* lto-symtab.c (lto_varpool_replace_node): Merge TLS models.
[official-gcc.git] / gcc / dwarf2cfi.c
blob27474cba07d50eb04af27caeda94ed5299e9c991
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "version.h"
25 #include "flags.h"
26 #include "rtl.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "real.h"
37 #include "tree.h"
38 #include "stor-layout.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "cfgbuild.h"
42 #include "dwarf2.h"
43 #include "dwarf2out.h"
44 #include "dwarf2asm.h"
45 #include "ggc.h"
46 #include "hash-table.h"
47 #include "tm_p.h"
48 #include "target.h"
49 #include "common/common-target.h"
50 #include "tree-pass.h"
52 #include "except.h" /* expand_builtin_dwarf_sp_column */
53 #include "hashtab.h"
54 #include "statistics.h"
55 #include "fixed-value.h"
56 #include "insn-config.h"
57 #include "expmed.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "emit-rtl.h"
62 #include "varasm.h"
63 #include "stmt.h"
64 #include "expr.h" /* init_return_column_size */
65 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
66 #include "output.h" /* asm_out_file */
67 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
70 /* ??? Poison these here until it can be done generically. They've been
71 totally replaced in this file; make sure it stays that way. */
72 #undef DWARF2_UNWIND_INFO
73 #undef DWARF2_FRAME_INFO
74 #if (GCC_VERSION >= 3000)
75 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
76 #endif
78 #ifndef INCOMING_RETURN_ADDR_RTX
79 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
80 #endif
82 /* Maximum size (in bytes) of an artificially generated label. */
83 #define MAX_ARTIFICIAL_LABEL_BYTES 30
85 /* A collected description of an entire row of the abstract CFI table. */
86 typedef struct GTY(()) dw_cfi_row_struct
88 /* The expression that computes the CFA, expressed in two different ways.
89 The CFA member for the simple cases, and the full CFI expression for
90 the complex cases. The later will be a DW_CFA_cfa_expression. */
91 dw_cfa_location cfa;
92 dw_cfi_ref cfa_cfi;
94 /* The expressions for any register column that is saved. */
95 cfi_vec reg_save;
96 } dw_cfi_row;
98 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
99 typedef struct GTY(()) reg_saved_in_data_struct {
100 rtx orig_reg;
101 rtx saved_in_reg;
102 } reg_saved_in_data;
105 /* Since we no longer have a proper CFG, we're going to create a facsimile
106 of one on the fly while processing the frame-related insns.
108 We create dw_trace_info structures for each extended basic block beginning
109 and ending at a "save point". Save points are labels, barriers, certain
110 notes, and of course the beginning and end of the function.
112 As we encounter control transfer insns, we propagate the "current"
113 row state across the edges to the starts of traces. When checking is
114 enabled, we validate that we propagate the same data from all sources.
116 All traces are members of the TRACE_INFO array, in the order in which
117 they appear in the instruction stream.
119 All save points are present in the TRACE_INDEX hash, mapping the insn
120 starting a trace to the dw_trace_info describing the trace. */
122 typedef struct
124 /* The insn that begins the trace. */
125 rtx_insn *head;
127 /* The row state at the beginning and end of the trace. */
128 dw_cfi_row *beg_row, *end_row;
130 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
131 while scanning insns. However, the args_size value is irrelevant at
132 any point except can_throw_internal_p insns. Therefore the "delay"
133 sizes the values that must actually be emitted for this trace. */
134 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
135 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
137 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
138 rtx_insn *eh_head;
140 /* The following variables contain data used in interpreting frame related
141 expressions. These are not part of the "real" row state as defined by
142 Dwarf, but it seems like they need to be propagated into a trace in case
143 frame related expressions have been sunk. */
144 /* ??? This seems fragile. These variables are fragments of a larger
145 expression. If we do not keep the entire expression together, we risk
146 not being able to put it together properly. Consider forcing targets
147 to generate self-contained expressions and dropping all of the magic
148 interpretation code in this file. Or at least refusing to shrink wrap
149 any frame related insn that doesn't contain a complete expression. */
151 /* The register used for saving registers to the stack, and its offset
152 from the CFA. */
153 dw_cfa_location cfa_store;
155 /* A temporary register holding an integral value used in adjusting SP
156 or setting up the store_reg. The "offset" field holds the integer
157 value, not an offset. */
158 dw_cfa_location cfa_temp;
160 /* A set of registers saved in other registers. This is the inverse of
161 the row->reg_save info, if the entry is a DW_CFA_register. This is
162 implemented as a flat array because it normally contains zero or 1
163 entry, depending on the target. IA-64 is the big spender here, using
164 a maximum of 5 entries. */
165 vec<reg_saved_in_data> regs_saved_in_regs;
167 /* An identifier for this trace. Used only for debugging dumps. */
168 unsigned id;
170 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
171 bool switch_sections;
173 /* True if we've seen different values incoming to beg_true_args_size. */
174 bool args_size_undefined;
175 } dw_trace_info;
178 typedef dw_trace_info *dw_trace_info_ref;
181 /* Hashtable helpers. */
183 struct trace_info_hasher : typed_noop_remove <dw_trace_info>
185 typedef dw_trace_info value_type;
186 typedef dw_trace_info compare_type;
187 static inline hashval_t hash (const value_type *);
188 static inline bool equal (const value_type *, const compare_type *);
191 inline hashval_t
192 trace_info_hasher::hash (const value_type *ti)
194 return INSN_UID (ti->head);
197 inline bool
198 trace_info_hasher::equal (const value_type *a, const compare_type *b)
200 return a->head == b->head;
204 /* The variables making up the pseudo-cfg, as described above. */
205 static vec<dw_trace_info> trace_info;
206 static vec<dw_trace_info_ref> trace_work_list;
207 static hash_table<trace_info_hasher> *trace_index;
209 /* A vector of call frame insns for the CIE. */
210 cfi_vec cie_cfi_vec;
212 /* The state of the first row of the FDE table, which includes the
213 state provided by the CIE. */
214 static GTY(()) dw_cfi_row *cie_cfi_row;
216 static GTY(()) reg_saved_in_data *cie_return_save;
218 static GTY(()) unsigned long dwarf2out_cfi_label_num;
220 /* The insn after which a new CFI note should be emitted. */
221 static rtx add_cfi_insn;
223 /* When non-null, add_cfi will add the CFI to this vector. */
224 static cfi_vec *add_cfi_vec;
226 /* The current instruction trace. */
227 static dw_trace_info *cur_trace;
229 /* The current, i.e. most recently generated, row of the CFI table. */
230 static dw_cfi_row *cur_row;
232 /* A copy of the current CFA, for use during the processing of a
233 single insn. */
234 static dw_cfa_location *cur_cfa;
236 /* We delay emitting a register save until either (a) we reach the end
237 of the prologue or (b) the register is clobbered. This clusters
238 register saves so that there are fewer pc advances. */
240 typedef struct {
241 rtx reg;
242 rtx saved_reg;
243 HOST_WIDE_INT cfa_offset;
244 } queued_reg_save;
247 static vec<queued_reg_save> queued_reg_saves;
249 /* True if any CFI directives were emitted at the current insn. */
250 static bool any_cfis_emitted;
252 /* Short-hand for commonly used register numbers. */
253 static unsigned dw_stack_pointer_regnum;
254 static unsigned dw_frame_pointer_regnum;
256 /* Hook used by __throw. */
259 expand_builtin_dwarf_sp_column (void)
261 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
262 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
265 /* MEM is a memory reference for the register size table, each element of
266 which has mode MODE. Initialize column C as a return address column. */
268 static void
269 init_return_column_size (machine_mode mode, rtx mem, unsigned int c)
271 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
272 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
273 emit_move_insn (adjust_address (mem, mode, offset),
274 gen_int_mode (size, mode));
277 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
278 init_one_dwarf_reg_size to communicate on what has been done by the
279 latter. */
281 typedef struct
283 /* Whether the dwarf return column was initialized. */
284 bool wrote_return_column;
286 /* For each hard register REGNO, whether init_one_dwarf_reg_size
287 was given REGNO to process already. */
288 bool processed_regno [FIRST_PSEUDO_REGISTER];
290 } init_one_dwarf_reg_state;
292 /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
293 initialize the dwarf register size table entry corresponding to register
294 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
295 use for the size entry to initialize, and INIT_STATE is the communication
296 datastructure conveying what we're doing to our caller. */
298 static
299 void init_one_dwarf_reg_size (int regno, machine_mode regmode,
300 rtx table, machine_mode slotmode,
301 init_one_dwarf_reg_state *init_state)
303 const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
304 const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
305 const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
307 const HOST_WIDE_INT slotoffset = dcol * GET_MODE_SIZE (slotmode);
308 const HOST_WIDE_INT regsize = GET_MODE_SIZE (regmode);
310 init_state->processed_regno[regno] = true;
312 if (rnum >= DWARF_FRAME_REGISTERS)
313 return;
315 if (dnum == DWARF_FRAME_RETURN_COLUMN)
317 if (regmode == VOIDmode)
318 return;
319 init_state->wrote_return_column = true;
322 if (slotoffset < 0)
323 return;
325 emit_move_insn (adjust_address (table, slotmode, slotoffset),
326 gen_int_mode (regsize, slotmode));
329 /* Generate code to initialize the dwarf register size table located
330 at the provided ADDRESS. */
332 void
333 expand_builtin_init_dwarf_reg_sizes (tree address)
335 unsigned int i;
336 machine_mode mode = TYPE_MODE (char_type_node);
337 rtx addr = expand_normal (address);
338 rtx mem = gen_rtx_MEM (BLKmode, addr);
340 init_one_dwarf_reg_state init_state;
342 memset ((char *)&init_state, 0, sizeof (init_state));
344 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
346 machine_mode save_mode;
347 rtx span;
349 /* No point in processing a register multiple times. This could happen
350 with register spans, e.g. when a reg is first processed as a piece of
351 a span, then as a register on its own later on. */
353 if (init_state.processed_regno[i])
354 continue;
356 save_mode = targetm.dwarf_frame_reg_mode (i);
357 span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
359 if (!span)
360 init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
361 else
363 for (int si = 0; si < XVECLEN (span, 0); si++)
365 rtx reg = XVECEXP (span, 0, si);
367 init_one_dwarf_reg_size
368 (REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
373 if (!init_state.wrote_return_column)
374 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
376 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
377 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
378 #endif
380 targetm.init_dwarf_reg_sizes_extra (address);
384 static dw_trace_info *
385 get_trace_info (rtx_insn *insn)
387 dw_trace_info dummy;
388 dummy.head = insn;
389 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
392 static bool
393 save_point_p (rtx_insn *insn)
395 /* Labels, except those that are really jump tables. */
396 if (LABEL_P (insn))
397 return inside_basic_block_p (insn);
399 /* We split traces at the prologue/epilogue notes because those
