12852 /* Generate DIEs for the generic parameters of T.
12853 T must be either a generic type or a generic function.
12854 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
12856 static void
12857 gen_generic_params_dies (tree t)
12859 tree parms, args;
12860 int parms_num, i;
12861 dw_die_ref die = NULL;
12862 int non_default;
12864 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
12865 return;
12867 if (TYPE_P (t))
12868 die = lookup_type_die (t);
12869 else if (DECL_P (t))
12870 die = lookup_decl_die (t);
12872 gcc_assert (die);
12874 parms = lang_hooks.get_innermost_generic_parms (t);
12875 if (!parms)
12876 /* T has no generic parameter. It means T is neither a generic type
12877 or function. End of story. */
12878 return;
12880 parms_num = TREE_VEC_LENGTH (parms);
12881 args = lang_hooks.get_innermost_generic_args (t);
12882 if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST)
12883 non_default = int_cst_value (TREE_CHAIN (args));
12884 else
12885 non_default = TREE_VEC_LENGTH (args);
12886 for (i = 0; i < parms_num; i++)
12888 tree parm, arg, arg_pack_elems;
12889 dw_die_ref parm_die;
12891 parm = TREE_VEC_ELT (parms, i);
12892 arg = TREE_VEC_ELT (args, i);
12893 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
12894 gcc_assert (parm && TREE_VALUE (parm) && arg);
12896 if (parm && TREE_VALUE (parm) && arg)
12898 /* If PARM represents a template parameter pack,
12899 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
12900 by DW_TAG_template_*_parameter DIEs for the argument
12901 pack elements of ARG. Note that ARG would then be
12902 an argument pack. */
12903 if (arg_pack_elems)
12904 parm_die = template_parameter_pack_die (TREE_VALUE (parm),
12905 arg_pack_elems,
12906 die);
12907 else
12908 parm_die = generic_parameter_die (TREE_VALUE (parm), arg,
12909 true /* emit name */, die);
12910 if (i >= non_default)
12911 add_AT_flag (parm_die, DW_AT_default_value, 1);
12916 /* Create and return a DIE for PARM which should be
12917 the representation of a generic type parameter.
12918 For instance, in the C++ front end, PARM would be a template parameter.
12919 ARG is the argument to PARM.
12920 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
12921 name of the PARM.
12922 PARENT_DIE is the parent DIE which the new created DIE should be added to,
12923 as a child node. */
12925 static dw_die_ref
12926 generic_parameter_die (tree parm, tree arg,
12927 bool emit_name_p,
12928 dw_die_ref parent_die)
12930 dw_die_ref tmpl_die = NULL;
12931 const char *name = NULL;
12933 if (!parm || !DECL_NAME (parm) || !arg)
12934 return NULL;
12936 /* We support non-type generic parameters and arguments,
12937 type generic parameters and arguments, as well as
12938 generic generic parameters (a.k.a. template template parameters in C++)
12939 and arguments. */
12940 if (TREE_CODE (parm) == PARM_DECL)
12941 /* PARM is a nontype generic parameter */
12942 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
12943 else if (TREE_CODE (parm) == TYPE_DECL)
12944 /* PARM is a type generic parameter. */
12945 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
12946 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12947 /* PARM is a generic generic parameter.
12948 Its DIE is a GNU extension. It shall have a
12949 DW_AT_name attribute to represent the name of the template template
12950 parameter, and a DW_AT_GNU_template_name attribute to represent the
12951 name of the template template argument. */
12952 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
12953 parent_die, parm);
12954 else
12955 gcc_unreachable ();
12957 if (tmpl_die)
12959 tree tmpl_type;
12961 /* If PARM is a generic parameter pack, it means we are
12962 emitting debug info for a template argument pack element.
12963 In other terms, ARG is a template argument pack element.
12964 In that case, we don't emit any DW_AT_name attribute for
12965 the die. */
12966 if (emit_name_p)
12968 name = IDENTIFIER_POINTER (DECL_NAME (parm));
12969 gcc_assert (name);
12970 add_AT_string (tmpl_die, DW_AT_name, name);
12973 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12975 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
12976 TMPL_DIE should have a child DW_AT_type attribute that is set
12977 to the type of the argument to PARM, which is ARG.
12978 If PARM is a type generic parameter, TMPL_DIE should have a
12979 child DW_AT_type that is set to ARG. */
12980 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
12981 add_type_attribute (tmpl_die, tmpl_type,
12982 (TREE_THIS_VOLATILE (tmpl_type)
12983 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED),
12984 false, parent_die);
12986 else
12988 /* So TMPL_DIE is a DIE representing a
12989 a generic generic template parameter, a.k.a template template
12990 parameter in C++ and arg is a template. */
12992 /* The DW_AT_GNU_template_name attribute of the DIE must be set
12993 to the name of the argument. */
12994 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
12995 if (name)
12996 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
12999 if (TREE_CODE (parm) == PARM_DECL)
13000 /* So PARM is a non-type generic parameter.
13001 DWARF3 5.6.8 says we must set a DW_AT_const_value child
13002 attribute of TMPL_DIE which value represents the value
13003 of ARG.
13004 We must be careful here:
13005 The value of ARG might reference some function decls.
13006 We might currently be emitting debug info for a generic
13007 type and types are emitted before function decls, we don't
13008 know if the function decls referenced by ARG will actually be
13009 emitted after cgraph computations.
13010 So must defer the generation of the DW_AT_const_value to
13011 after cgraph is ready. */
13012 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
13015 return tmpl_die;
13018 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
13019 PARM_PACK must be a template parameter pack. The returned DIE
13020 will be child DIE of PARENT_DIE. */
13022 static dw_die_ref
13023 template_parameter_pack_die (tree parm_pack,
13024 tree parm_pack_args,
13025 dw_die_ref parent_die)
13027 dw_die_ref die;
13028 int j;
13030 gcc_assert (parent_die && parm_pack);
13032 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
13033 add_name_and_src_coords_attributes (die, parm_pack);
13034 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
13035 generic_parameter_die (parm_pack,
13036 TREE_VEC_ELT (parm_pack_args, j),
13037 false /* Don't emit DW_AT_name */,
13038 die);
13039 return die;
13042 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
13043 an enumerated type. */
13045 static inline int
13046 type_is_enum (const_tree type)
13048 return TREE_CODE (type) == ENUMERAL_TYPE;
13051 /* Return the DBX register number described by a given RTL node. */
13053 static unsigned int
13054 dbx_reg_number (const_rtx rtl)
13056 unsigned regno = REGNO (rtl);
13058 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
13060 #ifdef LEAF_REG_REMAP
13061 if (crtl->uses_only_leaf_regs)
13063 int leaf_reg = LEAF_REG_REMAP (regno);
13064 if (leaf_reg != -1)
13065 regno = (unsigned) leaf_reg;
13067 #endif
13069 regno = DBX_REGISTER_NUMBER (regno);
13070 gcc_assert (regno != INVALID_REGNUM);
13071 return regno;
13074 /* Optionally add a DW_OP_piece term to a location description expression.
13075 DW_OP_piece is only added if the location description expression already
13076 doesn't end with DW_OP_piece. */
13078 static void
13079 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
13081 dw_loc_descr_ref loc;
13083 if (*list_head != NULL)
13085 /* Find the end of the chain. */
13086 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
13089 if (loc->dw_loc_opc != DW_OP_piece)
13090 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
13094 /* Return a location descriptor that designates a machine register or
13095 zero if there is none. */
13097 static dw_loc_descr_ref
13098 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
13100 rtx regs;
13102 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
13103 return 0;
13105 /* We only use "frame base" when we're sure we're talking about the
13106 post-prologue local stack frame. We do this by *not* running
13107 register elimination until this point, and recognizing the special
13108 argument pointer and soft frame pointer rtx's.
13109 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
13110 if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
13111 && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
13113 dw_loc_descr_ref result = NULL;
13115 if (dwarf_version >= 4 || !dwarf_strict)
13117 result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
13118 initialized);
13119 if (result)
13120 add_loc_descr (&result,
13121 new_loc_descr (DW_OP_stack_value, 0, 0));
13123 return result;
13126 regs = targetm.dwarf_register_span (rtl);
13128 if (REG_NREGS (rtl) > 1 || regs)
13129 return multiple_reg_loc_descriptor (rtl, regs, initialized);
13130 else
13132 unsigned int dbx_regnum = dbx_reg_number (rtl);
13133 if (dbx_regnum == IGNORED_DWARF_REGNUM)
13134 return 0;
13135 return one_reg_loc_descriptor (dbx_regnum, initialized);
13139 /* Return a location descriptor that designates a machine register for
13140 a given hard register number. */
13142 static dw_loc_descr_ref
13143 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
13145 dw_loc_descr_ref reg_loc_descr;
13147 if (regno <= 31)
13148 reg_loc_descr
13149 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
13150 else
13151 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
13153 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13154 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13156 return reg_loc_descr;
13159 /* Given an RTL of a register, return a location descriptor that
13160 designates a value that spans more than one register. */
13162 static dw_loc_descr_ref
13163 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
13164 enum var_init_status initialized)
13166 int size, i;
13167 dw_loc_descr_ref loc_result = NULL;
13169 /* Simple, contiguous registers. */
13170 if (regs == NULL_RTX)
13172 unsigned reg = REGNO (rtl);
13173 int nregs;
13175 #ifdef LEAF_REG_REMAP
13176 if (crtl->uses_only_leaf_regs)
13178 int leaf_reg = LEAF_REG_REMAP (reg);
13179 if (leaf_reg != -1)
13180 reg = (unsigned) leaf_reg;
13182 #endif
13184 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
13185 nregs = REG_NREGS (rtl);
13187 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
13189 loc_result = NULL;
13190 while (nregs--)
13192 dw_loc_descr_ref t;
13194 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
13195 VAR_INIT_STATUS_INITIALIZED);
13196 add_loc_descr (&loc_result, t);
13197 add_loc_descr_op_piece (&loc_result, size);
13198 ++reg;
13200 return loc_result;
13203 /* Now onto stupid register sets in non contiguous locations. */
13205 gcc_assert (GET_CODE (regs) == PARALLEL);
13207 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
13208 loc_result = NULL;
13210 for (i = 0; i < XVECLEN (regs, 0); ++i)
13212 dw_loc_descr_ref t;
13214 t = one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs, 0, i)),
13215 VAR_INIT_STATUS_INITIALIZED);
13216 add_loc_descr (&loc_result, t);
13217 add_loc_descr_op_piece (&loc_result, size);
13220 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13221 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13222 return loc_result;
13225 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);
13227 /* Return a location descriptor that designates a constant i,
13228 as a compound operation from constant (i >> shift), constant shift
13229 and DW_OP_shl. */
13231 static dw_loc_descr_ref
13232 int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
13234 dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
13235 add_loc_descr (&ret, int_loc_descriptor (shift));
13236 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
13237 return ret;
13240 /* Return a location descriptor that designates constant POLY_I. */
13242 static dw_loc_descr_ref
13243 int_loc_descriptor (poly_int64 poly_i)
13245 enum dwarf_location_atom op;
13247 HOST_WIDE_INT i;
13248 if (!poly_i.is_constant (&i))
13250 /* Create location descriptions for the non-constant part and
13251 add any constant offset at the end. */
13252 dw_loc_descr_ref ret = NULL;
13253 HOST_WIDE_INT constant = poly_i.coeffs[0];
13254 for (unsigned int j = 1; j < NUM_POLY_INT_COEFFS; ++j)
13256 HOST_WIDE_INT coeff = poly_i.coeffs[j];
13257 if (coeff != 0)
13259 dw_loc_descr_ref start = ret;
13260 unsigned int factor;
13261 int bias;
13262 unsigned int regno = targetm.dwarf_poly_indeterminate_value
13263 (j, &factor, &bias);
13265 /* Add COEFF * ((REGNO / FACTOR) - BIAS) to the value:
13266 add COEFF * (REGNO / FACTOR) now and subtract
13267 COEFF * BIAS from the final constant part. */
13268 constant -= coeff * bias;
13269 add_loc_descr (&ret, new_reg_loc_descr (regno, 0));
13270 if (coeff % factor == 0)
13271 coeff /= factor;
13272 else
13274 int amount = exact_log2 (factor);
13275 gcc_assert (amount >= 0);
13276 add_loc_descr (&ret, int_loc_descriptor (amount));
13277 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
13279 if (coeff != 1)
13281 add_loc_descr (&ret, int_loc_descriptor (coeff));
13282 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
13284 if (start)
13285 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
13288 loc_descr_plus_const (&ret, constant);
13289 return ret;
13292 /* Pick the smallest representation of a constant, rather than just
13293 defaulting to the LEB encoding. */
13294 if (i >= 0)
13296 int clz = clz_hwi (i);
13297 int ctz = ctz_hwi (i);
13298 if (i <= 31)
13299 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
13300 else if (i <= 0xff)
13301 op = DW_OP_const1u;
13302 else if (i <= 0xffff)
13303 op = DW_OP_const2u;
13304 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
13305 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
13306 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
13307 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
13308 while DW_OP_const4u is 5 bytes. */
13309 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
13310 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13311 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
13312 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
13313 while DW_OP_const4u is 5 bytes. */
13314 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
13316 else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff
13317 && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i)
13318 <= 4)
13320 /* As i >= 2**31, the double cast above will yield a negative number.
13321 Since wrapping is defined in DWARF expressions we can output big
13322 positive integers as small negative ones, regardless of the size
13323 of host wide ints.
13325 Here, since the evaluator will handle 32-bit values and since i >=
13326 2**31, we know it's going to be interpreted as a negative literal:
13327 store it this way if we can do better than 5 bytes this way. */
13328 return int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i);
13330 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
13331 op = DW_OP_const4u;
13333 /* Past this point, i >= 0x100000000 and thus DW_OP_constu will take at
13334 least 6 bytes: see if we can do better before falling back to it. */
13335 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13336 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
13337 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes. */
13338 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
13339 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
13340 && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
13341 >= HOST_BITS_PER_WIDE_INT)
13342 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
13343 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes. */
13344 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
13345 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
13346 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
13347 && size_of_uleb128 (i) > 6)
13348 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
13349 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
13350 else
13351 op = DW_OP_constu;
13353 else
13355 if (i >= -0x80)
13356 op = DW_OP_const1s;
13357 else if (i >= -0x8000)
13358 op = DW_OP_const2s;
13359 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
13361 if (size_of_int_loc_descriptor (i) < 5)
13363 dw_loc_descr_ref ret = int_loc_descriptor (-i);
13364 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13365 return ret;
13367 op = DW_OP_const4s;
13369 else
13371 if (size_of_int_loc_descriptor (i)
13372 < (unsigned long) 1 + size_of_sleb128 (i))
13374 dw_loc_descr_ref ret = int_loc_descriptor (-i);
13375 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13376 return ret;
13378 op = DW_OP_consts;
13382 return new_loc_descr (op, i, 0);
13385 /* Likewise, for unsigned constants. */
13387 static dw_loc_descr_ref
13388 uint_loc_descriptor (unsigned HOST_WIDE_INT i)
13390 const unsigned HOST_WIDE_INT max_int = INTTYPE_MAXIMUM (HOST_WIDE_INT);
13391 const unsigned HOST_WIDE_INT max_uint
13392 = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT);
13394 /* If possible, use the clever signed constants handling. */
13395 if (i <= max_int)
13396 return int_loc_descriptor ((HOST_WIDE_INT) i);
13398 /* Here, we are left with positive numbers that cannot be represented as
13399 HOST_WIDE_INT, i.e.:
13400 max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT)
13402 Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes
13403 whereas may be better to output a negative integer: thanks to integer
13404 wrapping, we know that:
13405 x = x - 2 ** DWARF2_ADDR_SIZE
13406 = x - 2 * (max (HOST_WIDE_INT) + 1)
13407 So numbers close to max (unsigned HOST_WIDE_INT) could be represented as
13408 small negative integers. Let's try that in cases it will clearly improve
13409 the encoding: there is no gain turning DW_OP_const4u into
13410 DW_OP_const4s. */
13411 if (DWARF2_ADDR_SIZE * 8 == HOST_BITS_PER_WIDE_INT
13412 && ((DWARF2_ADDR_SIZE == 4 && i > max_uint - 0x8000)
13413 || (DWARF2_ADDR_SIZE == 8 && i > max_uint - 0x80000000)))
13415 const unsigned HOST_WIDE_INT first_shift = i - max_int - 1;
13417 /* Now, -1 < first_shift <= max (HOST_WIDE_INT)
13418 i.e. 0 <= first_shift <= max (HOST_WIDE_INT). */
13419 const HOST_WIDE_INT second_shift
13420 = (HOST_WIDE_INT) first_shift - (HOST_WIDE_INT) max_int - 1;
13422 /* So we finally have:
13423 -max (HOST_WIDE_INT) - 1 <= second_shift <= -1.
13424 i.e. min (HOST_WIDE_INT) <= second_shift < 0. */
13425 return int_loc_descriptor (second_shift);
13428 /* Last chance: fallback to a simple constant operation. */
13429 return new_loc_descr
13430 ((HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
13431 ? DW_OP_const4u
13432 : DW_OP_const8u,
13433 i, 0);
13436 /* Generate and return a location description that computes the unsigned
13437 comparison of the two stack top entries (a OP b where b is the top-most
13438 entry and a is the second one). The KIND of comparison can be LT_EXPR,
13439 LE_EXPR, GT_EXPR or GE_EXPR. */
13441 static dw_loc_descr_ref
13442 uint_comparison_loc_list (enum tree_code kind)
13444 enum dwarf_location_atom op, flip_op;
13445 dw_loc_descr_ref ret, bra_node, jmp_node, tmp;
13447 switch (kind)
13449 case LT_EXPR:
13450 op = DW_OP_lt;
13451 break;
13452 case LE_EXPR:
13453 op = DW_OP_le;
13454 break;
13455 case GT_EXPR:
13456 op = DW_OP_gt;
13457 break;
13458 case GE_EXPR:
13459 op = DW_OP_ge;
13460 break;
13461 default:
13462 gcc_unreachable ();
13465 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13466 jmp_node = new_loc_descr (DW_OP_skip, 0, 0);
13468 /* Until DWARFv4, operations all work on signed integers. It is nevertheless
13469 possible to perform unsigned comparisons: we just have to distinguish
13470 three cases:
13472 1. when a and b have the same sign (as signed integers); then we should
13473 return: a OP(signed) b;
13475 2. when a is a negative signed integer while b is a positive one, then a
13476 is a greater unsigned integer than b; likewise when a and b's roles
13477 are flipped.
13479 So first, compare the sign of the two operands. */
13480 ret = new_loc_descr (DW_OP_over, 0, 0);
13481 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
13482 add_loc_descr (&ret, new_loc_descr (DW_OP_xor, 0, 0));
13483 /* If they have different signs (i.e. they have different sign bits), then
13484 the stack top value has now the sign bit set and thus it's smaller than
13485 zero. */
13486 add_loc_descr (&ret, new_loc_descr (DW_OP_lit0, 0, 0));
13487 add_loc_descr (&ret, new_loc_descr (DW_OP_lt, 0, 0));
13488 add_loc_descr (&ret, bra_node);
13490 /* We are in case 1. At this point, we know both operands have the same
13491 sign, to it's safe to use the built-in signed comparison. */
13492 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
13493 add_loc_descr (&ret, jmp_node);
13495 /* We are in case 2. Here, we know both operands do not have the same sign,
13496 so we have to flip the signed comparison. */
13497 flip_op = (kind == LT_EXPR || kind == LE_EXPR) ? DW_OP_gt : DW_OP_lt;
13498 tmp = new_loc_descr (flip_op, 0, 0);
13499 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13500 bra_node->dw_loc_oprnd1.v.val_loc = tmp;
13501 add_loc_descr (&ret, tmp);
13503 /* This dummy operation is necessary to make the two branches join. */
13504 tmp = new_loc_descr (DW_OP_nop, 0, 0);
13505 jmp_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13506 jmp_node->dw_loc_oprnd1.v.val_loc = tmp;
13507 add_loc_descr (&ret, tmp);
13509 return ret;
13512 /* Likewise, but takes the location description lists (might be destructive on
13513 them). Return NULL if either is NULL or if concatenation fails. */
13515 static dw_loc_list_ref
13516 loc_list_from_uint_comparison (dw_loc_list_ref left, dw_loc_list_ref right,
13517 enum tree_code kind)
13519 if (left == NULL || right == NULL)
13520 return NULL;
13522 add_loc_list (&left, right);
13523 if (left == NULL)
13524 return NULL;
13526 add_loc_descr_to_each (left, uint_comparison_loc_list (kind));
13527 return left;
13530 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
13531 without actually allocating it. */
13533 static unsigned long
13534 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
13536 return size_of_int_loc_descriptor (i >> shift)
13537 + size_of_int_loc_descriptor (shift)
13538 + 1;
13541 /* Return size_of_locs (int_loc_descriptor (i)) without
13542 actually allocating it. */
13544 static unsigned long
13545 size_of_int_loc_descriptor (HOST_WIDE_INT i)
13547 unsigned long s;
13549 if (i >= 0)
13551 int clz, ctz;
13552 if (i <= 31)
13553 return 1;
13554 else if (i <= 0xff)
13555 return 2;
13556 else if (i <= 0xffff)
13557 return 3;
13558 clz = clz_hwi (i);
13559 ctz = ctz_hwi (i);
13560 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
13561 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
13562 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13563 - clz - 5);
13564 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13565 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
13566 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13567 - clz - 8);
13568 else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff
13569 && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i)
13570 <= 4)
13571 return size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i);
13572 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
13573 return 5;
13574 s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
13575 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13576 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
13577 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13578 - clz - 8);
13579 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
13580 && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
13581 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13582 - clz - 16);
13583 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
13584 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
13585 && s > 6)
13586 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13587 - clz - 32);
13588 else
13589 return 1 + s;
13591 else
13593 if (i >= -0x80)
13594 return 2;
13595 else if (i >= -0x8000)
13596 return 3;
13597 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
13599 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
13601 s = size_of_int_loc_descriptor (-i) + 1;
13602 if (s < 5)
13603 return s;
13605 return 5;
13607 else
13609 unsigned long r = 1 + size_of_sleb128 (i);
13610 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
13612 s = size_of_int_loc_descriptor (-i) + 1;
13613 if (s < r)
13614 return s;
13616 return r;
13621 /* Return loc description representing "address" of integer value.
13622 This can appear only as toplevel expression. */
13624 static dw_loc_descr_ref
13625 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
13627 int litsize;
13628 dw_loc_descr_ref loc_result = NULL;
13630 if (!(dwarf_version >= 4 || !dwarf_strict))
13631 return NULL;
13633 litsize = size_of_int_loc_descriptor (i);
13634 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
13635 is more compact. For DW_OP_stack_value we need:
13636 litsize + 1 (DW_OP_stack_value)
13637 and for DW_OP_implicit_value:
13638 1 (DW_OP_implicit_value) + 1 (length) + size. */
13639 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
13641 loc_result = int_loc_descriptor (i);
13642 add_loc_descr (&loc_result,
13643 new_loc_descr (DW_OP_stack_value, 0, 0));
13644 return loc_result;
13647 loc_result = new_loc_descr (DW_OP_implicit_value,
13648 size, 0);
13649 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
13650 loc_result->dw_loc_oprnd2.v.val_int = i;
13651 return loc_result;
13654 /* Return a location descriptor that designates a base+offset location. */
13656 static dw_loc_descr_ref
13657 based_loc_descr (rtx reg, poly_int64 offset,
13658 enum var_init_status initialized)
13660 unsigned int regno;
13661 dw_loc_descr_ref result;
13662 dw_fde_ref fde = cfun->fde;
13664 /* We only use "frame base" when we're sure we're talking about the
13665 post-prologue local stack frame. We do this by *not* running
13666 register elimination until this point, and recognizing the special
13667 argument pointer and soft frame pointer rtx's. */
13668 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
13670 rtx elim = (ira_use_lra_p
13671 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
13672 : eliminate_regs (reg, VOIDmode, NULL_RTX));
13674 if (elim != reg)
13676 elim = strip_offset_and_add (elim, &offset);
13677 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
13678 && (elim == hard_frame_pointer_rtx
13679 || elim == stack_pointer_rtx))
13680 || elim == (frame_pointer_needed
13681 ? hard_frame_pointer_rtx
13682 : stack_pointer_rtx));
13684 /* If drap register is used to align stack, use frame
13685 pointer + offset to access stack variables. If stack
13686 is aligned without drap, use stack pointer + offset to
13687 access stack variables. */
13688 if (crtl->stack_realign_tried
13689 && reg == frame_pointer_rtx)
13691 int base_reg
13692 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
13693 ? HARD_FRAME_POINTER_REGNUM
13694 : REGNO (elim));
13695 return new_reg_loc_descr (base_reg, offset);
13698 gcc_assert (frame_pointer_fb_offset_valid);
13699 offset += frame_pointer_fb_offset;
13700 HOST_WIDE_INT const_offset;
13701 if (offset.is_constant (&const_offset))
13702 return new_loc_descr (DW_OP_fbreg, const_offset, 0);
13703 else
13705 dw_loc_descr_ref ret = new_loc_descr (DW_OP_fbreg, 0, 0);
13706 loc_descr_plus_const (&ret, offset);
13707 return ret;
13712 regno = REGNO (reg);
13713 #ifdef LEAF_REG_REMAP
13714 if (crtl->uses_only_leaf_regs)
13716 int leaf_reg = LEAF_REG_REMAP (regno);
13717 if (leaf_reg != -1)
13718 regno = (unsigned) leaf_reg;
13720 #endif
13721 regno = DWARF_FRAME_REGNUM (regno);
13723 HOST_WIDE_INT const_offset;
13724 if (!optimize && fde
13725 && (fde->drap_reg == regno || fde->vdrap_reg == regno)
13726 && offset.is_constant (&const_offset))
13728 /* Use cfa+offset to represent the location of arguments passed
13729 on the stack when drap is used to align stack.
13730 Only do this when not optimizing, for optimized code var-tracking
13731 is supposed to track where the arguments live and the register
13732 used as vdrap or drap in some spot might be used for something
13733 else in other part of the routine. */
13734 return new_loc_descr (DW_OP_fbreg, const_offset, 0);
13737 result = new_reg_loc_descr (regno, offset);
13739 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13740 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13742 return result;
13745 /* Return true if this RTL expression describes a base+offset calculation. */
13747 static inline int
13748 is_based_loc (const_rtx rtl)
13750 return (GET_CODE (rtl) == PLUS
13751 && ((REG_P (XEXP (rtl, 0))
13752 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
13753 && CONST_INT_P (XEXP (rtl, 1)))));
13756 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
13757 failed. */
13759 static dw_loc_descr_ref
13760 tls_mem_loc_descriptor (rtx mem)
13762 tree base;
13763 dw_loc_descr_ref loc_result;
13765 if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
13766 return NULL;
13768 base = get_base_address (MEM_EXPR (mem));
13769 if (base == NULL
13770 || !VAR_P (base)
13771 || !DECL_THREAD_LOCAL_P (base))
13772 return NULL;
13774 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL);
13775 if (loc_result == NULL)
13776 return NULL;
13778 if (maybe_ne (MEM_OFFSET (mem), 0))
13779 loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));
13781 return loc_result;
13784 /* Output debug info about reason why we failed to expand expression as dwarf
13785 expression. */
13787 static void
13788 expansion_failed (tree expr, rtx rtl, char const *reason)
13790 if (dump_file && (dump_flags & TDF_DETAILS))
13792 fprintf (dump_file, "Failed to expand as dwarf: ");
13793 if (expr)
13794 print_generic_expr (dump_file, expr, dump_flags);
13795 if (rtl)
13797 fprintf (dump_file, "\n");
13798 print_rtl (dump_file, rtl);
13800 fprintf (dump_file, "\nReason: %s\n", reason);
13804 /* Helper function for const_ok_for_output. */
13806 static bool
13807 const_ok_for_output_1 (rtx rtl)
13809 if (targetm.const_not_ok_for_debug_p (rtl))
13811 if (GET_CODE (rtl) != UNSPEC)
13813 expansion_failed (NULL_TREE, rtl,
13814 "Expression rejected for debug by the backend.\n");
13815 return false;
13818 /* If delegitimize_address couldn't do anything with the UNSPEC, and
13819 the target hook doesn't explicitly allow it in debug info, assume
13820 we can't express it in the debug info. */
13821 /* Don't complain about TLS UNSPECs, those are just too hard to
13822 delegitimize. Note this could be a non-decl SYMBOL_REF such as
13823 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
13824 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
13825 if (flag_checking
13826 && (XVECLEN (rtl, 0) == 0
13827 || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
13828 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE))
13829 inform (current_function_decl
13830 ? DECL_SOURCE_LOCATION (current_function_decl)
13831 : UNKNOWN_LOCATION,
13832 #if NUM_UNSPEC_VALUES > 0
13833 "non-delegitimized UNSPEC %s (%d) found in variable location",
13834 ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
13835 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
13836 XINT (rtl, 1));
13837 #else
13838 "non-delegitimized UNSPEC %d found in variable location",
13839 XINT (rtl, 1));
13840 #endif
13841 expansion_failed (NULL_TREE, rtl,
13842 "UNSPEC hasn't been delegitimized.\n");
13843 return false;
13846 if (CONST_POLY_INT_P (rtl))
13847 return false;
13849 if (targetm.const_not_ok_for_debug_p (rtl))
13851 expansion_failed (NULL_TREE, rtl,
13852 "Expression rejected for debug by the backend.\n");
13853 return false;
13856 /* FIXME: Refer to PR60655. It is possible for simplification
13857 of rtl expressions in var tracking to produce such expressions.
13858 We should really identify / validate expressions
13859 enclosed in CONST that can be handled by assemblers on various
13860 targets and only handle legitimate cases here. */
13861 switch (GET_CODE (rtl))
13863 case SYMBOL_REF:
13864 break;
13865 case NOT:
13866 case NEG:
13867 return false;
13868 default:
13869 return true;
13872 if (CONSTANT_POOL_ADDRESS_P (rtl))
13874 bool marked;
13875 get_pool_constant_mark (rtl, &marked);
13876 /* If all references to this pool constant were optimized away,
13877 it was not output and thus we can't represent it. */
13878 if (!marked)
13880 expansion_failed (NULL_TREE, rtl,
13881 "Constant was removed from constant pool.\n");
13882 return false;
13886 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
13887 return false;
13889 /* Avoid references to external symbols in debug info, on several targets
13890 the linker might even refuse to link when linking a shared library,
13891 and in many other cases the relocations for .debug_info/.debug_loc are
13892 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
13893 to be defined within the same shared library or executable are fine. */
13894 if (SYMBOL_REF_EXTERNAL_P (rtl))
13896 tree decl = SYMBOL_REF_DECL (rtl);
13898 if (decl == NULL || !targetm.binds_local_p (decl))
13900 expansion_failed (NULL_TREE, rtl,
13901 "Symbol not defined in current TU.\n");
13902 return false;
13906 return true;
13909 /* Return true if constant RTL can be emitted in DW_OP_addr or
13910 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
13911 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
13913 static bool
13914 const_ok_for_output (rtx rtl)
13916 if (GET_CODE (rtl) == SYMBOL_REF)
13917 return const_ok_for_output_1 (rtl);
13919 if (GET_CODE (rtl) == CONST)
13921 subrtx_var_iterator::array_type array;
13922 FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
13923 if (!const_ok_for_output_1 (*iter))
13924 return false;
13925 return true;
13928 return true;
13931 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
13932 if possible, NULL otherwise. */
13934 static dw_die_ref
13935 base_type_for_mode (machine_mode mode, bool unsignedp)
13937 dw_die_ref type_die;
13938 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
13940 if (type == NULL)
13941 return NULL;
13942 switch (TREE_CODE (type))
13944 case INTEGER_TYPE:
13945 case REAL_TYPE:
13946 break;
13947 default:
13948 return NULL;
13950 type_die = lookup_type_die (type);
13951 if (!type_die)
13952 type_die = modified_type_die (type, TYPE_UNQUALIFIED, false,
13953 comp_unit_die ());
13954 if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
13955 return NULL;
13956 return type_die;
13959 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
13960 type matching MODE, or, if MODE is narrower than or as wide as
13961 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
13962 possible. */
13964 static dw_loc_descr_ref
13965 convert_descriptor_to_mode (scalar_int_mode mode, dw_loc_descr_ref op)
13967 machine_mode outer_mode = mode;
13968 dw_die_ref type_die;
13969 dw_loc_descr_ref cvt;
13971 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13973 add_loc_descr (&op, new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0));
13974 return op;
13976 type_die = base_type_for_mode (outer_mode, 1);
13977 if (type_die == NULL)
13978 return NULL;
13979 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
13980 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13981 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13982 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13983 add_loc_descr (&op, cvt);
13984 return op;
13987 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
13989 static dw_loc_descr_ref
13990 compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
13991 dw_loc_descr_ref op1)
13993 dw_loc_descr_ref ret = op0;
13994 add_loc_descr (&ret, op1);
13995 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
13996 if (STORE_FLAG_VALUE != 1)
13998 add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
13999 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
14001 return ret;
14004 /* Subroutine of scompare_loc_descriptor for the case in which we're
14005 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
14006 and in which OP_MODE is bigger than DWARF2_ADDR_SIZE. */
14008 static dw_loc_descr_ref
14009 scompare_loc_descriptor_wide (enum dwarf_location_atom op,
14010 scalar_int_mode op_mode,
14011 dw_loc_descr_ref op0, dw_loc_descr_ref op1)
14013 dw_die_ref type_die = base_type_for_mode (op_mode, 0);
14014 dw_loc_descr_ref cvt;
14016 if (type_die == NULL)
14017 return NULL;
14018 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14019 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14020 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14021 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14022 add_loc_descr (&op0, cvt);
14023 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14024 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14025 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14026 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14027 add_loc_descr (&op1, cvt);
14028 return compare_loc_descriptor (op, op0, op1);
14031 /* Subroutine of scompare_loc_descriptor for the case in which we're
14032 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
14033 and in which OP_MODE is smaller than DWARF2_ADDR_SIZE. */
14035 static dw_loc_descr_ref
14036 scompare_loc_descriptor_narrow (enum dwarf_location_atom op, rtx rtl,
14037 scalar_int_mode op_mode,
14038 dw_loc_descr_ref op0, dw_loc_descr_ref op1)
14040 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
14041 /* For eq/ne, if the operands are known to be zero-extended,
14042 there is no need to do the fancy shifting up. */
14043 if (op == DW_OP_eq || op == DW_OP_ne)
14045 dw_loc_descr_ref last0, last1;
14046 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
14048 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
14050 /* deref_size zero extends, and for constants we can check
14051 whether they are zero extended or not. */
14052 if (((last0->dw_loc_opc == DW_OP_deref_size
14053 && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
14054 || (CONST_INT_P (XEXP (rtl, 0))
14055 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
14056 == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
14057 && ((last1->dw_loc_opc == DW_OP_deref_size
14058 && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
14059 || (CONST_INT_P (XEXP (rtl, 1))
14060 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
14061 == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
14062 return compare_loc_descriptor (op, op0, op1);
14064 /* EQ/NE comparison against constant in narrower type than
14065 DWARF2_ADDR_SIZE can be performed either as
14066 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
14067 DW_OP_{eq,ne}
14069 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
14070 DW_OP_{eq,ne}. Pick whatever is shorter. */
14071 if (CONST_INT_P (XEXP (rtl, 1))
14072 && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
14073 && (size_of_int_loc_descriptor (shift) + 1
14074 + size_of_int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift)
14075 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
14076 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
14077 & GET_MODE_MASK (op_mode))))
14079 add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
14080 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
14081 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
14082 & GET_MODE_MASK (op_mode));
14083 return compare_loc_descriptor (op, op0, op1);
14086 add_loc_descr (&op0, int_loc_descriptor (shift));
14087 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
14088 if (CONST_INT_P (XEXP (rtl, 1)))
14089 op1 = int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift);
14090 else
14092 add_loc_descr (&op1, int_loc_descriptor (shift));
14093 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
14095 return compare_loc_descriptor (op, op0, op1);
14098 /* Return location descriptor for unsigned comparison OP RTL. */
14100 static dw_loc_descr_ref
14101 scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
14102 machine_mode mem_mode)
14104 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
14105 dw_loc_descr_ref op0, op1;
14107 if (op_mode == VOIDmode)
14108 op_mode = GET_MODE (XEXP (rtl, 1));
14109 if (op_mode == VOIDmode)
14110 return NULL;
14112 scalar_int_mode int_op_mode;
14113 if (dwarf_strict
14114 && dwarf_version < 5
14115 && (!is_a <scalar_int_mode> (op_mode, &int_op_mode)
14116 || GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE))
14117 return NULL;
14119 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
14120 VAR_INIT_STATUS_INITIALIZED);
14121 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
14122 VAR_INIT_STATUS_INITIALIZED);
14124 if (op0 == NULL || op1 == NULL)
14125 return NULL;
14127 if (is_a <scalar_int_mode> (op_mode, &int_op_mode))
14129 if (GET_MODE_SIZE (int_op_mode) < DWARF2_ADDR_SIZE)
14130 return scompare_loc_descriptor_narrow (op, rtl, int_op_mode, op0, op1);
14132 if (GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE)
14133 return scompare_loc_descriptor_wide (op, int_op_mode, op0, op1);
14135 return compare_loc_descriptor (op, op0, op1);
14138 /* Return location descriptor for unsigned comparison OP RTL. */
14140 static dw_loc_descr_ref
14141 ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
14142 machine_mode mem_mode)
14144 dw_loc_descr_ref op0, op1;
14146 machine_mode test_op_mode = GET_MODE (XEXP (rtl, 0));
14147 if (test_op_mode == VOIDmode)
14148 test_op_mode = GET_MODE (XEXP (rtl, 1));
14150 scalar_int_mode op_mode;
14151 if (!is_a <scalar_int_mode> (test_op_mode, &op_mode))
14152 return NULL;
14154 if (dwarf_strict
14155 && dwarf_version < 5
14156 && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
14157 return NULL;
14159 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
14160 VAR_INIT_STATUS_INITIALIZED);
14161 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
14162 VAR_INIT_STATUS_INITIALIZED);
14164 if (op0 == NULL || op1 == NULL)
14165 return NULL;
14167 if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
14169 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
14170 dw_loc_descr_ref last0, last1;
14171 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
14173 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
14175 if (CONST_INT_P (XEXP (rtl, 0)))
14176 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
14177 /* deref_size zero extends, so no need to mask it again. */
14178 else if (last0->dw_loc_opc != DW_OP_deref_size
14179 || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
14181 add_loc_descr (&op0, int_loc_descriptor (mask));
14182 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
14184 if (CONST_INT_P (XEXP (rtl, 1)))
14185 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
14186 /* deref_size zero extends, so no need to mask it again. */
14187 else if (last1->dw_loc_opc != DW_OP_deref_size
14188 || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
14190 add_loc_descr (&op1, int_loc_descriptor (mask));
14191 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
14194 else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
14196 HOST_WIDE_INT bias = 1;
14197 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
14198 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
14199 if (CONST_INT_P (XEXP (rtl, 1)))
14200 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
14201 + INTVAL (XEXP (rtl, 1)));
14202 else
14203 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
14204 bias, 0));
14206 return compare_loc_descriptor (op, op0, op1);
14209 /* Return location descriptor for {U,S}{MIN,MAX}. */
14211 static dw_loc_descr_ref
14212 minmax_loc_descriptor (rtx rtl, machine_mode mode,
14213 machine_mode mem_mode)
14215 enum dwarf_location_atom op;
14216 dw_loc_descr_ref op0, op1, ret;
14217 dw_loc_descr_ref bra_node, drop_node;
14219 scalar_int_mode int_mode;
14220 if (dwarf_strict
14221 && dwarf_version < 5
14222 && (!is_a <scalar_int_mode> (mode, &int_mode)
14223 || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE))
14224 return NULL;
14226 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14227 VAR_INIT_STATUS_INITIALIZED);
14228 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
14229 VAR_INIT_STATUS_INITIALIZED);
14231 if (op0 == NULL || op1 == NULL)
14232 return NULL;
14234 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
14235 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
14236 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
14237 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
14239 /* Checked by the caller. */
14240 int_mode = as_a <scalar_int_mode> (mode);
14241 if (GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE)
14243 HOST_WIDE_INT mask = GET_MODE_MASK (int_mode);
14244 add_loc_descr (&op0, int_loc_descriptor (mask));
14245 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
14246 add_loc_descr (&op1, int_loc_descriptor (mask));
14247 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
14249 else if (GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE)
14251 HOST_WIDE_INT bias = 1;
14252 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
14253 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
14254 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
14257 else if (is_a <scalar_int_mode> (mode, &int_mode)
14258 && GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE)
14260 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (int_mode)) * BITS_PER_UNIT;
14261 add_loc_descr (&op0, int_loc_descriptor (shift));
14262 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
14263 add_loc_descr (&op1, int_loc_descriptor (shift));
14264 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
14266 else if (is_a <scalar_int_mode> (mode, &int_mode)
14267 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
14269 dw_die_ref type_die = base_type_for_mode (int_mode, 0);
14270 dw_loc_descr_ref cvt;
14271 if (type_die == NULL)
14272 return NULL;
14273 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14274 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14275 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14276 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14277 add_loc_descr (&op0, cvt);
14278 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14279 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14280 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14281 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14282 add_loc_descr (&op1, cvt);
14285 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
14286 op = DW_OP_lt;
14287 else
14288 op = DW_OP_gt;
14289 ret = op0;
14290 add_loc_descr (&ret, op1);
14291 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
14292 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
14293 add_loc_descr (&ret, bra_node);
14294 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14295 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
14296 add_loc_descr (&ret, drop_node);
14297 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14298 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
14299 if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
14300 && is_a <scalar_int_mode> (mode, &int_mode)
14301 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
14302 ret = convert_descriptor_to_mode (int_mode, ret);
14303 return ret;
14306 /* Helper function for mem_loc_descriptor. Perform OP binary op,
14307 but after converting arguments to type_die, afterwards
14308 convert back to unsigned. */
14310 static dw_loc_descr_ref
14311 typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
14312 scalar_int_mode mode, machine_mode mem_mode)
14314 dw_loc_descr_ref cvt, op0, op1;
14316 if (type_die == NULL)
14317 return NULL;
14318 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14319 VAR_INIT_STATUS_INITIALIZED);
14320 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
14321 VAR_INIT_STATUS_INITIALIZED);
14322 if (op0 == NULL || op1 == NULL)
14323 return NULL;
14324 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14325 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14326 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14327 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14328 add_loc_descr (&op0, cvt);
14329 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14330 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14331 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14332 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14333 add_loc_descr (&op1, cvt);
14334 add_loc_descr (&op0, op1);
14335 add_loc_descr (&op0, new_loc_descr (op, 0, 0));
14336 return convert_descriptor_to_mode (mode, op0);
14339 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
14340 const0 is DW_OP_lit0 or corresponding typed constant,
14341 const1 is DW_OP_lit1 or corresponding typed constant
14342 and constMSB is constant with just the MSB bit set
14343 for the mode):
14344 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
14345 L1: const0 DW_OP_swap
14346 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
14347 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14348 L3: DW_OP_drop
14349 L4: DW_OP_nop
14351 CTZ is similar:
14352 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
14353 L1: const0 DW_OP_swap
14354 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
14355 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14356 L3: DW_OP_drop
14357 L4: DW_OP_nop
14359 FFS is similar:
14360 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
14361 L1: const1 DW_OP_swap
14362 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
14363 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14364 L3: DW_OP_drop
14365 L4: DW_OP_nop */
14367 static dw_loc_descr_ref
14368 clz_loc_descriptor (rtx rtl, scalar_int_mode mode,
14369 machine_mode mem_mode)
14371 dw_loc_descr_ref op0, ret, tmp;
14372 HOST_WIDE_INT valv;
14373 dw_loc_descr_ref l1jump, l1label;
14374 dw_loc_descr_ref l2jump, l2label;
14375 dw_loc_descr_ref l3jump, l3label;
14376 dw_loc_descr_ref l4jump, l4label;
14377 rtx msb;
14379 if (GET_MODE (XEXP (rtl, 0)) != mode)
14380 return NULL;
14382 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14383 VAR_INIT_STATUS_INITIALIZED);
14384 if (op0 == NULL)
14385 return NULL;
14386 ret = op0;
14387 if (GET_CODE (rtl) == CLZ)
14389 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
14390 valv = GET_MODE_BITSIZE (mode);
14392 else if (GET_CODE (rtl) == FFS)
14393 valv = 0;
14394 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
14395 valv = GET_MODE_BITSIZE (mode);
14396 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
14397 l1jump = new_loc_descr (DW_OP_bra, 0, 0);
14398 add_loc_descr (&ret, l1jump);
14399 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
14400 tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
14401 VAR_INIT_STATUS_INITIALIZED);
14402 if (tmp == NULL)
14403 return NULL;
14404 add_loc_descr (&ret, tmp);
14405 l4jump = new_loc_descr (DW_OP_skip, 0, 0);
14406 add_loc_descr (&ret, l4jump);
14407 l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
14408 ? const1_rtx : const0_rtx,
14409 mode, mem_mode,
14410 VAR_INIT_STATUS_INITIALIZED);
14411 if (l1label == NULL)
14412 return NULL;
14413 add_loc_descr (&ret, l1label);
14414 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14415 l2label = new_loc_descr (DW_OP_dup, 0, 0);
14416 add_loc_descr (&ret, l2label);
14417 if (GET_CODE (rtl) != CLZ)
14418 msb = const1_rtx;
14419 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
14420 msb = GEN_INT (HOST_WIDE_INT_1U
14421 << (GET_MODE_BITSIZE (mode) - 1));
14422 else
14423 msb = immed_wide_int_const
14424 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1,
14425 GET_MODE_PRECISION (mode)), mode);
14426 if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
14427 tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
14428 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
14429 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
14430 else
14431 tmp = mem_loc_descriptor (msb, mode, mem_mode,
14432 VAR_INIT_STATUS_INITIALIZED);
14433 if (tmp == NULL)
14434 return NULL;
14435 add_loc_descr (&ret, tmp);
14436 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
14437 l3jump = new_loc_descr (DW_OP_bra, 0, 0);
14438 add_loc_descr (&ret, l3jump);
14439 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
14440 VAR_INIT_STATUS_INITIALIZED);
14441 if (tmp == NULL)
14442 return NULL;
14443 add_loc_descr (&ret, tmp);
14444 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
14445 ? DW_OP_shl : DW_OP_shr, 0, 0));
14446 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14447 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
14448 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14449 l2jump = new_loc_descr (DW_OP_skip, 0, 0);
14450 add_loc_descr (&ret, l2jump);
14451 l3label = new_loc_descr (DW_OP_drop, 0, 0);
14452 add_loc_descr (&ret, l3label);
14453 l4label = new_loc_descr (DW_OP_nop, 0, 0);
14454 add_loc_descr (&ret, l4label);
14455 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14456 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
14457 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14458 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
14459 l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14460 l3jump->dw_loc_oprnd1.v.val_loc = l3label;
14461 l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14462 l4jump->dw_loc_oprnd1.v.val_loc = l4label;
14463 return ret;
14466 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
14467 const1 is DW_OP_lit1 or corresponding typed constant):
14468 const0 DW_OP_swap
14469 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
14470 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
14471 L2: DW_OP_drop
14473 PARITY is similar:
14474 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
14475 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
14476 L2: DW_OP_drop */
14478 static dw_loc_descr_ref
14479 popcount_loc_descriptor (rtx rtl, scalar_int_mode mode,
14480 machine_mode mem_mode)
14482 dw_loc_descr_ref op0, ret, tmp;
14483 dw_loc_descr_ref l1jump, l1label;
14484 dw_loc_descr_ref l2jump, l2label;
14486 if (GET_MODE (XEXP (rtl, 0)) != mode)
14487 return NULL;
14489 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14490 VAR_INIT_STATUS_INITIALIZED);
14491 if (op0 == NULL)
14492 return NULL;
14493 ret = op0;
14494 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
14495 VAR_INIT_STATUS_INITIALIZED);
14496 if (tmp == NULL)
14497 return NULL;
14498 add_loc_descr (&ret, tmp);
14499 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14500 l1label = new_loc_descr (DW_OP_dup, 0, 0);
14501 add_loc_descr (&ret, l1label);
14502 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
14503 add_loc_descr (&ret, l2jump);
14504 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
14505 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
14506 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
14507 VAR_INIT_STATUS_INITIALIZED);
14508 if (tmp == NULL)
14509 return NULL;
14510 add_loc_descr (&ret, tmp);
14511 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
14512 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
14513 ? DW_OP_plus : DW_OP_xor, 0, 0));
14514 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14515 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
14516 VAR_INIT_STATUS_INITIALIZED);
14517 add_loc_descr (&ret, tmp);
14518 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
14519 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
14520 add_loc_descr (&ret, l1jump);
14521 l2label = new_loc_descr (DW_OP_drop, 0, 0);
14522 add_loc_descr (&ret, l2label);
14523 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14524 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
14525 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14526 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
14527 return ret;
14530 /* BSWAP (constS is initial shift count, either 56 or 24):
14531 constS const0
14532 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
14533 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
14534 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
14535 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
14536 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
14538 static dw_loc_descr_ref
14539 bswap_loc_descriptor (rtx rtl, scalar_int_mode mode,
14540 machine_mode mem_mode)
14542 dw_loc_descr_ref op0, ret, tmp;
14543 dw_loc_descr_ref l1jump, l1label;
14544 dw_loc_descr_ref l2jump, l2label;
14546 if (BITS_PER_UNIT != 8
14547 || (GET_MODE_BITSIZE (mode) != 32
14548 && GET_MODE_BITSIZE (mode) != 64))
14549 return NULL;
14551 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14552 VAR_INIT_STATUS_INITIALIZED);
14553 if (op0 == NULL)
14554 return NULL;
14556 ret = op0;
14557 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
14558 mode, mem_mode,
14559 VAR_INIT_STATUS_INITIALIZED);
14560 if (tmp == NULL)
14561 return NULL;
14562 add_loc_descr (&ret, tmp);
14563 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
14564 VAR_INIT_STATUS_INITIALIZED);
14565 if (tmp == NULL)
14566 return NULL;
14567 add_loc_descr (&ret, tmp);
14568 l1label = new_loc_descr (DW_OP_pick, 2, 0);
14569 add_loc_descr (&ret, l1label);
14570 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
14571 mode, mem_mode,
14572 VAR_INIT_STATUS_INITIALIZED);
14573 add_loc_descr (&ret, tmp);
14574 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
14575 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
14576 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
14577 tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
14578 VAR_INIT_STATUS_INITIALIZED);
14579 if (tmp == NULL)
14580 return NULL;
14581 add_loc_descr (&ret, tmp);
14582 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
14583 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
14584 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
14585 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
14586 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14587 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
14588 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
14589 VAR_INIT_STATUS_INITIALIZED);
14590 add_loc_descr (&ret, tmp);
14591 add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
14592 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
14593 add_loc_descr (&ret, l2jump);
14594 tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
14595 VAR_INIT_STATUS_INITIALIZED);
14596 add_loc_descr (&ret, tmp);
14597 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
14598 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14599 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
14600 add_loc_descr (&ret, l1jump);
14601 l2label = new_loc_descr (DW_OP_drop, 0, 0);
14602 add_loc_descr (&ret, l2label);
14603 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14604 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
14605 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14606 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
14607 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14608 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
14609 return ret;
14612 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
14613 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
14614 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
14615 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
14617 ROTATERT is similar:
14618 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
14619 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
14620 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
14622 static dw_loc_descr_ref
14623 rotate_loc_descriptor (rtx rtl, scalar_int_mode mode,
14624 machine_mode mem_mode)
14626 rtx rtlop1 = XEXP (rtl, 1);
14627 dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
14628 int i;
14630 if (is_narrower_int_mode (GET_MODE (rtlop1), mode))
14631 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
14632 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14633 VAR_INIT_STATUS_INITIALIZED);
14634 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
14635 VAR_INIT_STATUS_INITIALIZED);
14636 if (op0 == NULL || op1 == NULL)
14637 return NULL;
14638 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
14639 for (i = 0; i < 2; i++)
14641 if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
14642 mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
14643 mode, mem_mode,
14644 VAR_INIT_STATUS_INITIALIZED);
14645 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
14646 mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
14647 ? DW_OP_const4u
14648 : HOST_BITS_PER_WIDE_INT == 64
14649 ? DW_OP_const8u : DW_OP_constu,
14650 GET_MODE_MASK (mode), 0);
14651 else
14652 mask[i] = NULL;
14653 if (mask[i] == NULL)
14654 return NULL;
14655 add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
14657 ret = op0;
14658 add_loc_descr (&ret, op1);
14659 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
14660 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
14661 if (GET_CODE (rtl) == ROTATERT)
14663 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
14664 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
14665 GET_MODE_BITSIZE (mode), 0));
14667 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
14668 if (mask[0] != NULL)
14669 add_loc_descr (&ret, mask[0]);
14670 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
14671 if (mask[1] != NULL)
14673 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14674 add_loc_descr (&ret, mask[1]);
14675 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14677 if (GET_CODE (rtl) == ROTATE)
14679 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
14680 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
14681 GET_MODE_BITSIZE (mode), 0));
14683 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
14684 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
14685 return ret;
14688 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
14689 for DEBUG_PARAMETER_REF RTL. */
14691 static dw_loc_descr_ref
14692 parameter_ref_descriptor (rtx rtl)
14694 dw_loc_descr_ref ret;
14695 dw_die_ref ref;
14697 if (dwarf_strict)
14698 return NULL;
14699 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
14700 /* With LTO during LTRANS we get the late DIE that refers to the early
14701 DIE, thus we add another indirection here. This seems to confuse
14702 gdb enough to make gcc.dg/guality/pr68860-1.c FAIL with LTO. */
14703 ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
14704 ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
14705 if (ref)
14707 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14708 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
14709 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
14711 else
14713 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
14714 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
14716 return ret;
14719 /* The following routine converts the RTL for a variable or parameter
14720 (resident in memory) into an equivalent Dwarf representation of a
14721 mechanism for getting the address of that same variable onto the top of a
14722 hypothetical "address evaluation" stack.
14724 When creating memory location descriptors, we are effectively transforming
14725 the RTL for a memory-resident object into its Dwarf postfix expression
14726 equivalent. This routine recursively descends an RTL tree, turning
14727 it into Dwarf postfix code as it goes.
14729 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
14731 MEM_MODE is the mode of the memory reference, needed to handle some
14732 autoincrement addressing modes.
14734 Return 0 if we can't represent the location. */
14736 dw_loc_descr_ref
14737 mem_loc_descriptor (rtx rtl, machine_mode mode,
14738 machine_mode mem_mode,
14739 enum var_init_status initialized)
14741 dw_loc_descr_ref mem_loc_result = NULL;
14742 enum dwarf_location_atom op;
14743 dw_loc_descr_ref op0, op1;
14744 rtx inner = NULL_RTX;
14745 poly_int64 offset;
14747 if (mode == VOIDmode)
14748 mode = GET_MODE (rtl);
14750 /* Note that for a dynamically sized array, the location we will generate a
14751 description of here will be the lowest numbered location which is
14752 actually within the array. That's *not* necessarily the same as the
14753 zeroth element of the array. */
14755 rtl = targetm.delegitimize_address (rtl);
14757 if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
14758 return NULL;
14760 scalar_int_mode int_mode, inner_mode, op1_mode;
14761 switch (GET_CODE (rtl))
14763 case POST_INC:
14764 case POST_DEC:
14765 case POST_MODIFY:
14766 return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);
14768 case SUBREG:
14769 /* The case of a subreg may arise when we have a local (register)
14770 variable or a formal (register) parameter which doesn't quite fill
14771 up an entire register. For now, just assume that it is
14772 legitimate to make the Dwarf info refer to the whole register which
14773 contains the given subreg. */
14774 if (!subreg_lowpart_p (rtl))
14775 break;
14776 inner = SUBREG_REG (rtl);
14777 /* FALLTHRU */
14778 case TRUNCATE:
14779 if (inner == NULL_RTX)
14780 inner = XEXP (rtl, 0);
14781 if (is_a <scalar_int_mode> (mode, &int_mode)
14782 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
14783 && (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
14784 #ifdef POINTERS_EXTEND_UNSIGNED
14785 || (int_mode == Pmode && mem_mode != VOIDmode)
14786 #endif
14788 && GET_MODE_SIZE (inner_mode) <= DWARF2_ADDR_SIZE)
14790 mem_loc_result = mem_loc_descriptor (inner,
14791 inner_mode,
14792 mem_mode, initialized);
14793 break;
14795 if (dwarf_strict && dwarf_version < 5)
14796 break;
14797 if (is_a <scalar_int_mode> (mode, &int_mode)
14798 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
14799 ? GET_MODE_SIZE (int_mode) <= GET_MODE_SIZE (inner_mode)
14800 : GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (inner)))
14802 dw_die_ref type_die;
14803 dw_loc_descr_ref cvt;
14805 mem_loc_result = mem_loc_descriptor (inner,
14806 GET_MODE (inner),
14807 mem_mode, initialized);
14808 if (mem_loc_result == NULL)
14809 break;
14810 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
14811 if (type_die == NULL)
14813 mem_loc_result = NULL;
14814 break;
14816 if (GET_MODE_SIZE (mode)
14817 != GET_MODE_SIZE (GET_MODE (inner)))
14818 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14819 else
14820 cvt = new_loc_descr (dwarf_OP (DW_OP_reinterpret), 0, 0);
14821 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14822 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14823 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14824 add_loc_descr (&mem_loc_result, cvt);
14825 if (is_a <scalar_int_mode> (mode, &int_mode)
14826 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE)
14828 /* Convert it to untyped afterwards. */
14829 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14830 add_loc_descr (&mem_loc_result, cvt);
14833 break;
14835 case REG:
14836 if (!is_a <scalar_int_mode> (mode, &int_mode)
14837 || (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE
14838 && rtl != arg_pointer_rtx
14839 && rtl != frame_pointer_rtx
14840 #ifdef POINTERS_EXTEND_UNSIGNED
14841 && (int_mode != Pmode || mem_mode == VOIDmode)
14842 #endif
14845 dw_die_ref type_die;
14846 unsigned int dbx_regnum;
14848 if (dwarf_strict && dwarf_version < 5)
14849 break;
14850 if (REGNO (rtl) > FIRST_PSEUDO_REGISTER)
14851 break;
14852 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
14853 if (type_die == NULL)
14854 break;
14856 dbx_regnum = dbx_reg_number (rtl);
14857 if (dbx_regnum == IGNORED_DWARF_REGNUM)
14858 break;
14859 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_regval_type),
14860 dbx_regnum, 0);
14861 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
14862 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
14863 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
14864 break;
14866 /* Whenever a register number forms a part of the description of the
14867 method for calculating the (dynamic) address of a memory resident
14868 object, DWARF rules require the register number be referred to as
14869 a "base register". This distinction is not based in any way upon
14870 what category of register the hardware believes the given register
14871 belongs to. This is strictly DWARF terminology we're dealing with
14872 here. Note that in cases where the location of a memory-resident
14873 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
14874 OP_CONST (0)) the actual DWARF location descriptor that we generate
14875 may just be OP_BASEREG (basereg). This may look deceptively like
14876 the object in question was allocated to a register (rather than in
14877 memory) so DWARF consumers need to be aware of the subtle
14878 distinction between OP_REG and OP_BASEREG. */
14879 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
14880 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
14881 else if (stack_realign_drap
14882 && crtl->drap_reg
14883 && crtl->args.internal_arg_pointer == rtl
14884 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
14886 /* If RTL is internal_arg_pointer, which has been optimized
14887 out, use DRAP instead. */
14888 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
14889 VAR_INIT_STATUS_INITIALIZED);
14891 break;
14893 case SIGN_EXTEND:
14894 case ZERO_EXTEND:
14895 if (!is_a <scalar_int_mode> (mode, &int_mode)
14896 || !is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &inner_mode))
14897 break;
14898 op0 = mem_loc_descriptor (XEXP (rtl, 0), inner_mode,
14899 mem_mode, VAR_INIT_STATUS_INITIALIZED);
14900 if (op0 == 0)
14901 break;
14902 else if (GET_CODE (rtl) == ZERO_EXTEND
14903 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
14904 && GET_MODE_BITSIZE (inner_mode) < HOST_BITS_PER_WIDE_INT
14905 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
14906 to expand zero extend as two shifts instead of
14907 masking. */
14908 && GET_MODE_SIZE (inner_mode) <= 4)
14910 mem_loc_result = op0;
14911 add_loc_descr (&mem_loc_result,
14912 int_loc_descriptor (GET_MODE_MASK (inner_mode)));
14913 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
14915 else if (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE)
14917 int shift = DWARF2_ADDR_SIZE - GET_MODE_SIZE (inner_mode);
14918 shift *= BITS_PER_UNIT;
14919 if (GET_CODE (rtl) == SIGN_EXTEND)
14920 op = DW_OP_shra;
14921 else
14922 op = DW_OP_shr;
14923 mem_loc_result = op0;
14924 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
14925 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
14926 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
14927 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
14929 else if (!dwarf_strict || dwarf_version >= 5)
14931 dw_die_ref type_die1, type_die2;
14932 dw_loc_descr_ref cvt;
14934 type_die1 = base_type_for_mode (inner_mode,
14935 GET_CODE (rtl) == ZERO_EXTEND);
14936 if (type_die1 == NULL)
14937 break;
14938 type_die2 = base_type_for_mode (int_mode, 1);
14939 if (type_die2 == NULL)
14940 break;
14941 mem_loc_result = op0;
14942 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14943 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14944 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
14945 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14946 add_loc_descr (&mem_loc_result, cvt);
14947 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14948 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14949 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
14950 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14951 add_loc_descr (&mem_loc_result, cvt);
14953 break;
14955 case MEM:
14957 rtx new_rtl = avoid_constant_pool_reference (rtl);
14958 if (new_rtl != rtl)
14960 mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
14961 initialized);
14962 if (mem_loc_result != NULL)
14963 return mem_loc_result;
14966 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
14967 get_address_mode (rtl), mode,
14968 VAR_INIT_STATUS_INITIALIZED);
14969 if (mem_loc_result == NULL)
14970 mem_loc_result = tls_mem_loc_descriptor (rtl);
14971 if (mem_loc_result != NULL)
14973 if (!is_a <scalar_int_mode> (mode, &int_mode)
14974 || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
14976 dw_die_ref type_die;
14977 dw_loc_descr_ref deref;
14979 if (dwarf_strict && dwarf_version < 5)
14980 return NULL;
14981 type_die
14982 = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
14983 if (type_die == NULL)
14984 return NULL;
14985 deref = new_loc_descr (dwarf_OP (DW_OP_deref_type),
14986 GET_MODE_SIZE (mode), 0);
14987 deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
14988 deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
14989 deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
14990 add_loc_descr (&mem_loc_result, deref);
14992 else if (GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE)
14993 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
14994 else
14995 add_loc_descr (&mem_loc_result,
14996 new_loc_descr (DW_OP_deref_size,
14997 GET_MODE_SIZE (int_mode), 0));
14999 break;
15001 case LO_SUM:
15002 return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);
15004 case LABEL_REF:
15005 /* Some ports can transform a symbol ref into a label ref, because
15006 the symbol ref is too far away and has to be dumped into a constant
15007 pool. */
15008 case CONST:
15009 case SYMBOL_REF:
15010 if (!is_a <scalar_int_mode> (mode, &int_mode)
15011 || (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE
15012 #ifdef POINTERS_EXTEND_UNSIGNED
15013 && (int_mode != Pmode || mem_mode == VOIDmode)
15014 #endif
15016 break;
15017 if (GET_CODE (rtl) == SYMBOL_REF
15018 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
15020 dw_loc_descr_ref temp;
15022 /* If this is not defined, we have no way to emit the data. */
15023 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
15024 break;
15026 temp = new_addr_loc_descr (rtl, dtprel_true);
15028 /* We check for DWARF 5 here because gdb did not implement
15029 DW_OP_form_tls_address until after 7.12. */
15030 mem_loc_result = new_loc_descr ((dwarf_version >= 5
15031 ? DW_OP_form_tls_address
15032 : DW_OP_GNU_push_tls_address),
15033 0, 0);
15034 add_loc_descr (&mem_loc_result, temp);
15036 break;
15039 if (!const_ok_for_output (rtl))
15041 if (GET_CODE (rtl) == CONST)
15042 switch (GET_CODE (XEXP (rtl, 0)))
15044 case NOT:
15045 op = DW_OP_not;
15046 goto try_const_unop;
15047 case NEG:
15048 op = DW_OP_neg;
15049 goto try_const_unop;
15050 try_const_unop:
15051 rtx arg;
15052 arg = XEXP (XEXP (rtl, 0), 0);
15053 if (!CONSTANT_P (arg))
15054 arg = gen_rtx_CONST (int_mode, arg);
15055 op0 = mem_loc_descriptor (arg, int_mode, mem_mode,
15056 initialized);
15057 if (op0)
15059 mem_loc_result = op0;
15060 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15062 break;
15063 default:
15064 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), int_mode,
15065 mem_mode, initialized);
15066 break;
15068 break;
15071 symref:
15072 mem_loc_result = new_addr_loc_descr (rtl, dtprel_false);
15073 vec_safe_push (used_rtx_array, rtl);
15074 break;
15076 case CONCAT:
15077 case CONCATN:
15078 case VAR_LOCATION:
15079 case DEBUG_IMPLICIT_PTR:
15080 expansion_failed (NULL_TREE, rtl,
15081 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
15082 return 0;
15084 case ENTRY_VALUE:
15085 if (dwarf_strict && dwarf_version < 5)
15086 return NULL;
15087 if (REG_P (ENTRY_VALUE_EXP (rtl)))
15089 if (!is_a <scalar_int_mode> (mode, &int_mode)
15090 || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
15091 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
15092 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15093 else
15095 unsigned int dbx_regnum = dbx_reg_number (ENTRY_VALUE_EXP (rtl));
15096 if (dbx_regnum == IGNORED_DWARF_REGNUM)
15097 return NULL;
15098 op0 = one_reg_loc_descriptor (dbx_regnum,
15099 VAR_INIT_STATUS_INITIALIZED);
15102 else if (MEM_P (ENTRY_VALUE_EXP (rtl))
15103 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
15105 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
15106 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15107 if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
15108 return NULL;
15110 else
15111 gcc_unreachable ();
15112 if (op0 == NULL)
15113 return NULL;
15114 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_entry_value), 0, 0);
15115 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
15116 mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
15117 break;
15119 case DEBUG_PARAMETER_REF:
15120 mem_loc_result = parameter_ref_descriptor (rtl);
15121 break;
15123 case PRE_MODIFY:
15124 /* Extract the PLUS expression nested inside and fall into
15125 PLUS code below. */
15126 rtl = XEXP (rtl, 1);
15127 goto plus;
15129 case PRE_INC:
15130 case PRE_DEC:
15131 /* Turn these into a PLUS expression and fall into the PLUS code
15132 below. */
15133 rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
15134 gen_int_mode (GET_CODE (rtl) == PRE_INC
15135 ? GET_MODE_UNIT_SIZE (mem_mode)
15136 : -GET_MODE_UNIT_SIZE (mem_mode),
15137 mode));
15139 /* fall through */
15141 case PLUS:
15142 plus:
15143 if (is_based_loc (rtl)
15144 && is_a <scalar_int_mode> (mode, &int_mode)
15145 && (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
15146 || XEXP (rtl, 0) == arg_pointer_rtx
15147 || XEXP (rtl, 0) == frame_pointer_rtx))
15148 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
15149 INTVAL (XEXP (rtl, 1)),
15150 VAR_INIT_STATUS_INITIALIZED);
15151 else
15153 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15154 VAR_INIT_STATUS_INITIALIZED);
15155 if (mem_loc_result == 0)
15156 break;
15158 if (CONST_INT_P (XEXP (rtl, 1))
15159 && (GET_MODE_SIZE (as_a <scalar_int_mode> (mode))
15160 <= DWARF2_ADDR_SIZE))
15161 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
15162 else
15164 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15165 VAR_INIT_STATUS_INITIALIZED);
15166 if (op1 == 0)
15167 return NULL;
15168 add_loc_descr (&mem_loc_result, op1);
15169 add_loc_descr (&mem_loc_result,
15170 new_loc_descr (DW_OP_plus, 0, 0));
15173 break;
15175 /* If a pseudo-reg is optimized away, it is possible for it to
15176 be replaced with a MEM containing a multiply or shift. */
15177 case MINUS:
15178 op = DW_OP_minus;
15179 goto do_binop;
15181 case MULT:
15182 op = DW_OP_mul;
15183 goto do_binop;
15185 case DIV:
15186 if ((!dwarf_strict || dwarf_version >= 5)
15187 && is_a <scalar_int_mode> (mode, &int_mode)
15188 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
15190 mem_loc_result = typed_binop (DW_OP_div, rtl,
15191 base_type_for_mode (mode, 0),
15192 int_mode, mem_mode);
15193 break;
15195 op = DW_OP_div;
15196 goto do_binop;
15198 case UMOD:
15199 op = DW_OP_mod;
15200 goto do_binop;
15202 case ASHIFT:
15203 op = DW_OP_shl;
15204 goto do_shift;
15206 case ASHIFTRT:
15207 op = DW_OP_shra;
15208 goto do_shift;
15210 case LSHIFTRT:
15211 op = DW_OP_shr;
15212 goto do_shift;
15214 do_shift:
15215 if (!is_a <scalar_int_mode> (mode, &int_mode))
15216 break;
15217 op0 = mem_loc_descriptor (XEXP (rtl, 0), int_mode, mem_mode,
15218 VAR_INIT_STATUS_INITIALIZED);
15220 rtx rtlop1 = XEXP (rtl, 1);
15221 if (is_a <scalar_int_mode> (GET_MODE (rtlop1), &op1_mode)
15222 && GET_MODE_BITSIZE (op1_mode) < GET_MODE_BITSIZE (int_mode))
15223 rtlop1 = gen_rtx_ZERO_EXTEND (int_mode, rtlop1);
15224 op1 = mem_loc_descriptor (rtlop1, int_mode, mem_mode,
15225 VAR_INIT_STATUS_INITIALIZED);
15228 if (op0 == 0 || op1 == 0)
15229 break;
15231 mem_loc_result = op0;
15232 add_loc_descr (&mem_loc_result, op1);
15233 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15234 break;
15236 case AND:
15237 op = DW_OP_and;
15238 goto do_binop;
15240 case IOR:
15241 op = DW_OP_or;
15242 goto do_binop;
15244 case XOR:
15245 op = DW_OP_xor;
15246 goto do_binop;
15248 do_binop:
15249 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15250 VAR_INIT_STATUS_INITIALIZED);
15251 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15252 VAR_INIT_STATUS_INITIALIZED);
15254 if (op0 == 0 || op1 == 0)
15255 break;
15257 mem_loc_result = op0;
15258 add_loc_descr (&mem_loc_result, op1);
15259 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15260 break;
15262 case MOD:
15263 if ((!dwarf_strict || dwarf_version >= 5)
15264 && is_a <scalar_int_mode> (mode, &int_mode)
15265 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
15267 mem_loc_result = typed_binop (DW_OP_mod, rtl,
15268 base_type_for_mode (mode, 0),
15269 int_mode, mem_mode);
15270 break;
15273 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15274 VAR_INIT_STATUS_INITIALIZED);
15275 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15276 VAR_INIT_STATUS_INITIALIZED);
15278 if (op0 == 0 || op1 == 0)
15279 break;
15281 mem_loc_result = op0;
15282 add_loc_descr (&mem_loc_result, op1);
15283 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
15284 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
15285 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
15286 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
15287 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
15288 break;
15290 case UDIV:
15291 if ((!dwarf_strict || dwarf_version >= 5)
15292 && is_a <scalar_int_mode> (mode, &int_mode))
15294 if (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
15296 op = DW_OP_div;
15297 goto do_binop;
15299 mem_loc_result = typed_binop (DW_OP_div, rtl,
15300 base_type_for_mode (int_mode, 1),
15301 int_mode, mem_mode);
15303 break;
15305 case NOT:
15306 op = DW_OP_not;
15307 goto do_unop;
15309 case ABS:
15310 op = DW_OP_abs;
15311 goto do_unop;
15313 case NEG:
15314 op = DW_OP_neg;
15315 goto do_unop;
15317 do_unop:
15318 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15319 VAR_INIT_STATUS_INITIALIZED);
15321 if (op0 == 0)
15322 break;
15324 mem_loc_result = op0;
15325 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15326 break;
15328 case CONST_INT:
15329 if (!is_a <scalar_int_mode> (mode, &int_mode)
15330 || GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
15331 #ifdef POINTERS_EXTEND_UNSIGNED
15332 || (int_mode == Pmode
15333 && mem_mode != VOIDmode
15334 && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
15335 #endif
15338 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
15339 break;
15341 if ((!dwarf_strict || dwarf_version >= 5)
15342 && (GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_WIDE_INT
15343 || GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_DOUBLE_INT))
15345 dw_die_ref type_die = base_type_for_mode (int_mode, 1);
15346 scalar_int_mode amode;
15347 if (type_die == NULL)
15348 return NULL;
15349 if (INTVAL (rtl) >= 0
15350 && (int_mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT, 0)
15351 .exists (&amode))
15352 && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
15353 /* const DW_OP_convert <XXX> vs.