400 are points at which the unwind info is usually stable. This
401 makes it easier to find spots with identical unwind info so
402 that we can use remember/restore_state opcodes. */
403 if (NOTE_P (insn))
404 switch (NOTE_KIND (insn))
406 case NOTE_INSN_PROLOGUE_END:
407 case NOTE_INSN_EPILOGUE_BEG:
408 return true;
411 return false;
414 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
416 static inline HOST_WIDE_INT
417 div_data_align (HOST_WIDE_INT off)
419 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
420 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
421 return r;
424 /* Return true if we need a signed version of a given opcode
425 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
427 static inline bool
428 need_data_align_sf_opcode (HOST_WIDE_INT off)
430 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
433 /* Return a pointer to a newly allocated Call Frame Instruction. */
435 static inline dw_cfi_ref
436 new_cfi (void)
438 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
440 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
441 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
443 return cfi;
446 /* Return a newly allocated CFI row, with no defined data. */
448 static dw_cfi_row *
449 new_cfi_row (void)
451 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
453 row->cfa.reg = INVALID_REGNUM;
455 return row;
458 /* Return a copy of an existing CFI row. */
460 static dw_cfi_row *
461 copy_cfi_row (dw_cfi_row *src)
463 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
465 *dst = *src;
466 dst->reg_save = vec_safe_copy (src->reg_save);
468 return dst;
471 /* Generate a new label for the CFI info to refer to. */
473 static char *
474 dwarf2out_cfi_label (void)
476 int num = dwarf2out_cfi_label_num++;
477 char label[20];
479 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
481 return xstrdup (label);
484 /* Add CFI either to the current insn stream or to a vector, or both. */
486 static void
487 add_cfi (dw_cfi_ref cfi)
489 any_cfis_emitted = true;
491 if (add_cfi_insn != NULL)
493 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
494 NOTE_CFI (add_cfi_insn) = cfi;
497 if (add_cfi_vec != NULL)
498 vec_safe_push (*add_cfi_vec, cfi);
501 static void
502 add_cfi_args_size (HOST_WIDE_INT size)
504 dw_cfi_ref cfi = new_cfi ();
506 /* While we can occasionally have args_size < 0 internally, this state
507 should not persist at a point we actually need an opcode. */
508 gcc_assert (size >= 0);
510 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
511 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
513 add_cfi (cfi);
516 static void
517 add_cfi_restore (unsigned reg)
519 dw_cfi_ref cfi = new_cfi ();
521 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
522 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
524 add_cfi (cfi);
527 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
528 that the register column is no longer saved. */
530 static void
531 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
533 if (vec_safe_length (row->reg_save) <= column)
534 vec_safe_grow_cleared (row->reg_save, column + 1);
535 (*row->reg_save)[column] = cfi;
538 /* This function fills in aa dw_cfa_location structure from a dwarf location
539 descriptor sequence. */
541 static void
542 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
544 struct dw_loc_descr_node *ptr;
545 cfa->offset = 0;
546 cfa->base_offset = 0;
547 cfa->indirect = 0;
548 cfa->reg = -1;
550 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
552 enum dwarf_location_atom op = ptr->dw_loc_opc;
554 switch (op)
556 case DW_OP_reg0:
557 case DW_OP_reg1:
558 case DW_OP_reg2:
559 case DW_OP_reg3:
560 case DW_OP_reg4:
561 case DW_OP_reg5:
562 case DW_OP_reg6:
563 case DW_OP_reg7:
564 case DW_OP_reg8:
565 case DW_OP_reg9:
566 case DW_OP_reg10:
567 case DW_OP_reg11:
568 case DW_OP_reg12:
569 case DW_OP_reg13:
570 case DW_OP_reg14:
571 case DW_OP_reg15:
572 case DW_OP_reg16:
573 case DW_OP_reg17:
574 case DW_OP_reg18:
575 case DW_OP_reg19:
576 case DW_OP_reg20:
577 case DW_OP_reg21:
578 case DW_OP_reg22:
579 case DW_OP_reg23:
580 case DW_OP_reg24:
581 case DW_OP_reg25:
582 case DW_OP_reg26:
583 case DW_OP_reg27:
584 case DW_OP_reg28:
585 case DW_OP_reg29:
586 case DW_OP_reg30:
587 case DW_OP_reg31:
588 cfa->reg = op - DW_OP_reg0;
589 break;
590 case DW_OP_regx:
591 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
592 break;
593 case DW_OP_breg0:
594 case DW_OP_breg1:
595 case DW_OP_breg2:
596 case DW_OP_breg3:
597 case DW_OP_breg4:
598 case DW_OP_breg5:
599 case DW_OP_breg6:
600 case DW_OP_breg7:
601 case DW_OP_breg8:
602 case DW_OP_breg9:
603 case DW_OP_breg10:
604 case DW_OP_breg11:
605 case DW_OP_breg12:
606 case DW_OP_breg13:
607 case DW_OP_breg14:
608 case DW_OP_breg15:
609 case DW_OP_breg16:
610 case DW_OP_breg17:
611 case DW_OP_breg18:
612 case DW_OP_breg19:
613 case DW_OP_breg20:
614 case DW_OP_breg21:
615 case DW_OP_breg22:
616 case DW_OP_breg23:
617 case DW_OP_breg24:
618 case DW_OP_breg25:
619 case DW_OP_breg26:
620 case DW_OP_breg27:
621 case DW_OP_breg28:
622 case DW_OP_breg29:
623 case DW_OP_breg30:
624 case DW_OP_breg31:
625 cfa->reg = op - DW_OP_breg0;
626 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
627 break;
628 case DW_OP_bregx:
629 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
630 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
631 break;
632 case DW_OP_deref:
633 cfa->indirect = 1;
634 break;
635 case DW_OP_plus_uconst:
636 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
637 break;
638 default:
639 gcc_unreachable ();
644 /* Find the previous value for the CFA, iteratively. CFI is the opcode
645 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
646 one level of remember/restore state processing. */
648 void
649 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
651 switch (cfi->dw_cfi_opc)
653 case DW_CFA_def_cfa_offset:
654 case DW_CFA_def_cfa_offset_sf:
655 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
656 break;
657 case DW_CFA_def_cfa_register:
658 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
659 break;
660 case DW_CFA_def_cfa:
661 case DW_CFA_def_cfa_sf:
662 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
663 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
664 break;
665 case DW_CFA_def_cfa_expression:
666 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
667 break;
669 case DW_CFA_remember_state:
670 gcc_assert (!remember->in_use);
671 *remember = *loc;
672 remember->in_use = 1;
673 break;
674 case DW_CFA_restore_state:
675 gcc_assert (remember->in_use);
676 *loc = *remember;
677 remember->in_use = 0;
678 break;
680 default:
681 break;
685 /* Determine if two dw_cfa_location structures define the same data. */
687 bool
688 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
690 return (loc1->reg == loc2->reg
691 && loc1->offset == loc2->offset
692 && loc1->indirect == loc2->indirect
693 && (loc1->indirect == 0
694 || loc1->base_offset == loc2->base_offset));
697 /* Determine if two CFI operands are identical. */
699 static bool
700 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
702 switch (t)
704 case dw_cfi_oprnd_unused:
705 return true;
706 case dw_cfi_oprnd_reg_num:
707 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
708 case dw_cfi_oprnd_offset:
709 return a->dw_cfi_offset == b->dw_cfi_offset;
710 case dw_cfi_oprnd_addr:
711 return (a->dw_cfi_addr == b->dw_cfi_addr
712 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
713 case dw_cfi_oprnd_loc:
714 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
716 gcc_unreachable ();
719 /* Determine if two CFI entries are identical. */
721 static bool
722 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
724 enum dwarf_call_frame_info opc;
726 /* Make things easier for our callers, including missing operands. */
727 if (a == b)
728 return true;
729 if (a == NULL || b == NULL)
730 return false;
732 /* Obviously, the opcodes must match. */
733 opc = a->dw_cfi_opc;
734 if (opc != b->dw_cfi_opc)
735 return false;
737 /* Compare the two operands, re-using the type of the operands as
738 already exposed elsewhere. */
739 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
740 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
741 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
742 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
745 /* Determine if two CFI_ROW structures are identical. */
747 static bool
748 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
750 size_t i, n_a, n_b, n_max;
752 if (a->cfa_cfi)
754 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
755 return false;
757 else if (!cfa_equal_p (&a->cfa, &b->cfa))
758 return false;
760 n_a = vec_safe_length (a->reg_save);
761 n_b = vec_safe_length (b->reg_save);
762 n_max = MAX (n_a, n_b);
764 for (i = 0; i < n_max; ++i)
766 dw_cfi_ref r_a = NULL, r_b = NULL;
768 if (i < n_a)
769 r_a = (*a->reg_save)[i];
770 if (i < n_b)
771 r_b = (*b->reg_save)[i];
773 if (!cfi_equal_p (r_a, r_b))
774 return false;
777 return true;
780 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
781 what opcode to emit. Returns the CFI opcode to effect the change, or
782 NULL if NEW_CFA == OLD_CFA. */
784 static dw_cfi_ref
785 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
787 dw_cfi_ref cfi;
789 /* If nothing changed, no need to issue any call frame instructions. */
790 if (cfa_equal_p (old_cfa, new_cfa))
791 return NULL;
793 cfi = new_cfi ();
795 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
797 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
798 the CFA register did not change but the offset did. The data
799 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
800 in the assembler via the .cfi_def_cfa_offset directive. */
801 if (new_cfa->offset < 0)
802 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
803 else
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
805 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
807 else if (new_cfa->offset == old_cfa->offset
808 && old_cfa->reg != INVALID_REGNUM
809 && !new_cfa->indirect
810 && !old_cfa->indirect)
812 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
813 indicating the CFA register has changed to <register> but the
814 offset has not changed. */
815 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
816 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
818 else if (new_cfa->indirect == 0)
820 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
821 indicating the CFA register has changed to <register> with
822 the specified offset. The data factoring for DW_CFA_def_cfa_sf
823 happens in output_cfi, or in the assembler via the .cfi_def_cfa
824 directive. */
825 if (new_cfa->offset < 0)
826 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
827 else
828 cfi->dw_cfi_opc = DW_CFA_def_cfa;
829 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
830 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
832 else
834 /* Construct a DW_CFA_def_cfa_expression instruction to
835 calculate the CFA using a full location expression since no
836 register-offset pair is available. */
837 struct dw_loc_descr_node *loc_list;
839 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
840 loc_list = build_cfa_loc (new_cfa, 0);
841 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
844 return cfi;
847 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
849 static void
850 def_cfa_1 (dw_cfa_location *new_cfa)
852 dw_cfi_ref cfi;
854 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
855 cur_trace->cfa_store.offset = new_cfa->offset;
857 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
858 if (cfi)
860 cur_row->cfa = *new_cfa;
861 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
862 ? cfi : NULL);
864 add_cfi (cfi);
868 /* Add the CFI for saving a register. REG is the CFA column number.
869 If SREG is -1, the register is saved at OFFSET from the CFA;
870 otherwise it is saved in SREG. */
872 static void
873 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
875 dw_fde_ref fde = cfun ? cfun->fde : NULL;
876 dw_cfi_ref cfi = new_cfi ();
878 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
880 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
881 if (fde
882 && fde->stack_realign
883 && sreg == INVALID_REGNUM)
885 cfi->dw_cfi_opc = DW_CFA_expression;
886 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
887 cfi->dw_cfi_oprnd2.dw_cfi_loc
888 = build_cfa_aligned_loc (&cur_row->cfa, offset,
889 fde->stack_realignment);
891 else if (sreg == INVALID_REGNUM)
893 if (need_data_align_sf_opcode (offset))
894 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
895 else if (reg & ~0x3f)
896 cfi->dw_cfi_opc = DW_CFA_offset_extended;
897 else
898 cfi->dw_cfi_opc = DW_CFA_offset;
899 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
901 else if (sreg == reg)
903 /* While we could emit something like DW_CFA_same_value or
904 DW_CFA_restore, we never expect to see something like that
905 in a prologue. This is more likely to be a bug. A backend
906 can always bypass this by using REG_CFA_RESTORE directly. */
907 gcc_unreachable ();
909 else
911 cfi->dw_cfi_opc = DW_CFA_register;
912 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
915 add_cfi (cfi);
916 update_row_reg_save (cur_row, reg, cfi);
919 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
920 and adjust data structures to match. */
922 static void
923 notice_args_size (rtx insn)
925 HOST_WIDE_INT args_size, delta;
926 rtx note;
928 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
929 if (note == NULL)
930 return;
932 args_size = INTVAL (XEXP (note, 0));
933 delta = args_size - cur_trace->end_true_args_size;
934 if (delta == 0)
935 return;
937 cur_trace->end_true_args_size = args_size;
939 /* If the CFA is computed off the stack pointer, then we must adjust
940 the computation of the CFA as well. */
941 if (cur_cfa->reg == dw_stack_pointer_regnum)
943 gcc_assert (!cur_cfa->indirect);
945 /* Convert a change in args_size (always a positive in the
946 direction of stack growth) to a change in stack pointer. */
947 #ifndef STACK_GROWS_DOWNWARD
948 delta = -delta;
949 #endif
950 cur_cfa->offset += delta;
954 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
955 data within the trace related to EH insns and args_size. */
957 static void
958 notice_eh_throw (rtx_insn *insn)
960 HOST_WIDE_INT args_size;
962 args_size = cur_trace->end_true_args_size;
963 if (cur_trace->eh_head == NULL)
965 cur_trace->eh_head = insn;
966 cur_trace->beg_delay_args_size = args_size;
967 cur_trace->end_delay_args_size = args_size;
969 else if (cur_trace->end_delay_args_size != args_size)
971 cur_trace->end_delay_args_size = args_size;
973 /* ??? If the CFA is the stack pointer, search backward for the last
974 CFI note and insert there. Given that the stack changed for the
975 args_size change, there *must* be such a note in between here and
976 the last eh insn. */
977 add_cfi_args_size (args_size);
981 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
982 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
983 used in places where rtl is prohibited. */
985 static inline unsigned
986 dwf_regno (const_rtx reg)
988 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
989 return DWARF_FRAME_REGNUM (REGNO (reg));
992 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
994 static bool
995 compare_reg_or_pc (rtx x, rtx y)
997 if (REG_P (x) && REG_P (y))
998 return REGNO (x) == REGNO (y);
999 return x == y;
1002 /* Record SRC as being saved in DEST. DEST may be null to delete an
1003 existing entry. SRC may be a register or PC_RTX. */
1005 static void
1006 record_reg_saved_in_reg (rtx dest, rtx src)
1008 reg_saved_in_data *elt;
1009 size_t i;
1011 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
1012 if (compare_reg_or_pc (elt->orig_reg, src))
1014 if (dest == NULL)
1015 cur_trace->regs_saved_in_regs.unordered_remove (i);
1016 else
1017 elt->saved_in_reg = dest;
1018 return;
1021 if (dest == NULL)
1022 return;
1024 reg_saved_in_data e = {src, dest};
1025 cur_trace->regs_saved_in_regs.safe_push (e);
1028 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1029 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1031 static void
1032 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
1034 queued_reg_save *q;
1035 queued_reg_save e = {reg, sreg, offset};
1036 size_t i;
1038 /* Duplicates waste space, but it's also necessary to remove them
1039 for correctness, since the queue gets output in reverse order. */
1040 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1041 if (compare_reg_or_pc (q->reg, reg))
1043 *q = e;
1044 return;
1047 queued_reg_saves.safe_push (e);
1050 /* Output all the entries in QUEUED_REG_SAVES. */
1052 static void
1053 dwarf2out_flush_queued_reg_saves (void)
1055 queued_reg_save *q;
1056 size_t i;
1058 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1060 unsigned int reg, sreg;
1062 record_reg_saved_in_reg (q->saved_reg, q->reg);
1064 if (q->reg == pc_rtx)
1065 reg = DWARF_FRAME_RETURN_COLUMN;
1066 else
1067 reg = dwf_regno (q->reg);
1068 if (q->saved_reg)
1069 sreg = dwf_regno (q->saved_reg);
1070 else
1071 sreg = INVALID_REGNUM;
1072 reg_save (reg, sreg, q->cfa_offset);
1075 queued_reg_saves.truncate (0);
1078 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1079 location for? Or, does it clobber a register which we've previously
1080 said that some other register is saved in, and for which we now
1081 have a new location for? */
1083 static bool
1084 clobbers_queued_reg_save (const_rtx insn)
1086 queued_reg_save *q;
1087 size_t iq;
1089 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1091 size_t ir;
1092 reg_saved_in_data *rir;
1094 if (modified_in_p (q->reg, insn))
1095 return true;
1097 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1098 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1099 && modified_in_p (rir->saved_in_reg, insn))
1100 return true;
1103 return false;
1106 /* What register, if any, is currently saved in REG? */
1108 static rtx
1109 reg_saved_in (rtx reg)
1111 unsigned int regn = REGNO (reg);
1112 queued_reg_save *q;
1113 reg_saved_in_data *rir;
1114 size_t i;
1116 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1117 if (q->saved_reg && regn == REGNO (q->saved_reg))
1118 return q->reg;
1120 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1121 if (regn == REGNO (rir->saved_in_reg))
1122 return rir->orig_reg;
1124 return NULL_RTX;
1127 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1129 static void
1130 dwarf2out_frame_debug_def_cfa (rtx pat)
1132 memset (cur_cfa, 0, sizeof (*cur_cfa));
1134 if (GET_CODE (pat) == PLUS)
1136 cur_cfa->offset = INTVAL (XEXP (pat, 1));
1137 pat = XEXP (pat, 0);
1139 if (MEM_P (pat))
1141 cur_cfa->indirect = 1;
1142 pat = XEXP (pat, 0);
1143 if (GET_CODE (pat) == PLUS)
1145 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1146 pat = XEXP (pat, 0);
1149 /* ??? If this fails, we could be calling into the _loc functions to
1150 define a full expression. So far no port does that. */
1151 gcc_assert (REG_P (pat));
1152 cur_cfa->reg = dwf_regno (pat);
1155 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1157 static void
1158 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1160 rtx src, dest;
1162 gcc_assert (GET_CODE (pat) == SET);
1163 dest = XEXP (pat, 0);
1164 src = XEXP (pat, 1);
1166 switch (GET_CODE (src))
1168 case PLUS:
1169 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1170 cur_cfa->offset -= INTVAL (XEXP (src, 1));
1171 break;
1173 case REG:
1174 break;
1176 default:
1177 gcc_unreachable ();
1180 cur_cfa->reg = dwf_regno (dest);
1181 gcc_assert (cur_cfa->indirect == 0);
1184 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1186 static void
1187 dwarf2out_frame_debug_cfa_offset (rtx set)
1189 HOST_WIDE_INT offset;
1190 rtx src, addr, span;
1191 unsigned int sregno;
1193 src = XEXP (set, 1);
1194 addr = XEXP (set, 0);
1195 gcc_assert (MEM_P (addr));
1196 addr = XEXP (addr, 0);
1198 /* As documented, only consider extremely simple addresses. */
1199 switch (GET_CODE (addr))
1201 case REG:
1202 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1203 offset = -cur_cfa->offset;
1204 break;
1205 case PLUS:
1206 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1207 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1208 break;
1209 default:
1210 gcc_unreachable ();
1213 if (src == pc_rtx)
1215 span = NULL;
1216 sregno = DWARF_FRAME_RETURN_COLUMN;
1218 else
1220 span = targetm.dwarf_register_span (src);
1221 sregno = dwf_regno (src);
1224 /* ??? We'd like to use queue_reg_save, but we need to come up with
1225 a different flushing heuristic for epilogues. */
1226 if (!span)
1227 reg_save (sregno, INVALID_REGNUM, offset);
1228 else
1230 /* We have a PARALLEL describing where the contents of SRC live.
1231 Adjust the offset for each piece of the PARALLEL. */
1232 HOST_WIDE_INT span_offset = offset;
1234 gcc_assert (GET_CODE (span) == PARALLEL);
1236 const int par_len = XVECLEN (span, 0);
1237 for (int par_index = 0; par_index < par_len; par_index++)
1239 rtx elem = XVECEXP (span, 0, par_index);
1240 sregno = dwf_regno (src);
1241 reg_save (sregno, INVALID_REGNUM, span_offset);
1242 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1247 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1249 static void
1250 dwarf2out_frame_debug_cfa_register (rtx set)
1252 rtx src, dest;
1253 unsigned sregno, dregno;
1255 src = XEXP (set, 1);
1256 dest = XEXP (set, 0);
1258 record_reg_saved_in_reg (dest, src);
1259 if (src == pc_rtx)
1260 sregno = DWARF_FRAME_RETURN_COLUMN;
1261 else
1262 sregno = dwf_regno (src);
1264 dregno = dwf_regno (dest);
1266 /* ??? We'd like to use queue_reg_save, but we need to come up with
1267 a different flushing heuristic for epilogues. */
1268 reg_save (sregno, dregno, 0);
1271 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1273 static void
1274 dwarf2out_frame_debug_cfa_expression (rtx set)
1276 rtx src, dest, span;
1277 dw_cfi_ref cfi = new_cfi ();
1278 unsigned regno;
1280 dest = SET_DEST (set);
1281 src = SET_SRC (set);
1283 gcc_assert (REG_P (src));
1284 gcc_assert (MEM_P (dest));
1286 span = targetm.dwarf_register_span (src);
1287 gcc_assert (!span);
1289 regno = dwf_regno (src);
1291 cfi->dw_cfi_opc = DW_CFA_expression;
1292 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1293 cfi->dw_cfi_oprnd2.dw_cfi_loc
1294 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1295 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1297 /* ??? We'd like to use queue_reg_save, were the interface different,
1298 and, as above, we could manage flushing for epilogues. */
1299 add_cfi (cfi);
1300 update_row_reg_save (cur_row, regno, cfi);
1303 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1305 static void
1306 dwarf2out_frame_debug_cfa_restore (rtx reg)
1308 gcc_assert (REG_P (reg));
1310 rtx span = targetm.dwarf_register_span (reg);
1311 if (!span)
1313 unsigned int regno = dwf_regno (reg);
1314 add_cfi_restore (regno);
1315 update_row_reg_save (cur_row, regno, NULL);
1317 else
1319 /* We have a PARALLEL describing where the contents of REG live.
1320 Restore the register for each piece of the PARALLEL. */
1321 gcc_assert (GET_CODE (span) == PARALLEL);
1323 const int par_len = XVECLEN (span, 0);
1324 for (int par_index = 0; par_index < par_len; par_index++)
1326 reg = XVECEXP (span, 0, par_index);
1327 gcc_assert (REG_P (reg));
1328 unsigned int regno = dwf_regno (reg);
1329 add_cfi_restore (regno);
1330 update_row_reg_save (cur_row, regno, NULL);
1335 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1336 ??? Perhaps we should note in the CIE where windows are saved (instead of
1337 assuming 0(cfa)) and what registers are in the window. */
1339 static void
1340 dwarf2out_frame_debug_cfa_window_save (void)
1342 dw_cfi_ref cfi = new_cfi ();
1344 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1345 add_cfi (cfi);
1348 /* Record call frame debugging information for an expression EXPR,
1349 which either sets SP or FP (adjusting how we calculate the frame
1350 address) or saves a register to the stack or another register.
1351 LABEL indicates the address of EXPR.
1353 This function encodes a state machine mapping rtxes to actions on
1354 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1355 users need not read the source code.
1357 The High-Level Picture
1359 Changes in the register we use to calculate the CFA: Currently we
1360 assume that if you copy the CFA register into another register, we
1361 should take the other one as the new CFA register; this seems to
1362 work pretty well. If it's wrong for some target, it's simple
1363 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1365 Changes in the register we use for saving registers to the stack:
1366 This is usually SP, but not always. Again, we deduce that if you
1367 copy SP into another register (and SP is not the CFA register),
1368 then the new register is the one we will be using for register
1369 saves. This also seems to work.