15354 DW_OP_const_type <XXX, 1, const>. */
15355 && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
15356 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (int_mode))
15358 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
15359 op0 = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
15360 op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15361 op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15362 op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
15363 add_loc_descr (&mem_loc_result, op0);
15364 return mem_loc_result;
15366 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0,
15367 INTVAL (rtl));
15368 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15369 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15370 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
15371 if (GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_WIDE_INT)
15372 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
15373 else
15375 mem_loc_result->dw_loc_oprnd2.val_class
15376 = dw_val_class_const_double;
15377 mem_loc_result->dw_loc_oprnd2.v.val_double
15378 = double_int::from_shwi (INTVAL (rtl));
15381 break;
15383 case CONST_DOUBLE:
15384 if (!dwarf_strict || dwarf_version >= 5)
15386 dw_die_ref type_die;
15388 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
15389 CONST_DOUBLE rtx could represent either a large integer
15390 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
15391 the value is always a floating point constant.
15393 When it is an integer, a CONST_DOUBLE is used whenever
15394 the constant requires 2 HWIs to be adequately represented.
15395 We output CONST_DOUBLEs as blocks. */
15396 if (mode == VOIDmode
15397 || (GET_MODE (rtl) == VOIDmode
15398 && GET_MODE_BITSIZE (mode) != HOST_BITS_PER_DOUBLE_INT))
15399 break;
15400 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
15401 if (type_die == NULL)
15402 return NULL;
15403 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0, 0);
15404 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15405 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15406 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
15407 #if TARGET_SUPPORTS_WIDE_INT == 0
15408 if (!SCALAR_FLOAT_MODE_P (mode))
15410 mem_loc_result->dw_loc_oprnd2.val_class
15411 = dw_val_class_const_double;
15412 mem_loc_result->dw_loc_oprnd2.v.val_double
15413 = rtx_to_double_int (rtl);
15415 else
15416 #endif
15418 scalar_float_mode float_mode = as_a <scalar_float_mode> (mode);
15419 unsigned int length = GET_MODE_SIZE (float_mode);
15420 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
15422 insert_float (rtl, array);
15423 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
15424 mem_loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
15425 mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
15426 mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
15429 break;
15431 case CONST_WIDE_INT:
15432 if (!dwarf_strict || dwarf_version >= 5)
15434 dw_die_ref type_die;
15436 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
15437 if (type_die == NULL)
15438 return NULL;
15439 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0, 0);
15440 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15441 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15442 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
15443 mem_loc_result->dw_loc_oprnd2.val_class
15444 = dw_val_class_wide_int;
15445 mem_loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
15446 *mem_loc_result->dw_loc_oprnd2.v.val_wide = rtx_mode_t (rtl, mode);
15448 break;
15450 case CONST_POLY_INT:
15451 mem_loc_result = int_loc_descriptor (rtx_to_poly_int64 (rtl));
15452 break;
15454 case EQ:
15455 mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
15456 break;
15458 case GE:
15459 mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
15460 break;
15462 case GT:
15463 mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
15464 break;
15466 case LE:
15467 mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
15468 break;
15470 case LT:
15471 mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
15472 break;
15474 case NE:
15475 mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
15476 break;
15478 case GEU:
15479 mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
15480 break;
15482 case GTU:
15483 mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
15484 break;
15486 case LEU:
15487 mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
15488 break;
15490 case LTU:
15491 mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
15492 break;
15494 case UMIN:
15495 case UMAX:
15496 if (!SCALAR_INT_MODE_P (mode))
15497 break;
15498 /* FALLTHRU */
15499 case SMIN:
15500 case SMAX:
15501 mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
15502 break;
15504 case ZERO_EXTRACT:
15505 case SIGN_EXTRACT:
15506 if (CONST_INT_P (XEXP (rtl, 1))
15507 && CONST_INT_P (XEXP (rtl, 2))
15508 && is_a <scalar_int_mode> (mode, &int_mode)
15509 && is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &inner_mode)
15510 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
15511 && GET_MODE_SIZE (inner_mode) <= DWARF2_ADDR_SIZE
15512 && ((unsigned) INTVAL (XEXP (rtl, 1))
15513 + (unsigned) INTVAL (XEXP (rtl, 2))
15514 <= GET_MODE_BITSIZE (int_mode)))
15516 int shift, size;
15517 op0 = mem_loc_descriptor (XEXP (rtl, 0), inner_mode,
15518 mem_mode, VAR_INIT_STATUS_INITIALIZED);
15519 if (op0 == 0)
15520 break;
15521 if (GET_CODE (rtl) == SIGN_EXTRACT)
15522 op = DW_OP_shra;
15523 else
15524 op = DW_OP_shr;
15525 mem_loc_result = op0;
15526 size = INTVAL (XEXP (rtl, 1));
15527 shift = INTVAL (XEXP (rtl, 2));
15528 if (BITS_BIG_ENDIAN)
15529 shift = GET_MODE_BITSIZE (inner_mode) - shift - size;
15530 if (shift + size != (int) DWARF2_ADDR_SIZE)
15532 add_loc_descr (&mem_loc_result,
15533 int_loc_descriptor (DWARF2_ADDR_SIZE
15534 - shift - size));
15535 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
15537 if (size != (int) DWARF2_ADDR_SIZE)
15539 add_loc_descr (&mem_loc_result,
15540 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
15541 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15544 break;
15546 case IF_THEN_ELSE:
15548 dw_loc_descr_ref op2, bra_node, drop_node;
15549 op0 = mem_loc_descriptor (XEXP (rtl, 0),
15550 GET_MODE (XEXP (rtl, 0)) == VOIDmode
15551 ? word_mode : GET_MODE (XEXP (rtl, 0)),
15552 mem_mode, VAR_INIT_STATUS_INITIALIZED);
15553 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15554 VAR_INIT_STATUS_INITIALIZED);
15555 op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
15556 VAR_INIT_STATUS_INITIALIZED);
15557 if (op0 == NULL || op1 == NULL || op2 == NULL)
15558 break;
15560 mem_loc_result = op1;
15561 add_loc_descr (&mem_loc_result, op2);
15562 add_loc_descr (&mem_loc_result, op0);
15563 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
15564 add_loc_descr (&mem_loc_result, bra_node);
15565 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
15566 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
15567 add_loc_descr (&mem_loc_result, drop_node);
15568 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
15569 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
15571 break;
15573 case FLOAT_EXTEND:
15574 case FLOAT_TRUNCATE:
15575 case FLOAT:
15576 case UNSIGNED_FLOAT:
15577 case FIX:
15578 case UNSIGNED_FIX:
15579 if (!dwarf_strict || dwarf_version >= 5)
15581 dw_die_ref type_die;
15582 dw_loc_descr_ref cvt;
15584 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
15585 mem_mode, VAR_INIT_STATUS_INITIALIZED);
15586 if (op0 == NULL)
15587 break;
15588 if (is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &int_mode)
15589 && (GET_CODE (rtl) == FLOAT
15590 || GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE))
15592 type_die = base_type_for_mode (int_mode,
15593 GET_CODE (rtl) == UNSIGNED_FLOAT);
15594 if (type_die == NULL)
15595 break;
15596 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
15597 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15598 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15599 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
15600 add_loc_descr (&op0, cvt);
15602 type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
15603 if (type_die == NULL)
15604 break;
15605 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
15606 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15607 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15608 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
15609 add_loc_descr (&op0, cvt);
15610 if (is_a <scalar_int_mode> (mode, &int_mode)
15611 && (GET_CODE (rtl) == FIX
15612 || GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE))
15614 op0 = convert_descriptor_to_mode (int_mode, op0);
15615 if (op0 == NULL)
15616 break;
15618 mem_loc_result = op0;
15620 break;
15622 case CLZ:
15623 case CTZ:
15624 case FFS:
15625 if (is_a <scalar_int_mode> (mode, &int_mode))
15626 mem_loc_result = clz_loc_descriptor (rtl, int_mode, mem_mode);
15627 break;
15629 case POPCOUNT:
15630 case PARITY:
15631 if (is_a <scalar_int_mode> (mode, &int_mode))
15632 mem_loc_result = popcount_loc_descriptor (rtl, int_mode, mem_mode);
15633 break;
15635 case BSWAP:
15636 if (is_a <scalar_int_mode> (mode, &int_mode))
15637 mem_loc_result = bswap_loc_descriptor (rtl, int_mode, mem_mode);
15638 break;
15640 case ROTATE:
15641 case ROTATERT:
15642 if (is_a <scalar_int_mode> (mode, &int_mode))
15643 mem_loc_result = rotate_loc_descriptor (rtl, int_mode, mem_mode);
15644 break;
15646 case COMPARE:
15647 /* In theory, we could implement the above. */
15648 /* DWARF cannot represent the unsigned compare operations
15649 natively. */
15650 case SS_MULT:
15651 case US_MULT:
15652 case SS_DIV:
15653 case US_DIV:
15654 case SS_PLUS:
15655 case US_PLUS:
15656 case SS_MINUS:
15657 case US_MINUS:
15658 case SS_NEG:
15659 case US_NEG:
15660 case SS_ABS:
15661 case SS_ASHIFT:
15662 case US_ASHIFT:
15663 case SS_TRUNCATE:
15664 case US_TRUNCATE:
15665 case UNORDERED:
15666 case ORDERED:
15667 case UNEQ:
15668 case UNGE:
15669 case UNGT:
15670 case UNLE:
15671 case UNLT:
15672 case LTGT:
15673 case FRACT_CONVERT:
15674 case UNSIGNED_FRACT_CONVERT:
15675 case SAT_FRACT:
15676 case UNSIGNED_SAT_FRACT:
15677 case SQRT:
15678 case ASM_OPERANDS:
15679 case VEC_MERGE:
15680 case VEC_SELECT:
15681 case VEC_CONCAT:
15682 case VEC_DUPLICATE:
15683 case VEC_SERIES:
15684 case UNSPEC:
15685 case HIGH:
15686 case FMA:
15687 case STRICT_LOW_PART:
15688 case CONST_VECTOR:
15689 case CONST_FIXED:
15690 case CLRSB:
15691 case CLOBBER:
15692 /* If delegitimize_address couldn't do anything with the UNSPEC, we
15693 can't express it in the debug info. This can happen e.g. with some
15694 TLS UNSPECs. */
15695 break;
15697 case CONST_STRING:
15698 resolve_one_addr (&rtl);
15699 goto symref;
15701 /* RTL sequences inside PARALLEL record a series of DWARF operations for
15702 the expression. An UNSPEC rtx represents a raw DWARF operation,
15703 new_loc_descr is called for it to build the operation directly.
15704 Otherwise mem_loc_descriptor is called recursively. */
15705 case PARALLEL:
15707 int index = 0;
15708 dw_loc_descr_ref exp_result = NULL;
15710 for (; index < XVECLEN (rtl, 0); index++)
15712 rtx elem = XVECEXP (rtl, 0, index);
15713 if (GET_CODE (elem) == UNSPEC)
15715 /* Each DWARF operation UNSPEC contain two operands, if
15716 one operand is not used for the operation, const0_rtx is
15717 passed. */
15718 gcc_assert (XVECLEN (elem, 0) == 2);
15720 HOST_WIDE_INT dw_op = XINT (elem, 1);
15721 HOST_WIDE_INT oprnd1 = INTVAL (XVECEXP (elem, 0, 0));
15722 HOST_WIDE_INT oprnd2 = INTVAL (XVECEXP (elem, 0, 1));
15723 exp_result
15724 = new_loc_descr ((enum dwarf_location_atom) dw_op, oprnd1,
15725 oprnd2);
15727 else
15728 exp_result
15729 = mem_loc_descriptor (elem, mode, mem_mode,
15730 VAR_INIT_STATUS_INITIALIZED);
15732 if (!mem_loc_result)
15733 mem_loc_result = exp_result;
15734 else
15735 add_loc_descr (&mem_loc_result, exp_result);
15738 break;
15741 default:
15742 if (flag_checking)
15744 print_rtl (stderr, rtl);
15745 gcc_unreachable ();
15747 break;
15750 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
15751 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
15753 return mem_loc_result;
15756 /* Return a descriptor that describes the concatenation of two locations.
15757 This is typically a complex variable. */
15759 static dw_loc_descr_ref
15760 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
15762 dw_loc_descr_ref cc_loc_result = NULL;
15763 dw_loc_descr_ref x0_ref
15764 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15765 dw_loc_descr_ref x1_ref
15766 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15768 if (x0_ref == 0 || x1_ref == 0)
15769 return 0;
15771 cc_loc_result = x0_ref;
15772 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
15774 add_loc_descr (&cc_loc_result, x1_ref);
15775 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
15777 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
15778 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
15780 return cc_loc_result;
15783 /* Return a descriptor that describes the concatenation of N
15784 locations. */
15786 static dw_loc_descr_ref
15787 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
15789 unsigned int i;
15790 dw_loc_descr_ref cc_loc_result = NULL;
15791 unsigned int n = XVECLEN (concatn, 0);
15793 for (i = 0; i < n; ++i)
15795 dw_loc_descr_ref ref;
15796 rtx x = XVECEXP (concatn, 0, i);
15798 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15799 if (ref == NULL)
15800 return NULL;
15802 add_loc_descr (&cc_loc_result, ref);
15803 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
15806 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
15807 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
15809 return cc_loc_result;
15812 /* Helper function for loc_descriptor. Return DW_OP_implicit_pointer
15813 for DEBUG_IMPLICIT_PTR RTL. */
15815 static dw_loc_descr_ref
15816 implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
15818 dw_loc_descr_ref ret;
15819 dw_die_ref ref;
15821 if (dwarf_strict && dwarf_version < 5)
15822 return NULL;
15823 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
15824 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
15825 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
15826 ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
15827 ret = new_loc_descr (dwarf_OP (DW_OP_implicit_pointer), 0, offset);
15828 ret->dw_loc_oprnd2.val_class = dw_val_class_const;
15829 if (ref)
15831 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15832 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
15833 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
15835 else
15837 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
15838 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
15840 return ret;
15843 /* Output a proper Dwarf location descriptor for a variable or parameter
15844 which is either allocated in a register or in a memory location. For a
15845 register, we just generate an OP_REG and the register number. For a
15846 memory location we provide a Dwarf postfix expression describing how to
15847 generate the (dynamic) address of the object onto the address stack.
15849 MODE is mode of the decl if this loc_descriptor is going to be used in
15850 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
15851 allowed, VOIDmode otherwise.
15853 If we don't know how to describe it, return 0. */
15855 static dw_loc_descr_ref
15856 loc_descriptor (rtx rtl, machine_mode mode,
15857 enum var_init_status initialized)
15859 dw_loc_descr_ref loc_result = NULL;
15860 scalar_int_mode int_mode;
15862 switch (GET_CODE (rtl))
15864 case SUBREG:
15865 /* The case of a subreg may arise when we have a local (register)
15866 variable or a formal (register) parameter which doesn't quite fill
15867 up an entire register. For now, just assume that it is
15868 legitimate to make the Dwarf info refer to the whole register which
15869 contains the given subreg. */
15870 if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
15871 loc_result = loc_descriptor (SUBREG_REG (rtl),
15872 GET_MODE (SUBREG_REG (rtl)), initialized);
15873 else
15874 goto do_default;
15875 break;
15877 case REG:
15878 loc_result = reg_loc_descriptor (rtl, initialized);
15879 break;
15881 case MEM:
15882 loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
15883 GET_MODE (rtl), initialized);
15884 if (loc_result == NULL)
15885 loc_result = tls_mem_loc_descriptor (rtl);
15886 if (loc_result == NULL)
15888 rtx new_rtl = avoid_constant_pool_reference (rtl);
15889 if (new_rtl != rtl)
15890 loc_result = loc_descriptor (new_rtl, mode, initialized);
15892 break;
15894 case CONCAT:
15895 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
15896 initialized);
15897 break;
15899 case CONCATN:
15900 loc_result = concatn_loc_descriptor (rtl, initialized);
15901 break;
15903 case VAR_LOCATION:
15904 /* Single part. */
15905 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
15907 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
15908 if (GET_CODE (loc) == EXPR_LIST)
15909 loc = XEXP (loc, 0);
15910 loc_result = loc_descriptor (loc, mode, initialized);
15911 break;
15914 rtl = XEXP (rtl, 1);
15915 /* FALLTHRU */
15917 case PARALLEL:
15919 rtvec par_elems = XVEC (rtl, 0);
15920 int num_elem = GET_NUM_ELEM (par_elems);
15921 machine_mode mode;
15922 int i;
15924 /* Create the first one, so we have something to add to. */
15925 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
15926 VOIDmode, initialized);
15927 if (loc_result == NULL)
15928 return NULL;
15929 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
15930 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
15931 for (i = 1; i < num_elem; i++)
15933 dw_loc_descr_ref temp;
15935 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
15936 VOIDmode, initialized);
15937 if (temp == NULL)
15938 return NULL;
15939 add_loc_descr (&loc_result, temp);
15940 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
15941 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
15944 break;
15946 case CONST_INT:
15947 if (mode != VOIDmode && mode != BLKmode)
15949 int_mode = as_a <scalar_int_mode> (mode);
15950 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (int_mode),
15951 INTVAL (rtl));
15953 break;
15955 case CONST_DOUBLE:
15956 if (mode == VOIDmode)
15957 mode = GET_MODE (rtl);
15959 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
15961 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
15963 /* Note that a CONST_DOUBLE rtx could represent either an integer
15964 or a floating-point constant. A CONST_DOUBLE is used whenever
15965 the constant requires more than one word in order to be
15966 adequately represented. We output CONST_DOUBLEs as blocks. */
15967 scalar_mode smode = as_a <scalar_mode> (mode);
15968 loc_result = new_loc_descr (DW_OP_implicit_value,
15969 GET_MODE_SIZE (smode), 0);
15970 #if TARGET_SUPPORTS_WIDE_INT == 0
15971 if (!SCALAR_FLOAT_MODE_P (smode))
15973 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
15974 loc_result->dw_loc_oprnd2.v.val_double
15975 = rtx_to_double_int (rtl);
15977 else
15978 #endif
15980 unsigned int length = GET_MODE_SIZE (smode);
15981 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
15983 insert_float (rtl, array);
15984 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
15985 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
15986 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
15987 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
15990 break;
15992 case CONST_WIDE_INT:
15993 if (mode == VOIDmode)
15994 mode = GET_MODE (rtl);
15996 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
15998 int_mode = as_a <scalar_int_mode> (mode);
15999 loc_result = new_loc_descr (DW_OP_implicit_value,
16000 GET_MODE_SIZE (int_mode), 0);
16001 loc_result->dw_loc_oprnd2.val_class = dw_val_class_wide_int;
16002 loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
16003 *loc_result->dw_loc_oprnd2.v.val_wide = rtx_mode_t (rtl, int_mode);
16005 break;
16007 case CONST_VECTOR:
16008 if (mode == VOIDmode)
16009 mode = GET_MODE (rtl);
16011 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
16013 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
16014 unsigned int length = CONST_VECTOR_NUNITS (rtl);
16015 unsigned char *array
16016 = ggc_vec_alloc<unsigned char> (length * elt_size);
16017 unsigned int i;
16018 unsigned char *p;
16019 machine_mode imode = GET_MODE_INNER (mode);
16021 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
16022 switch (GET_MODE_CLASS (mode))
16024 case MODE_VECTOR_INT:
16025 for (i = 0, p = array; i < length; i++, p += elt_size)
16027 rtx elt = CONST_VECTOR_ELT (rtl, i);
16028 insert_wide_int (rtx_mode_t (elt, imode), p, elt_size);
16030 break;
16032 case MODE_VECTOR_FLOAT:
16033 for (i = 0, p = array; i < length; i++, p += elt_size)
16035 rtx elt = CONST_VECTOR_ELT (rtl, i);
16036 insert_float (elt, p);
16038 break;
16040 default:
16041 gcc_unreachable ();
16044 loc_result = new_loc_descr (DW_OP_implicit_value,
16045 length * elt_size, 0);
16046 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
16047 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
16048 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
16049 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
16051 break;
16053 case CONST:
16054 if (mode == VOIDmode
16055 || CONST_SCALAR_INT_P (XEXP (rtl, 0))
16056 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl, 0))
16057 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
16059 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
16060 break;
16062 /* FALLTHROUGH */
16063 case SYMBOL_REF:
16064 if (!const_ok_for_output (rtl))
16065 break;
16066 /* FALLTHROUGH */
16067 case LABEL_REF:
16068 if (is_a <scalar_int_mode> (mode, &int_mode)
16069 && GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE
16070 && (dwarf_version >= 4 || !dwarf_strict))
16072 loc_result = new_addr_loc_descr (rtl, dtprel_false);
16073 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
16074 vec_safe_push (used_rtx_array, rtl);
16076 break;
16078 case DEBUG_IMPLICIT_PTR:
16079 loc_result = implicit_ptr_descriptor (rtl, 0);
16080 break;
16082 case PLUS:
16083 if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
16084 && CONST_INT_P (XEXP (rtl, 1)))
16086 loc_result
16087 = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
16088 break;
16090 /* FALLTHRU */
16091 do_default:
16092 default:
16093 if ((is_a <scalar_int_mode> (mode, &int_mode)
16094 && GET_MODE (rtl) == int_mode
16095 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
16096 && dwarf_version >= 4)
16097 || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
16099 /* Value expression. */
16100 loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
16101 if (loc_result)
16102 add_loc_descr (&loc_result,
16103 new_loc_descr (DW_OP_stack_value, 0, 0));
16105 break;
16108 return loc_result;
16111 /* We need to figure out what section we should use as the base for the
16112 address ranges where a given location is valid.
16113 1. If this particular DECL has a section associated with it, use that.
16114 2. If this function has a section associated with it, use that.
16115 3. Otherwise, use the text section.
16116 XXX: If you split a variable across multiple sections, we won't notice. */
16118 static const char *
16119 secname_for_decl (const_tree decl)
16121 const char *secname;
16123 if (VAR_OR_FUNCTION_DECL_P (decl)
16124 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl) || TREE_STATIC (decl))
16125 && DECL_SECTION_NAME (decl))
16126 secname = DECL_SECTION_NAME (decl);
16127 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
16128 secname = DECL_SECTION_NAME (current_function_decl);
16129 else if (cfun && in_cold_section_p)
16130 secname = crtl->subsections.cold_section_label;
16131 else
16132 secname = text_section_label;
16134 return secname;
16137 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
16139 static bool
16140 decl_by_reference_p (tree decl)
16142 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
16143 || VAR_P (decl))
16144 && DECL_BY_REFERENCE (decl));
16147 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
16148 for VARLOC. */
16150 static dw_loc_descr_ref
16151 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
16152 enum var_init_status initialized)
16154 int have_address = 0;
16155 dw_loc_descr_ref descr;
16156 machine_mode mode;
16158 if (want_address != 2)
16160 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
16161 /* Single part. */
16162 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
16164 varloc = PAT_VAR_LOCATION_LOC (varloc);
16165 if (GET_CODE (varloc) == EXPR_LIST)
16166 varloc = XEXP (varloc, 0);
16167 mode = GET_MODE (varloc);
16168 if (MEM_P (varloc))
16170 rtx addr = XEXP (varloc, 0);
16171 descr = mem_loc_descriptor (addr, get_address_mode (varloc),
16172 mode, initialized);
16173 if (descr)
16174 have_address = 1;
16175 else
16177 rtx x = avoid_constant_pool_reference (varloc);
16178 if (x != varloc)
16179 descr = mem_loc_descriptor (x, mode, VOIDmode,
16180 initialized);
16183 else
16184 descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
16186 else
16187 return 0;
16189 else
16191 if (GET_CODE (varloc) == VAR_LOCATION)
16192 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
16193 else
16194 mode = DECL_MODE (loc);
16195 descr = loc_descriptor (varloc, mode, initialized);
16196 have_address = 1;
16199 if (!descr)
16200 return 0;
16202 if (want_address == 2 && !have_address
16203 && (dwarf_version >= 4 || !dwarf_strict))
16205 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
16207 expansion_failed (loc, NULL_RTX,
16208 "DWARF address size mismatch");
16209 return 0;
16211 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
16212 have_address = 1;
16214 /* Show if we can't fill the request for an address. */
16215 if (want_address && !have_address)
16217 expansion_failed (loc, NULL_RTX,
16218 "Want address and only have value");
16219 return 0;
16222 /* If we've got an address and don't want one, dereference. */
16223 if (!want_address && have_address)
16225 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
16226 enum dwarf_location_atom op;
16228 if (size > DWARF2_ADDR_SIZE || size == -1)
16230 expansion_failed (loc, NULL_RTX,
16231 "DWARF address size mismatch");
16232 return 0;
16234 else if (size == DWARF2_ADDR_SIZE)
16235 op = DW_OP_deref;
16236 else
16237 op = DW_OP_deref_size;
16239 add_loc_descr (&descr, new_loc_descr (op, size, 0));
16242 return descr;
16245 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
16246 if it is not possible. */
16248 static dw_loc_descr_ref
16249 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
16251 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
16252 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
16253 else if (dwarf_version >= 3 || !dwarf_strict)
16254 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
16255 else
16256 return NULL;
16259 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
16260 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
16262 static dw_loc_descr_ref
16263 dw_sra_loc_expr (tree decl, rtx loc)
16265 rtx p;
16266 unsigned HOST_WIDE_INT padsize = 0;
16267 dw_loc_descr_ref descr, *descr_tail;
16268 unsigned HOST_WIDE_INT decl_size;
16269 rtx varloc;
16270 enum var_init_status initialized;
16272 if (DECL_SIZE (decl) == NULL
16273 || !tree_fits_uhwi_p (DECL_SIZE (decl)))
16274 return NULL;
16276 decl_size = tree_to_uhwi (DECL_SIZE (decl));
16277 descr = NULL;
16278 descr_tail = &descr;
16280 for (p = loc; p; p = XEXP (p, 1))
16282 unsigned HOST_WIDE_INT bitsize = decl_piece_bitsize (p);
16283 rtx loc_note = *decl_piece_varloc_ptr (p);
16284 dw_loc_descr_ref cur_descr;
16285 dw_loc_descr_ref *tail, last = NULL;
16286 unsigned HOST_WIDE_INT opsize = 0;
16288 if (loc_note == NULL_RTX
16289 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
16291 padsize += bitsize;
16292 continue;
16294 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
16295 varloc = NOTE_VAR_LOCATION (loc_note);
16296 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
16297 if (cur_descr == NULL)
16299 padsize += bitsize;
16300 continue;
16303 /* Check that cur_descr either doesn't use
16304 DW_OP_*piece operations, or their sum is equal
16305 to bitsize. Otherwise we can't embed it. */
16306 for (tail = &cur_descr; *tail != NULL;
16307 tail = &(*tail)->dw_loc_next)
16308 if ((*tail)->dw_loc_opc == DW_OP_piece)
16310 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
16311 * BITS_PER_UNIT;
16312 last = *tail;
16314 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
16316 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
16317 last = *tail;
16320 if (last != NULL && opsize != bitsize)
16322 padsize += bitsize;
16323 /* Discard the current piece of the descriptor and release any
16324 addr_table entries it uses. */
16325 remove_loc_list_addr_table_entries (cur_descr);
16326 continue;
16329 /* If there is a hole, add DW_OP_*piece after empty DWARF
16330 expression, which means that those bits are optimized out. */
16331 if (padsize)
16333 if (padsize > decl_size)
16335 remove_loc_list_addr_table_entries (cur_descr);
16336 goto discard_descr;
16338 decl_size -= padsize;
16339 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
16340 if (*descr_tail == NULL)
16342 remove_loc_list_addr_table_entries (cur_descr);
16343 goto discard_descr;
16345 descr_tail = &(*descr_tail)->dw_loc_next;
16346 padsize = 0;
16348 *descr_tail = cur_descr;
16349 descr_tail = tail;
16350 if (bitsize > decl_size)
16351 goto discard_descr;
16352 decl_size -= bitsize;
16353 if (last == NULL)
16355 HOST_WIDE_INT offset = 0;
16356 if (GET_CODE (varloc) == VAR_LOCATION
16357 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
16359 varloc = PAT_VAR_LOCATION_LOC (varloc);
16360 if (GET_CODE (varloc) == EXPR_LIST)
16361 varloc = XEXP (varloc, 0);
16365 if (GET_CODE (varloc) == CONST
16366 || GET_CODE (varloc) == SIGN_EXTEND
16367 || GET_CODE (varloc) == ZERO_EXTEND)
16368 varloc = XEXP (varloc, 0);
16369 else if (GET_CODE (varloc) == SUBREG)
16370 varloc = SUBREG_REG (varloc);
16371 else
16372 break;
16374 while (1);
16375 /* DW_OP_bit_size offset should be zero for register
16376 or implicit location descriptions and empty location
16377 descriptions, but for memory addresses needs big endian
16378 adjustment. */
16379 if (MEM_P (varloc))
16381 unsigned HOST_WIDE_INT memsize;
16382 if (!poly_uint64 (MEM_SIZE (varloc)).is_constant (&memsize))
16383 goto discard_descr;
16384 memsize *= BITS_PER_UNIT;
16385 if (memsize != bitsize)
16387 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
16388 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
16389 goto discard_descr;
16390 if (memsize < bitsize)
16391 goto discard_descr;
16392 if (BITS_BIG_ENDIAN)
16393 offset = memsize - bitsize;
16397 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
16398 if (*descr_tail == NULL)
16399 goto discard_descr;
16400 descr_tail = &(*descr_tail)->dw_loc_next;
16404 /* If there were any non-empty expressions, add padding till the end of
16405 the decl. */
16406 if (descr != NULL && decl_size != 0)
16408 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
16409 if (*descr_tail == NULL)
16410 goto discard_descr;
16412 return descr;
16414 discard_descr:
16415 /* Discard the descriptor and release any addr_table entries it uses. */
16416 remove_loc_list_addr_table_entries (descr);
16417 return NULL;
16420 /* Return the dwarf representation of the location list LOC_LIST of
16421 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
16422 function. */
16424 static dw_loc_list_ref
16425 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
16427 const char *endname, *secname;
16428 rtx varloc;
16429 enum var_init_status initialized;
16430 struct var_loc_node *node;
16431 dw_loc_descr_ref descr;
16432 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
16433 dw_loc_list_ref list = NULL;
16434 dw_loc_list_ref *listp = &list;
16436 /* Now that we know what section we are using for a base,
16437 actually construct the list of locations.
16438 The first location information is what is passed to the
16439 function that creates the location list, and the remaining
16440 locations just get added on to that list.
16441 Note that we only know the start address for a location
16442 (IE location changes), so to build the range, we use
16443 the range [current location start, next location start].
16444 This means we have to special case the last node, and generate
16445 a range of [last location start, end of function label]. */
16447 if (cfun && crtl->has_bb_partition)
16449 bool save_in_cold_section_p = in_cold_section_p;
16450 in_cold_section_p = first_function_block_is_cold;
16451 if (loc_list->last_before_switch == NULL)
16452 in_cold_section_p = !in_cold_section_p;
16453 secname = secname_for_decl (decl);
16454 in_cold_section_p = save_in_cold_section_p;
16456 else
16457 secname = secname_for_decl (decl);
16459 for (node = loc_list->first; node; node = node->next)
16461 bool range_across_switch = false;
16462 if (GET_CODE (node->loc) == EXPR_LIST
16463 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
16465 if (GET_CODE (node->loc) == EXPR_LIST)
16467 descr = NULL;
16468 /* This requires DW_OP_{,bit_}piece, which is not usable
16469 inside DWARF expressions. */
16470 if (want_address == 2)
16471 descr = dw_sra_loc_expr (decl, node->loc);
16473 else
16475 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
16476 varloc = NOTE_VAR_LOCATION (node->loc);
16477 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
16479 if (descr)
16481 /* If section switch happens in between node->label
16482 and node->next->label (or end of function) and
16483 we can't emit it as a single entry list,
16484 emit two ranges, first one ending at the end
16485 of first partition and second one starting at the
16486 beginning of second partition. */
16487 if (node == loc_list->last_before_switch
16488 && (node != loc_list->first || loc_list->first->next)
16489 && current_function_decl)
16491 endname = cfun->fde->dw_fde_end;
16492 range_across_switch = true;
16494 /* The variable has a location between NODE->LABEL and
16495 NODE->NEXT->LABEL. */
16496 else if (node->next)
16497 endname = node->next->label;
16498 /* If the variable has a location at the last label
16499 it keeps its location until the end of function. */
16500 else if (!current_function_decl)
16501 endname = text_end_label;
16502 else
16504 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
16505 current_function_funcdef_no);
16506 endname = ggc_strdup (label_id);
16509 *listp = new_loc_list (descr, node->label, endname, secname);
16510 if (TREE_CODE (decl) == PARM_DECL
16511 && node == loc_list->first
16512 && NOTE_P (node->loc)
16513 && strcmp (node->label, endname) == 0)
16514 (*listp)->force = true;
16515 listp = &(*listp)->dw_loc_next;
16519 if (cfun
16520 && crtl->has_bb_partition
16521 && node == loc_list->last_before_switch)
16523 bool save_in_cold_section_p = in_cold_section_p;
16524 in_cold_section_p = !first_function_block_is_cold;
16525 secname = secname_for_decl (decl);
16526 in_cold_section_p = save_in_cold_section_p;
16529 if (range_across_switch)
16531 if (GET_CODE (node->loc) == EXPR_LIST)
16532 descr = dw_sra_loc_expr (decl, node->loc);
16533 else
16535 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
16536 varloc = NOTE_VAR_LOCATION (node->loc);
16537 descr = dw_loc_list_1 (decl, varloc, want_address,
16538 initialized);
16540 gcc_assert (descr);
16541 /* The variable has a location between NODE->LABEL and
16542 NODE->NEXT->LABEL. */
16543 if (node->next)
16544 endname = node->next->label;
16545 else
16546 endname = cfun->fde->dw_fde_second_end;
16547 *listp = new_loc_list (descr, cfun->fde->dw_fde_second_begin,
16548 endname, secname);
16549 listp = &(*listp)->dw_loc_next;
16553 /* Try to avoid the overhead of a location list emitting a location
16554 expression instead, but only if we didn't have more than one
16555 location entry in the first place. If some entries were not
16556 representable, we don't want to pretend a single entry that was
16557 applies to the entire scope in which the variable is
16558 available. */
16559 if (list && loc_list->first->next)
16560 gen_llsym (list);
16562 return list;
16565 /* Return if the loc_list has only single element and thus can be represented
16566 as location description. */
16568 static bool
16569 single_element_loc_list_p (dw_loc_list_ref list)
16571 gcc_assert (!list->dw_loc_next || list->ll_symbol);
16572 return !list->ll_symbol;
16575 /* Duplicate a single element of location list. */
16577 static inline dw_loc_descr_ref
16578 copy_loc_descr (dw_loc_descr_ref ref)
16580 dw_loc_descr_ref copy = ggc_alloc<dw_loc_descr_node> ();
16581 memcpy (copy, ref, sizeof (dw_loc_descr_node));
16582 return copy;
16585 /* To each location in list LIST append loc descr REF. */
16587 static void
16588 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
16590 dw_loc_descr_ref copy;
16591 add_loc_descr (&list->expr, ref);
16592 list = list->dw_loc_next;
16593 while (list)
16595 copy = copy_loc_descr (ref);
16596 add_loc_descr (&list->expr, copy);
16597 while (copy->dw_loc_next)
16598 copy = copy->dw_loc_next = copy_loc_descr (copy->dw_loc_next);
16599 list = list->dw_loc_next;
16603 /* To each location in list LIST prepend loc descr REF. */
16605 static void
16606 prepend_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
16608 dw_loc_descr_ref copy;
16609 dw_loc_descr_ref ref_end = list->expr;
16610 add_loc_descr (&ref, list->expr);
16611 list->expr = ref;
16612 list = list->dw_loc_next;
16613 while (list)
16615 dw_loc_descr_ref end = list->expr;
16616 list->expr = copy = copy_loc_descr (ref);
16617 while (copy->dw_loc_next != ref_end)
16618 copy = copy->dw_loc_next = copy_loc_descr (copy->dw_loc_next);
16619 copy->dw_loc_next = end;
16620 list = list->dw_loc_next;
16624 /* Given two lists RET and LIST
16625 produce location list that is result of adding expression in LIST
16626 to expression in RET on each position in program.
16627 Might be destructive on both RET and LIST.
16629 TODO: We handle only simple cases of RET or LIST having at most one
16630 element. General case would involve sorting the lists in program order
16631 and merging them that will need some additional work.
16632 Adding that will improve quality of debug info especially for SRA-ed
16633 structures. */
16635 static void
16636 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
16638 if (!list)
16639 return;
16640 if (!*ret)
16642 *ret = list;
16643 return;
16645 if (!list->dw_loc_next)
16647 add_loc_descr_to_each (*ret, list->expr);
16648 return;
16650 if (!(*ret)->dw_loc_next)
16652 prepend_loc_descr_to_each (list, (*ret)->expr);
16653 *ret = list;
16654 return;
16656 expansion_failed (NULL_TREE, NULL_RTX,
16657 "Don't know how to merge two non-trivial"
16658 " location lists.\n");
16659 *ret = NULL;
16660 return;
16663 /* LOC is constant expression. Try a luck, look it up in constant
16664 pool and return its loc_descr of its address. */
16666 static dw_loc_descr_ref
16667 cst_pool_loc_descr (tree loc)
16669 /* Get an RTL for this, if something has been emitted. */
16670 rtx rtl = lookup_constant_def (loc);
16672 if (!rtl || !MEM_P (rtl))
16674 gcc_assert (!rtl);
16675 return 0;
16677 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
16679 /* TODO: We might get more coverage if we was actually delaying expansion
16680 of all expressions till end of compilation when constant pools are fully
16681 populated. */
16682 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
16684 expansion_failed (loc, NULL_RTX,
16685 "CST value in contant pool but not marked.");
16686 return 0;
16688 return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
16689 GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
16692 /* Return dw_loc_list representing address of addr_expr LOC
16693 by looking for inner INDIRECT_REF expression and turning
16694 it into simple arithmetics.
16696 See loc_list_from_tree for the meaning of CONTEXT. */
16698 static dw_loc_list_ref
16699 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev,
16700 loc_descr_context *context)
16702 tree obj, offset;
16703 HOST_WIDE_INT bitsize, bitpos, bytepos;
16704 machine_mode mode;
16705 int unsignedp, reversep, volatilep = 0;
16706 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
16708 obj = get_inner_reference (TREE_OPERAND (loc, 0),
16709 &bitsize, &bitpos, &offset, &mode,
16710 &unsignedp, &reversep, &volatilep);
16711 STRIP_NOPS (obj);
16712 if (bitpos % BITS_PER_UNIT)
16714 expansion_failed (loc, NULL_RTX, "bitfield access");
16715 return 0;
16717 if (!INDIRECT_REF_P (obj))
16719 expansion_failed (obj,
16720 NULL_RTX, "no indirect ref in inner refrence");
16721 return 0;
16723 if (!offset && !bitpos)
16724 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1,
16725 context);
16726 else if (toplev
16727 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
16728 && (dwarf_version >= 4 || !dwarf_strict))
16730 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0, context);
16731 if (!list_ret)
16732 return 0;
16733 if (offset)
16735 /* Variable offset. */
16736 list_ret1 = loc_list_from_tree (offset, 0, context);
16737 if (list_ret1 == 0)
16738 return 0;
16739 add_loc_list (&list_ret, list_ret1);
16740 if (!list_ret)
16741 return 0;
16742 add_loc_descr_to_each (list_ret,
16743 new_loc_descr (DW_OP_plus, 0, 0));
16745 bytepos = bitpos / BITS_PER_UNIT;
16746 if (bytepos > 0)
16747 add_loc_descr_to_each (list_ret,
16748 new_loc_descr (DW_OP_plus_uconst,
16749 bytepos, 0));
16750 else if (bytepos < 0)
16751 loc_list_plus_const (list_ret, bytepos);
16752 add_loc_descr_to_each (list_ret,
16753 new_loc_descr (DW_OP_stack_value, 0, 0));
16755 return list_ret;
16758 /* Set LOC to the next operation that is not a DW_OP_nop operation. In the case
16759 all operations from LOC are nops, move to the last one. Insert in NOPS all
16760 operations that are skipped. */
16762 static void
16763 loc_descr_to_next_no_nop (dw_loc_descr_ref &loc,
16764 hash_set<dw_loc_descr_ref> &nops)
16766 while (loc->dw_loc_next != NULL && loc->dw_loc_opc == DW_OP_nop)
16768 nops.add (loc);
16769 loc = loc->dw_loc_next;
16773 /* Helper for loc_descr_without_nops: free the location description operation
16774 P. */
16776 bool
16777 free_loc_descr (const dw_loc_descr_ref &loc, void *data ATTRIBUTE_UNUSED)
16779 ggc_free (loc);
16780 return true;
16783 /* Remove all DW_OP_nop operations from LOC except, if it exists, the one that
16784 finishes LOC. */
16786 static void
16787 loc_descr_without_nops (dw_loc_descr_ref &loc)
16789 if (loc->dw_loc_opc == DW_OP_nop && loc->dw_loc_next == NULL)
16790 return;
16792 /* Set of all DW_OP_nop operations we remove. */
16793 hash_set<dw_loc_descr_ref> nops;
16795 /* First, strip all prefix NOP operations in order to keep the head of the
16796 operations list. */
16797 loc_descr_to_next_no_nop (loc, nops);
16799 for (dw_loc_descr_ref cur = loc; cur != NULL;)
16801 /* For control flow operations: strip "prefix" nops in destination
16802 labels. */
16803 if (cur->dw_loc_oprnd1.val_class == dw_val_class_loc)
16804 loc_descr_to_next_no_nop (cur->dw_loc_oprnd1.v.val_loc, nops);
16805 if (cur->dw_loc_oprnd2.val_class == dw_val_class_loc)
16806 loc_descr_to_next_no_nop (cur->dw_loc_oprnd2.v.val_loc, nops);
16808 /* Do the same for the operations that follow, then move to the next
16809 iteration. */
16810 if (cur->dw_loc_next != NULL)
16811 loc_descr_to_next_no_nop (cur->dw_loc_next, nops);
16812 cur = cur->dw_loc_next;
16815 nops.traverse<void *, free_loc_descr> (NULL);
16819 struct dwarf_procedure_info;
16821 /* Helper structure for location descriptions generation. */
16822 struct loc_descr_context
16824 /* The type that is implicitly referenced by DW_OP_push_object_address, or
16825 NULL_TREE if DW_OP_push_object_address in invalid for this location
16826 description. This is used when processing PLACEHOLDER_EXPR nodes. */
16827 tree context_type;
16828 /* The ..._DECL node that should be translated as a
16829 DW_OP_push_object_address operation. */
16830 tree base_decl;
16831 /* Information about the DWARF procedure we are currently generating. NULL if
16832 we are not generating a DWARF procedure. */
16833 struct dwarf_procedure_info *dpi;
16834 /* True if integral PLACEHOLDER_EXPR stands for the first argument passed
16835 by consumer. Used for DW_TAG_generic_subrange attributes. */
16836 bool placeholder_arg;
16837 /* True if PLACEHOLDER_EXPR has been seen. */
16838 bool placeholder_seen;
16841 /* DWARF procedures generation
16843 DWARF expressions (aka. location descriptions) are used to encode variable
16844 things such as sizes or offsets. Such computations can have redundant parts
16845 that can be factorized in order to reduce the size of the output debug
16846 information. This is the whole point of DWARF procedures.
16848 Thanks to stor-layout.c, size and offset expressions in GENERIC trees are
16849 already factorized into functions ("size functions") in order to handle very
16850 big and complex types. Such functions are quite simple: they have integral
16851 arguments, they return an integral result and their body contains only a
16852 return statement with arithmetic expressions. This is the only kind of
16853 function we are interested in translating into DWARF procedures, here.
16855 DWARF expressions and DWARF procedure are executed using a stack, so we have
16856 to define some calling convention for them to interact. Let's say that:
16858 - Before calling a DWARF procedure, DWARF expressions must push on the stack
16859 all arguments in reverse order (right-to-left) so that when the DWARF
16860 procedure execution starts, the first argument is the top of the stack.
16862 - Then, when returning, the DWARF procedure must have consumed all arguments
16863 on the stack, must have pushed the result and touched nothing else.
16865 - Each integral argument and the result are integral types can be hold in a
16866 single stack slot.
16868 - We call "frame offset" the number of stack slots that are "under DWARF
16869 procedure control": it includes the arguments slots, the temporaries and
16870 the result slot. Thus, it is equal to the number of arguments when the
16871 procedure execution starts and must be equal to one (the result) when it
16872 returns. */
16874 /* Helper structure used when generating operations for a DWARF procedure. */
16875 struct dwarf_procedure_info
16877 /* The FUNCTION_DECL node corresponding to the DWARF procedure that is
16878 currently translated. */
16879 tree fndecl;
16880 /* The number of arguments FNDECL takes. */
16881 unsigned args_count;
16884 /* Return a pointer to a newly created DIE node for a DWARF procedure. Add
16885 LOCATION as its DW_AT_location attribute. If FNDECL is not NULL_TREE,
16886 equate it to this DIE. */
16888 static dw_die_ref
16889 new_dwarf_proc_die (dw_loc_descr_ref location, tree fndecl,
16890 dw_die_ref parent_die)
16892 dw_die_ref dwarf_proc_die;
16894 if ((dwarf_version < 3 && dwarf_strict)
16895 || location == NULL)
16896 return NULL;
16898 dwarf_proc_die = new_die (DW_TAG_dwarf_procedure, parent_die, fndecl);
16899 if (fndecl)
16900 equate_decl_number_to_die (fndecl, dwarf_proc_die);
16901 add_AT_loc (dwarf_proc_die, DW_AT_location, location);
16902 return dwarf_proc_die;
16905 /* Return whether TYPE is a supported type as a DWARF procedure argument
16906 type or return type (we handle only scalar types and pointer types that
16907 aren't wider than the DWARF expression evaluation stack. */
16909 static bool
16910 is_handled_procedure_type (tree type)
16912 return ((INTEGRAL_TYPE_P (type)
16913 || TREE_CODE (type) == OFFSET_TYPE
16914 || TREE_CODE (type) == POINTER_TYPE)
16915 && int_size_in_bytes (type) <= DWARF2_ADDR_SIZE);
16918 /* Helper for resolve_args_picking: do the same but stop when coming across
16919 visited nodes. For each node we visit, register in FRAME_OFFSETS the frame
16920 offset *before* evaluating the corresponding operation. */
16922 static bool
16923 resolve_args_picking_1 (dw_loc_descr_ref loc, unsigned initial_frame_offset,
16924 struct dwarf_procedure_info *dpi,
16925 hash_map<dw_loc_descr_ref, unsigned> &frame_offsets)
16927 /* The "frame_offset" identifier is already used to name a macro... */
16928 unsigned frame_offset_ = initial_frame_offset;
16929 dw_loc_descr_ref l;
16931 for (l = loc; l != NULL;)
16933 bool existed;
16934 unsigned &l_frame_offset = frame_offsets.get_or_insert (l, &existed);
16936 /* If we already met this node, there is nothing to compute anymore. */
16937 if (existed)
16939 /* Make sure that the stack size is consistent wherever the execution
16940 flow comes from. */
16941 gcc_assert ((unsigned) l_frame_offset == frame_offset_);
16942 break;
16944 l_frame_offset = frame_offset_;
16946 /* If needed, relocate the picking offset with respect to the frame
16947 offset. */
16948 if (l->frame_offset_rel)
16950 unsigned HOST_WIDE_INT off;
16951 switch (l->dw_loc_opc)
16953 case DW_OP_pick:
16954 off = l->dw_loc_oprnd1.v.val_unsigned;
16955 break;
16956 case DW_OP_dup:
16957 off = 0;
16958 break;
16959 case DW_OP_over:
16960 off = 1;
16961 break;
16962 default:
16963 gcc_unreachable ();
16965 /* frame_offset_ is the size of the current stack frame, including
16966 incoming arguments. Besides, the arguments are pushed
16967 right-to-left. Thus, in order to access the Nth argument from
16968 this operation node, the picking has to skip temporaries *plus*
16969 one stack slot per argument (0 for the first one, 1 for the second
16970 one, etc.).
16972 The targetted argument number (N) is already set as the operand,
16973 and the number of temporaries can be computed with:
16974 frame_offsets_ - dpi->args_count */
16975 off += frame_offset_ - dpi->args_count;
16977 /* DW_OP_pick handles only offsets from 0 to 255 (inclusive)... */
16978 if (off > 255)
16979 return false;
16981 if (off == 0)
16983 l->dw_loc_opc = DW_OP_dup;
16984 l->dw_loc_oprnd1.v.val_unsigned = 0;
16986 else if (off == 1)
16988 l->dw_loc_opc = DW_OP_over;
16989 l->dw_loc_oprnd1.v.val_unsigned = 0;
16991 else
16993 l->dw_loc_opc = DW_OP_pick;
16994 l->dw_loc_oprnd1.v.val_unsigned = off;
16998 /* Update frame_offset according to the effect the current operation has
16999 on the stack. */
17000 switch (l->dw_loc_opc)
17002 case DW_OP_deref:
17003 case DW_OP_swap:
17004 case DW_OP_rot:
17005 case DW_OP_abs:
17006 case DW_OP_neg:
17007 case DW_OP_not:
17008 case DW_OP_plus_uconst:
17009 case DW_OP_skip:
17010 case DW_OP_reg0:
17011 case DW_OP_reg1:
17012 case DW_OP_reg2:
17013 case DW_OP_reg3:
17014 case DW_OP_reg4:
17015 case DW_OP_reg5:
17016 case DW_OP_reg6:
17017 case DW_OP_reg7:
17018 case DW_OP_reg8:
17019 case DW_OP_reg9:
17020 case DW_OP_reg10:
17021 case DW_OP_reg11:
17022 case DW_OP_reg12:
17023 case DW_OP_reg13:
17024 case DW_OP_reg14:
17025 case DW_OP_reg15:
17026 case DW_OP_reg16:
17027 case DW_OP_reg17:
17028 case DW_OP_reg18:
17029 case DW_OP_reg19:
17030 case DW_OP_reg20:
17031 case DW_OP_reg21:
17032 case DW_OP_reg22:
17033 case DW_OP_reg23:
17034 case DW_OP_reg24:
17035 case DW_OP_reg25:
17036 case DW_OP_reg26:
17037 case DW_OP_reg27:
17038 case DW_OP_reg28:
17039 case DW_OP_reg29:
17040 case DW_OP_reg30:
17041 case DW_OP_reg31:
17042 case DW_OP_bregx:
17043 case DW_OP_piece:
17044 case DW_OP_deref_size:
17045 case DW_OP_nop:
17046 case DW_OP_bit_piece:
17047 case DW_OP_implicit_value:
17048 case DW_OP_stack_value:
17049 break;
17051 case DW_OP_addr:
17052 case DW_OP_const1u:
17053 case DW_OP_const1s:
17054 case DW_OP_const2u:
17055 case DW_OP_const2s:
17056 case DW_OP_const4u:
17057 case DW_OP_const4s:
17058 case DW_OP_const8u:
17059 case DW_OP_const8s:
17060 case DW_OP_constu:
17061 case DW_OP_consts:
17062 case DW_OP_dup:
17063 case DW_OP_over:
17064 case DW_OP_pick:
17065 case DW_OP_lit0:
17066 case DW_OP_lit1:
17067 case DW_OP_lit2:
17068 case DW_OP_lit3:
17069 case DW_OP_lit4:
17070 case DW_OP_lit5:
17071 case DW_OP_lit6:
17072 case DW_OP_lit7:
17073 case DW_OP_lit8:
17074 case DW_OP_lit9:
17075 case DW_OP_lit10:
17076 case DW_OP_lit11:
17077 case DW_OP_lit12:
17078 case DW_OP_lit13:
17079 case DW_OP_lit14:
17080 case DW_OP_lit15:
17081 case DW_OP_lit16:
17082 case DW_OP_lit17:
17083 case DW_OP_lit18:
17084 case DW_OP_lit19:
17085 case DW_OP_lit20:
17086 case DW_OP_lit21:
17087 case DW_OP_lit22:
17088 case DW_OP_lit23:
17089 case DW_OP_lit24:
17090 case DW_OP_lit25:
17091 case DW_OP_lit26:
17092 case DW_OP_lit27:
17093 case DW_OP_lit28:
17094 case DW_OP_lit29:
17095 case DW_OP_lit30:
17096 case DW_OP_lit31:
17097 case DW_OP_breg0:
17098 case DW_OP_breg1:
17099 case DW_OP_breg2:
17100 case DW_OP_breg3:
17101 case DW_OP_breg4:
17102 case DW_OP_breg5:
17103 case DW_OP_breg6:
17104 case DW_OP_breg7:
17105 case DW_OP_breg8:
17106 case DW_OP_breg9:
17107 case DW_OP_breg10:
17108 case DW_OP_breg11:
17109 case DW_OP_breg12:
17110 case DW_OP_breg13:
17111 case DW_OP_breg14:
17112 case DW_OP_breg15:
17113 case DW_OP_breg16:
17114 case DW_OP_breg17:
17115 case DW_OP_breg18:
17116 case DW_OP_breg19:
17117 case DW_OP_breg20:
17118 case DW_OP_breg21:
17119 case DW_OP_breg22:
17120 case DW_OP_breg23:
17121 case DW_OP_breg24:
17122 case DW_OP_breg25:
17123 case DW_OP_breg26:
17124 case DW_OP_breg27:
17125 case DW_OP_breg28:
17126 case DW_OP_breg29:
17127 case DW_OP_breg30:
17128 case DW_OP_breg31:
17129 case DW_OP_fbreg:
17130 case DW_OP_push_object_address:
17131 case DW_OP_call_frame_cfa:
17132 case DW_OP_GNU_variable_value:
17133 ++frame_offset_;
17134 break;
17136 case DW_OP_drop:
17137 case DW_OP_xderef:
17138 case DW_OP_and:
17139 case DW_OP_div:
17140 case DW_OP_minus:
17141 case DW_OP_mod:
17142 case DW_OP_mul:
17143 case DW_OP_or:
17144 case DW_OP_plus:
17145 case DW_OP_shl:
17146 case DW_OP_shr:
17147 case DW_OP_shra:
17148 case DW_OP_xor:
17149 case DW_OP_bra:
17150 case DW_OP_eq:
17151 case DW_OP_ge:
17152 case DW_OP_gt:
17153 case DW_OP_le:
17154 case DW_OP_lt:
17155 case DW_OP_ne:
17156 case DW_OP_regx:
17157 case DW_OP_xderef_size:
17158 --frame_offset_;
17159 break;
17161 case DW_OP_call2:
17162 case DW_OP_call4:
17163 case DW_OP_call_ref:
17165 dw_die_ref dwarf_proc = l->dw_loc_oprnd1.v.val_die_ref.die;
17166 int *stack_usage = dwarf_proc_stack_usage_map->get (dwarf_proc);
17168 if (stack_usage == NULL)
17169 return false;
17170 frame_offset_ += *stack_usage;
17171 break;
17174 case DW_OP_implicit_pointer:
17175 case DW_OP_entry_value:
17176 case DW_OP_const_type:
17177 case DW_OP_regval_type:
17178 case DW_OP_deref_type:
17179 case DW_OP_convert:
17180 case DW_OP_reinterpret:
17181 case DW_OP_form_tls_address:
17182 case DW_OP_GNU_push_tls_address:
17183 case DW_OP_GNU_uninit:
17184 case DW_OP_GNU_encoded_addr:
17185 case DW_OP_GNU_implicit_pointer:
17186 case DW_OP_GNU_entry_value:
17187 case DW_OP_GNU_const_type:
17188 case DW_OP_GNU_regval_type:
17189 case DW_OP_GNU_deref_type:
17190 case DW_OP_GNU_convert:
17191 case DW_OP_GNU_reinterpret:
17192 case DW_OP_GNU_parameter_ref:
17193 /* loc_list_from_tree will probably not output these operations for
17194 size functions, so assume they will not appear here. */
17195 /* Fall through... */
17197 default:
17198 gcc_unreachable ();
17201 /* Now, follow the control flow (except subroutine calls). */
17202 switch (l->dw_loc_opc)
17204 case DW_OP_bra:
17205 if (!resolve_args_picking_1 (l->dw_loc_next, frame_offset_, dpi,
17206 frame_offsets))
17207 return false;
17208 /* Fall through. */
17210 case DW_OP_skip:
17211 l = l->dw_loc_oprnd1.v.val_loc;
17212 break;
17214 case DW_OP_stack_value:
17215 return true;
17217 default:
17218 l = l->dw_loc_next;
17219 break;
17223 return true;
17226 /* Make a DFS over operations reachable through LOC (i.e. follow branch
17227 operations) in order to resolve the operand of DW_OP_pick operations that
17228 target DWARF procedure arguments (DPI). INITIAL_FRAME_OFFSET is the frame
17229 offset *before* LOC is executed. Return if all relocations were
17230 successful. */
17232 static bool
17233 resolve_args_picking (dw_loc_descr_ref loc, unsigned initial_frame_offset,
17234 struct dwarf_procedure_info *dpi)
17236 /* Associate to all visited operations the frame offset *before* evaluating
17237 this operation. */
17238 hash_map<dw_loc_descr_ref, unsigned> frame_offsets;
17240 return resolve_args_picking_1 (loc, initial_frame_offset, dpi,
17241 frame_offsets);
17244 /* Try to generate a DWARF procedure that computes the same result as FNDECL.
17245 Return NULL if it is not possible. */
17247 static dw_die_ref
17248 function_to_dwarf_procedure (tree fndecl)
17250 struct loc_descr_context ctx;
17251 struct dwarf_procedure_info dpi;
17252 dw_die_ref dwarf_proc_die;
17253 tree tree_body = DECL_SAVED_TREE (fndecl);
17254 dw_loc_descr_ref loc_body, epilogue;
17256 tree cursor;
17257 unsigned i;
17259 /* Do not generate multiple DWARF procedures for the same function
17260 declaration. */
17261 dwarf_proc_die = lookup_decl_die (fndecl);
17262 if (dwarf_proc_die != NULL)
17263 return dwarf_proc_die;
17265 /* DWARF procedures are available starting with the DWARFv3 standard. */
17266 if (dwarf_version < 3 && dwarf_strict)
17267 return NULL;
17269 /* We handle only functions for which we still have a body, that return a
17270 supported type and that takes arguments with supported types. Note that
17271 there is no point translating functions that return nothing. */
17272 if (tree_body == NULL_TREE
17273 || DECL_RESULT (fndecl) == NULL_TREE
17274 || !is_handled_procedure_type (TREE_TYPE (DECL_RESULT (fndecl))))
17275 return NULL;
17277 for (cursor = DECL_ARGUMENTS (fndecl);
17278 cursor != NULL_TREE;
17279 cursor = TREE_CHAIN (cursor))
17280 if (!is_handled_procedure_type (TREE_TYPE (cursor)))
17281 return NULL;
17283 /* Match only "expr" in: RETURN_EXPR (MODIFY_EXPR (RESULT_DECL, expr)). */
17284 if (TREE_CODE (tree_body) != RETURN_EXPR)
17285 return NULL;
17286 tree_body = TREE_OPERAND (tree_body, 0);
17287 if (TREE_CODE (tree_body) != MODIFY_EXPR
17288 || TREE_OPERAND (tree_body, 0) != DECL_RESULT (fndecl))
17289 return NULL;
17290 tree_body = TREE_OPERAND (tree_body, 1);
17292 /* Try to translate the body expression itself. Note that this will probably
17293 cause an infinite recursion if its call graph has a cycle. This is very
17294 unlikely for size functions, however, so don't bother with such things at
17295 the moment. */
17296 ctx.context_type = NULL_TREE;
17297 ctx.base_decl = NULL_TREE;
17298 ctx.dpi = &dpi;
17299 ctx.placeholder_arg = false;
17300 ctx.placeholder_seen = false;
17301 dpi.fndecl = fndecl;
17302 dpi.args_count = list_length (DECL_ARGUMENTS (fndecl));
17303 loc_body = loc_descriptor_from_tree (tree_body, 0, &ctx);
17304 if (!loc_body)
17305 return NULL;
17307 /* After evaluating all operands in "loc_body", we should still have on the
17308 stack all arguments plus the desired function result (top of the stack).
17309 Generate code in order to keep only the result in our stack frame. */
17310 epilogue = NULL;
17311 for (i = 0; i < dpi.args_count; ++i)
17313 dw_loc_descr_ref op_couple = new_loc_descr (DW_OP_swap, 0, 0);
17314 op_couple->dw_loc_next = new_loc_descr (DW_OP_drop, 0, 0);
17315 op_couple->dw_loc_next->dw_loc_next = epilogue;
17316 epilogue = op_couple;
17318 add_loc_descr (&loc_body, epilogue);
17319 if (!resolve_args_picking (loc_body, dpi.args_count, &dpi))
17320 return NULL;
17322 /* Trailing nops from loc_descriptor_from_tree (if any) cannot be removed
17323 because they are considered useful. Now there is an epilogue, they are
17324 not anymore, so give it another try. */
17325 loc_descr_without_nops (loc_body);
17327 /* fndecl may be used both as a regular DW_TAG_subprogram DIE and as
17328 a DW_TAG_dwarf_procedure, so we may have a conflict, here. It's unlikely,
17329 though, given that size functions do not come from source, so they should
17330 not have a dedicated DW_TAG_subprogram DIE. */
17331 dwarf_proc_die
17332 = new_dwarf_proc_die (loc_body, fndecl,
17333 get_context_die (DECL_CONTEXT (fndecl)));
17335 /* The called DWARF procedure consumes one stack slot per argument and
17336 returns one stack slot. */
17337 dwarf_proc_stack_usage_map->put (dwarf_proc_die, 1 - dpi.args_count);
17339 return dwarf_proc_die;
17343 /* Generate Dwarf location list representing LOC.
17344 If WANT_ADDRESS is false, expression computing LOC will be computed
17345 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
17346 if WANT_ADDRESS is 2, expression computing address useable in location
17347 will be returned (i.e. DW_OP_reg can be used
17348 to refer to register values).
17350 CONTEXT provides information to customize the location descriptions
17351 generation. Its context_type field specifies what type is implicitly
17352 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
17353 will not be generated.
17355 Its DPI field determines whether we are generating a DWARF expression for a
17356 DWARF procedure, so PARM_DECL references are processed specifically.
17358 If CONTEXT is NULL, the behavior is the same as if context_type, base_decl
17359 and dpi fields were null. */
17361 static dw_loc_list_ref
17362 loc_list_from_tree_1 (tree loc, int want_address,
17363 struct loc_descr_context *context)
17365 dw_loc_descr_ref ret = NULL, ret1 = NULL;
17366 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
17367 int have_address = 0;
17368 enum dwarf_location_atom op;
17370 /* ??? Most of the time we do not take proper care for sign/zero
17371 extending the values properly. Hopefully this won't be a real
17372 problem... */
17374 if (context != NULL
17375 && context->base_decl == loc
17376 && want_address == 0)
17378 if (dwarf_version >= 3 || !dwarf_strict)
17379 return new_loc_list (new_loc_descr (DW_OP_push_object_address, 0, 0),
17380 NULL, NULL, NULL);
17381 else
17382 return NULL;
17385 switch (TREE_CODE (loc))
17387 case ERROR_MARK:
17388 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
17389 return 0;
17391 case PLACEHOLDER_EXPR:
17392 /* This case involves extracting fields from an object to determine the
17393 position of other fields. It is supposed to appear only as the first
17394 operand of COMPONENT_REF nodes and to reference precisely the type
17395 that the context allows. */
17396 if (context != NULL
17397 && TREE_TYPE (loc) == context->context_type
17398 && want_address >= 1)
17400 if (dwarf_version >= 3 || !dwarf_strict)
17402 ret = new_loc_descr (DW_OP_push_object_address, 0, 0);
17403 have_address = 1;
17404 break;
17406 else
17407 return NULL;
17409 /* For DW_TAG_generic_subrange attributes, PLACEHOLDER_EXPR stands for
17410 the single argument passed by consumer. */
17411 else if (context != NULL
17412 && context->placeholder_arg
17413 && INTEGRAL_TYPE_P (TREE_TYPE (loc))
17414 && want_address == 0)
17416 ret = new_loc_descr (DW_OP_pick, 0, 0);
17417 ret->frame_offset_rel = 1;
17418 context->placeholder_seen = true;
17419 break;
17421 else
17422 expansion_failed (loc, NULL_RTX,
17423 "PLACEHOLDER_EXPR for an unexpected type");
17424 break;
17426 case CALL_EXPR:
17428 const int nargs = call_expr_nargs (loc);
17429 tree callee = get_callee_fndecl (loc);
17430 int i;
17431 dw_die_ref dwarf_proc;
17433 if (callee == NULL_TREE)
17434 goto call_expansion_failed;
17436 /* We handle only functions that return an integer. */
17437 if (!is_handled_procedure_type (TREE_TYPE (TREE_TYPE (callee))))
17438 goto call_expansion_failed;
17440 dwarf_proc = function_to_dwarf_procedure (callee);
17441 if (dwarf_proc == NULL)
17442 goto call_expansion_failed;
17444 /* Evaluate arguments right-to-left so that the first argument will
17445 be the top-most one on the stack. */
17446 for (i = nargs - 1; i >= 0; --i)
17448 dw_loc_descr_ref loc_descr
17449 = loc_descriptor_from_tree (CALL_EXPR_ARG (loc, i), 0,
17450 context);
17452 if (loc_descr == NULL)
17453 goto call_expansion_failed;
17455 add_loc_descr (&ret, loc_descr);
17458 ret1 = new_loc_descr (DW_OP_call4, 0, 0);
17459 ret1->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
17460 ret1->dw_loc_oprnd1.v.val_die_ref.die = dwarf_proc;
17461 ret1->dw_loc_oprnd1.v.val_die_ref.external = 0;
17462 add_loc_descr (&ret, ret1);
17463 break;
17465 call_expansion_failed:
17466 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
17467 /* There are no opcodes for these operations. */
17468 return 0;
17471 case PREINCREMENT_EXPR:
17472 case PREDECREMENT_EXPR:
17473 case POSTINCREMENT_EXPR:
17474 case POSTDECREMENT_EXPR:
17475 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
17476 /* There are no opcodes for these operations. */
17477 return 0;
17479 case ADDR_EXPR:
17480 /* If we already want an address, see if there is INDIRECT_REF inside
17481 e.g. for &this->field. */
17482 if (want_address)
17484 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
17485 (loc, want_address == 2, context);
17486 if (list_ret)
17487 have_address = 1;
17488 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
17489 && (ret = cst_pool_loc_descr (loc)))
17490 have_address = 1;
17492 /* Otherwise, process the argument and look for the address. */
17493 if (!list_ret && !ret)
17494 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 1, context);
17495 else
17497 if (want_address)
17498 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
17499 return NULL;
17501 break;
17503 case VAR_DECL:
17504 if (DECL_THREAD_LOCAL_P (loc))
17506 rtx rtl;
17507 enum dwarf_location_atom tls_op;
17508 enum dtprel_bool dtprel = dtprel_false;
17510 if (targetm.have_tls)
17512 /* If this is not defined, we have no way to emit the
17513 data. */
17514 if (!targetm.asm_out.output_dwarf_dtprel)
17515 return 0;
17517 /* The way DW_OP_GNU_push_tls_address is specified, we
17518 can only look up addresses of objects in the current
17519 module. We used DW_OP_addr as first op, but that's
17520 wrong, because DW_OP_addr is relocated by the debug
17521 info consumer, while DW_OP_GNU_push_tls_address
17522 operand shouldn't be. */
17523 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
17524 return 0;
17525 dtprel = dtprel_true;
17526 /* We check for DWARF 5 here because gdb did not implement
17527 DW_OP_form_tls_address until after 7.12. */
17528 tls_op = (dwarf_version >= 5 ? DW_OP_form_tls_address
17529 : DW_OP_GNU_push_tls_address);
17531 else
17533 if (!targetm.emutls.debug_form_tls_address
17534 || !(dwarf_version >= 3 || !dwarf_strict))
17535 return 0;
17536 /* We stuffed the control variable into the DECL_VALUE_EXPR
17537 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
17538 no longer appear in gimple code. We used the control
17539 variable in specific so that we could pick it up here. */
17540 loc = DECL_VALUE_EXPR (loc);
17541 tls_op = DW_OP_form_tls_address;
17544 rtl = rtl_for_decl_location (loc);
17545 if (rtl == NULL_RTX)
17546 return 0;
17548 if (!MEM_P (rtl))
17549 return 0;
17550 rtl = XEXP (rtl, 0);
17551 if (! CONSTANT_P (rtl))
17552 return 0;
17554 ret = new_addr_loc_descr (rtl, dtprel);
17555 ret1 = new_loc_descr (tls_op, 0, 0);
17556 add_loc_descr (&ret, ret1);
17558 have_address = 1;
17559 break;
17561 /* FALLTHRU */
17563 case PARM_DECL:
17564 if (context != NULL && context->dpi != NULL
17565 && DECL_CONTEXT (loc) == context->dpi->fndecl)
17567 /* We are generating code for a DWARF procedure and we want to access
17568 one of its arguments: find the appropriate argument offset and let
17569 the resolve_args_picking pass compute the offset that complies
17570 with the stack frame size. */
17571 unsigned i = 0;
17572 tree cursor;
17574 for (cursor = DECL_ARGUMENTS (context->dpi->fndecl);
17575 cursor != NULL_TREE && cursor != loc;
17576 cursor = TREE_CHAIN (cursor), ++i)
17578 /* If we are translating a DWARF procedure, all referenced parameters
17579 must belong to the current function. */
17580 gcc_assert (cursor != NULL_TREE);
17582 ret = new_loc_descr (DW_OP_pick, i, 0);
17583 ret->frame_offset_rel = 1;
17584 break;
17586 /* FALLTHRU */
17588 case RESULT_DECL:
17589 if (DECL_HAS_VALUE_EXPR_P (loc))
17590 return loc_list_from_tree_1 (DECL_VALUE_EXPR (loc),
17591 want_address, context);
17592 /* FALLTHRU */
17594 case FUNCTION_DECL:
17596 rtx rtl;
17597 var_loc_list *loc_list = lookup_decl_loc (loc);
17599 if (loc_list && loc_list->first)
17601 list_ret = dw_loc_list (loc_list, loc, want_address);
17602 have_address = want_address != 0;
17603 break;
17605 rtl = rtl_for_decl_location (loc);
17606 if (rtl == NULL_RTX)
17608 if (TREE_CODE (loc) != FUNCTION_DECL
17609 && early_dwarf
17610 && current_function_decl
17611 && want_address != 1
17612 && ! DECL_IGNORED_P (loc)
17613 && (INTEGRAL_TYPE_P (TREE_TYPE (loc))
17614 || POINTER_TYPE_P (TREE_TYPE (loc)))
17615 && DECL_CONTEXT (loc) == current_function_decl
17616 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (loc)))
17617 <= DWARF2_ADDR_SIZE))
17619 dw_die_ref ref = lookup_decl_die (loc);
17620 ret = new_loc_descr (DW_OP_GNU_variable_value, 0, 0);
17621 if (ref)
17623 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
17624 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
17625 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
17627 else
17629 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
17630 ret->dw_loc_oprnd1.v.val_decl_ref = loc;
17632 break;
17634 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
17635 return 0;
17637 else if (CONST_INT_P (rtl))
17639 HOST_WIDE_INT val = INTVAL (rtl);
17640 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
17641 val &= GET_MODE_MASK (DECL_MODE (loc));
17642 ret = int_loc_descriptor (val);
17644 else if (GET_CODE (rtl) == CONST_STRING)
17646 expansion_failed (loc, NULL_RTX, "CONST_STRING");
17647 return 0;
17649 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
17650 ret = new_addr_loc_descr (rtl, dtprel_false);
17651 else
17653 machine_mode mode, mem_mode;
17655 /* Certain constructs can only be represented at top-level. */
17656 if (want_address == 2)
17658 ret = loc_descriptor (rtl, VOIDmode,
17659 VAR_INIT_STATUS_INITIALIZED);
17660 have_address = 1;
17662 else
17664 mode = GET_MODE (rtl);
17665 mem_mode = VOIDmode;
17666 if (MEM_P (rtl))
17668 mem_mode = mode;
17669 mode = get_address_mode (rtl);
17670 rtl = XEXP (rtl, 0);
17671 have_address = 1;
17673 ret = mem_loc_descriptor (rtl, mode, mem_mode,
17674 VAR_INIT_STATUS_INITIALIZED);
17676 if (!ret)
17677 expansion_failed (loc, rtl,
17678 "failed to produce loc descriptor for rtl");
17681 break;
17683 case MEM_REF:
17684 if (!integer_zerop (TREE_OPERAND (loc, 1)))
17686 have_address = 1;
17687 goto do_plus;
17689 /* Fallthru. */
17690 case INDIRECT_REF:
17691 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17692 have_address = 1;
17693 break;
17695 case TARGET_MEM_REF:
17696 case SSA_NAME:
17697 case DEBUG_EXPR_DECL:
17698 return NULL;
17700 case COMPOUND_EXPR:
17701 return loc_list_from_tree_1 (TREE_OPERAND (loc, 1), want_address,
17702 context);
17704 CASE_CONVERT:
17705 case VIEW_CONVERT_EXPR:
17706 case SAVE_EXPR:
17707 case MODIFY_EXPR:
17708 case NON_LVALUE_EXPR:
17709 return loc_list_from_tree_1 (TREE_OPERAND (loc, 0), want_address,
17710 context);
17712 case COMPONENT_REF:
17713 case BIT_FIELD_REF:
17714 case ARRAY_REF:
17715 case ARRAY_RANGE_REF:
17716 case REALPART_EXPR:
17717 case IMAGPART_EXPR:
17719 tree obj, offset;
17720 HOST_WIDE_INT bitsize, bitpos, bytepos;
17721 machine_mode mode;
17722 int unsignedp, reversep, volatilep = 0;
17724 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
17725 &unsignedp, &reversep, &volatilep);
17727 gcc_assert (obj != loc);
17729 list_ret = loc_list_from_tree_1 (obj,
17730 want_address == 2
17731 && !bitpos && !offset ? 2 : 1,
17732 context);
17733 /* TODO: We can extract value of the small expression via shifting even
17734 for nonzero bitpos. */
17735 if (list_ret == 0)
17736 return 0;
17737 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
17739 expansion_failed (loc, NULL_RTX,
17740 "bitfield access");
17741 return 0;
17744 if (offset != NULL_TREE)
17746 /* Variable offset. */
17747 list_ret1 = loc_list_from_tree_1 (offset, 0, context);
17748 if (list_ret1 == 0)
17749 return 0;
17750 add_loc_list (&list_ret, list_ret1);
17751 if (!list_ret)
17752 return 0;
17753 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
17756 bytepos = bitpos / BITS_PER_UNIT;
17757 if (bytepos > 0)
17758 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
17759 else if (bytepos < 0)
17760 loc_list_plus_const (list_ret, bytepos);
17762 have_address = 1;
17763 break;
17766 case INTEGER_CST:
17767 if ((want_address || !tree_fits_shwi_p (loc))
17768 && (ret = cst_pool_loc_descr (loc)))
17769 have_address = 1;
17770 else if (want_address == 2
17771 && tree_fits_shwi_p (loc)
17772 && (ret = address_of_int_loc_descriptor
17773 (int_size_in_bytes (TREE_TYPE (loc)),
17774 tree_to_shwi (loc))))
17775 have_address = 1;
17776 else if (tree_fits_shwi_p (loc))
17777 ret = int_loc_descriptor (tree_to_shwi (loc));
17778 else if (tree_fits_uhwi_p (loc))
17779 ret = uint_loc_descriptor (tree_to_uhwi (loc));
17780 else
17782 expansion_failed (loc, NULL_RTX,
17783 "Integer operand is not host integer");
17784 return 0;
17786 break;
17788 case CONSTRUCTOR:
17789 case REAL_CST:
17790 case STRING_CST:
17791 case COMPLEX_CST:
17792 if ((ret = cst_pool_loc_descr (loc)))
17793 have_address = 1;
17794 else if (TREE_CODE (loc) == CONSTRUCTOR)
17796 tree type = TREE_TYPE (loc);
17797 unsigned HOST_WIDE_INT size = int_size_in_bytes (type);
17798 unsigned HOST_WIDE_INT offset = 0;
17799 unsigned HOST_WIDE_INT cnt;
17800 constructor_elt *ce;
17802 if (TREE_CODE (type) == RECORD_TYPE)
17804 /* This is very limited, but it's enough to output
17805 pointers to member functions, as long as the
17806 referenced function is defined in the current
17807 translation unit. */
17808 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (loc), cnt, ce)
17810 tree val = ce->value;
17812 tree field = ce->index;
17814 if (val)
17815 STRIP_NOPS (val);
17817 if (!field || DECL_BIT_FIELD (field))
17819 expansion_failed (loc, NULL_RTX,
17820 "bitfield in record type constructor");
17821 size = offset = (unsigned HOST_WIDE_INT)-1;
17822 ret = NULL;
17823 break;
17826 HOST_WIDE_INT fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
17827 unsigned HOST_WIDE_INT pos = int_byte_position (field);
17828 gcc_assert (pos + fieldsize <= size);
17829 if (pos < offset)
17831 expansion_failed (loc, NULL_RTX,
17832 "out-of-order fields in record constructor");
17833 size = offset = (unsigned HOST_WIDE_INT)-1;
17834 ret = NULL;
17835 break;
17837 if (pos > offset)
17839 ret1 = new_loc_descr (DW_OP_piece, pos - offset, 0);
17840 add_loc_descr (&ret, ret1);
17841 offset = pos;
17843 if (val && fieldsize != 0)
17845 ret1 = loc_descriptor_from_tree (val, want_address, context);
17846 if (!ret1)
17848 expansion_failed (loc, NULL_RTX,
17849 "unsupported expression in field");
17850 size = offset = (unsigned HOST_WIDE_INT)-1;
17851 ret = NULL;
17852 break;
17854 add_loc_descr (&ret, ret1);
17856 if (fieldsize)
17858 ret1 = new_loc_descr (DW_OP_piece, fieldsize, 0);
17859 add_loc_descr (&ret, ret1);
17860 offset = pos + fieldsize;
17864 if (offset != size)
17866 ret1 = new_loc_descr (DW_OP_piece, size - offset, 0);
17867 add_loc_descr (&ret, ret1);
17868 offset = size;
17871 have_address = !!want_address;
17873 else
17874 expansion_failed (loc, NULL_RTX,
17875 "constructor of non-record type");
17877 else
17878 /* We can construct small constants here using int_loc_descriptor. */
17879 expansion_failed (loc, NULL_RTX,
17880 "constructor or constant not in constant pool");
17881 break;
17883 case TRUTH_AND_EXPR:
17884 case TRUTH_ANDIF_EXPR:
17885 case BIT_AND_EXPR:
17886 op = DW_OP_and;
17887 goto do_binop;
17889 case TRUTH_XOR_EXPR:
17890 case BIT_XOR_EXPR:
17891 op = DW_OP_xor;
17892 goto do_binop;
17894 case TRUTH_OR_EXPR:
17895 case TRUTH_ORIF_EXPR:
17896 case BIT_IOR_EXPR:
17897 op = DW_OP_or;
17898 goto do_binop;
17900 case FLOOR_DIV_EXPR:
17901 case CEIL_DIV_EXPR:
17902 case ROUND_DIV_EXPR:
17903 case TRUNC_DIV_EXPR:
17904 case EXACT_DIV_EXPR:
17905 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
17906 return 0;
17907 op = DW_OP_div;
17908 goto do_binop;
17910 case MINUS_EXPR:
17911 op = DW_OP_minus;
17912 goto do_binop;
17914 case FLOOR_MOD_EXPR:
17915 case CEIL_MOD_EXPR:
17916 case ROUND_MOD_EXPR:
17917 case TRUNC_MOD_EXPR:
17918 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
17920 op = DW_OP_mod;
17921 goto do_binop;
17923 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17924 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
17925 if (list_ret == 0 || list_ret1 == 0)
17926 return 0;
17928 add_loc_list (&list_ret, list_ret1);
17929 if (list_ret == 0)
17930 return 0;
17931 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
17932 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
17933 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
17934 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
17935 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
17936 break;
17938 case MULT_EXPR:
17939 op = DW_OP_mul;
17940 goto do_binop;
17942 case LSHIFT_EXPR:
17943 op = DW_OP_shl;
17944 goto do_binop;
17946 case RSHIFT_EXPR:
17947 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
17948 goto do_binop;
17950 case POINTER_PLUS_EXPR:
17951 case PLUS_EXPR:
17952 do_plus:
17953 if (tree_fits_shwi_p (TREE_OPERAND (loc, 1)))
17955 /* Big unsigned numbers can fit in HOST_WIDE_INT but it may be
17956 smarter to encode their opposite. The DW_OP_plus_uconst operation
17957 takes 1 + X bytes, X being the size of the ULEB128 addend. On the
17958 other hand, a "<push literal>; DW_OP_minus" pattern takes 1 + Y
17959 bytes, Y being the size of the operation that pushes the opposite
17960 of the addend. So let's choose the smallest representation. */
17961 const tree tree_addend = TREE_OPERAND (loc, 1);
17962 offset_int wi_addend;
17963 HOST_WIDE_INT shwi_addend;
17964 dw_loc_descr_ref loc_naddend;
17966 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17967 if (list_ret == 0)
17968 return 0;
17970 /* Try to get the literal to push. It is the opposite of the addend,
17971 so as we rely on wrapping during DWARF evaluation, first decode
17972 the literal as a "DWARF-sized" signed number. */
17973 wi_addend = wi::to_offset (tree_addend);
17974 wi_addend = wi::sext (wi_addend, DWARF2_ADDR_SIZE * 8);
17975 shwi_addend = wi_addend.to_shwi ();
17976 loc_naddend = (shwi_addend != INTTYPE_MINIMUM (HOST_WIDE_INT))
17977 ? int_loc_descriptor (-shwi_addend)
17978 : NULL;
17980 if (loc_naddend != NULL
17981 && ((unsigned) size_of_uleb128 (shwi_addend)
17982 > size_of_loc_descr (loc_naddend)))
17984 add_loc_descr_to_each (list_ret, loc_naddend);
17985 add_loc_descr_to_each (list_ret,
17986 new_loc_descr (DW_OP_minus, 0, 0));
17988 else
17990 for (dw_loc_descr_ref loc_cur = loc_naddend; loc_cur != NULL; )
17992 loc_naddend = loc_cur;
17993 loc_cur = loc_cur->dw_loc_next;
17994 ggc_free (loc_naddend);
17996 loc_list_plus_const (list_ret, wi_addend.to_shwi ());
17998 break;
18001 op = DW_OP_plus;
18002 goto do_binop;
18004 case LE_EXPR:
18005 op = DW_OP_le;
18006 goto do_comp_binop;
18008 case GE_EXPR:
18009 op = DW_OP_ge;
18010 goto do_comp_binop;
18012 case LT_EXPR:
18013 op = DW_OP_lt;
18014 goto do_comp_binop;
18016 case GT_EXPR:
18017 op = DW_OP_gt;
18018 goto do_comp_binop;
18020 do_comp_binop:
18021 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
18023 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
18024 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
18025 list_ret = loc_list_from_uint_comparison (list_ret, list_ret1,
18026 TREE_CODE (loc));
18027 break;
18029 else
18030 goto do_binop;
18032 case EQ_EXPR:
18033 op = DW_OP_eq;
18034 goto do_binop;
18036 case NE_EXPR:
18037 op = DW_OP_ne;
18038 goto do_binop;
18040 do_binop:
18041 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
18042 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
18043 if (list_ret == 0 || list_ret1 == 0)
18044 return 0;
18046 add_loc_list (&list_ret, list_ret1);
18047 if (list_ret == 0)
18048 return 0;
18049 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
18050 break;
18052 case TRUTH_NOT_EXPR:
18053 case BIT_NOT_EXPR:
18054 op = DW_OP_not;
18055 goto do_unop;
18057 case ABS_EXPR:
18058 op = DW_OP_abs;
18059 goto do_unop;
18061 case NEGATE_EXPR:
18062 op = DW_OP_neg;
18063 goto do_unop;
18065 do_unop:
18066 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
18067 if (list_ret == 0)
18068 return 0;
18070 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
18071 break;
18073 case MIN_EXPR:
18074 case MAX_EXPR:
18076 const enum tree_code code =
18077 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
18079 loc = build3 (COND_EXPR, TREE_TYPE (loc),
18080 build2 (code, integer_type_node,
18081 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
18082 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
18085 /* fall through */
18087 case COND_EXPR:
18089 dw_loc_descr_ref lhs
18090 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0, context);
18091 dw_loc_list_ref rhs
18092 = loc_list_from_tree_1 (TREE_OPERAND (loc, 2), 0, context);
18093 dw_loc_descr_ref bra_node, jump_node, tmp;
18095 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
18096 if (list_ret == 0 || lhs == 0 || rhs == 0)
18097 return 0;
18099 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
18100 add_loc_descr_to_each (list_ret, bra_node);
18102 add_loc_list (&list_ret, rhs);
18103 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
18104 add_loc_descr_to_each (list_ret, jump_node);
18106 add_loc_descr_to_each (list_ret, lhs);
18107 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
18108 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
18110 /* ??? Need a node to point the skip at. Use a nop. */
18111 tmp = new_loc_descr (DW_OP_nop, 0, 0);
18112 add_loc_descr_to_each (list_ret, tmp);
18113 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
18114 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
18116 break;
18118 case FIX_TRUNC_EXPR:
18119 return 0;
18121 default:
18122 /* Leave front-end specific codes as simply unknown. This comes
18123 up, for instance, with the C STMT_EXPR. */
18124 if ((unsigned int) TREE_CODE (loc)
18125 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
18127 expansion_failed (loc, NULL_RTX,
18128 "language specific tree node");
18129 return 0;
18132 /* Otherwise this is a generic code; we should just lists all of
18133 these explicitly. We forgot one. */
18134 if (flag_checking)
18135 gcc_unreachable ();
18137 /* In a release build, we want to degrade gracefully: better to
18138 generate incomplete debugging information than to crash. */
18139 return NULL;
18142 if (!ret && !list_ret)
18143 return 0;
18145 if (want_address == 2 && !have_address
18146 && (dwarf_version >= 4 || !dwarf_strict))
18148 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
18150 expansion_failed (loc, NULL_RTX,
18151 "DWARF address size mismatch");
18152 return 0;
18154 if (ret)
18155 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
18156 else
18157 add_loc_descr_to_each (list_ret,
18158 new_loc_descr (DW_OP_stack_value, 0, 0));
18159 have_address = 1;
18161 /* Show if we can't fill the request for an address. */
18162 if (want_address && !have_address)
18164 expansion_failed (loc, NULL_RTX,
18165 "Want address and only have value");
18166 return 0;
18169 gcc_assert (!ret || !list_ret);
18171 /* If we've got an address and don't want one, dereference. */
18172 if (!want_address && have_address)
18174 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
18176 if (size > DWARF2_ADDR_SIZE || size == -1)
18178 expansion_failed (loc, NULL_RTX,
18179 "DWARF address size mismatch");
18180 return 0;
18182 else if (size == DWARF2_ADDR_SIZE)
18183 op = DW_OP_deref;
18184 else
18185 op = DW_OP_deref_size;
18187 if (ret)
18188 add_loc_descr (&ret, new_loc_descr (op, size, 0));
18189 else
18190 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
18192 if (ret)
18193 list_ret = new_loc_list (ret, NULL, NULL, NULL);
18195 return list_ret;
18198 /* Likewise, but strip useless DW_OP_nop operations in the resulting
18199 expressions. */
18201 static dw_loc_list_ref
18202 loc_list_from_tree (tree loc, int want_address,
18203 struct loc_descr_context *context)
18205 dw_loc_list_ref result = loc_list_from_tree_1 (loc, want_address, context);
18207 for (dw_loc_list_ref loc_cur = result;
18208 loc_cur != NULL; loc_cur = loc_cur->dw_loc_next)
18209 loc_descr_without_nops (loc_cur->expr);
18210 return result;
18213 /* Same as above but return only single location expression. */
18214 static dw_loc_descr_ref
18215 loc_descriptor_from_tree (tree loc, int want_address,
18216 struct loc_descr_context *context)
18218 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address, context);
18219 if (!ret)
18220 return NULL;
18221 if (ret->dw_loc_next)
18223 expansion_failed (loc, NULL_RTX,
18224 "Location list where only loc descriptor needed");
18225 return NULL;
18227 return ret->expr;
18230 /* Given a value, round it up to the lowest multiple of `boundary'
18231 which is not less than the value itself. */
18233 static inline HOST_WIDE_INT
18234 ceiling (HOST_WIDE_INT value, unsigned int boundary)
18236 return (((value + boundary - 1) / boundary) * boundary);
18239 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
18240 pointer to the declared type for the relevant field variable, or return
18241 `integer_type_node' if the given node turns out to be an
18242 ERROR_MARK node. */
18244 static inline tree
18245 field_type (const_tree decl)
18247 tree type;
18249 if (TREE_CODE (decl) == ERROR_MARK)
18250 return integer_type_node;
18252 type = DECL_BIT_FIELD_TYPE (decl);
18253 if (type == NULL_TREE)
18254 type = TREE_TYPE (decl);
18256 return type;
18259 /* Given a pointer to a tree node, return the alignment in bits for
18260 it, or else return BITS_PER_WORD if the node actually turns out to
18261 be an ERROR_MARK node. */
18263 static inline unsigned
18264 simple_type_align_in_bits (const_tree type)
18266 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
18269 static inline unsigned
18270 simple_decl_align_in_bits (const_tree decl)
18272 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
18275 /* Return the result of rounding T up to ALIGN. */
18277 static inline offset_int
18278 round_up_to_align (const offset_int &t, unsigned int align)
18280 return wi::udiv_trunc (t + align - 1, align) * align;
18283 /* Compute the size of TYPE in bytes. If possible, return NULL and store the
18284 size as an integer constant in CST_SIZE. Otherwise, if possible, return a
18285 DWARF expression that computes the size. Return NULL and set CST_SIZE to -1
18286 if we fail to return the size in one of these two forms. */
18288 static dw_loc_descr_ref
18289 type_byte_size (const_tree type, HOST_WIDE_INT *cst_size)
18291 tree tree_size;
18292 struct loc_descr_context ctx;
18294 /* Return a constant integer in priority, if possible. */
18295 *cst_size = int_size_in_bytes (type);
18296 if (*cst_size != -1)
18297 return NULL;
18299 ctx.context_type = const_cast<tree> (type);
18300 ctx.base_decl = NULL_TREE;
18301 ctx.dpi = NULL;
18302 ctx.placeholder_arg = false;
18303 ctx.placeholder_seen = false;
18305 type = TYPE_MAIN_VARIANT (type);
18306 tree_size = TYPE_SIZE_UNIT (type);
18307 return ((tree_size != NULL_TREE)
18308 ? loc_descriptor_from_tree (tree_size, 0, &ctx)
18309 : NULL);
18312 /* Helper structure for RECORD_TYPE processing. */
18313 struct vlr_context
18315 /* Root RECORD_TYPE. It is needed to generate data member location
18316 descriptions in variable-length records (VLR), but also to cope with
18317 variants, which are composed of nested structures multiplexed with
18318 QUAL_UNION_TYPE nodes. Each time such a structure is passed to a
18319 function processing a FIELD_DECL, it is required to be non null. */
18320 tree struct_type;
18321 /* When generating a variant part in a RECORD_TYPE (i.e. a nested
18322 QUAL_UNION_TYPE), this holds an expression that computes the offset for
18323 this variant part as part of the root record (in storage units). For
18324 regular records, it must be NULL_TREE. */
18325 tree variant_part_offset;
18328 /* Given a pointer to a FIELD_DECL, compute the byte offset of the lowest
18329 addressed byte of the "containing object" for the given FIELD_DECL. If
18330 possible, return a native constant through CST_OFFSET (in which case NULL is
18331 returned); otherwise return a DWARF expression that computes the offset.
18333 Set *CST_OFFSET to 0 and return NULL if we are unable to determine what
18334 that offset is, either because the argument turns out to be a pointer to an
18335 ERROR_MARK node, or because the offset expression is too complex for us.
18337 CTX is required: see the comment for VLR_CONTEXT. */
18339 static dw_loc_descr_ref
18340 field_byte_offset (const_tree decl, struct vlr_context *ctx,
18341 HOST_WIDE_INT *cst_offset)
18343 tree tree_result;
18344 dw_loc_list_ref loc_result;
18346 *cst_offset = 0;
18348 if (TREE_CODE (decl) == ERROR_MARK)
18349 return NULL;
18350 else
18351 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
18353 /* We cannot handle variable bit offsets at the moment, so abort if it's the
18354 case. */
18355 if (TREE_CODE (DECL_FIELD_BIT_OFFSET (decl)) != INTEGER_CST)
18356 return NULL;
18358 #ifdef PCC_BITFIELD_TYPE_MATTERS
18359 /* We used to handle only constant offsets in all cases. Now, we handle
18360 properly dynamic byte offsets only when PCC bitfield type doesn't
18361 matter. */
18362 if (PCC_BITFIELD_TYPE_MATTERS
18363 && TREE_CODE (DECL_FIELD_OFFSET (decl)) == INTEGER_CST)
18365 offset_int object_offset_in_bits;
18366 offset_int object_offset_in_bytes;
18367 offset_int bitpos_int;
18368 tree type;
18369 tree field_size_tree;
18370 offset_int deepest_bitpos;
18371 offset_int field_size_in_bits;
18372 unsigned int type_align_in_bits;
18373 unsigned int decl_align_in_bits;
18374 offset_int type_size_in_bits;
18376 bitpos_int = wi::to_offset (bit_position (decl));
18377 type = field_type (decl);
18378 type_size_in_bits = offset_int_type_size_in_bits (type);
18379 type_align_in_bits = simple_type_align_in_bits (type);
18381 field_size_tree = DECL_SIZE (decl);
18383 /* The size could be unspecified if there was an error, or for
18384 a flexible array member. */
18385 if (!field_size_tree)
18386 field_size_tree = bitsize_zero_node;
18388 /* If the size of the field is not constant, use the type size. */
18389 if (TREE_CODE (field_size_tree) == INTEGER_CST)
18390 field_size_in_bits = wi::to_offset (field_size_tree);
18391 else
18392 field_size_in_bits = type_size_in_bits;
18394 decl_align_in_bits = simple_decl_align_in_bits (decl);
18396 /* The GCC front-end doesn't make any attempt to keep track of the
18397 starting bit offset (relative to the start of the containing
18398 structure type) of the hypothetical "containing object" for a
18399 bit-field. Thus, when computing the byte offset value for the
18400 start of the "containing object" of a bit-field, we must deduce
18401 this information on our own. This can be rather tricky to do in
18402 some cases. For example, handling the following structure type
18403 definition when compiling for an i386/i486 target (which only
18404 aligns long long's to 32-bit boundaries) can be very tricky:
18406 struct S { int field1; long long field2:31; };
18408 Fortunately, there is a simple rule-of-thumb which can be used
18409 in such cases. When compiling for an i386/i486, GCC will
18410 allocate 8 bytes for the structure shown above. It decides to
18411 do this based upon one simple rule for bit-field allocation.
18412 GCC allocates each "containing object" for each bit-field at
18413 the first (i.e. lowest addressed) legitimate alignment boundary
18414 (based upon the required minimum alignment for the declared
18415 type of the field) which it can possibly use, subject to the
18416 condition that there is still enough available space remaining
18417 in the containing object (when allocated at the selected point)
18418 to fully accommodate all of the bits of the bit-field itself.
18420 This simple rule makes it obvious why GCC allocates 8 bytes for
18421 each object of the structure type shown above. When looking
18422 for a place to allocate the "containing object" for `field2',
18423 the compiler simply tries to allocate a 64-bit "containing
18424 object" at each successive 32-bit boundary (starting at zero)
18425 until it finds a place to allocate that 64- bit field such that
18426 at least 31 contiguous (and previously unallocated) bits remain
18427 within that selected 64 bit field. (As it turns out, for the
18428 example above, the compiler finds it is OK to allocate the
18429 "containing object" 64-bit field at bit-offset zero within the
18430 structure type.)
18432 Here we attempt to work backwards from the limited set of facts
18433 we're given, and we try to deduce from those facts, where GCC
18434 must have believed that the containing object started (within
18435 the structure type). The value we deduce is then used (by the
18436 callers of this routine) to generate DW_AT_location and
18437 DW_AT_bit_offset attributes for fields (both bit-fields and, in
18438 the case of DW_AT_location, regular fields as well). */
18440 /* Figure out the bit-distance from the start of the structure to
18441 the "deepest" bit of the bit-field. */
18442 deepest_bitpos = bitpos_int + field_size_in_bits;
18444 /* This is the tricky part. Use some fancy footwork to deduce
18445 where the lowest addressed bit of the containing object must
18446 be. */
18447 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
18449 /* Round up to type_align by default. This works best for
18450 bitfields. */
18451 object_offset_in_bits
18452 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
18454 if (wi::gtu_p (object_offset_in_bits, bitpos_int))
18456 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
18458 /* Round up to decl_align instead. */
18459 object_offset_in_bits
18460 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
18463 object_offset_in_bytes
18464 = wi::lrshift (object_offset_in_bits, LOG2_BITS_PER_UNIT);
18465 if (ctx->variant_part_offset == NULL_TREE)
18467 *cst_offset = object_offset_in_bytes.to_shwi ();
18468 return NULL;
18470 tree_result = wide_int_to_tree (sizetype, object_offset_in_bytes);
18472 else
18473 #endif /* PCC_BITFIELD_TYPE_MATTERS */
18474 tree_result = byte_position (decl);
18476 if (ctx->variant_part_offset != NULL_TREE)
18477 tree_result = fold_build2 (PLUS_EXPR, TREE_TYPE (tree_result),
18478 ctx->variant_part_offset, tree_result);
18480 /* If the byte offset is a constant, it's simplier to handle a native
18481 constant rather than a DWARF expression. */
18482 if (TREE_CODE (tree_result) == INTEGER_CST)
18484 *cst_offset = wi::to_offset (tree_result).to_shwi ();
18485 return NULL;
18487 struct loc_descr_context loc_ctx = {
18488 ctx->struct_type, /* context_type */
18489 NULL_TREE, /* base_decl */
18490 NULL, /* dpi */
18491 false, /* placeholder_arg */
18492 false /* placeholder_seen */
18494 loc_result = loc_list_from_tree (tree_result, 0, &loc_ctx);
18496 /* We want a DWARF expression: abort if we only have a location list with
18497 multiple elements. */
18498 if (!loc_result || !single_element_loc_list_p (loc_result))
18499 return NULL;
18500 else
18501 return loc_result->expr;
18504 /* The following routines define various Dwarf attributes and any data
18505 associated with them. */
18507 /* Add a location description attribute value to a DIE.
18509 This emits location attributes suitable for whole variables and
18510 whole parameters. Note that the location attributes for struct fields are
18511 generated by the routine `data_member_location_attribute' below. */
18513 static inline void
18514 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
18515 dw_loc_list_ref descr)
18517 if (descr == 0)
18518 return;
18519 if (single_element_loc_list_p (descr))
18520 add_AT_loc (die, attr_kind, descr->expr);
18521 else
18522 add_AT_loc_list (die, attr_kind, descr);
18525 /* Add DW_AT_accessibility attribute to DIE if needed. */
18527 static void
18528 add_accessibility_attribute (dw_die_ref die, tree decl)
18530 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
18531 children, otherwise the default is DW_ACCESS_public. In DWARF2
18532 the default has always been DW_ACCESS_public. */
18533 if (TREE_PROTECTED (decl))
18534 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
18535 else if (TREE_PRIVATE (decl))
18537 if (dwarf_version == 2
18538 || die->die_parent == NULL
18539 || die->die_parent->die_tag != DW_TAG_class_type)
18540 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
18542 else if (dwarf_version > 2
18543 && die->die_parent
18544 && die->die_parent->die_tag == DW_TAG_class_type)
18545 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
18548 /* Attach the specialized form of location attribute used for data members of
18549 struct and union types. In the special case of a FIELD_DECL node which
18550 represents a bit-field, the "offset" part of this special location
18551 descriptor must indicate the distance in bytes from the lowest-addressed
18552 byte of the containing struct or union type to the lowest-addressed byte of
18553 the "containing object" for the bit-field. (See the `field_byte_offset'
18554 function above).
18556 For any given bit-field, the "containing object" is a hypothetical object
18557 (of some integral or enum type) within which the given bit-field lives. The
18558 type of this hypothetical "containing object" is always the same as the
18559 declared type of the individual bit-field itself (for GCC anyway... the
18560 DWARF spec doesn't actually mandate this). Note that it is the size (in
18561 bytes) of the hypothetical "containing object" which will be given in the
18562 DW_AT_byte_size attribute for this bit-field. (See the
18563 `byte_size_attribute' function below.) It is also used when calculating the
18564 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
18565 function below.)
18567 CTX is required: see the comment for VLR_CONTEXT. */
18569 static void
18570 add_data_member_location_attribute (dw_die_ref die,
18571 tree decl,
18572 struct vlr_context *ctx)
18574 HOST_WIDE_INT offset;
18575 dw_loc_descr_ref loc_descr = 0;
18577 if (TREE_CODE (decl) == TREE_BINFO)
18579 /* We're working on the TAG_inheritance for a base class. */
18580 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
18582 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
18583 aren't at a fixed offset from all (sub)objects of the same
18584 type. We need to extract the appropriate offset from our
18585 vtable. The following dwarf expression means
18587 BaseAddr = ObAddr + *((*ObAddr) - Offset)
18589 This is specific to the V3 ABI, of course. */
18591 dw_loc_descr_ref tmp;
18593 /* Make a copy of the object address. */
18594 tmp = new_loc_descr (DW_OP_dup, 0, 0);
18595 add_loc_descr (&loc_descr, tmp);
18597 /* Extract the vtable address. */
18598 tmp = new_loc_descr (DW_OP_deref, 0, 0);
18599 add_loc_descr (&loc_descr, tmp);
18601 /* Calculate the address of the offset. */
18602 offset = tree_to_shwi (BINFO_VPTR_FIELD (decl));
18603 gcc_assert (offset < 0);
18605 tmp = int_loc_descriptor (-offset);
18606 add_loc_descr (&loc_descr, tmp);
18607 tmp = new_loc_descr (DW_OP_minus, 0, 0);
18608 add_loc_descr (&loc_descr, tmp);
18610 /* Extract the offset. */
18611 tmp = new_loc_descr (DW_OP_deref, 0, 0);
18612 add_loc_descr (&loc_descr, tmp);
18614 /* Add it to the object address. */
18615 tmp = new_loc_descr (DW_OP_plus, 0, 0);
18616 add_loc_descr (&loc_descr, tmp);
18618 else
18619 offset = tree_to_shwi (BINFO_OFFSET (decl));
18621 else
18623 loc_descr = field_byte_offset (decl, ctx, &offset);
18625 /* If loc_descr is available then we know the field offset is dynamic.
18626 However, GDB does not handle dynamic field offsets very well at the
18627 moment. */
18628 if (loc_descr != NULL && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
18630 loc_descr = NULL;
18631 offset = 0;
18634 /* Data member location evalutation starts with the base address on the
18635 stack. Compute the field offset and add it to this base address. */
18636 else if (loc_descr != NULL)
18637 add_loc_descr (&loc_descr, new_loc_descr (DW_OP_plus, 0, 0));
18640 if (! loc_descr)
18642 /* While DW_AT_data_bit_offset has been added already in DWARF4,
18643 e.g. GDB only added support to it in November 2016. For DWARF5
18644 we need newer debug info consumers anyway. We might change this
18645 to dwarf_version >= 4 once most consumers catched up. */
18646 if (dwarf_version >= 5
18647 && TREE_CODE (decl) == FIELD_DECL
18648 && DECL_BIT_FIELD_TYPE (decl))
18650 tree off = bit_position (decl);
18651 if (tree_fits_uhwi_p (off) && get_AT (die, DW_AT_bit_size))
18653 remove_AT (die, DW_AT_byte_size);
18654 remove_AT (die, DW_AT_bit_offset);
18655 add_AT_unsigned (die, DW_AT_data_bit_offset, tree_to_uhwi (off));
18656 return;
18659 if (dwarf_version > 2)
18661 /* Don't need to output a location expression, just the constant. */
18662 if (offset < 0)
18663 add_AT_int (die, DW_AT_data_member_location, offset);
18664 else
18665 add_AT_unsigned (die, DW_AT_data_member_location, offset);
18666 return;
18668 else
18670 enum dwarf_location_atom op;
18672 /* The DWARF2 standard says that we should assume that the structure
18673 address is already on the stack, so we can specify a structure
18674 field address by using DW_OP_plus_uconst. */
18675 op = DW_OP_plus_uconst;
18676 loc_descr = new_loc_descr (op, offset, 0);
18680 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
18683 /* Writes integer values to dw_vec_const array. */
18685 static void
18686 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
18688 while (size != 0)
18690 *dest++ = val & 0xff;
18691 val >>= 8;
18692 --size;
18696 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
18698 static HOST_WIDE_INT
18699 extract_int (const unsigned char *src, unsigned int size)
18701 HOST_WIDE_INT val = 0;
18703 src += size;
18704 while (size != 0)
18706 val <<= 8;
18707 val |= *--src & 0xff;
18708 --size;
18710 return val;
18713 /* Writes wide_int values to dw_vec_const array. */
18715 static void
18716 insert_wide_int (const wide_int &val, unsigned char *dest, int elt_size)
18718 int i;
18720 if (elt_size <= HOST_BITS_PER_WIDE_INT/BITS_PER_UNIT)
18722 insert_int ((HOST_WIDE_INT) val.elt (0), elt_size, dest);
18723 return;
18726 /* We'd have to extend this code to support odd sizes. */
18727 gcc_assert (elt_size % (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) == 0);
18729 int n = elt_size / (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
18731 if (WORDS_BIG_ENDIAN)
18732 for (i = n - 1; i >= 0; i--)
18734 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
18735 dest += sizeof (HOST_WIDE_INT);
18737 else
18738 for (i = 0; i < n; i++)
18740 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
18741 dest += sizeof (HOST_WIDE_INT);
18745 /* Writes floating point values to dw_vec_const array. */
18747 static void
18748 insert_float (const_rtx rtl, unsigned char *array)
18750 long val[4];
18751 int i;
18752 scalar_float_mode mode = as_a <scalar_float_mode> (GET_MODE (rtl));
18754 real_to_target (val, CONST_DOUBLE_REAL_VALUE (rtl), mode);
18756 /* real_to_target puts 32-bit pieces in each long. Pack them. */
18757 for (i = 0; i < GET_MODE_SIZE (mode) / 4; i++)
18759 insert_int (val[i], 4, array);
18760 array += 4;
18764 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
18765 does not have a "location" either in memory or in a register. These
18766 things can arise in GNU C when a constant is passed as an actual parameter
18767 to an inlined function. They can also arise in C++ where declared
18768 constants do not necessarily get memory "homes". */
18770 static bool
18771 add_const_value_attribute (dw_die_ref die, rtx rtl)
18773 switch (GET_CODE (rtl))
18775 case CONST_INT:
18777 HOST_WIDE_INT val = INTVAL (rtl);
18779 if (val < 0)
18780 add_AT_int (die, DW_AT_const_value, val);
18781 else
18782 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
18784 return true;
18786 case CONST_WIDE_INT:
18788 wide_int w1 = rtx_mode_t (rtl, MAX_MODE_INT);
18789 unsigned int prec = MIN (wi::min_precision (w1, UNSIGNED),
18790 (unsigned int)CONST_WIDE_INT_NUNITS (rtl) * HOST_BITS_PER_WIDE_INT);
18791 wide_int w = wi::zext (w1, prec);
18792 add_AT_wide (die, DW_AT_const_value, w);
18794 return true;
18796 case CONST_DOUBLE:
18797 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
18798 floating-point constant. A CONST_DOUBLE is used whenever the
18799 constant requires more than one word in order to be adequately
18800 represented. */
18801 if (TARGET_SUPPORTS_WIDE_INT == 0
18802 && !SCALAR_FLOAT_MODE_P (GET_MODE (rtl)))
18803 add_AT_double (die, DW_AT_const_value,
18804 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
18805 else
18807 scalar_float_mode mode = as_a <scalar_float_mode> (GET_MODE (rtl));
18808 unsigned int length = GET_MODE_SIZE (mode);
18809 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
18811 insert_float (rtl, array);
18812 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
18814 return true;
18816 case CONST_VECTOR:
18818 machine_mode mode = GET_MODE (rtl);
18819 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
18820 unsigned int length = CONST_VECTOR_NUNITS (rtl);
18821 unsigned char *array
18822 = ggc_vec_alloc<unsigned char> (length * elt_size);
18823 unsigned int i;
18824 unsigned char *p;
18825 machine_mode imode = GET_MODE_INNER (mode);
18827 switch (GET_MODE_CLASS (mode))
18829 case MODE_VECTOR_INT:
18830 for (i = 0, p = array; i < length; i++, p += elt_size)
18832 rtx elt = CONST_VECTOR_ELT (rtl, i);
18833 insert_wide_int (rtx_mode_t (elt, imode), p, elt_size);
18835 break;
18837 case MODE_VECTOR_FLOAT:
18838 for (i = 0, p = array; i < length; i++, p += elt_size)
18840 rtx elt = CONST_VECTOR_ELT (rtl, i);
18841 insert_float (elt, p);
18843 break;
18845 default:
18846 gcc_unreachable ();
18849 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
18851 return true;
18853 case CONST_STRING:
18854 if (dwarf_version >= 4 || !dwarf_strict)
18856 dw_loc_descr_ref loc_result;
18857 resolve_one_addr (&rtl);
18858 rtl_addr:
18859 loc_result = new_addr_loc_descr (rtl, dtprel_false);
18860 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
18861 add_AT_loc (die, DW_AT_location, loc_result);
18862 vec_safe_push (used_rtx_array, rtl);
18863 return true;
18865 return false;
18867 case CONST:
18868 if (CONSTANT_P (XEXP (rtl, 0)))
18869 return add_const_value_attribute (die, XEXP (rtl, 0));
18870 /* FALLTHROUGH */
18871 case SYMBOL_REF:
18872 if (!const_ok_for_output (rtl))
18873 return false;
18874 /* FALLTHROUGH */
18875 case LABEL_REF:
18876 if (dwarf_version >= 4 || !dwarf_strict)
18877 goto rtl_addr;
18878 return false;
18880 case PLUS:
18881 /* In cases where an inlined instance of an inline function is passed
18882 the address of an `auto' variable (which is local to the caller) we
18883 can get a situation where the DECL_RTL of the artificial local
18884 variable (for the inlining) which acts as a stand-in for the
18885 corresponding formal parameter (of the inline function) will look
18886 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
18887 exactly a compile-time constant expression, but it isn't the address
18888 of the (artificial) local variable either. Rather, it represents the
18889 *value* which the artificial local variable always has during its
18890 lifetime. We currently have no way to represent such quasi-constant
18891 values in Dwarf, so for now we just punt and generate nothing. */
18892 return false;
18894 case HIGH:
18895 case CONST_FIXED:
18896 return false;
18898 case MEM:
18899 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
18900 && MEM_READONLY_P (rtl)
18901 && GET_MODE (rtl) == BLKmode)
18903 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
18904 return true;
18906 return false;
18908 default:
18909 /* No other kinds of rtx should be possible here. */
18910 gcc_unreachable ();
18912 return false;
18915 /* Determine whether the evaluation of EXPR references any variables
18916 or functions which aren't otherwise used (and therefore may not be
18917 output). */
18918 static tree
18919 reference_to_unused (tree * tp, int * walk_subtrees,
18920 void * data ATTRIBUTE_UNUSED)
18922 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
18923 *walk_subtrees = 0;
18925 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
18926 && ! TREE_ASM_WRITTEN (*tp))
18927 return *tp;
18928 /* ??? The C++ FE emits debug information for using decls, so
18929 putting gcc_unreachable here falls over. See PR31899. For now
18930 be conservative. */
18931 else if (!symtab->global_info_ready && VAR_OR_FUNCTION_DECL_P (*tp))
18932 return *tp;
18933 else if (VAR_P (*tp))
18935 varpool_node *node = varpool_node::get (*tp);
18936 if (!node || !node->definition)
18937 return *tp;
18939 else if (TREE_CODE (*tp) == FUNCTION_DECL
18940 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
18942 /* The call graph machinery must have finished analyzing,
18943 optimizing and gimplifying the CU by now.
18944 So if *TP has no call graph node associated
18945 to it, it means *TP will not be emitted. */
18946 if (!cgraph_node::get (*tp))
18947 return *tp;
18949 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
18950 return *tp;
18952 return NULL_TREE;
18955 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
18956 for use in a later add_const_value_attribute call. */
18958 static rtx
18959 rtl_for_decl_init (tree init, tree type)
18961 rtx rtl = NULL_RTX;
18963 STRIP_NOPS (init);
18965 /* If a variable is initialized with a string constant without embedded
18966 zeros, build CONST_STRING. */
18967 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
18969 tree enttype = TREE_TYPE (type);
18970 tree domain = TYPE_DOMAIN (type);
18971 scalar_int_mode mode;
18973 if (is_int_mode (TYPE_MODE (enttype), &mode)
18974 && GET_MODE_SIZE (mode) == 1
18975 && domain
18976 && integer_zerop (TYPE_MIN_VALUE (domain))
18977 && compare_tree_int (TYPE_MAX_VALUE (domain),
18978 TREE_STRING_LENGTH (init) - 1) == 0
18979 && ((size_t) TREE_STRING_LENGTH (init)
18980 == strlen (TREE_STRING_POINTER (init)) + 1))
18982 rtl = gen_rtx_CONST_STRING (VOIDmode,
18983 ggc_strdup (TREE_STRING_POINTER (init)));
18984 rtl = gen_rtx_MEM (BLKmode, rtl);
18985 MEM_READONLY_P (rtl) = 1;
18988 /* Other aggregates, and complex values, could be represented using
18989 CONCAT: FIXME! */
18990 else if (AGGREGATE_TYPE_P (type)
18991 || (TREE_CODE (init) == VIEW_CONVERT_EXPR
18992 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
18993 || TREE_CODE (type) == COMPLEX_TYPE)
18995 /* Vectors only work if their mode is supported by the target.
18996 FIXME: generic vectors ought to work too. */
18997 else if (TREE_CODE (type) == VECTOR_TYPE
18998 && !VECTOR_MODE_P (TYPE_MODE (type)))
19000 /* If the initializer is something that we know will expand into an
19001 immediate RTL constant, expand it now. We must be careful not to
19002 reference variables which won't be output. */
19003 else if (initializer_constant_valid_p (init, type)
19004 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
19006 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
19007 possible. */
19008 if (TREE_CODE (type) == VECTOR_TYPE)
19009 switch (TREE_CODE (init))
19011 case VECTOR_CST:
19012 break;
19013 case CONSTRUCTOR:
19014 if (TREE_CONSTANT (init))
19016 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (init);
19017 bool constant_p = true;
19018 tree value;
19019 unsigned HOST_WIDE_INT ix;
19021 /* Even when ctor is constant, it might contain non-*_CST
19022 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
19023 belong into VECTOR_CST nodes. */
19024 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
19025 if (!CONSTANT_CLASS_P (value))
19027 constant_p = false;
19028 break;
19031 if (constant_p)
19033 init = build_vector_from_ctor (type, elts);
19034 break;
19037 /* FALLTHRU */
19039 default:
19040 return NULL;
19043 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
19045 /* If expand_expr returns a MEM, it wasn't immediate. */
19046 gcc_assert (!rtl || !MEM_P (rtl));
19049 return rtl;
19052 /* Generate RTL for the variable DECL to represent its location. */
19054 static rtx
19055 rtl_for_decl_location (tree decl)
19057 rtx rtl;
19059 /* Here we have to decide where we are going to say the parameter "lives"
19060 (as far as the debugger is concerned). We only have a couple of
19061 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
19063 DECL_RTL normally indicates where the parameter lives during most of the
19064 activation of the function. If optimization is enabled however, this
19065 could be either NULL or else a pseudo-reg. Both of those cases indicate
19066 that the parameter doesn't really live anywhere (as far as the code
19067 generation parts of GCC are concerned) during most of the function's
19068 activation. That will happen (for example) if the parameter is never
19069 referenced within the function.
19071 We could just generate a location descriptor here for all non-NULL
19072 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
19073 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
19074 where DECL_RTL is NULL or is a pseudo-reg.
19076 Note however that we can only get away with using DECL_INCOMING_RTL as
19077 a backup substitute for DECL_RTL in certain limited cases. In cases
19078 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
19079 we can be sure that the parameter was passed using the same type as it is
19080 declared to have within the function, and that its DECL_INCOMING_RTL
19081 points us to a place where a value of that type is passed.
19083 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
19084 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
19085 because in these cases DECL_INCOMING_RTL points us to a value of some
19086 type which is *different* from the type of the parameter itself. Thus,
19087 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
19088 such cases, the debugger would end up (for example) trying to fetch a
19089 `float' from a place which actually contains the first part of a
19090 `double'. That would lead to really incorrect and confusing
19091 output at debug-time.
19093 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
19094 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
19095 are a couple of exceptions however. On little-endian machines we can
19096 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
19097 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
19098 an integral type that is smaller than TREE_TYPE (decl). These cases arise
19099 when (on a little-endian machine) a non-prototyped function has a
19100 parameter declared to be of type `short' or `char'. In such cases,
19101 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
19102 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
19103 passed `int' value. If the debugger then uses that address to fetch
19104 a `short' or a `char' (on a little-endian machine) the result will be
19105 the correct data, so we allow for such exceptional cases below.
19107 Note that our goal here is to describe the place where the given formal
19108 parameter lives during most of the function's activation (i.e. between the
19109 end of the prologue and the start of the epilogue). We'll do that as best
19110 as we can. Note however that if the given formal parameter is modified
19111 sometime during the execution of the function, then a stack backtrace (at
19112 debug-time) will show the function as having been called with the *new*
19113 value rather than the value which was originally passed in. This happens
19114 rarely enough that it is not a major problem, but it *is* a problem, and
19115 I'd like to fix it.
19117 A future version of dwarf2out.c may generate two additional attributes for
19118 any given DW_TAG_formal_parameter DIE which will describe the "passed
19119 type" and the "passed location" for the given formal parameter in addition
19120 to the attributes we now generate to indicate the "declared type" and the
19121 "active location" for each parameter. This additional set of attributes
19122 could be used by debuggers for stack backtraces. Separately, note that
19123 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
19124 This happens (for example) for inlined-instances of inline function formal
19125 parameters which are never referenced. This really shouldn't be
19126 happening. All PARM_DECL nodes should get valid non-NULL
19127 DECL_INCOMING_RTL values. FIXME. */
19129 /* Use DECL_RTL as the "location" unless we find something better. */
19130 rtl = DECL_RTL_IF_SET (decl);
19132 /* When generating abstract instances, ignore everything except
19133 constants, symbols living in memory, and symbols living in
19134 fixed registers. */
19135 if (! reload_completed)
19137 if (rtl
19138 && (CONSTANT_P (rtl)
19139 || (MEM_P (rtl)
19140 && CONSTANT_P (XEXP (rtl, 0)))
19141 || (REG_P (rtl)
19142 && VAR_P (decl)
19143 && TREE_STATIC (decl))))
19145 rtl = targetm.delegitimize_address (rtl);
19146 return rtl;
19148 rtl = NULL_RTX;
19150 else if (TREE_CODE (decl) == PARM_DECL)
19152 if (rtl == NULL_RTX
19153 || is_pseudo_reg (rtl)
19154 || (MEM_P (rtl)
19155 && is_pseudo_reg (XEXP (rtl, 0))
19156 && DECL_INCOMING_RTL (decl)
19157 && MEM_P (DECL_INCOMING_RTL (decl))
19158 && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
19160 tree declared_type = TREE_TYPE (decl);
19161 tree passed_type = DECL_ARG_TYPE (decl);
19162 machine_mode dmode = TYPE_MODE (declared_type);
19163 machine_mode pmode = TYPE_MODE (passed_type);
19165 /* This decl represents a formal parameter which was optimized out.
19166 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
19167 all cases where (rtl == NULL_RTX) just below. */
19168 if (dmode == pmode)
19169 rtl = DECL_INCOMING_RTL (decl);
19170 else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
19171 && SCALAR_INT_MODE_P (dmode)
19172 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
19173 && DECL_INCOMING_RTL (decl))
19175 rtx inc = DECL_INCOMING_RTL (decl);
19176 if (REG_P (inc))
19177 rtl = inc;
19178 else if (MEM_P (inc))
19180 if (BYTES_BIG_ENDIAN)
19181 rtl = adjust_address_nv (inc, dmode,
19182 GET_MODE_SIZE (pmode)
19183 - GET_MODE_SIZE (dmode));
19184 else
19185 rtl = inc;
19190 /* If the parm was passed in registers, but lives on the stack, then
19191 make a big endian correction if the mode of the type of the
19192 parameter is not the same as the mode of the rtl. */
19193 /* ??? This is the same series of checks that are made in dbxout.c before
19194 we reach the big endian correction code there. It isn't clear if all
19195 of these checks are necessary here, but keeping them all is the safe
19196 thing to do. */
19197 else if (MEM_P (rtl)
19198 && XEXP (rtl, 0) != const0_rtx
19199 && ! CONSTANT_P (XEXP (rtl, 0))
19200 /* Not passed in memory. */
19201 && !MEM_P (DECL_INCOMING_RTL (decl))
19202 /* Not passed by invisible reference. */
19203 && (!REG_P (XEXP (rtl, 0))
19204 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
19205 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
19206 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
19207 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
19208 #endif
19210 /* Big endian correction check. */
19211 && BYTES_BIG_ENDIAN
19212 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
19213 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
19214 < UNITS_PER_WORD))
19216 machine_mode addr_mode = get_address_mode (rtl);
19217 int offset = (UNITS_PER_WORD
19218 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
19220 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
19221 plus_constant (addr_mode, XEXP (rtl, 0), offset));
19224 else if (VAR_P (decl)
19225 && rtl
19226 && MEM_P (rtl)
19227 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl)))
19229 machine_mode addr_mode = get_address_mode (rtl);
19230 poly_int64 offset = byte_lowpart_offset (TYPE_MODE (TREE_TYPE (decl)),
19231 GET_MODE (rtl));
19233 /* If a variable is declared "register" yet is smaller than
19234 a register, then if we store the variable to memory, it
19235 looks like we're storing a register-sized value, when in
19236 fact we are not. We need to adjust the offset of the
19237 storage location to reflect the actual value's bytes,
19238 else gdb will not be able to display it. */
19239 if (maybe_ne (offset, 0))
19240 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
19241 plus_constant (addr_mode, XEXP (rtl, 0), offset));
19244 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
19245 and will have been substituted directly into all expressions that use it.
19246 C does not have such a concept, but C++ and other languages do. */
19247 if (!rtl && VAR_P (decl) && DECL_INITIAL (decl))
19248 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
19250 if (rtl)
19251 rtl = targetm.delegitimize_address (rtl);
19253 /* If we don't look past the constant pool, we risk emitting a
19254 reference to a constant pool entry that isn't referenced from
19255 code, and thus is not emitted. */
19256 if (rtl)
19257 rtl = avoid_constant_pool_reference (rtl);
19259 /* Try harder to get a rtl. If this symbol ends up not being emitted
19260 in the current CU, resolve_addr will remove the expression referencing
19261 it. */
19262 if (rtl == NULL_RTX
19263 && VAR_P (decl)
19264 && !DECL_EXTERNAL (decl)
19265 && TREE_STATIC (decl)
19266 && DECL_NAME (decl)
19267 && !DECL_HARD_REGISTER (decl)
19268 && DECL_MODE (decl) != VOIDmode)
19270 rtl = make_decl_rtl_for_debug (decl);
19271 if (!MEM_P (rtl)
19272 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
19273 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
19274 rtl = NULL_RTX;
19277 return rtl;
19280 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
19281 returned. If so, the decl for the COMMON block is returned, and the
19282 value is the offset into the common block for the symbol. */
19284 static tree
19285 fortran_common (tree decl, HOST_WIDE_INT *value)
19287 tree val_expr, cvar;
19288 machine_mode mode;
19289 HOST_WIDE_INT bitsize, bitpos;
19290 tree offset;
19291 int unsignedp, reversep, volatilep = 0;
19293 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
19294 it does not have a value (the offset into the common area), or if it
19295 is thread local (as opposed to global) then it isn't common, and shouldn't
19296 be handled as such. */
19297 if (!VAR_P (decl)
19298 || !TREE_STATIC (decl)
19299 || !DECL_HAS_VALUE_EXPR_P (decl)
19300 || !is_fortran ())
19301 return NULL_TREE;
19303 val_expr = DECL_VALUE_EXPR (decl);
19304 if (TREE_CODE (val_expr) != COMPONENT_REF)
19305 return NULL_TREE;
19307 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset, &mode,
19308 &unsignedp, &reversep, &volatilep);
19310 if (cvar == NULL_TREE
19311 || !VAR_P (cvar)
19312 || DECL_ARTIFICIAL (cvar)
19313 || !TREE_PUBLIC (cvar))
19314 return NULL_TREE;
19316 *value = 0;
19317 if (offset != NULL)
19319 if (!tree_fits_shwi_p (offset))
19320 return NULL_TREE;
19321 *value = tree_to_shwi (offset);
19323 if (bitpos != 0)
19324 *value += bitpos / BITS_PER_UNIT;
19326 return cvar;
19329 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
19330 data attribute for a variable or a parameter. We generate the
19331 DW_AT_const_value attribute only in those cases where the given variable
19332 or parameter does not have a true "location" either in memory or in a
19333 register. This can happen (for example) when a constant is passed as an
19334 actual argument in a call to an inline function. (It's possible that
19335 these things can crop up in other ways also.) Note that one type of
19336 constant value which can be passed into an inlined function is a constant
19337 pointer. This can happen for example if an actual argument in an inlined
19338 function call evaluates to a compile-time constant address.
19340 CACHE_P is true if it is worth caching the location list for DECL,
19341 so that future calls can reuse it rather than regenerate it from scratch.
19342 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
19343 since we will need to refer to them each time the function is inlined. */
19345 static bool
19346 add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p)
19348 rtx rtl;
19349 dw_loc_list_ref list;
19350 var_loc_list *loc_list;
19351 cached_dw_loc_list *cache;
19353 if (early_dwarf)
19354 return false;
19356 if (TREE_CODE (decl) == ERROR_MARK)
19357 return false;
19359 if (get_AT (die, DW_AT_location)
19360 || get_AT (die, DW_AT_const_value))
19361 return true;
19363 gcc_assert (VAR_P (decl) || TREE_CODE (decl) == PARM_DECL
19364 || TREE_CODE (decl) == RESULT_DECL);
19366 /* Try to get some constant RTL for this decl, and use that as the value of
19367 the location. */
19369 rtl = rtl_for_decl_location (decl);
19370 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
19371 && add_const_value_attribute (die, rtl))
19372 return true;
19374 /* See if we have single element location list that is equivalent to
19375 a constant value. That way we are better to use add_const_value_attribute
19376 rather than expanding constant value equivalent. */
19377 loc_list = lookup_decl_loc (decl);
19378 if (loc_list
19379 && loc_list->first
19380 && loc_list->first->next == NULL
19381 && NOTE_P (loc_list->first->loc)
19382 && NOTE_VAR_LOCATION (loc_list->first->loc)
19383 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
19385 struct var_loc_node *node;
19387 node = loc_list->first;
19388 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
19389 if (GET_CODE (rtl) == EXPR_LIST)
19390 rtl = XEXP (rtl, 0);
19391 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
19392 && add_const_value_attribute (die, rtl))
19393 return true;
19395 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
19396 list several times. See if we've already cached the contents. */
19397 list = NULL;
19398 if (loc_list == NULL || cached_dw_loc_list_table == NULL)
19399 cache_p = false;
19400 if (cache_p)
19402 cache = cached_dw_loc_list_table->find_with_hash (decl, DECL_UID (decl));
19403 if (cache)
19404 list = cache->loc_list;
19406 if (list == NULL)
19408 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2,
19409 NULL);
19410 /* It is usually worth caching this result if the decl is from
19411 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
19412 if (cache_p && list && list->dw_loc_next)
19414 cached_dw_loc_list **slot
19415 = cached_dw_loc_list_table->find_slot_with_hash (decl,
19416 DECL_UID (decl),
19417 INSERT);
19418 cache = ggc_cleared_alloc<cached_dw_loc_list> ();
19419 cache->decl_id = DECL_UID (decl);
19420 cache->loc_list = list;
19421 *slot = cache;
19424 if (list)
19426 add_AT_location_description (die, DW_AT_location, list);
19427 return true;
19429 /* None of that worked, so it must not really have a location;
19430 try adding a constant value attribute from the DECL_INITIAL. */
19431 return tree_add_const_value_attribute_for_decl (die, decl);
19434 /* Helper function for tree_add_const_value_attribute. Natively encode
19435 initializer INIT into an array. Return true if successful. */
19437 static bool
19438 native_encode_initializer (tree init, unsigned char *array, int size)
19440 tree type;
19442 if (init == NULL_TREE)
19443 return false;
19445 STRIP_NOPS (init);
19446 switch (TREE_CODE (init))
19448 case STRING_CST:
19449 type = TREE_TYPE (init);
19450 if (TREE_CODE (type) == ARRAY_TYPE)
19452 tree enttype = TREE_TYPE (type);
19453 scalar_int_mode mode;
19455 if (!is_int_mode (TYPE_MODE (enttype), &mode)
19456 || GET_MODE_SIZE (mode) != 1)
19457 return false;
19458 if (int_size_in_bytes (type) != size)
19459 return false;
19460 if (size > TREE_STRING_LENGTH (init))
19462 memcpy (array, TREE_STRING_POINTER (init),
19463 TREE_STRING_LENGTH (init));
19464 memset (array + TREE_STRING_LENGTH (init),
19465 '\0', size - TREE_STRING_LENGTH (init));
19467 else
19468 memcpy (array, TREE_STRING_POINTER (init), size);
19469 return true;
19471 return false;
19472 case CONSTRUCTOR:
19473 type = TREE_TYPE (init);
19474 if (int_size_in_bytes (type) != size)
19475 return false;
19476 if (TREE_CODE (type) == ARRAY_TYPE)
19478 HOST_WIDE_INT min_index;
19479 unsigned HOST_WIDE_INT cnt;
19480 int curpos = 0, fieldsize;
19481 constructor_elt *ce;
19483 if (TYPE_DOMAIN (type) == NULL_TREE
19484 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
19485 return false;
19487 fieldsize = int_size_in_bytes (TREE_TYPE (type));
19488 if (fieldsize <= 0)
19489 return false;
19491 min_index = tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type)));
19492 memset (array, '\0', size);
19493 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
19495 tree val = ce->value;
19496 tree index = ce->index;
19497 int pos = curpos;
19498 if (index && TREE_CODE (index) == RANGE_EXPR)
19499 pos = (tree_to_shwi (TREE_OPERAND (index, 0)) - min_index)
19500 * fieldsize;
19501 else if (index)
19502 pos = (tree_to_shwi (index) - min_index) * fieldsize;
19504 if (val)
19506 STRIP_NOPS (val);
19507 if (!native_encode_initializer (val, array + pos, fieldsize))
19508 return false;
19510 curpos = pos + fieldsize;
19511 if (index && TREE_CODE (index) == RANGE_EXPR)
19513 int count = tree_to_shwi (TREE_OPERAND (index, 1))
19514 - tree_to_shwi (TREE_OPERAND (index, 0));
19515 while (count-- > 0)
19517 if (val)
19518 memcpy (array + curpos, array + pos, fieldsize);
19519 curpos += fieldsize;
19522 gcc_assert (curpos <= size);
19524 return true;
19526 else if (TREE_CODE (type) == RECORD_TYPE
19527 || TREE_CODE (type) == UNION_TYPE)
19529 tree field = NULL_TREE;
19530 unsigned HOST_WIDE_INT cnt;
19531 constructor_elt *ce;
19533 if (int_size_in_bytes (type) != size)
19534 return false;
19536 if (TREE_CODE (type) == RECORD_TYPE)
19537 field = TYPE_FIELDS (type);
19539 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
19541 tree val = ce->value;
19542 int pos, fieldsize;
19544 if (ce->index != 0)
19545 field = ce->index;
19547 if (val)
19548 STRIP_NOPS (val);
19550 if (field == NULL_TREE || DECL_BIT_FIELD (field))
19551 return false;
19553 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
19554 && TYPE_DOMAIN (TREE_TYPE (field))
19555 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
19556 return false;
19557 else if (DECL_SIZE_UNIT (field) == NULL_TREE
19558 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
19559 return false;
19560 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
19561 pos = int_byte_position (field);
19562 gcc_assert (pos + fieldsize <= size);
19563 if (val && fieldsize != 0
19564 && !native_encode_initializer (val, array + pos, fieldsize))
19565 return false;
19567 return true;
19569 return false;
19570 case VIEW_CONVERT_EXPR:
19571 case NON_LVALUE_EXPR:
19572 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
19573 default:
19574 return native_encode_expr (init, array, size) == size;
19578 /* Attach a DW_AT_const_value attribute to DIE. The value of the
19579 attribute is the const value T. */
19581 static bool
19582 tree_add_const_value_attribute (dw_die_ref die, tree t)
19584 tree init;
19585 tree type = TREE_TYPE (t);
19586 rtx rtl;
19588 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
19589 return false;
19591 init = t;
19592 gcc_assert (!DECL_P (init));
19594 if (TREE_CODE (init) == INTEGER_CST)
19596 if (tree_fits_uhwi_p (init))
19598 add_AT_unsigned (die, DW_AT_const_value, tree_to_uhwi (init));
19599 return true;
19601 if (tree_fits_shwi_p (init))
19603 add_AT_int (die, DW_AT_const_value, tree_to_shwi (init));
19604 return true;
19607 if (! early_dwarf)
19609 rtl = rtl_for_decl_init (init, type);
19610 if (rtl)
19611 return add_const_value_attribute (die, rtl);
19613 /* If the host and target are sane, try harder. */
19614 if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
19615 && initializer_constant_valid_p (init, type))
19617 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
19618 if (size > 0 && (int) size == size)
19620 unsigned char *array = ggc_cleared_vec_alloc<unsigned char> (size);
19622 if (native_encode_initializer (init, array, size))
19624 add_AT_vec (die, DW_AT_const_value, size, 1, array);
19625 return true;
19627 ggc_free (array);
19630 return false;
19633 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
19634 attribute is the const value of T, where T is an integral constant
19635 variable with static storage duration
19636 (so it can't be a PARM_DECL or a RESULT_DECL). */
19638 static bool
19639 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
19642 if (!decl
19643 || (!VAR_P (decl) && TREE_CODE (decl) != CONST_DECL)
19644 || (VAR_P (decl) && !TREE_STATIC (decl)))
19645 return false;
19647 if (TREE_READONLY (decl)
19648 && ! TREE_THIS_VOLATILE (decl)
19649 && DECL_INITIAL (decl))
19650 /* OK */;
19651 else
19652 return false;
19654 /* Don't add DW_AT_const_value if abstract origin already has one. */
19655 if (get_AT (var_die, DW_AT_const_value))
19656 return false;
19658 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
19661 /* Convert the CFI instructions for the current function into a
19662 location list. This is used for DW_AT_frame_base when we targeting
19663 a dwarf2 consumer that does not support the dwarf3
19664 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
19665 expressions. */
19667 static dw_loc_list_ref
19668 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
19670 int ix;
19671 dw_fde_ref fde;
19672 dw_loc_list_ref list, *list_tail;
19673 dw_cfi_ref cfi;
19674 dw_cfa_location last_cfa, next_cfa;
19675 const char *start_label, *last_label, *section;
19676 dw_cfa_location remember;
19678 fde = cfun->fde;
19679 gcc_assert (fde != NULL);
19681 section = secname_for_decl (current_function_decl);
19682 list_tail = &list;
19683 list = NULL;
19685 memset (&next_cfa, 0, sizeof (next_cfa));
19686 next_cfa.reg = INVALID_REGNUM;
19687 remember = next_cfa;
19689 start_label = fde->dw_fde_begin;
19691 /* ??? Bald assumption that the CIE opcode list does not contain
19692 advance opcodes. */
19693 FOR_EACH_VEC_ELT (*cie_cfi_vec, ix, cfi)
19694 lookup_cfa_1 (cfi, &next_cfa, &remember);
19696 last_cfa = next_cfa;
19697 last_label = start_label;
19699 if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
19701 /* If the first partition contained no CFI adjustments, the
19702 CIE opcodes apply to the whole first partition. */
19703 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19704 fde->dw_fde_begin, fde->dw_fde_end, section);
19705 list_tail =&(*list_tail)->dw_loc_next;
19706 start_label = last_label = fde->dw_fde_second_begin;
19709 FOR_EACH_VEC_SAFE_ELT (fde->dw_fde_cfi, ix, cfi)
19711 switch (cfi->dw_cfi_opc)
19713 case DW_CFA_set_loc:
19714 case DW_CFA_advance_loc1:
19715 case DW_CFA_advance_loc2:
19716 case DW_CFA_advance_loc4:
19717 if (!cfa_equal_p (&last_cfa, &next_cfa))
19719 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19720 start_label, last_label, section);
19722 list_tail = &(*list_tail)->dw_loc_next;
19723 last_cfa = next_cfa;
19724 start_label = last_label;
19726 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
19727 break;
19729 case DW_CFA_advance_loc:
19730 /* The encoding is complex enough that we should never emit this. */
19731 gcc_unreachable ();
19733 default:
19734 lookup_cfa_1 (cfi, &next_cfa, &remember);
19735 break;
19737 if (ix + 1 == fde->dw_fde_switch_cfi_index)
19739 if (!cfa_equal_p (&last_cfa, &next_cfa))
19741 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19742 start_label, last_label, section);
19744 list_tail = &(*list_tail)->dw_loc_next;
19745 last_cfa = next_cfa;
19746 start_label = last_label;
19748 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19749 start_label, fde->dw_fde_end, section);
19750 list_tail = &(*list_tail)->dw_loc_next;
19751 start_label = last_label = fde->dw_fde_second_begin;
19755 if (!cfa_equal_p (&last_cfa, &next_cfa))
19757 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19758 start_label, last_label, section);
19759 list_tail = &(*list_tail)->dw_loc_next;
19760 start_label = last_label;
19763 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
19764 start_label,
19765 fde->dw_fde_second_begin
19766 ? fde->dw_fde_second_end : fde->dw_fde_end,
19767 section);
19769 if (list && list->dw_loc_next)
19770 gen_llsym (list);
19772 return list;
19775 /* Compute a displacement from the "steady-state frame pointer" to the
19776 frame base (often the same as the CFA), and store it in
19777 frame_pointer_fb_offset. OFFSET is added to the displacement
19778 before the latter is negated. */
19780 static void
19781 compute_frame_pointer_to_fb_displacement (poly_int64 offset)
19783 rtx reg, elim;
19785 #ifdef FRAME_POINTER_CFA_OFFSET
19786 reg = frame_pointer_rtx;
19787 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
19788 #else
19789 reg = arg_pointer_rtx;
19790 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
19791 #endif
19793 elim = (ira_use_lra_p
19794 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
19795 : eliminate_regs (reg, VOIDmode, NULL_RTX));
19796 elim = strip_offset_and_add (elim, &offset);
19798 frame_pointer_fb_offset = -offset;
19800 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
19801 in which to eliminate. This is because it's stack pointer isn't
19802 directly accessible as a register within the ISA. To work around
19803 this, assume that while we cannot provide a proper value for
19804 frame_pointer_fb_offset, we won't need one either. */
19805 frame_pointer_fb_offset_valid
19806 = ((SUPPORTS_STACK_ALIGNMENT
19807 && (elim == hard_frame_pointer_rtx
19808 || elim == stack_pointer_rtx))
19809 || elim == (frame_pointer_needed
19810 ? hard_frame_pointer_rtx
19811 : stack_pointer_rtx));
19814 /* Generate a DW_AT_name attribute given some string value to be included as
19815 the value of the attribute. */
19817 static void
19818 add_name_attribute (dw_die_ref die, const char *name_string)
19820 if (name_string != NULL && *name_string != 0)
19822 if (demangle_name_func)
19823 name_string = (*demangle_name_func) (name_string);
19825 add_AT_string (die, DW_AT_name, name_string);
19829 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
19830 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
19831 of TYPE accordingly.