1371 Register saves: There's not much guesswork about this one; if
1372 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1373 register save, and the register used to calculate the destination
1374 had better be the one we think we're using for this purpose.
1375 It's also assumed that a copy from a call-saved register to another
1376 register is saving that register if RTX_FRAME_RELATED_P is set on
1377 that instruction. If the copy is from a call-saved register to
1378 the *same* register, that means that the register is now the same
1379 value as in the caller.
1381 Except: If the register being saved is the CFA register, and the
1382 offset is nonzero, we are saving the CFA, so we assume we have to
1383 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1384 the intent is to save the value of SP from the previous frame.
1386 In addition, if a register has previously been saved to a different
1387 register,
1389 Invariants / Summaries of Rules
1391 cfa current rule for calculating the CFA. It usually
1392 consists of a register and an offset. This is
1393 actually stored in *cur_cfa, but abbreviated
1394 for the purposes of this documentation.
1395 cfa_store register used by prologue code to save things to the stack
1396 cfa_store.offset is the offset from the value of
1397 cfa_store.reg to the actual CFA
1398 cfa_temp register holding an integral value. cfa_temp.offset
1399 stores the value, which will be used to adjust the
1400 stack pointer. cfa_temp is also used like cfa_store,
1401 to track stores to the stack via fp or a temp reg.
1403 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1404 with cfa.reg as the first operand changes the cfa.reg and its
1405 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1406 cfa_temp.offset.
1408 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1409 expression yielding a constant. This sets cfa_temp.reg
1410 and cfa_temp.offset.
1412 Rule 5: Create a new register cfa_store used to save items to the
1413 stack.
1415 Rules 10-14: Save a register to the stack. Define offset as the
1416 difference of the original location and cfa_store's
1417 location (or cfa_temp's location if cfa_temp is used).
1419 Rules 16-20: If AND operation happens on sp in prologue, we assume
1420 stack is realigned. We will use a group of DW_OP_XXX
1421 expressions to represent the location of the stored
1422 register instead of CFA+offset.
1424 The Rules
1426 "{a,b}" indicates a choice of a xor b.
1427 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1429 Rule 1:
1430 (set <reg1> <reg2>:cfa.reg)
1431 effects: cfa.reg = <reg1>
1432 cfa.offset unchanged
1433 cfa_temp.reg = <reg1>
1434 cfa_temp.offset = cfa.offset
1436 Rule 2:
1437 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1438 {<const_int>,<reg>:cfa_temp.reg}))
1439 effects: cfa.reg = sp if fp used
1440 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1441 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1442 if cfa_store.reg==sp
1444 Rule 3:
1445 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1446 effects: cfa.reg = fp
1447 cfa_offset += +/- <const_int>
1449 Rule 4:
1450 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1451 constraints: <reg1> != fp
1452 <reg1> != sp
1453 effects: cfa.reg = <reg1>
1454 cfa_temp.reg = <reg1>
1455 cfa_temp.offset = cfa.offset
1457 Rule 5:
1458 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1459 constraints: <reg1> != fp
1460 <reg1> != sp
1461 effects: cfa_store.reg = <reg1>
1462 cfa_store.offset = cfa.offset - cfa_temp.offset
1464 Rule 6:
1465 (set <reg> <const_int>)
1466 effects: cfa_temp.reg = <reg>
1467 cfa_temp.offset = <const_int>
1469 Rule 7:
1470 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1471 effects: cfa_temp.reg = <reg1>
1472 cfa_temp.offset |= <const_int>
1474 Rule 8:
1475 (set <reg> (high <exp>))
1476 effects: none
1478 Rule 9:
1479 (set <reg> (lo_sum <exp> <const_int>))
1480 effects: cfa_temp.reg = <reg>
1481 cfa_temp.offset = <const_int>
1483 Rule 10:
1484 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1485 effects: cfa_store.offset -= <const_int>
1486 cfa.offset = cfa_store.offset if cfa.reg == sp
1487 cfa.reg = sp
1488 cfa.base_offset = -cfa_store.offset
1490 Rule 11:
1491 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1492 effects: cfa_store.offset += -/+ mode_size(mem)
1493 cfa.offset = cfa_store.offset if cfa.reg == sp
1494 cfa.reg = sp
1495 cfa.base_offset = -cfa_store.offset
1497 Rule 12:
1498 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1500 <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1504 Rule 13:
1505 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1506 effects: cfa.reg = <reg1>
1507 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1509 Rule 14:
1510 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1511 effects: cfa.reg = <reg1>
1512 cfa.base_offset = -cfa_temp.offset
1513 cfa_temp.offset -= mode_size(mem)
1515 Rule 15:
1516 (set <reg> {unspec, unspec_volatile})
1517 effects: target-dependent
1519 Rule 16:
1520 (set sp (and: sp <const_int>))
1521 constraints: cfa_store.reg == sp
1522 effects: cfun->fde.stack_realign = 1
1523 cfa_store.offset = 0
1524 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1526 Rule 17:
1527 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1528 effects: cfa_store.offset += -/+ mode_size(mem)
1530 Rule 18:
1531 (set (mem ({pre_inc, pre_dec} sp)) fp)
1532 constraints: fde->stack_realign == 1
1533 effects: cfa_store.offset = 0
1534 cfa.reg != HARD_FRAME_POINTER_REGNUM
1536 Rule 19:
1537 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1538 constraints: fde->stack_realign == 1
1539 && cfa.offset == 0
1540 && cfa.indirect == 0
1541 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1542 effects: Use DW_CFA_def_cfa_expression to define cfa
1543 cfa.reg == fde->drap_reg */
1545 static void
1546 dwarf2out_frame_debug_expr (rtx expr)
1548 rtx src, dest, span;
1549 HOST_WIDE_INT offset;
1550 dw_fde_ref fde;
1552 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1553 the PARALLEL independently. The first element is always processed if
1554 it is a SET. This is for backward compatibility. Other elements
1555 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1556 flag is set in them. */
1557 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1559 int par_index;
1560 int limit = XVECLEN (expr, 0);
1561 rtx elem;
1563 /* PARALLELs have strict read-modify-write semantics, so we
1564 ought to evaluate every rvalue before changing any lvalue.
1565 It's cumbersome to do that in general, but there's an
1566 easy approximation that is enough for all current users:
1567 handle register saves before register assignments. */
1568 if (GET_CODE (expr) == PARALLEL)
1569 for (par_index = 0; par_index < limit; par_index++)
1571 elem = XVECEXP (expr, 0, par_index);
1572 if (GET_CODE (elem) == SET
1573 && MEM_P (SET_DEST (elem))
1574 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1575 dwarf2out_frame_debug_expr (elem);
1578 for (par_index = 0; par_index < limit; par_index++)
1580 elem = XVECEXP (expr, 0, par_index);
1581 if (GET_CODE (elem) == SET
1582 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1583 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1584 dwarf2out_frame_debug_expr (elem);
1586 return;
1589 gcc_assert (GET_CODE (expr) == SET);
1591 src = SET_SRC (expr);
1592 dest = SET_DEST (expr);
1594 if (REG_P (src))
1596 rtx rsi = reg_saved_in (src);
1597 if (rsi)
1598 src = rsi;
1601 fde = cfun->fde;
1603 switch (GET_CODE (dest))
1605 case REG:
1606 switch (GET_CODE (src))
1608 /* Setting FP from SP. */
1609 case REG:
1610 if (cur_cfa->reg == dwf_regno (src))
1612 /* Rule 1 */
1613 /* Update the CFA rule wrt SP or FP. Make sure src is
1614 relative to the current CFA register.
1616 We used to require that dest be either SP or FP, but the
1617 ARM copies SP to a temporary register, and from there to
1618 FP. So we just rely on the backends to only set
1619 RTX_FRAME_RELATED_P on appropriate insns. */
1620 cur_cfa->reg = dwf_regno (dest);
1621 cur_trace->cfa_temp.reg = cur_cfa->reg;
1622 cur_trace->cfa_temp.offset = cur_cfa->offset;
1624 else
1626 /* Saving a register in a register. */
1627 gcc_assert (!fixed_regs [REGNO (dest)]
1628 /* For the SPARC and its register window. */
1629 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1631 /* After stack is aligned, we can only save SP in FP
1632 if drap register is used. In this case, we have
1633 to restore stack pointer with the CFA value and we
1634 don't generate this DWARF information. */
1635 if (fde
1636 && fde->stack_realign
1637 && REGNO (src) == STACK_POINTER_REGNUM)
1638 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1639 && fde->drap_reg != INVALID_REGNUM
1640 && cur_cfa->reg != dwf_regno (src));
1641 else
1642 queue_reg_save (src, dest, 0);
1644 break;
1646 case PLUS:
1647 case MINUS:
1648 case LO_SUM:
1649 if (dest == stack_pointer_rtx)
1651 /* Rule 2 */
1652 /* Adjusting SP. */
1653 switch (GET_CODE (XEXP (src, 1)))
1655 case CONST_INT:
1656 offset = INTVAL (XEXP (src, 1));
1657 break;
1658 case REG:
1659 gcc_assert (dwf_regno (XEXP (src, 1))
1660 == cur_trace->cfa_temp.reg);
1661 offset = cur_trace->cfa_temp.offset;
1662 break;
1663 default:
1664 gcc_unreachable ();
1667 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1669 /* Restoring SP from FP in the epilogue. */
1670 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1671 cur_cfa->reg = dw_stack_pointer_regnum;
1673 else if (GET_CODE (src) == LO_SUM)
1674 /* Assume we've set the source reg of the LO_SUM from sp. */
1676 else
1677 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1679 if (GET_CODE (src) != MINUS)
1680 offset = -offset;
1681 if (cur_cfa->reg == dw_stack_pointer_regnum)
1682 cur_cfa->offset += offset;
1683 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1684 cur_trace->cfa_store.offset += offset;
1686 else if (dest == hard_frame_pointer_rtx)
1688 /* Rule 3 */
1689 /* Either setting the FP from an offset of the SP,
1690 or adjusting the FP */
1691 gcc_assert (frame_pointer_needed);
1693 gcc_assert (REG_P (XEXP (src, 0))
1694 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1695 && CONST_INT_P (XEXP (src, 1)));
1696 offset = INTVAL (XEXP (src, 1));
1697 if (GET_CODE (src) != MINUS)
1698 offset = -offset;
1699 cur_cfa->offset += offset;
1700 cur_cfa->reg = dw_frame_pointer_regnum;
1702 else
1704 gcc_assert (GET_CODE (src) != MINUS);
1706 /* Rule 4 */
1707 if (REG_P (XEXP (src, 0))
1708 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1709 && CONST_INT_P (XEXP (src, 1)))
1711 /* Setting a temporary CFA register that will be copied
1712 into the FP later on. */
1713 offset = - INTVAL (XEXP (src, 1));
1714 cur_cfa->offset += offset;
1715 cur_cfa->reg = dwf_regno (dest);
1716 /* Or used to save regs to the stack. */
1717 cur_trace->cfa_temp.reg = cur_cfa->reg;
1718 cur_trace->cfa_temp.offset = cur_cfa->offset;
1721 /* Rule 5 */
1722 else if (REG_P (XEXP (src, 0))
1723 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1724 && XEXP (src, 1) == stack_pointer_rtx)
1726 /* Setting a scratch register that we will use instead
1727 of SP for saving registers to the stack. */
1728 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1729 cur_trace->cfa_store.reg = dwf_regno (dest);
1730 cur_trace->cfa_store.offset
1731 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1734 /* Rule 9 */
1735 else if (GET_CODE (src) == LO_SUM
1736 && CONST_INT_P (XEXP (src, 1)))
1738 cur_trace->cfa_temp.reg = dwf_regno (dest);
1739 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1741 else
1742 gcc_unreachable ();
1744 break;
1746 /* Rule 6 */
1747 case CONST_INT:
1748 cur_trace->cfa_temp.reg = dwf_regno (dest);
1749 cur_trace->cfa_temp.offset = INTVAL (src);
1750 break;
1752 /* Rule 7 */
1753 case IOR:
1754 gcc_assert (REG_P (XEXP (src, 0))
1755 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1756 && CONST_INT_P (XEXP (src, 1)));
1758 cur_trace->cfa_temp.reg = dwf_regno (dest);
1759 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1760 break;
1762 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1763 which will fill in all of the bits. */
1764 /* Rule 8 */
1765 case HIGH:
1766 break;
1768 /* Rule 15 */
1769 case UNSPEC:
1770 case UNSPEC_VOLATILE:
1771 /* All unspecs should be represented by REG_CFA_* notes. */
1772 gcc_unreachable ();
1773 return;
1775 /* Rule 16 */
1776 case AND:
1777 /* If this AND operation happens on stack pointer in prologue,
1778 we assume the stack is realigned and we extract the
1779 alignment. */
1780 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1782 /* We interpret reg_save differently with stack_realign set.
1783 Thus we must flush whatever we have queued first. */
1784 dwarf2out_flush_queued_reg_saves ();
1786 gcc_assert (cur_trace->cfa_store.reg
1787 == dwf_regno (XEXP (src, 0)));
1788 fde->stack_realign = 1;
1789 fde->stack_realignment = INTVAL (XEXP (src, 1));
1790 cur_trace->cfa_store.offset = 0;
1792 if (cur_cfa->reg != dw_stack_pointer_regnum
1793 && cur_cfa->reg != dw_frame_pointer_regnum)
1794 fde->drap_reg = cur_cfa->reg;
1796 return;
1798 default:
1799 gcc_unreachable ();
1801 break;
1803 case MEM:
1805 /* Saving a register to the stack. Make sure dest is relative to the
1806 CFA register. */
1807 switch (GET_CODE (XEXP (dest, 0)))
1809 /* Rule 10 */
1810 /* With a push. */
1811 case PRE_MODIFY:
1812 case POST_MODIFY:
1813 /* We can't handle variable size modifications. */
1814 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1815 == CONST_INT);
1816 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1818 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1819 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1821 cur_trace->cfa_store.offset += offset;
1822 if (cur_cfa->reg == dw_stack_pointer_regnum)
1823 cur_cfa->offset = cur_trace->cfa_store.offset;
1825 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1826 offset -= cur_trace->cfa_store.offset;
1827 else
1828 offset = -cur_trace->cfa_store.offset;
1829 break;
1831 /* Rule 11 */
1832 case PRE_INC:
1833 case PRE_DEC:
1834 case POST_DEC:
1835 offset = GET_MODE_SIZE (GET_MODE (dest));
1836 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1837 offset = -offset;
1839 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1840 == STACK_POINTER_REGNUM)
1841 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1843 cur_trace->cfa_store.offset += offset;
1845 /* Rule 18: If stack is aligned, we will use FP as a
1846 reference to represent the address of the stored
1847 regiser. */
1848 if (fde
1849 && fde->stack_realign
1850 && REG_P (src)
1851 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1853 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1854 cur_trace->cfa_store.offset = 0;
1857 if (cur_cfa->reg == dw_stack_pointer_regnum)
1858 cur_cfa->offset = cur_trace->cfa_store.offset;
1860 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1861 offset += -cur_trace->cfa_store.offset;
1862 else
1863 offset = -cur_trace->cfa_store.offset;
1864 break;
1866 /* Rule 12 */
1867 /* With an offset. */
1868 case PLUS:
1869 case MINUS:
1870 case LO_SUM:
1872 unsigned int regno;
1874 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1875 && REG_P (XEXP (XEXP (dest, 0), 0)));
1876 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1877 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1878 offset = -offset;
1880 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1882 if (cur_cfa->reg == regno)
1883 offset -= cur_cfa->offset;
1884 else if (cur_trace->cfa_store.reg == regno)
1885 offset -= cur_trace->cfa_store.offset;
1886 else
1888 gcc_assert (cur_trace->cfa_temp.reg == regno);
1889 offset -= cur_trace->cfa_temp.offset;
1892 break;
1894 /* Rule 13 */
1895 /* Without an offset. */
1896 case REG:
1898 unsigned int regno = dwf_regno (XEXP (dest, 0));
1900 if (cur_cfa->reg == regno)
1901 offset = -cur_cfa->offset;
1902 else if (cur_trace->cfa_store.reg == regno)
1903 offset = -cur_trace->cfa_store.offset;
1904 else
1906 gcc_assert (cur_trace->cfa_temp.reg == regno);
1907 offset = -cur_trace->cfa_temp.offset;
1910 break;
1912 /* Rule 14 */
1913 case POST_INC:
1914 gcc_assert (cur_trace->cfa_temp.reg
1915 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1916 offset = -cur_trace->cfa_temp.offset;
1917 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1918 break;
1920 default:
1921 gcc_unreachable ();
1924 /* Rule 17 */
1925 /* If the source operand of this MEM operation is a memory,
1926 we only care how much stack grew. */
1927 if (MEM_P (src))
1928 break;
1930 if (REG_P (src)
1931 && REGNO (src) != STACK_POINTER_REGNUM
1932 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1933 && dwf_regno (src) == cur_cfa->reg)
1935 /* We're storing the current CFA reg into the stack. */
1937 if (cur_cfa->offset == 0)
1939 /* Rule 19 */
1940 /* If stack is aligned, putting CFA reg into stack means
1941 we can no longer use reg + offset to represent CFA.
1942 Here we use DW_CFA_def_cfa_expression instead. The
1943 result of this expression equals to the original CFA
1944 value. */
1945 if (fde
1946 && fde->stack_realign
1947 && cur_cfa->indirect == 0
1948 && cur_cfa->reg != dw_frame_pointer_regnum)
1950 gcc_assert (fde->drap_reg == cur_cfa->reg);
1952 cur_cfa->indirect = 1;
1953 cur_cfa->reg = dw_frame_pointer_regnum;
1954 cur_cfa->base_offset = offset;
1955 cur_cfa->offset = 0;
1957 fde->drap_reg_saved = 1;
1958 break;
1961 /* If the source register is exactly the CFA, assume
1962 we're saving SP like any other register; this happens
1963 on the ARM. */
1964 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1965 break;
1967 else
1969 /* Otherwise, we'll need to look in the stack to
1970 calculate the CFA. */
1971 rtx x = XEXP (dest, 0);
1973 if (!REG_P (x))
1974 x = XEXP (x, 0);
1975 gcc_assert (REG_P (x));
1977 cur_cfa->reg = dwf_regno (x);
1978 cur_cfa->base_offset = offset;
1979 cur_cfa->indirect = 1;
1980 break;
1984 if (REG_P (src))
1985 span = targetm.dwarf_register_span (src);
1986 else
1987 span = NULL;
1989 if (!span)
1990 queue_reg_save (src, NULL_RTX, offset);
1991 else
1993 /* We have a PARALLEL describing where the contents of SRC live.
1994 Queue register saves for each piece of the PARALLEL. */
1995 HOST_WIDE_INT span_offset = offset;
1997 gcc_assert (GET_CODE (span) == PARALLEL);
1999 const int par_len = XVECLEN (span, 0);
2000 for (int par_index = 0; par_index < par_len; par_index++)
2002 rtx elem = XVECEXP (span, 0, par_index);
2003 queue_reg_save (elem, NULL_RTX, span_offset);
2004 span_offset += GET_MODE_SIZE (GET_MODE (elem));
2007 break;
2009 default:
2010 gcc_unreachable ();
2014 /* Record call frame debugging information for INSN, which either sets
2015 SP or FP (adjusting how we calculate the frame address) or saves a
2016 register to the stack. */
2018 static void
2019 dwarf2out_frame_debug (rtx_insn *insn)
2021 rtx note, n, pat;
2022 bool handled_one = false;
2024 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2025 switch (REG_NOTE_KIND (note))
2027 case REG_FRAME_RELATED_EXPR:
2028 pat = XEXP (note, 0);
2029 goto do_frame_expr;
2031 case REG_CFA_DEF_CFA:
2032 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
2033 handled_one = true;
2034 break;
2036 case REG_CFA_ADJUST_CFA:
2037 n = XEXP (note, 0);
2038 if (n == NULL)
2040 n = PATTERN (insn);
2041 if (GET_CODE (n) == PARALLEL)
2042 n = XVECEXP (n, 0, 0);
2044 dwarf2out_frame_debug_adjust_cfa (n);
2045 handled_one = true;
2046 break;
2048 case REG_CFA_OFFSET:
2049 n = XEXP (note, 0);
2050 if (n == NULL)
2051 n = single_set (insn);
2052 dwarf2out_frame_debug_cfa_offset (n);
2053 handled_one = true;
2054 break;
2056 case REG_CFA_REGISTER:
2057 n = XEXP (note, 0);
2058 if (n == NULL)
2060 n = PATTERN (insn);
2061 if (GET_CODE (n) == PARALLEL)
2062 n = XVECEXP (n, 0, 0);
2064 dwarf2out_frame_debug_cfa_register (n);
2065 handled_one = true;
2066 break;
2068 case REG_CFA_EXPRESSION:
2069 n = XEXP (note, 0);
2070 if (n == NULL)
2071 n = single_set (insn);
2072 dwarf2out_frame_debug_cfa_expression (n);
2073 handled_one = true;
2074 break;
2076 case REG_CFA_RESTORE:
2077 n = XEXP (note, 0);
2078 if (n == NULL)
2080 n = PATTERN (insn);
2081 if (GET_CODE (n) == PARALLEL)
2082 n = XVECEXP (n, 0, 0);
2083 n = XEXP (n, 0);
2085 dwarf2out_frame_debug_cfa_restore (n);
2086 handled_one = true;
2087 break;
2089 case REG_CFA_SET_VDRAP:
2090 n = XEXP (note, 0);
2091 if (REG_P (n))
2093 dw_fde_ref fde = cfun->fde;
2094 if (fde)
2096 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2097 if (REG_P (n))
2098 fde->vdrap_reg = dwf_regno (n);
2101 handled_one = true;
2102 break;
2104 case REG_CFA_WINDOW_SAVE:
2105 dwarf2out_frame_debug_cfa_window_save ();
2106 handled_one = true;
2107 break;
2109 case REG_CFA_FLUSH_QUEUE:
2110 /* The actual flush happens elsewhere. */
2111 handled_one = true;
2112 break;
2114 default:
2115 break;
2118 if (!handled_one)
2120 pat = PATTERN (insn);
2121 do_frame_expr:
2122 dwarf2out_frame_debug_expr (pat);
2124 /* Check again. A parallel can save and update the same register.