19833 ??? This is a temporary measure until after we're able to generate
19834 regular DWARF for the complex Ada type system. */
19836 static void
19837 add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
19838 dw_die_ref context_die)
19840 tree dtype;
19841 dw_die_ref dtype_die;
19843 if (!lang_hooks.types.descriptive_type)
19844 return;
19846 dtype = lang_hooks.types.descriptive_type (type);
19847 if (!dtype)
19848 return;
19850 dtype_die = lookup_type_die (dtype);
19851 if (!dtype_die)
19853 gen_type_die (dtype, context_die);
19854 dtype_die = lookup_type_die (dtype);
19855 gcc_assert (dtype_die);
19858 add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
19861 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
19863 static const char *
19864 comp_dir_string (void)
19866 const char *wd;
19867 char *wd1;
19868 static const char *cached_wd = NULL;
19870 if (cached_wd != NULL)
19871 return cached_wd;
19873 wd = get_src_pwd ();
19874 if (wd == NULL)
19875 return NULL;
19877 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
19879 int wdlen;
19881 wdlen = strlen (wd);
19882 wd1 = ggc_vec_alloc<char> (wdlen + 2);
19883 strcpy (wd1, wd);
19884 wd1 [wdlen] = DIR_SEPARATOR;
19885 wd1 [wdlen + 1] = 0;
19886 wd = wd1;
19889 cached_wd = remap_debug_filename (wd);
19890 return cached_wd;
19893 /* Generate a DW_AT_comp_dir attribute for DIE. */
19895 static void
19896 add_comp_dir_attribute (dw_die_ref die)
19898 const char * wd = comp_dir_string ();
19899 if (wd != NULL)
19900 add_AT_string (die, DW_AT_comp_dir, wd);
19903 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
19904 pointer computation, ...), output a representation for that bound according
19905 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
19906 loc_list_from_tree for the meaning of CONTEXT. */
19908 static void
19909 add_scalar_info (dw_die_ref die, enum dwarf_attribute attr, tree value,
19910 int forms, struct loc_descr_context *context)
19912 dw_die_ref context_die, decl_die;
19913 dw_loc_list_ref list;
19914 bool strip_conversions = true;
19915 bool placeholder_seen = false;
19917 while (strip_conversions)
19918 switch (TREE_CODE (value))
19920 case ERROR_MARK:
19921 case SAVE_EXPR:
19922 return;
19924 CASE_CONVERT:
19925 case VIEW_CONVERT_EXPR:
19926 value = TREE_OPERAND (value, 0);
19927 break;
19929 default:
19930 strip_conversions = false;
19931 break;
19934 /* If possible and permitted, output the attribute as a constant. */
19935 if ((forms & dw_scalar_form_constant) != 0
19936 && TREE_CODE (value) == INTEGER_CST)
19938 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (value));
19940 /* If HOST_WIDE_INT is big enough then represent the bound as
19941 a constant value. We need to choose a form based on
19942 whether the type is signed or unsigned. We cannot just
19943 call add_AT_unsigned if the value itself is positive
19944 (add_AT_unsigned might add the unsigned value encoded as
19945 DW_FORM_data[1248]). Some DWARF consumers will lookup the
19946 bounds type and then sign extend any unsigned values found
19947 for signed types. This is needed only for
19948 DW_AT_{lower,upper}_bound, since for most other attributes,
19949 consumers will treat DW_FORM_data[1248] as unsigned values,
19950 regardless of the underlying type. */
19951 if (prec <= HOST_BITS_PER_WIDE_INT
19952 || tree_fits_uhwi_p (value))
19954 if (TYPE_UNSIGNED (TREE_TYPE (value)))
19955 add_AT_unsigned (die, attr, TREE_INT_CST_LOW (value));
19956 else
19957 add_AT_int (die, attr, TREE_INT_CST_LOW (value));
19959 else
19960 /* Otherwise represent the bound as an unsigned value with
19961 the precision of its type. The precision and signedness
19962 of the type will be necessary to re-interpret it
19963 unambiguously. */
19964 add_AT_wide (die, attr, wi::to_wide (value));
19965 return;
19968 /* Otherwise, if it's possible and permitted too, output a reference to
19969 another DIE. */
19970 if ((forms & dw_scalar_form_reference) != 0)
19972 tree decl = NULL_TREE;
19974 /* Some type attributes reference an outer type. For instance, the upper
19975 bound of an array may reference an embedding record (this happens in
19976 Ada). */
19977 if (TREE_CODE (value) == COMPONENT_REF
19978 && TREE_CODE (TREE_OPERAND (value, 0)) == PLACEHOLDER_EXPR
19979 && TREE_CODE (TREE_OPERAND (value, 1)) == FIELD_DECL)
19980 decl = TREE_OPERAND (value, 1);
19982 else if (VAR_P (value)
19983 || TREE_CODE (value) == PARM_DECL
19984 || TREE_CODE (value) == RESULT_DECL)
19985 decl = value;
19987 if (decl != NULL_TREE)
19989 dw_die_ref decl_die = lookup_decl_die (decl);
19991 /* ??? Can this happen, or should the variable have been bound
19992 first? Probably it can, since I imagine that we try to create
19993 the types of parameters in the order in which they exist in
19994 the list, and won't have created a forward reference to a
19995 later parameter. */
19996 if (decl_die != NULL)
19998 add_AT_die_ref (die, attr, decl_die);
19999 return;
20004 /* Last chance: try to create a stack operation procedure to evaluate the
20005 value. Do nothing if even that is not possible or permitted. */
20006 if ((forms & dw_scalar_form_exprloc) == 0)
20007 return;
20009 list = loc_list_from_tree (value, 2, context);
20010 if (context && context->placeholder_arg)
20012 placeholder_seen = context->placeholder_seen;
20013 context->placeholder_seen = false;
20015 if (list == NULL || single_element_loc_list_p (list))
20017 /* If this attribute is not a reference nor constant, it is
20018 a DWARF expression rather than location description. For that
20019 loc_list_from_tree (value, 0, &context) is needed. */
20020 dw_loc_list_ref list2 = loc_list_from_tree (value, 0, context);
20021 if (list2 && single_element_loc_list_p (list2))
20023 if (placeholder_seen)
20025 struct dwarf_procedure_info dpi;
20026 dpi.fndecl = NULL_TREE;
20027 dpi.args_count = 1;
20028 if (!resolve_args_picking (list2->expr, 1, &dpi))
20029 return;
20031 add_AT_loc (die, attr, list2->expr);
20032 return;
20036 /* If that failed to give a single element location list, fall back to
20037 outputting this as a reference... still if permitted. */
20038 if (list == NULL
20039 || (forms & dw_scalar_form_reference) == 0
20040 || placeholder_seen)
20041 return;
20043 if (current_function_decl == 0)
20044 context_die = comp_unit_die ();
20045 else
20046 context_die = lookup_decl_die (current_function_decl);
20048 decl_die = new_die (DW_TAG_variable, context_die, value);
20049 add_AT_flag (decl_die, DW_AT_artificial, 1);
20050 add_type_attribute (decl_die, TREE_TYPE (value), TYPE_QUAL_CONST, false,
20051 context_die);
20052 add_AT_location_description (decl_die, DW_AT_location, list);
20053 add_AT_die_ref (die, attr, decl_die);
20056 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
20057 default. */
20059 static int
20060 lower_bound_default (void)
20062 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
20064 case DW_LANG_C:
20065 case DW_LANG_C89:
20066 case DW_LANG_C99:
20067 case DW_LANG_C11:
20068 case DW_LANG_C_plus_plus:
20069 case DW_LANG_C_plus_plus_11:
20070 case DW_LANG_C_plus_plus_14:
20071 case DW_LANG_ObjC:
20072 case DW_LANG_ObjC_plus_plus:
20073 return 0;
20074 case DW_LANG_Fortran77:
20075 case DW_LANG_Fortran90:
20076 case DW_LANG_Fortran95:
20077 case DW_LANG_Fortran03:
20078 case DW_LANG_Fortran08:
20079 return 1;
20080 case DW_LANG_UPC:
20081 case DW_LANG_D:
20082 case DW_LANG_Python:
20083 return dwarf_version >= 4 ? 0 : -1;
20084 case DW_LANG_Ada95:
20085 case DW_LANG_Ada83:
20086 case DW_LANG_Cobol74:
20087 case DW_LANG_Cobol85:
20088 case DW_LANG_Modula2:
20089 case DW_LANG_PLI:
20090 return dwarf_version >= 4 ? 1 : -1;
20091 default:
20092 return -1;
20096 /* Given a tree node describing an array bound (either lower or upper) output
20097 a representation for that bound. */
20099 static void
20100 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr,
20101 tree bound, struct loc_descr_context *context)
20103 int dflt;
20105 while (1)
20106 switch (TREE_CODE (bound))
20108 /* Strip all conversions. */
20109 CASE_CONVERT:
20110 case VIEW_CONVERT_EXPR:
20111 bound = TREE_OPERAND (bound, 0);
20112 break;
20114 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
20115 are even omitted when they are the default. */
20116 case INTEGER_CST:
20117 /* If the value for this bound is the default one, we can even omit the
20118 attribute. */
20119 if (bound_attr == DW_AT_lower_bound
20120 && tree_fits_shwi_p (bound)
20121 && (dflt = lower_bound_default ()) != -1
20122 && tree_to_shwi (bound) == dflt)
20123 return;
20125 /* FALLTHRU */
20127 default:
20128 /* Because of the complex interaction there can be with other GNAT
20129 encodings, GDB isn't ready yet to handle proper DWARF description
20130 for self-referencial subrange bounds: let GNAT encodings do the
20131 magic in such a case. */
20132 if (is_ada ()
20133 && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL
20134 && contains_placeholder_p (bound))
20135 return;
20137 add_scalar_info (subrange_die, bound_attr, bound,
20138 dw_scalar_form_constant
20139 | dw_scalar_form_exprloc
20140 | dw_scalar_form_reference,
20141 context);
20142 return;
20146 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
20147 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
20148 Note that the block of subscript information for an array type also
20149 includes information about the element type of the given array type.
20151 This function reuses previously set type and bound information if
20152 available. */
20154 static void
20155 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
20157 unsigned dimension_number;
20158 tree lower, upper;
20159 dw_die_ref child = type_die->die_child;
20161 for (dimension_number = 0;
20162 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
20163 type = TREE_TYPE (type), dimension_number++)
20165 tree domain = TYPE_DOMAIN (type);
20167 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
20168 break;
20170 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
20171 and (in GNU C only) variable bounds. Handle all three forms
20172 here. */
20174 /* Find and reuse a previously generated DW_TAG_subrange_type if
20175 available.
20177 For multi-dimensional arrays, as we iterate through the
20178 various dimensions in the enclosing for loop above, we also
20179 iterate through the DIE children and pick at each
20180 DW_TAG_subrange_type previously generated (if available).
20181 Each child DW_TAG_subrange_type DIE describes the range of
20182 the current dimension. At this point we should have as many
20183 DW_TAG_subrange_type's as we have dimensions in the
20184 array. */
20185 dw_die_ref subrange_die = NULL;
20186 if (child)
20187 while (1)
20189 child = child->die_sib;
20190 if (child->die_tag == DW_TAG_subrange_type)
20191 subrange_die = child;
20192 if (child == type_die->die_child)
20194 /* If we wrapped around, stop looking next time. */
20195 child = NULL;
20196 break;
20198 if (child->die_tag == DW_TAG_subrange_type)
20199 break;
20201 if (!subrange_die)
20202 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
20204 if (domain)
20206 /* We have an array type with specified bounds. */
20207 lower = TYPE_MIN_VALUE (domain);
20208 upper = TYPE_MAX_VALUE (domain);
20210 /* Define the index type. */
20211 if (TREE_TYPE (domain)
20212 && !get_AT (subrange_die, DW_AT_type))
20214 /* ??? This is probably an Ada unnamed subrange type. Ignore the
20215 TREE_TYPE field. We can't emit debug info for this
20216 because it is an unnamed integral type. */
20217 if (TREE_CODE (domain) == INTEGER_TYPE
20218 && TYPE_NAME (domain) == NULL_TREE
20219 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
20220 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
20222 else
20223 add_type_attribute (subrange_die, TREE_TYPE (domain),
20224 TYPE_UNQUALIFIED, false, type_die);
20227 /* ??? If upper is NULL, the array has unspecified length,
20228 but it does have a lower bound. This happens with Fortran
20229 dimension arr(N:*)
20230 Since the debugger is definitely going to need to know N
20231 to produce useful results, go ahead and output the lower
20232 bound solo, and hope the debugger can cope. */
20234 if (!get_AT (subrange_die, DW_AT_lower_bound))
20235 add_bound_info (subrange_die, DW_AT_lower_bound, lower, NULL);
20236 if (upper && !get_AT (subrange_die, DW_AT_upper_bound))
20237 add_bound_info (subrange_die, DW_AT_upper_bound, upper, NULL);
20240 /* Otherwise we have an array type with an unspecified length. The
20241 DWARF-2 spec does not say how to handle this; let's just leave out the
20242 bounds. */
20246 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
20248 static void
20249 add_byte_size_attribute (dw_die_ref die, tree tree_node)
20251 dw_die_ref decl_die;
20252 HOST_WIDE_INT size;
20253 dw_loc_descr_ref size_expr = NULL;
20255 switch (TREE_CODE (tree_node))
20257 case ERROR_MARK:
20258 size = 0;
20259 break;
20260 case ENUMERAL_TYPE:
20261 case RECORD_TYPE:
20262 case UNION_TYPE:
20263 case QUAL_UNION_TYPE:
20264 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node)) == VAR_DECL
20265 && (decl_die = lookup_decl_die (TYPE_SIZE_UNIT (tree_node))))
20267 add_AT_die_ref (die, DW_AT_byte_size, decl_die);
20268 return;
20270 size_expr = type_byte_size (tree_node, &size);
20271 break;
20272 case FIELD_DECL:
20273 /* For a data member of a struct or union, the DW_AT_byte_size is
20274 generally given as the number of bytes normally allocated for an
20275 object of the *declared* type of the member itself. This is true
20276 even for bit-fields. */
20277 size = int_size_in_bytes (field_type (tree_node));
20278 break;
20279 default:
20280 gcc_unreachable ();
20283 /* Support for dynamically-sized objects was introduced by DWARFv3.
20284 At the moment, GDB does not handle variable byte sizes very well,
20285 though. */
20286 if ((dwarf_version >= 3 || !dwarf_strict)
20287 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL
20288 && size_expr != NULL)
20289 add_AT_loc (die, DW_AT_byte_size, size_expr);
20291 /* Note that `size' might be -1 when we get to this point. If it is, that
20292 indicates that the byte size of the entity in question is variable and
20293 that we could not generate a DWARF expression that computes it. */
20294 if (size >= 0)
20295 add_AT_unsigned (die, DW_AT_byte_size, size);
20298 /* Add a DW_AT_alignment attribute to DIE with TREE_NODE's non-default
20299 alignment. */
20301 static void
20302 add_alignment_attribute (dw_die_ref die, tree tree_node)
20304 if (dwarf_version < 5 && dwarf_strict)
20305 return;
20307 unsigned align;
20309 if (DECL_P (tree_node))
20311 if (!DECL_USER_ALIGN (tree_node))
20312 return;
20314 align = DECL_ALIGN_UNIT (tree_node);
20316 else if (TYPE_P (tree_node))
20318 if (!TYPE_USER_ALIGN (tree_node))
20319 return;
20321 align = TYPE_ALIGN_UNIT (tree_node);
20323 else
20324 gcc_unreachable ();
20326 add_AT_unsigned (die, DW_AT_alignment, align);
20329 /* For a FIELD_DECL node which represents a bit-field, output an attribute
20330 which specifies the distance in bits from the highest order bit of the
20331 "containing object" for the bit-field to the highest order bit of the
20332 bit-field itself.
20334 For any given bit-field, the "containing object" is a hypothetical object
20335 (of some integral or enum type) within which the given bit-field lives. The
20336 type of this hypothetical "containing object" is always the same as the
20337 declared type of the individual bit-field itself. The determination of the
20338 exact location of the "containing object" for a bit-field is rather
20339 complicated. It's handled by the `field_byte_offset' function (above).
20341 CTX is required: see the comment for VLR_CONTEXT.
20343 Note that it is the size (in bytes) of the hypothetical "containing object"
20344 which will be given in the DW_AT_byte_size attribute for this bit-field.
20345 (See `byte_size_attribute' above). */
20347 static inline void
20348 add_bit_offset_attribute (dw_die_ref die, tree decl, struct vlr_context *ctx)
20350 HOST_WIDE_INT object_offset_in_bytes;
20351 tree original_type = DECL_BIT_FIELD_TYPE (decl);
20352 HOST_WIDE_INT bitpos_int;
20353 HOST_WIDE_INT highest_order_object_bit_offset;
20354 HOST_WIDE_INT highest_order_field_bit_offset;
20355 HOST_WIDE_INT bit_offset;
20357 field_byte_offset (decl, ctx, &object_offset_in_bytes);
20359 /* Must be a field and a bit field. */
20360 gcc_assert (original_type && TREE_CODE (decl) == FIELD_DECL);
20362 /* We can't yet handle bit-fields whose offsets are variable, so if we
20363 encounter such things, just return without generating any attribute
20364 whatsoever. Likewise for variable or too large size. */
20365 if (! tree_fits_shwi_p (bit_position (decl))
20366 || ! tree_fits_uhwi_p (DECL_SIZE (decl)))
20367 return;
20369 bitpos_int = int_bit_position (decl);
20371 /* Note that the bit offset is always the distance (in bits) from the
20372 highest-order bit of the "containing object" to the highest-order bit of
20373 the bit-field itself. Since the "high-order end" of any object or field
20374 is different on big-endian and little-endian machines, the computation
20375 below must take account of these differences. */
20376 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
20377 highest_order_field_bit_offset = bitpos_int;
20379 if (! BYTES_BIG_ENDIAN)
20381 highest_order_field_bit_offset += tree_to_shwi (DECL_SIZE (decl));
20382 highest_order_object_bit_offset +=
20383 simple_type_size_in_bits (original_type);
20386 bit_offset
20387 = (! BYTES_BIG_ENDIAN
20388 ? highest_order_object_bit_offset - highest_order_field_bit_offset
20389 : highest_order_field_bit_offset - highest_order_object_bit_offset);
20391 if (bit_offset < 0)
20392 add_AT_int (die, DW_AT_bit_offset, bit_offset);
20393 else
20394 add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
20397 /* For a FIELD_DECL node which represents a bit field, output an attribute
20398 which specifies the length in bits of the given field. */
20400 static inline void
20401 add_bit_size_attribute (dw_die_ref die, tree decl)
20403 /* Must be a field and a bit field. */
20404 gcc_assert (TREE_CODE (decl) == FIELD_DECL
20405 && DECL_BIT_FIELD_TYPE (decl));
20407 if (tree_fits_uhwi_p (DECL_SIZE (decl)))
20408 add_AT_unsigned (die, DW_AT_bit_size, tree_to_uhwi (DECL_SIZE (decl)));
20411 /* If the compiled language is ANSI C, then add a 'prototyped'
20412 attribute, if arg types are given for the parameters of a function. */
20414 static inline void
20415 add_prototyped_attribute (dw_die_ref die, tree func_type)
20417 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
20419 case DW_LANG_C:
20420 case DW_LANG_C89:
20421 case DW_LANG_C99:
20422 case DW_LANG_C11:
20423 case DW_LANG_ObjC:
20424 if (prototype_p (func_type))
20425 add_AT_flag (die, DW_AT_prototyped, 1);
20426 break;
20427 default:
20428 break;
20432 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
20433 by looking in the type declaration, the object declaration equate table or
20434 the block mapping. */
20436 static inline dw_die_ref
20437 add_abstract_origin_attribute (dw_die_ref die, tree origin)
20439 dw_die_ref origin_die = NULL;
20441 if (DECL_P (origin))
20443 dw_die_ref c;
20444 origin_die = lookup_decl_die (origin);
20445 /* "Unwrap" the decls DIE which we put in the imported unit context.
20446 We are looking for the abstract copy here. */
20447 if (in_lto_p
20448 && origin_die
20449 && (c = get_AT_ref (origin_die, DW_AT_abstract_origin))
20450 /* ??? Identify this better. */
20451 && c->with_offset)
20452 origin_die = c;
20454 else if (TYPE_P (origin))
20455 origin_die = lookup_type_die (origin);
20456 else if (TREE_CODE (origin) == BLOCK)
20457 origin_die = BLOCK_DIE (origin);
20459 /* XXX: Functions that are never lowered don't always have correct block
20460 trees (in the case of java, they simply have no block tree, in some other
20461 languages). For these functions, there is nothing we can really do to
20462 output correct debug info for inlined functions in all cases. Rather
20463 than die, we'll just produce deficient debug info now, in that we will
20464 have variables without a proper abstract origin. In the future, when all
20465 functions are lowered, we should re-add a gcc_assert (origin_die)
20466 here. */
20468 if (origin_die)
20469 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
20470 return origin_die;
20473 /* We do not currently support the pure_virtual attribute. */
20475 static inline void
20476 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
20478 if (DECL_VINDEX (func_decl))
20480 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
20482 if (tree_fits_shwi_p (DECL_VINDEX (func_decl)))
20483 add_AT_loc (die, DW_AT_vtable_elem_location,
20484 new_loc_descr (DW_OP_constu,
20485 tree_to_shwi (DECL_VINDEX (func_decl)),
20486 0));
20488 /* GNU extension: Record what type this method came from originally. */
20489 if (debug_info_level > DINFO_LEVEL_TERSE
20490 && DECL_CONTEXT (func_decl))
20491 add_AT_die_ref (die, DW_AT_containing_type,
20492 lookup_type_die (DECL_CONTEXT (func_decl)));
20496 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
20497 given decl. This used to be a vendor extension until after DWARF 4
20498 standardized it. */
20500 static void
20501 add_linkage_attr (dw_die_ref die, tree decl)
20503 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
20505 /* Mimic what assemble_name_raw does with a leading '*'. */
20506 if (name[0] == '*')
20507 name = &name[1];
20509 if (dwarf_version >= 4)
20510 add_AT_string (die, DW_AT_linkage_name, name);
20511 else
20512 add_AT_string (die, DW_AT_MIPS_linkage_name, name);
20515 /* Add source coordinate attributes for the given decl. */
20517 static void
20518 add_src_coords_attributes (dw_die_ref die, tree decl)
20520 expanded_location s;
20522 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl)) == UNKNOWN_LOCATION)
20523 return;
20524 s = expand_location (DECL_SOURCE_LOCATION (decl));
20525 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
20526 add_AT_unsigned (die, DW_AT_decl_line, s.line);
20527 if (debug_column_info && s.column)
20528 add_AT_unsigned (die, DW_AT_decl_column, s.column);
20531 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
20533 static void
20534 add_linkage_name_raw (dw_die_ref die, tree decl)
20536 /* Defer until we have an assembler name set. */
20537 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
20539 limbo_die_node *asm_name;
20541 asm_name = ggc_cleared_alloc<limbo_die_node> ();
20542 asm_name->die = die;
20543 asm_name->created_for = decl;
20544 asm_name->next = deferred_asm_name;
20545 deferred_asm_name = asm_name;
20547 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
20548 add_linkage_attr (die, decl);
20551 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl if desired. */
20553 static void
20554 add_linkage_name (dw_die_ref die, tree decl)
20556 if (debug_info_level > DINFO_LEVEL_NONE
20557 && VAR_OR_FUNCTION_DECL_P (decl)
20558 && TREE_PUBLIC (decl)
20559 && !(VAR_P (decl) && DECL_REGISTER (decl))
20560 && die->die_tag != DW_TAG_member)
20561 add_linkage_name_raw (die, decl);
20564 /* Add a DW_AT_name attribute and source coordinate attribute for the
20565 given decl, but only if it actually has a name. */
20567 static void
20568 add_name_and_src_coords_attributes (dw_die_ref die, tree decl,
20569 bool no_linkage_name)
20571 tree decl_name;
20573 decl_name = DECL_NAME (decl);
20574 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
20576 const char *name = dwarf2_name (decl, 0);
20577 if (name)
20578 add_name_attribute (die, name);
20579 if (! DECL_ARTIFICIAL (decl))
20580 add_src_coords_attributes (die, decl);
20582 if (!no_linkage_name)
20583 add_linkage_name (die, decl);
20586 #ifdef VMS_DEBUGGING_INFO
20587 /* Get the function's name, as described by its RTL. This may be different
20588 from the DECL_NAME name used in the source file. */
20589 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
20591 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
20592 XEXP (DECL_RTL (decl), 0), false);
20593 vec_safe_push (used_rtx_array, XEXP (DECL_RTL (decl), 0));
20595 #endif /* VMS_DEBUGGING_INFO */
20598 /* Add VALUE as a DW_AT_discr_value attribute to DIE. */
20600 static void
20601 add_discr_value (dw_die_ref die, dw_discr_value *value)
20603 dw_attr_node attr;
20605 attr.dw_attr = DW_AT_discr_value;
20606 attr.dw_attr_val.val_class = dw_val_class_discr_value;
20607 attr.dw_attr_val.val_entry = NULL;
20608 attr.dw_attr_val.v.val_discr_value.pos = value->pos;
20609 if (value->pos)
20610 attr.dw_attr_val.v.val_discr_value.v.uval = value->v.uval;
20611 else
20612 attr.dw_attr_val.v.val_discr_value.v.sval = value->v.sval;
20613 add_dwarf_attr (die, &attr);
20616 /* Add DISCR_LIST as a DW_AT_discr_list to DIE. */
20618 static void
20619 add_discr_list (dw_die_ref die, dw_discr_list_ref discr_list)
20621 dw_attr_node attr;
20623 attr.dw_attr = DW_AT_discr_list;
20624 attr.dw_attr_val.val_class = dw_val_class_discr_list;
20625 attr.dw_attr_val.val_entry = NULL;
20626 attr.dw_attr_val.v.val_discr_list = discr_list;
20627 add_dwarf_attr (die, &attr);
20630 static inline dw_discr_list_ref
20631 AT_discr_list (dw_attr_node *attr)
20633 return attr->dw_attr_val.v.val_discr_list;
20636 #ifdef VMS_DEBUGGING_INFO
20637 /* Output the debug main pointer die for VMS */
20639 void
20640 dwarf2out_vms_debug_main_pointer (void)
20642 char label[MAX_ARTIFICIAL_LABEL_BYTES];
20643 dw_die_ref die;
20645 /* Allocate the VMS debug main subprogram die. */
20646 die = new_die_raw (DW_TAG_subprogram);
20647 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
20648 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
20649 current_function_funcdef_no);
20650 add_AT_lbl_id (die, DW_AT_entry_pc, label);
20652 /* Make it the first child of comp_unit_die (). */
20653 die->die_parent = comp_unit_die ();
20654 if (comp_unit_die ()->die_child)
20656 die->die_sib = comp_unit_die ()->die_child->die_sib;
20657 comp_unit_die ()->die_child->die_sib = die;
20659 else
20661 die->die_sib = die;
20662 comp_unit_die ()->die_child = die;
20665 #endif /* VMS_DEBUGGING_INFO */
20667 /* Push a new declaration scope. */
20669 static void
20670 push_decl_scope (tree scope)
20672 vec_safe_push (decl_scope_table, scope);
20675 /* Pop a declaration scope. */
20677 static inline void
20678 pop_decl_scope (void)
20680 decl_scope_table->pop ();
20683 /* walk_tree helper function for uses_local_type, below. */
20685 static tree
20686 uses_local_type_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
20688 if (!TYPE_P (*tp))
20689 *walk_subtrees = 0;
20690 else
20692 tree name = TYPE_NAME (*tp);
20693 if (name && DECL_P (name) && decl_function_context (name))
20694 return *tp;
20696 return NULL_TREE;
20699 /* If TYPE involves a function-local type (including a local typedef to a
20700 non-local type), returns that type; otherwise returns NULL_TREE. */
20702 static tree
20703 uses_local_type (tree type)
20705 tree used = walk_tree_without_duplicates (&type, uses_local_type_r, NULL);
20706 return used;
20709 /* Return the DIE for the scope that immediately contains this type.
20710 Non-named types that do not involve a function-local type get global
20711 scope. Named types nested in namespaces or other types get their
20712 containing scope. All other types (i.e. function-local named types) get
20713 the current active scope. */
20715 static dw_die_ref
20716 scope_die_for (tree t, dw_die_ref context_die)
20718 dw_die_ref scope_die = NULL;
20719 tree containing_scope;
20721 /* Non-types always go in the current scope. */
20722 gcc_assert (TYPE_P (t));
20724 /* Use the scope of the typedef, rather than the scope of the type
20725 it refers to. */
20726 if (TYPE_NAME (t) && DECL_P (TYPE_NAME (t)))
20727 containing_scope = DECL_CONTEXT (TYPE_NAME (t));
20728 else
20729 containing_scope = TYPE_CONTEXT (t);
20731 /* Use the containing namespace if there is one. */
20732 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
20734 if (context_die == lookup_decl_die (containing_scope))
20735 /* OK */;
20736 else if (debug_info_level > DINFO_LEVEL_TERSE)
20737 context_die = get_context_die (containing_scope);
20738 else
20739 containing_scope = NULL_TREE;
20742 /* Ignore function type "scopes" from the C frontend. They mean that
20743 a tagged type is local to a parmlist of a function declarator, but
20744 that isn't useful to DWARF. */
20745 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
20746 containing_scope = NULL_TREE;
20748 if (SCOPE_FILE_SCOPE_P (containing_scope))
20750 /* If T uses a local type keep it local as well, to avoid references
20751 to function-local DIEs from outside the function. */
20752 if (current_function_decl && uses_local_type (t))
20753 scope_die = context_die;
20754 else
20755 scope_die = comp_unit_die ();
20757 else if (TYPE_P (containing_scope))
20759 /* For types, we can just look up the appropriate DIE. */
20760 if (debug_info_level > DINFO_LEVEL_TERSE)
20761 scope_die = get_context_die (containing_scope);
20762 else
20764 scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
20765 if (scope_die == NULL)
20766 scope_die = comp_unit_die ();
20769 else
20770 scope_die = context_die;
20772 return scope_die;
20775 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
20777 static inline int
20778 local_scope_p (dw_die_ref context_die)
20780 for (; context_die; context_die = context_die->die_parent)
20781 if (context_die->die_tag == DW_TAG_inlined_subroutine
20782 || context_die->die_tag == DW_TAG_subprogram)
20783 return 1;
20785 return 0;
20788 /* Returns nonzero if CONTEXT_DIE is a class. */
20790 static inline int
20791 class_scope_p (dw_die_ref context_die)
20793 return (context_die
20794 && (context_die->die_tag == DW_TAG_structure_type
20795 || context_die->die_tag == DW_TAG_class_type
20796 || context_die->die_tag == DW_TAG_interface_type
20797 || context_die->die_tag == DW_TAG_union_type));
20800 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
20801 whether or not to treat a DIE in this context as a declaration. */
20803 static inline int
20804 class_or_namespace_scope_p (dw_die_ref context_die)
20806 return (class_scope_p (context_die)
20807 || (context_die && context_die->die_tag == DW_TAG_namespace));
20810 /* Many forms of DIEs require a "type description" attribute. This
20811 routine locates the proper "type descriptor" die for the type given
20812 by 'type' plus any additional qualifiers given by 'cv_quals', and
20813 adds a DW_AT_type attribute below the given die. */
20815 static void
20816 add_type_attribute (dw_die_ref object_die, tree type, int cv_quals,
20817 bool reverse, dw_die_ref context_die)
20819 enum tree_code code = TREE_CODE (type);
20820 dw_die_ref type_die = NULL;
20822 /* ??? If this type is an unnamed subrange type of an integral, floating-point
20823 or fixed-point type, use the inner type. This is because we have no
20824 support for unnamed types in base_type_die. This can happen if this is
20825 an Ada subrange type. Correct solution is emit a subrange type die. */
20826 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
20827 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
20828 type = TREE_TYPE (type), code = TREE_CODE (type);
20830 if (code == ERROR_MARK
20831 /* Handle a special case. For functions whose return type is void, we
20832 generate *no* type attribute. (Note that no object may have type
20833 `void', so this only applies to function return types). */
20834 || code == VOID_TYPE)
20835 return;
20837 type_die = modified_type_die (type,
20838 cv_quals | TYPE_QUALS (type),
20839 reverse,
20840 context_die);
20842 if (type_die != NULL)
20843 add_AT_die_ref (object_die, DW_AT_type, type_die);
20846 /* Given an object die, add the calling convention attribute for the
20847 function call type. */
20848 static void
20849 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
20851 enum dwarf_calling_convention value = DW_CC_normal;
20853 value = ((enum dwarf_calling_convention)
20854 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
20856 if (is_fortran ()
20857 && id_equal (DECL_ASSEMBLER_NAME (decl), "MAIN__"))
20859 /* DWARF 2 doesn't provide a way to identify a program's source-level
20860 entry point. DW_AT_calling_convention attributes are only meant
20861 to describe functions' calling conventions. However, lacking a
20862 better way to signal the Fortran main program, we used this for
20863 a long time, following existing custom. Now, DWARF 4 has
20864 DW_AT_main_subprogram, which we add below, but some tools still
20865 rely on the old way, which we thus keep. */
20866 value = DW_CC_program;
20868 if (dwarf_version >= 4 || !dwarf_strict)
20869 add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
20872 /* Only add the attribute if the backend requests it, and
20873 is not DW_CC_normal. */
20874 if (value && (value != DW_CC_normal))
20875 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
20878 /* Given a tree pointer to a struct, class, union, or enum type node, return
20879 a pointer to the (string) tag name for the given type, or zero if the type
20880 was declared without a tag. */
20882 static const char *
20883 type_tag (const_tree type)
20885 const char *name = 0;
20887 if (TYPE_NAME (type) != 0)
20889 tree t = 0;
20891 /* Find the IDENTIFIER_NODE for the type name. */
20892 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
20893 && !TYPE_NAMELESS (type))
20894 t = TYPE_NAME (type);
20896 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
20897 a TYPE_DECL node, regardless of whether or not a `typedef' was
20898 involved. */
20899 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
20900 && ! DECL_IGNORED_P (TYPE_NAME (type)))
20902 /* We want to be extra verbose. Don't call dwarf_name if
20903 DECL_NAME isn't set. The default hook for decl_printable_name
20904 doesn't like that, and in this context it's correct to return
20905 0, instead of "<anonymous>" or the like. */
20906 if (DECL_NAME (TYPE_NAME (type))
20907 && !DECL_NAMELESS (TYPE_NAME (type)))
20908 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
20911 /* Now get the name as a string, or invent one. */
20912 if (!name && t != 0)
20913 name = IDENTIFIER_POINTER (t);
20916 return (name == 0 || *name == '\0') ? 0 : name;
20919 /* Return the type associated with a data member, make a special check
20920 for bit field types. */
20922 static inline tree
20923 member_declared_type (const_tree member)
20925 return (DECL_BIT_FIELD_TYPE (member)
20926 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
20929 /* Get the decl's label, as described by its RTL. This may be different
20930 from the DECL_NAME name used in the source file. */
20932 #if 0
20933 static const char *
20934 decl_start_label (tree decl)
20936 rtx x;
20937 const char *fnname;
20939 x = DECL_RTL (decl);
20940 gcc_assert (MEM_P (x));
20942 x = XEXP (x, 0);
20943 gcc_assert (GET_CODE (x) == SYMBOL_REF);
20945 fnname = XSTR (x, 0);
20946 return fnname;
20948 #endif
20950 /* For variable-length arrays that have been previously generated, but
20951 may be incomplete due to missing subscript info, fill the subscript
20952 info. Return TRUE if this is one of those cases. */
20953 static bool
20954 fill_variable_array_bounds (tree type)
20956 if (TREE_ASM_WRITTEN (type)
20957 && TREE_CODE (type) == ARRAY_TYPE
20958 && variably_modified_type_p (type, NULL))
20960 dw_die_ref array_die = lookup_type_die (type);
20961 if (!array_die)
20962 return false;
20963 add_subscript_info (array_die, type, !is_ada ());
20964 return true;
20966 return false;
20969 /* These routines generate the internal representation of the DIE's for
20970 the compilation unit. Debugging information is collected by walking
20971 the declaration trees passed in from dwarf2out_decl(). */
20973 static void
20974 gen_array_type_die (tree type, dw_die_ref context_die)
20976 dw_die_ref array_die;
20978 /* GNU compilers represent multidimensional array types as sequences of one
20979 dimensional array types whose element types are themselves array types.
20980 We sometimes squish that down to a single array_type DIE with multiple
20981 subscripts in the Dwarf debugging info. The draft Dwarf specification
20982 say that we are allowed to do this kind of compression in C, because
20983 there is no difference between an array of arrays and a multidimensional
20984 array. We don't do this for Ada to remain as close as possible to the
20985 actual representation, which is especially important against the language
20986 flexibilty wrt arrays of variable size. */
20988 bool collapse_nested_arrays = !is_ada ();
20990 if (fill_variable_array_bounds (type))
20991 return;
20993 dw_die_ref scope_die = scope_die_for (type, context_die);
20994 tree element_type;
20996 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
20997 DW_TAG_string_type doesn't have DW_AT_type attribute). */
20998 if (TYPE_STRING_FLAG (type)
20999 && TREE_CODE (type) == ARRAY_TYPE
21000 && is_fortran ()
21001 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
21003 HOST_WIDE_INT size;
21005 array_die = new_die (DW_TAG_string_type, scope_die, type);
21006 add_name_attribute (array_die, type_tag (type));
21007 equate_type_number_to_die (type, array_die);
21008 size = int_size_in_bytes (type);
21009 if (size >= 0)
21010 add_AT_unsigned (array_die, DW_AT_byte_size, size);
21011 /* ??? We can't annotate types late, but for LTO we may not
21012 generate a location early either (gfortran.dg/save_6.f90). */
21013 else if (! (early_dwarf && (flag_generate_lto || flag_generate_offload))
21014 && TYPE_DOMAIN (type) != NULL_TREE
21015 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE)
21017 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
21018 tree rszdecl = szdecl;
21020 size = int_size_in_bytes (TREE_TYPE (szdecl));
21021 if (!DECL_P (szdecl))
21023 if (TREE_CODE (szdecl) == INDIRECT_REF
21024 && DECL_P (TREE_OPERAND (szdecl, 0)))
21026 rszdecl = TREE_OPERAND (szdecl, 0);
21027 if (int_size_in_bytes (TREE_TYPE (rszdecl))
21028 != DWARF2_ADDR_SIZE)
21029 size = 0;
21031 else
21032 size = 0;
21034 if (size > 0)
21036 dw_loc_list_ref loc
21037 = loc_list_from_tree (rszdecl, szdecl == rszdecl ? 2 : 0,
21038 NULL);
21039 if (loc)
21041 add_AT_location_description (array_die, DW_AT_string_length,
21042 loc);
21043 if (size != DWARF2_ADDR_SIZE)
21044 add_AT_unsigned (array_die, dwarf_version >= 5
21045 ? DW_AT_string_length_byte_size
21046 : DW_AT_byte_size, size);
21050 return;
21053 array_die = new_die (DW_TAG_array_type, scope_die, type);
21054 add_name_attribute (array_die, type_tag (type));
21055 equate_type_number_to_die (type, array_die);
21057 if (TREE_CODE (type) == VECTOR_TYPE)
21058 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
21060 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
21061 if (is_fortran ()
21062 && TREE_CODE (type) == ARRAY_TYPE
21063 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
21064 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
21065 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
21067 #if 0
21068 /* We default the array ordering. Debuggers will probably do the right
21069 things even if DW_AT_ordering is not present. It's not even an issue
21070 until we start to get into multidimensional arrays anyway. If a debugger
21071 is ever caught doing the Wrong Thing for multi-dimensional arrays,
21072 then we'll have to put the DW_AT_ordering attribute back in. (But if
21073 and when we find out that we need to put these in, we will only do so
21074 for multidimensional arrays. */
21075 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
21076 #endif
21078 if (TREE_CODE (type) == VECTOR_TYPE)
21080 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
21081 dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
21082 add_bound_info (subrange_die, DW_AT_lower_bound, size_zero_node, NULL);
21083 add_bound_info (subrange_die, DW_AT_upper_bound,
21084 size_int (TYPE_VECTOR_SUBPARTS (type) - 1), NULL);
21086 else
21087 add_subscript_info (array_die, type, collapse_nested_arrays);
21089 /* Add representation of the type of the elements of this array type and
21090 emit the corresponding DIE if we haven't done it already. */
21091 element_type = TREE_TYPE (type);
21092 if (collapse_nested_arrays)
21093 while (TREE_CODE (element_type) == ARRAY_TYPE)
21095 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
21096 break;
21097 element_type = TREE_TYPE (element_type);
21100 add_type_attribute (array_die, element_type, TYPE_UNQUALIFIED,
21101 TREE_CODE (type) == ARRAY_TYPE
21102 && TYPE_REVERSE_STORAGE_ORDER (type),
21103 context_die);
21105 add_gnat_descriptive_type_attribute (array_die, type, context_die);
21106 if (TYPE_ARTIFICIAL (type))
21107 add_AT_flag (array_die, DW_AT_artificial, 1);
21109 if (get_AT (array_die, DW_AT_name))
21110 add_pubtype (type, array_die);
21112 add_alignment_attribute (array_die, type);
21115 /* This routine generates DIE for array with hidden descriptor, details
21116 are filled into *info by a langhook. */
21118 static void
21119 gen_descr_array_type_die (tree type, struct array_descr_info *info,
21120 dw_die_ref context_die)
21122 const dw_die_ref scope_die = scope_die_for (type, context_die);
21123 const dw_die_ref array_die = new_die (DW_TAG_array_type, scope_die, type);
21124 struct loc_descr_context context = { type, info->base_decl, NULL,
21125 false, false };
21126 enum dwarf_tag subrange_tag = DW_TAG_subrange_type;
21127 int dim;
21129 add_name_attribute (array_die, type_tag (type));
21130 equate_type_number_to_die (type, array_die);
21132 if (info->ndimensions > 1)
21133 switch (info->ordering)
21135 case array_descr_ordering_row_major:
21136 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
21137 break;
21138 case array_descr_ordering_column_major:
21139 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
21140 break;
21141 default:
21142 break;
21145 if (dwarf_version >= 3 || !dwarf_strict)
21147 if (info->data_location)
21148 add_scalar_info (array_die, DW_AT_data_location, info->data_location,
21149 dw_scalar_form_exprloc, &context);
21150 if (info->associated)
21151 add_scalar_info (array_die, DW_AT_associated, info->associated,
21152 dw_scalar_form_constant
21153 | dw_scalar_form_exprloc
21154 | dw_scalar_form_reference, &context);
21155 if (info->allocated)
21156 add_scalar_info (array_die, DW_AT_allocated, info->allocated,
21157 dw_scalar_form_constant
21158 | dw_scalar_form_exprloc
21159 | dw_scalar_form_reference, &context);
21160 if (info->stride)
21162 const enum dwarf_attribute attr
21163 = (info->stride_in_bits) ? DW_AT_bit_stride : DW_AT_byte_stride;
21164 const int forms
21165 = (info->stride_in_bits)
21166 ? dw_scalar_form_constant
21167 : (dw_scalar_form_constant
21168 | dw_scalar_form_exprloc
21169 | dw_scalar_form_reference);
21171 add_scalar_info (array_die, attr, info->stride, forms, &context);
21174 if (dwarf_version >= 5)
21176 if (info->rank)
21178 add_scalar_info (array_die, DW_AT_rank, info->rank,
21179 dw_scalar_form_constant
21180 | dw_scalar_form_exprloc, &context);
21181 subrange_tag = DW_TAG_generic_subrange;
21182 context.placeholder_arg = true;
21186 add_gnat_descriptive_type_attribute (array_die, type, context_die);
21188 for (dim = 0; dim < info->ndimensions; dim++)
21190 dw_die_ref subrange_die = new_die (subrange_tag, array_die, NULL);
21192 if (info->dimen[dim].bounds_type)
21193 add_type_attribute (subrange_die,
21194 info->dimen[dim].bounds_type, TYPE_UNQUALIFIED,
21195 false, context_die);
21196 if (info->dimen[dim].lower_bound)
21197 add_bound_info (subrange_die, DW_AT_lower_bound,
21198 info->dimen[dim].lower_bound, &context);
21199 if (info->dimen[dim].upper_bound)
21200 add_bound_info (subrange_die, DW_AT_upper_bound,
21201 info->dimen[dim].upper_bound, &context);
21202 if ((dwarf_version >= 3 || !dwarf_strict) && info->dimen[dim].stride)
21203 add_scalar_info (subrange_die, DW_AT_byte_stride,
21204 info->dimen[dim].stride,
21205 dw_scalar_form_constant
21206 | dw_scalar_form_exprloc
21207 | dw_scalar_form_reference,
21208 &context);
21211 gen_type_die (info->element_type, context_die);
21212 add_type_attribute (array_die, info->element_type, TYPE_UNQUALIFIED,
21213 TREE_CODE (type) == ARRAY_TYPE
21214 && TYPE_REVERSE_STORAGE_ORDER (type),
21215 context_die);
21217 if (get_AT (array_die, DW_AT_name))
21218 add_pubtype (type, array_die);
21220 add_alignment_attribute (array_die, type);
21223 #if 0
21224 static void
21225 gen_entry_point_die (tree decl, dw_die_ref context_die)
21227 tree origin = decl_ultimate_origin (decl);
21228 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
21230 if (origin != NULL)
21231 add_abstract_origin_attribute (decl_die, origin);
21232 else
21234 add_name_and_src_coords_attributes (decl_die, decl);
21235 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
21236 TYPE_UNQUALIFIED, false, context_die);
21239 if (DECL_ABSTRACT_P (decl))
21240 equate_decl_number_to_die (decl, decl_die);
21241 else
21242 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
21244 #endif
21246 /* Walk through the list of incomplete types again, trying once more to
21247 emit full debugging info for them. */
21249 static void
21250 retry_incomplete_types (void)
21252 set_early_dwarf s;
21253 int i;
21255 for (i = vec_safe_length (incomplete_types) - 1; i >= 0; i--)
21256 if (should_emit_struct_debug ((*incomplete_types)[i], DINFO_USAGE_DIR_USE))
21257 gen_type_die ((*incomplete_types)[i], comp_unit_die ());
21258 vec_safe_truncate (incomplete_types, 0);
21261 /* Determine what tag to use for a record type. */
21263 static enum dwarf_tag
21264 record_type_tag (tree type)
21266 if (! lang_hooks.types.classify_record)
21267 return DW_TAG_structure_type;
21269 switch (lang_hooks.types.classify_record (type))
21271 case RECORD_IS_STRUCT:
21272 return DW_TAG_structure_type;
21274 case RECORD_IS_CLASS:
21275 return DW_TAG_class_type;
21277 case RECORD_IS_INTERFACE:
21278 if (dwarf_version >= 3 || !dwarf_strict)
21279 return DW_TAG_interface_type;
21280 return DW_TAG_structure_type;
21282 default:
21283 gcc_unreachable ();
21287 /* Generate a DIE to represent an enumeration type. Note that these DIEs
21288 include all of the information about the enumeration values also. Each
21289 enumerated type name/value is listed as a child of the enumerated type
21290 DIE. */
21292 static dw_die_ref
21293 gen_enumeration_type_die (tree type, dw_die_ref context_die)
21295 dw_die_ref type_die = lookup_type_die (type);
21297 if (type_die == NULL)
21299 type_die = new_die (DW_TAG_enumeration_type,
21300 scope_die_for (type, context_die), type);
21301 equate_type_number_to_die (type, type_die);
21302 add_name_attribute (type_die, type_tag (type));
21303 if (dwarf_version >= 4 || !dwarf_strict)
21305 if (ENUM_IS_SCOPED (type))
21306 add_AT_flag (type_die, DW_AT_enum_class, 1);
21307 if (ENUM_IS_OPAQUE (type))
21308 add_AT_flag (type_die, DW_AT_declaration, 1);
21310 if (!dwarf_strict)
21311 add_AT_unsigned (type_die, DW_AT_encoding,
21312 TYPE_UNSIGNED (type)
21313 ? DW_ATE_unsigned
21314 : DW_ATE_signed);
21316 else if (! TYPE_SIZE (type))
21317 return type_die;
21318 else
21319 remove_AT (type_die, DW_AT_declaration);
21321 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
21322 given enum type is incomplete, do not generate the DW_AT_byte_size
21323 attribute or the DW_AT_element_list attribute. */
21324 if (TYPE_SIZE (type))
21326 tree link;
21328 TREE_ASM_WRITTEN (type) = 1;
21329 add_byte_size_attribute (type_die, type);
21330 add_alignment_attribute (type_die, type);
21331 if (dwarf_version >= 3 || !dwarf_strict)
21333 tree underlying = lang_hooks.types.enum_underlying_base_type (type);
21334 add_type_attribute (type_die, underlying, TYPE_UNQUALIFIED, false,
21335 context_die);
21337 if (TYPE_STUB_DECL (type) != NULL_TREE)
21339 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
21340 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
21343 /* If the first reference to this type was as the return type of an
21344 inline function, then it may not have a parent. Fix this now. */
21345 if (type_die->die_parent == NULL)
21346 add_child_die (scope_die_for (type, context_die), type_die);
21348 for (link = TYPE_VALUES (type);
21349 link != NULL; link = TREE_CHAIN (link))
21351 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
21352 tree value = TREE_VALUE (link);
21354 add_name_attribute (enum_die,
21355 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
21357 if (TREE_CODE (value) == CONST_DECL)
21358 value = DECL_INITIAL (value);
21360 if (simple_type_size_in_bits (TREE_TYPE (value))
21361 <= HOST_BITS_PER_WIDE_INT || tree_fits_shwi_p (value))
21363 /* For constant forms created by add_AT_unsigned DWARF
21364 consumers (GDB, elfutils, etc.) always zero extend
21365 the value. Only when the actual value is negative
21366 do we need to use add_AT_int to generate a constant
21367 form that can represent negative values. */
21368 HOST_WIDE_INT val = TREE_INT_CST_LOW (value);
21369 if (TYPE_UNSIGNED (TREE_TYPE (value)) || val >= 0)
21370 add_AT_unsigned (enum_die, DW_AT_const_value,
21371 (unsigned HOST_WIDE_INT) val);
21372 else
21373 add_AT_int (enum_die, DW_AT_const_value, val);
21375 else
21376 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
21377 that here. TODO: This should be re-worked to use correct
21378 signed/unsigned double tags for all cases. */
21379 add_AT_wide (enum_die, DW_AT_const_value, wi::to_wide (value));
21382 add_gnat_descriptive_type_attribute (type_die, type, context_die);
21383 if (TYPE_ARTIFICIAL (type))
21384 add_AT_flag (type_die, DW_AT_artificial, 1);
21386 else
21387 add_AT_flag (type_die, DW_AT_declaration, 1);
21389 add_pubtype (type, type_die);
21391 return type_die;
21394 /* Generate a DIE to represent either a real live formal parameter decl or to
21395 represent just the type of some formal parameter position in some function
21396 type.
21398 Note that this routine is a bit unusual because its argument may be a
21399 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
21400 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
21401 node. If it's the former then this function is being called to output a
21402 DIE to represent a formal parameter object (or some inlining thereof). If
21403 it's the latter, then this function is only being called to output a
21404 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
21405 argument type of some subprogram type.
21406 If EMIT_NAME_P is true, name and source coordinate attributes
21407 are emitted. */
21409 static dw_die_ref
21410 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
21411 dw_die_ref context_die)
21413 tree node_or_origin = node ? node : origin;
21414 tree ultimate_origin;
21415 dw_die_ref parm_die = NULL;
21417 if (DECL_P (node_or_origin))
21419 parm_die = lookup_decl_die (node);
21421 /* If the contexts differ, we may not be talking about the same
21422 thing.
21423 ??? When in LTO the DIE parent is the "abstract" copy and the
21424 context_die is the specification "copy". But this whole block
21425 should eventually be no longer needed. */
21426 if (parm_die && parm_die->die_parent != context_die && !in_lto_p)
21428 if (!DECL_ABSTRACT_P (node))
21430 /* This can happen when creating an inlined instance, in
21431 which case we need to create a new DIE that will get
21432 annotated with DW_AT_abstract_origin. */
21433 parm_die = NULL;
21435 else
21436 gcc_unreachable ();
21439 if (parm_die && parm_die->die_parent == NULL)
21441 /* Check that parm_die already has the right attributes that
21442 we would have added below. If any attributes are
21443 missing, fall through to add them. */
21444 if (! DECL_ABSTRACT_P (node_or_origin)
21445 && !get_AT (parm_die, DW_AT_location)
21446 && !get_AT (parm_die, DW_AT_const_value))
21447 /* We are missing location info, and are about to add it. */
21449 else
21451 add_child_die (context_die, parm_die);
21452 return parm_die;
21457 /* If we have a previously generated DIE, use it, unless this is an
21458 concrete instance (origin != NULL), in which case we need a new
21459 DIE with a corresponding DW_AT_abstract_origin. */
21460 bool reusing_die;
21461 if (parm_die && origin == NULL)
21462 reusing_die = true;
21463 else
21465 parm_die = new_die (DW_TAG_formal_parameter, context_die, node);
21466 reusing_die = false;
21469 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
21471 case tcc_declaration:
21472 ultimate_origin = decl_ultimate_origin (node_or_origin);
21473 if (node || ultimate_origin)
21474 origin = ultimate_origin;
21476 if (reusing_die)
21477 goto add_location;
21479 if (origin != NULL)
21480 add_abstract_origin_attribute (parm_die, origin);
21481 else if (emit_name_p)
21482 add_name_and_src_coords_attributes (parm_die, node);
21483 if (origin == NULL
21484 || (! DECL_ABSTRACT_P (node_or_origin)
21485 && variably_modified_type_p (TREE_TYPE (node_or_origin),
21486 decl_function_context
21487 (node_or_origin))))
21489 tree type = TREE_TYPE (node_or_origin);
21490 if (decl_by_reference_p (node_or_origin))
21491 add_type_attribute (parm_die, TREE_TYPE (type),
21492 TYPE_UNQUALIFIED,
21493 false, context_die);
21494 else
21495 add_type_attribute (parm_die, type,
21496 decl_quals (node_or_origin),
21497 false, context_die);
21499 if (origin == NULL && DECL_ARTIFICIAL (node))
21500 add_AT_flag (parm_die, DW_AT_artificial, 1);
21501 add_location:
21502 if (node && node != origin)
21503 equate_decl_number_to_die (node, parm_die);
21504 if (! DECL_ABSTRACT_P (node_or_origin))
21505 add_location_or_const_value_attribute (parm_die, node_or_origin,
21506 node == NULL);
21508 break;
21510 case tcc_type:
21511 /* We were called with some kind of a ..._TYPE node. */
21512 add_type_attribute (parm_die, node_or_origin, TYPE_UNQUALIFIED, false,
21513 context_die);
21514 break;
21516 default:
21517 gcc_unreachable ();
21520 return parm_die;
21523 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
21524 children DW_TAG_formal_parameter DIEs representing the arguments of the
21525 parameter pack.
21527 PARM_PACK must be a function parameter pack.
21528 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
21529 must point to the subsequent arguments of the function PACK_ARG belongs to.
21530 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
21531 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
21532 following the last one for which a DIE was generated. */
21534 static dw_die_ref
21535 gen_formal_parameter_pack_die (tree parm_pack,
21536 tree pack_arg,
21537 dw_die_ref subr_die,
21538 tree *next_arg)
21540 tree arg;
21541 dw_die_ref parm_pack_die;
21543 gcc_assert (parm_pack
21544 && lang_hooks.function_parameter_pack_p (parm_pack)
21545 && subr_die);
21547 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
21548 add_src_coords_attributes (parm_pack_die, parm_pack);
21550 for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
21552 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
21553 parm_pack))
21554 break;
21555 gen_formal_parameter_die (arg, NULL,
21556 false /* Don't emit name attribute. */,
21557 parm_pack_die);
21559 if (next_arg)
21560 *next_arg = arg;
21561 return parm_pack_die;
21564 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
21565 at the end of an (ANSI prototyped) formal parameters list. */
21567 static void
21568 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
21570 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
21573 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
21574 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
21575 parameters as specified in some function type specification (except for
21576 those which appear as part of a function *definition*). */
21578 static void
21579 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
21581 tree link;
21582 tree formal_type = NULL;
21583 tree first_parm_type;
21584 tree arg;
21586 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
21588 arg = DECL_ARGUMENTS (function_or_method_type);
21589 function_or_method_type = TREE_TYPE (function_or_method_type);
21591 else
21592 arg = NULL_TREE;
21594 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
21596 /* Make our first pass over the list of formal parameter types and output a
21597 DW_TAG_formal_parameter DIE for each one. */
21598 for (link = first_parm_type; link; )
21600 dw_die_ref parm_die;
21602 formal_type = TREE_VALUE (link);
21603 if (formal_type == void_type_node)
21604 break;
21606 /* Output a (nameless) DIE to represent the formal parameter itself. */
21607 if (!POINTER_BOUNDS_TYPE_P (formal_type))
21609 parm_die = gen_formal_parameter_die (formal_type, NULL,
21610 true /* Emit name attribute. */,
21611 context_die);
21612 if (TREE_CODE (function_or_method_type) == METHOD_TYPE
21613 && link == first_parm_type)
21615 add_AT_flag (parm_die, DW_AT_artificial, 1);
21616 if (dwarf_version >= 3 || !dwarf_strict)
21617 add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
21619 else if (arg && DECL_ARTIFICIAL (arg))
21620 add_AT_flag (parm_die, DW_AT_artificial, 1);
21623 link = TREE_CHAIN (link);
21624 if (arg)
21625 arg = DECL_CHAIN (arg);
21628 /* If this function type has an ellipsis, add a
21629 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
21630 if (formal_type != void_type_node)
21631 gen_unspecified_parameters_die (function_or_method_type, context_die);
21633 /* Make our second (and final) pass over the list of formal parameter types
21634 and output DIEs to represent those types (as necessary). */
21635 for (link = TYPE_ARG_TYPES (function_or_method_type);
21636 link && TREE_VALUE (link);
21637 link = TREE_CHAIN (link))
21638 gen_type_die (TREE_VALUE (link), context_die);
21641 /* We want to generate the DIE for TYPE so that we can generate the
21642 die for MEMBER, which has been defined; we will need to refer back
21643 to the member declaration nested within TYPE. If we're trying to
21644 generate minimal debug info for TYPE, processing TYPE won't do the
21645 trick; we need to attach the member declaration by hand. */
21647 static void
21648 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
21650 gen_type_die (type, context_die);
21652 /* If we're trying to avoid duplicate debug info, we may not have
21653 emitted the member decl for this function. Emit it now. */
21654 if (TYPE_STUB_DECL (type)
21655 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
21656 && ! lookup_decl_die (member))
21658 dw_die_ref type_die;
21659 gcc_assert (!decl_ultimate_origin (member));
21661 push_decl_scope (type);
21662 type_die = lookup_type_die_strip_naming_typedef (type);
21663 if (TREE_CODE (member) == FUNCTION_DECL)
21664 gen_subprogram_die (member, type_die);
21665 else if (TREE_CODE (member) == FIELD_DECL)
21667 /* Ignore the nameless fields that are used to skip bits but handle
21668 C++ anonymous unions and structs. */
21669 if (DECL_NAME (member) != NULL_TREE
21670 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
21671 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
21673 struct vlr_context vlr_ctx = {
21674 DECL_CONTEXT (member), /* struct_type */
21675 NULL_TREE /* variant_part_offset */
21677 gen_type_die (member_declared_type (member), type_die);
21678 gen_field_die (member, &vlr_ctx, type_die);
21681 else
21682 gen_variable_die (member, NULL_TREE, type_die);
21684 pop_decl_scope ();
21688 /* Forward declare these functions, because they are mutually recursive
21689 with their set_block_* pairing functions. */
21690 static void set_decl_origin_self (tree);
21692 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
21693 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
21694 that it points to the node itself, thus indicating that the node is its
21695 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
21696 the given node is NULL, recursively descend the decl/block tree which
21697 it is the root of, and for each other ..._DECL or BLOCK node contained
21698 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
21699 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
21700 values to point to themselves. */
21702 static void
21703 set_block_origin_self (tree stmt)
21705 if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
21707 BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;
21710 tree local_decl;
21712 for (local_decl = BLOCK_VARS (stmt);
21713 local_decl != NULL_TREE;
21714 local_decl = DECL_CHAIN (local_decl))
21715 /* Do not recurse on nested functions since the inlining status
21716 of parent and child can be different as per the DWARF spec. */
21717 if (TREE_CODE (local_decl) != FUNCTION_DECL
21718 && !DECL_EXTERNAL (local_decl))
21719 set_decl_origin_self (local_decl);
21723 tree subblock;
21725 for (subblock = BLOCK_SUBBLOCKS (stmt);
21726 subblock != NULL_TREE;
21727 subblock = BLOCK_CHAIN (subblock))
21728 set_block_origin_self (subblock); /* Recurse. */
21733 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
21734 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
21735 node to so that it points to the node itself, thus indicating that the
21736 node represents its own (abstract) origin. Additionally, if the
21737 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
21738 the decl/block tree of which the given node is the root of, and for
21739 each other ..._DECL or BLOCK node contained therein whose
21740 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
21741 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
21742 point to themselves. */
21744 static void
21745 set_decl_origin_self (tree decl)
21747 if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
21749 DECL_ABSTRACT_ORIGIN (decl) = decl;
21750 if (TREE_CODE (decl) == FUNCTION_DECL)
21752 tree arg;
21754 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
21755 DECL_ABSTRACT_ORIGIN (arg) = arg;
21756 if (DECL_INITIAL (decl) != NULL_TREE
21757 && DECL_INITIAL (decl) != error_mark_node)
21758 set_block_origin_self (DECL_INITIAL (decl));
21763 /* Mark the early DIE for DECL as the abstract instance. */
21765 static void
21766 dwarf2out_abstract_function (tree decl)
21768 dw_die_ref old_die;
21770 /* Make sure we have the actual abstract inline, not a clone. */
21771 decl = DECL_ORIGIN (decl);
21773 if (DECL_IGNORED_P (decl))
21774 return;
21776 old_die = lookup_decl_die (decl);
21777 /* With early debug we always have an old DIE unless we are in LTO
21778 and the user did not compile but only link with debug. */
21779 if (in_lto_p && ! old_die)
21780 return;
21781 gcc_assert (old_die != NULL);
21782 if (get_AT (old_die, DW_AT_inline)
21783 || get_AT (old_die, DW_AT_abstract_origin))
21784 /* We've already generated the abstract instance. */
21785 return;
21787 /* Go ahead and put DW_AT_inline on the DIE. */
21788 if (DECL_DECLARED_INLINE_P (decl))
21790 if (cgraph_function_possibly_inlined_p (decl))
21791 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_declared_inlined);
21792 else
21793 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_declared_not_inlined);
21795 else
21797 if (cgraph_function_possibly_inlined_p (decl))
21798 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_inlined);
21799 else
21800 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_not_inlined);
21803 if (DECL_DECLARED_INLINE_P (decl)
21804 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
21805 add_AT_flag (old_die, DW_AT_artificial, 1);
21807 set_decl_origin_self (decl);
21810 /* Helper function of premark_used_types() which gets called through
21811 htab_traverse.
21813 Marks the DIE of a given type in *SLOT as perennial, so it never gets
21814 marked as unused by prune_unused_types. */
21816 bool
21817 premark_used_types_helper (tree const &type, void *)
21819 dw_die_ref die;
21821 die = lookup_type_die (type);
21822 if (die != NULL)
21823 die->die_perennial_p = 1;
21824 return true;
21827 /* Helper function of premark_types_used_by_global_vars which gets called
21828 through htab_traverse.
21830 Marks the DIE of a given type in *SLOT as perennial, so it never gets
21831 marked as unused by prune_unused_types. The DIE of the type is marked
21832 only if the global variable using the type will actually be emitted. */
21835 premark_types_used_by_global_vars_helper (types_used_by_vars_entry **slot,
21836 void *)
21838 struct types_used_by_vars_entry *entry;
21839 dw_die_ref die;
21841 entry = (struct types_used_by_vars_entry *) *slot;
21842 gcc_assert (entry->type != NULL
21843 && entry->var_decl != NULL);
21844 die = lookup_type_die (entry->type);
21845 if (die)
21847 /* Ask cgraph if the global variable really is to be emitted.
21848 If yes, then we'll keep the DIE of ENTRY->TYPE. */
21849 varpool_node *node = varpool_node::get (entry->var_decl);
21850 if (node && node->definition)
21852 die->die_perennial_p = 1;
21853 /* Keep the parent DIEs as well. */
21854 while ((die = die->die_parent) && die->die_perennial_p == 0)
21855 die->die_perennial_p = 1;
21858 return 1;
21861 /* Mark all members of used_types_hash as perennial. */
21863 static void
21864 premark_used_types (struct function *fun)
21866 if (fun && fun->used_types_hash)
21867 fun->used_types_hash->traverse<void *, premark_used_types_helper> (NULL);
21870 /* Mark all members of types_used_by_vars_entry as perennial. */
21872 static void
21873 premark_types_used_by_global_vars (void)
21875 if (types_used_by_vars_hash)
21876 types_used_by_vars_hash
21877 ->traverse<void *, premark_types_used_by_global_vars_helper> (NULL);
21880 /* Generate a DW_TAG_call_site DIE in function DECL under SUBR_DIE
21881 for CA_LOC call arg loc node. */
21883 static dw_die_ref
21884 gen_call_site_die (tree decl, dw_die_ref subr_die,
21885 struct call_arg_loc_node *ca_loc)
21887 dw_die_ref stmt_die = NULL, die;
21888 tree block = ca_loc->block;
21890 while (block
21891 && block != DECL_INITIAL (decl)
21892 && TREE_CODE (block) == BLOCK)
21894 stmt_die = BLOCK_DIE (block);
21895 if (stmt_die)
21896 break;
21897 block = BLOCK_SUPERCONTEXT (block);
21899 if (stmt_die == NULL)
21900 stmt_die = subr_die;
21901 die = new_die (dwarf_TAG (DW_TAG_call_site), stmt_die, NULL_TREE);
21902 add_AT_lbl_id (die, dwarf_AT (DW_AT_call_return_pc), ca_loc->label);
21903 if (ca_loc->tail_call_p)
21904 add_AT_flag (die, dwarf_AT (DW_AT_call_tail_call), 1);
21905 if (ca_loc->symbol_ref)
21907 dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
21908 if (tdie)
21909 add_AT_die_ref (die, dwarf_AT (DW_AT_call_origin), tdie);
21910 else
21911 add_AT_addr (die, dwarf_AT (DW_AT_call_origin), ca_loc->symbol_ref,
21912 false);
21914 return die;
21917 /* Generate a DIE to represent a declared function (either file-scope or
21918 block-local). */
21920 static void
21921 gen_subprogram_die (tree decl, dw_die_ref context_die)
21923 tree origin = decl_ultimate_origin (decl);
21924 dw_die_ref subr_die;
21925 dw_die_ref old_die = lookup_decl_die (decl);
21927 /* This function gets called multiple times for different stages of
21928 the debug process. For example, for func() in this code:
21930 namespace S
21932 void func() { ... }
21935 ...we get called 4 times. Twice in early debug and twice in
21936 late debug:
21938 Early debug
21939 -----------
21941 1. Once while generating func() within the namespace. This is
21942 the declaration. The declaration bit below is set, as the
21943 context is the namespace.
21945 A new DIE will be generated with DW_AT_declaration set.
21947 2. Once for func() itself. This is the specification. The
21948 declaration bit below is clear as the context is the CU.
21950 We will use the cached DIE from (1) to create a new DIE with
21951 DW_AT_specification pointing to the declaration in (1).
21953 Late debug via rest_of_handle_final()
21954 -------------------------------------
21956 3. Once generating func() within the namespace. This is also the
21957 declaration, as in (1), but this time we will early exit below
21958 as we have a cached DIE and a declaration needs no additional
21959 annotations (no locations), as the source declaration line
21960 info is enough.
21962 4. Once for func() itself. As in (2), this is the specification,
21963 but this time we will re-use the cached DIE, and just annotate
21964 it with the location information that should now be available.
21966 For something without namespaces, but with abstract instances, we
21967 are also called a multiple times:
21969 class Base
21971 public:
21972 Base (); // constructor declaration (1)
21975 Base::Base () { } // constructor specification (2)
21977 Early debug
21978 -----------
21980 1. Once for the Base() constructor by virtue of it being a
21981 member of the Base class. This is done via
21982 rest_of_type_compilation.
21984 This is a declaration, so a new DIE will be created with
21985 DW_AT_declaration.
21987 2. Once for the Base() constructor definition, but this time
21988 while generating the abstract instance of the base
21989 constructor (__base_ctor) which is being generated via early
21990 debug of reachable functions.
21992 Even though we have a cached version of the declaration (1),
21993 we will create a DW_AT_specification of the declaration DIE
21994 in (1).
21996 3. Once for the __base_ctor itself, but this time, we generate
21997 an DW_AT_abstract_origin version of the DW_AT_specification in
21998 (2).
22000 Late debug via rest_of_handle_final
22001 -----------------------------------
22003 4. One final time for the __base_ctor (which will have a cached
22004 DIE with DW_AT_abstract_origin created in (3). This time,
22005 we will just annotate the location information now
22006 available.
22008 int declaration = (current_function_decl != decl
22009 || class_or_namespace_scope_p (context_die));
22011 /* Now that the C++ front end lazily declares artificial member fns, we
22012 might need to retrofit the declaration into its class. */
22013 if (!declaration && !origin && !old_die
22014 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
22015 && !class_or_namespace_scope_p (context_die)
22016 && debug_info_level > DINFO_LEVEL_TERSE)
22017 old_die = force_decl_die (decl);
22019 /* A concrete instance, tag a new DIE with DW_AT_abstract_origin. */
22020 if (origin != NULL)
22022 gcc_assert (!declaration || local_scope_p (context_die));
22024 /* Fixup die_parent for the abstract instance of a nested
22025 inline function. */
22026 if (old_die && old_die->die_parent == NULL)
22027 add_child_die (context_die, old_die);
22029 if (old_die && get_AT_ref (old_die, DW_AT_abstract_origin))
22031 /* If we have a DW_AT_abstract_origin we have a working
22032 cached version. */
22033 subr_die = old_die;
22035 else
22037 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
22038 add_abstract_origin_attribute (subr_die, origin);
22039 /* This is where the actual code for a cloned function is.
22040 Let's emit linkage name attribute for it. This helps
22041 debuggers to e.g, set breakpoints into
22042 constructors/destructors when the user asks "break
22043 K::K". */
22044 add_linkage_name (subr_die, decl);
22047 /* A cached copy, possibly from early dwarf generation. Reuse as
22048 much as possible. */
22049 else if (old_die)
22051 /* A declaration that has been previously dumped needs no
22052 additional information. */
22053 if (declaration)
22054 return;
22056 if (!get_AT_flag (old_die, DW_AT_declaration)
22057 /* We can have a normal definition following an inline one in the
22058 case of redefinition of GNU C extern inlines.
22059 It seems reasonable to use AT_specification in this case. */
22060 && !get_AT (old_die, DW_AT_inline))
22062 /* Detect and ignore this case, where we are trying to output
22063 something we have already output. */
22064 if (get_AT (old_die, DW_AT_low_pc)
22065 || get_AT (old_die, DW_AT_ranges))
22066 return;
22068 /* If we have no location information, this must be a
22069 partially generated DIE from early dwarf generation.
22070 Fall through and generate it. */
22073 /* If the definition comes from the same place as the declaration,
22074 maybe use the old DIE. We always want the DIE for this function
22075 that has the *_pc attributes to be under comp_unit_die so the
22076 debugger can find it. We also need to do this for abstract
22077 instances of inlines, since the spec requires the out-of-line copy
22078 to have the same parent. For local class methods, this doesn't
22079 apply; we just use the old DIE. */
22080 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
22081 struct dwarf_file_data * file_index = lookup_filename (s.file);
22082 if ((is_cu_die (old_die->die_parent)
22083 /* This condition fixes the inconsistency/ICE with the
22084 following Fortran test (or some derivative thereof) while
22085 building libgfortran:
22087 module some_m
22088 contains
22089 logical function funky (FLAG)
22090 funky = .true.