2125 We could probably check just once, here, but this is safer than
2126 removing the check at the start of the function. */
2127 if (clobbers_queued_reg_save (pat))
2128 dwarf2out_flush_queued_reg_saves ();
2132 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2134 static void
2135 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2137 size_t i, n_old, n_new, n_max;
2138 dw_cfi_ref cfi;
2140 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2141 add_cfi (new_row->cfa_cfi);
2142 else
2144 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2145 if (cfi)
2146 add_cfi (cfi);
2149 n_old = vec_safe_length (old_row->reg_save);
2150 n_new = vec_safe_length (new_row->reg_save);
2151 n_max = MAX (n_old, n_new);
2153 for (i = 0; i < n_max; ++i)
2155 dw_cfi_ref r_old = NULL, r_new = NULL;
2157 if (i < n_old)
2158 r_old = (*old_row->reg_save)[i];
2159 if (i < n_new)
2160 r_new = (*new_row->reg_save)[i];
2162 if (r_old == r_new)
2164 else if (r_new == NULL)
2165 add_cfi_restore (i);
2166 else if (!cfi_equal_p (r_old, r_new))
2167 add_cfi (r_new);
2171 /* Examine CFI and return true if a cfi label and set_loc is needed
2172 beforehand. Even when generating CFI assembler instructions, we
2173 still have to add the cfi to the list so that lookup_cfa_1 works
2174 later on. When -g2 and above we even need to force emitting of
2175 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2176 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2177 and so don't use convert_cfa_to_fb_loc_list. */
2179 static bool
2180 cfi_label_required_p (dw_cfi_ref cfi)
2182 if (!dwarf2out_do_cfi_asm ())
2183 return true;
2185 if (dwarf_version == 2
2186 && debug_info_level > DINFO_LEVEL_TERSE
2187 && (write_symbols == DWARF2_DEBUG
2188 || write_symbols == VMS_AND_DWARF2_DEBUG))
2190 switch (cfi->dw_cfi_opc)
2192 case DW_CFA_def_cfa_offset:
2193 case DW_CFA_def_cfa_offset_sf:
2194 case DW_CFA_def_cfa_register:
2195 case DW_CFA_def_cfa:
2196 case DW_CFA_def_cfa_sf:
2197 case DW_CFA_def_cfa_expression:
2198 case DW_CFA_restore_state:
2199 return true;
2200 default:
2201 return false;
2204 return false;
2207 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2208 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2209 necessary. */
2210 static void
2211 add_cfis_to_fde (void)
2213 dw_fde_ref fde = cfun->fde;
2214 rtx_insn *insn, *next;
2215 /* We always start with a function_begin label. */
2216 bool first = false;
2218 for (insn = get_insns (); insn; insn = next)
2220 next = NEXT_INSN (insn);
2222 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2224 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2225 /* Don't attempt to advance_loc4 between labels
2226 in different sections. */
2227 first = true;
2230 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2232 bool required = cfi_label_required_p (NOTE_CFI (insn));
2233 while (next)
2234 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2236 required |= cfi_label_required_p (NOTE_CFI (next));
2237 next = NEXT_INSN (next);
2239 else if (active_insn_p (next)
2240 || (NOTE_P (next) && (NOTE_KIND (next)
2241 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2242 break;
2243 else
2244 next = NEXT_INSN (next);
2245 if (required)
2247 int num = dwarf2out_cfi_label_num;
2248 const char *label = dwarf2out_cfi_label ();
2249 dw_cfi_ref xcfi;
2250 rtx tmp;
2252 /* Set the location counter to the new label. */
2253 xcfi = new_cfi ();
2254 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2255 : DW_CFA_advance_loc4);
2256 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2257 vec_safe_push (fde->dw_fde_cfi, xcfi);
2259 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2260 NOTE_LABEL_NUMBER (tmp) = num;
2265 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2266 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2267 insn = NEXT_INSN (insn);
2269 while (insn != next);
2270 first = false;
2275 /* If LABEL is the start of a trace, then initialize the state of that
2276 trace from CUR_TRACE and CUR_ROW. */
2278 static void
2279 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2281 dw_trace_info *ti;
2282 HOST_WIDE_INT args_size;
2284 ti = get_trace_info (start);
2285 gcc_assert (ti != NULL);
2287 if (dump_file)
2289 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2290 cur_trace->id, ti->id,
2291 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2292 (origin ? INSN_UID (origin) : 0));
2295 args_size = cur_trace->end_true_args_size;
2296 if (ti->beg_row == NULL)
2298 /* This is the first time we've encountered this trace. Propagate
2299 state across the edge and push the trace onto the work list. */
2300 ti->beg_row = copy_cfi_row (cur_row);
2301 ti->beg_true_args_size = args_size;
2303 ti->cfa_store = cur_trace->cfa_store;
2304 ti->cfa_temp = cur_trace->cfa_temp;
2305 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2307 trace_work_list.safe_push (ti);
2309 if (dump_file)
2310 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2312 else
2315 /* We ought to have the same state incoming to a given trace no
2316 matter how we arrive at the trace. Anything else means we've
2317 got some kind of optimization error. */
2318 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2320 /* The args_size is allowed to conflict if it isn't actually used. */
2321 if (ti->beg_true_args_size != args_size)
2322 ti->args_size_undefined = true;
2326 /* Similarly, but handle the args_size and CFA reset across EH
2327 and non-local goto edges. */
2329 static void
2330 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2332 HOST_WIDE_INT save_args_size, delta;
2333 dw_cfa_location save_cfa;
2335 save_args_size = cur_trace->end_true_args_size;
2336 if (save_args_size == 0)
2338 maybe_record_trace_start (start, origin);
2339 return;
2342 delta = -save_args_size;
2343 cur_trace->end_true_args_size = 0;
2345 save_cfa = cur_row->cfa;
2346 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2348 /* Convert a change in args_size (always a positive in the
2349 direction of stack growth) to a change in stack pointer. */
2350 #ifndef STACK_GROWS_DOWNWARD
2351 delta = -delta;
2352 #endif
2353 cur_row->cfa.offset += delta;
2356 maybe_record_trace_start (start, origin);
2358 cur_trace->end_true_args_size = save_args_size;
2359 cur_row->cfa = save_cfa;
2362 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2363 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2365 static void
2366 create_trace_edges (rtx_insn *insn)
2368 rtx tmp;
2369 int i, n;
2371 if (JUMP_P (insn))
2373 rtx_jump_table_data *table;
2375 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2376 return;
2378 if (tablejump_p (insn, NULL, &table))
2380 rtvec vec = table->get_labels ();
2382 n = GET_NUM_ELEM (vec);
2383 for (i = 0; i < n; ++i)
2385 rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2386 maybe_record_trace_start (lab, insn);
2389 else if (computed_jump_p (insn))
2391 for (rtx_insn_list *lab = forced_labels; lab; lab = lab->next ())
2392 maybe_record_trace_start (lab->insn (), insn);
2394 else if (returnjump_p (insn))
2396 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2398 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2399 for (i = 0; i < n; ++i)
2401 rtx_insn *lab =
2402 as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2403 maybe_record_trace_start (lab, insn);
2406 else
2408 rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2409 gcc_assert (lab != NULL);
2410 maybe_record_trace_start (lab, insn);
2413 else if (CALL_P (insn))
2415 /* Sibling calls don't have edges inside this function. */
2416 if (SIBLING_CALL_P (insn))
2417 return;
2419 /* Process non-local goto edges. */
2420 if (can_nonlocal_goto (insn))
2421 for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2422 lab;
2423 lab = lab->next ())
2424 maybe_record_trace_start_abnormal (lab->insn (), insn);
2426 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2428 int i, n = seq->len ();
2429 for (i = 0; i < n; ++i)
2430 create_trace_edges (seq->insn (i));
2431 return;
2434 /* Process EH edges. */
2435 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2437 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2438 if (lp)
2439 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2443 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2445 static void
2446 scan_insn_after (rtx_insn *insn)
2448 if (RTX_FRAME_RELATED_P (insn))
2449 dwarf2out_frame_debug (insn);
2450 notice_args_size (insn);
2453 /* Scan the trace beginning at INSN and create the CFI notes for the
2454 instructions therein. */
2456 static void
2457 scan_trace (dw_trace_info *trace)
2459 rtx_insn *prev, *insn = trace->head;
2460 dw_cfa_location this_cfa;
2462 if (dump_file)
2463 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2464 trace->id, rtx_name[(int) GET_CODE (insn)],
2465 INSN_UID (insn));
2467 trace->end_row = copy_cfi_row (trace->beg_row);
2468 trace->end_true_args_size = trace->beg_true_args_size;
2470 cur_trace = trace;
2471 cur_row = trace->end_row;
2473 this_cfa = cur_row->cfa;
2474 cur_cfa = &this_cfa;
2476 for (prev = insn, insn = NEXT_INSN (insn);
2477 insn;
2478 prev = insn, insn = NEXT_INSN (insn))
2480 rtx_insn *control;
2482 /* Do everything that happens "before" the insn. */
2483 add_cfi_insn = prev;
2485 /* Notice the end of a trace. */
2486 if (BARRIER_P (insn))
2488 /* Don't bother saving the unneeded queued registers at all. */
2489 queued_reg_saves.truncate (0);
2490 break;
2492 if (save_point_p (insn))
2494 /* Propagate across fallthru edges. */
2495 dwarf2out_flush_queued_reg_saves ();
2496 maybe_record_trace_start (insn, NULL);
2497 break;
2500 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2501 continue;
2503 /* Handle all changes to the row state. Sequences require special
2504 handling for the positioning of the notes. */
2505 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2507 rtx_insn *elt;
2508 int i, n = pat->len ();
2510 control = pat->insn (0);
2511 if (can_throw_internal (control))
2512 notice_eh_throw (control);
2513 dwarf2out_flush_queued_reg_saves ();
2515 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2517 /* ??? Hopefully multiple delay slots are not annulled. */
2518 gcc_assert (n == 2);
2519 gcc_assert (!RTX_FRAME_RELATED_P (control));
2520 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2522 elt = pat->insn (1);
2524 if (INSN_FROM_TARGET_P (elt))
2526 HOST_WIDE_INT restore_args_size;
2527 cfi_vec save_row_reg_save;
2529 /* If ELT is an instruction from target of an annulled
2530 branch, the effects are for the target only and so
2531 the args_size and CFA along the current path
2532 shouldn't change. */
2533 add_cfi_insn = NULL;
2534 restore_args_size = cur_trace->end_true_args_size;
2535 cur_cfa = &cur_row->cfa;
2536 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2538 scan_insn_after (elt);
2540 /* ??? Should we instead save the entire row state? */
2541 gcc_assert (!queued_reg_saves.length ());
2543 create_trace_edges (control);
2545 cur_trace->end_true_args_size = restore_args_size;
2546 cur_row->cfa = this_cfa;
2547 cur_row->reg_save = save_row_reg_save;
2548 cur_cfa = &this_cfa;
2550 else
2552 /* If ELT is a annulled branch-taken instruction (i.e.
2553 executed only when branch is not taken), the args_size
2554 and CFA should not change through the jump. */
2555 create_trace_edges (control);
2557 /* Update and continue with the trace. */
2558 add_cfi_insn = insn;
2559 scan_insn_after (elt);
2560 def_cfa_1 (&this_cfa);
2562 continue;
2565 /* The insns in the delay slot should all be considered to happen
2566 "before" a call insn. Consider a call with a stack pointer
2567 adjustment in the delay slot. The backtrace from the callee
2568 should include the sp adjustment. Unfortunately, that leaves
2569 us with an unavoidable unwinding error exactly at the call insn
2570 itself. For jump insns we'd prefer to avoid this error by
2571 placing the notes after the sequence. */
2572 if (JUMP_P (control))
2573 add_cfi_insn = insn;
2575 for (i = 1; i < n; ++i)
2577 elt = pat->insn (i);
2578 scan_insn_after (elt);
2581 /* Make sure any register saves are visible at the jump target. */
2582 dwarf2out_flush_queued_reg_saves ();
2583 any_cfis_emitted = false;
2585 /* However, if there is some adjustment on the call itself, e.g.
2586 a call_pop, that action should be considered to happen after
2587 the call returns. */
2588 add_cfi_insn = insn;
2589 scan_insn_after (control);
2591 else
2593 /* Flush data before calls and jumps, and of course if necessary. */
2594 if (can_throw_internal (insn))
2596 notice_eh_throw (insn);
2597 dwarf2out_flush_queued_reg_saves ();
2599 else if (!NONJUMP_INSN_P (insn)
2600 || clobbers_queued_reg_save (insn)
2601 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2602 dwarf2out_flush_queued_reg_saves ();
2603 any_cfis_emitted = false;
2605 add_cfi_insn = insn;
2606 scan_insn_after (insn);
2607 control = insn;
2610 /* Between frame-related-p and args_size we might have otherwise
2611 emitted two cfa adjustments. Do it now. */
2612 def_cfa_1 (&this_cfa);
2614 /* Minimize the number of advances by emitting the entire queue
2615 once anything is emitted. */
2616 if (any_cfis_emitted
2617 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2618 dwarf2out_flush_queued_reg_saves ();
2620 /* Note that a test for control_flow_insn_p does exactly the
2621 same tests as are done to actually create the edges. So
2622 always call the routine and let it not create edges for
2623 non-control-flow insns. */
2624 create_trace_edges (control);
2627 add_cfi_insn = NULL;
2628 cur_row = NULL;
2629 cur_trace = NULL;
2630 cur_cfa = NULL;
2633 /* Scan the function and create the initial set of CFI notes. */
2635 static void
2636 create_cfi_notes (void)
2638 dw_trace_info *ti;
2640 gcc_checking_assert (!queued_reg_saves.exists ());
2641 gcc_checking_assert (!trace_work_list.exists ());
2643 /* Always begin at the entry trace. */
2644 ti = &trace_info[0];
2645 scan_trace (ti);
2647 while (!trace_work_list.is_empty ())
2649 ti = trace_work_list.pop ();
2650 scan_trace (ti);
2653 queued_reg_saves.release ();
2654 trace_work_list.release ();
2657 /* Return the insn before the first NOTE_INSN_CFI after START. */
2659 static rtx_insn *
2660 before_next_cfi_note (rtx_insn *start)
2662 rtx_insn *prev = start;
2663 while (start)
2665 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2666 return prev;
2667 prev = start;
2668 start = NEXT_INSN (start);
2670 gcc_unreachable ();
2673 /* Insert CFI notes between traces to properly change state between them. */
2675 static void
2676 connect_traces (void)
2678 unsigned i, n = trace_info.length ();
2679 dw_trace_info *prev_ti, *ti;
2681 /* ??? Ideally, we should have both queued and processed every trace.
2682 However the current representation of constant pools on various targets
2683 is indistinguishable from unreachable code. Assume for the moment that
2684 we can simply skip over such traces. */
2685 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2686 these are not "real" instructions, and should not be considered.
2687 This could be generically useful for tablejump data as well. */
2688 /* Remove all unprocessed traces from the list. */
2689 for (i = n - 1; i > 0; --i)
2691 ti = &trace_info[i];
2692 if (ti->beg_row == NULL)
2694 trace_info.ordered_remove (i);
2695 n -= 1;
2697 else
2698 gcc_assert (ti->end_row != NULL);
2701 /* Work from the end back to the beginning. This lets us easily insert
2702 remember/restore_state notes in the correct order wrt other notes. */
2703 prev_ti = &trace_info[n - 1];
2704 for (i = n - 1; i > 0; --i)
2706 dw_cfi_row *old_row;
2708 ti = prev_ti;
2709 prev_ti = &trace_info[i - 1];
2711 add_cfi_insn = ti->head;
2713 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2714 for the portion of the function in the alternate text
2715 section. The row state at the very beginning of that
2716 new FDE will be exactly the row state from the CIE. */
2717 if (ti->switch_sections)
2718 old_row = cie_cfi_row;
2719 else
2721 old_row = prev_ti->end_row;
2722 /* If there's no change from the previous end state, fine. */
2723 if (cfi_row_equal_p (old_row, ti->beg_row))
2725 /* Otherwise check for the common case of sharing state with
2726 the beginning of an epilogue, but not the end. Insert
2727 remember/restore opcodes in that case. */
2728 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2730 dw_cfi_ref cfi;
2732 /* Note that if we blindly insert the remember at the
2733 start of the trace, we can wind up increasing the
2734 size of the unwind info due to extra advance opcodes.
2735 Instead, put the remember immediately before the next
2736 state change. We know there must be one, because the
2737 state at the beginning and head of the trace differ. */
2738 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2739 cfi = new_cfi ();
2740 cfi->dw_cfi_opc = DW_CFA_remember_state;
2741 add_cfi (cfi);
2743 add_cfi_insn = ti->head;
2744 cfi = new_cfi ();
2745 cfi->dw_cfi_opc = DW_CFA_restore_state;
2746 add_cfi (cfi);
2748 old_row = prev_ti->beg_row;
2750 /* Otherwise, we'll simply change state from the previous end. */
2753 change_cfi_row (old_row, ti->beg_row);
2755 if (dump_file && add_cfi_insn != ti->head)
2757 rtx_insn *note;
2759 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2760 prev_ti->id, ti->id);
2762 note = ti->head;
2765 note = NEXT_INSN (note);
2766 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2767 output_cfi_directive (dump_file, NOTE_CFI (note));
2769 while (note != add_cfi_insn);
2773 /* Connect args_size between traces that have can_throw_internal insns. */
2774 if (cfun->eh->lp_array)
2776 HOST_WIDE_INT prev_args_size = 0;
2778 for (i = 0; i < n; ++i)
2780 ti = &trace_info[i];
2782 if (ti->switch_sections)
2783 prev_args_size = 0;
2784 if (ti->eh_head == NULL)
2785 continue;
2786 gcc_assert (!ti->args_size_undefined);
2788 if (ti->beg_delay_args_size != prev_args_size)
2790 /* ??? Search back to previous CFI note. */
2791 add_cfi_insn = PREV_INSN (ti->eh_head);
2792 add_cfi_args_size (ti->beg_delay_args_size);
2795 prev_args_size = ti->end_delay_args_size;
2800 /* Set up the pseudo-cfg of instruction traces, as described at the
2801 block comment at the top of the file. */
2803 static void
2804 create_pseudo_cfg (void)
2806 bool saw_barrier, switch_sections;
2807 dw_trace_info ti;
2808 rtx_insn *insn;
2809 unsigned i;
2811 /* The first trace begins at the start of the function,
2812 and begins with the CIE row state. */
2813 trace_info.create (16);
2814 memset (&ti, 0, sizeof (ti));
2815 ti.head = get_insns ();
2816 ti.beg_row = cie_cfi_row;
2817 ti.cfa_store = cie_cfi_row->cfa;
2818 ti.cfa_temp.reg = INVALID_REGNUM;
2819 trace_info.quick_push (ti);
2821 if (cie_return_save)
2822 ti.regs_saved_in_regs.safe_push (*cie_return_save);
2824 /* Walk all the insns, collecting start of trace locations. */
2825 saw_barrier = false;
2826 switch_sections = false;
2827 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2829 if (BARRIER_P (insn))
2830 saw_barrier = true;
2831 else if (NOTE_P (insn)
2832 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2834 /* We should have just seen a barrier. */
2835 gcc_assert (saw_barrier);
2836 switch_sections = true;
2838 /* Watch out for save_point notes between basic blocks.
2839 In particular, a note after a barrier. Do not record these,
2840 delaying trace creation until the label. */
2841 else if (save_point_p (insn)
2842 && (LABEL_P (insn) || !saw_barrier))
2844 memset (&ti, 0, sizeof (ti));
2845 ti.head = insn;
2846 ti.switch_sections = switch_sections;
2847 ti.id = trace_info.length ();
2848 trace_info.safe_push (ti);
2850 saw_barrier = false;
2851 switch_sections = false;
2855 /* Create the trace index after we've finished building trace_info,
2856 avoiding stale pointer problems due to reallocation. */
2857 trace_index
2858 = new hash_table<trace_info_hasher> (trace_info.length ());
2859 dw_trace_info *tp;
2860 FOR_EACH_VEC_ELT (trace_info, i, tp)
2862 dw_trace_info **slot;
2864 if (dump_file)
2865 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
2866 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2867 tp->switch_sections ? " (section switch)" : "");
2869 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
2870 gcc_assert (*slot == NULL);
2871 *slot = tp;
2875 /* Record the initial position of the return address. RTL is
2876 INCOMING_RETURN_ADDR_RTX. */
2878 static void
2879 initial_return_save (rtx rtl)
2881 unsigned int reg = INVALID_REGNUM;
2882 HOST_WIDE_INT offset = 0;
2884 switch (GET_CODE (rtl))
2886 case REG:
2887 /* RA is in a register. */
2888 reg = dwf_regno (rtl);
2889 break;
2891 case MEM:
2892 /* RA is on the stack. */
2893 rtl = XEXP (rtl, 0);
2894 switch (GET_CODE (rtl))
2896 case REG:
2897 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2898 offset = 0;
2899 break;
2901 case PLUS:
2902 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2903 offset = INTVAL (XEXP (rtl, 1));
2904 break;
2906 case MINUS:
2907 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2908 offset = -INTVAL (XEXP (rtl, 1));
2909 break;
2911 default:
2912 gcc_unreachable ();
2915 break;
2917 case PLUS:
2918 /* The return address is at some offset from any value we can
2919 actually load. For instance, on the SPARC it is in %i7+8. Just
2920 ignore the offset for now; it doesn't matter for unwinding frames. */
2921 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2922 initial_return_save (XEXP (rtl, 0));
2923 return;
2925 default:
2926 gcc_unreachable ();
2929 if (reg != DWARF_FRAME_RETURN_COLUMN)
2931 if (reg != INVALID_REGNUM)
2932 record_reg_saved_in_reg (rtl, pc_rtx);
2933 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2937 static void
2938 create_cie_data (void)
2940 dw_cfa_location loc;
2941 dw_trace_info cie_trace;
2943 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2944 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2946 memset (&cie_trace, 0, sizeof (cie_trace));
2947 cur_trace = &cie_trace;
2949 add_cfi_vec = &cie_cfi_vec;
2950 cie_cfi_row = cur_row = new_cfi_row ();
2952 /* On entry, the Canonical Frame Address is at SP. */
2953 memset (&loc, 0, sizeof (loc));
2954 loc.reg = dw_stack_pointer_regnum;
2955 loc.offset = INCOMING_FRAME_SP_OFFSET;
2956 def_cfa_1 (&loc);
2958 if (targetm.debug_unwind_info () == UI_DWARF2
2959 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2961 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2963 /* For a few targets, we have the return address incoming into a
2964 register, but choose a different return column. This will result
2965 in a DW_CFA_register for the return, and an entry in
2966 regs_saved_in_regs to match. If the target later stores that
2967 return address register to the stack, we want to be able to emit
2968 the DW_CFA_offset against the return column, not the intermediate
2969 save register. Save the contents of regs_saved_in_regs so that
2970 we can re-initialize it at the start of each function. */
2971 switch (cie_trace.regs_saved_in_regs.length ())
2973 case 0:
2974 break;
2975 case 1:
2976 cie_return_save = ggc_alloc<reg_saved_in_data> ();
2977 *cie_return_save = cie_trace.regs_saved_in_regs[0];
2978 cie_trace.regs_saved_in_regs.release ();
2979 break;
2980 default:
2981 gcc_unreachable ();
2985 add_cfi_vec = NULL;
2986 cur_row = NULL;
2987 cur_trace = NULL;
2990 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2991 state at each location within the function. These notes will be
2992 emitted during pass_final. */
2994 static unsigned int
2995 execute_dwarf2_frame (void)
2997 /* The first time we're called, compute the incoming frame state. */
2998 if (cie_cfi_vec == NULL)
2999 create_cie_data ();
3001 dwarf2out_alloc_current_fde ();
3003 create_pseudo_cfg ();
3005 /* Do the work. */
3006 create_cfi_notes ();
3007 connect_traces ();
3008 add_cfis_to_fde ();
3010 /* Free all the data we allocated. */
3012 size_t i;
3013 dw_trace_info *ti;
3015 FOR_EACH_VEC_ELT (trace_info, i, ti)
3016 ti->regs_saved_in_regs.release ();
3018 trace_info.release ();
3020 delete trace_index;
3021 trace_index = NULL;
3023 return 0;
3026 /* Convert a DWARF call frame info. operation to its string name */
3028 static const char *
3029 dwarf_cfi_name (unsigned int cfi_opc)
3031 const char *name = get_DW_CFA_name (cfi_opc);
3033 if (name != NULL)
3034 return name;
3036 return "DW_CFA_<unknown>";
3039 /* This routine will generate the correct assembly data for a location
3040 description based on a cfi entry with a complex address. */
3042 static void
3043 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3045 dw_loc_descr_ref loc;
3046 unsigned long size;
3048 if (cfi->dw_cfi_opc == DW_CFA_expression)
3050 unsigned r =
3051 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3052 dw2_asm_output_data (1, r, NULL);