22091 end function
22092 end module
22094 || (old_die->die_parent
22095 && old_die->die_parent->die_tag == DW_TAG_module)
22096 || context_die == NULL)
22097 && (DECL_ARTIFICIAL (decl)
22098 /* The location attributes may be in the abstract origin
22099 which in the case of LTO might be not available to
22100 look at. */
22101 || get_AT (old_die, DW_AT_abstract_origin)
22102 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
22103 && (get_AT_unsigned (old_die, DW_AT_decl_line)
22104 == (unsigned) s.line)
22105 && (!debug_column_info
22106 || s.column == 0
22107 || (get_AT_unsigned (old_die, DW_AT_decl_column)
22108 == (unsigned) s.column)))))
22110 subr_die = old_die;
22112 /* Clear out the declaration attribute, but leave the
22113 parameters so they can be augmented with location
22114 information later. Unless this was a declaration, in
22115 which case, wipe out the nameless parameters and recreate
22116 them further down. */
22117 if (remove_AT (subr_die, DW_AT_declaration))
22120 remove_AT (subr_die, DW_AT_object_pointer);
22121 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
22124 /* Make a specification pointing to the previously built
22125 declaration. */
22126 else
22128 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
22129 add_AT_specification (subr_die, old_die);
22130 add_pubname (decl, subr_die);
22131 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
22132 add_AT_file (subr_die, DW_AT_decl_file, file_index);
22133 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
22134 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
22135 if (debug_column_info
22136 && s.column
22137 && (get_AT_unsigned (old_die, DW_AT_decl_column)
22138 != (unsigned) s.column))
22139 add_AT_unsigned (subr_die, DW_AT_decl_column, s.column);
22141 /* If the prototype had an 'auto' or 'decltype(auto)' return type,
22142 emit the real type on the definition die. */
22143 if (is_cxx () && debug_info_level > DINFO_LEVEL_TERSE)
22145 dw_die_ref die = get_AT_ref (old_die, DW_AT_type);
22146 if (die == auto_die || die == decltype_auto_die)
22147 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
22148 TYPE_UNQUALIFIED, false, context_die);
22151 /* When we process the method declaration, we haven't seen
22152 the out-of-class defaulted definition yet, so we have to
22153 recheck now. */
22154 if ((dwarf_version >= 5 || ! dwarf_strict)
22155 && !get_AT (subr_die, DW_AT_defaulted))
22157 int defaulted
22158 = lang_hooks.decls.decl_dwarf_attribute (decl,
22159 DW_AT_defaulted);
22160 if (defaulted != -1)
22162 /* Other values must have been handled before. */
22163 gcc_assert (defaulted == DW_DEFAULTED_out_of_class);
22164 add_AT_unsigned (subr_die, DW_AT_defaulted, defaulted);
22169 /* Create a fresh DIE for anything else. */
22170 else
22172 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
22174 if (TREE_PUBLIC (decl))
22175 add_AT_flag (subr_die, DW_AT_external, 1);
22177 add_name_and_src_coords_attributes (subr_die, decl);
22178 add_pubname (decl, subr_die);
22179 if (debug_info_level > DINFO_LEVEL_TERSE)
22181 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
22182 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
22183 TYPE_UNQUALIFIED, false, context_die);
22186 add_pure_or_virtual_attribute (subr_die, decl);
22187 if (DECL_ARTIFICIAL (decl))
22188 add_AT_flag (subr_die, DW_AT_artificial, 1);
22190 if (TREE_THIS_VOLATILE (decl) && (dwarf_version >= 5 || !dwarf_strict))
22191 add_AT_flag (subr_die, DW_AT_noreturn, 1);
22193 add_alignment_attribute (subr_die, decl);
22195 add_accessibility_attribute (subr_die, decl);
22198 /* Unless we have an existing non-declaration DIE, equate the new
22199 DIE. */
22200 if (!old_die || is_declaration_die (old_die))
22201 equate_decl_number_to_die (decl, subr_die);
22203 if (declaration)
22205 if (!old_die || !get_AT (old_die, DW_AT_inline))
22207 add_AT_flag (subr_die, DW_AT_declaration, 1);
22209 /* If this is an explicit function declaration then generate
22210 a DW_AT_explicit attribute. */
22211 if ((dwarf_version >= 3 || !dwarf_strict)
22212 && lang_hooks.decls.decl_dwarf_attribute (decl,
22213 DW_AT_explicit) == 1)
22214 add_AT_flag (subr_die, DW_AT_explicit, 1);
22216 /* If this is a C++11 deleted special function member then generate
22217 a DW_AT_deleted attribute. */
22218 if ((dwarf_version >= 5 || !dwarf_strict)
22219 && lang_hooks.decls.decl_dwarf_attribute (decl,
22220 DW_AT_deleted) == 1)
22221 add_AT_flag (subr_die, DW_AT_deleted, 1);
22223 /* If this is a C++11 defaulted special function member then
22224 generate a DW_AT_defaulted attribute. */
22225 if (dwarf_version >= 5 || !dwarf_strict)
22227 int defaulted
22228 = lang_hooks.decls.decl_dwarf_attribute (decl,
22229 DW_AT_defaulted);
22230 if (defaulted != -1)
22231 add_AT_unsigned (subr_die, DW_AT_defaulted, defaulted);
22234 /* If this is a C++11 non-static member function with & ref-qualifier
22235 then generate a DW_AT_reference attribute. */
22236 if ((dwarf_version >= 5 || !dwarf_strict)
22237 && lang_hooks.decls.decl_dwarf_attribute (decl,
22238 DW_AT_reference) == 1)
22239 add_AT_flag (subr_die, DW_AT_reference, 1);
22241 /* If this is a C++11 non-static member function with &&
22242 ref-qualifier then generate a DW_AT_reference attribute. */
22243 if ((dwarf_version >= 5 || !dwarf_strict)
22244 && lang_hooks.decls.decl_dwarf_attribute (decl,
22245 DW_AT_rvalue_reference)
22246 == 1)
22247 add_AT_flag (subr_die, DW_AT_rvalue_reference, 1);
22250 /* For non DECL_EXTERNALs, if range information is available, fill
22251 the DIE with it. */
22252 else if (!DECL_EXTERNAL (decl) && !early_dwarf)
22254 HOST_WIDE_INT cfa_fb_offset;
22256 struct function *fun = DECL_STRUCT_FUNCTION (decl);
22258 if (!crtl->has_bb_partition)
22260 dw_fde_ref fde = fun->fde;
22261 if (fde->dw_fde_begin)
22263 /* We have already generated the labels. */
22264 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
22265 fde->dw_fde_end, false);
22267 else
22269 /* Create start/end labels and add the range. */
22270 char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
22271 char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
22272 ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
22273 current_function_funcdef_no);
22274 ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
22275 current_function_funcdef_no);
22276 add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
22277 false);
22280 #if VMS_DEBUGGING_INFO
22281 /* HP OpenVMS Industry Standard 64: DWARF Extensions
22282 Section 2.3 Prologue and Epilogue Attributes:
22283 When a breakpoint is set on entry to a function, it is generally
22284 desirable for execution to be suspended, not on the very first
22285 instruction of the function, but rather at a point after the
22286 function's frame has been set up, after any language defined local
22287 declaration processing has been completed, and before execution of
22288 the first statement of the function begins. Debuggers generally
22289 cannot properly determine where this point is. Similarly for a
22290 breakpoint set on exit from a function. The prologue and epilogue
22291 attributes allow a compiler to communicate the location(s) to use. */
22294 if (fde->dw_fde_vms_end_prologue)
22295 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
22296 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
22298 if (fde->dw_fde_vms_begin_epilogue)
22299 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
22300 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
22302 #endif
22305 else
22307 /* Generate pubnames entries for the split function code ranges. */
22308 dw_fde_ref fde = fun->fde;
22310 if (fde->dw_fde_second_begin)
22312 if (dwarf_version >= 3 || !dwarf_strict)
22314 /* We should use ranges for non-contiguous code section
22315 addresses. Use the actual code range for the initial
22316 section, since the HOT/COLD labels might precede an
22317 alignment offset. */
22318 bool range_list_added = false;
22319 add_ranges_by_labels (subr_die, fde->dw_fde_begin,
22320 fde->dw_fde_end, &range_list_added,
22321 false);
22322 add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
22323 fde->dw_fde_second_end,
22324 &range_list_added, false);
22325 if (range_list_added)
22326 add_ranges (NULL);
22328 else
22330 /* There is no real support in DW2 for this .. so we make
22331 a work-around. First, emit the pub name for the segment
22332 containing the function label. Then make and emit a
22333 simplified subprogram DIE for the second segment with the
22334 name pre-fixed by __hot/cold_sect_of_. We use the same
22335 linkage name for the second die so that gdb will find both
22336 sections when given "b foo". */
22337 const char *name = NULL;
22338 tree decl_name = DECL_NAME (decl);
22339 dw_die_ref seg_die;
22341 /* Do the 'primary' section. */
22342 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
22343 fde->dw_fde_end, false);
22345 /* Build a minimal DIE for the secondary section. */
22346 seg_die = new_die (DW_TAG_subprogram,
22347 subr_die->die_parent, decl);
22349 if (TREE_PUBLIC (decl))
22350 add_AT_flag (seg_die, DW_AT_external, 1);
22352 if (decl_name != NULL
22353 && IDENTIFIER_POINTER (decl_name) != NULL)
22355 name = dwarf2_name (decl, 1);
22356 if (! DECL_ARTIFICIAL (decl))
22357 add_src_coords_attributes (seg_die, decl);
22359 add_linkage_name (seg_die, decl);
22361 gcc_assert (name != NULL);
22362 add_pure_or_virtual_attribute (seg_die, decl);
22363 if (DECL_ARTIFICIAL (decl))
22364 add_AT_flag (seg_die, DW_AT_artificial, 1);
22366 name = concat ("__second_sect_of_", name, NULL);
22367 add_AT_low_high_pc (seg_die, fde->dw_fde_second_begin,
22368 fde->dw_fde_second_end, false);
22369 add_name_attribute (seg_die, name);
22370 if (want_pubnames ())
22371 add_pubname_string (name, seg_die);
22374 else
22375 add_AT_low_high_pc (subr_die, fde->dw_fde_begin, fde->dw_fde_end,
22376 false);
22379 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
22381 /* We define the "frame base" as the function's CFA. This is more
22382 convenient for several reasons: (1) It's stable across the prologue
22383 and epilogue, which makes it better than just a frame pointer,
22384 (2) With dwarf3, there exists a one-byte encoding that allows us
22385 to reference the .debug_frame data by proxy, but failing that,
22386 (3) We can at least reuse the code inspection and interpretation
22387 code that determines the CFA position at various points in the
22388 function. */
22389 if (dwarf_version >= 3 && targetm.debug_unwind_info () == UI_DWARF2)
22391 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
22392 add_AT_loc (subr_die, DW_AT_frame_base, op);
22394 else
22396 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
22397 if (list->dw_loc_next)
22398 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
22399 else
22400 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
22403 /* Compute a displacement from the "steady-state frame pointer" to
22404 the CFA. The former is what all stack slots and argument slots
22405 will reference in the rtl; the latter is what we've told the
22406 debugger about. We'll need to adjust all frame_base references
22407 by this displacement. */
22408 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
22410 if (fun->static_chain_decl)
22412 /* DWARF requires here a location expression that computes the
22413 address of the enclosing subprogram's frame base. The machinery
22414 in tree-nested.c is supposed to store this specific address in the
22415 last field of the FRAME record. */
22416 const tree frame_type
22417 = TREE_TYPE (TREE_TYPE (fun->static_chain_decl));
22418 const tree fb_decl = tree_last (TYPE_FIELDS (frame_type));
22420 tree fb_expr
22421 = build1 (INDIRECT_REF, frame_type, fun->static_chain_decl);
22422 fb_expr = build3 (COMPONENT_REF, TREE_TYPE (fb_decl),
22423 fb_expr, fb_decl, NULL_TREE);
22425 add_AT_location_description (subr_die, DW_AT_static_link,
22426 loc_list_from_tree (fb_expr, 0, NULL));
22429 resolve_variable_values ();
22432 /* Generate child dies for template paramaters. */
22433 if (early_dwarf && debug_info_level > DINFO_LEVEL_TERSE)
22434 gen_generic_params_dies (decl);
22436 /* Now output descriptions of the arguments for this function. This gets
22437 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
22438 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
22439 `...' at the end of the formal parameter list. In order to find out if
22440 there was a trailing ellipsis or not, we must instead look at the type
22441 associated with the FUNCTION_DECL. This will be a node of type
22442 FUNCTION_TYPE. If the chain of type nodes hanging off of this
22443 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
22444 an ellipsis at the end. */
22446 /* In the case where we are describing a mere function declaration, all we
22447 need to do here (and all we *can* do here) is to describe the *types* of
22448 its formal parameters. */
22449 if (debug_info_level <= DINFO_LEVEL_TERSE)
22451 else if (declaration)
22452 gen_formal_types_die (decl, subr_die);
22453 else
22455 /* Generate DIEs to represent all known formal parameters. */
22456 tree parm = DECL_ARGUMENTS (decl);
22457 tree generic_decl = early_dwarf
22458 ? lang_hooks.decls.get_generic_function_decl (decl) : NULL;
22459 tree generic_decl_parm = generic_decl
22460 ? DECL_ARGUMENTS (generic_decl)
22461 : NULL;
22463 /* Now we want to walk the list of parameters of the function and
22464 emit their relevant DIEs.
22466 We consider the case of DECL being an instance of a generic function
22467 as well as it being a normal function.
22469 If DECL is an instance of a generic function we walk the
22470 parameters of the generic function declaration _and_ the parameters of
22471 DECL itself. This is useful because we want to emit specific DIEs for
22472 function parameter packs and those are declared as part of the
22473 generic function declaration. In that particular case,
22474 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
22475 That DIE has children DIEs representing the set of arguments
22476 of the pack. Note that the set of pack arguments can be empty.
22477 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
22478 children DIE.
22480 Otherwise, we just consider the parameters of DECL. */
22481 while (generic_decl_parm || parm)
22483 if (generic_decl_parm
22484 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
22485 gen_formal_parameter_pack_die (generic_decl_parm,
22486 parm, subr_die,
22487 &parm);
22488 else if (parm && !POINTER_BOUNDS_P (parm))
22490 dw_die_ref parm_die = gen_decl_die (parm, NULL, NULL, subr_die);
22492 if (early_dwarf
22493 && parm == DECL_ARGUMENTS (decl)
22494 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
22495 && parm_die
22496 && (dwarf_version >= 3 || !dwarf_strict))
22497 add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);
22499 parm = DECL_CHAIN (parm);
22501 else if (parm)
22502 parm = DECL_CHAIN (parm);
22504 if (generic_decl_parm)
22505 generic_decl_parm = DECL_CHAIN (generic_decl_parm);
22508 /* Decide whether we need an unspecified_parameters DIE at the end.
22509 There are 2 more cases to do this for: 1) the ansi ... declaration -
22510 this is detectable when the end of the arg list is not a
22511 void_type_node 2) an unprototyped function declaration (not a
22512 definition). This just means that we have no info about the
22513 parameters at all. */
22514 if (early_dwarf)
22516 if (prototype_p (TREE_TYPE (decl)))
22518 /* This is the prototyped case, check for.... */
22519 if (stdarg_p (TREE_TYPE (decl)))
22520 gen_unspecified_parameters_die (decl, subr_die);
22522 else if (DECL_INITIAL (decl) == NULL_TREE)
22523 gen_unspecified_parameters_die (decl, subr_die);
22527 if (subr_die != old_die)
22528 /* Add the calling convention attribute if requested. */
22529 add_calling_convention_attribute (subr_die, decl);
22531 /* Output Dwarf info for all of the stuff within the body of the function
22532 (if it has one - it may be just a declaration).
22534 OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
22535 a function. This BLOCK actually represents the outermost binding contour
22536 for the function, i.e. the contour in which the function's formal
22537 parameters and labels get declared. Curiously, it appears that the front
22538 end doesn't actually put the PARM_DECL nodes for the current function onto
22539 the BLOCK_VARS list for this outer scope, but are strung off of the
22540 DECL_ARGUMENTS list for the function instead.
22542 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
22543 the LABEL_DECL nodes for the function however, and we output DWARF info
22544 for those in decls_for_scope. Just within the `outer_scope' there will be
22545 a BLOCK node representing the function's outermost pair of curly braces,
22546 and any blocks used for the base and member initializers of a C++
22547 constructor function. */
22548 tree outer_scope = DECL_INITIAL (decl);
22549 if (! declaration && outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
22551 int call_site_note_count = 0;
22552 int tail_call_site_note_count = 0;
22554 /* Emit a DW_TAG_variable DIE for a named return value. */
22555 if (DECL_NAME (DECL_RESULT (decl)))
22556 gen_decl_die (DECL_RESULT (decl), NULL, NULL, subr_die);
22558 /* The first time through decls_for_scope we will generate the
22559 DIEs for the locals. The second time, we fill in the
22560 location info. */
22561 decls_for_scope (outer_scope, subr_die);
22563 if (call_arg_locations && (!dwarf_strict || dwarf_version >= 5))
22565 struct call_arg_loc_node *ca_loc;
22566 for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
22568 dw_die_ref die = NULL;
22569 rtx tloc = NULL_RTX, tlocc = NULL_RTX;
22570 rtx arg, next_arg;
22572 for (arg = (ca_loc->call_arg_loc_note != NULL_RTX
22573 ? NOTE_VAR_LOCATION (ca_loc->call_arg_loc_note)
22574 : NULL_RTX);
22575 arg; arg = next_arg)
22577 dw_loc_descr_ref reg, val;
22578 machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
22579 dw_die_ref cdie, tdie = NULL;
22581 next_arg = XEXP (arg, 1);
22582 if (REG_P (XEXP (XEXP (arg, 0), 0))
22583 && next_arg
22584 && MEM_P (XEXP (XEXP (next_arg, 0), 0))
22585 && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
22586 && REGNO (XEXP (XEXP (arg, 0), 0))
22587 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
22588 next_arg = XEXP (next_arg, 1);
22589 if (mode == VOIDmode)
22591 mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
22592 if (mode == VOIDmode)
22593 mode = GET_MODE (XEXP (arg, 0));
22595 if (mode == VOIDmode || mode == BLKmode)
22596 continue;
22597 /* Get dynamic information about call target only if we
22598 have no static information: we cannot generate both
22599 DW_AT_call_origin and DW_AT_call_target
22600 attributes. */
22601 if (ca_loc->symbol_ref == NULL_RTX)
22603 if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
22605 tloc = XEXP (XEXP (arg, 0), 1);
22606 continue;
22608 else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
22609 && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
22611 tlocc = XEXP (XEXP (arg, 0), 1);
22612 continue;
22615 reg = NULL;
22616 if (REG_P (XEXP (XEXP (arg, 0), 0)))
22617 reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
22618 VAR_INIT_STATUS_INITIALIZED);
22619 else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
22621 rtx mem = XEXP (XEXP (arg, 0), 0);
22622 reg = mem_loc_descriptor (XEXP (mem, 0),
22623 get_address_mode (mem),
22624 GET_MODE (mem),
22625 VAR_INIT_STATUS_INITIALIZED);
22627 else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
22628 == DEBUG_PARAMETER_REF)
22630 tree tdecl
22631 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
22632 tdie = lookup_decl_die (tdecl);
22633 if (tdie == NULL)
22634 continue;
22636 else
22637 continue;
22638 if (reg == NULL
22639 && GET_CODE (XEXP (XEXP (arg, 0), 0))
22640 != DEBUG_PARAMETER_REF)
22641 continue;
22642 val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
22643 VOIDmode,
22644 VAR_INIT_STATUS_INITIALIZED);
22645 if (val == NULL)
22646 continue;
22647 if (die == NULL)
22648 die = gen_call_site_die (decl, subr_die, ca_loc);
22649 cdie = new_die (dwarf_TAG (DW_TAG_call_site_parameter), die,
22650 NULL_TREE);
22651 if (reg != NULL)
22652 add_AT_loc (cdie, DW_AT_location, reg);
22653 else if (tdie != NULL)
22654 add_AT_die_ref (cdie, dwarf_AT (DW_AT_call_parameter),
22655 tdie);
22656 add_AT_loc (cdie, dwarf_AT (DW_AT_call_value), val);
22657 if (next_arg != XEXP (arg, 1))
22659 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
22660 if (mode == VOIDmode)
22661 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
22662 val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
22663 0), 1),
22664 mode, VOIDmode,
22665 VAR_INIT_STATUS_INITIALIZED);
22666 if (val != NULL)
22667 add_AT_loc (cdie, dwarf_AT (DW_AT_call_data_value),
22668 val);
22671 if (die == NULL
22672 && (ca_loc->symbol_ref || tloc))
22673 die = gen_call_site_die (decl, subr_die, ca_loc);
22674 if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
22676 dw_loc_descr_ref tval = NULL;
22678 if (tloc != NULL_RTX)
22679 tval = mem_loc_descriptor (tloc,
22680 GET_MODE (tloc) == VOIDmode
22681 ? Pmode : GET_MODE (tloc),
22682 VOIDmode,
22683 VAR_INIT_STATUS_INITIALIZED);
22684 if (tval)
22685 add_AT_loc (die, dwarf_AT (DW_AT_call_target), tval);
22686 else if (tlocc != NULL_RTX)
22688 tval = mem_loc_descriptor (tlocc,
22689 GET_MODE (tlocc) == VOIDmode
22690 ? Pmode : GET_MODE (tlocc),
22691 VOIDmode,
22692 VAR_INIT_STATUS_INITIALIZED);
22693 if (tval)
22694 add_AT_loc (die,
22695 dwarf_AT (DW_AT_call_target_clobbered),
22696 tval);
22699 if (die != NULL)
22701 call_site_note_count++;
22702 if (ca_loc->tail_call_p)
22703 tail_call_site_note_count++;
22707 call_arg_locations = NULL;
22708 call_arg_loc_last = NULL;
22709 if (tail_call_site_count >= 0
22710 && tail_call_site_count == tail_call_site_note_count
22711 && (!dwarf_strict || dwarf_version >= 5))
22713 if (call_site_count >= 0
22714 && call_site_count == call_site_note_count)
22715 add_AT_flag (subr_die, dwarf_AT (DW_AT_call_all_calls), 1);
22716 else
22717 add_AT_flag (subr_die, dwarf_AT (DW_AT_call_all_tail_calls), 1);
22719 call_site_count = -1;
22720 tail_call_site_count = -1;
22723 /* Mark used types after we have created DIEs for the functions scopes. */
22724 premark_used_types (DECL_STRUCT_FUNCTION (decl));
22727 /* Returns a hash value for X (which really is a die_struct). */
22729 hashval_t
22730 block_die_hasher::hash (die_struct *d)
22732 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
22735 /* Return nonzero if decl_id and die_parent of die_struct X is the same
22736 as decl_id and die_parent of die_struct Y. */
22738 bool
22739 block_die_hasher::equal (die_struct *x, die_struct *y)
22741 return x->decl_id == y->decl_id && x->die_parent == y->die_parent;
22744 /* Return TRUE if DECL, which may have been previously generated as
22745 OLD_DIE, is a candidate for a DW_AT_specification. DECLARATION is
22746 true if decl (or its origin) is either an extern declaration or a
22747 class/namespace scoped declaration.
22749 The declare_in_namespace support causes us to get two DIEs for one
22750 variable, both of which are declarations. We want to avoid
22751 considering one to be a specification, so we must test for
22752 DECLARATION and DW_AT_declaration. */
22753 static inline bool
22754 decl_will_get_specification_p (dw_die_ref old_die, tree decl, bool declaration)
22756 return (old_die && TREE_STATIC (decl) && !declaration
22757 && get_AT_flag (old_die, DW_AT_declaration) == 1);
22760 /* Return true if DECL is a local static. */
22762 static inline bool
22763 local_function_static (tree decl)
22765 gcc_assert (VAR_P (decl));
22766 return TREE_STATIC (decl)
22767 && DECL_CONTEXT (decl)
22768 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL;
22771 /* Generate a DIE to represent a declared data object.
22772 Either DECL or ORIGIN must be non-null. */
22774 static void
22775 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
22777 HOST_WIDE_INT off = 0;
22778 tree com_decl;
22779 tree decl_or_origin = decl ? decl : origin;
22780 tree ultimate_origin;
22781 dw_die_ref var_die;
22782 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
22783 bool declaration = (DECL_EXTERNAL (decl_or_origin)
22784 || class_or_namespace_scope_p (context_die));
22785 bool specialization_p = false;
22786 bool no_linkage_name = false;
22788 /* While C++ inline static data members have definitions inside of the
22789 class, force the first DIE to be a declaration, then let gen_member_die
22790 reparent it to the class context and call gen_variable_die again
22791 to create the outside of the class DIE for the definition. */
22792 if (!declaration
22793 && old_die == NULL
22794 && decl
22795 && DECL_CONTEXT (decl)
22796 && TYPE_P (DECL_CONTEXT (decl))
22797 && lang_hooks.decls.decl_dwarf_attribute (decl, DW_AT_inline) != -1)
22799 declaration = true;
22800 if (dwarf_version < 5)
22801 no_linkage_name = true;
22804 ultimate_origin = decl_ultimate_origin (decl_or_origin);
22805 if (decl || ultimate_origin)
22806 origin = ultimate_origin;
22807 com_decl = fortran_common (decl_or_origin, &off);
22809 /* Symbol in common gets emitted as a child of the common block, in the form
22810 of a data member. */
22811 if (com_decl)
22813 dw_die_ref com_die;
22814 dw_loc_list_ref loc = NULL;
22815 die_node com_die_arg;
22817 var_die = lookup_decl_die (decl_or_origin);
22818 if (var_die)
22820 if (! early_dwarf && get_AT (var_die, DW_AT_location) == NULL)
22822 loc = loc_list_from_tree (com_decl, off ? 1 : 2, NULL);
22823 if (loc)
22825 if (off)
22827 /* Optimize the common case. */
22828 if (single_element_loc_list_p (loc)
22829 && loc->expr->dw_loc_opc == DW_OP_addr
22830 && loc->expr->dw_loc_next == NULL
22831 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
22832 == SYMBOL_REF)
22834 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
22835 loc->expr->dw_loc_oprnd1.v.val_addr
22836 = plus_constant (GET_MODE (x), x , off);
22838 else
22839 loc_list_plus_const (loc, off);
22841 add_AT_location_description (var_die, DW_AT_location, loc);
22842 remove_AT (var_die, DW_AT_declaration);
22845 return;
22848 if (common_block_die_table == NULL)
22849 common_block_die_table = hash_table<block_die_hasher>::create_ggc (10);
22851 com_die_arg.decl_id = DECL_UID (com_decl);
22852 com_die_arg.die_parent = context_die;
22853 com_die = common_block_die_table->find (&com_die_arg);
22854 if (! early_dwarf)
22855 loc = loc_list_from_tree (com_decl, 2, NULL);
22856 if (com_die == NULL)
22858 const char *cnam
22859 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
22860 die_node **slot;
22862 com_die = new_die (DW_TAG_common_block, context_die, decl);
22863 add_name_and_src_coords_attributes (com_die, com_decl);
22864 if (loc)
22866 add_AT_location_description (com_die, DW_AT_location, loc);
22867 /* Avoid sharing the same loc descriptor between
22868 DW_TAG_common_block and DW_TAG_variable. */
22869 loc = loc_list_from_tree (com_decl, 2, NULL);
22871 else if (DECL_EXTERNAL (decl_or_origin))
22872 add_AT_flag (com_die, DW_AT_declaration, 1);
22873 if (want_pubnames ())
22874 add_pubname_string (cnam, com_die); /* ??? needed? */
22875 com_die->decl_id = DECL_UID (com_decl);
22876 slot = common_block_die_table->find_slot (com_die, INSERT);
22877 *slot = com_die;
22879 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
22881 add_AT_location_description (com_die, DW_AT_location, loc);
22882 loc = loc_list_from_tree (com_decl, 2, NULL);
22883 remove_AT (com_die, DW_AT_declaration);
22885 var_die = new_die (DW_TAG_variable, com_die, decl);
22886 add_name_and_src_coords_attributes (var_die, decl_or_origin);
22887 add_type_attribute (var_die, TREE_TYPE (decl_or_origin),
22888 decl_quals (decl_or_origin), false,
22889 context_die);
22890 add_alignment_attribute (var_die, decl);
22891 add_AT_flag (var_die, DW_AT_external, 1);
22892 if (loc)
22894 if (off)
22896 /* Optimize the common case. */
22897 if (single_element_loc_list_p (loc)
22898 && loc->expr->dw_loc_opc == DW_OP_addr
22899 && loc->expr->dw_loc_next == NULL
22900 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
22902 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
22903 loc->expr->dw_loc_oprnd1.v.val_addr
22904 = plus_constant (GET_MODE (x), x, off);
22906 else
22907 loc_list_plus_const (loc, off);
22909 add_AT_location_description (var_die, DW_AT_location, loc);
22911 else if (DECL_EXTERNAL (decl_or_origin))
22912 add_AT_flag (var_die, DW_AT_declaration, 1);
22913 if (decl)
22914 equate_decl_number_to_die (decl, var_die);
22915 return;
22918 if (old_die)
22920 if (declaration)
22922 /* A declaration that has been previously dumped, needs no
22923 further annotations, since it doesn't need location on
22924 the second pass. */
22925 return;
22927 else if (decl_will_get_specification_p (old_die, decl, declaration)
22928 && !get_AT (old_die, DW_AT_specification))
22930 /* Fall-thru so we can make a new variable die along with a
22931 DW_AT_specification. */
22933 else if (origin && old_die->die_parent != context_die)
22935 /* If we will be creating an inlined instance, we need a
22936 new DIE that will get annotated with
22937 DW_AT_abstract_origin. Clear things so we can get a
22938 new DIE. */
22939 gcc_assert (!DECL_ABSTRACT_P (decl));
22940 old_die = NULL;
22942 else
22944 /* If a DIE was dumped early, it still needs location info.
22945 Skip to where we fill the location bits. */
22946 var_die = old_die;
22948 /* ??? In LTRANS we cannot annotate early created variably
22949 modified type DIEs without copying them and adjusting all
22950 references to them. Thus we dumped them again, also add a
22951 reference to them. */
22952 tree type = TREE_TYPE (decl_or_origin);
22953 if (in_lto_p
22954 && variably_modified_type_p
22955 (type, decl_function_context (decl_or_origin)))
22957 if (decl_by_reference_p (decl_or_origin))
22958 add_type_attribute (var_die, TREE_TYPE (type),
22959 TYPE_UNQUALIFIED, false, context_die);
22960 else
22961 add_type_attribute (var_die, type, decl_quals (decl_or_origin),
22962 false, context_die);
22965 goto gen_variable_die_location;
22969 /* For static data members, the declaration in the class is supposed
22970 to have DW_TAG_member tag in DWARF{3,4} and we emit it for compatibility
22971 also in DWARF2; the specification should still be DW_TAG_variable
22972 referencing the DW_TAG_member DIE. */
22973 if (declaration && class_scope_p (context_die) && dwarf_version < 5)
22974 var_die = new_die (DW_TAG_member, context_die, decl);
22975 else
22976 var_die = new_die (DW_TAG_variable, context_die, decl);
22978 if (origin != NULL)
22979 add_abstract_origin_attribute (var_die, origin);
22981 /* Loop unrolling can create multiple blocks that refer to the same
22982 static variable, so we must test for the DW_AT_declaration flag.
22984 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
22985 copy decls and set the DECL_ABSTRACT_P flag on them instead of
22986 sharing them.
22988 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
22989 else if (decl_will_get_specification_p (old_die, decl, declaration))
22991 /* This is a definition of a C++ class level static. */
22992 add_AT_specification (var_die, old_die);
22993 specialization_p = true;
22994 if (DECL_NAME (decl))
22996 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
22997 struct dwarf_file_data * file_index = lookup_filename (s.file);
22999 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
23000 add_AT_file (var_die, DW_AT_decl_file, file_index);
23002 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
23003 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
23005 if (debug_column_info
23006 && s.column
23007 && (get_AT_unsigned (old_die, DW_AT_decl_column)
23008 != (unsigned) s.column))
23009 add_AT_unsigned (var_die, DW_AT_decl_column, s.column);
23011 if (old_die->die_tag == DW_TAG_member)
23012 add_linkage_name (var_die, decl);
23015 else
23016 add_name_and_src_coords_attributes (var_die, decl, no_linkage_name);
23018 if ((origin == NULL && !specialization_p)
23019 || (origin != NULL
23020 && !DECL_ABSTRACT_P (decl_or_origin)
23021 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
23022 decl_function_context
23023 (decl_or_origin))))
23025 tree type = TREE_TYPE (decl_or_origin);
23027 if (decl_by_reference_p (decl_or_origin))
23028 add_type_attribute (var_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
23029 context_die);
23030 else
23031 add_type_attribute (var_die, type, decl_quals (decl_or_origin), false,
23032 context_die);
23035 if (origin == NULL && !specialization_p)
23037 if (TREE_PUBLIC (decl))
23038 add_AT_flag (var_die, DW_AT_external, 1);
23040 if (DECL_ARTIFICIAL (decl))
23041 add_AT_flag (var_die, DW_AT_artificial, 1);
23043 add_alignment_attribute (var_die, decl);
23045 add_accessibility_attribute (var_die, decl);
23048 if (declaration)
23049 add_AT_flag (var_die, DW_AT_declaration, 1);
23051 if (decl && (DECL_ABSTRACT_P (decl)
23052 || !old_die || is_declaration_die (old_die)))
23053 equate_decl_number_to_die (decl, var_die);
23055 gen_variable_die_location:
23056 if (! declaration
23057 && (! DECL_ABSTRACT_P (decl_or_origin)
23058 /* Local static vars are shared between all clones/inlines,
23059 so emit DW_AT_location on the abstract DIE if DECL_RTL is
23060 already set. */
23061 || (VAR_P (decl_or_origin)
23062 && TREE_STATIC (decl_or_origin)
23063 && DECL_RTL_SET_P (decl_or_origin))))
23065 if (early_dwarf)
23066 add_pubname (decl_or_origin, var_die);
23067 else
23068 add_location_or_const_value_attribute (var_die, decl_or_origin,
23069 decl == NULL);
23071 else
23072 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
23074 if ((dwarf_version >= 4 || !dwarf_strict)
23075 && lang_hooks.decls.decl_dwarf_attribute (decl_or_origin,
23076 DW_AT_const_expr) == 1
23077 && !get_AT (var_die, DW_AT_const_expr)
23078 && !specialization_p)
23079 add_AT_flag (var_die, DW_AT_const_expr, 1);
23081 if (!dwarf_strict)
23083 int inl = lang_hooks.decls.decl_dwarf_attribute (decl_or_origin,
23084 DW_AT_inline);
23085 if (inl != -1
23086 && !get_AT (var_die, DW_AT_inline)
23087 && !specialization_p)
23088 add_AT_unsigned (var_die, DW_AT_inline, inl);
23092 /* Generate a DIE to represent a named constant. */
23094 static void
23095 gen_const_die (tree decl, dw_die_ref context_die)
23097 dw_die_ref const_die;
23098 tree type = TREE_TYPE (decl);
23100 const_die = lookup_decl_die (decl);
23101 if (const_die)
23102 return;
23104 const_die = new_die (DW_TAG_constant, context_die, decl);
23105 equate_decl_number_to_die (decl, const_die);
23106 add_name_and_src_coords_attributes (const_die, decl);
23107 add_type_attribute (const_die, type, TYPE_QUAL_CONST, false, context_die);
23108 if (TREE_PUBLIC (decl))
23109 add_AT_flag (const_die, DW_AT_external, 1);
23110 if (DECL_ARTIFICIAL (decl))
23111 add_AT_flag (const_die, DW_AT_artificial, 1);
23112 tree_add_const_value_attribute_for_decl (const_die, decl);
23115 /* Generate a DIE to represent a label identifier. */
23117 static void
23118 gen_label_die (tree decl, dw_die_ref context_die)
23120 tree origin = decl_ultimate_origin (decl);
23121 dw_die_ref lbl_die = lookup_decl_die (decl);
23122 rtx insn;
23123 char label[MAX_ARTIFICIAL_LABEL_BYTES];
23125 if (!lbl_die)
23127 lbl_die = new_die (DW_TAG_label, context_die, decl);
23128 equate_decl_number_to_die (decl, lbl_die);
23130 if (origin != NULL)
23131 add_abstract_origin_attribute (lbl_die, origin);
23132 else
23133 add_name_and_src_coords_attributes (lbl_die, decl);
23136 if (DECL_ABSTRACT_P (decl))
23137 equate_decl_number_to_die (decl, lbl_die);
23138 else if (! early_dwarf)
23140 insn = DECL_RTL_IF_SET (decl);
23142 /* Deleted labels are programmer specified labels which have been
23143 eliminated because of various optimizations. We still emit them
23144 here so that it is possible to put breakpoints on them. */
23145 if (insn
23146 && (LABEL_P (insn)
23147 || ((NOTE_P (insn)
23148 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
23150 /* When optimization is enabled (via -O) some parts of the compiler
23151 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
23152 represent source-level labels which were explicitly declared by
23153 the user. This really shouldn't be happening though, so catch
23154 it if it ever does happen. */
23155 gcc_assert (!as_a<rtx_insn *> (insn)->deleted ());
23157 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
23158 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
23160 else if (insn
23161 && NOTE_P (insn)
23162 && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
23163 && CODE_LABEL_NUMBER (insn) != -1)
23165 ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
23166 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
23171 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
23172 attributes to the DIE for a block STMT, to describe where the inlined
23173 function was called from. This is similar to add_src_coords_attributes. */
23175 static inline void
23176 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
23178 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
23180 if (dwarf_version >= 3 || !dwarf_strict)
23182 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
23183 add_AT_unsigned (die, DW_AT_call_line, s.line);
23184 if (debug_column_info && s.column)
23185 add_AT_unsigned (die, DW_AT_call_column, s.column);
23190 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
23191 Add low_pc and high_pc attributes to the DIE for a block STMT. */
23193 static inline void
23194 add_high_low_attributes (tree stmt, dw_die_ref die)
23196 char label[MAX_ARTIFICIAL_LABEL_BYTES];
23198 if (BLOCK_FRAGMENT_CHAIN (stmt)
23199 && (dwarf_version >= 3 || !dwarf_strict))
23201 tree chain, superblock = NULL_TREE;
23202 dw_die_ref pdie;
23203 dw_attr_node *attr = NULL;
23205 if (inlined_function_outer_scope_p (stmt))
23207 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
23208 BLOCK_NUMBER (stmt));
23209 add_AT_lbl_id (die, DW_AT_entry_pc, label);
23212 /* Optimize duplicate .debug_ranges lists or even tails of
23213 lists. If this BLOCK has same ranges as its supercontext,
23214 lookup DW_AT_ranges attribute in the supercontext (and
23215 recursively so), verify that the ranges_table contains the
23216 right values and use it instead of adding a new .debug_range. */
23217 for (chain = stmt, pdie = die;
23218 BLOCK_SAME_RANGE (chain);
23219 chain = BLOCK_SUPERCONTEXT (chain))
23221 dw_attr_node *new_attr;
23223 pdie = pdie->die_parent;
23224 if (pdie == NULL)
23225 break;
23226 if (BLOCK_SUPERCONTEXT (chain) == NULL_TREE)
23227 break;
23228 new_attr = get_AT (pdie, DW_AT_ranges);
23229 if (new_attr == NULL
23230 || new_attr->dw_attr_val.val_class != dw_val_class_range_list)
23231 break;
23232 attr = new_attr;
23233 superblock = BLOCK_SUPERCONTEXT (chain);
23235 if (attr != NULL
23236 && ((*ranges_table)[attr->dw_attr_val.v.val_offset].num
23237 == BLOCK_NUMBER (superblock))
23238 && BLOCK_FRAGMENT_CHAIN (superblock))
23240 unsigned long off = attr->dw_attr_val.v.val_offset;
23241 unsigned long supercnt = 0, thiscnt = 0;
23242 for (chain = BLOCK_FRAGMENT_CHAIN (superblock);
23243 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
23245 ++supercnt;
23246 gcc_checking_assert ((*ranges_table)[off + supercnt].num
23247 == BLOCK_NUMBER (chain));
23249 gcc_checking_assert ((*ranges_table)[off + supercnt + 1].num == 0);
23250 for (chain = BLOCK_FRAGMENT_CHAIN (stmt);
23251 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
23252 ++thiscnt;
23253 gcc_assert (supercnt >= thiscnt);
23254 add_AT_range_list (die, DW_AT_ranges, off + supercnt - thiscnt,
23255 false);
23256 note_rnglist_head (off + supercnt - thiscnt);
23257 return;
23260 unsigned int offset = add_ranges (stmt, true);
23261 add_AT_range_list (die, DW_AT_ranges, offset, false);
23262 note_rnglist_head (offset);
23264 bool prev_in_cold = BLOCK_IN_COLD_SECTION_P (stmt);
23265 chain = BLOCK_FRAGMENT_CHAIN (stmt);
23268 add_ranges (chain, prev_in_cold != BLOCK_IN_COLD_SECTION_P (chain));
23269 prev_in_cold = BLOCK_IN_COLD_SECTION_P (chain);
23270 chain = BLOCK_FRAGMENT_CHAIN (chain);
23272 while (chain);
23273 add_ranges (NULL);
23275 else
23277 char label_high[MAX_ARTIFICIAL_LABEL_BYTES];
23278 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
23279 BLOCK_NUMBER (stmt));
23280 ASM_GENERATE_INTERNAL_LABEL (label_high, BLOCK_END_LABEL,
23281 BLOCK_NUMBER (stmt));
23282 add_AT_low_high_pc (die, label, label_high, false);
23286 /* Generate a DIE for a lexical block. */
23288 static void
23289 gen_lexical_block_die (tree stmt, dw_die_ref context_die)
23291 dw_die_ref old_die = BLOCK_DIE (stmt);
23292 dw_die_ref stmt_die = NULL;
23293 if (!old_die)
23295 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
23296 BLOCK_DIE (stmt) = stmt_die;
23299 if (BLOCK_ABSTRACT (stmt))
23301 if (old_die)
23303 /* This must have been generated early and it won't even
23304 need location information since it's a DW_AT_inline
23305 function. */
23306 if (flag_checking)
23307 for (dw_die_ref c = context_die; c; c = c->die_parent)
23308 if (c->die_tag == DW_TAG_inlined_subroutine
23309 || c->die_tag == DW_TAG_subprogram)
23311 gcc_assert (get_AT (c, DW_AT_inline));
23312 break;
23314 return;
23317 else if (BLOCK_ABSTRACT_ORIGIN (stmt))
23319 /* If this is an inlined instance, create a new lexical die for
23320 anything below to attach DW_AT_abstract_origin to. */
23321 if (old_die)
23323 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
23324 BLOCK_DIE (stmt) = stmt_die;
23325 old_die = NULL;
23328 tree origin = block_ultimate_origin (stmt);
23329 if (origin != NULL_TREE && origin != stmt)
23330 add_abstract_origin_attribute (stmt_die, origin);
23333 if (old_die)
23334 stmt_die = old_die;
23336 /* A non abstract block whose blocks have already been reordered
23337 should have the instruction range for this block. If so, set the
23338 high/low attributes. */
23339 if (!early_dwarf && !BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
23341 gcc_assert (stmt_die);
23342 add_high_low_attributes (stmt, stmt_die);
23345 decls_for_scope (stmt, stmt_die);
23348 /* Generate a DIE for an inlined subprogram. */
23350 static void
23351 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die)
23353 tree decl;
23355 /* The instance of function that is effectively being inlined shall not
23356 be abstract. */
23357 gcc_assert (! BLOCK_ABSTRACT (stmt));
23359 decl = block_ultimate_origin (stmt);
23361 /* Make sure any inlined functions are known to be inlineable. */
23362 gcc_checking_assert (DECL_ABSTRACT_P (decl)
23363 || cgraph_function_possibly_inlined_p (decl));
23365 if (! BLOCK_ABSTRACT (stmt))
23367 dw_die_ref subr_die
23368 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
23370 if (call_arg_locations)
23371 BLOCK_DIE (stmt) = subr_die;
23372 add_abstract_origin_attribute (subr_die, decl);
23373 if (TREE_ASM_WRITTEN (stmt))
23374 add_high_low_attributes (stmt, subr_die);
23375 add_call_src_coords_attributes (stmt, subr_die);
23377 decls_for_scope (stmt, subr_die);
23381 /* Generate a DIE for a field in a record, or structure. CTX is required: see
23382 the comment for VLR_CONTEXT. */
23384 static void
23385 gen_field_die (tree decl, struct vlr_context *ctx, dw_die_ref context_die)
23387 dw_die_ref decl_die;
23389 if (TREE_TYPE (decl) == error_mark_node)
23390 return;
23392 decl_die = new_die (DW_TAG_member, context_die, decl);
23393 add_name_and_src_coords_attributes (decl_die, decl);
23394 add_type_attribute (decl_die, member_declared_type (decl), decl_quals (decl),
23395 TYPE_REVERSE_STORAGE_ORDER (DECL_FIELD_CONTEXT (decl)),
23396 context_die);
23398 if (DECL_BIT_FIELD_TYPE (decl))
23400 add_byte_size_attribute (decl_die, decl);
23401 add_bit_size_attribute (decl_die, decl);
23402 add_bit_offset_attribute (decl_die, decl, ctx);
23405 add_alignment_attribute (decl_die, decl);
23407 /* If we have a variant part offset, then we are supposed to process a member
23408 of a QUAL_UNION_TYPE, which is how we represent variant parts in
23409 trees. */
23410 gcc_assert (ctx->variant_part_offset == NULL_TREE
23411 || TREE_CODE (DECL_FIELD_CONTEXT (decl)) != QUAL_UNION_TYPE);
23412 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
23413 add_data_member_location_attribute (decl_die, decl, ctx);
23415 if (DECL_ARTIFICIAL (decl))
23416 add_AT_flag (decl_die, DW_AT_artificial, 1);
23418 add_accessibility_attribute (decl_die, decl);
23420 /* Equate decl number to die, so that we can look up this decl later on. */
23421 equate_decl_number_to_die (decl, decl_die);
23424 /* Generate a DIE for a pointer to a member type. TYPE can be an
23425 OFFSET_TYPE, for a pointer to data member, or a RECORD_TYPE, for a
23426 pointer to member function. */
23428 static void
23429 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
23431 if (lookup_type_die (type))
23432 return;
23434 dw_die_ref ptr_die = new_die (DW_TAG_ptr_to_member_type,
23435 scope_die_for (type, context_die), type);
23437 equate_type_number_to_die (type, ptr_die);
23438 add_AT_die_ref (ptr_die, DW_AT_containing_type,
23439 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
23440 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
23441 context_die);
23442 add_alignment_attribute (ptr_die, type);
23444 if (TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE
23445 && TREE_CODE (TREE_TYPE (type)) != METHOD_TYPE)
23447 dw_loc_descr_ref op = new_loc_descr (DW_OP_plus, 0, 0);
23448 add_AT_loc (ptr_die, DW_AT_use_location, op);
23452 static char *producer_string;
23454 /* Return a heap allocated producer string including command line options
23455 if -grecord-gcc-switches. */
23457 static char *
23458 gen_producer_string (void)
23460 size_t j;
23461 auto_vec<const char *> switches;
23462 const char *language_string = lang_hooks.name;
23463 char *producer, *tail;
23464 const char *p;
23465 size_t len = dwarf_record_gcc_switches ? 0 : 3;
23466 size_t plen = strlen (language_string) + 1 + strlen (version_string);
23468 for (j = 1; dwarf_record_gcc_switches && j < save_decoded_options_count; j++)
23469 switch (save_decoded_options[j].opt_index)
23471 case OPT_o:
23472 case OPT_d:
23473 case OPT_dumpbase:
23474 case OPT_dumpdir:
23475 case OPT_auxbase:
23476 case OPT_auxbase_strip:
23477 case OPT_quiet:
23478 case OPT_version:
23479 case OPT_v:
23480 case OPT_w:
23481 case OPT_L:
23482 case OPT_D:
23483 case OPT_I:
23484 case OPT_U:
23485 case OPT_SPECIAL_unknown:
23486 case OPT_SPECIAL_ignore:
23487 case OPT_SPECIAL_program_name:
23488 case OPT_SPECIAL_input_file:
23489 case OPT_grecord_gcc_switches:
23490 case OPT__output_pch_:
23491 case OPT_fdiagnostics_show_location_:
23492 case OPT_fdiagnostics_show_option:
23493 case OPT_fdiagnostics_show_caret:
23494 case OPT_fdiagnostics_color_:
23495 case OPT_fverbose_asm:
23496 case OPT____:
23497 case OPT__sysroot_:
23498 case OPT_nostdinc:
23499 case OPT_nostdinc__:
23500 case OPT_fpreprocessed:
23501 case OPT_fltrans_output_list_:
23502 case OPT_fresolution_:
23503 case OPT_fdebug_prefix_map_:
23504 case OPT_fcompare_debug:
23505 /* Ignore these. */
23506 continue;
23507 default:
23508 if (cl_options[save_decoded_options[j].opt_index].flags
23509 & CL_NO_DWARF_RECORD)
23510 continue;
23511 gcc_checking_assert (save_decoded_options[j].canonical_option[0][0]
23512 == '-');
23513 switch (save_decoded_options[j].canonical_option[0][1])
23515 case 'M':
23516 case 'i':
23517 case 'W':
23518 continue;
23519 case 'f':
23520 if (strncmp (save_decoded_options[j].canonical_option[0] + 2,
23521 "dump", 4) == 0)
23522 continue;
23523 break;
23524 default:
23525 break;
23527 switches.safe_push (save_decoded_options[j].orig_option_with_args_text);
23528 len += strlen (save_decoded_options[j].orig_option_with_args_text) + 1;
23529 break;
23532 producer = XNEWVEC (char, plen + 1 + len + 1);
23533 tail = producer;
23534 sprintf (tail, "%s %s", language_string, version_string);
23535 tail += plen;
23537 FOR_EACH_VEC_ELT (switches, j, p)
23539 len = strlen (p);
23540 *tail = ' ';
23541 memcpy (tail + 1, p, len);
23542 tail += len + 1;
23545 *tail = '\0';
23546 return producer;
23549 /* Given a C and/or C++ language/version string return the "highest".
23550 C++ is assumed to be "higher" than C in this case. Used for merging
23551 LTO translation unit languages. */
23552 static const char *
23553 highest_c_language (const char *lang1, const char *lang2)
23555 if (strcmp ("GNU C++17", lang1) == 0 || strcmp ("GNU C++17", lang2) == 0)
23556 return "GNU C++17";
23557 if (strcmp ("GNU C++14", lang1) == 0 || strcmp ("GNU C++14", lang2) == 0)
23558 return "GNU C++14";
23559 if (strcmp ("GNU C++11", lang1) == 0 || strcmp ("GNU C++11", lang2) == 0)
23560 return "GNU C++11";
23561 if (strcmp ("GNU C++98", lang1) == 0 || strcmp ("GNU C++98", lang2) == 0)
23562 return "GNU C++98";
23564 if (strcmp ("GNU C17", lang1) == 0 || strcmp ("GNU C17", lang2) == 0)
23565 return "GNU C17";
23566 if (strcmp ("GNU C11", lang1) == 0 || strcmp ("GNU C11", lang2) == 0)
23567 return "GNU C11";
23568 if (strcmp ("GNU C99", lang1) == 0 || strcmp ("GNU C99", lang2) == 0)
23569 return "GNU C99";
23570 if (strcmp ("GNU C89", lang1) == 0 || strcmp ("GNU C89", lang2) == 0)
23571 return "GNU C89";
23573 gcc_unreachable ();
23577 /* Generate the DIE for the compilation unit. */
23579 static dw_die_ref
23580 gen_compile_unit_die (const char *filename)
23582 dw_die_ref die;
23583 const char *language_string = lang_hooks.name;
23584 int language;
23586 die = new_die (DW_TAG_compile_unit, NULL, NULL);
23588 if (filename)
23590 add_name_attribute (die, filename);
23591 /* Don't add cwd for <built-in>. */
23592 if (filename[0] != '<')
23593 add_comp_dir_attribute (die);
23596 add_AT_string (die, DW_AT_producer, producer_string ? producer_string : "");
23598 /* If our producer is LTO try to figure out a common language to use
23599 from the global list of translation units. */
23600 if (strcmp (language_string, "GNU GIMPLE") == 0)
23602 unsigned i;
23603 tree t;
23604 const char *common_lang = NULL;
23606 FOR_EACH_VEC_SAFE_ELT (all_translation_units, i, t)
23608 if (!TRANSLATION_UNIT_LANGUAGE (t))
23609 continue;
23610 if (!common_lang)
23611 common_lang = TRANSLATION_UNIT_LANGUAGE (t);
23612 else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
23614 else if (strncmp (common_lang, "GNU C", 5) == 0
23615 && strncmp (TRANSLATION_UNIT_LANGUAGE (t), "GNU C", 5) == 0)
23616 /* Mixing C and C++ is ok, use C++ in that case. */
23617 common_lang = highest_c_language (common_lang,
23618 TRANSLATION_UNIT_LANGUAGE (t));
23619 else
23621 /* Fall back to C. */
23622 common_lang = NULL;
23623 break;
23627 if (common_lang)
23628 language_string = common_lang;
23631 language = DW_LANG_C;
23632 if (strncmp (language_string, "GNU C", 5) == 0
23633 && ISDIGIT (language_string[5]))
23635 language = DW_LANG_C89;
23636 if (dwarf_version >= 3 || !dwarf_strict)
23638 if (strcmp (language_string, "GNU C89") != 0)
23639 language = DW_LANG_C99;
23641 if (dwarf_version >= 5 /* || !dwarf_strict */)
23642 if (strcmp (language_string, "GNU C11") == 0
23643 || strcmp (language_string, "GNU C17") == 0)
23644 language = DW_LANG_C11;
23647 else if (strncmp (language_string, "GNU C++", 7) == 0)
23649 language = DW_LANG_C_plus_plus;
23650 if (dwarf_version >= 5 /* || !dwarf_strict */)
23652 if (strcmp (language_string, "GNU C++11") == 0)
23653 language = DW_LANG_C_plus_plus_11;
23654 else if (strcmp (language_string, "GNU C++14") == 0)
23655 language = DW_LANG_C_plus_plus_14;
23656 else if (strcmp (language_string, "GNU C++17") == 0)
23657 /* For now. */
23658 language = DW_LANG_C_plus_plus_14;
23661 else if (strcmp (language_string, "GNU F77") == 0)
23662 language = DW_LANG_Fortran77;
23663 else if (dwarf_version >= 3 || !dwarf_strict)
23665 if (strcmp (language_string, "GNU Ada") == 0)
23666 language = DW_LANG_Ada95;
23667 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
23669 language = DW_LANG_Fortran95;
23670 if (dwarf_version >= 5 /* || !dwarf_strict */)
23672 if (strcmp (language_string, "GNU Fortran2003") == 0)
23673 language = DW_LANG_Fortran03;
23674 else if (strcmp (language_string, "GNU Fortran2008") == 0)
23675 language = DW_LANG_Fortran08;
23678 else if (strcmp (language_string, "GNU Objective-C") == 0)
23679 language = DW_LANG_ObjC;
23680 else if (strcmp (language_string, "GNU Objective-C++") == 0)
23681 language = DW_LANG_ObjC_plus_plus;
23682 else if (dwarf_version >= 5 || !dwarf_strict)
23684 if (strcmp (language_string, "GNU Go") == 0)
23685 language = DW_LANG_Go;
23688 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
23689 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
23690 language = DW_LANG_Fortran90;
23692 add_AT_unsigned (die, DW_AT_language, language);
23694 switch (language)
23696 case DW_LANG_Fortran77:
23697 case DW_LANG_Fortran90:
23698 case DW_LANG_Fortran95:
23699 case DW_LANG_Fortran03:
23700 case DW_LANG_Fortran08:
23701 /* Fortran has case insensitive identifiers and the front-end
23702 lowercases everything. */
23703 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
23704 break;
23705 default:
23706 /* The default DW_ID_case_sensitive doesn't need to be specified. */
23707 break;
23709 return die;
23712 /* Generate the DIE for a base class. */
23714 static void
23715 gen_inheritance_die (tree binfo, tree access, tree type,
23716 dw_die_ref context_die)
23718 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
23719 struct vlr_context ctx = { type, NULL };
23721 add_type_attribute (die, BINFO_TYPE (binfo), TYPE_UNQUALIFIED, false,
23722 context_die);
23723 add_data_member_location_attribute (die, binfo, &ctx);
23725 if (BINFO_VIRTUAL_P (binfo))
23726 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
23728 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
23729 children, otherwise the default is DW_ACCESS_public. In DWARF2
23730 the default has always been DW_ACCESS_private. */
23731 if (access == access_public_node)
23733 if (dwarf_version == 2
23734 || context_die->die_tag == DW_TAG_class_type)
23735 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
23737 else if (access == access_protected_node)
23738 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
23739 else if (dwarf_version > 2
23740 && context_die->die_tag != DW_TAG_class_type)
23741 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
23744 /* Return whether DECL is a FIELD_DECL that represents the variant part of a
23745 structure. */
23746 static bool
23747 is_variant_part (tree decl)
23749 return (TREE_CODE (decl) == FIELD_DECL
23750 && TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
23753 /* Check that OPERAND is a reference to a field in STRUCT_TYPE. If it is,
23754 return the FIELD_DECL. Return NULL_TREE otherwise. */
23756 static tree
23757 analyze_discr_in_predicate (tree operand, tree struct_type)
23759 bool continue_stripping = true;
23760 while (continue_stripping)
23761 switch (TREE_CODE (operand))
23763 CASE_CONVERT:
23764 operand = TREE_OPERAND (operand, 0);
23765 break;
23766 default:
23767 continue_stripping = false;
23768 break;
23771 /* Match field access to members of struct_type only. */
23772 if (TREE_CODE (operand) == COMPONENT_REF
23773 && TREE_CODE (TREE_OPERAND (operand, 0)) == PLACEHOLDER_EXPR
23774 && TREE_TYPE (TREE_OPERAND (operand, 0)) == struct_type
23775 && TREE_CODE (TREE_OPERAND (operand, 1)) == FIELD_DECL)
23776 return TREE_OPERAND (operand, 1);
23777 else
23778 return NULL_TREE;
23781 /* Check that SRC is a constant integer that can be represented as a native
23782 integer constant (either signed or unsigned). If so, store it into DEST and
23783 return true. Return false otherwise. */
23785 static bool
23786 get_discr_value (tree src, dw_discr_value *dest)
23788 tree discr_type = TREE_TYPE (src);
23790 if (lang_hooks.types.get_debug_type)
23792 tree debug_type = lang_hooks.types.get_debug_type (discr_type);
23793 if (debug_type != NULL)
23794 discr_type = debug_type;
23797 if (TREE_CODE (src) != INTEGER_CST || !INTEGRAL_TYPE_P (discr_type))
23798 return false;
23800 /* Signedness can vary between the original type and the debug type. This
23801 can happen for character types in Ada for instance: the character type
23802 used for code generation can be signed, to be compatible with the C one,
23803 but from a debugger point of view, it must be unsigned. */
23804 bool is_orig_unsigned = TYPE_UNSIGNED (TREE_TYPE (src));
23805 bool is_debug_unsigned = TYPE_UNSIGNED (discr_type);
23807 if (is_orig_unsigned != is_debug_unsigned)
23808 src = fold_convert (discr_type, src);
23810 if (!(is_debug_unsigned ? tree_fits_uhwi_p (src) : tree_fits_shwi_p (src)))
23811 return false;
23813 dest->pos = is_debug_unsigned;
23814 if (is_debug_unsigned)
23815 dest->v.uval = tree_to_uhwi (src);
23816 else
23817 dest->v.sval = tree_to_shwi (src);
23819 return true;
23822 /* Try to extract synthetic properties out of VARIANT_PART_DECL, which is a
23823 FIELD_DECL in STRUCT_TYPE that represents a variant part. If unsuccessful,
23824 store NULL_TREE in DISCR_DECL. Otherwise:
23826 - store the discriminant field in STRUCT_TYPE that controls the variant
23827 part to *DISCR_DECL
23829 - put in *DISCR_LISTS_P an array where for each variant, the item
23830 represents the corresponding matching list of discriminant values.
23832 - put in *DISCR_LISTS_LENGTH the number of variants, which is the size of
23833 the above array.
23835 Note that when the array is allocated (i.e. when the analysis is
23836 successful), it is up to the caller to free the array. */
23838 static void
23839 analyze_variants_discr (tree variant_part_decl,
23840 tree struct_type,
23841 tree *discr_decl,
23842 dw_discr_list_ref **discr_lists_p,
23843 unsigned *discr_lists_length)
23845 tree variant_part_type = TREE_TYPE (variant_part_decl);
23846 tree variant;
23847 dw_discr_list_ref *discr_lists;
23848 unsigned i;
23850 /* Compute how many variants there are in this variant part. */
23851 *discr_lists_length = 0;
23852 for (variant = TYPE_FIELDS (variant_part_type);
23853 variant != NULL_TREE;
23854 variant = DECL_CHAIN (variant))
23855 ++*discr_lists_length;
23857 *discr_decl = NULL_TREE;
23858 *discr_lists_p
23859 = (dw_discr_list_ref *) xcalloc (*discr_lists_length,
23860 sizeof (**discr_lists_p));
23861 discr_lists = *discr_lists_p;
23863 /* And then analyze all variants to extract discriminant information for all
23864 of them. This analysis is conservative: as soon as we detect something we
23865 do not support, abort everything and pretend we found nothing. */
23866 for (variant = TYPE_FIELDS (variant_part_type), i = 0;
23867 variant != NULL_TREE;
23868 variant = DECL_CHAIN (variant), ++i)
23870 tree match_expr = DECL_QUALIFIER (variant);
23872 /* Now, try to analyze the predicate and deduce a discriminant for
23873 it. */
23874 if (match_expr == boolean_true_node)
23875 /* Typically happens for the default variant: it matches all cases that
23876 previous variants rejected. Don't output any matching value for
23877 this one. */
23878 continue;
23880 /* The following loop tries to iterate over each discriminant
23881 possibility: single values or ranges. */
23882 while (match_expr != NULL_TREE)
23884 tree next_round_match_expr;
23885 tree candidate_discr = NULL_TREE;
23886 dw_discr_list_ref new_node = NULL;
23888 /* Possibilities are matched one after the other by nested
23889 TRUTH_ORIF_EXPR expressions. Process the current possibility and
23890 continue with the rest at next iteration. */
23891 if (TREE_CODE (match_expr) == TRUTH_ORIF_EXPR)
23893 next_round_match_expr = TREE_OPERAND (match_expr, 0);
23894 match_expr = TREE_OPERAND (match_expr, 1);
23896 else
23897 next_round_match_expr = NULL_TREE;
23899 if (match_expr == boolean_false_node)
23900 /* This sub-expression matches nothing: just wait for the next
23901 one. */
23904 else if (TREE_CODE (match_expr) == EQ_EXPR)
23906 /* We are matching: <discr_field> == <integer_cst>
23907 This sub-expression matches a single value. */
23908 tree integer_cst = TREE_OPERAND (match_expr, 1);
23910 candidate_discr
23911 = analyze_discr_in_predicate (TREE_OPERAND (match_expr, 0),
23912 struct_type);
23914 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
23915 if (!get_discr_value (integer_cst,
23916 &new_node->dw_discr_lower_bound))
23917 goto abort;
23918 new_node->dw_discr_range = false;
23921 else if (TREE_CODE (match_expr) == TRUTH_ANDIF_EXPR)
23923 /* We are matching:
23924 <discr_field> > <integer_cst>
23925 && <discr_field> < <integer_cst>.
23926 This sub-expression matches the range of values between the
23927 two matched integer constants. Note that comparisons can be
23928 inclusive or exclusive. */
23929 tree candidate_discr_1, candidate_discr_2;
23930 tree lower_cst, upper_cst;
23931 bool lower_cst_included, upper_cst_included;
23932 tree lower_op = TREE_OPERAND (match_expr, 0);
23933 tree upper_op = TREE_OPERAND (match_expr, 1);
23935 /* When the comparison is exclusive, the integer constant is not
23936 the discriminant range bound we are looking for: we will have
23937 to increment or decrement it. */
23938 if (TREE_CODE (lower_op) == GE_EXPR)
23939 lower_cst_included = true;
23940 else if (TREE_CODE (lower_op) == GT_EXPR)
23941 lower_cst_included = false;
23942 else
23943 goto abort;
23945 if (TREE_CODE (upper_op) == LE_EXPR)
23946 upper_cst_included = true;
23947 else if (TREE_CODE (upper_op) == LT_EXPR)
23948 upper_cst_included = false;
23949 else
23950 goto abort;
23952 /* Extract the discriminant from the first operand and check it
23953 is consistant with the same analysis in the second
23954 operand. */
23955 candidate_discr_1
23956 = analyze_discr_in_predicate (TREE_OPERAND (lower_op, 0),
23957 struct_type);
23958 candidate_discr_2
23959 = analyze_discr_in_predicate (TREE_OPERAND (upper_op, 0),
23960 struct_type);
23961 if (candidate_discr_1 == candidate_discr_2)
23962 candidate_discr = candidate_discr_1;
23963 else
23964 goto abort;
23966 /* Extract bounds from both. */
23967 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
23968 lower_cst = TREE_OPERAND (lower_op, 1);
23969 upper_cst = TREE_OPERAND (upper_op, 1);
23971 if (!lower_cst_included)
23972 lower_cst
23973 = fold_build2 (PLUS_EXPR, TREE_TYPE (lower_cst), lower_cst,
23974 build_int_cst (TREE_TYPE (lower_cst), 1));
23975 if (!upper_cst_included)
23976 upper_cst
23977 = fold_build2 (MINUS_EXPR, TREE_TYPE (upper_cst), upper_cst,
23978 build_int_cst (TREE_TYPE (upper_cst), 1));
23980 if (!get_discr_value (lower_cst,
23981 &new_node->dw_discr_lower_bound)
23982 || !get_discr_value (upper_cst,
23983 &new_node->dw_discr_upper_bound))
23984 goto abort;
23986 new_node->dw_discr_range = true;
23989 else
23990 /* Unsupported sub-expression: we cannot determine the set of
23991 matching discriminant values. Abort everything. */
23992 goto abort;
23994 /* If the discriminant info is not consistant with what we saw so
23995 far, consider the analysis failed and abort everything. */
23996 if (candidate_discr == NULL_TREE
23997 || (*discr_decl != NULL_TREE && candidate_discr != *discr_decl))
23998 goto abort;
23999 else
24000 *discr_decl = candidate_discr;
24002 if (new_node != NULL)
24004 new_node->dw_discr_next = discr_lists[i];
24005 discr_lists[i] = new_node;
24007 match_expr = next_round_match_expr;
24011 /* If we reach this point, we could match everything we were interested
24012 in. */
24013 return;
24015 abort:
24016 /* Clean all data structure and return no result. */
24017 free (*discr_lists_p);
24018 *discr_lists_p = NULL;
24019 *discr_decl = NULL_TREE;
24022 /* Generate a DIE to represent VARIANT_PART_DECL, a variant part that is part
24023 of STRUCT_TYPE, a record type. This new DIE is emitted as the next child
24024 under CONTEXT_DIE.
24026 Variant parts are supposed to be implemented as a FIELD_DECL whose type is a
24027 QUAL_UNION_TYPE: this is the VARIANT_PART_DECL parameter. The members for
24028 this type, which are record types, represent the available variants and each
24029 has a DECL_QUALIFIER attribute. The discriminant and the discriminant
24030 values are inferred from these attributes.
24032 In trees, the offsets for the fields inside these sub-records are relative
24033 to the variant part itself, whereas the corresponding DIEs should have
24034 offset attributes that are relative to the embedding record base address.
24035 This is why the caller must provide a VARIANT_PART_OFFSET expression: it
24036 must be an expression that computes the offset of the variant part to
24037 describe in DWARF. */
24039 static void
24040 gen_variant_part (tree variant_part_decl, struct vlr_context *vlr_ctx,
24041 dw_die_ref context_die)
24043 const tree variant_part_type = TREE_TYPE (variant_part_decl);
24044 tree variant_part_offset = vlr_ctx->variant_part_offset;
24045 struct loc_descr_context ctx = {
24046 vlr_ctx->struct_type, /* context_type */
24047 NULL_TREE, /* base_decl */
24048 NULL, /* dpi */
24049 false, /* placeholder_arg */
24050 false /* placeholder_seen */
24053 /* The FIELD_DECL node in STRUCT_TYPE that acts as the discriminant, or
24054 NULL_TREE if there is no such field. */
24055 tree discr_decl = NULL_TREE;
24056 dw_discr_list_ref *discr_lists;
24057 unsigned discr_lists_length = 0;
24058 unsigned i;
24060 dw_die_ref dwarf_proc_die = NULL;
24061 dw_die_ref variant_part_die
24062 = new_die (DW_TAG_variant_part, context_die, variant_part_type);
24064 equate_decl_number_to_die (variant_part_decl, variant_part_die);
24066 analyze_variants_discr (variant_part_decl, vlr_ctx->struct_type,
24067 &discr_decl, &discr_lists, &discr_lists_length);
24069 if (discr_decl != NULL_TREE)
24071 dw_die_ref discr_die = lookup_decl_die (discr_decl);
24073 if (discr_die)
24074 add_AT_die_ref (variant_part_die, DW_AT_discr, discr_die);
24075 else
24076 /* We have no DIE for the discriminant, so just discard all
24077 discrimimant information in the output. */
24078 discr_decl = NULL_TREE;
24081 /* If the offset for this variant part is more complex than a constant,
24082 create a DWARF procedure for it so that we will not have to generate DWARF
24083 expressions for it for each member. */
24084 if (TREE_CODE (variant_part_offset) != INTEGER_CST
24085 && (dwarf_version >= 3 || !dwarf_strict))
24087 const tree dwarf_proc_fndecl
24088 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
24089 build_function_type (TREE_TYPE (variant_part_offset),
24090 NULL_TREE));
24091 const tree dwarf_proc_call = build_call_expr (dwarf_proc_fndecl, 0);
24092 const dw_loc_descr_ref dwarf_proc_body
24093 = loc_descriptor_from_tree (variant_part_offset, 0, &ctx);
24095 dwarf_proc_die = new_dwarf_proc_die (dwarf_proc_body,
24096 dwarf_proc_fndecl, context_die);
24097 if (dwarf_proc_die != NULL)
24098 variant_part_offset = dwarf_proc_call;
24101 /* Output DIEs for all variants. */
24102 i = 0;
24103 for (tree variant = TYPE_FIELDS (variant_part_type);
24104 variant != NULL_TREE;
24105 variant = DECL_CHAIN (variant), ++i)
24107 tree variant_type = TREE_TYPE (variant);
24108 dw_die_ref variant_die;
24110 /* All variants (i.e. members of a variant part) are supposed to be
24111 encoded as structures. Sub-variant parts are QUAL_UNION_TYPE fields
24112 under these records. */
24113 gcc_assert (TREE_CODE (variant_type) == RECORD_TYPE);
24115 variant_die = new_die (DW_TAG_variant, variant_part_die, variant_type);
24116 equate_decl_number_to_die (variant, variant_die);
24118 /* Output discriminant values this variant matches, if any. */
24119 if (discr_decl == NULL || discr_lists[i] == NULL)
24120 /* In the case we have discriminant information at all, this is
24121 probably the default variant: as the standard says, don't
24122 output any discriminant value/list attribute. */
24124 else if (discr_lists[i]->dw_discr_next == NULL
24125 && !discr_lists[i]->dw_discr_range)
24126 /* If there is only one accepted value, don't bother outputting a
24127 list. */
24128 add_discr_value (variant_die, &discr_lists[i]->dw_discr_lower_bound);
24129 else
24130 add_discr_list (variant_die, discr_lists[i]);
24132 for (tree member = TYPE_FIELDS (variant_type);
24133 member != NULL_TREE;
24134 member = DECL_CHAIN (member))
24136 struct vlr_context vlr_sub_ctx = {
24137 vlr_ctx->struct_type, /* struct_type */
24138 NULL /* variant_part_offset */
24140 if (is_variant_part (member))
24142 /* All offsets for fields inside variant parts are relative to
24143 the top-level embedding RECORD_TYPE's base address. On the
24144 other hand, offsets in GCC's types are relative to the
24145 nested-most variant part. So we have to sum offsets each time
24146 we recurse. */
24148 vlr_sub_ctx.variant_part_offset
24149 = fold_build2 (PLUS_EXPR, TREE_TYPE (variant_part_offset),
24150 variant_part_offset, byte_position (member));
24151 gen_variant_part (member, &vlr_sub_ctx, variant_die);
24153 else
24155 vlr_sub_ctx.variant_part_offset = variant_part_offset;
24156 gen_decl_die (member, NULL, &vlr_sub_ctx, variant_die);
24161 free (discr_lists);
24164 /* Generate a DIE for a class member. */
24166 static void
24167 gen_member_die (tree type, dw_die_ref context_die)
24169 tree member;
24170 tree binfo = TYPE_BINFO (type);
24172 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
24174 /* If this is not an incomplete type, output descriptions of each of its
24175 members. Note that as we output the DIEs necessary to represent the
24176 members of this record or union type, we will also be trying to output
24177 DIEs to represent the *types* of those members. However the `type'
24178 function (above) will specifically avoid generating type DIEs for member
24179 types *within* the list of member DIEs for this (containing) type except
24180 for those types (of members) which are explicitly marked as also being
24181 members of this (containing) type themselves. The g++ front- end can
24182 force any given type to be treated as a member of some other (containing)
24183 type by setting the TYPE_CONTEXT of the given (member) type to point to
24184 the TREE node representing the appropriate (containing) type. */
24186 /* First output info about the base classes. */
24187 if (binfo)
24189 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
24190 int i;
24191 tree base;
24193 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
24194 gen_inheritance_die (base,
24195 (accesses ? (*accesses)[i] : access_public_node),
24196 type,
24197 context_die);
24200 /* Now output info about the data members and type members. */
24201 for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
24203 struct vlr_context vlr_ctx = { type, NULL_TREE };
24204 bool static_inline_p
24205 = (TREE_STATIC (member)
24206 && (lang_hooks.decls.decl_dwarf_attribute (member, DW_AT_inline)
24207 != -1));
24209 /* Ignore clones. */
24210 if (DECL_ABSTRACT_ORIGIN (member))
24211 continue;
24213 /* If we thought we were generating minimal debug info for TYPE
24214 and then changed our minds, some of the member declarations
24215 may have already been defined. Don't define them again, but
24216 do put them in the right order. */
24218 if (dw_die_ref child = lookup_decl_die (member))
24220 /* Handle inline static data members, which only have in-class
24221 declarations. */
24222 dw_die_ref ref = NULL;
24223 if (child->die_tag == DW_TAG_variable
24224 && child->die_parent == comp_unit_die ())
24226 ref = get_AT_ref (child, DW_AT_specification);
24227 /* For C++17 inline static data members followed by redundant
24228 out of class redeclaration, we might get here with
24229 child being the DIE created for the out of class
24230 redeclaration and with its DW_AT_specification being
24231 the DIE created for in-class definition. We want to
24232 reparent the latter, and don't want to create another
24233 DIE with DW_AT_specification in that case, because
24234 we already have one. */
24235 if (ref
24236 && static_inline_p
24237 && ref->die_tag == DW_TAG_variable
24238 && ref->die_parent == comp_unit_die ()
24239 && get_AT (ref, DW_AT_specification) == NULL)
24241 child = ref;
24242 ref = NULL;
24243 static_inline_p = false;
24247 if (child->die_tag == DW_TAG_variable
24248 && child->die_parent == comp_unit_die ()
24249 && ref == NULL)
24251 reparent_child (child, context_die);
24252 if (dwarf_version < 5)
24253 child->die_tag = DW_TAG_member;
24255 else
24256 splice_child_die (context_die, child);
24259 /* Do not generate standard DWARF for variant parts if we are generating
24260 the corresponding GNAT encodings: DIEs generated for both would
24261 conflict in our mappings. */
24262 else if (is_variant_part (member)
24263 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
24265 vlr_ctx.variant_part_offset = byte_position (member);
24266 gen_variant_part (member, &vlr_ctx, context_die);
24268 else
24270 vlr_ctx.variant_part_offset = NULL_TREE;
24271 gen_decl_die (member, NULL, &vlr_ctx, context_die);
24274 /* For C++ inline static data members emit immediately a DW_TAG_variable
24275 DIE that will refer to that DW_TAG_member/DW_TAG_variable through
24276 DW_AT_specification. */
24277 if (static_inline_p)
24279 int old_extern = DECL_EXTERNAL (member);
24280 DECL_EXTERNAL (member) = 0;
24281 gen_decl_die (member, NULL, NULL, comp_unit_die ());
24282 DECL_EXTERNAL (member) = old_extern;
24287 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
24288 is set, we pretend that the type was never defined, so we only get the
24289 member DIEs needed by later specification DIEs. */
24291 static void
24292 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
24293 enum debug_info_usage usage)
24295 if (TREE_ASM_WRITTEN (type))
24297 /* Fill in the bound of variable-length fields in late dwarf if
24298 still incomplete. */
24299 if (!early_dwarf && variably_modified_type_p (type, NULL))
24300 for (tree member = TYPE_FIELDS (type);
24301 member;
24302 member = DECL_CHAIN (member))
24303 fill_variable_array_bounds (TREE_TYPE (member));
24304 return;
24307 dw_die_ref type_die = lookup_type_die (type);
24308 dw_die_ref scope_die = 0;
24309 int nested = 0;
24310 int complete = (TYPE_SIZE (type)
24311 && (! TYPE_STUB_DECL (type)
24312 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
24313 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
24314 complete = complete && should_emit_struct_debug (type, usage);
24316 if (type_die && ! complete)
24317 return;
24319 if (TYPE_CONTEXT (type) != NULL_TREE
24320 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
24321 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
24322 nested = 1;
24324 scope_die = scope_die_for (type, context_die);
24326 /* Generate child dies for template paramaters. */
24327 if (!type_die && debug_info_level > DINFO_LEVEL_TERSE)
24328 schedule_generic_params_dies_gen (type);
24330 if (! type_die || (nested && is_cu_die (scope_die)))
24331 /* First occurrence of type or toplevel definition of nested class. */
24333 dw_die_ref old_die = type_die;
24335 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
24336 ? record_type_tag (type) : DW_TAG_union_type,
24337 scope_die, type);
24338 equate_type_number_to_die (type, type_die);
24339 if (old_die)
24340 add_AT_specification (type_die, old_die);
24341 else
24342 add_name_attribute (type_die, type_tag (type));
24344 else
24345 remove_AT (type_die, DW_AT_declaration);
24347 /* If this type has been completed, then give it a byte_size attribute and
24348 then give a list of members. */
24349 if (complete && !ns_decl)
24351 /* Prevent infinite recursion in cases where the type of some member of
24352 this type is expressed in terms of this type itself. */
24353 TREE_ASM_WRITTEN (type) = 1;
24354 add_byte_size_attribute (type_die, type);
24355 add_alignment_attribute (type_die, type);
24356 if (TYPE_STUB_DECL (type) != NULL_TREE)
24358 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
24359 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
24362 /* If the first reference to this type was as the return type of an
24363 inline function, then it may not have a parent. Fix this now. */
24364 if (type_die->die_parent == NULL)
24365 add_child_die (scope_die, type_die);
24367 push_decl_scope (type);
24368 gen_member_die (type, type_die);
24369 pop_decl_scope ();
24371 add_gnat_descriptive_type_attribute (type_die, type, context_die);
24372 if (TYPE_ARTIFICIAL (type))
24373 add_AT_flag (type_die, DW_AT_artificial, 1);
24375 /* GNU extension: Record what type our vtable lives in. */
24376 if (TYPE_VFIELD (type))
24378 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
24380 gen_type_die (vtype, context_die);
24381 add_AT_die_ref (type_die, DW_AT_containing_type,
24382 lookup_type_die (vtype));
24385 else
24387 add_AT_flag (type_die, DW_AT_declaration, 1);
24389 /* We don't need to do this for function-local types. */
24390 if (TYPE_STUB_DECL (type)
24391 && ! decl_function_context (TYPE_STUB_DECL (type)))
24392 vec_safe_push (incomplete_types, type);
24395 if (get_AT (type_die, DW_AT_name))
24396 add_pubtype (type, type_die);
24399 /* Generate a DIE for a subroutine _type_. */
24401 static void
24402 gen_subroutine_type_die (tree type, dw_die_ref context_die)
24404 tree return_type = TREE_TYPE (type);
24405 dw_die_ref subr_die
24406 = new_die (DW_TAG_subroutine_type,
24407 scope_die_for (type, context_die), type);
24409 equate_type_number_to_die (type, subr_die);
24410 add_prototyped_attribute (subr_die, type);
24411 add_type_attribute (subr_die, return_type, TYPE_UNQUALIFIED, false,
24412 context_die);
24413 add_alignment_attribute (subr_die, type);
24414 gen_formal_types_die (type, subr_die);
24416 if (get_AT (subr_die, DW_AT_name))
24417 add_pubtype (type, subr_die);
24418 if ((dwarf_version >= 5 || !dwarf_strict)
24419 && lang_hooks.types.type_dwarf_attribute (type, DW_AT_reference) != -1)
24420 add_AT_flag (subr_die, DW_AT_reference, 1);
24421 if ((dwarf_version >= 5 || !dwarf_strict)
24422 && lang_hooks.types.type_dwarf_attribute (type,
24423 DW_AT_rvalue_reference) != -1)
24424 add_AT_flag (subr_die, DW_AT_rvalue_reference, 1);
24427 /* Generate a DIE for a type definition. */
24429 static void
24430 gen_typedef_die (tree decl, dw_die_ref context_die)
24432 dw_die_ref type_die;
24433 tree type;
24435 if (TREE_ASM_WRITTEN (decl))
24437 if (DECL_ORIGINAL_TYPE (decl))
24438 fill_variable_array_bounds (DECL_ORIGINAL_TYPE (decl));
24439 return;
24442 /* As we avoid creating DIEs for local typedefs (see decl_ultimate_origin
24443 checks in process_scope_var and modified_type_die), this should be called
24444 only for original types. */
24445 gcc_assert (decl_ultimate_origin (decl) == NULL
24446 || decl_ultimate_origin (decl) == decl);
24448 TREE_ASM_WRITTEN (decl) = 1;
24449 type_die = new_die (DW_TAG_typedef, context_die, decl);
24451 add_name_and_src_coords_attributes (type_die, decl);
24452 if (DECL_ORIGINAL_TYPE (decl))
24454 type = DECL_ORIGINAL_TYPE (decl);
24455 if (type == error_mark_node)
24456 return;
24458 gcc_assert (type != TREE_TYPE (decl));
24459 equate_type_number_to_die (TREE_TYPE (decl), type_die);
24461 else
24463 type = TREE_TYPE (decl);
24464 if (type == error_mark_node)
24465 return;
24467 if (is_naming_typedef_decl (TYPE_NAME (type)))
24469 /* Here, we are in the case of decl being a typedef naming
24470 an anonymous type, e.g:
24471 typedef struct {...} foo;
24472 In that case TREE_TYPE (decl) is not a typedef variant
24473 type and TYPE_NAME of the anonymous type is set to the
24474 TYPE_DECL of the typedef. This construct is emitted by
24475 the C++ FE.
24477 TYPE is the anonymous struct named by the typedef
24478 DECL. As we need the DW_AT_type attribute of the
24479 DW_TAG_typedef to point to the DIE of TYPE, let's
24480 generate that DIE right away. add_type_attribute
24481 called below will then pick (via lookup_type_die) that
24482 anonymous struct DIE. */
24483 if (!TREE_ASM_WRITTEN (type))
24484 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
24486 /* This is a GNU Extension. We are adding a
24487 DW_AT_linkage_name attribute to the DIE of the
24488 anonymous struct TYPE. The value of that attribute
24489 is the name of the typedef decl naming the anonymous
24490 struct. This greatly eases the work of consumers of
24491 this debug info. */
24492 add_linkage_name_raw (lookup_type_die (type), decl);
24496 add_type_attribute (type_die, type, decl_quals (decl), false,
24497 context_die);
24499 if (is_naming_typedef_decl (decl))
24500 /* We want that all subsequent calls to lookup_type_die with
24501 TYPE in argument yield the DW_TAG_typedef we have just
24502 created. */
24503 equate_type_number_to_die (type, type_die);
24505 add_alignment_attribute (type_die, TREE_TYPE (decl));
24507 add_accessibility_attribute (type_die, decl);
24509 if (DECL_ABSTRACT_P (decl))
24510 equate_decl_number_to_die (decl, type_die);
24512 if (get_AT (type_die, DW_AT_name))
24513 add_pubtype (decl, type_die);
24516 /* Generate a DIE for a struct, class, enum or union type. */
24518 static void
24519 gen_tagged_type_die (tree type,
24520 dw_die_ref context_die,
24521 enum debug_info_usage usage)
24523 int need_pop;
24525 if (type == NULL_TREE
24526 || !is_tagged_type (type))
24527 return;
24529 if (TREE_ASM_WRITTEN (type))
24530 need_pop = 0;
24531 /* If this is a nested type whose containing class hasn't been written
24532 out yet, writing it out will cover this one, too. This does not apply
24533 to instantiations of member class templates; they need to be added to
24534 the containing class as they are generated. FIXME: This hurts the
24535 idea of combining type decls from multiple TUs, since we can't predict
24536 what set of template instantiations we'll get. */
24537 else if (TYPE_CONTEXT (type)
24538 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
24539 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
24541 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
24543 if (TREE_ASM_WRITTEN (type))
24544 return;
24546 /* If that failed, attach ourselves to the stub. */
24547 push_decl_scope (TYPE_CONTEXT (type));
24548 context_die = lookup_type_die (TYPE_CONTEXT (type));
24549 need_pop = 1;
24551 else if (TYPE_CONTEXT (type) != NULL_TREE
24552 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
24554 /* If this type is local to a function that hasn't been written
24555 out yet, use a NULL context for now; it will be fixed up in
24556 decls_for_scope. */
24557 context_die = lookup_decl_die (TYPE_CONTEXT (type));
24558 /* A declaration DIE doesn't count; nested types need to go in the
24559 specification. */
24560 if (context_die && is_declaration_die (context_die))
24561 context_die = NULL;
24562 need_pop = 0;
24564 else
24566 context_die = declare_in_namespace (type, context_die);
24567 need_pop = 0;
24570 if (TREE_CODE (type) == ENUMERAL_TYPE)
24572 /* This might have been written out by the call to
24573 declare_in_namespace. */
24574 if (!TREE_ASM_WRITTEN (type))
24575 gen_enumeration_type_die (type, context_die);
24577 else
24578 gen_struct_or_union_type_die (type, context_die, usage);
24580 if (need_pop)
24581 pop_decl_scope ();
24583 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
24584 it up if it is ever completed. gen_*_type_die will set it for us
24585 when appropriate. */
24588 /* Generate a type description DIE. */
24590 static void
24591 gen_type_die_with_usage (tree type, dw_die_ref context_die,
24592 enum debug_info_usage usage)
24594 struct array_descr_info info;
24596 if (type == NULL_TREE || type == error_mark_node)
24597 return;
24599 if (flag_checking && type)
24600 verify_type (type);
24602 if (TYPE_NAME (type) != NULL_TREE
24603 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
24604 && is_redundant_typedef (TYPE_NAME (type))
24605 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
24606 /* The DECL of this type is a typedef we don't want to emit debug
24607 info for but we want debug info for its underlying typedef.
24608 This can happen for e.g, the injected-class-name of a C++
24609 type. */
24610 type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
24612 /* If TYPE is a typedef type variant, let's generate debug info
24613 for the parent typedef which TYPE is a type of. */
24614 if (typedef_variant_p (type))
24616 if (TREE_ASM_WRITTEN (type))
24617 return;
24619 tree name = TYPE_NAME (type);
24620 tree origin = decl_ultimate_origin (name);
24621 if (origin != NULL && origin != name)
24623 gen_decl_die (origin, NULL, NULL, context_die);
24624 return;
24627 /* Prevent broken recursion; we can't hand off to the same type. */
24628 gcc_assert (DECL_ORIGINAL_TYPE (name) != type);
24630 /* Give typedefs the right scope. */
24631 context_die = scope_die_for (type, context_die);
24633 TREE_ASM_WRITTEN (type) = 1;
24635 gen_decl_die (name, NULL, NULL, context_die);
24636 return;
24639 /* If type is an anonymous tagged type named by a typedef, let's
24640 generate debug info for the typedef. */
24641 if (is_naming_typedef_decl (TYPE_NAME (type)))
24643 /* Use the DIE of the containing namespace as the parent DIE of
24644 the type description DIE we want to generate. */
24645 if (DECL_CONTEXT (TYPE_NAME (type))
24646 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
24647 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
24649 gen_decl_die (TYPE_NAME (type), NULL, NULL, context_die);
24650 return;
24653 if (lang_hooks.types.get_debug_type)
24655 tree debug_type = lang_hooks.types.get_debug_type (type);
24657 if (debug_type != NULL_TREE && debug_type != type)
24659 gen_type_die_with_usage (debug_type, context_die, usage);
24660 return;
24664 /* We are going to output a DIE to represent the unqualified version
24665 of this type (i.e. without any const or volatile qualifiers) so
24666 get the main variant (i.e. the unqualified version) of this type
24667 now. (Vectors and arrays are special because the debugging info is in the
24668 cloned type itself. Similarly function/method types can contain extra
24669 ref-qualification). */
24670 if (TREE_CODE (type) == FUNCTION_TYPE
24671 || TREE_CODE (type) == METHOD_TYPE)
24673 /* For function/method types, can't use type_main_variant here,
24674 because that can have different ref-qualifiers for C++,
24675 but try to canonicalize. */
24676 tree main = TYPE_MAIN_VARIANT (type);
24677 for (tree t = main; t; t = TYPE_NEXT_VARIANT (t))
24678 if (TYPE_QUALS_NO_ADDR_SPACE (t) == 0
24679 && check_base_type (t, main)
24680 && check_lang_type (t, type))
24682 type = t;
24683 break;
24686 else if (TREE_CODE (type) != VECTOR_TYPE
24687 && TREE_CODE (type) != ARRAY_TYPE)
24688 type = type_main_variant (type);
24690 /* If this is an array type with hidden descriptor, handle it first. */
24691 if (!TREE_ASM_WRITTEN (type)
24692 && lang_hooks.types.get_array_descr_info)
24694 memset (&info, 0, sizeof (info));
24695 if (lang_hooks.types.get_array_descr_info (type, &info))
24697 /* Fortran sometimes emits array types with no dimension. */
24698 gcc_assert (info.ndimensions >= 0
24699 && (info.ndimensions
24700 <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN));
24701 gen_descr_array_type_die (type, &info, context_die);
24702 TREE_ASM_WRITTEN (type) = 1;
24703 return;
24707 if (TREE_ASM_WRITTEN (type))
24709 /* Variable-length types may be incomplete even if
24710 TREE_ASM_WRITTEN. For such types, fall through to
24711 gen_array_type_die() and possibly fill in
24712 DW_AT_{upper,lower}_bound attributes. */
24713 if ((TREE_CODE (type) != ARRAY_TYPE
24714 && TREE_CODE (type) != RECORD_TYPE
24715 && TREE_CODE (type) != UNION_TYPE
24716 && TREE_CODE (type) != QUAL_UNION_TYPE)
24717 || !variably_modified_type_p (type, NULL))
24718 return;
24721 switch (TREE_CODE (type))
24723 case ERROR_MARK:
24724 break;
24726 case POINTER_TYPE:
24727 case REFERENCE_TYPE:
24728 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
24729 ensures that the gen_type_die recursion will terminate even if the
24730 type is recursive. Recursive types are possible in Ada. */
24731 /* ??? We could perhaps do this for all types before the switch
24732 statement. */
24733 TREE_ASM_WRITTEN (type) = 1;
24735 /* For these types, all that is required is that we output a DIE (or a
24736 set of DIEs) to represent the "basis" type. */
24737 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24738 DINFO_USAGE_IND_USE);
24739 break;
24741 case OFFSET_TYPE:
24742 /* This code is used for C++ pointer-to-data-member types.
24743 Output a description of the relevant class type. */
24744 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
24745 DINFO_USAGE_IND_USE);
24747 /* Output a description of the type of the object pointed to. */
24748 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24749 DINFO_USAGE_IND_USE);
24751 /* Now output a DIE to represent this pointer-to-data-member type
24752 itself. */
24753 gen_ptr_to_mbr_type_die (type, context_die);
24754 break;
24756 case FUNCTION_TYPE:
24757 /* Force out return type (in case it wasn't forced out already). */
24758 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24759 DINFO_USAGE_DIR_USE);
24760 gen_subroutine_type_die (type, context_die);
24761 break;
24763 case METHOD_TYPE:
24764 /* Force out return type (in case it wasn't forced out already). */
24765 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24766 DINFO_USAGE_DIR_USE);
24767 gen_subroutine_type_die (type, context_die);
24768 break;
24770 case ARRAY_TYPE:
24771 case VECTOR_TYPE:
24772 gen_array_type_die (type, context_die);
24773 break;
24775 case ENUMERAL_TYPE:
24776 case RECORD_TYPE:
24777 case UNION_TYPE:
24778 case QUAL_UNION_TYPE:
24779 gen_tagged_type_die (type, context_die, usage);
24780 return;
24782 case VOID_TYPE:
24783 case INTEGER_TYPE:
24784 case REAL_TYPE:
24785 case FIXED_POINT_TYPE:
24786 case COMPLEX_TYPE:
24787 case BOOLEAN_TYPE:
24788 case POINTER_BOUNDS_TYPE:
24789 /* No DIEs needed for fundamental types. */
24790 break;
24792 case NULLPTR_TYPE:
24793 case LANG_TYPE:
24794 /* Just use DW_TAG_unspecified_type. */
24796 dw_die_ref type_die = lookup_type_die (type);
24797 if (type_die == NULL)
24799 tree name = TYPE_IDENTIFIER (type);
24800 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (),
24801 type);
24802 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
24803 equate_type_number_to_die (type, type_die);
24806 break;
24808 default:
24809 if (is_cxx_auto (type))
24811 tree name = TYPE_IDENTIFIER (type);
24812 dw_die_ref *die = (name == get_identifier ("auto")
24813 ? &auto_die : &decltype_auto_die);
24814 if (!*die)
24816 *die = new_die (DW_TAG_unspecified_type,
24817 comp_unit_die (), NULL_TREE);
24818 add_name_attribute (*die, IDENTIFIER_POINTER (name));
24820 equate_type_number_to_die (type, *die);
24821 break;
24823 gcc_unreachable ();
24826 TREE_ASM_WRITTEN (type) = 1;
24829 static void
24830 gen_type_die (tree type, dw_die_ref context_die)
24832 if (type != error_mark_node)
24834 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
24835 if (flag_checking)
24837 dw_die_ref die = lookup_type_die (type);
24838 if (die)
24839 check_die (die);
24844 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
24845 things which are local to the given block. */
24847 static void
24848 gen_block_die (tree stmt, dw_die_ref context_die)
24850 int must_output_die = 0;
24851 bool inlined_func;
24853 /* Ignore blocks that are NULL. */
24854 if (stmt == NULL_TREE)
24855 return;
24857 inlined_func = inlined_function_outer_scope_p (stmt);
24859 /* If the block is one fragment of a non-contiguous block, do not
24860 process the variables, since they will have been done by the
24861 origin block. Do process subblocks. */
24862 if (BLOCK_FRAGMENT_ORIGIN (stmt))
24864 tree sub;
24866 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
24867 gen_block_die (sub, context_die);
24869 return;
24872 /* Determine if we need to output any Dwarf DIEs at all to represent this
24873 block. */
24874 if (inlined_func)
24875 /* The outer scopes for inlinings *must* always be represented. We
24876 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
24877 must_output_die = 1;
24878 else
24880 /* Determine if this block directly contains any "significant"
24881 local declarations which we will need to output DIEs for. */
24882 if (debug_info_level > DINFO_LEVEL_TERSE)
24883 /* We are not in terse mode so *any* local declaration counts
24884 as being a "significant" one. */
24885 must_output_die = ((BLOCK_VARS (stmt) != NULL
24886 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
24887 && (TREE_USED (stmt)
24888 || TREE_ASM_WRITTEN (stmt)
24889 || BLOCK_ABSTRACT (stmt)));
24890 else if ((TREE_USED (stmt)
24891 || TREE_ASM_WRITTEN (stmt)
24892 || BLOCK_ABSTRACT (stmt))
24893 && !dwarf2out_ignore_block (stmt))
24894 must_output_die = 1;
24897 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
24898 DIE for any block which contains no significant local declarations at
24899 all. Rather, in such cases we just call `decls_for_scope' so that any
24900 needed Dwarf info for any sub-blocks will get properly generated. Note
24901 that in terse mode, our definition of what constitutes a "significant"
24902 local declaration gets restricted to include only inlined function
24903 instances and local (nested) function definitions. */
24904 if (must_output_die)
24906 if (inlined_func)
24908 /* If STMT block is abstract, that means we have been called
24909 indirectly from dwarf2out_abstract_function.
24910 That function rightfully marks the descendent blocks (of
24911 the abstract function it is dealing with) as being abstract,
24912 precisely to prevent us from emitting any
24913 DW_TAG_inlined_subroutine DIE as a descendent
24914 of an abstract function instance. So in that case, we should
24915 not call gen_inlined_subroutine_die.
24917 Later though, when cgraph asks dwarf2out to emit info
24918 for the concrete instance of the function decl into which
24919 the concrete instance of STMT got inlined, the later will lead
24920 to the generation of a DW_TAG_inlined_subroutine DIE. */
24921 if (! BLOCK_ABSTRACT (stmt))
24922 gen_inlined_subroutine_die (stmt, context_die);
24924 else
24925 gen_lexical_block_die (stmt, context_die);
24927 else
24928 decls_for_scope (stmt, context_die);
24931 /* Process variable DECL (or variable with origin ORIGIN) within
24932 block STMT and add it to CONTEXT_DIE. */
24933 static void
24934 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
24936 dw_die_ref die;
24937 tree decl_or_origin = decl ? decl : origin;
24939 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
24940 die = lookup_decl_die (decl_or_origin);
24941 else if (TREE_CODE (decl_or_origin) == TYPE_DECL)
24943 if (TYPE_DECL_IS_STUB (decl_or_origin))
24944 die = lookup_type_die (TREE_TYPE (decl_or_origin));
24945 else
24946 die = lookup_decl_die (decl_or_origin);
24947 /* Avoid re-creating the DIE late if it was optimized as unused early. */
24948 if (! die && ! early_dwarf)
24949 return;
24951 else
24952 die = NULL;
24954 /* Avoid creating DIEs for local typedefs and concrete static variables that
24955 will only be pruned later. */
24956 if ((origin || decl_ultimate_origin (decl))
24957 && (TREE_CODE (decl_or_origin) == TYPE_DECL
24958 || (VAR_P (decl_or_origin) && TREE_STATIC (decl_or_origin))))
24960 origin = decl_ultimate_origin (decl_or_origin);
24961 if (decl && VAR_P (decl) && die != NULL)
24963 die = lookup_decl_die (origin);
24964 if (die != NULL)
24965 equate_decl_number_to_die (decl, die);
24967 return;
24970 if (die != NULL && die->die_parent == NULL)
24971 add_child_die (context_die, die);
24972 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
24974 if (early_dwarf)
24975 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
24976 stmt, context_die);
24978 else
24980 if (decl && DECL_P (decl))
24982 die = lookup_decl_die (decl);
24984 /* Early created DIEs do not have a parent as the decls refer
24985 to the function as DECL_CONTEXT rather than the BLOCK. */
24986 if (die && die->die_parent == NULL)
24988 gcc_assert (in_lto_p);
24989 add_child_die (context_die, die);
24993 gen_decl_die (decl, origin, NULL, context_die);
24997 /* Generate all of the decls declared within a given scope and (recursively)
24998 all of its sub-blocks. */
25000 static void
25001 decls_for_scope (tree stmt, dw_die_ref context_die)
25003 tree decl;
25004 unsigned int i;
25005 tree subblocks;
25007 /* Ignore NULL blocks. */
25008 if (stmt == NULL_TREE)
25009 return;
25011 /* Output the DIEs to represent all of the data objects and typedefs
25012 declared directly within this block but not within any nested
25013 sub-blocks. Also, nested function and tag DIEs have been
25014 generated with a parent of NULL; fix that up now. We don't
25015 have to do this if we're at -g1. */
25016 if (debug_info_level > DINFO_LEVEL_TERSE)
25018 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
25019 process_scope_var (stmt, decl, NULL_TREE, context_die);
25020 /* BLOCK_NONLOCALIZED_VARs simply generate DIE stubs with abstract
25021 origin - avoid doing this twice as we have no good way to see
25022 if we've done it once already. */
25023 if (! early_dwarf)
25024 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
25026 decl = BLOCK_NONLOCALIZED_VAR (stmt, i);
25027 if (decl == current_function_decl)
25028 /* Ignore declarations of the current function, while they
25029 are declarations, gen_subprogram_die would treat them
25030 as definitions again, because they are equal to
25031 current_function_decl and endlessly recurse. */;
25032 else if (TREE_CODE (decl) == FUNCTION_DECL)
25033 process_scope_var (stmt, decl, NULL_TREE, context_die);
25034 else
25035 process_scope_var (stmt, NULL_TREE, decl, context_die);
25039 /* Even if we're at -g1, we need to process the subblocks in order to get
25040 inlined call information. */
25042 /* Output the DIEs to represent all sub-blocks (and the items declared
25043 therein) of this block. */
25044 for (subblocks = BLOCK_SUBBLOCKS (stmt);
25045 subblocks != NULL;
25046 subblocks = BLOCK_CHAIN (subblocks))
25047 gen_block_die (subblocks, context_die);
25050 /* Is this a typedef we can avoid emitting? */
25052 bool
25053 is_redundant_typedef (const_tree decl)
25055 if (TYPE_DECL_IS_STUB (decl))
25056 return true;
25058 if (DECL_ARTIFICIAL (decl)
25059 && DECL_CONTEXT (decl)
25060 && is_tagged_type (DECL_CONTEXT (decl))
25061 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
25062 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
25063 /* Also ignore the artificial member typedef for the class name. */
25064 return true;
25066 return false;
25069 /* Return TRUE if TYPE is a typedef that names a type for linkage
25070 purposes. This kind of typedefs is produced by the C++ FE for
25071 constructs like:
25073 typedef struct {...} foo;
25075 In that case, there is no typedef variant type produced for foo.
25076 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
25077 struct type. */
25079 static bool
25080 is_naming_typedef_decl (const_tree decl)
25082 if (decl == NULL_TREE
25083 || TREE_CODE (decl) != TYPE_DECL
25084 || DECL_NAMELESS (decl)
25085 || !is_tagged_type (TREE_TYPE (decl))
25086 || DECL_IS_BUILTIN (decl)
25087 || is_redundant_typedef (decl)
25088 /* It looks like Ada produces TYPE_DECLs that are very similar
25089 to C++ naming typedefs but that have different
25090 semantics. Let's be specific to c++ for now. */
25091 || !is_cxx (decl))
25092 return FALSE;
25094 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
25095 && TYPE_NAME (TREE_TYPE (decl)) == decl
25096 && (TYPE_STUB_DECL (TREE_TYPE (decl))
25097 != TYPE_NAME (TREE_TYPE (decl))));
25100 /* Looks up the DIE for a context. */
25102 static inline dw_die_ref
25103 lookup_context_die (tree context)
25105 if (context)
25107 /* Find die that represents this context. */
25108 if (TYPE_P (context))
25110 context = TYPE_MAIN_VARIANT (context);
25111 dw_die_ref ctx = lookup_type_die (context);
25112 if (!ctx)
25113 return NULL;
25114 return strip_naming_typedef (context, ctx);
25116 else
25117 return lookup_decl_die (context);
25119 return comp_unit_die ();
25122 /* Returns the DIE for a context. */
25124 static inline dw_die_ref
25125 get_context_die (tree context)
25127 if (context)
25129 /* Find die that represents this context. */
25130 if (TYPE_P (context))
25132 context = TYPE_MAIN_VARIANT (context);
25133 return strip_naming_typedef (context, force_type_die (context));
25135 else
25136 return force_decl_die (context);
25138 return comp_unit_die ();
25141 /* Returns the DIE for decl. A DIE will always be returned. */
25143 static dw_die_ref
25144 force_decl_die (tree decl)
25146 dw_die_ref decl_die;
25147 unsigned saved_external_flag;
25148 tree save_fn = NULL_TREE;
25149 decl_die = lookup_decl_die (decl);
25150 if (!decl_die)
25152 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
25154 decl_die = lookup_decl_die (decl);
25155 if (decl_die)
25156 return decl_die;
25158 switch (TREE_CODE (decl))
25160 case FUNCTION_DECL:
25161 /* Clear current_function_decl, so that gen_subprogram_die thinks
25162 that this is a declaration. At this point, we just want to force
25163 declaration die. */
25164 save_fn = current_function_decl;
25165 current_function_decl = NULL_TREE;
25166 gen_subprogram_die (decl, context_die);
25167 current_function_decl = save_fn;
25168 break;
25170 case VAR_DECL:
25171 /* Set external flag to force declaration die. Restore it after
25172 gen_decl_die() call. */
25173 saved_external_flag = DECL_EXTERNAL (decl);
25174 DECL_EXTERNAL (decl) = 1;
25175 gen_decl_die (decl, NULL, NULL, context_die);
25176 DECL_EXTERNAL (decl) = saved_external_flag;
25177 break;
25179 case NAMESPACE_DECL:
25180 if (dwarf_version >= 3 || !dwarf_strict)
25181 dwarf2out_decl (decl);
25182 else
25183 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
25184 decl_die = comp_unit_die ();
25185 break;
25187 case TRANSLATION_UNIT_DECL:
25188 decl_die = comp_unit_die ();
25189 break;
25191 default:
25192 gcc_unreachable ();
25195 /* We should be able to find the DIE now. */
25196 if (!decl_die)
25197 decl_die = lookup_decl_die (decl);
25198 gcc_assert (decl_die);
25201 return decl_die;
25204 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
25205 always returned. */
25207 static dw_die_ref
25208 force_type_die (tree type)
25210 dw_die_ref type_die;
25212 type_die = lookup_type_die (type);
25213 if (!type_die)
25215 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
25217 type_die = modified_type_die (type, TYPE_QUALS_NO_ADDR_SPACE (type),
25218 false, context_die);
25219 gcc_assert (type_die);
25221 return type_die;
25224 /* Force out any required namespaces to be able to output DECL,
25225 and return the new context_die for it, if it's changed. */
25227 static dw_die_ref
25228 setup_namespace_context (tree thing, dw_die_ref context_die)
25230 tree context = (DECL_P (thing)
25231 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
25232 if (context && TREE_CODE (context) == NAMESPACE_DECL)
25233 /* Force out the namespace. */
25234 context_die = force_decl_die (context);
25236 return context_die;
25239 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
25240 type) within its namespace, if appropriate.
25242 For compatibility with older debuggers, namespace DIEs only contain
25243 declarations; all definitions are emitted at CU scope, with
25244 DW_AT_specification pointing to the declaration (like with class
25245 members). */
25247 static dw_die_ref
25248 declare_in_namespace (tree thing, dw_die_ref context_die)
25250 dw_die_ref ns_context;
25252 if (debug_info_level <= DINFO_LEVEL_TERSE)
25253 return context_die;
25255 /* External declarations in the local scope only need to be emitted
25256 once, not once in the namespace and once in the scope.
25258 This avoids declaring the `extern' below in the
25259 namespace DIE as well as in the innermost scope:
25261 namespace S
25263 int i=5;
25264 int foo()
25266 int i=8;
25267 extern int i;
25268 return i;
25272 if (DECL_P (thing) && DECL_EXTERNAL (thing) && local_scope_p (context_die))
25273 return context_die;
25275 /* If this decl is from an inlined function, then don't try to emit it in its
25276 namespace, as we will get confused. It would have already been emitted
25277 when the abstract instance of the inline function was emitted anyways. */
25278 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
25279 return context_die;
25281 ns_context = setup_namespace_context (thing, context_die);
25283 if (ns_context != context_die)
25285 if (is_fortran ())
25286 return ns_context;
25287 if (DECL_P (thing))
25288 gen_decl_die (thing, NULL, NULL, ns_context);
25289 else
25290 gen_type_die (thing, ns_context);
25292 return context_die;
25295 /* Generate a DIE for a namespace or namespace alias. */
25297 static void
25298 gen_namespace_die (tree decl, dw_die_ref context_die)
25300 dw_die_ref namespace_die;
25302 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
25303 they are an alias of. */
25304 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
25306 /* Output a real namespace or module. */
25307 context_die = setup_namespace_context (decl, comp_unit_die ());
25308 namespace_die = new_die (is_fortran ()
25309 ? DW_TAG_module : DW_TAG_namespace,
25310 context_die, decl);
25311 /* For Fortran modules defined in different CU don't add src coords. */
25312 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
25314 const char *name = dwarf2_name (decl, 0);
25315 if (name)
25316 add_name_attribute (namespace_die, name);
25318 else
25319 add_name_and_src_coords_attributes (namespace_die, decl);
25320 if (DECL_EXTERNAL (decl))
25321 add_AT_flag (namespace_die, DW_AT_declaration, 1);
25322 equate_decl_number_to_die (decl, namespace_die);
25324 else
25326 /* Output a namespace alias. */
25328 /* Force out the namespace we are an alias of, if necessary. */
25329 dw_die_ref origin_die
25330 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
25332 if (DECL_FILE_SCOPE_P (decl)
25333 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
25334 context_die = setup_namespace_context (decl, comp_unit_die ());
25335 /* Now create the namespace alias DIE. */
25336 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
25337 add_name_and_src_coords_attributes (namespace_die, decl);
25338 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
25339 equate_decl_number_to_die (decl, namespace_die);
25341 if ((dwarf_version >= 5 || !dwarf_strict)
25342 && lang_hooks.decls.decl_dwarf_attribute (decl,
25343 DW_AT_export_symbols) == 1)
25344 add_AT_flag (namespace_die, DW_AT_export_symbols, 1);
25346 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
25347 if (want_pubnames ())
25348 add_pubname_string (lang_hooks.dwarf_name (decl, 1), namespace_die);
25351 /* Generate Dwarf debug information for a decl described by DECL.
25352 The return value is currently only meaningful for PARM_DECLs,
25353 for all other decls it returns NULL.
25355 If DECL is a FIELD_DECL, CTX is required: see the comment for VLR_CONTEXT.
25356 It can be NULL otherwise. */
25358 static dw_die_ref
25359 gen_decl_die (tree decl, tree origin, struct vlr_context *ctx,
25360 dw_die_ref context_die)
25362 tree decl_or_origin = decl ? decl : origin;
25363 tree class_origin = NULL, ultimate_origin;
25365 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
25366 return NULL;
25368 /* Ignore pointer bounds decls. */
25369 if (DECL_P (decl_or_origin)
25370 && TREE_TYPE (decl_or_origin)
25371 && POINTER_BOUNDS_P (decl_or_origin))
25372 return NULL;
25374 switch (TREE_CODE (decl_or_origin))
25376 case ERROR_MARK:
25377 break;
25379 case CONST_DECL:
25380 if (!is_fortran () && !is_ada ())
25382 /* The individual enumerators of an enum type get output when we output
25383 the Dwarf representation of the relevant enum type itself. */
25384 break;
25387 /* Emit its type. */
25388 gen_type_die (TREE_TYPE (decl), context_die);
25390 /* And its containing namespace. */
25391 context_die = declare_in_namespace (decl, context_die);
25393 gen_const_die (decl, context_die);
25394 break;
25396 case FUNCTION_DECL:
25397 #if 0
25398 /* FIXME */
25399 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
25400 on local redeclarations of global functions. That seems broken. */
25401 if (current_function_decl != decl)
25402 /* This is only a declaration. */;
25403 #endif
25405 /* We should have abstract copies already and should not generate
25406 stray type DIEs in late LTO dumping. */
25407 if (! early_dwarf)
25410 /* If we're emitting a clone, emit info for the abstract instance. */
25411 else if (origin || DECL_ORIGIN (decl) != decl)
25412 dwarf2out_abstract_function (origin
25413 ? DECL_ORIGIN (origin)
25414 : DECL_ABSTRACT_ORIGIN (decl));
25416 /* If we're emitting a possibly inlined function emit it as
25417 abstract instance. */
25418 else if (cgraph_function_possibly_inlined_p (decl)
25419 && ! DECL_ABSTRACT_P (decl)
25420 && ! class_or_namespace_scope_p (context_die)
25421 /* dwarf2out_abstract_function won't emit a die if this is just
25422 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
25423 that case, because that works only if we have a die. */
25424 && DECL_INITIAL (decl) != NULL_TREE)
25425 dwarf2out_abstract_function (decl);
25427 /* Otherwise we're emitting the primary DIE for this decl. */
25428 else if (debug_info_level > DINFO_LEVEL_TERSE)
25430 /* Before we describe the FUNCTION_DECL itself, make sure that we
25431 have its containing type. */
25432 if (!origin)
25433 origin = decl_class_context (decl);
25434 if (origin != NULL_TREE)
25435 gen_type_die (origin, context_die);
25437 /* And its return type. */
25438 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
25440 /* And its virtual context. */
25441 if (DECL_VINDEX (decl) != NULL_TREE)
25442 gen_type_die (DECL_CONTEXT (decl), context_die);
25444 /* Make sure we have a member DIE for decl. */
25445 if (origin != NULL_TREE)
25446 gen_type_die_for_member (origin, decl, context_die);
25448 /* And its containing namespace. */
25449 context_die = declare_in_namespace (decl, context_die);
25452 /* Now output a DIE to represent the function itself. */
25453 if (decl)
25454 gen_subprogram_die (decl, context_die);
25455 break;
25457 case TYPE_DECL:
25458 /* If we are in terse mode, don't generate any DIEs to represent any
25459 actual typedefs. */
25460 if (debug_info_level <= DINFO_LEVEL_TERSE)
25461 break;
25463 /* In the special case of a TYPE_DECL node representing the declaration
25464 of some type tag, if the given TYPE_DECL is marked as having been
25465 instantiated from some other (original) TYPE_DECL node (e.g. one which
25466 was generated within the original definition of an inline function) we
25467 used to generate a special (abbreviated) DW_TAG_structure_type,
25468 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
25469 should be actually referencing those DIEs, as variable DIEs with that
25470 type would be emitted already in the abstract origin, so it was always
25471 removed during unused type prunning. Don't add anything in this
25472 case. */
25473 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
25474 break;
25476 if (is_redundant_typedef (decl))
25477 gen_type_die (TREE_TYPE (decl), context_die);
25478 else
25479 /* Output a DIE to represent the typedef itself. */
25480 gen_typedef_die (decl, context_die);
25481 break;
25483 case LABEL_DECL:
25484 if (debug_info_level >= DINFO_LEVEL_NORMAL)
25485 gen_label_die (decl, context_die);
25486 break;
25488 case VAR_DECL:
25489 case RESULT_DECL:
25490 /* If we are in terse mode, don't generate any DIEs to represent any
25491 variable declarations or definitions. */
25492 if (debug_info_level <= DINFO_LEVEL_TERSE)
25493 break;
25495 /* Avoid generating stray type DIEs during late dwarf dumping.
25496 All types have been dumped early. */
25497 if (early_dwarf
25498 /* ??? But in LTRANS we cannot annotate early created variably
25499 modified type DIEs without copying them and adjusting all
25500 references to them. Dump them again as happens for inlining
25501 which copies both the decl and the types. */
25502 /* ??? And even non-LTO needs to re-visit type DIEs to fill
25503 in VLA bound information for example. */
25504 || (decl && variably_modified_type_p (TREE_TYPE (decl),
25505 current_function_decl)))
25507 /* Output any DIEs that are needed to specify the type of this data
25508 object. */
25509 if (decl_by_reference_p (decl_or_origin))
25510 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
25511 else
25512 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
25515 if (early_dwarf)
25517 /* And its containing type. */
25518 class_origin = decl_class_context (decl_or_origin);
25519 if (class_origin != NULL_TREE)
25520 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
25522 /* And its containing namespace. */
25523 context_die = declare_in_namespace (decl_or_origin, context_die);
25526 /* Now output the DIE to represent the data object itself. This gets
25527 complicated because of the possibility that the VAR_DECL really
25528 represents an inlined instance of a formal parameter for an inline
25529 function. */
25530 ultimate_origin = decl_ultimate_origin (decl_or_origin);
25531 if (ultimate_origin != NULL_TREE
25532 && TREE_CODE (ultimate_origin) == PARM_DECL)
25533 gen_formal_parameter_die (decl, origin,
25534 true /* Emit name attribute. */,
25535 context_die);
25536 else
25537 gen_variable_die (decl, origin, context_die);
25538 break;
25540 case FIELD_DECL:
25541 gcc_assert (ctx != NULL && ctx->struct_type != NULL);
25542 /* Ignore the nameless fields that are used to skip bits but handle C++
25543 anonymous unions and structs. */
25544 if (DECL_NAME (decl) != NULL_TREE
25545 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
25546 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
25548 gen_type_die (member_declared_type (decl), context_die);
25549 gen_field_die (decl, ctx, context_die);
25551 break;
25553 case PARM_DECL:
25554 /* Avoid generating stray type DIEs during late dwarf dumping.
25555 All types have been dumped early. */
25556 if (early_dwarf
25557 /* ??? But in LTRANS we cannot annotate early created variably
25558 modified type DIEs without copying them and adjusting all
25559 references to them. Dump them again as happens for inlining
25560 which copies both the decl and the types. */
25561 /* ??? And even non-LTO needs to re-visit type DIEs to fill
25562 in VLA bound information for example. */
25563 || (decl && variably_modified_type_p (TREE_TYPE (decl),
25564 current_function_decl)))
25566 if (DECL_BY_REFERENCE (decl_or_origin))
25567 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
25568 else
25569 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
25571 return gen_formal_parameter_die (decl, origin,
25572 true /* Emit name attribute. */,
25573 context_die);
25575 case NAMESPACE_DECL:
25576 if (dwarf_version >= 3 || !dwarf_strict)
25577 gen_namespace_die (decl, context_die);
25578 break;
25580 case IMPORTED_DECL:
25581 dwarf2out_imported_module_or_decl_1 (decl, DECL_NAME (decl),
25582 DECL_CONTEXT (decl), context_die);
25583 break;
25585 case NAMELIST_DECL:
25586 gen_namelist_decl (DECL_NAME (decl), context_die,
25587 NAMELIST_DECL_ASSOCIATED_DECL (decl));
25588 break;
25590 default:
25591 /* Probably some frontend-internal decl. Assume we don't care. */
25592 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
25593 break;
25596 return NULL;
25599 /* Output initial debug information for global DECL. Called at the
25600 end of the parsing process.
25602 This is the initial debug generation process. As such, the DIEs
25603 generated may be incomplete. A later debug generation pass
25604 (dwarf2out_late_global_decl) will augment the information generated
25605 in this pass (e.g., with complete location info). */
25607 static void
25608 dwarf2out_early_global_decl (tree decl)
25610 set_early_dwarf s;
25612 /* gen_decl_die() will set DECL_ABSTRACT because
25613 cgraph_function_possibly_inlined_p() returns true. This is in
25614 turn will cause DW_AT_inline attributes to be set.
25616 This happens because at early dwarf generation, there is no
25617 cgraph information, causing cgraph_function_possibly_inlined_p()
25618 to return true. Trick cgraph_function_possibly_inlined_p()
25619 while we generate dwarf early. */
25620 bool save = symtab->global_info_ready;
25621 symtab->global_info_ready = true;
25623 /* We don't handle TYPE_DECLs. If required, they'll be reached via
25624 other DECLs and they can point to template types or other things
25625 that dwarf2out can't handle when done via dwarf2out_decl. */
25626 if (TREE_CODE (decl) != TYPE_DECL
25627 && TREE_CODE (decl) != PARM_DECL)
25629 if (TREE_CODE (decl) == FUNCTION_DECL)
25631 tree save_fndecl = current_function_decl;
25633 /* For nested functions, make sure we have DIEs for the parents first
25634 so that all nested DIEs are generated at the proper scope in the
25635 first shot. */
25636 tree context = decl_function_context (decl);
25637 if (context != NULL)
25639 dw_die_ref context_die = lookup_decl_die (context);
25640 current_function_decl = context;
25642 /* Avoid emitting DIEs multiple times, but still process CONTEXT
25643 enough so that it lands in its own context. This avoids type
25644 pruning issues later on. */
25645 if (context_die == NULL || is_declaration_die (context_die))
25646 dwarf2out_decl (context);
25649 /* Emit an abstract origin of a function first. This happens
25650 with C++ constructor clones for example and makes
25651 dwarf2out_abstract_function happy which requires the early
25652 DIE of the abstract instance to be present. */
25653 tree origin = DECL_ABSTRACT_ORIGIN (decl);
25654 dw_die_ref origin_die;
25655 if (origin != NULL
25656 /* Do not emit the DIE multiple times but make sure to
25657 process it fully here in case we just saw a declaration. */
25658 && ((origin_die = lookup_decl_die (origin)) == NULL
25659 || is_declaration_die (origin_die)))
25661 current_function_decl = origin;
25662 dwarf2out_decl (origin);
25665 /* Emit the DIE for decl but avoid doing that multiple times. */
25666 dw_die_ref old_die;
25667 if ((old_die = lookup_decl_die (decl)) == NULL
25668 || is_declaration_die (old_die))
25670 current_function_decl = decl;
25671 dwarf2out_decl (decl);
25674 current_function_decl = save_fndecl;
25676 else
25677 dwarf2out_decl (decl);
25679 symtab->global_info_ready = save;
25682 /* Output debug information for global decl DECL. Called from
25683 toplev.c after compilation proper has finished. */
25685 static void
25686 dwarf2out_late_global_decl (tree decl)
25688 /* Fill-in any location information we were unable to determine
25689 on the first pass. */
25690 if (VAR_P (decl) && !POINTER_BOUNDS_P (decl))
25692 dw_die_ref die = lookup_decl_die (decl);
25694 /* We may have to generate early debug late for LTO in case debug
25695 was not enabled at compile-time or the target doesn't support
25696 the LTO early debug scheme. */
25697 if (! die && in_lto_p)
25699 dwarf2out_decl (decl);
25700 die = lookup_decl_die (decl);
25703 if (die)
25705 /* We get called via the symtab code invoking late_global_decl
25706 for symbols that are optimized out. Do not add locations
25707 for those, except if they have a DECL_VALUE_EXPR, in which case
25708 they are relevant for debuggers. */
25709 varpool_node *node = varpool_node::get (decl);
25710 if ((! node || ! node->definition) && ! DECL_HAS_VALUE_EXPR_P (decl))
25711 tree_add_const_value_attribute_for_decl (die, decl);
25712 else
25713 add_location_or_const_value_attribute (die, decl, false);
25718 /* Output debug information for type decl DECL. Called from toplev.c
25719 and from language front ends (to record built-in types). */
25720 static void
25721 dwarf2out_type_decl (tree decl, int local)
25723 if (!local)
25725 set_early_dwarf s;
25726 dwarf2out_decl (decl);
25730 /* Output debug information for imported module or decl DECL.
25731 NAME is non-NULL name in the lexical block if the decl has been renamed.
25732 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
25733 that DECL belongs to.
25734 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
25735 static void
25736 dwarf2out_imported_module_or_decl_1 (tree decl,
25737 tree name,
25738 tree lexical_block,
25739 dw_die_ref lexical_block_die)
25741 expanded_location xloc;
25742 dw_die_ref imported_die = NULL;
25743 dw_die_ref at_import_die;
25745 if (TREE_CODE (decl) == IMPORTED_DECL)
25747 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
25748 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
25749 gcc_assert (decl);
25751 else
25752 xloc = expand_location (input_location);
25754 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
25756 at_import_die = force_type_die (TREE_TYPE (decl));
25757 /* For namespace N { typedef void T; } using N::T; base_type_die
25758 returns NULL, but DW_TAG_imported_declaration requires
25759 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
25760 if (!at_import_die)
25762 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
25763 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
25764 at_import_die = lookup_type_die (TREE_TYPE (decl));
25765 gcc_assert (at_import_die);
25768 else
25770 at_import_die = lookup_decl_die (decl);
25771 if (!at_import_die)
25773 /* If we're trying to avoid duplicate debug info, we may not have
25774 emitted the member decl for this field. Emit it now. */
25775 if (TREE_CODE (decl) == FIELD_DECL)
25777 tree type = DECL_CONTEXT (decl);
25779 if (TYPE_CONTEXT (type)
25780 && TYPE_P (TYPE_CONTEXT (type))
25781 && !should_emit_struct_debug (TYPE_CONTEXT (type),
25782 DINFO_USAGE_DIR_USE))
25783 return;
25784 gen_type_die_for_member (type, decl,
25785 get_context_die (TYPE_CONTEXT (type)));
25787 if (TREE_CODE (decl) == NAMELIST_DECL)
25788 at_import_die = gen_namelist_decl (DECL_NAME (decl),
25789 get_context_die (DECL_CONTEXT (decl)),
25790 NULL_TREE);
25791 else
25792 at_import_die = force_decl_die (decl);
25796 if (TREE_CODE (decl) == NAMESPACE_DECL)
25798 if (dwarf_version >= 3 || !dwarf_strict)
25799 imported_die = new_die (DW_TAG_imported_module,
25800 lexical_block_die,
25801 lexical_block);
25802 else
25803 return;
25805 else
25806 imported_die = new_die (DW_TAG_imported_declaration,
25807 lexical_block_die,
25808 lexical_block);
25810 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
25811 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
25812 if (debug_column_info && xloc.column)
25813 add_AT_unsigned (imported_die, DW_AT_decl_column, xloc.column);
25814 if (name)
25815 add_AT_string (imported_die, DW_AT_name,
25816 IDENTIFIER_POINTER (name));
25817 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
25820 /* Output debug information for imported module or decl DECL.
25821 NAME is non-NULL name in context if the decl has been renamed.
25822 CHILD is true if decl is one of the renamed decls as part of
25823 importing whole module.
25824 IMPLICIT is set if this hook is called for an implicit import
25825 such as inline namespace. */
25827 static void
25828 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
25829 bool child, bool implicit)
25831 /* dw_die_ref at_import_die; */
25832 dw_die_ref scope_die;
25834 if (debug_info_level <= DINFO_LEVEL_TERSE)
25835 return;
25837 gcc_assert (decl);
25839 /* For DWARF5, just DW_AT_export_symbols on the DW_TAG_namespace
25840 should be enough, for DWARF4 and older even if we emit as extension
25841 DW_AT_export_symbols add the implicit DW_TAG_imported_module anyway
25842 for the benefit of consumers unaware of DW_AT_export_symbols. */
25843 if (implicit
25844 && dwarf_version >= 5
25845 && lang_hooks.decls.decl_dwarf_attribute (decl,
25846 DW_AT_export_symbols) == 1)
25847 return;
25849 set_early_dwarf s;
25851 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
25852 We need decl DIE for reference and scope die. First, get DIE for the decl
25853 itself. */
25855 /* Get the scope die for decl context. Use comp_unit_die for global module
25856 or decl. If die is not found for non globals, force new die. */
25857 if (context
25858 && TYPE_P (context)
25859 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
25860 return;
25862 scope_die = get_context_die (context);
25864 if (child)
25866 /* DW_TAG_imported_module was introduced in the DWARFv3 specification, so
25867 there is nothing we can do, here. */
25868 if (dwarf_version < 3 && dwarf_strict)
25869 return;
25871 gcc_assert (scope_die->die_child);
25872 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
25873 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
25874 scope_die = scope_die->die_child;
25877 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
25878 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
25881 /* Output debug information for namelists. */
25883 static dw_die_ref
25884 gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
25886 dw_die_ref nml_die, nml_item_die, nml_item_ref_die;
25887 tree value;
25888 unsigned i;
25890 if (debug_info_level <= DINFO_LEVEL_TERSE)
25891 return NULL;
25893 gcc_assert (scope_die != NULL);
25894 nml_die = new_die (DW_TAG_namelist, scope_die, NULL);
25895 add_AT_string (nml_die, DW_AT_name, IDENTIFIER_POINTER (name));
25897 /* If there are no item_decls, we have a nondefining namelist, e.g.
25898 with USE association; hence, set DW_AT_declaration. */
25899 if (item_decls == NULL_TREE)
25901 add_AT_flag (nml_die, DW_AT_declaration, 1);
25902 return nml_die;
25905 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls), i, value)
25907 nml_item_ref_die = lookup_decl_die (value);
25908 if (!nml_item_ref_die)
25909 nml_item_ref_die = force_decl_die (value);
25911 nml_item_die = new_die (DW_TAG_namelist_item, nml_die, NULL);
25912 add_AT_die_ref (nml_item_die, DW_AT_namelist_items, nml_item_ref_die);
25914 return nml_die;
25918 /* Write the debugging output for DECL and return the DIE. */
25920 static void
25921 dwarf2out_decl (tree decl)
25923 dw_die_ref context_die = comp_unit_die ();
25925 switch (TREE_CODE (decl))
25927 case ERROR_MARK:
25928 return;
25930 case FUNCTION_DECL:
25931 /* If we're a nested function, initially use a parent of NULL; if we're
25932 a plain function, this will be fixed up in decls_for_scope. If
25933 we're a method, it will be ignored, since we already have a DIE. */
25934 if (decl_function_context (decl)
25935 /* But if we're in terse mode, we don't care about scope. */
25936 && debug_info_level > DINFO_LEVEL_TERSE)
25937 context_die = NULL;
25938 break;
25940 case VAR_DECL:
25941 /* For local statics lookup proper context die. */
25942 if (local_function_static (decl))
25943 context_die = lookup_decl_die (DECL_CONTEXT (decl));
25945 /* If we are in terse mode, don't generate any DIEs to represent any
25946 variable declarations or definitions. */
25947 if (debug_info_level <= DINFO_LEVEL_TERSE)
25948 return;
25949 break;
25951 case CONST_DECL:
25952 if (debug_info_level <= DINFO_LEVEL_TERSE)
25953 return;
25954 if (!is_fortran () && !is_ada ())
25955 return;
25956 if (TREE_STATIC (decl) && decl_function_context (decl))
25957 context_die = lookup_decl_die (DECL_CONTEXT (decl));
25958 break;
25960 case NAMESPACE_DECL:
25961 case IMPORTED_DECL:
25962 if (debug_info_level <= DINFO_LEVEL_TERSE)
25963 return;
25964 if (lookup_decl_die (decl) != NULL)
25965 return;
25966 break;
25968 case TYPE_DECL:
25969 /* Don't emit stubs for types unless they are needed by other DIEs. */
25970 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
25971 return;
25973 /* Don't bother trying to generate any DIEs to represent any of the
25974 normal built-in types for the language we are compiling. */
25975 if (DECL_IS_BUILTIN (decl))
25976 return;
25978 /* If we are in terse mode, don't generate any DIEs for types. */
25979 if (debug_info_level <= DINFO_LEVEL_TERSE)
25980 return;
25982 /* If we're a function-scope tag, initially use a parent of NULL;
25983 this will be fixed up in decls_for_scope. */
25984 if (decl_function_context (decl))
25985 context_die = NULL;
25987 break;
25989 case NAMELIST_DECL:
25990 break;
25992 default:
25993 return;
25996 gen_decl_die (decl, NULL, NULL, context_die);
25998 if (flag_checking)
26000 dw_die_ref die = lookup_decl_die (decl);
26001 if (die)
26002 check_die (die);
26006 /* Write the debugging output for DECL. */
26008 static void
26009 dwarf2out_function_decl (tree decl)
26011 dwarf2out_decl (decl);
26012 call_arg_locations = NULL;
26013 call_arg_loc_last = NULL;
26014 call_site_count = -1;
26015 tail_call_site_count = -1;
26016 decl_loc_table->empty ();
26017 cached_dw_loc_list_table->empty ();
26020 /* Output a marker (i.e. a label) for the beginning of the generated code for
26021 a lexical block. */
26023 static void
26024 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
26025 unsigned int blocknum)
26027 switch_to_section (current_function_section ());
26028 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
26031 /* Output a marker (i.e. a label) for the end of the generated code for a
26032 lexical block. */
26034 static void
26035 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
26037 switch_to_section (current_function_section ());
26038 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
26041 /* Returns nonzero if it is appropriate not to emit any debugging
26042 information for BLOCK, because it doesn't contain any instructions.
26044 Don't allow this for blocks with nested functions or local classes
26045 as we would end up with orphans, and in the presence of scheduling
26046 we may end up calling them anyway. */
26048 static bool
26049 dwarf2out_ignore_block (const_tree block)
26051 tree decl;
26052 unsigned int i;
26054 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
26055 if (TREE_CODE (decl) == FUNCTION_DECL
26056 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
26057 return 0;
26058 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
26060 decl = BLOCK_NONLOCALIZED_VAR (block, i);
26061 if (TREE_CODE (decl) == FUNCTION_DECL
26062 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
26063 return 0;
26066 return 1;
26069 /* Hash table routines for file_hash. */
26071 bool
26072 dwarf_file_hasher::equal (dwarf_file_data *p1, const char *p2)
26074 return filename_cmp (p1->filename, p2) == 0;
26077 hashval_t
26078 dwarf_file_hasher::hash (dwarf_file_data *p)
26080 return htab_hash_string (p->filename);
26083 /* Lookup FILE_NAME (in the list of filenames that we know about here in
26084 dwarf2out.c) and return its "index". The index of each (known) filename is
26085 just a unique number which is associated with only that one filename. We
26086 need such numbers for the sake of generating labels (in the .debug_sfnames
26087 section) and references to those files numbers (in the .debug_srcinfo
26088 and .debug_macinfo sections). If the filename given as an argument is not
26089 found in our current list, add it to the list and assign it the next
26090 available unique index number. */
26092 static struct dwarf_file_data *
26093 lookup_filename (const char *file_name)
26095 struct dwarf_file_data * created;
26097 if (!file_name)
26098 return NULL;
26100 dwarf_file_data **slot
26101 = file_table->find_slot_with_hash (file_name, htab_hash_string (file_name),
26102 INSERT);
26103 if (*slot)
26104 return *slot;
26106 created = ggc_alloc<dwarf_file_data> ();
26107 created->filename = file_name;
26108 created->emitted_number = 0;
26109 *slot = created;
26110 return created;
26113 /* If the assembler will construct the file table, then translate the compiler
26114 internal file table number into the assembler file table number, and emit
26115 a .file directive if we haven't already emitted one yet. The file table
26116 numbers are different because we prune debug info for unused variables and
26117 types, which may include filenames. */
26119 static int
26120 maybe_emit_file (struct dwarf_file_data * fd)
26122 if (! fd->emitted_number)
26124 if (last_emitted_file)
26125 fd->emitted_number = last_emitted_file->emitted_number + 1;
26126 else
26127 fd->emitted_number = 1;
26128 last_emitted_file = fd;
26130 if (DWARF2_ASM_LINE_DEBUG_INFO)
26132 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
26133 output_quoted_string (asm_out_file,
26134 remap_debug_filename (fd->filename));
26135 fputc ('\n', asm_out_file);
26139 return fd->emitted_number;
26142 /* Schedule generation of a DW_AT_const_value attribute to DIE.
26143 That generation should happen after function debug info has been
26144 generated. The value of the attribute is the constant value of ARG. */
26146 static void
26147 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
26149 die_arg_entry entry;
26151 if (!die || !arg)
26152 return;
26154 gcc_assert (early_dwarf);
26156 if (!tmpl_value_parm_die_table)
26157 vec_alloc (tmpl_value_parm_die_table, 32);
26159 entry.die = die;
26160 entry.arg = arg;
26161 vec_safe_push (tmpl_value_parm_die_table, entry);
26164 /* Return TRUE if T is an instance of generic type, FALSE
26165 otherwise. */
26167 static bool
26168 generic_type_p (tree t)
26170 if (t == NULL_TREE || !TYPE_P (t))
26171 return false;
26172 return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
26175 /* Schedule the generation of the generic parameter dies for the
26176 instance of generic type T. The proper generation itself is later
26177 done by gen_scheduled_generic_parms_dies. */
26179 static void
26180 schedule_generic_params_dies_gen (tree t)
26182 if (!generic_type_p (t))
26183 return;
26185 gcc_assert (early_dwarf);
26187 if (!generic_type_instances)
26188 vec_alloc (generic_type_instances, 256);
26190 vec_safe_push (generic_type_instances, t);
26193 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
26194 by append_entry_to_tmpl_value_parm_die_table. This function must
26195 be called after function DIEs have been generated. */
26197 static void
26198 gen_remaining_tmpl_value_param_die_attribute (void)
26200 if (tmpl_value_parm_die_table)
26202 unsigned i, j;
26203 die_arg_entry *e;
26205 /* We do this in two phases - first get the cases we can
26206 handle during early-finish, preserving those we cannot
26207 (containing symbolic constants where we don't yet know
26208 whether we are going to output the referenced symbols).
26209 For those we try again at late-finish. */
26210 j = 0;
26211 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table, i, e)
26213 if (!e->die->removed
26214 && !tree_add_const_value_attribute (e->die, e->arg))
26216 dw_loc_descr_ref loc = NULL;
26217 if (! early_dwarf
26218 && (dwarf_version >= 5 || !dwarf_strict))
26219 loc = loc_descriptor_from_tree (e->arg, 2, NULL);
26220 if (loc)
26221 add_AT_loc (e->die, DW_AT_location, loc);
26222 else
26223 (*tmpl_value_parm_die_table)[j++] = *e;
26226 tmpl_value_parm_die_table->truncate (j);
26230 /* Generate generic parameters DIEs for instances of generic types
26231 that have been previously scheduled by
26232 schedule_generic_params_dies_gen. This function must be called
26233 after all the types of the CU have been laid out. */
26235 static void
26236 gen_scheduled_generic_parms_dies (void)
26238 unsigned i;
26239 tree t;
26241 if (!generic_type_instances)
26242 return;
26244 FOR_EACH_VEC_ELT (*generic_type_instances, i, t)
26245 if (COMPLETE_TYPE_P (t))
26246 gen_generic_params_dies (t);
26248 generic_type_instances = NULL;
26252 /* Replace DW_AT_name for the decl with name. */
26254 static void
26255 dwarf2out_set_name (tree decl, tree name)
26257 dw_die_ref die;
26258 dw_attr_node *attr;
26259 const char *dname;
26261 die = TYPE_SYMTAB_DIE (decl);
26262 if (!die)
26263 return;
26265 dname = dwarf2_name (name, 0);
26266 if (!dname)
26267 return;
26269 attr = get_AT (die, DW_AT_name);
26270 if (attr)
26272 struct indirect_string_node *node;
26274 node = find_AT_string (dname);
26275 /* replace the string. */
26276 attr->dw_attr_val.v.val_str = node;
26279 else
26280 add_name_attribute (die, dname);
26283 /* True if before or during processing of the first function being emitted. */
26284 static bool in_first_function_p = true;
26285 /* True if loc_note during dwarf2out_var_location call might still be
26286 before first real instruction at address equal to .Ltext0. */
26287 static bool maybe_at_text_label_p = true;
26288 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
26289 static unsigned int first_loclabel_num_not_at_text_label;
26291 /* Look ahead for a real insn, or for a begin stmt marker. */
26293 static rtx_insn *
26294 dwarf2out_next_real_insn (rtx_insn *loc_note)
26296 rtx_insn *next_real = NEXT_INSN (loc_note);
26298 while (next_real)
26299 if (INSN_P (next_real))
26300 break;
26301 else
26302 next_real = NEXT_INSN (next_real);
26304 return next_real;
26307 /* Called by the final INSN scan whenever we see a var location. We
26308 use it to drop labels in the right places, and throw the location in
26309 our lookup table. */
26311 static void
26312 dwarf2out_var_location (rtx_insn *loc_note)
26314 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
26315 struct var_loc_node *newloc;
26316 rtx_insn *next_real, *next_note;
26317 rtx_insn *call_insn = NULL;
26318 static const char *last_label;
26319 static const char *last_postcall_label;
26320 static bool last_in_cold_section_p;
26321 static rtx_insn *expected_next_loc_note;
26322 tree decl;
26323 bool var_loc_p;
26325 if (!NOTE_P (loc_note))
26327 if (CALL_P (loc_note))
26329 call_site_count++;
26330 if (SIBLING_CALL_P (loc_note))
26331 tail_call_site_count++;
26332 if (optimize == 0 && !flag_var_tracking)
26334 /* When the var-tracking pass is not running, there is no note
26335 for indirect calls whose target is compile-time known. In this
26336 case, process such calls specifically so that we generate call
26337 sites for them anyway. */
26338 rtx x = PATTERN (loc_note);
26339 if (GET_CODE (x) == PARALLEL)
26340 x = XVECEXP (x, 0, 0);
26341 if (GET_CODE (x) == SET)
26342 x = SET_SRC (x);
26343 if (GET_CODE (x) == CALL)
26344 x = XEXP (x, 0);
26345 if (!MEM_P (x)
26346 || GET_CODE (XEXP (x, 0)) != SYMBOL_REF
26347 || !SYMBOL_REF_DECL (XEXP (x, 0))
26348 || (TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0)))
26349 != FUNCTION_DECL))
26351 call_insn = loc_note;
26352 loc_note = NULL;
26353 var_loc_p = false;
26355 next_real = dwarf2out_next_real_insn (call_insn);
26356 next_note = NULL;
26357 cached_next_real_insn = NULL;
26358 goto create_label;
26362 return;
26365 var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
26366 if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
26367 return;
26369 /* Optimize processing a large consecutive sequence of location
26370 notes so we don't spend too much time in next_real_insn. If the
26371 next insn is another location note, remember the next_real_insn
26372 calculation for next time. */
26373 next_real = cached_next_real_insn;
26374 if (next_real)
26376 if (expected_next_loc_note != loc_note)
26377 next_real = NULL;
26380 next_note = NEXT_INSN (loc_note);
26381 if (! next_note
26382 || next_note->deleted ()
26383 || ! NOTE_P (next_note)
26384 || (NOTE_KIND (next_note) != NOTE_INSN_VAR_LOCATION
26385 && NOTE_KIND (next_note) != NOTE_INSN_BEGIN_STMT
26386 && NOTE_KIND (next_note) != NOTE_INSN_CALL_ARG_LOCATION))
26387 next_note = NULL;
26389 if (! next_real)
26390 next_real = dwarf2out_next_real_insn (loc_note);
26392 if (next_note)
26394 expected_next_loc_note = next_note;
26395 cached_next_real_insn = next_real;
26397 else
26398 cached_next_real_insn = NULL;
26400 /* If there are no instructions which would be affected by this note,
26401 don't do anything. */
26402 if (var_loc_p
26403 && next_real == NULL_RTX
26404 && !NOTE_DURING_CALL_P (loc_note))
26405 return;
26407 create_label:
26409 if (next_real == NULL_RTX)
26410 next_real = get_last_insn ();
26412 /* If there were any real insns between note we processed last time
26413 and this note (or if it is the first note), clear
26414 last_{,postcall_}label so that they are not reused this time. */
26415 if (last_var_location_insn == NULL_RTX
26416 || last_var_location_insn != next_real
26417 || last_in_cold_section_p != in_cold_section_p)
26419 last_label = NULL;
26420 last_postcall_label = NULL;
26423 if (var_loc_p)
26425 decl = NOTE_VAR_LOCATION_DECL (loc_note);
26426 newloc = add_var_loc_to_decl (decl, loc_note,
26427 NOTE_DURING_CALL_P (loc_note)
26428 ? last_postcall_label : last_label);
26429 if (newloc == NULL)
26430 return;
26432 else
26434 decl = NULL_TREE;
26435 newloc = NULL;
26438 /* If there were no real insns between note we processed last time
26439 and this note, use the label we emitted last time. Otherwise
26440 create a new label and emit it. */
26441 if (last_label == NULL)
26443 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
26444 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
26445 loclabel_num++;
26446 last_label = ggc_strdup (loclabel);
26447 /* See if loclabel might be equal to .Ltext0. If yes,
26448 bump first_loclabel_num_not_at_text_label. */
26449 if (!have_multiple_function_sections
26450 && in_first_function_p
26451 && maybe_at_text_label_p)
26453 static rtx_insn *last_start;
26454 rtx_insn *insn;
26455 for (insn = loc_note; insn; insn = previous_insn (insn))
26456 if (insn == last_start)
26457 break;
26458 else if (!NONDEBUG_INSN_P (insn))
26459 continue;
26460 else
26462 rtx body = PATTERN (insn);
26463 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
26464 continue;
26465 /* Inline asm could occupy zero bytes. */
26466 else if (GET_CODE (body) == ASM_INPUT
26467 || asm_noperands (body) >= 0)
26468 continue;
26469 #ifdef HAVE_attr_length
26470 else if (get_attr_min_length (insn) == 0)
26471 continue;
26472 #endif
26473 else
26475 /* Assume insn has non-zero length. */
26476 maybe_at_text_label_p = false;
26477 break;
26480 if (maybe_at_text_label_p)
26482 last_start = loc_note;
26483 first_loclabel_num_not_at_text_label = loclabel_num;
26488 gcc_assert ((loc_note == NULL_RTX && call_insn != NULL_RTX)
26489 || (loc_note != NULL_RTX && call_insn == NULL_RTX));
26491 if (!var_loc_p)
26493 struct call_arg_loc_node *ca_loc
26494 = ggc_cleared_alloc<call_arg_loc_node> ();
26495 rtx_insn *prev
26496 = loc_note != NULL_RTX ? prev_real_insn (loc_note) : call_insn;
26498 ca_loc->call_arg_loc_note = loc_note;
26499 ca_loc->next = NULL;
26500 ca_loc->label = last_label;
26501 gcc_assert (prev
26502 && (CALL_P (prev)
26503 || (NONJUMP_INSN_P (prev)
26504 && GET_CODE (PATTERN (prev)) == SEQUENCE
26505 && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
26506 if (!CALL_P (prev))
26507 prev = as_a <rtx_sequence *> (PATTERN (prev))->insn (0);
26508 ca_loc->tail_call_p = SIBLING_CALL_P (prev);
26510 /* Look for a SYMBOL_REF in the "prev" instruction. */
26511 rtx x = get_call_rtx_from (PATTERN (prev));
26512 if (x)
26514 /* Try to get the call symbol, if any. */
26515 if (MEM_P (XEXP (x, 0)))
26516 x = XEXP (x, 0);
26517 /* First, look for a memory access to a symbol_ref. */
26518 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
26519 && SYMBOL_REF_DECL (XEXP (x, 0))
26520 && TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0))) == FUNCTION_DECL)
26521 ca_loc->symbol_ref = XEXP (x, 0);
26522 /* Otherwise, look at a compile-time known user-level function
26523 declaration. */
26524 else if (MEM_P (x)
26525 && MEM_EXPR (x)
26526 && TREE_CODE (MEM_EXPR (x)) == FUNCTION_DECL)
26527 ca_loc->symbol_ref = XEXP (DECL_RTL (MEM_EXPR (x)), 0);
26530 ca_loc->block = insn_scope (prev);
26531 if (call_arg_locations)
26532 call_arg_loc_last->next = ca_loc;
26533 else
26534 call_arg_locations = ca_loc;
26535 call_arg_loc_last = ca_loc;
26537 else if (loc_note != NULL_RTX && !NOTE_DURING_CALL_P (loc_note))
26538 newloc->label = last_label;
26539 else
26541 if (!last_postcall_label)
26543 sprintf (loclabel, "%s-1", last_label);
26544 last_postcall_label = ggc_strdup (loclabel);
26546 newloc->label = last_postcall_label;
26549 if (var_loc_p && flag_debug_asm)
26551 const char *name = NULL, *sep = " => ", *patstr = NULL;
26552 if (decl && DECL_NAME (decl))
26553 name = IDENTIFIER_POINTER (DECL_NAME (decl));
26554 if (NOTE_VAR_LOCATION_LOC (loc_note))
26555 patstr = str_pattern_slim (NOTE_VAR_LOCATION_LOC (loc_note));
26556 else
26558 sep = " ";
26559 patstr = "RESET";
26561 fprintf (asm_out_file, "\t%s DEBUG %s%s%s\n", ASM_COMMENT_START,
26562 name, sep, patstr);
26565 last_var_location_insn = next_real;
26566 last_in_cold_section_p = in_cold_section_p;
26569 /* Called from finalize_size_functions for size functions so that their body
26570 can be encoded in the debug info to describe the layout of variable-length
26571 structures. */
26573 static void
26574 dwarf2out_size_function (tree decl)
26576 function_to_dwarf_procedure (decl);
26579 /* Note in one location list that text section has changed. */
26582 var_location_switch_text_section_1 (var_loc_list **slot, void *)
26584 var_loc_list *list = *slot;
26585 if (list->first)
26586 list->last_before_switch
26587 = list->last->next ? list->last->next : list->last;
26588 return 1;
26591 /* Note in all location lists that text section has changed. */
26593 static void
26594 var_location_switch_text_section (void)
26596 if (decl_loc_table == NULL)
26597 return;
26599 decl_loc_table->traverse<void *, var_location_switch_text_section_1> (NULL);
26602 /* Create a new line number table. */
26604 static dw_line_info_table *
26605 new_line_info_table (void)
26607 dw_line_info_table *table;
26609 table = ggc_cleared_alloc<dw_line_info_table> ();
26610 table->file_num = 1;
26611 table->line_num = 1;
26612 table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
26614 return table;
26617 /* Lookup the "current" table into which we emit line info, so
26618 that we don't have to do it for every source line. */
26620 static void
26621 set_cur_line_info_table (section *sec)
26623 dw_line_info_table *table;
26625 if (sec == text_section)
26626 table = text_section_line_info;
26627 else if (sec == cold_text_section)
26629 table = cold_text_section_line_info;
26630 if (!table)
26632 cold_text_section_line_info = table = new_line_info_table ();
26633 table->end_label = cold_end_label;
26636 else
26638 const char *end_label;
26640 if (crtl->has_bb_partition)
26642 if (in_cold_section_p)
26643 end_label = crtl->subsections.cold_section_end_label;
26644 else
26645 end_label = crtl->subsections.hot_section_end_label;
26647 else
26649 char label[MAX_ARTIFICIAL_LABEL_BYTES];
26650 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
26651 current_function_funcdef_no);
26652 end_label = ggc_strdup (label);
26655 table = new_line_info_table ();
26656 table->end_label = end_label;
26658 vec_safe_push (separate_line_info, table);
26661 if (DWARF2_ASM_LINE_DEBUG_INFO)
26662 table->is_stmt = (cur_line_info_table
26663 ? cur_line_info_table->is_stmt
26664 : DWARF_LINE_DEFAULT_IS_STMT_START);
26665 cur_line_info_table = table;
26669 /* We need to reset the locations at the beginning of each
26670 function. We can't do this in the end_function hook, because the
26671 declarations that use the locations won't have been output when
26672 that hook is called. Also compute have_multiple_function_sections here. */
26674 static void
26675 dwarf2out_begin_function (tree fun)
26677 section *sec = function_section (fun);
26679 if (sec != text_section)
26680 have_multiple_function_sections = true;
26682 if (crtl->has_bb_partition && !cold_text_section)
26684 gcc_assert (current_function_decl == fun);
26685 cold_text_section = unlikely_text_section ();
26686 switch_to_section (cold_text_section);
26687 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
26688 switch_to_section (sec);
26691 dwarf2out_note_section_used ();
26692 call_site_count = 0;
26693 tail_call_site_count = 0;
26695 set_cur_line_info_table (sec);
26698 /* Helper function of dwarf2out_end_function, called only after emitting
26699 the very first function into assembly. Check if some .debug_loc range
26700 might end with a .LVL* label that could be equal to .Ltext0.
26701 In that case we must force using absolute addresses in .debug_loc ranges,
26702 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
26703 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
26704 list terminator.
26705 Set have_multiple_function_sections to true in that case and
26706 terminate htab traversal. */
26709 find_empty_loc_ranges_at_text_label (var_loc_list **slot, int)
26711 var_loc_list *entry = *slot;
26712 struct var_loc_node *node;
26714 node = entry->first;
26715 if (node && node->next && node->next->label)
26717 unsigned int i;
26718 const char *label = node->next->label;
26719 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
26721 for (i = 0; i < first_loclabel_num_not_at_text_label; i++)
26723 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", i);
26724 if (strcmp (label, loclabel) == 0)
26726 have_multiple_function_sections = true;
26727 return 0;
26731 return 1;
26734 /* Hook called after emitting a function into assembly.
26735 This does something only for the very first function emitted. */
26737 static void
26738 dwarf2out_end_function (unsigned int)
26740 if (in_first_function_p
26741 && !have_multiple_function_sections
26742 && first_loclabel_num_not_at_text_label
26743 && decl_loc_table)
26744 decl_loc_table->traverse<int, find_empty_loc_ranges_at_text_label> (0);
26745 in_first_function_p = false;
26746 maybe_at_text_label_p = false;
26749 /* Temporary holder for dwarf2out_register_main_translation_unit. Used to let
26750 front-ends register a translation unit even before dwarf2out_init is
26751 called. */
26752 static tree main_translation_unit = NULL_TREE;
26754 /* Hook called by front-ends after they built their main translation unit.
26755 Associate comp_unit_die to UNIT. */
26757 static void
26758 dwarf2out_register_main_translation_unit (tree unit)
26760 gcc_assert (TREE_CODE (unit) == TRANSLATION_UNIT_DECL
26761 && main_translation_unit == NULL_TREE);
26762 main_translation_unit = unit;
26763 /* If dwarf2out_init has not been called yet, it will perform the association
26764 itself looking at main_translation_unit. */
26765 if (decl_die_table != NULL)
26766 equate_decl_number_to_die (unit, comp_unit_die ());
26769 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
26771 static void
26772 push_dw_line_info_entry (dw_line_info_table *table,
26773 enum dw_line_info_opcode opcode, unsigned int val)
26775 dw_line_info_entry e;
26776 e.opcode = opcode;
26777 e.val = val;
26778 vec_safe_push (table->entries, e);
26781 /* Output a label to mark the beginning of a source code line entry
26782 and record information relating to this source line, in
26783 'line_info_table' for later output of the .debug_line section. */
26784 /* ??? The discriminator parameter ought to be unsigned. */
26786 static void
26787 dwarf2out_source_line (unsigned int line, unsigned int column,
26788 const char *filename,
26789 int discriminator, bool is_stmt)
26791 unsigned int file_num;
26792 dw_line_info_table *table;
26794 if (debug_info_level < DINFO_LEVEL_TERSE || line == 0)
26795 return;
26797 /* The discriminator column was added in dwarf4. Simplify the below
26798 by simply removing it if we're not supposed to output it. */
26799 if (dwarf_version < 4 && dwarf_strict)
26800 discriminator = 0;
26802 if (!debug_column_info)
26803 column = 0;
26805 table = cur_line_info_table;
26806 file_num = maybe_emit_file (lookup_filename (filename));
26808 /* ??? TODO: Elide duplicate line number entries. Traditionally,
26809 the debugger has used the second (possibly duplicate) line number
26810 at the beginning of the function to mark the end of the prologue.
26811 We could eliminate any other duplicates within the function. For
26812 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
26813 that second line number entry. */
26814 /* Recall that this end-of-prologue indication is *not* the same thing
26815 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
26816 to which the hook corresponds, follows the last insn that was
26817 emitted by gen_prologue. What we need is to precede the first insn
26818 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
26819 insn that corresponds to something the user wrote. These may be
26820 very different locations once scheduling is enabled. */
26822 if (0 && file_num == table->file_num
26823 && line == table->line_num
26824 && column == table->column_num
26825 && discriminator == table->discrim_num
26826 && is_stmt == table->is_stmt)
26827 return;
26829 switch_to_section (current_function_section ());
26831 /* If requested, emit something human-readable. */
26832 if (flag_debug_asm)
26834 if (debug_column_info)
26835 fprintf (asm_out_file, "\t%s %s:%d:%d\n", ASM_COMMENT_START,
26836 filename, line, column);
26837 else
26838 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
26839 filename, line);
26842 if (DWARF2_ASM_LINE_DEBUG_INFO)
26844 /* Emit the .loc directive understood by GNU as. */
26845 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
26846 file_num, line, is_stmt, discriminator */
26847 fputs ("\t.loc ", asm_out_file);
26848 fprint_ul (asm_out_file, file_num);
26849 putc (' ', asm_out_file);
26850 fprint_ul (asm_out_file, line);
26851 putc (' ', asm_out_file);
26852 fprint_ul (asm_out_file, column);
26854 if (is_stmt != table->is_stmt)
26856 fputs (" is_stmt ", asm_out_file);
26857 putc (is_stmt ? '1' : '0', asm_out_file);
26859 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
26861 gcc_assert (discriminator > 0);
26862 fputs (" discriminator ", asm_out_file);
26863 fprint_ul (asm_out_file, (unsigned long) discriminator);
26865 putc ('\n', asm_out_file);
26867 else
26869 unsigned int label_num = ++line_info_label_num;
26871 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);
26873 push_dw_line_info_entry (table, LI_set_address, label_num);
26874 if (file_num != table->file_num)
26875 push_dw_line_info_entry (table, LI_set_file, file_num);
26876 if (discriminator != table->discrim_num)
26877 push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
26878 if (is_stmt != table->is_stmt)
26879 push_dw_line_info_entry (table, LI_negate_stmt, 0);
26880 push_dw_line_info_entry (table, LI_set_line, line);
26881 if (debug_column_info)
26882 push_dw_line_info_entry (table, LI_set_column, column);
26885 table->file_num = file_num;
26886 table->line_num = line;
26887 table->column_num = column;
26888 table->discrim_num = discriminator;
26889 table->is_stmt = is_stmt;
26890 table->in_use = true;
26893 /* Record the beginning of a new source file. */
26895 static void
26896 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
26898 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26900 macinfo_entry e;
26901 e.code = DW_MACINFO_start_file;
26902 e.lineno = lineno;
26903 e.info = ggc_strdup (filename);
26904 vec_safe_push (macinfo_table, e);
26908 /* Record the end of a source file. */
26910 static void
26911 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
26913 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26915 macinfo_entry e;
26916 e.code = DW_MACINFO_end_file;
26917 e.lineno = lineno;
26918 e.info = NULL;
26919 vec_safe_push (macinfo_table, e);
26923 /* Called from debug_define in toplev.c. The `buffer' parameter contains
26924 the tail part of the directive line, i.e. the part which is past the
26925 initial whitespace, #, whitespace, directive-name, whitespace part. */
26927 static void
26928 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
26929 const char *buffer ATTRIBUTE_UNUSED)
26931 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26933 macinfo_entry e;
26934 /* Insert a dummy first entry to be able to optimize the whole
26935 predefined macro block using DW_MACRO_import. */
26936 if (macinfo_table->is_empty () && lineno <= 1)
26938 e.code = 0;
26939 e.lineno = 0;
26940 e.info = NULL;
26941 vec_safe_push (macinfo_table, e);
26943 e.code = DW_MACINFO_define;
26944 e.lineno = lineno;
26945 e.info = ggc_strdup (buffer);
26946 vec_safe_push (macinfo_table, e);
26950 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
26951 the tail part of the directive line, i.e. the part which is past the
26952 initial whitespace, #, whitespace, directive-name, whitespace part. */
26954 static void
26955 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
26956 const char *buffer ATTRIBUTE_UNUSED)
26958 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26960 macinfo_entry e;
26961 /* Insert a dummy first entry to be able to optimize the whole
26962 predefined macro block using DW_MACRO_import. */
26963 if (macinfo_table->is_empty () && lineno <= 1)
26965 e.code = 0;
26966 e.lineno = 0;
26967 e.info = NULL;
26968 vec_safe_push (macinfo_table, e);
26970 e.code = DW_MACINFO_undef;
26971 e.lineno = lineno;
26972 e.info = ggc_strdup (buffer);
26973 vec_safe_push (macinfo_table, e);
26977 /* Helpers to manipulate hash table of CUs. */
26979 struct macinfo_entry_hasher : nofree_ptr_hash <macinfo_entry>
26981 static inline hashval_t hash (const macinfo_entry *);
26982 static inline bool equal (const macinfo_entry *, const macinfo_entry *);
26985 inline hashval_t
26986 macinfo_entry_hasher::hash (const macinfo_entry *entry)
26988 return htab_hash_string (entry->info);
26991 inline bool
26992 macinfo_entry_hasher::equal (const macinfo_entry *entry1,
26993 const macinfo_entry *entry2)
26995 return !strcmp (entry1->info, entry2->info);
26998 typedef hash_table<macinfo_entry_hasher> macinfo_hash_type;
27000 /* Output a single .debug_macinfo entry. */
27002 static void
27003 output_macinfo_op (macinfo_entry *ref)
27005 int file_num;
27006 size_t len;
27007 struct indirect_string_node *node;
27008 char label[MAX_ARTIFICIAL_LABEL_BYTES];
27009 struct dwarf_file_data *fd;
27011 switch (ref->code)
27013 case DW_MACINFO_start_file:
27014 fd = lookup_filename (ref->info);
27015 file_num = maybe_emit_file (fd);
27016 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
27017 dw2_asm_output_data_uleb128 (ref->lineno,
27018 "Included from line number %lu",
27019 (unsigned long) ref->lineno);
27020 dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
27021 break;
27022 case DW_MACINFO_end_file:
27023 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
27024 break;
27025 case DW_MACINFO_define:
27026 case DW_MACINFO_undef:
27027 len = strlen (ref->info) + 1;
27028 if (!dwarf_strict
27029 && len > DWARF_OFFSET_SIZE
27030 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
27031 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
27033 ref->code = ref->code == DW_MACINFO_define
27034 ? DW_MACRO_define_strp : DW_MACRO_undef_strp;
27035 output_macinfo_op (ref);
27036 return;
27038 dw2_asm_output_data (1, ref->code,
27039 ref->code == DW_MACINFO_define
27040 ? "Define macro" : "Undefine macro");
27041 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
27042 (unsigned long) ref->lineno);
27043 dw2_asm_output_nstring (ref->info, -1, "The macro");
27044 break;
27045 case DW_MACRO_define_strp:
27046 case DW_MACRO_undef_strp:
27047 node = find_AT_string (ref->info);
27048 gcc_assert (node
27049 && (node->form == DW_FORM_strp
27050 || node->form == DW_FORM_GNU_str_index));
27051 dw2_asm_output_data (1, ref->code,
27052 ref->code == DW_MACRO_define_strp
27053 ? "Define macro strp"
27054 : "Undefine macro strp");
27055 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
27056 (unsigned long) ref->lineno);
27057 if (node->form == DW_FORM_strp)
27058 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
27059 debug_str_section, "The macro: \"%s\"",
27060 ref->info);
27061 else
27062 dw2_asm_output_data_uleb128 (node->index, "The macro: \"%s\"",
27063 ref->info);
27064 break;
27065 case DW_MACRO_import:
27066 dw2_asm_output_data (1, ref->code, "Import");
27067 ASM_GENERATE_INTERNAL_LABEL (label,
27068 DEBUG_MACRO_SECTION_LABEL,
27069 ref->lineno + macinfo_label_base);
27070 dw2_asm_output_offset (DWARF_OFFSET_SIZE, label, NULL, NULL);
27071 break;
27072 default:
27073 fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
27074 ASM_COMMENT_START, (unsigned long) ref->code);
27075 break;
27079 /* Attempt to make a sequence of define/undef macinfo ops shareable with
27080 other compilation unit .debug_macinfo sections. IDX is the first
27081 index of a define/undef, return the number of ops that should be
27082 emitted in a comdat .debug_macinfo section and emit
27083 a DW_MACRO_import entry referencing it.
27084 If the define/undef entry should be emitted normally, return 0. */
27086 static unsigned
27087 optimize_macinfo_range (unsigned int idx, vec<macinfo_entry, va_gc> *files,
27088 macinfo_hash_type **macinfo_htab)
27090 macinfo_entry *first, *second, *cur, *inc;
27091 char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
27092 unsigned char checksum[16];
27093 struct md5_ctx ctx;
27094 char *grp_name, *tail;
27095 const char *base;
27096 unsigned int i, count, encoded_filename_len, linebuf_len;
27097 macinfo_entry **slot;
27099 first = &(*macinfo_table)[idx];
27100 second = &(*macinfo_table)[idx + 1];
27102 /* Optimize only if there are at least two consecutive define/undef ops,
27103 and either all of them are before first DW_MACINFO_start_file
27104 with lineno {0,1} (i.e. predefined macro block), or all of them are
27105 in some included header file. */
27106 if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
27107 return 0;
27108 if (vec_safe_is_empty (files))
27110 if (first->lineno > 1 || second->lineno > 1)
27111 return 0;
27113 else if (first->lineno == 0)
27114 return 0;
27116 /* Find the last define/undef entry that can be grouped together
27117 with first and at the same time compute md5 checksum of their
27118 codes, linenumbers and strings. */
27119 md5_init_ctx (&ctx);
27120 for (i = idx; macinfo_table->iterate (i, &cur); i++)
27121 if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
27122 break;
27123 else if (vec_safe_is_empty (files) && cur->lineno > 1)
27124 break;
27125 else
27127 unsigned char code = cur->code;
27128 md5_process_bytes (&code, 1, &ctx);
27129 checksum_uleb128 (cur->lineno, &ctx);
27130 md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
27132 md5_finish_ctx (&ctx, checksum);
27133 count = i - idx;
27135 /* From the containing include filename (if any) pick up just
27136 usable characters from its basename. */
27137 if (vec_safe_is_empty (files))
27138 base = "";
27139 else
27140 base = lbasename (files->last ().info);
27141 for (encoded_filename_len = 0, i = 0; base[i]; i++)
27142 if (ISIDNUM (base[i]) || base[i] == '.')
27143 encoded_filename_len++;
27144 /* Count . at the end. */
27145 if (encoded_filename_len)
27146 encoded_filename_len++;
27148 sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
27149 linebuf_len = strlen (linebuf);
27151 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
27152 grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
27153 + 16 * 2 + 1);
27154 memcpy (grp_name, DWARF_OFFSET_SIZE == 4 ? "wm4." : "wm8.", 4);
27155 tail = grp_name + 4;
27156 if (encoded_filename_len)
27158 for (i = 0; base[i]; i++)
27159 if (ISIDNUM (base[i]) || base[i] == '.')
27160 *tail++ = base[i];
27161 *tail++ = '.';
27163 memcpy (tail, linebuf, linebuf_len);
27164 tail += linebuf_len;
27165 *tail++ = '.';
27166 for (i = 0; i < 16; i++)
27167 sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);
27169 /* Construct a macinfo_entry for DW_MACRO_import
27170 in the empty vector entry before the first define/undef. */
27171 inc = &(*macinfo_table)[idx - 1];
27172 inc->code = DW_MACRO_import;
27173 inc->lineno = 0;
27174 inc->info = ggc_strdup (grp_name);
27175 if (!*macinfo_htab)
27176 *macinfo_htab = new macinfo_hash_type (10);
27177 /* Avoid emitting duplicates. */
27178 slot = (*macinfo_htab)->find_slot (inc, INSERT);
27179 if (*slot != NULL)
27181 inc->code = 0;
27182 inc->info = NULL;
27183 /* If such an entry has been used before, just emit
27184 a DW_MACRO_import op. */
27185 inc = *slot;
27186 output_macinfo_op (inc);
27187 /* And clear all macinfo_entry in the range to avoid emitting them
27188 in the second pass. */
27189 for (i = idx; macinfo_table->iterate (i, &cur) && i < idx + count; i++)
27191 cur->code = 0;
27192 cur->info = NULL;
27195 else
27197 *slot = inc;
27198 inc->lineno = (*macinfo_htab)->elements ();
27199 output_macinfo_op (inc);
27201 return count;
27204 /* Save any strings needed by the macinfo table in the debug str
27205 table. All strings must be collected into the table by the time
27206 index_string is called. */
27208 static void
27209 save_macinfo_strings (void)
27211 unsigned len;
27212 unsigned i;
27213 macinfo_entry *ref;
27215 for (i = 0; macinfo_table && macinfo_table->iterate (i, &ref); i++)
27217 switch (ref->code)
27219 /* Match the logic in output_macinfo_op to decide on
27220 indirect strings. */
27221 case DW_MACINFO_define:
27222 case DW_MACINFO_undef:
27223 len = strlen (ref->info) + 1;
27224 if (!dwarf_strict
27225 && len > DWARF_OFFSET_SIZE
27226 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
27227 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
27228 set_indirect_string (find_AT_string (ref->info));
27229 break;
27230 case DW_MACRO_define_strp:
27231 case DW_MACRO_undef_strp:
27232 set_indirect_string (find_AT_string (ref->info));
27233 break;
27234 default:
27235 break;
27240 /* Output macinfo section(s). */
27242 static void
27243 output_macinfo (const char *debug_line_label, bool early_lto_debug)
27245 unsigned i;
27246 unsigned long length = vec_safe_length (macinfo_table);
27247 macinfo_entry *ref;
27248 vec<macinfo_entry, va_gc> *files = NULL;
27249 macinfo_hash_type *macinfo_htab = NULL;
27250 char dl_section_ref[MAX_ARTIFICIAL_LABEL_BYTES];
27252 if (! length)
27253 return;
27255 /* output_macinfo* uses these interchangeably. */
27256 gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_define
27257 && (int) DW_MACINFO_undef == (int) DW_MACRO_undef
27258 && (int) DW_MACINFO_start_file == (int) DW_MACRO_start_file
27259 && (int) DW_MACINFO_end_file == (int) DW_MACRO_end_file);
27261 /* AIX Assembler inserts the length, so adjust the reference to match the
27262 offset expected by debuggers. */
27263 strcpy (dl_section_ref, debug_line_label);
27264 if (XCOFF_DEBUGGING_INFO)
27265 strcat (dl_section_ref, DWARF_INITIAL_LENGTH_SIZE_STR);
27267 /* For .debug_macro emit the section header. */
27268 if (!dwarf_strict || dwarf_version >= 5)
27270 dw2_asm_output_data (2, dwarf_version >= 5 ? 5 : 4,
27271 "DWARF macro version number");
27272 if (DWARF_OFFSET_SIZE == 8)
27273 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
27274 else
27275 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
27276 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_line_label,
27277 debug_line_section, NULL);
27280 /* In the first loop, it emits the primary .debug_macinfo section
27281 and after each emitted op the macinfo_entry is cleared.
27282 If a longer range of define/undef ops can be optimized using
27283 DW_MACRO_import, the DW_MACRO_import op is emitted and kept in
27284 the vector before the first define/undef in the range and the
27285 whole range of define/undef ops is not emitted and kept. */
27286 for (i = 0; macinfo_table->iterate (i, &ref); i++)
27288 switch (ref->code)
27290 case DW_MACINFO_start_file:
27291 vec_safe_push (files, *ref);
27292 break;
27293 case DW_MACINFO_end_file:
27294 if (!vec_safe_is_empty (files))
27295 files->pop ();
27296 break;
27297 case DW_MACINFO_define:
27298 case DW_MACINFO_undef:
27299 if ((!dwarf_strict || dwarf_version >= 5)
27300 && HAVE_COMDAT_GROUP
27301 && vec_safe_length (files) != 1
27302 && i > 0
27303 && i + 1 < length
27304 && (*macinfo_table)[i - 1].code == 0)
27306 unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
27307 if (count)
27309 i += count - 1;
27310 continue;
27313 break;
27314 case 0:
27315 /* A dummy entry may be inserted at the beginning to be able
27316 to optimize the whole block of predefined macros. */
27317 if (i == 0)
27318 continue;
27319 default:
27320 break;
27322 output_macinfo_op (ref);
27323 ref->info = NULL;
27324 ref->code = 0;
27327 if (!macinfo_htab)
27328 return;
27330 /* Save the number of transparent includes so we can adjust the
27331 label number for the fat LTO object DWARF. */
27332 unsigned macinfo_label_base_adj = macinfo_htab->elements ();
27334 delete macinfo_htab;
27335 macinfo_htab = NULL;
27337 /* If any DW_MACRO_import were used, on those DW_MACRO_import entries
27338 terminate the current chain and switch to a new comdat .debug_macinfo
27339 section and emit the define/undef entries within it. */
27340 for (i = 0; macinfo_table->iterate (i, &ref); i++)
27341 switch (ref->code)
27343 case 0:
27344 continue;
27345 case DW_MACRO_import:
27347 char label[MAX_ARTIFICIAL_LABEL_BYTES];
27348 tree comdat_key = get_identifier (ref->info);
27349 /* Terminate the previous .debug_macinfo section. */
27350 dw2_asm_output_data (1, 0, "End compilation unit");
27351 targetm.asm_out.named_section (debug_macinfo_section_name,
27352 SECTION_DEBUG
27353 | SECTION_LINKONCE
27354 | (early_lto_debug
27355 ? SECTION_EXCLUDE : 0),
27356 comdat_key);
27357 ASM_GENERATE_INTERNAL_LABEL (label,
27358 DEBUG_MACRO_SECTION_LABEL,
27359 ref->lineno + macinfo_label_base);
27360 ASM_OUTPUT_LABEL (asm_out_file, label);
27361 ref->code = 0;
27362 ref->info = NULL;
27363 dw2_asm_output_data (2, dwarf_version >= 5 ? 5 : 4,
27364 "DWARF macro version number");
27365 if (DWARF_OFFSET_SIZE == 8)
27366 dw2_asm_output_data (1, 1, "Flags: 64-bit");
27367 else
27368 dw2_asm_output_data (1, 0, "Flags: 32-bit");
27370 break;
27371 case DW_MACINFO_define:
27372 case DW_MACINFO_undef:
27373 output_macinfo_op (ref);
27374 ref->code = 0;
27375 ref->info = NULL;
27376 break;
27377 default:
27378 gcc_unreachable ();
27381 macinfo_label_base += macinfo_label_base_adj;
27384 /* Initialize the various sections and labels for dwarf output and prefix
27385 them with PREFIX if non-NULL. Returns the generation (zero based
27386 number of times function was called). */
27388 static unsigned
27389 init_sections_and_labels (bool early_lto_debug)
27391 /* As we may get called multiple times have a generation count for
27392 labels. */
27393 static unsigned generation = 0;
27395 if (early_lto_debug)
27397 if (!dwarf_split_debug_info)
27399 debug_info_section = get_section (DEBUG_LTO_INFO_SECTION,
27400 SECTION_DEBUG | SECTION_EXCLUDE,
27401 NULL);
27402 debug_abbrev_section = get_section (DEBUG_LTO_ABBREV_SECTION,
27403 SECTION_DEBUG | SECTION_EXCLUDE,
27404 NULL);
27405 debug_macinfo_section_name
27406 = ((dwarf_strict && dwarf_version < 5)
27407 ? DEBUG_LTO_MACINFO_SECTION : DEBUG_LTO_MACRO_SECTION);
27408 debug_macinfo_section = get_section (debug_macinfo_section_name,
27409 SECTION_DEBUG
27410 | SECTION_EXCLUDE, NULL);
27411 /* For macro info we have to refer to a debug_line section, so
27412 similar to split-dwarf emit a skeleton one for early debug. */
27413 debug_skeleton_line_section
27414 = get_section (DEBUG_LTO_LINE_SECTION,
27415 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27416 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
27417 DEBUG_SKELETON_LINE_SECTION_LABEL,
27418 generation);
27420 else
27422 /* ??? Which of the following do we need early? */
27423 debug_info_section = get_section (DEBUG_LTO_DWO_INFO_SECTION,
27424 SECTION_DEBUG | SECTION_EXCLUDE,
27425 NULL);
27426 debug_abbrev_section = get_section (DEBUG_LTO_DWO_ABBREV_SECTION,
27427 SECTION_DEBUG | SECTION_EXCLUDE,
27428 NULL);
27429 debug_skeleton_info_section = get_section (DEBUG_LTO_INFO_SECTION,
27430 SECTION_DEBUG
27431 | SECTION_EXCLUDE, NULL);
27432 debug_skeleton_abbrev_section
27433 = get_section (DEBUG_LTO_ABBREV_SECTION,
27434 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27435 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
27436 DEBUG_SKELETON_ABBREV_SECTION_LABEL,
27437 generation);
27439 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
27440 stay in the main .o, but the skeleton_line goes into the split
27441 off dwo. */
27442 debug_skeleton_line_section
27443 = get_section (DEBUG_LTO_LINE_SECTION,
27444 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27445 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
27446 DEBUG_SKELETON_LINE_SECTION_LABEL,
27447 generation);
27448 debug_str_offsets_section
27449 = get_section (DEBUG_LTO_DWO_STR_OFFSETS_SECTION,
27450 SECTION_DEBUG | SECTION_EXCLUDE,
27451 NULL);
27452 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
27453 DEBUG_SKELETON_INFO_SECTION_LABEL,
27454 generation);
27455 debug_str_dwo_section = get_section (DEBUG_LTO_STR_DWO_SECTION,
27456 DEBUG_STR_DWO_SECTION_FLAGS,
27457 NULL);
27458 debug_macinfo_section_name
27459 = ((dwarf_strict && dwarf_version < 5)
27460 ? DEBUG_LTO_DWO_MACINFO_SECTION : DEBUG_LTO_DWO_MACRO_SECTION);
27461 debug_macinfo_section = get_section (debug_macinfo_section_name,
27462 SECTION_DEBUG | SECTION_EXCLUDE,
27463 NULL);
27465 debug_str_section = get_section (DEBUG_LTO_STR_SECTION,
27466 DEBUG_STR_SECTION_FLAGS
27467 | SECTION_EXCLUDE, NULL);
27468 if (!dwarf_split_debug_info && !DWARF2_ASM_LINE_DEBUG_INFO)
27469 debug_line_str_section
27470 = get_section (DEBUG_LTO_LINE_STR_SECTION,
27471 DEBUG_STR_SECTION_FLAGS | SECTION_EXCLUDE, NULL);
27473 else
27475 if (!dwarf_split_debug_info)
27477 debug_info_section = get_section (DEBUG_INFO_SECTION,
27478 SECTION_DEBUG, NULL);
27479 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
27480 SECTION_DEBUG, NULL);
27481 debug_loc_section = get_section (dwarf_version >= 5
27482 ? DEBUG_LOCLISTS_SECTION
27483 : DEBUG_LOC_SECTION,
27484 SECTION_DEBUG, NULL);
27485 debug_macinfo_section_name
27486 = ((dwarf_strict && dwarf_version < 5)
27487 ? DEBUG_MACINFO_SECTION : DEBUG_MACRO_SECTION);
27488 debug_macinfo_section = get_section (debug_macinfo_section_name,
27489 SECTION_DEBUG, NULL);
27491 else
27493 debug_info_section = get_section (DEBUG_DWO_INFO_SECTION,
27494 SECTION_DEBUG | SECTION_EXCLUDE,
27495 NULL);
27496 debug_abbrev_section = get_section (DEBUG_DWO_ABBREV_SECTION,
27497 SECTION_DEBUG | SECTION_EXCLUDE,
27498 NULL);
27499 debug_addr_section = get_section (DEBUG_ADDR_SECTION,
27500 SECTION_DEBUG, NULL);
27501 debug_skeleton_info_section = get_section (DEBUG_INFO_SECTION,
27502 SECTION_DEBUG, NULL);
27503 debug_skeleton_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
27504 SECTION_DEBUG, NULL);
27505 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
27506 DEBUG_SKELETON_ABBREV_SECTION_LABEL,
27507 generation);
27509 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
27510 stay in the main .o, but the skeleton_line goes into the
27511 split off dwo. */
27512 debug_skeleton_line_section
27513 = get_section (DEBUG_DWO_LINE_SECTION,
27514 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27515 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
27516 DEBUG_SKELETON_LINE_SECTION_LABEL,
27517 generation);
27518 debug_str_offsets_section
27519 = get_section (DEBUG_DWO_STR_OFFSETS_SECTION,
27520 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27521 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
27522 DEBUG_SKELETON_INFO_SECTION_LABEL,
27523 generation);
27524 debug_loc_section = get_section (dwarf_version >= 5
27525 ? DEBUG_DWO_LOCLISTS_SECTION
27526 : DEBUG_DWO_LOC_SECTION,
27527 SECTION_DEBUG | SECTION_EXCLUDE,
27528 NULL);
27529 debug_str_dwo_section = get_section (DEBUG_STR_DWO_SECTION,
27530 DEBUG_STR_DWO_SECTION_FLAGS,
27531 NULL);
27532 debug_macinfo_section_name
27533 = ((dwarf_strict && dwarf_version < 5)
27534 ? DEBUG_DWO_MACINFO_SECTION : DEBUG_DWO_MACRO_SECTION);
27535 debug_macinfo_section = get_section (debug_macinfo_section_name,
27536 SECTION_DEBUG | SECTION_EXCLUDE,
27537 NULL);
27539 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
27540 SECTION_DEBUG, NULL);
27541 debug_line_section = get_section (DEBUG_LINE_SECTION,
27542 SECTION_DEBUG, NULL);
27543 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
27544 SECTION_DEBUG, NULL);
27545 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
27546 SECTION_DEBUG, NULL);
27547 debug_str_section = get_section (DEBUG_STR_SECTION,
27548 DEBUG_STR_SECTION_FLAGS, NULL);
27549 if (!dwarf_split_debug_info && !DWARF2_ASM_LINE_DEBUG_INFO)
27550 debug_line_str_section = get_section (DEBUG_LINE_STR_SECTION,
27551 DEBUG_STR_SECTION_FLAGS, NULL);
27552 debug_ranges_section = get_section (dwarf_version >= 5
27553 ? DEBUG_RNGLISTS_SECTION
27554 : DEBUG_RANGES_SECTION,
27555 SECTION_DEBUG, NULL);
27556 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
27557 SECTION_DEBUG, NULL);
27560 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
27561 DEBUG_ABBREV_SECTION_LABEL, generation);
27562 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
27563 DEBUG_INFO_SECTION_LABEL, generation);
27564 info_section_emitted = false;
27565 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
27566 DEBUG_LINE_SECTION_LABEL, generation);
27567 /* There are up to 4 unique ranges labels per generation.
27568 See also output_rnglists. */
27569 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
27570 DEBUG_RANGES_SECTION_LABEL, generation * 4);
27571 if (dwarf_version >= 5 && dwarf_split_debug_info)
27572 ASM_GENERATE_INTERNAL_LABEL (ranges_base_label,
27573 DEBUG_RANGES_SECTION_LABEL,
27574 1 + generation * 4);
27575 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label,
27576 DEBUG_ADDR_SECTION_LABEL, generation);
27577 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
27578 (dwarf_strict && dwarf_version < 5)
27579 ? DEBUG_MACINFO_SECTION_LABEL
27580 : DEBUG_MACRO_SECTION_LABEL, generation);
27581 ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL,
27582 generation);
27584 ++generation;
27585 return generation - 1;
27588 /* Set up for Dwarf output at the start of compilation. */
27590 static void
27591 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
27593 /* Allocate the file_table. */
27594 file_table = hash_table<dwarf_file_hasher>::create_ggc (50);
27596 #ifndef DWARF2_LINENO_DEBUGGING_INFO
27597 /* Allocate the decl_die_table. */
27598 decl_die_table = hash_table<decl_die_hasher>::create_ggc (10);
27600 /* Allocate the decl_loc_table. */
27601 decl_loc_table = hash_table<decl_loc_hasher>::create_ggc (10);
27603 /* Allocate the cached_dw_loc_list_table. */
27604 cached_dw_loc_list_table = hash_table<dw_loc_list_hasher>::create_ggc (10);
27606 /* Allocate the initial hunk of the decl_scope_table. */
27607 vec_alloc (decl_scope_table, 256);
27609 /* Allocate the initial hunk of the abbrev_die_table. */
27610 vec_alloc (abbrev_die_table, 256);
27611 /* Zero-th entry is allocated, but unused. */
27612 abbrev_die_table->quick_push (NULL);
27614 /* Allocate the dwarf_proc_stack_usage_map. */
27615 dwarf_proc_stack_usage_map = new hash_map<dw_die_ref, int>;
27617 /* Allocate the pubtypes and pubnames vectors. */
27618 vec_alloc (pubname_table, 32);
27619 vec_alloc (pubtype_table, 32);
27621 vec_alloc (incomplete_types, 64);
27623 vec_alloc (used_rtx_array, 32);
27625 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
27626 vec_alloc (macinfo_table, 64);
27627 #endif
27629 /* If front-ends already registered a main translation unit but we were not
27630 ready to perform the association, do this now. */
27631 if (main_translation_unit != NULL_TREE)
27632 equate_decl_number_to_die (main_translation_unit, comp_unit_die ());
27635 /* Called before compile () starts outputtting functions, variables
27636 and toplevel asms into assembly. */
27638 static void
27639 dwarf2out_assembly_start (void)
27641 if (text_section_line_info)
27642 return;
27644 #ifndef DWARF2_LINENO_DEBUGGING_INFO
27645 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
27646 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
27647 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
27648 COLD_TEXT_SECTION_LABEL, 0);
27649 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
27651 switch_to_section (text_section);
27652 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
27653 #endif
27655 /* Make sure the line number table for .text always exists. */
27656 text_section_line_info = new_line_info_table ();
27657 text_section_line_info->end_label = text_end_label;
27659 #ifdef DWARF2_LINENO_DEBUGGING_INFO
27660 cur_line_info_table = text_section_line_info;
27661 #endif
27663 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
27664 && dwarf2out_do_cfi_asm ()
27665 && !dwarf2out_do_eh_frame ())
27666 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
27669 /* A helper function for dwarf2out_finish called through
27670 htab_traverse. Assign a string its index. All strings must be
27671 collected into the table by the time index_string is called,
27672 because the indexing code relies on htab_traverse to traverse nodes
27673 in the same order for each run. */
27676 index_string (indirect_string_node **h, unsigned int *index)
27678 indirect_string_node *node = *h;
27680 find_string_form (node);
27681 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
27683 gcc_assert (node->index == NO_INDEX_ASSIGNED);
27684 node->index = *index;
27685 *index += 1;
27687 return 1;
27690 /* A helper function for output_indirect_strings called through
27691 htab_traverse. Output the offset to a string and update the
27692 current offset. */
27695 output_index_string_offset (indirect_string_node **h, unsigned int *offset)
27697 indirect_string_node *node = *h;
27699 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
27701 /* Assert that this node has been assigned an index. */
27702 gcc_assert (node->index != NO_INDEX_ASSIGNED
27703 && node->index != NOT_INDEXED);
27704 dw2_asm_output_data (DWARF_OFFSET_SIZE, *offset,
27705 "indexed string 0x%x: %s", node->index, node->str);
27706 *offset += strlen (node->str) + 1;
27708 return 1;
27711 /* A helper function for dwarf2out_finish called through
27712 htab_traverse. Output the indexed string. */
27715 output_index_string (indirect_string_node **h, unsigned int *cur_idx)
27717 struct indirect_string_node *node = *h;
27719 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
27721 /* Assert that the strings are output in the same order as their
27722 indexes were assigned. */
27723 gcc_assert (*cur_idx == node->index);
27724 assemble_string (node->str, strlen (node->str) + 1);
27725 *cur_idx += 1;
27727 return 1;
27730 /* A helper function for dwarf2out_finish called through
27731 htab_traverse. Emit one queued .debug_str string. */
27734 output_indirect_string (indirect_string_node **h, enum dwarf_form form)
27736 struct indirect_string_node *node = *h;
27738 node->form = find_string_form (node);
27739 if (node->form == form && node->refcount > 0)
27741 ASM_OUTPUT_LABEL (asm_out_file, node->label);
27742 assemble_string (node->str, strlen (node->str) + 1);
27745 return 1;
27748 /* Output the indexed string table. */
27750 static void
27751 output_indirect_strings (void)
27753 switch_to_section (debug_str_section);
27754 if (!dwarf_split_debug_info)
27755 debug_str_hash->traverse<enum dwarf_form,
27756 output_indirect_string> (DW_FORM_strp);
27757 else
27759 unsigned int offset = 0;
27760 unsigned int cur_idx = 0;
27762 skeleton_debug_str_hash->traverse<enum dwarf_form,
27763 output_indirect_string> (DW_FORM_strp);
27765 switch_to_section (debug_str_offsets_section);
27766 debug_str_hash->traverse_noresize
27767 <unsigned int *, output_index_string_offset> (&offset);
27768 switch_to_section (debug_str_dwo_section);
27769 debug_str_hash->traverse_noresize<unsigned int *, output_index_string>
27770 (&cur_idx);
27774 /* Callback for htab_traverse to assign an index to an entry in the
27775 table, and to write that entry to the .debug_addr section. */
27778 output_addr_table_entry (addr_table_entry **slot, unsigned int *cur_index)
27780 addr_table_entry *entry = *slot;
27782 if (entry->refcount == 0)
27784 gcc_assert (entry->index == NO_INDEX_ASSIGNED
27785 || entry->index == NOT_INDEXED);
27786 return 1;
27789 gcc_assert (entry->index == *cur_index);
27790 (*cur_index)++;
27792 switch (entry->kind)
27794 case ate_kind_rtx:
27795 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, entry->addr.rtl,
27796 "0x%x", entry->index);
27797 break;
27798 case ate_kind_rtx_dtprel:
27799 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
27800 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
27801 DWARF2_ADDR_SIZE,
27802 entry->addr.rtl);
27803 fputc ('\n', asm_out_file);
27804 break;
27805 case ate_kind_label:
27806 dw2_asm_output_addr (DWARF2_ADDR_SIZE, entry->addr.label,
27807 "0x%x", entry->index);
27808 break;
27809 default:
27810 gcc_unreachable ();
27812 return 1;
27815 /* Produce the .debug_addr section. */
27817 static void
27818 output_addr_table (void)
27820 unsigned int index = 0;
27821 if (addr_index_table == NULL || addr_index_table->size () == 0)
27822 return;
27824 switch_to_section (debug_addr_section);
27825 addr_index_table
27826 ->traverse_noresize<unsigned int *, output_addr_table_entry> (&index);
27829 #if ENABLE_ASSERT_CHECKING
27830 /* Verify that all marks are clear. */
27832 static void
27833 verify_marks_clear (dw_die_ref die)
27835 dw_die_ref c;
27837 gcc_assert (! die->die_mark);
27838 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
27840 #endif /* ENABLE_ASSERT_CHECKING */
27842 /* Clear the marks for a die and its children.
27843 Be cool if the mark isn't set. */
27845 static void
27846 prune_unmark_dies (dw_die_ref die)
27848 dw_die_ref c;
27850 if (die->die_mark)
27851 die->die_mark = 0;
27852 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
27855 /* Given LOC that is referenced by a DIE we're marking as used, find all
27856 referenced DWARF procedures it references and mark them as used. */
27858 static void
27859 prune_unused_types_walk_loc_descr (dw_loc_descr_ref loc)
27861 for (; loc != NULL; loc = loc->dw_loc_next)
27862 switch (loc->dw_loc_opc)
27864 case DW_OP_implicit_pointer:
27865 case DW_OP_convert:
27866 case DW_OP_reinterpret:
27867 case DW_OP_GNU_implicit_pointer:
27868 case DW_OP_GNU_convert:
27869 case DW_OP_GNU_reinterpret:
27870 if (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref)
27871 prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
27872 break;
27873 case DW_OP_GNU_variable_value:
27874 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
27876 dw_die_ref ref
27877 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
27878 if (ref == NULL)
27879 break;
27880 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
27881 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
27882 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
27884 /* FALLTHRU */
27885 case DW_OP_call2:
27886 case DW_OP_call4:
27887 case DW_OP_call_ref:
27888 case DW_OP_const_type:
27889 case DW_OP_GNU_const_type:
27890 case DW_OP_GNU_parameter_ref:
27891 gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref);
27892 prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
27893 break;
27894 case DW_OP_regval_type:
27895 case DW_OP_deref_type:
27896 case DW_OP_GNU_regval_type:
27897 case DW_OP_GNU_deref_type:
27898 gcc_assert (loc->dw_loc_oprnd2.val_class == dw_val_class_die_ref);
27899 prune_unused_types_mark (loc->dw_loc_oprnd2.v.val_die_ref.die, 1);
27900 break;
27901 case DW_OP_entry_value:
27902 case DW_OP_GNU_entry_value:
27903 gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_loc);
27904 prune_unused_types_walk_loc_descr (loc->dw_loc_oprnd1.v.val_loc);
27905 break;
27906 default:
27907 break;
27911 /* Given DIE that we're marking as used, find any other dies
27912 it references as attributes and mark them as used. */
27914 static void
27915 prune_unused_types_walk_attribs (dw_die_ref die)
27917 dw_attr_node *a;
27918 unsigned ix;
27920 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
27922 switch (AT_class (a))
27924 /* Make sure DWARF procedures referenced by location descriptions will
27925 get emitted. */
27926 case dw_val_class_loc:
27927 prune_unused_types_walk_loc_descr (AT_loc (a));
27928 break;
27929 case dw_val_class_loc_list:
27930 for (dw_loc_list_ref list = AT_loc_list (a);
27931 list != NULL;
27932 list = list->dw_loc_next)
27933 prune_unused_types_walk_loc_descr (list->expr);
27934 break;
27936 case dw_val_class_die_ref:
27937 /* A reference to another DIE.
27938 Make sure that it will get emitted.
27939 If it was broken out into a comdat group, don't follow it. */
27940 if (! AT_ref (a)->comdat_type_p
27941 || a->dw_attr == DW_AT_specification)
27942 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
27943 break;
27945 case dw_val_class_str:
27946 /* Set the string's refcount to 0 so that prune_unused_types_mark
27947 accounts properly for it. */
27948 a->dw_attr_val.v.val_str->refcount = 0;
27949 break;
27951 default:
27952 break;
27957 /* Mark the generic parameters and arguments children DIEs of DIE. */
27959 static void
27960 prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
27962 dw_die_ref c;
27964 if (die == NULL || die->die_child == NULL)
27965 return;
27966 c = die->die_child;
27969 if (is_template_parameter (c))
27970 prune_unused_types_mark (c, 1);
27971 c = c->die_sib;
27972 } while (c && c != die->die_child);
27975 /* Mark DIE as being used. If DOKIDS is true, then walk down
27976 to DIE's children. */
27978 static void
27979 prune_unused_types_mark (dw_die_ref die, int dokids)
27981 dw_die_ref c;
27983 if (die->die_mark == 0)
27985 /* We haven't done this node yet. Mark it as used. */
27986 die->die_mark = 1;
27987 /* If this is the DIE of a generic type instantiation,
27988 mark the children DIEs that describe its generic parms and
27989 args. */
27990 prune_unused_types_mark_generic_parms_dies (die);
27992 /* We also have to mark its parents as used.
27993 (But we don't want to mark our parent's kids due to this,
27994 unless it is a class.) */
27995 if (die->die_parent)
27996 prune_unused_types_mark (die->die_parent,
27997 class_scope_p (die->die_parent));
27999 /* Mark any referenced nodes. */
28000 prune_unused_types_walk_attribs (die);
28002 /* If this node is a specification,
28003 also mark the definition, if it exists. */
28004 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
28005 prune_unused_types_mark (die->die_definition, 1);
28008 if (dokids && die->die_mark != 2)
28010 /* We need to walk the children, but haven't done so yet.
28011 Remember that we've walked the kids. */
28012 die->die_mark = 2;
28014 /* If this is an array type, we need to make sure our
28015 kids get marked, even if they're types. If we're
28016 breaking out types into comdat sections, do this
28017 for all type definitions. */
28018 if (die->die_tag == DW_TAG_array_type
28019 || (use_debug_types
28020 && is_type_die (die) && ! is_declaration_die (die)))
28021 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
28022 else
28023 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
28027 /* For local classes, look if any static member functions were emitted
28028 and if so, mark them. */
28030 static void
28031 prune_unused_types_walk_local_classes (dw_die_ref die)
28033 dw_die_ref c;
28035 if (die->die_mark == 2)
28036 return;
28038 switch (die->die_tag)
28040 case DW_TAG_structure_type:
28041 case DW_TAG_union_type:
28042 case DW_TAG_class_type:
28043 break;
28045 case DW_TAG_subprogram:
28046 if (!get_AT_flag (die, DW_AT_declaration)
28047 || die->die_definition != NULL)
28048 prune_unused_types_mark (die, 1);
28049 return;
28051 default:
28052 return;
28055 /* Mark children. */
28056 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
28059 /* Walk the tree DIE and mark types that we actually use. */
28061 static void
28062 prune_unused_types_walk (dw_die_ref die)
28064 dw_die_ref c;
28066 /* Don't do anything if this node is already marked and
28067 children have been marked as well. */
28068 if (die->die_mark == 2)
28069 return;
28071 switch (die->die_tag)
28073 case DW_TAG_structure_type:
28074 case DW_TAG_union_type:
28075 case DW_TAG_class_type:
28076 if (die->die_perennial_p)
28077 break;
28079 for (c = die->die_parent; c; c = c->die_parent)
28080 if (c->die_tag == DW_TAG_subprogram)
28081 break;
28083 /* Finding used static member functions inside of classes
28084 is needed just for local classes, because for other classes
28085 static member function DIEs with DW_AT_specification
28086 are emitted outside of the DW_TAG_*_type. If we ever change
28087 it, we'd need to call this even for non-local classes. */
28088 if (c)
28089 prune_unused_types_walk_local_classes (die);
28091 /* It's a type node --- don't mark it. */
28092 return;
28094 case DW_TAG_const_type:
28095 case DW_TAG_packed_type:
28096 case DW_TAG_pointer_type:
28097 case DW_TAG_reference_type:
28098 case DW_TAG_rvalue_reference_type:
28099 case DW_TAG_volatile_type:
28100 case DW_TAG_typedef:
28101 case DW_TAG_array_type:
28102 case DW_TAG_interface_type:
28103 case DW_TAG_friend:
28104 case DW_TAG_enumeration_type:
28105 case DW_TAG_subroutine_type:
28106 case DW_TAG_string_type:
28107 case DW_TAG_set_type:
28108 case DW_TAG_subrange_type:
28109 case DW_TAG_ptr_to_member_type:
28110 case DW_TAG_file_type:
28111 /* Type nodes are useful only when other DIEs reference them --- don't
28112 mark them. */
28113 /* FALLTHROUGH */
28115 case DW_TAG_dwarf_procedure:
28116 /* Likewise for DWARF procedures. */
28118 if (die->die_perennial_p)
28119 break;
28121 return;
28123 default:
28124 /* Mark everything else. */
28125 break;
28128 if (die->die_mark == 0)
28130 die->die_mark = 1;
28132 /* Now, mark any dies referenced from here. */
28133 prune_unused_types_walk_attribs (die);
28136 die->die_mark = 2;
28138 /* Mark children. */
28139 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
28142 /* Increment the string counts on strings referred to from DIE's
28143 attributes. */
28145 static void
28146 prune_unused_types_update_strings (dw_die_ref die)
28148 dw_attr_node *a;
28149 unsigned ix;
28151 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
28152 if (AT_class (a) == dw_val_class_str)
28154 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
28155 s->refcount++;
28156 /* Avoid unnecessarily putting strings that are used less than
28157 twice in the hash table. */
28158 if (s->refcount
28159 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
28161 indirect_string_node **slot
28162 = debug_str_hash->find_slot_with_hash (s->str,
28163 htab_hash_string (s->str),
28164 INSERT);
28165 gcc_assert (*slot == NULL);
28166 *slot = s;
28171 /* Mark DIE and its children as removed. */
28173 static void
28174 mark_removed (dw_die_ref die)
28176 dw_die_ref c;
28177 die->removed = true;
28178 FOR_EACH_CHILD (die, c, mark_removed (c));
28181 /* Remove from the tree DIE any dies that aren't marked. */
28183 static void
28184 prune_unused_types_prune (dw_die_ref die)
28186 dw_die_ref c;
28188 gcc_assert (die->die_mark);
28189 prune_unused_types_update_strings (die);
28191 if (! die->die_child)
28192 return;
28194 c = die->die_child;
28195 do {
28196 dw_die_ref prev = c, next;
28197 for (c = c->die_sib; ! c->die_mark; c = next)
28198 if (c == die->die_child)
28200 /* No marked children between 'prev' and the end of the list. */
28201 if (prev == c)
28202 /* No marked children at all. */
28203 die->die_child = NULL;
28204 else
28206 prev->die_sib = c->die_sib;
28207 die->die_child = prev;
28209 c->die_sib = NULL;
28210 mark_removed (c);
28211 return;
28213 else
28215 next = c->die_sib;
28216 c->die_sib = NULL;
28217 mark_removed (c);
28220 if (c != prev->die_sib)
28221 prev->die_sib = c;
28222 prune_unused_types_prune (c);
28223 } while (c != die->die_child);
28226 /* Remove dies representing declarations that we never use. */
28228 static void
28229 prune_unused_types (void)
28231 unsigned int i;
28232 limbo_die_node *node;
28233 comdat_type_node *ctnode;
28234 pubname_entry *pub;
28235 dw_die_ref base_type;
28237 #if ENABLE_ASSERT_CHECKING
28238 /* All the marks should already be clear. */
28239 verify_marks_clear (comp_unit_die ());
28240 for (node = limbo_die_list; node; node = node->next)
28241 verify_marks_clear (node->die);
28242 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28243 verify_marks_clear (ctnode->root_die);
28244 #endif /* ENABLE_ASSERT_CHECKING */
28246 /* Mark types that are used in global variables. */
28247 premark_types_used_by_global_vars ();
28249 /* Set the mark on nodes that are actually used. */
28250 prune_unused_types_walk (comp_unit_die ());
28251 for (node = limbo_die_list; node; node = node->next)
28252 prune_unused_types_walk (node->die);
28253 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28255 prune_unused_types_walk (ctnode->root_die);
28256 prune_unused_types_mark (ctnode->type_die, 1);
28259 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
28260 are unusual in that they are pubnames that are the children of pubtypes.
28261 They should only be marked via their parent DW_TAG_enumeration_type die,
28262 not as roots in themselves. */
28263 FOR_EACH_VEC_ELT (*pubname_table, i, pub)
28264 if (pub->die->die_tag != DW_TAG_enumerator)
28265 prune_unused_types_mark (pub->die, 1);
28266 for (i = 0; base_types.iterate (i, &base_type); i++)
28267 prune_unused_types_mark (base_type, 1);
28269 /* For -fvar-tracking-assignments, also set the mark on nodes that could be
28270 referenced by DW_TAG_call_site DW_AT_call_origin (i.e. direct call
28271 callees). */
28272 cgraph_node *cnode;
28273 FOR_EACH_FUNCTION (cnode)
28274 if (cnode->referred_to_p (false))
28276 dw_die_ref die = lookup_decl_die (cnode->decl);
28277 if (die == NULL || die->die_mark)
28278 continue;
28279 for (cgraph_edge *e = cnode->callers; e; e = e->next_caller)
28280 if (e->caller != cnode
28281 && opt_for_fn (e->caller->decl, flag_var_tracking_assignments))
28283 prune_unused_types_mark (die, 1);
28284 break;
28288 if (debug_str_hash)
28289 debug_str_hash->empty ();
28290 if (skeleton_debug_str_hash)
28291 skeleton_debug_str_hash->empty ();
28292 prune_unused_types_prune (comp_unit_die ());
28293 for (limbo_die_node **pnode = &limbo_die_list; *pnode; )
28295 node = *pnode;
28296 if (!node->die->die_mark)
28297 *pnode = node->next;
28298 else
28300 prune_unused_types_prune (node->die);
28301 pnode = &node->next;
28304 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28305 prune_unused_types_prune (ctnode->root_die);
28307 /* Leave the marks clear. */
28308 prune_unmark_dies (comp_unit_die ());
28309 for (node = limbo_die_list; node; node = node->next)
28310 prune_unmark_dies (node->die);
28311 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28312 prune_unmark_dies (ctnode->root_die);
28315 /* Helpers to manipulate hash table of comdat type units. */
28317 struct comdat_type_hasher : nofree_ptr_hash <comdat_type_node>
28319 static inline hashval_t hash (const comdat_type_node *);
28320 static inline bool equal (const comdat_type_node *, const comdat_type_node *);
28323 inline hashval_t
28324 comdat_type_hasher::hash (const comdat_type_node *type_node)
28326 hashval_t h;
28327 memcpy (&h, type_node->signature, sizeof (h));
28328 return h;
28331 inline bool
28332 comdat_type_hasher::equal (const comdat_type_node *type_node_1,
28333 const comdat_type_node *type_node_2)
28335 return (! memcmp (type_node_1->signature, type_node_2->signature,
28336 DWARF_TYPE_SIGNATURE_SIZE));
28339 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
28340 to the location it would have been added, should we know its
28341 DECL_ASSEMBLER_NAME when we added other attributes. This will
28342 probably improve compactness of debug info, removing equivalent
28343 abbrevs, and hide any differences caused by deferring the
28344 computation of the assembler name, triggered by e.g. PCH. */
28346 static inline void
28347 move_linkage_attr (dw_die_ref die)
28349 unsigned ix = vec_safe_length (die->die_attr);
28350 dw_attr_node linkage = (*die->die_attr)[ix - 1];
28352 gcc_assert (linkage.dw_attr == DW_AT_linkage_name
28353 || linkage.dw_attr == DW_AT_MIPS_linkage_name);
28355 while (--ix > 0)
28357 dw_attr_node *prev = &(*die->die_attr)[ix - 1];
28359 if (prev->dw_attr == DW_AT_decl_line
28360 || prev->dw_attr == DW_AT_decl_column
28361 || prev->dw_attr == DW_AT_name)
28362 break;
28365 if (ix != vec_safe_length (die->die_attr) - 1)
28367 die->die_attr->pop ();
28368 die->die_attr->quick_insert (ix, linkage);
28372 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
28373 referenced from typed stack ops and count how often they are used. */
28375 static void
28376 mark_base_types (dw_loc_descr_ref loc)
28378 dw_die_ref base_type = NULL;
28380 for (; loc; loc = loc->dw_loc_next)
28382 switch (loc->dw_loc_opc)
28384 case DW_OP_regval_type:
28385 case DW_OP_deref_type:
28386 case DW_OP_GNU_regval_type:
28387 case DW_OP_GNU_deref_type:
28388 base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
28389 break;
28390 case DW_OP_convert:
28391 case DW_OP_reinterpret:
28392 case DW_OP_GNU_convert:
28393 case DW_OP_GNU_reinterpret:
28394 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
28395 continue;
28396 /* FALLTHRU */
28397 case DW_OP_const_type:
28398 case DW_OP_GNU_const_type:
28399 base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
28400 break;
28401 case DW_OP_entry_value:
28402 case DW_OP_GNU_entry_value:
28403 mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
28404 continue;
28405 default:
28406 continue;
28408 gcc_assert (base_type->die_parent == comp_unit_die ());
28409 if (base_type->die_mark)
28410 base_type->die_mark++;
28411 else
28413 base_types.safe_push (base_type);
28414 base_type->die_mark = 1;
28419 /* Comparison function for sorting marked base types. */
28421 static int
28422 base_type_cmp (const void *x, const void *y)
28424 dw_die_ref dx = *(const dw_die_ref *) x;
28425 dw_die_ref dy = *(const dw_die_ref *) y;
28426 unsigned int byte_size1, byte_size2;
28427 unsigned int encoding1, encoding2;
28428 unsigned int align1, align2;
28429 if (dx->die_mark > dy->die_mark)
28430 return -1;
28431 if (dx->die_mark < dy->die_mark)
28432 return 1;
28433 byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
28434 byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
28435 if (byte_size1 < byte_size2)
28436 return 1;
28437 if (byte_size1 > byte_size2)
28438 return -1;
28439 encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
28440 encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
28441 if (encoding1 < encoding2)
28442 return 1;
28443 if (encoding1 > encoding2)
28444 return -1;
28445 align1 = get_AT_unsigned (dx, DW_AT_alignment);
28446 align2 = get_AT_unsigned (dy, DW_AT_alignment);
28447 if (align1 < align2)
28448 return 1;
28449 if (align1 > align2)
28450 return -1;
28451 return 0;
28454 /* Move base types marked by mark_base_types as early as possible
28455 in the CU, sorted by decreasing usage count both to make the
28456 uleb128 references as small as possible and to make sure they
28457 will have die_offset already computed by calc_die_sizes when
28458 sizes of typed stack loc ops is computed. */
28460 static void
28461 move_marked_base_types (void)
28463 unsigned int i;
28464 dw_die_ref base_type, die, c;
28466 if (base_types.is_empty ())
28467 return;
28469 /* Sort by decreasing usage count, they will be added again in that
28470 order later on. */
28471 base_types.qsort (base_type_cmp);
28472 die = comp_unit_die ();
28473 c = die->die_child;
28476 dw_die_ref prev = c;
28477 c = c->die_sib;
28478 while (c->die_mark)
28480 remove_child_with_prev (c, prev);
28481 /* As base types got marked, there must be at least
28482 one node other than DW_TAG_base_type. */
28483 gcc_assert (die->die_child != NULL);
28484 c = prev->die_sib;
28487 while (c != die->die_child);
28488 gcc_assert (die->die_child);
28489 c = die->die_child;
28490 for (i = 0; base_types.iterate (i, &base_type); i++)
28492 base_type->die_mark = 0;
28493 base_type->die_sib = c->die_sib;
28494 c->die_sib = base_type;
28495 c = base_type;
28499 /* Helper function for resolve_addr, attempt to resolve
28500 one CONST_STRING, return true if successful. Similarly verify that
28501 SYMBOL_REFs refer to variables emitted in the current CU. */
28503 static bool
28504 resolve_one_addr (rtx *addr)
28506 rtx rtl = *addr;
28508 if (GET_CODE (rtl) == CONST_STRING)
28510 size_t len = strlen (XSTR (rtl, 0)) + 1;
28511 tree t = build_string (len, XSTR (rtl, 0));
28512 tree tlen = size_int (len - 1);
28513 TREE_TYPE (t)
28514 = build_array_type (char_type_node, build_index_type (tlen));
28515 rtl = lookup_constant_def (t);
28516 if (!rtl || !MEM_P (rtl))
28517 return false;
28518 rtl = XEXP (rtl, 0);
28519 if (GET_CODE (rtl) == SYMBOL_REF
28520 && SYMBOL_REF_DECL (rtl)
28521 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
28522 return false;
28523 vec_safe_push (used_rtx_array, rtl);
28524 *addr = rtl;
28525 return true;
28528 if (GET_CODE (rtl) == SYMBOL_REF
28529 && SYMBOL_REF_DECL (rtl))
28531 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
28533 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
28534 return false;
28536 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
28537 return false;
28540 if (GET_CODE (rtl) == CONST)
28542 subrtx_ptr_iterator::array_type array;
28543 FOR_EACH_SUBRTX_PTR (iter, array, &XEXP (rtl, 0), ALL)
28544 if (!resolve_one_addr (*iter))
28545 return false;
28548 return true;
28551 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
28552 if possible, and create DW_TAG_dwarf_procedure that can be referenced
28553 from DW_OP_implicit_pointer if the string hasn't been seen yet. */
28555 static rtx
28556 string_cst_pool_decl (tree t)
28558 rtx rtl = output_constant_def (t, 1);
28559 unsigned char *array;
28560 dw_loc_descr_ref l;
28561 tree decl;
28562 size_t len;
28563 dw_die_ref ref;
28565 if (!rtl || !MEM_P (rtl))
28566 return NULL_RTX;
28567 rtl = XEXP (rtl, 0);
28568 if (GET_CODE (rtl) != SYMBOL_REF
28569 || SYMBOL_REF_DECL (rtl) == NULL_TREE)
28570 return NULL_RTX;
28572 decl = SYMBOL_REF_DECL (rtl);
28573 if (!lookup_decl_die (decl))
28575 len = TREE_STRING_LENGTH (t);
28576 vec_safe_push (used_rtx_array, rtl);
28577 ref = new_die (DW_TAG_dwarf_procedure, comp_unit_die (), decl);
28578 array = ggc_vec_alloc<unsigned char> (len);
28579 memcpy (array, TREE_STRING_POINTER (t), len);
28580 l = new_loc_descr (DW_OP_implicit_value, len, 0);
28581 l->dw_loc_oprnd2.val_class = dw_val_class_vec;
28582 l->dw_loc_oprnd2.v.val_vec.length = len;
28583 l->dw_loc_oprnd2.v.val_vec.elt_size = 1;
28584 l->dw_loc_oprnd2.v.val_vec.array = array;
28585 add_AT_loc (ref, DW_AT_location, l);
28586 equate_decl_number_to_die (decl, ref);
28588 return rtl;
28591 /* Helper function of resolve_addr_in_expr. LOC is
28592 a DW_OP_addr followed by DW_OP_stack_value, either at the start
28593 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
28594 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
28595 with DW_OP_implicit_pointer if possible
28596 and return true, if unsuccessful, return false. */
28598 static bool
28599 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc)
28601 rtx rtl = loc->dw_loc_oprnd1.v.val_addr;
28602 HOST_WIDE_INT offset = 0;
28603 dw_die_ref ref = NULL;
28604 tree decl;
28606 if (GET_CODE (rtl) == CONST
28607 && GET_CODE (XEXP (rtl, 0)) == PLUS
28608 && CONST_INT_P (XEXP (XEXP (rtl, 0), 1)))
28610 offset = INTVAL (XEXP (XEXP (rtl, 0), 1));
28611 rtl = XEXP (XEXP (rtl, 0), 0);
28613 if (GET_CODE (rtl) == CONST_STRING)
28615 size_t len = strlen (XSTR (rtl, 0)) + 1;
28616 tree t = build_string (len, XSTR (rtl, 0));
28617 tree tlen = size_int (len - 1);
28619 TREE_TYPE (t)
28620 = build_array_type (char_type_node, build_index_type (tlen));
28621 rtl = string_cst_pool_decl (t);
28622 if (!rtl)
28623 return false;
28625 if (GET_CODE (rtl) == SYMBOL_REF && SYMBOL_REF_DECL (rtl))
28627 decl = SYMBOL_REF_DECL (rtl);
28628 if (VAR_P (decl) && !DECL_EXTERNAL (decl))
28630 ref = lookup_decl_die (decl);
28631 if (ref && (get_AT (ref, DW_AT_location)
28632 || get_AT (ref, DW_AT_const_value)))
28634 loc->dw_loc_opc = dwarf_OP (DW_OP_implicit_pointer);
28635 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
28636 loc->dw_loc_oprnd1.val_entry = NULL;
28637 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
28638 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
28639 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
28640 loc->dw_loc_oprnd2.v.val_int = offset;
28641 return true;
28645 return false;
28648 /* Helper function for resolve_addr, handle one location
28649 expression, return false if at least one CONST_STRING or SYMBOL_REF in
28650 the location list couldn't be resolved. */
28652 static bool
28653 resolve_addr_in_expr (dw_attr_node *a, dw_loc_descr_ref loc)
28655 dw_loc_descr_ref keep = NULL;
28656 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = loc->dw_loc_next)
28657 switch (loc->dw_loc_opc)
28659 case DW_OP_addr:
28660 if (!resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
28662 if ((prev == NULL
28663 || prev->dw_loc_opc == DW_OP_piece
28664 || prev->dw_loc_opc == DW_OP_bit_piece)
28665 && loc->dw_loc_next
28666 && loc->dw_loc_next->dw_loc_opc == DW_OP_stack_value
28667 && (!dwarf_strict || dwarf_version >= 5)
28668 && optimize_one_addr_into_implicit_ptr (loc))
28669 break;
28670 return false;
28672 break;
28673 case DW_OP_GNU_addr_index:
28674 case DW_OP_GNU_const_index:
28675 if (loc->dw_loc_opc == DW_OP_GNU_addr_index
28676 || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
28678 rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
28679 if (!resolve_one_addr (&rtl))
28680 return false;
28681 remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
28682 loc->dw_loc_oprnd1.val_entry
28683 = add_addr_table_entry (rtl, ate_kind_rtx);
28685 break;
28686 case DW_OP_const4u:
28687 case DW_OP_const8u:
28688 if (loc->dtprel
28689 && !resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
28690 return false;
28691 break;
28692 case DW_OP_plus_uconst:
28693 if (size_of_loc_descr (loc)
28694 > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
28696 && loc->dw_loc_oprnd1.v.val_unsigned > 0)
28698 dw_loc_descr_ref repl
28699 = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
28700 add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
28701 add_loc_descr (&repl, loc->dw_loc_next);
28702 *loc = *repl;
28704 break;
28705 case DW_OP_implicit_value:
28706 if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
28707 && !resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr))
28708 return false;
28709 break;
28710 case DW_OP_implicit_pointer:
28711 case DW_OP_GNU_implicit_pointer:
28712 case DW_OP_GNU_parameter_ref:
28713 case DW_OP_GNU_variable_value:
28714 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
28716 dw_die_ref ref
28717 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
28718 if (ref == NULL)
28719 return false;
28720 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
28721 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
28722 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
28724 if (loc->dw_loc_opc == DW_OP_GNU_variable_value)
28726 if (prev == NULL
28727 && loc->dw_loc_next == NULL
28728 && AT_class (a) == dw_val_class_loc)
28729 switch (a->dw_attr)
28731 /* Following attributes allow both exprloc and reference,
28732 so if the whole expression is DW_OP_GNU_variable_value
28733 alone we could transform it into reference. */
28734 case DW_AT_byte_size:
28735 case DW_AT_bit_size:
28736 case DW_AT_lower_bound:
28737 case DW_AT_upper_bound:
28738 case DW_AT_bit_stride:
28739 case DW_AT_count:
28740 case DW_AT_allocated:
28741 case DW_AT_associated:
28742 case DW_AT_byte_stride:
28743 a->dw_attr_val.val_class = dw_val_class_die_ref;
28744 a->dw_attr_val.val_entry = NULL;
28745 a->dw_attr_val.v.val_die_ref.die
28746 = loc->dw_loc_oprnd1.v.val_die_ref.die;
28747 a->dw_attr_val.v.val_die_ref.external = 0;
28748 return true;
28749 default:
28750 break;
28752 if (dwarf_strict)
28753 return false;
28755 break;
28756 case DW_OP_const_type:
28757 case DW_OP_regval_type:
28758 case DW_OP_deref_type:
28759 case DW_OP_convert:
28760 case DW_OP_reinterpret:
28761 case DW_OP_GNU_const_type:
28762 case DW_OP_GNU_regval_type:
28763 case DW_OP_GNU_deref_type:
28764 case DW_OP_GNU_convert:
28765 case DW_OP_GNU_reinterpret:
28766 while (loc->dw_loc_next
28767 && (loc->dw_loc_next->dw_loc_opc == DW_OP_convert
28768 || loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert))
28770 dw_die_ref base1, base2;
28771 unsigned enc1, enc2, size1, size2;
28772 if (loc->dw_loc_opc == DW_OP_regval_type
28773 || loc->dw_loc_opc == DW_OP_deref_type
28774 || loc->dw_loc_opc == DW_OP_GNU_regval_type
28775 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
28776 base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
28777 else if (loc->dw_loc_oprnd1.val_class
28778 == dw_val_class_unsigned_const)
28779 break;
28780 else
28781 base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
28782 if (loc->dw_loc_next->dw_loc_oprnd1.val_class
28783 == dw_val_class_unsigned_const)
28784 break;
28785 base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
28786 gcc_assert (base1->die_tag == DW_TAG_base_type
28787 && base2->die_tag == DW_TAG_base_type);
28788 enc1 = get_AT_unsigned (base1, DW_AT_encoding);
28789 enc2 = get_AT_unsigned (base2, DW_AT_encoding);
28790 size1 = get_AT_unsigned (base1, DW_AT_byte_size);
28791 size2 = get_AT_unsigned (base2, DW_AT_byte_size);
28792 if (size1 == size2
28793 && (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
28794 && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
28795 && loc != keep)
28796 || enc1 == enc2))
28798 /* Optimize away next DW_OP_convert after
28799 adjusting LOC's base type die reference. */
28800 if (loc->dw_loc_opc == DW_OP_regval_type
28801 || loc->dw_loc_opc == DW_OP_deref_type
28802 || loc->dw_loc_opc == DW_OP_GNU_regval_type
28803 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
28804 loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
28805 else
28806 loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
28807 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
28808 continue;
28810 /* Don't change integer DW_OP_convert after e.g. floating
28811 point typed stack entry. */
28812 else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
28813 keep = loc->dw_loc_next;
28814 break;
28816 break;
28817 default:
28818 break;
28820 return true;
28823 /* Helper function of resolve_addr. DIE had DW_AT_location of
28824 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
28825 and DW_OP_addr couldn't be resolved. resolve_addr has already
28826 removed the DW_AT_location attribute. This function attempts to
28827 add a new DW_AT_location attribute with DW_OP_implicit_pointer
28828 to it or DW_AT_const_value attribute, if possible. */
28830 static void
28831 optimize_location_into_implicit_ptr (dw_die_ref die, tree decl)
28833 if (!VAR_P (decl)
28834 || lookup_decl_die (decl) != die
28835 || DECL_EXTERNAL (decl)
28836 || !TREE_STATIC (decl)
28837 || DECL_INITIAL (decl) == NULL_TREE
28838 || DECL_P (DECL_INITIAL (decl))
28839 || get_AT (die, DW_AT_const_value))
28840 return;
28842 tree init = DECL_INITIAL (decl);
28843 HOST_WIDE_INT offset = 0;
28844 /* For variables that have been optimized away and thus
28845 don't have a memory location, see if we can emit
28846 DW_AT_const_value instead. */
28847 if (tree_add_const_value_attribute (die, init))
28848 return;
28849 if (dwarf_strict && dwarf_version < 5)
28850 return;
28851 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
28852 and ADDR_EXPR refers to a decl that has DW_AT_location or
28853 DW_AT_const_value (but isn't addressable, otherwise
28854 resolving the original DW_OP_addr wouldn't fail), see if
28855 we can add DW_OP_implicit_pointer. */
28856 STRIP_NOPS (init);
28857 if (TREE_CODE (init) == POINTER_PLUS_EXPR
28858 && tree_fits_shwi_p (TREE_OPERAND (init, 1)))
28860 offset = tree_to_shwi (TREE_OPERAND (init, 1));
28861 init = TREE_OPERAND (init, 0);
28862 STRIP_NOPS (init);
28864 if (TREE_CODE (init) != ADDR_EXPR)
28865 return;
28866 if ((TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST
28867 && !TREE_ASM_WRITTEN (TREE_OPERAND (init, 0)))
28868 || (TREE_CODE (TREE_OPERAND (init, 0)) == VAR_DECL
28869 && !DECL_EXTERNAL (TREE_OPERAND (init, 0))
28870 && TREE_OPERAND (init, 0) != decl))
28872 dw_die_ref ref;
28873 dw_loc_descr_ref l;
28875 if (TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST)
28877 rtx rtl = string_cst_pool_decl (TREE_OPERAND (init, 0));
28878 if (!rtl)
28879 return;
28880 decl = SYMBOL_REF_DECL (rtl);
28882 else
28883 decl = TREE_OPERAND (init, 0);
28884 ref = lookup_decl_die (decl);
28885 if (ref == NULL
28886 || (!get_AT (ref, DW_AT_location)
28887 && !get_AT (ref, DW_AT_const_value)))
28888 return;
28889 l = new_loc_descr (dwarf_OP (DW_OP_implicit_pointer), 0, offset);
28890 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
28891 l->dw_loc_oprnd1.v.val_die_ref.die = ref;
28892 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
28893 add_AT_loc (die, DW_AT_location, l);
28897 /* Return NULL if l is a DWARF expression, or first op that is not
28898 valid DWARF expression. */
28900 static dw_loc_descr_ref
28901 non_dwarf_expression (dw_loc_descr_ref l)
28903 while (l)
28905 if (l->dw_loc_opc >= DW_OP_reg0 && l->dw_loc_opc <= DW_OP_reg31)
28906 return l;
28907 switch (l->dw_loc_opc)
28909 case DW_OP_regx:
28910 case DW_OP_implicit_value:
28911 case DW_OP_stack_value:
28912 case DW_OP_implicit_pointer:
28913 case DW_OP_GNU_implicit_pointer:
28914 case DW_OP_GNU_parameter_ref:
28915 case DW_OP_piece:
28916 case DW_OP_bit_piece:
28917 return l;
28918 default:
28919 break;
28921 l = l->dw_loc_next;
28923 return NULL;
28926 /* Return adjusted copy of EXPR:
28927 If it is empty DWARF expression, return it.
28928 If it is valid non-empty DWARF expression,
28929 return copy of EXPR with DW_OP_deref appended to it.
28930 If it is DWARF expression followed by DW_OP_reg{N,x}, return
28931 copy of the DWARF expression with DW_OP_breg{N,x} <0> appended.
28932 If it is DWARF expression followed by DW_OP_stack_value, return
28933 copy of the DWARF expression without anything appended.
28934 Otherwise, return NULL. */
28936 static dw_loc_descr_ref
28937 copy_deref_exprloc (dw_loc_descr_ref expr)
28939 dw_loc_descr_ref tail = NULL;
28941 if (expr == NULL)
28942 return NULL;
28944 dw_loc_descr_ref l = non_dwarf_expression (expr);
28945 if (l && l->dw_loc_next)
28946 return NULL;
28948 if (l)
28950 if (l->dw_loc_opc >= DW_OP_reg0 && l->dw_loc_opc <= DW_OP_reg31)
28951 tail = new_loc_descr ((enum dwarf_location_atom)
28952 (DW_OP_breg0 + (l->dw_loc_opc - DW_OP_reg0)),
28953 0, 0);
28954 else
28955 switch (l->dw_loc_opc)
28957 case DW_OP_regx:
28958 tail = new_loc_descr (DW_OP_bregx,
28959 l->dw_loc_oprnd1.v.val_unsigned, 0);
28960 break;
28961 case DW_OP_stack_value:
28962 break;
28963 default:
28964 return NULL;
28967 else
28968 tail = new_loc_descr (DW_OP_deref, 0, 0);
28970 dw_loc_descr_ref ret = NULL, *p = &ret;
28971 while (expr != l)
28973 *p = new_loc_descr (expr->dw_loc_opc, 0, 0);
28974 (*p)->dw_loc_oprnd1 = expr->dw_loc_oprnd1;
28975 (*p)->dw_loc_oprnd2 = expr->dw_loc_oprnd2;
28976 p = &(*p)->dw_loc_next;
28977 expr = expr->dw_loc_next;
28979 *p = tail;
28980 return ret;
28983 /* For DW_AT_string_length attribute with DW_OP_GNU_variable_value
28984 reference to a variable or argument, adjust it if needed and return:
28985 -1 if the DW_AT_string_length attribute and DW_AT_{string_length_,}byte_size
28986 attribute if present should be removed
28987 0 keep the attribute perhaps with minor modifications, no need to rescan
28988 1 if the attribute has been successfully adjusted. */
28990 static int
28991 optimize_string_length (dw_attr_node *a)
28993 dw_loc_descr_ref l = AT_loc (a), lv;
28994 dw_die_ref die;
28995 if (l->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
28997 tree decl = l->dw_loc_oprnd1.v.val_decl_ref;
28998 die = lookup_decl_die (decl);
28999 if (die)
29001 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
29002 l->dw_loc_oprnd1.v.val_die_ref.die = die;
29003 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
29005 else
29006 return -1;
29008 else
29009 die = l->dw_loc_oprnd1.v.val_die_ref.die;
29011 /* DWARF5 allows reference class, so we can then reference the DIE.
29012 Only do this for DW_OP_GNU_variable_value DW_OP_stack_value. */
29013 if (l->dw_loc_next != NULL && dwarf_version >= 5)
29015 a->dw_attr_val.val_class = dw_val_class_die_ref;
29016 a->dw_attr_val.val_entry = NULL;
29017 a->dw_attr_val.v.val_die_ref.die = die;
29018 a->dw_attr_val.v.val_die_ref.external = 0;
29019 return 0;
29022 dw_attr_node *av = get_AT (die, DW_AT_location);
29023 dw_loc_list_ref d;
29024 bool non_dwarf_expr = false;
29026 if (av == NULL)
29027 return dwarf_strict ? -1 : 0;
29028 switch (AT_class (av))
29030 case dw_val_class_loc_list:
29031 for (d = AT_loc_list (av); d != NULL; d = d->dw_loc_next)
29032 if (d->expr && non_dwarf_expression (d->expr))
29033 non_dwarf_expr = true;
29034 break;
29035 case dw_val_class_loc:
29036 lv = AT_loc (av);
29037 if (lv == NULL)
29038 return dwarf_strict ? -1 : 0;
29039 if (non_dwarf_expression (lv))
29040 non_dwarf_expr = true;
29041 break;
29042 default:
29043 return dwarf_strict ? -1 : 0;
29046 /* If it is safe to transform DW_OP_GNU_variable_value DW_OP_stack_value
29047 into DW_OP_call4 or DW_OP_GNU_variable_value into
29048 DW_OP_call4 DW_OP_deref, do so. */
29049 if (!non_dwarf_expr
29050 && (l->dw_loc_next != NULL || AT_class (av) == dw_val_class_loc))
29052 l->dw_loc_opc = DW_OP_call4;
29053 if (l->dw_loc_next)
29054 l->dw_loc_next = NULL;
29055 else
29056 l->dw_loc_next = new_loc_descr (DW_OP_deref, 0, 0);
29057 return 0;
29060 /* For DW_OP_GNU_variable_value DW_OP_stack_value, we can just
29061 copy over the DW_AT_location attribute from die to a. */
29062 if (l->dw_loc_next != NULL)
29064 a->dw_attr_val = av->dw_attr_val;
29065 return 1;
29068 dw_loc_list_ref list, *p;
29069 switch (AT_class (av))
29071 case dw_val_class_loc_list:
29072 p = &list;
29073 list = NULL;
29074 for (d = AT_loc_list (av); d != NULL; d = d->dw_loc_next)
29076 lv = copy_deref_exprloc (d->expr);
29077 if (lv)
29079 *p = new_loc_list (lv, d->begin, d->end, d->section);
29080 p = &(*p)->dw_loc_next;
29082 else if (!dwarf_strict && d->expr)
29083 return 0;
29085 if (list == NULL)
29086 return dwarf_strict ? -1 : 0;
29087 a->dw_attr_val.val_class = dw_val_class_loc_list;
29088 gen_llsym (list);
29089 *AT_loc_list_ptr (a) = list;
29090 return 1;
29091 case dw_val_class_loc:
29092 lv = copy_deref_exprloc (AT_loc (av));
29093 if (lv == NULL)
29094 return dwarf_strict ? -1 : 0;
29095 a->dw_attr_val.v.val_loc = lv;
29096 return 1;
29097 default:
29098 gcc_unreachable ();
29102 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
29103 an address in .rodata section if the string literal is emitted there,
29104 or remove the containing location list or replace DW_AT_const_value
29105 with DW_AT_location and empty location expression, if it isn't found
29106 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
29107 to something that has been emitted in the current CU. */
29109 static void
29110 resolve_addr (dw_die_ref die)
29112 dw_die_ref c;
29113 dw_attr_node *a;
29114 dw_loc_list_ref *curr, *start, loc;
29115 unsigned ix;
29116 bool remove_AT_byte_size = false;
29118 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
29119 switch (AT_class (a))
29121 case dw_val_class_loc_list:
29122 start = curr = AT_loc_list_ptr (a);
29123 loc = *curr;
29124 gcc_assert (loc);
29125 /* The same list can be referenced more than once. See if we have
29126 already recorded the result from a previous pass. */
29127 if (loc->replaced)
29128 *curr = loc->dw_loc_next;
29129 else if (!loc->resolved_addr)
29131 /* As things stand, we do not expect or allow one die to
29132 reference a suffix of another die's location list chain.
29133 References must be identical or completely separate.
29134 There is therefore no need to cache the result of this
29135 pass on any list other than the first; doing so
29136 would lead to unnecessary writes. */
29137 while (*curr)
29139 gcc_assert (!(*curr)->replaced && !(*curr)->resolved_addr);
29140 if (!resolve_addr_in_expr (a, (*curr)->expr))
29142 dw_loc_list_ref next = (*curr)->dw_loc_next;
29143 dw_loc_descr_ref l = (*curr)->expr;
29145 if (next && (*curr)->ll_symbol)
29147 gcc_assert (!next->ll_symbol);
29148 next->ll_symbol = (*curr)->ll_symbol;
29150 if (dwarf_split_debug_info)
29151 remove_loc_list_addr_table_entries (l);
29152 *curr = next;
29154 else
29156 mark_base_types ((*curr)->expr);
29157 curr = &(*curr)->dw_loc_next;
29160 if (loc == *start)
29161 loc->resolved_addr = 1;
29162 else
29164 loc->replaced = 1;
29165 loc->dw_loc_next = *start;
29168 if (!*start)
29170 remove_AT (die, a->dw_attr);
29171 ix--;
29173 break;
29174 case dw_val_class_loc:
29176 dw_loc_descr_ref l = AT_loc (a);
29177 /* DW_OP_GNU_variable_value DW_OP_stack_value or
29178 DW_OP_GNU_variable_value in DW_AT_string_length can be converted
29179 into DW_OP_call4 or DW_OP_call4 DW_OP_deref, which is standard
29180 DWARF4 unlike DW_OP_GNU_variable_value. Or for DWARF5
29181 DW_OP_GNU_variable_value DW_OP_stack_value can be replaced
29182 with DW_FORM_ref referencing the same DIE as
29183 DW_OP_GNU_variable_value used to reference. */
29184 if (a->dw_attr == DW_AT_string_length
29185 && l
29186 && l->dw_loc_opc == DW_OP_GNU_variable_value
29187 && (l->dw_loc_next == NULL
29188 || (l->dw_loc_next->dw_loc_next == NULL
29189 && l->dw_loc_next->dw_loc_opc == DW_OP_stack_value)))
29191 switch (optimize_string_length (a))
29193 case -1:
29194 remove_AT (die, a->dw_attr);
29195 ix--;
29196 /* If we drop DW_AT_string_length, we need to drop also
29197 DW_AT_{string_length_,}byte_size. */
29198 remove_AT_byte_size = true;
29199 continue;
29200 default:
29201 break;
29202 case 1:
29203 /* Even if we keep the optimized DW_AT_string_length,
29204 it might have changed AT_class, so process it again. */
29205 ix--;
29206 continue;
29209 /* For -gdwarf-2 don't attempt to optimize
29210 DW_AT_data_member_location containing
29211 DW_OP_plus_uconst - older consumers might
29212 rely on it being that op instead of a more complex,
29213 but shorter, location description. */
29214 if ((dwarf_version > 2
29215 || a->dw_attr != DW_AT_data_member_location
29216 || l == NULL
29217 || l->dw_loc_opc != DW_OP_plus_uconst
29218 || l->dw_loc_next != NULL)
29219 && !resolve_addr_in_expr (a, l))
29221 if (dwarf_split_debug_info)
29222 remove_loc_list_addr_table_entries (l);
29223 if (l != NULL
29224 && l->dw_loc_next == NULL
29225 && l->dw_loc_opc == DW_OP_addr
29226 && GET_CODE (l->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF
29227 && SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr)
29228 && a->dw_attr == DW_AT_location)
29230 tree decl = SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr);
29231 remove_AT (die, a->dw_attr);
29232 ix--;
29233 optimize_location_into_implicit_ptr (die, decl);
29234 break;
29236 if (a->dw_attr == DW_AT_string_length)
29237 /* If we drop DW_AT_string_length, we need to drop also
29238 DW_AT_{string_length_,}byte_size. */
29239 remove_AT_byte_size = true;
29240 remove_AT (die, a->dw_attr);
29241 ix--;
29243 else
29244 mark_base_types (l);
29246 break;
29247 case dw_val_class_addr:
29248 if (a->dw_attr == DW_AT_const_value
29249 && !resolve_one_addr (&a->dw_attr_val.v.val_addr))
29251 if (AT_index (a) != NOT_INDEXED)
29252 remove_addr_table_entry (a->dw_attr_val.val_entry);
29253 remove_AT (die, a->dw_attr);
29254 ix--;
29256 if ((die->die_tag == DW_TAG_call_site
29257 && a->dw_attr == DW_AT_call_origin)
29258 || (die->die_tag == DW_TAG_GNU_call_site
29259 && a->dw_attr == DW_AT_abstract_origin))
29261 tree tdecl = SYMBOL_REF_DECL (a->dw_attr_val.v.val_addr);
29262 dw_die_ref tdie = lookup_decl_die (tdecl);
29263 dw_die_ref cdie;
29264 if (tdie == NULL
29265 && DECL_EXTERNAL (tdecl)
29266 && DECL_ABSTRACT_ORIGIN (tdecl) == NULL_TREE
29267 && (cdie = lookup_context_die (DECL_CONTEXT (tdecl))))
29269 dw_die_ref pdie = cdie;
29270 /* Make sure we don't add these DIEs into type units.
29271 We could emit skeleton DIEs for context (namespaces,
29272 outer structs/classes) and a skeleton DIE for the
29273 innermost context with DW_AT_signature pointing to the
29274 type unit. See PR78835. */
29275 while (pdie && pdie->die_tag != DW_TAG_type_unit)
29276 pdie = pdie->die_parent;
29277 if (pdie == NULL)
29279 /* Creating a full DIE for tdecl is overly expensive and
29280 at this point even wrong when in the LTO phase
29281 as it can end up generating new type DIEs we didn't
29282 output and thus optimize_external_refs will crash. */
29283 tdie = new_die (DW_TAG_subprogram, cdie, NULL_TREE);
29284 add_AT_flag (tdie, DW_AT_external, 1);
29285 add_AT_flag (tdie, DW_AT_declaration, 1);
29286 add_linkage_attr (tdie, tdecl);
29287 add_name_and_src_coords_attributes (tdie, tdecl, true);
29288 equate_decl_number_to_die (tdecl, tdie);
29291 if (tdie)
29293 a->dw_attr_val.val_class = dw_val_class_die_ref;
29294 a->dw_attr_val.v.val_die_ref.die = tdie;
29295 a->dw_attr_val.v.val_die_ref.external = 0;
29297 else
29299 if (AT_index (a) != NOT_INDEXED)
29300 remove_addr_table_entry (a->dw_attr_val.val_entry);
29301 remove_AT (die, a->dw_attr);
29302 ix--;
29305 break;
29306 default:
29307 break;
29310 if (remove_AT_byte_size)
29311 remove_AT (die, dwarf_version >= 5
29312 ? DW_AT_string_length_byte_size
29313 : DW_AT_byte_size);
29315 FOR_EACH_CHILD (die, c, resolve_addr (c));
29318 /* Helper routines for optimize_location_lists.
29319 This pass tries to share identical local lists in .debug_loc
29320 section. */
29322 /* Iteratively hash operands of LOC opcode into HSTATE. */
29324 static void
29325 hash_loc_operands (dw_loc_descr_ref loc, inchash::hash &hstate)
29327 dw_val_ref val1 = &loc->dw_loc_oprnd1;
29328 dw_val_ref val2 = &loc->dw_loc_oprnd2;
29330 switch (loc->dw_loc_opc)
29332 case DW_OP_const4u:
29333 case DW_OP_const8u:
29334 if (loc->dtprel)
29335 goto hash_addr;
29336 /* FALLTHRU */
29337 case DW_OP_const1u:
29338 case DW_OP_const1s:
29339 case DW_OP_const2u:
29340 case DW_OP_const2s:
29341 case DW_OP_const4s:
29342 case DW_OP_const8s:
29343 case DW_OP_constu:
29344 case DW_OP_consts:
29345 case DW_OP_pick:
29346 case DW_OP_plus_uconst:
29347 case DW_OP_breg0:
29348 case DW_OP_breg1:
29349 case DW_OP_breg2:
29350 case DW_OP_breg3:
29351 case DW_OP_breg4:
29352 case DW_OP_breg5:
29353 case DW_OP_breg6:
29354 case DW_OP_breg7:
29355 case DW_OP_breg8:
29356 case DW_OP_breg9:
29357 case DW_OP_breg10:
29358 case DW_OP_breg11:
29359 case DW_OP_breg12:
29360 case DW_OP_breg13:
29361 case DW_OP_breg14:
29362 case DW_OP_breg15:
29363 case DW_OP_breg16:
29364 case DW_OP_breg17:
29365 case DW_OP_breg18:
29366 case DW_OP_breg19:
29367 case DW_OP_breg20:
29368 case DW_OP_breg21:
29369 case DW_OP_breg22:
29370 case DW_OP_breg23:
29371 case DW_OP_breg24:
29372 case DW_OP_breg25:
29373 case DW_OP_breg26:
29374 case DW_OP_breg27:
29375 case DW_OP_breg28:
29376 case DW_OP_breg29:
29377 case DW_OP_breg30:
29378 case DW_OP_breg31:
29379 case DW_OP_regx:
29380 case DW_OP_fbreg:
29381 case DW_OP_piece:
29382 case DW_OP_deref_size:
29383 case DW_OP_xderef_size:
29384 hstate.add_object (val1->v.val_int);
29385 break;
29386 case DW_OP_skip:
29387 case DW_OP_bra:
29389 int offset;
29391 gcc_assert (val1->val_class == dw_val_class_loc);
29392 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
29393 hstate.add_object (offset);
29395 break;
29396 case DW_OP_implicit_value:
29397 hstate.add_object (val1->v.val_unsigned);
29398 switch (val2->val_class)
29400 case dw_val_class_const:
29401 hstate.add_object (val2->v.val_int);
29402 break;
29403 case dw_val_class_vec:
29405 unsigned int elt_size = val2->v.val_vec.elt_size;
29406 unsigned int len = val2->v.val_vec.length;
29408 hstate.add_int (elt_size);
29409 hstate.add_int (len);
29410 hstate.add (val2->v.val_vec.array, len * elt_size);
29412 break;
29413 case dw_val_class_const_double:
29414 hstate.add_object (val2->v.val_double.low);
29415 hstate.add_object (val2->v.val_double.high);
29416 break;
29417 case dw_val_class_wide_int:
29418 hstate.add (val2->v.val_wide->get_val (),
29419 get_full_len (*val2->v.val_wide)
29420 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
29421 break;
29422 case dw_val_class_addr:
29423 inchash::add_rtx (val2->v.val_addr, hstate);
29424 break;
29425 default:
29426 gcc_unreachable ();
29428 break;
29429 case DW_OP_bregx:
29430 case DW_OP_bit_piece:
29431 hstate.add_object (val1->v.val_int);
29432 hstate.add_object (val2->v.val_int);
29433 break;
29434 case DW_OP_addr:
29435 hash_addr:
29436 if (loc->dtprel)
29438 unsigned char dtprel = 0xd1;
29439 hstate.add_object (dtprel);
29441 inchash::add_rtx (val1->v.val_addr, hstate);
29442 break;
29443 case DW_OP_GNU_addr_index:
29444 case DW_OP_GNU_const_index:
29446 if (loc->dtprel)
29448 unsigned char dtprel = 0xd1;
29449 hstate.add_object (dtprel);
29451 inchash::add_rtx (val1->val_entry->addr.rtl, hstate);
29453 break;
29454 case DW_OP_implicit_pointer:
29455 case DW_OP_GNU_implicit_pointer:
29456 hstate.add_int (val2->v.val_int);
29457 break;
29458 case DW_OP_entry_value:
29459 case DW_OP_GNU_entry_value:
29460 hstate.add_object (val1->v.val_loc);
29461 break;
29462 case DW_OP_regval_type:
29463 case DW_OP_deref_type:
29464 case DW_OP_GNU_regval_type:
29465 case DW_OP_GNU_deref_type:
29467 unsigned int byte_size
29468 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_byte_size);
29469 unsigned int encoding
29470 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_encoding);
29471 hstate.add_object (val1->v.val_int);
29472 hstate.add_object (byte_size);
29473 hstate.add_object (encoding);
29475 break;
29476 case DW_OP_convert:
29477 case DW_OP_reinterpret:
29478 case DW_OP_GNU_convert:
29479 case DW_OP_GNU_reinterpret:
29480 if (val1->val_class == dw_val_class_unsigned_const)
29482 hstate.add_object (val1->v.val_unsigned);
29483 break;
29485 /* FALLTHRU */
29486 case DW_OP_const_type:
29487 case DW_OP_GNU_const_type:
29489 unsigned int byte_size
29490 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_byte_size);
29491 unsigned int encoding
29492 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_encoding);
29493 hstate.add_object (byte_size);
29494 hstate.add_object (encoding);
29495 if (loc->dw_loc_opc != DW_OP_const_type
29496 && loc->dw_loc_opc != DW_OP_GNU_const_type)
29497 break;
29498 hstate.add_object (val2->val_class);
29499 switch (val2->val_class)
29501 case dw_val_class_const:
29502 hstate.add_object (val2->v.val_int);
29503 break;
29504 case dw_val_class_vec:
29506 unsigned int elt_size = val2->v.val_vec.elt_size;
29507 unsigned int len = val2->v.val_vec.length;
29509 hstate.add_object (elt_size);
29510 hstate.add_object (len);
29511 hstate.add (val2->v.val_vec.array, len * elt_size);
29513 break;
29514 case dw_val_class_const_double:
29515 hstate.add_object (val2->v.val_double.low);
29516 hstate.add_object (val2->v.val_double.high);
29517 break;
29518 case dw_val_class_wide_int:
29519 hstate.add (val2->v.val_wide->get_val (),
29520 get_full_len (*val2->v.val_wide)
29521 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
29522 break;
29523 default:
29524 gcc_unreachable ();
29527 break;
29529 default:
29530 /* Other codes have no operands. */
29531 break;
29535 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
29537 static inline void
29538 hash_locs (dw_loc_descr_ref loc, inchash::hash &hstate)
29540 dw_loc_descr_ref l;
29541 bool sizes_computed = false;
29542 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
29543 size_of_locs (loc);
29545 for (l = loc; l != NULL; l = l->dw_loc_next)
29547 enum dwarf_location_atom opc = l->dw_loc_opc;
29548 hstate.add_object (opc);
29549 if ((opc == DW_OP_skip || opc == DW_OP_bra) && !sizes_computed)
29551 size_of_locs (loc);
29552 sizes_computed = true;
29554 hash_loc_operands (l, hstate);
29558 /* Compute hash of the whole location list LIST_HEAD. */
29560 static inline void
29561 hash_loc_list (dw_loc_list_ref list_head)
29563 dw_loc_list_ref curr = list_head;
29564 inchash::hash hstate;
29566 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
29568 hstate.add (curr->begin, strlen (curr->begin) + 1);
29569 hstate.add (curr->end, strlen (curr->end) + 1);
29570 if (curr->section)
29571 hstate.add (curr->section, strlen (curr->section) + 1);
29572 hash_locs (curr->expr, hstate);
29574 list_head->hash = hstate.end ();
29577 /* Return true if X and Y opcodes have the same operands. */
29579 static inline bool
29580 compare_loc_operands (dw_loc_descr_ref x, dw_loc_descr_ref y)
29582 dw_val_ref valx1 = &x->dw_loc_oprnd1;
29583 dw_val_ref valx2 = &x->dw_loc_oprnd2;
29584 dw_val_ref valy1 = &y->dw_loc_oprnd1;
29585 dw_val_ref valy2 = &y->dw_loc_oprnd2;
29587 switch (x->dw_loc_opc)
29589 case DW_OP_const4u:
29590 case DW_OP_const8u:
29591 if (x->dtprel)
29592 goto hash_addr;
29593 /* FALLTHRU */
29594 case DW_OP_const1u:
29595 case DW_OP_const1s:
29596 case DW_OP_const2u:
29597 case DW_OP_const2s:
29598 case DW_OP_const4s:
29599 case DW_OP_const8s:
29600 case DW_OP_constu:
29601 case DW_OP_consts:
29602 case DW_OP_pick:
29603 case DW_OP_plus_uconst:
29604 case DW_OP_breg0:
29605 case DW_OP_breg1:
29606 case DW_OP_breg2:
29607 case DW_OP_breg3:
29608 case DW_OP_breg4:
29609 case DW_OP_breg5:
29610 case DW_OP_breg6:
29611 case DW_OP_breg7:
29612 case DW_OP_breg8:
29613 case DW_OP_breg9:
29614 case DW_OP_breg10:
29615 case DW_OP_breg11:
29616 case DW_OP_breg12:
29617 case DW_OP_breg13:
29618 case DW_OP_breg14:
29619 case DW_OP_breg15:
29620 case DW_OP_breg16:
29621 case DW_OP_breg17:
29622 case DW_OP_breg18:
29623 case DW_OP_breg19:
29624 case DW_OP_breg20:
29625 case DW_OP_breg21:
29626 case DW_OP_breg22:
29627 case DW_OP_breg23:
29628 case DW_OP_breg24:
29629 case DW_OP_breg25:
29630 case DW_OP_breg26:
29631 case DW_OP_breg27:
29632 case DW_OP_breg28:
29633 case DW_OP_breg29:
29634 case DW_OP_breg30:
29635 case DW_OP_breg31:
29636 case DW_OP_regx:
29637 case DW_OP_fbreg:
29638 case DW_OP_piece:
29639 case DW_OP_deref_size:
29640 case DW_OP_xderef_size:
29641 return valx1->v.val_int == valy1->v.val_int;
29642 case DW_OP_skip:
29643 case DW_OP_bra:
29644 /* If splitting debug info, the use of DW_OP_GNU_addr_index
29645 can cause irrelevant differences in dw_loc_addr. */
29646 gcc_assert (valx1->val_class == dw_val_class_loc
29647 && valy1->val_class == dw_val_class_loc
29648 && (dwarf_split_debug_info
29649 || x->dw_loc_addr == y->dw_loc_addr));
29650 return valx1->v.val_loc->dw_loc_addr == valy1->v.val_loc->dw_loc_addr;
29651 case DW_OP_implicit_value:
29652 if (valx1->v.val_unsigned != valy1->v.val_unsigned
29653 || valx2->val_class != valy2->val_class)
29654 return false;
29655 switch (valx2->val_class)
29657 case dw_val_class_const:
29658 return valx2->v.val_int == valy2->v.val_int;
29659 case dw_val_class_vec:
29660 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
29661 && valx2->v.val_vec.length == valy2->v.val_vec.length
29662 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
29663 valx2->v.val_vec.elt_size
29664 * valx2->v.val_vec.length) == 0;
29665 case dw_val_class_const_double:
29666 return valx2->v.val_double.low == valy2->v.val_double.low
29667 && valx2->v.val_double.high == valy2->v.val_double.high;
29668 case dw_val_class_wide_int:
29669 return *valx2->v.val_wide == *valy2->v.val_wide;
29670 case dw_val_class_addr:
29671 return rtx_equal_p (valx2->v.val_addr, valy2->v.val_addr);
29672 default:
29673 gcc_unreachable ();
29675 case DW_OP_bregx:
29676 case DW_OP_bit_piece:
29677 return valx1->v.val_int == valy1->v.val_int
29678 && valx2->v.val_int == valy2->v.val_int;
29679 case DW_OP_addr:
29680 hash_addr:
29681 return rtx_equal_p (valx1->v.val_addr, valy1->v.val_addr);
29682 case DW_OP_GNU_addr_index:
29683 case DW_OP_GNU_const_index:
29685 rtx ax1 = valx1->val_entry->addr.rtl;
29686 rtx ay1 = valy1->val_entry->addr.rtl;
29687 return rtx_equal_p (ax1, ay1);
29689 case DW_OP_implicit_pointer:
29690 case DW_OP_GNU_implicit_pointer:
29691 return valx1->val_class == dw_val_class_die_ref
29692 && valx1->val_class == valy1->val_class
29693 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die
29694 && valx2->v.val_int == valy2->v.val_int;
29695 case DW_OP_entry_value:
29696 case DW_OP_GNU_entry_value:
29697 return compare_loc_operands (valx1->v.val_loc, valy1->v.val_loc);
29698 case DW_OP_const_type:
29699 case DW_OP_GNU_const_type:
29700 if (valx1->v.val_die_ref.die != valy1->v.val_die_ref.die
29701 || valx2->val_class != valy2->val_class)
29702 return false;
29703 switch (valx2->val_class)
29705 case dw_val_class_const:
29706 return valx2->v.val_int == valy2->v.val_int;
29707 case dw_val_class_vec:
29708 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
29709 && valx2->v.val_vec.length == valy2->v.val_vec.length
29710 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
29711 valx2->v.val_vec.elt_size
29712 * valx2->v.val_vec.length) == 0;
29713 case dw_val_class_const_double:
29714 return valx2->v.val_double.low == valy2->v.val_double.low
29715 && valx2->v.val_double.high == valy2->v.val_double.high;
29716 case dw_val_class_wide_int:
29717 return *valx2->v.val_wide == *valy2->v.val_wide;
29718 default:
29719 gcc_unreachable ();
29721 case DW_OP_regval_type:
29722 case DW_OP_deref_type:
29723 case DW_OP_GNU_regval_type:
29724 case DW_OP_GNU_deref_type:
29725 return valx1->v.val_int == valy1->v.val_int
29726 && valx2->v.val_die_ref.die == valy2->v.val_die_ref.die;
29727 case DW_OP_convert:
29728 case DW_OP_reinterpret:
29729 case DW_OP_GNU_convert:
29730 case DW_OP_GNU_reinterpret:
29731 if (valx1->val_class != valy1->val_class)
29732 return false;
29733 if (valx1->val_class == dw_val_class_unsigned_const)
29734 return valx1->v.val_unsigned == valy1->v.val_unsigned;
29735 return valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
29736 case DW_OP_GNU_parameter_ref:
29737 return valx1->val_class == dw_val_class_die_ref
29738 && valx1->val_class == valy1->val_class
29739 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
29740 default:
29741 /* Other codes have no operands. */
29742 return true;
29746 /* Return true if DWARF location expressions X and Y are the same. */
29748 static inline bool
29749 compare_locs (dw_loc_descr_ref x, dw_loc_descr_ref y)
29751 for (; x != NULL && y != NULL; x = x->dw_loc_next, y = y->dw_loc_next)
29752 if (x->dw_loc_opc != y->dw_loc_opc
29753 || x->dtprel != y->dtprel
29754 || !compare_loc_operands (x, y))
29755 break;
29756 return x == NULL && y == NULL;
29759 /* Hashtable helpers. */
29761 struct loc_list_hasher : nofree_ptr_hash <dw_loc_list_struct>
29763 static inline hashval_t hash (const dw_loc_list_struct *);
29764 static inline bool equal (const dw_loc_list_struct *,
29765 const dw_loc_list_struct *);
29768 /* Return precomputed hash of location list X. */
29770 inline hashval_t
29771 loc_list_hasher::hash (const dw_loc_list_struct *x)
29773 return x->hash;
29776 /* Return true if location lists A and B are the same. */
29778 inline bool
29779 loc_list_hasher::equal (const dw_loc_list_struct *a,
29780 const dw_loc_list_struct *b)
29782 if (a == b)
29783 return 1;
29784 if (a->hash != b->hash)
29785 return 0;
29786 for (; a != NULL && b != NULL; a = a->dw_loc_next, b = b->dw_loc_next)
29787 if (strcmp (a->begin, b->begin) != 0
29788 || strcmp (a->end, b->end) != 0
29789 || (a->section == NULL) != (b->section == NULL)
29790 || (a->section && strcmp (a->section, b->section) != 0)
29791 || !compare_locs (a->expr, b->expr))
29792 break;
29793 return a == NULL && b == NULL;
29796 typedef hash_table<loc_list_hasher> loc_list_hash_type;
29799 /* Recursively optimize location lists referenced from DIE
29800 children and share them whenever possible. */
29802 static void
29803 optimize_location_lists_1 (dw_die_ref die, loc_list_hash_type *htab)
29805 dw_die_ref c;
29806 dw_attr_node *a;
29807 unsigned ix;
29808 dw_loc_list_struct **slot;
29810 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
29811 if (AT_class (a) == dw_val_class_loc_list)
29813 dw_loc_list_ref list = AT_loc_list (a);
29814 /* TODO: perform some optimizations here, before hashing
29815 it and storing into the hash table. */
29816 hash_loc_list (list);
29817 slot = htab->find_slot_with_hash (list, list->hash, INSERT);
29818 if (*slot == NULL)
29819 *slot = list;
29820 else
29821 a->dw_attr_val.v.val_loc_list = *slot;
29824 FOR_EACH_CHILD (die, c, optimize_location_lists_1 (c, htab));
29828 /* Recursively assign each location list a unique index into the debug_addr
29829 section. */
29831 static void
29832 index_location_lists (dw_die_ref die)
29834 dw_die_ref c;
29835 dw_attr_node *a;
29836 unsigned ix;
29838 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
29839 if (AT_class (a) == dw_val_class_loc_list)
29841 dw_loc_list_ref list = AT_loc_list (a);
29842 dw_loc_list_ref curr;
29843 for (curr = list; curr != NULL; curr = curr->dw_loc_next)
29845 /* Don't index an entry that has already been indexed
29846 or won't be output. */
29847 if (curr->begin_entry != NULL
29848 || (strcmp (curr->begin, curr->end) == 0 && !curr->force))
29849 continue;
29851 curr->begin_entry
29852 = add_addr_table_entry (xstrdup (curr->begin), ate_kind_label);
29856 FOR_EACH_CHILD (die, c, index_location_lists (c));
29859 /* Optimize location lists referenced from DIE
29860 children and share them whenever possible. */
29862 static void
29863 optimize_location_lists (dw_die_ref die)
29865 loc_list_hash_type htab (500);
29866 optimize_location_lists_1 (die, &htab);
29869 /* Traverse the limbo die list, and add parent/child links. The only
29870 dies without parents that should be here are concrete instances of
29871 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
29872 For concrete instances, we can get the parent die from the abstract
29873 instance. */
29875 static void
29876 flush_limbo_die_list (void)
29878 limbo_die_node *node;
29880 /* get_context_die calls force_decl_die, which can put new DIEs on the
29881 limbo list in LTO mode when nested functions are put in a different
29882 partition than that of their parent function. */
29883 while ((node = limbo_die_list))
29885 dw_die_ref die = node->die;
29886 limbo_die_list = node->next;
29888 if (die->die_parent == NULL)
29890 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
29892 if (origin && origin->die_parent)
29893 add_child_die (origin->die_parent, die);
29894 else if (is_cu_die (die))
29896 else if (seen_error ())
29897 /* It's OK to be confused by errors in the input. */
29898 add_child_die (comp_unit_die (), die);
29899 else
29901 /* In certain situations, the lexical block containing a
29902 nested function can be optimized away, which results
29903 in the nested function die being orphaned. Likewise
29904 with the return type of that nested function. Force
29905 this to be a child of the containing function.
29907 It may happen that even the containing function got fully
29908 inlined and optimized out. In that case we are lost and
29909 assign the empty child. This should not be big issue as
29910 the function is likely unreachable too. */
29911 gcc_assert (node->created_for);
29913 if (DECL_P (node->created_for))
29914 origin = get_context_die (DECL_CONTEXT (node->created_for));
29915 else if (TYPE_P (node->created_for))
29916 origin = scope_die_for (node->created_for, comp_unit_die ());
29917 else
29918 origin = comp_unit_die ();
29920 add_child_die (origin, die);
29926 /* Reset DIEs so we can output them again. */
29928 static void
29929 reset_dies (dw_die_ref die)
29931 dw_die_ref c;
29933 /* Remove stuff we re-generate. */
29934 die->die_mark = 0;
29935 die->die_offset = 0;
29936 die->die_abbrev = 0;
29937 remove_AT (die, DW_AT_sibling);
29939 FOR_EACH_CHILD (die, c, reset_dies (c));
29942 /* Output stuff that dwarf requires at the end of every file,
29943 and generate the DWARF-2 debugging info. */
29945 static void
29946 dwarf2out_finish (const char *)
29948 comdat_type_node *ctnode;
29949 dw_die_ref main_comp_unit_die;
29950 unsigned char checksum[16];
29951 char dl_section_ref[MAX_ARTIFICIAL_LABEL_BYTES];
29953 /* Flush out any latecomers to the limbo party. */
29954 flush_limbo_die_list ();
29956 if (flag_checking)
29958 verify_die (comp_unit_die ());
29959 for (limbo_die_node *node = cu_die_list; node; node = node->next)
29960 verify_die (node->die);
29963 /* We shouldn't have any symbols with delayed asm names for
29964 DIEs generated after early finish. */
29965 gcc_assert (deferred_asm_name == NULL);
29967 gen_remaining_tmpl_value_param_die_attribute ();
29969 if (flag_generate_lto || flag_generate_offload)
29971 gcc_assert (flag_fat_lto_objects || flag_generate_offload);
29973 /* Prune stuff so that dwarf2out_finish runs successfully
29974 for the fat part of the object. */
29975 reset_dies (comp_unit_die ());
29976 for (limbo_die_node *node = cu_die_list; node; node = node->next)
29977 reset_dies (node->die);
29979 hash_table<comdat_type_hasher> comdat_type_table (100);
29980 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
29982 comdat_type_node **slot
29983 = comdat_type_table.find_slot (ctnode, INSERT);
29985 /* Don't reset types twice. */
29986 if (*slot != HTAB_EMPTY_ENTRY)
29987 continue;
29989 /* Add a pointer to the line table for the main compilation unit
29990 so that the debugger can make sense of DW_AT_decl_file
29991 attributes. */
29992 if (debug_info_level >= DINFO_LEVEL_TERSE)
29993 reset_dies (ctnode->root_die);
29995 *slot = ctnode;
29998 /* Reset die CU symbol so we don't output it twice. */
29999 comp_unit_die ()->die_id.die_symbol = NULL;
30001 /* Remove DW_AT_macro from the early output. */
30002 if (have_macinfo)
30003 remove_AT (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE);
30005 /* Remove indirect string decisions. */
30006 debug_str_hash->traverse<void *, reset_indirect_string> (NULL);
30009 #if ENABLE_ASSERT_CHECKING
30011 dw_die_ref die = comp_unit_die (), c;
30012 FOR_EACH_CHILD (die, c, gcc_assert (! c->die_mark));
30014 #endif
30015 resolve_addr (comp_unit_die ());
30016 move_marked_base_types ();
30018 /* Initialize sections and labels used for actual assembler output. */
30019 unsigned generation = init_sections_and_labels (false);
30021 /* Traverse the DIE's and add sibling attributes to those DIE's that
30022 have children. */
30023 add_sibling_attributes (comp_unit_die ());
30024 limbo_die_node *node;
30025 for (node = cu_die_list; node; node = node->next)
30026 add_sibling_attributes (node->die);
30027 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
30028 add_sibling_attributes (ctnode->root_die);
30030 /* When splitting DWARF info, we put some attributes in the
30031 skeleton compile_unit DIE that remains in the .o, while
30032 most attributes go in the DWO compile_unit_die. */
30033 if (dwarf_split_debug_info)
30035 limbo_die_node *cu;
30036 main_comp_unit_die = gen_compile_unit_die (NULL);
30037 if (dwarf_version >= 5)
30038 main_comp_unit_die->die_tag = DW_TAG_skeleton_unit;
30039 cu = limbo_die_list;
30040 gcc_assert (cu->die == main_comp_unit_die);
30041 limbo_die_list = limbo_die_list->next;
30042 cu->next = cu_die_list;
30043 cu_die_list = cu;
30045 else
30046 main_comp_unit_die = comp_unit_die ();
30048 /* Output a terminator label for the .text section. */
30049 switch_to_section (text_section);
30050 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
30051 if (cold_text_section)
30053 switch_to_section (cold_text_section);
30054 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
30057 /* We can only use the low/high_pc attributes if all of the code was
30058 in .text. */
30059 if (!have_multiple_function_sections
30060 || (dwarf_version < 3 && dwarf_strict))
30062 /* Don't add if the CU has no associated code. */
30063 if (text_section_used)
30064 add_AT_low_high_pc (main_comp_unit_die, text_section_label,
30065 text_end_label, true);
30067 else
30069 unsigned fde_idx;
30070 dw_fde_ref fde;
30071 bool range_list_added = false;
30073 if (text_section_used)
30074 add_ranges_by_labels (main_comp_unit_die, text_section_label,
30075 text_end_label, &range_list_added, true);
30076 if (cold_text_section_used)
30077 add_ranges_by_labels (main_comp_unit_die, cold_text_section_label,
30078 cold_end_label, &range_list_added, true);
30080 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
30082 if (DECL_IGNORED_P (fde->decl))
30083 continue;
30084 if (!fde->in_std_section)
30085 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_begin,
30086 fde->dw_fde_end, &range_list_added,
30087 true);
30088 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
30089 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_second_begin,
30090 fde->dw_fde_second_end, &range_list_added,
30091 true);
30094 if (range_list_added)
30096 /* We need to give .debug_loc and .debug_ranges an appropriate
30097 "base address". Use zero so that these addresses become
30098 absolute. Historically, we've emitted the unexpected
30099 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
30100 Emit both to give time for other tools to adapt. */
30101 add_AT_addr (main_comp_unit_die, DW_AT_low_pc, const0_rtx, true);
30102 if (! dwarf_strict && dwarf_version < 4)
30103 add_AT_addr (main_comp_unit_die, DW_AT_entry_pc, const0_rtx, true);
30105 add_ranges (NULL);
30109 /* AIX Assembler inserts the length, so adjust the reference to match the
30110 offset expected by debuggers. */
30111 strcpy (dl_section_ref, debug_line_section_label);
30112 if (XCOFF_DEBUGGING_INFO)
30113 strcat (dl_section_ref, DWARF_INITIAL_LENGTH_SIZE_STR);
30115 if (debug_info_level >= DINFO_LEVEL_TERSE)
30116 add_AT_lineptr (main_comp_unit_die, DW_AT_stmt_list,
30117 dl_section_ref);
30119 if (have_macinfo)
30120 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE,
30121 macinfo_section_label);
30123 if (dwarf_split_debug_info)
30125 if (have_location_lists)
30127 if (dwarf_version >= 5)
30128 add_AT_loclistsptr (comp_unit_die (), DW_AT_loclists_base,
30129 loc_section_label);
30130 /* optimize_location_lists calculates the size of the lists,
30131 so index them first, and assign indices to the entries.
30132 Although optimize_location_lists will remove entries from
30133 the table, it only does so for duplicates, and therefore
30134 only reduces ref_counts to 1. */
30135 index_location_lists (comp_unit_die ());
30138 if (addr_index_table != NULL)
30140 unsigned int index = 0;
30141 addr_index_table
30142 ->traverse_noresize<unsigned int *, index_addr_table_entry>
30143 (&index);
30147 loc_list_idx = 0;
30148 if (have_location_lists)
30150 optimize_location_lists (comp_unit_die ());
30151 /* And finally assign indexes to the entries for -gsplit-dwarf. */
30152 if (dwarf_version >= 5 && dwarf_split_debug_info)
30153 assign_location_list_indexes (comp_unit_die ());
30156 save_macinfo_strings ();
30158 if (dwarf_split_debug_info)
30160 unsigned int index = 0;
30162 /* Add attributes common to skeleton compile_units and
30163 type_units. Because these attributes include strings, it
30164 must be done before freezing the string table. Top-level
30165 skeleton die attrs are added when the skeleton type unit is
30166 created, so ensure it is created by this point. */
30167 add_top_level_skeleton_die_attrs (main_comp_unit_die);
30168 debug_str_hash->traverse_noresize<unsigned int *, index_string> (&index);
30171 /* Output all of the compilation units. We put the main one last so that
30172 the offsets are available to output_pubnames. */
30173 for (node = cu_die_list; node; node = node->next)
30174 output_comp_unit (node->die, 0, NULL);
30176 hash_table<comdat_type_hasher> comdat_type_table (100);
30177 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
30179 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
30181 /* Don't output duplicate types. */
30182 if (*slot != HTAB_EMPTY_ENTRY)
30183 continue;
30185 /* Add a pointer to the line table for the main compilation unit
30186 so that the debugger can make sense of DW_AT_decl_file
30187 attributes. */
30188 if (debug_info_level >= DINFO_LEVEL_TERSE)
30189 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
30190 (!dwarf_split_debug_info
30191 ? dl_section_ref
30192 : debug_skeleton_line_section_label));
30194 output_comdat_type_unit (ctnode);
30195 *slot = ctnode;
30198 if (dwarf_split_debug_info)
30200 int mark;
30201 struct md5_ctx ctx;
30203 if (dwarf_version >= 5 && !vec_safe_is_empty (ranges_table))
30204 index_rnglists ();
30206 /* Compute a checksum of the comp_unit to use as the dwo_id. */
30207 md5_init_ctx (&ctx);
30208 mark = 0;
30209 die_checksum (comp_unit_die (), &ctx, &mark);
30210 unmark_all_dies (comp_unit_die ());
30211 md5_finish_ctx (&ctx, checksum);
30213 if (dwarf_version < 5)
30215 /* Use the first 8 bytes of the checksum as the dwo_id,
30216 and add it to both comp-unit DIEs. */
30217 add_AT_data8 (main_comp_unit_die, DW_AT_GNU_dwo_id, checksum);
30218 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id, checksum);
30221 /* Add the base offset of the ranges table to the skeleton
30222 comp-unit DIE. */
30223 if (!vec_safe_is_empty (ranges_table))
30225 if (dwarf_version >= 5)
30226 add_AT_lineptr (main_comp_unit_die, DW_AT_rnglists_base,
30227 ranges_base_label);
30228 else
30229 add_AT_lineptr (main_comp_unit_die, DW_AT_GNU_ranges_base,
30230 ranges_section_label);
30233 switch_to_section (debug_addr_section);
30234 ASM_OUTPUT_LABEL (asm_out_file, debug_addr_section_label);
30235 output_addr_table ();
30238 /* Output the main compilation unit if non-empty or if .debug_macinfo
30239 or .debug_macro will be emitted. */
30240 output_comp_unit (comp_unit_die (), have_macinfo,
30241 dwarf_split_debug_info ? checksum : NULL);
30243 if (dwarf_split_debug_info && info_section_emitted)
30244 output_skeleton_debug_sections (main_comp_unit_die, checksum);
30246 /* Output the abbreviation table. */
30247 if (vec_safe_length (abbrev_die_table) != 1)
30249 switch_to_section (debug_abbrev_section);
30250 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
30251 output_abbrev_section ();
30254 /* Output location list section if necessary. */
30255 if (have_location_lists)
30257 char l1[MAX_ARTIFICIAL_LABEL_BYTES];
30258 char l2[MAX_ARTIFICIAL_LABEL_BYTES];
30259 /* Output the location lists info. */
30260 switch_to_section (debug_loc_section);
30261 if (dwarf_version >= 5)
30263 ASM_GENERATE_INTERNAL_LABEL (l1, DEBUG_LOC_SECTION_LABEL, 1);
30264 ASM_GENERATE_INTERNAL_LABEL (l2, DEBUG_LOC_SECTION_LABEL, 2);
30265 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
30266 dw2_asm_output_data (4, 0xffffffff,
30267 "Initial length escape value indicating "
30268 "64-bit DWARF extension");
30269 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
30270 "Length of Location Lists");
30271 ASM_OUTPUT_LABEL (asm_out_file, l1);
30272 dw2_asm_output_data (2, dwarf_version, "DWARF Version");
30273 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
30274 dw2_asm_output_data (1, 0, "Segment Size");
30275 dw2_asm_output_data (4, dwarf_split_debug_info ? loc_list_idx : 0,
30276 "Offset Entry Count");
30278 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
30279 if (dwarf_version >= 5 && dwarf_split_debug_info)
30281 unsigned int save_loc_list_idx = loc_list_idx;
30282 loc_list_idx = 0;
30283 output_loclists_offsets (comp_unit_die ());
30284 gcc_assert (save_loc_list_idx == loc_list_idx);
30286 output_location_lists (comp_unit_die ());
30287 if (dwarf_version >= 5)
30288 ASM_OUTPUT_LABEL (asm_out_file, l2);
30291 output_pubtables ();
30293 /* Output the address range information if a CU (.debug_info section)
30294 was emitted. We output an empty table even if we had no functions
30295 to put in it. This because the consumer has no way to tell the
30296 difference between an empty table that we omitted and failure to
30297 generate a table that would have contained data. */
30298 if (info_section_emitted)
30300 switch_to_section (debug_aranges_section);
30301 output_aranges ();
30304 /* Output ranges section if necessary. */
30305 if (!vec_safe_is_empty (ranges_table))
30307 if (dwarf_version >= 5)
30308 output_rnglists (generation);
30309 else
30310 output_ranges ();
30313 /* Have to end the macro section. */
30314 if (have_macinfo)
30316 switch_to_section (debug_macinfo_section);
30317 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
30318 output_macinfo (!dwarf_split_debug_info ? debug_line_section_label
30319 : debug_skeleton_line_section_label, false);
30320 dw2_asm_output_data (1, 0, "End compilation unit");
30323 /* Output the source line correspondence table. We must do this
30324 even if there is no line information. Otherwise, on an empty
30325 translation unit, we will generate a present, but empty,
30326 .debug_info section. IRIX 6.5 `nm' will then complain when
30327 examining the file. This is done late so that any filenames
30328 used by the debug_info section are marked as 'used'. */
30329 switch_to_section (debug_line_section);
30330 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
30331 if (! DWARF2_ASM_LINE_DEBUG_INFO)
30332 output_line_info (false);
30334 if (dwarf_split_debug_info && info_section_emitted)
30336 switch_to_section (debug_skeleton_line_section);
30337 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
30338 output_line_info (true);
30341 /* If we emitted any indirect strings, output the string table too. */
30342 if (debug_str_hash || skeleton_debug_str_hash)
30343 output_indirect_strings ();
30344 if (debug_line_str_hash)
30346 switch_to_section (debug_line_str_section);
30347 const enum dwarf_form form = DW_FORM_line_strp;
30348 debug_line_str_hash->traverse<enum dwarf_form,
30349 output_indirect_string> (form);
30353 /* Returns a hash value for X (which really is a variable_value_struct). */
30355 inline hashval_t
30356 variable_value_hasher::hash (variable_value_struct *x)
30358 return (hashval_t) x->decl_id;
30361 /* Return nonzero if decl_id of variable_value_struct X is the same as
30362 UID of decl Y. */
30364 inline bool
30365 variable_value_hasher::equal (variable_value_struct *x, tree y)
30367 return x->decl_id == DECL_UID (y);
30370 /* Helper function for resolve_variable_value, handle
30371 DW_OP_GNU_variable_value in one location expression.
30372 Return true if exprloc has been changed into loclist. */
30374 static bool
30375 resolve_variable_value_in_expr (dw_attr_node *a, dw_loc_descr_ref loc)
30377 dw_loc_descr_ref next;
30378 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = next)
30380 next = loc->dw_loc_next;
30381 if (loc->dw_loc_opc != DW_OP_GNU_variable_value
30382 || loc->dw_loc_oprnd1.val_class != dw_val_class_decl_ref)
30383 continue;
30385 tree decl = loc->dw_loc_oprnd1.v.val_decl_ref;
30386 if (DECL_CONTEXT (decl) != current_function_decl)
30387 continue;
30389 dw_die_ref ref = lookup_decl_die (decl);
30390 if (ref)
30392 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
30393 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
30394 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
30395 continue;
30397 dw_loc_list_ref l = loc_list_from_tree (decl, 0, NULL);
30398 if (l == NULL)
30399 continue;
30400 if (l->dw_loc_next)
30402 if (AT_class (a) != dw_val_class_loc)
30403 continue;
30404 switch (a->dw_attr)
30406 /* Following attributes allow both exprloc and loclist
30407 classes, so we can change them into a loclist. */
30408 case DW_AT_location:
30409 case DW_AT_string_length:
30410 case DW_AT_return_addr:
30411 case DW_AT_data_member_location:
30412 case DW_AT_frame_base:
30413 case DW_AT_segment:
30414 case DW_AT_static_link:
30415 case DW_AT_use_location:
30416 case DW_AT_vtable_elem_location:
30417 if (prev)
30419 prev->dw_loc_next = NULL;
30420 prepend_loc_descr_to_each (l, AT_loc (a));
30422 if (next)
30423 add_loc_descr_to_each (l, next);
30424 a->dw_attr_val.val_class = dw_val_class_loc_list;
30425 a->dw_attr_val.val_entry = NULL;
30426 a->dw_attr_val.v.val_loc_list = l;
30427 have_location_lists = true;
30428 return true;
30429 /* Following attributes allow both exprloc and reference,
30430 so if the whole expression is DW_OP_GNU_variable_value alone
30431 we could transform it into reference. */
30432 case DW_AT_byte_size:
30433 case DW_AT_bit_size:
30434 case DW_AT_lower_bound:
30435 case DW_AT_upper_bound:
30436 case DW_AT_bit_stride:
30437 case DW_AT_count:
30438 case DW_AT_allocated:
30439 case DW_AT_associated:
30440 case DW_AT_byte_stride:
30441 if (prev == NULL && next == NULL)
30442 break;
30443 /* FALLTHRU */
30444 default:
30445 if (dwarf_strict)
30446 continue;
30447 break;
30449 /* Create DW_TAG_variable that we can refer to. */
30450 gen_decl_die (decl, NULL_TREE, NULL,
30451 lookup_decl_die (current_function_decl));
30452 ref = lookup_decl_die (decl);
30453 if (ref)
30455 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
30456 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
30457 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
30459 continue;
30461 if (prev)
30463 prev->dw_loc_next = l->expr;
30464 add_loc_descr (&prev->dw_loc_next, next);
30465 free_loc_descr (loc, NULL);
30466 next = prev->dw_loc_next;
30468 else
30470 memcpy (loc, l->expr, sizeof (dw_loc_descr_node));
30471 add_loc_descr (&loc, next);
30472 next = loc;
30474 loc = prev;
30476 return false;
30479 /* Attempt to resolve DW_OP_GNU_variable_value using loc_list_from_tree. */
30481 static void
30482 resolve_variable_value (dw_die_ref die)
30484 dw_attr_node *a;
30485 dw_loc_list_ref loc;
30486 unsigned ix;
30488 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
30489 switch (AT_class (a))
30491 case dw_val_class_loc:
30492 if (!resolve_variable_value_in_expr (a, AT_loc (a)))
30493 break;
30494 /* FALLTHRU */
30495 case dw_val_class_loc_list:
30496 loc = AT_loc_list (a);
30497 gcc_assert (loc);
30498 for (; loc; loc = loc->dw_loc_next)
30499 resolve_variable_value_in_expr (a, loc->expr);
30500 break;
30501 default:
30502 break;
30506 /* Attempt to optimize DW_OP_GNU_variable_value refering to
30507 temporaries in the current function. */
30509 static void
30510 resolve_variable_values (void)
30512 if (!variable_value_hash || !current_function_decl)
30513 return;
30515 struct variable_value_struct *node
30516 = variable_value_hash->find_with_hash (current_function_decl,
30517 DECL_UID (current_function_decl));
30519 if (node == NULL)
30520 return;
30522 unsigned int i;
30523 dw_die_ref die;
30524 FOR_EACH_VEC_SAFE_ELT (node->dies, i, die)
30525 resolve_variable_value (die);
30528 /* Helper function for note_variable_value, handle one location
30529 expression. */
30531 static void
30532 note_variable_value_in_expr (dw_die_ref die, dw_loc_descr_ref loc)
30534 for (; loc; loc = loc->dw_loc_next)
30535 if (loc->dw_loc_opc == DW_OP_GNU_variable_value
30536 && loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
30538 tree decl = loc->dw_loc_oprnd1.v.val_decl_ref;
30539 dw_die_ref ref = lookup_decl_die (decl);
30540 if (! ref && (flag_generate_lto || flag_generate_offload))
30542 /* ??? This is somewhat a hack because we do not create DIEs
30543 for variables not in BLOCK trees early but when generating
30544 early LTO output we need the dw_val_class_decl_ref to be
30545 fully resolved. For fat LTO objects we'd also like to
30546 undo this after LTO dwarf output. */
30547 gcc_assert (DECL_CONTEXT (decl));
30548 dw_die_ref ctx = lookup_decl_die (DECL_CONTEXT (decl));
30549 gcc_assert (ctx != NULL);
30550 gen_decl_die (decl, NULL_TREE, NULL, ctx);
30551 ref = lookup_decl_die (decl);
30552 gcc_assert (ref != NULL);
30554 if (ref)
30556 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
30557 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
30558 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
30559 continue;
30561 if (VAR_P (decl)
30562 && DECL_CONTEXT (decl)
30563 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
30564 && lookup_decl_die (DECL_CONTEXT (decl)))
30566 if (!variable_value_hash)
30567 variable_value_hash
30568 = hash_table<variable_value_hasher>::create_ggc (10);
30570 tree fndecl = DECL_CONTEXT (decl);
30571 struct variable_value_struct *node;
30572 struct variable_value_struct **slot
30573 = variable_value_hash->find_slot_with_hash (fndecl,
30574 DECL_UID (fndecl),
30575 INSERT);
30576 if (*slot == NULL)
30578 node = ggc_cleared_alloc<variable_value_struct> ();
30579 node->decl_id = DECL_UID (fndecl);
30580 *slot = node;
30582 else
30583 node = *slot;
30585 vec_safe_push (node->dies, die);
30590 /* Walk the tree DIE and note DIEs with DW_OP_GNU_variable_value still
30591 with dw_val_class_decl_ref operand. */
30593 static void
30594 note_variable_value (dw_die_ref die)
30596 dw_die_ref c;
30597 dw_attr_node *a;
30598 dw_loc_list_ref loc;
30599 unsigned ix;
30601 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
30602 switch (AT_class (a))
30604 case dw_val_class_loc_list:
30605 loc = AT_loc_list (a);
30606 gcc_assert (loc);
30607 if (!loc->noted_variable_value)
30609 loc->noted_variable_value = 1;
30610 for (; loc; loc = loc->dw_loc_next)
30611 note_variable_value_in_expr (die, loc->expr);
30613 break;
30614 case dw_val_class_loc:
30615 note_variable_value_in_expr (die, AT_loc (a));
30616 break;
30617 default:
30618 break;
30621 /* Mark children. */
30622 FOR_EACH_CHILD (die, c, note_variable_value (c));
30625 /* Perform any cleanups needed after the early debug generation pass
30626 has run. */
30628 static void
30629 dwarf2out_early_finish (const char *filename)
30631 set_early_dwarf s;
30633 /* PCH might result in DW_AT_producer string being restored from the
30634 header compilation, so always fill it with empty string initially
30635 and overwrite only here. */
30636 dw_attr_node *producer = get_AT (comp_unit_die (), DW_AT_producer);
30637 producer_string = gen_producer_string ();
30638 producer->dw_attr_val.v.val_str->refcount--;
30639 producer->dw_attr_val.v.val_str = find_AT_string (producer_string);
30641 /* Add the name for the main input file now. We delayed this from
30642 dwarf2out_init to avoid complications with PCH. */
30643 add_name_attribute (comp_unit_die (), remap_debug_filename (filename));
30644 add_comp_dir_attribute (comp_unit_die ());
30646 /* When emitting DWARF5 .debug_line_str, move DW_AT_name and
30647 DW_AT_comp_dir into .debug_line_str section. */
30648 if (!DWARF2_ASM_LINE_DEBUG_INFO
30649 && dwarf_version >= 5
30650 && DWARF5_USE_DEBUG_LINE_STR)
30652 for (int i = 0; i < 2; i++)
30654 dw_attr_node *a = get_AT (comp_unit_die (),
30655 i ? DW_AT_comp_dir : DW_AT_name);
30656 if (a == NULL
30657 || AT_class (a) != dw_val_class_str
30658 || strlen (AT_string (a)) + 1 <= DWARF_OFFSET_SIZE)
30659 continue;
30661 if (! debug_line_str_hash)
30662 debug_line_str_hash
30663 = hash_table<indirect_string_hasher>::create_ggc (10);
30665 struct indirect_string_node *node
30666 = find_AT_string_in_table (AT_string (a), debug_line_str_hash);
30667 set_indirect_string (node);
30668 node->form = DW_FORM_line_strp;
30669 a->dw_attr_val.v.val_str->refcount--;
30670 a->dw_attr_val.v.val_str = node;
30674 /* With LTO early dwarf was really finished at compile-time, so make
30675 sure to adjust the phase after annotating the LTRANS CU DIE. */
30676 if (in_lto_p)
30678 early_dwarf_finished = true;
30679 return;
30682 /* Walk through the list of incomplete types again, trying once more to
30683 emit full debugging info for them. */
30684 retry_incomplete_types ();
30686 /* The point here is to flush out the limbo list so that it is empty
30687 and we don't need to stream it for LTO. */
30688 flush_limbo_die_list ();
30690 gen_scheduled_generic_parms_dies ();
30691 gen_remaining_tmpl_value_param_die_attribute ();
30693 /* Add DW_AT_linkage_name for all deferred DIEs. */
30694 for (limbo_die_node *node = deferred_asm_name; node; node = node->next)
30696 tree decl = node->created_for;
30697 if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
30698 /* A missing DECL_ASSEMBLER_NAME can be a constant DIE that
30699 ended up in deferred_asm_name before we knew it was
30700 constant and never written to disk. */
30701 && DECL_ASSEMBLER_NAME (decl))
30703 add_linkage_attr (node->die, decl);
30704 move_linkage_attr (node->die);
30707 deferred_asm_name = NULL;
30709 if (flag_eliminate_unused_debug_types)
30710 prune_unused_types ();
30712 /* Generate separate COMDAT sections for type DIEs. */
30713 if (use_debug_types)
30715 break_out_comdat_types (comp_unit_die ());
30717 /* Each new type_unit DIE was added to the limbo die list when created.
30718 Since these have all been added to comdat_type_list, clear the
30719 limbo die list. */
30720 limbo_die_list = NULL;
30722 /* For each new comdat type unit, copy declarations for incomplete
30723 types to make the new unit self-contained (i.e., no direct
30724 references to the main compile unit). */
30725 for (comdat_type_node *ctnode = comdat_type_list;
30726 ctnode != NULL; ctnode = ctnode->next)
30727 copy_decls_for_unworthy_types (ctnode->root_die);
30728 copy_decls_for_unworthy_types (comp_unit_die ());
30730 /* In the process of copying declarations from one unit to another,
30731 we may have left some declarations behind that are no longer
30732 referenced. Prune them. */
30733 prune_unused_types ();
30736 /* Traverse the DIE's and note DIEs with DW_OP_GNU_variable_value still
30737 with dw_val_class_decl_ref operand. */
30738 note_variable_value (comp_unit_die ());
30739 for (limbo_die_node *node = cu_die_list; node; node = node->next)
30740 note_variable_value (node->die);
30741 for (comdat_type_node *ctnode = comdat_type_list; ctnode != NULL;
30742 ctnode = ctnode->next)
30743 note_variable_value (ctnode->root_die);
30744 for (limbo_die_node *node = limbo_die_list; node; node = node->next)
30745 note_variable_value (node->die);
30747 /* The AT_pubnames attribute needs to go in all skeleton dies, including
30748 both the main_cu and all skeleton TUs. Making this call unconditional
30749 would end up either adding a second copy of the AT_pubnames attribute, or
30750 requiring a special case in add_top_level_skeleton_die_attrs. */
30751 if (!dwarf_split_debug_info)
30752 add_AT_pubnames (comp_unit_die ());
30754 /* The early debug phase is now finished. */
30755 early_dwarf_finished = true;
30757 /* Do not generate DWARF assembler now when not producing LTO bytecode. */
30758 if (!flag_generate_lto && !flag_generate_offload)
30759 return;
30761 /* Now as we are going to output for LTO initialize sections and labels
30762 to the LTO variants. We don't need a random-seed postfix as other
30763 LTO sections as linking the LTO debug sections into one in a partial
30764 link is fine. */
30765 init_sections_and_labels (true);
30767 /* The output below is modeled after dwarf2out_finish with all
30768 location related output removed and some LTO specific changes.
30769 Some refactoring might make both smaller and easier to match up. */
30771 /* Traverse the DIE's and add add sibling attributes to those DIE's
30772 that have children. */
30773 add_sibling_attributes (comp_unit_die ());
30774 for (limbo_die_node *node = limbo_die_list; node; node = node->next)
30775 add_sibling_attributes (node->die);
30776 for (comdat_type_node *ctnode = comdat_type_list;
30777 ctnode != NULL; ctnode = ctnode->next)
30778 add_sibling_attributes (ctnode->root_die);
30780 if (have_macinfo)
30781 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE,
30782 macinfo_section_label);
30784 save_macinfo_strings ();
30786 /* Output all of the compilation units. We put the main one last so that
30787 the offsets are available to output_pubnames. */
30788 for (limbo_die_node *node = limbo_die_list; node; node = node->next)
30789 output_comp_unit (node->die, 0, NULL);
30791 hash_table<comdat_type_hasher> comdat_type_table (100);
30792 for (comdat_type_node *ctnode = comdat_type_list;
30793 ctnode != NULL; ctnode = ctnode->next)
30795 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
30797 /* Don't output duplicate types. */
30798 if (*slot != HTAB_EMPTY_ENTRY)
30799 continue;
30801 /* Add a pointer to the line table for the main compilation unit
30802 so that the debugger can make sense of DW_AT_decl_file
30803 attributes. */
30804 if (debug_info_level >= DINFO_LEVEL_TERSE)
30805 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
30806 (!dwarf_split_debug_info
30807 ? debug_line_section_label
30808 : debug_skeleton_line_section_label));
30810 output_comdat_type_unit (ctnode);
30811 *slot = ctnode;
30814 /* Stick a unique symbol to the main debuginfo section. */
30815 compute_comp_unit_symbol (comp_unit_die ());
30817 /* Output the main compilation unit. We always need it if only for
30818 the CU symbol. */
30819 output_comp_unit (comp_unit_die (), true, NULL);
30821 /* Output the abbreviation table. */
30822 if (vec_safe_length (abbrev_die_table) != 1)
30824 switch_to_section (debug_abbrev_section);
30825 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
30826 output_abbrev_section ();
30829 /* Have to end the macro section. */
30830 if (have_macinfo)
30832 /* We have to save macinfo state if we need to output it again
30833 for the FAT part of the object. */
30834 vec<macinfo_entry, va_gc> *saved_macinfo_table = macinfo_table;
30835 if (flag_fat_lto_objects)
30836 macinfo_table = macinfo_table->copy ();
30838 switch_to_section (debug_macinfo_section);
30839 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
30840 output_macinfo (debug_skeleton_line_section_label, true);
30841 dw2_asm_output_data (1, 0, "End compilation unit");
30843 /* Emit a skeleton debug_line section. */
30844 switch_to_section (debug_skeleton_line_section);
30845 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
30846 output_line_info (true);
30848 if (flag_fat_lto_objects)
30850 vec_free (macinfo_table);
30851 macinfo_table = saved_macinfo_table;
30856 /* If we emitted any indirect strings, output the string table too. */
30857 if (debug_str_hash || skeleton_debug_str_hash)
30858 output_indirect_strings ();
30860 /* Switch back to the text section. */
30861 switch_to_section (text_section);
30864 /* Reset all state within dwarf2out.c so that we can rerun the compiler
30865 within the same process. For use by toplev::finalize. */
30867 void
30868 dwarf2out_c_finalize (void)
30870 last_var_location_insn = NULL;
30871 cached_next_real_insn = NULL;
30872 used_rtx_array = NULL;
30873 incomplete_types = NULL;
30874 decl_scope_table = NULL;
30875 debug_info_section = NULL;
30876 debug_skeleton_info_section = NULL;
30877 debug_abbrev_section = NULL;
30878 debug_skeleton_abbrev_section = NULL;
30879 debug_aranges_section = NULL;
30880 debug_addr_section = NULL;
30881 debug_macinfo_section = NULL;
30882 debug_line_section = NULL;
30883 debug_skeleton_line_section = NULL;
30884 debug_loc_section = NULL;
30885 debug_pubnames_section = NULL;
30886 debug_pubtypes_section = NULL;
30887 debug_str_section = NULL;
30888 debug_line_str_section = NULL;
30889 debug_str_dwo_section = NULL;
30890 debug_str_offsets_section = NULL;
30891 debug_ranges_section = NULL;
30892 debug_frame_section = NULL;
30893 fde_vec = NULL;
30894 debug_str_hash = NULL;
30895 debug_line_str_hash = NULL;
30896 skeleton_debug_str_hash = NULL;
30897 dw2_string_counter = 0;
30898 have_multiple_function_sections = false;
30899 text_section_used = false;
30900 cold_text_section_used = false;
30901 cold_text_section = NULL;
30902 current_unit_personality = NULL;
30904 early_dwarf = false;
30905 early_dwarf_finished = false;
30907 next_die_offset = 0;
30908 single_comp_unit_die = NULL;
30909 comdat_type_list = NULL;
30910 limbo_die_list = NULL;
30911 file_table = NULL;
30912 decl_die_table = NULL;
30913 common_block_die_table = NULL;
30914 decl_loc_table = NULL;
30915 call_arg_locations = NULL;
30916 call_arg_loc_last = NULL;
30917 call_site_count = -1;
30918 tail_call_site_count = -1;
30919 cached_dw_loc_list_table = NULL;
30920 abbrev_die_table = NULL;
30921 delete dwarf_proc_stack_usage_map;
30922 dwarf_proc_stack_usage_map = NULL;
30923 line_info_label_num = 0;
30924 cur_line_info_table = NULL;
30925 text_section_line_info = NULL;
30926 cold_text_section_line_info = NULL;
30927 separate_line_info = NULL;
30928 info_section_emitted = false;
30929 pubname_table = NULL;
30930 pubtype_table = NULL;
30931 macinfo_table = NULL;
30932 ranges_table = NULL;
30933 ranges_by_label = NULL;
30934 rnglist_idx = 0;
30935 have_location_lists = false;
30936 loclabel_num = 0;
30937 poc_label_num = 0;
30938 last_emitted_file = NULL;
30939 label_num = 0;
30940 tmpl_value_parm_die_table = NULL;
30941 generic_type_instances = NULL;
30942 frame_pointer_fb_offset = 0;
30943 frame_pointer_fb_offset_valid = false;
30944 base_types.release ();
30945 XDELETEVEC (producer_string);
30946 producer_string = NULL;
30949 #include "gt-dwarf2out.h"