3053 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3055 else
3056 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3058 /* Output the size of the block. */
3059 size = size_of_locs (loc);
3060 dw2_asm_output_data_uleb128 (size, NULL);
3062 /* Now output the operations themselves. */
3063 output_loc_sequence (loc, for_eh);
3066 /* Similar, but used for .cfi_escape. */
3068 static void
3069 output_cfa_loc_raw (dw_cfi_ref cfi)
3071 dw_loc_descr_ref loc;
3072 unsigned long size;
3074 if (cfi->dw_cfi_opc == DW_CFA_expression)
3076 unsigned r =
3077 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3078 fprintf (asm_out_file, "%#x,", r);
3079 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3081 else
3082 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3084 /* Output the size of the block. */
3085 size = size_of_locs (loc);
3086 dw2_asm_output_data_uleb128_raw (size);
3087 fputc (',', asm_out_file);
3089 /* Now output the operations themselves. */
3090 output_loc_sequence_raw (loc);
3093 /* Output a Call Frame Information opcode and its operand(s). */
3095 void
3096 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3098 unsigned long r;
3099 HOST_WIDE_INT off;
3101 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3102 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3103 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3104 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3105 ((unsigned HOST_WIDE_INT)
3106 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3107 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3109 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3110 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3111 "DW_CFA_offset, column %#lx", r);
3112 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3113 dw2_asm_output_data_uleb128 (off, NULL);
3115 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3118 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3119 "DW_CFA_restore, column %#lx", r);
3121 else
3123 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3124 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3126 switch (cfi->dw_cfi_opc)
3128 case DW_CFA_set_loc:
3129 if (for_eh)
3130 dw2_asm_output_encoded_addr_rtx (
3131 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3132 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3133 false, NULL);
3134 else
3135 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3136 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3137 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3138 break;
3140 case DW_CFA_advance_loc1:
3141 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3142 fde->dw_fde_current_label, NULL);
3143 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3144 break;
3146 case DW_CFA_advance_loc2:
3147 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3148 fde->dw_fde_current_label, NULL);
3149 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3150 break;
3152 case DW_CFA_advance_loc4:
3153 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3154 fde->dw_fde_current_label, NULL);
3155 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3156 break;
3158 case DW_CFA_MIPS_advance_loc8:
3159 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3160 fde->dw_fde_current_label, NULL);
3161 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3162 break;
3164 case DW_CFA_offset_extended:
3165 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3166 dw2_asm_output_data_uleb128 (r, NULL);
3167 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3168 dw2_asm_output_data_uleb128 (off, NULL);
3169 break;
3171 case DW_CFA_def_cfa:
3172 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3173 dw2_asm_output_data_uleb128 (r, NULL);
3174 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3175 break;
3177 case DW_CFA_offset_extended_sf:
3178 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3179 dw2_asm_output_data_uleb128 (r, NULL);
3180 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3181 dw2_asm_output_data_sleb128 (off, NULL);
3182 break;
3184 case DW_CFA_def_cfa_sf:
3185 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3186 dw2_asm_output_data_uleb128 (r, NULL);
3187 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3188 dw2_asm_output_data_sleb128 (off, NULL);
3189 break;
3191 case DW_CFA_restore_extended:
3192 case DW_CFA_undefined:
3193 case DW_CFA_same_value:
3194 case DW_CFA_def_cfa_register:
3195 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3196 dw2_asm_output_data_uleb128 (r, NULL);
3197 break;
3199 case DW_CFA_register:
3200 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3201 dw2_asm_output_data_uleb128 (r, NULL);
3202 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3203 dw2_asm_output_data_uleb128 (r, NULL);
3204 break;
3206 case DW_CFA_def_cfa_offset:
3207 case DW_CFA_GNU_args_size:
3208 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3209 break;
3211 case DW_CFA_def_cfa_offset_sf:
3212 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3213 dw2_asm_output_data_sleb128 (off, NULL);
3214 break;
3216 case DW_CFA_GNU_window_save:
3217 break;
3219 case DW_CFA_def_cfa_expression:
3220 case DW_CFA_expression:
3221 output_cfa_loc (cfi, for_eh);
3222 break;
3224 case DW_CFA_GNU_negative_offset_extended:
3225 /* Obsoleted by DW_CFA_offset_extended_sf. */
3226 gcc_unreachable ();
3228 default:
3229 break;
3234 /* Similar, but do it via assembler directives instead. */
3236 void
3237 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3239 unsigned long r, r2;
3241 switch (cfi->dw_cfi_opc)
3243 case DW_CFA_advance_loc:
3244 case DW_CFA_advance_loc1:
3245 case DW_CFA_advance_loc2:
3246 case DW_CFA_advance_loc4:
3247 case DW_CFA_MIPS_advance_loc8:
3248 case DW_CFA_set_loc:
3249 /* Should only be created in a code path not followed when emitting
3250 via directives. The assembler is going to take care of this for
3251 us. But this routines is also used for debugging dumps, so
3252 print something. */
3253 gcc_assert (f != asm_out_file);
3254 fprintf (f, "\t.cfi_advance_loc\n");
3255 break;
3257 case DW_CFA_offset:
3258 case DW_CFA_offset_extended:
3259 case DW_CFA_offset_extended_sf:
3260 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3261 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3262 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3263 break;
3265 case DW_CFA_restore:
3266 case DW_CFA_restore_extended:
3267 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3268 fprintf (f, "\t.cfi_restore %lu\n", r);
3269 break;
3271 case DW_CFA_undefined:
3272 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3273 fprintf (f, "\t.cfi_undefined %lu\n", r);
3274 break;
3276 case DW_CFA_same_value:
3277 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3278 fprintf (f, "\t.cfi_same_value %lu\n", r);
3279 break;
3281 case DW_CFA_def_cfa:
3282 case DW_CFA_def_cfa_sf:
3283 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3284 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3285 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3286 break;
3288 case DW_CFA_def_cfa_register:
3289 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3290 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3291 break;
3293 case DW_CFA_register:
3294 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3295 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3296 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3297 break;
3299 case DW_CFA_def_cfa_offset:
3300 case DW_CFA_def_cfa_offset_sf:
3301 fprintf (f, "\t.cfi_def_cfa_offset "
3302 HOST_WIDE_INT_PRINT_DEC"\n",
3303 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3304 break;
3306 case DW_CFA_remember_state:
3307 fprintf (f, "\t.cfi_remember_state\n");
3308 break;
3309 case DW_CFA_restore_state:
3310 fprintf (f, "\t.cfi_restore_state\n");
3311 break;
3313 case DW_CFA_GNU_args_size:
3314 if (f == asm_out_file)
3316 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3317 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3318 if (flag_debug_asm)
3319 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3320 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3321 fputc ('\n', f);
3323 else
3325 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3326 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3328 break;
3330 case DW_CFA_GNU_window_save:
3331 fprintf (f, "\t.cfi_window_save\n");
3332 break;
3334 case DW_CFA_def_cfa_expression:
3335 if (f != asm_out_file)
3337 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3338 break;
3340 /* FALLTHRU */
3341 case DW_CFA_expression:
3342 if (f != asm_out_file)
3344 fprintf (f, "\t.cfi_cfa_expression ...\n");
3345 break;
3347 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3348 output_cfa_loc_raw (cfi);
3349 fputc ('\n', f);
3350 break;
3352 default:
3353 gcc_unreachable ();
3357 void
3358 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3360 if (dwarf2out_do_cfi_asm ())
3361 output_cfi_directive (asm_out_file, cfi);
3364 static void
3365 dump_cfi_row (FILE *f, dw_cfi_row *row)
3367 dw_cfi_ref cfi;
3368 unsigned i;
3370 cfi = row->cfa_cfi;
3371 if (!cfi)
3373 dw_cfa_location dummy;
3374 memset (&dummy, 0, sizeof (dummy));
3375 dummy.reg = INVALID_REGNUM;
3376 cfi = def_cfa_0 (&dummy, &row->cfa);
3378 output_cfi_directive (f, cfi);
3380 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3381 if (cfi)
3382 output_cfi_directive (f, cfi);
3385 void debug_cfi_row (dw_cfi_row *row);
3387 void
3388 debug_cfi_row (dw_cfi_row *row)
3390 dump_cfi_row (stderr, row);
3394 /* Save the result of dwarf2out_do_frame across PCH.
3395 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3396 static GTY(()) signed char saved_do_cfi_asm = 0;
3398 /* Decide whether we want to emit frame unwind information for the current
3399 translation unit. */
3401 bool
3402 dwarf2out_do_frame (void)
3404 /* We want to emit correct CFA location expressions or lists, so we
3405 have to return true if we're going to output debug info, even if
3406 we're not going to output frame or unwind info. */
3407 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3408 return true;
3410 if (saved_do_cfi_asm > 0)
3411 return true;
3413 if (targetm.debug_unwind_info () == UI_DWARF2)
3414 return true;
3416 if ((flag_unwind_tables || flag_exceptions)
3417 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3418 return true;
3420 return false;
3423 /* Decide whether to emit frame unwind via assembler directives. */
3425 bool
3426 dwarf2out_do_cfi_asm (void)
3428 int enc;
3430 if (saved_do_cfi_asm != 0)
3431 return saved_do_cfi_asm > 0;
3433 /* Assume failure for a moment. */
3434 saved_do_cfi_asm = -1;
3436 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3437 return false;
3438 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3439 return false;
3441 /* Make sure the personality encoding is one the assembler can support.
3442 In particular, aligned addresses can't be handled. */
3443 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3444 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3445 return false;
3446 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3447 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3448 return false;
3450 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3451 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3452 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3453 && !flag_unwind_tables && !flag_exceptions
3454 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3455 return false;
3457 /* Success! */
3458 saved_do_cfi_asm = 1;
3459 return true;
3462 namespace {
3464 const pass_data pass_data_dwarf2_frame =
3466 RTL_PASS, /* type */
3467 "dwarf2", /* name */
3468 OPTGROUP_NONE, /* optinfo_flags */
3469 TV_FINAL, /* tv_id */
3470 0, /* properties_required */
3471 0, /* properties_provided */
3472 0, /* properties_destroyed */
3473 0, /* todo_flags_start */
3474 0, /* todo_flags_finish */
3477 class pass_dwarf2_frame : public rtl_opt_pass
3479 public:
3480 pass_dwarf2_frame (gcc::context *ctxt)
3481 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3484 /* opt_pass methods: */
3485 virtual bool gate (function *);
3486 virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
3488 }; // class pass_dwarf2_frame
3490 bool
3491 pass_dwarf2_frame::gate (function *)
3493 #ifndef HAVE_prologue
3494 /* Targets which still implement the prologue in assembler text
3495 cannot use the generic dwarf2 unwinding. */
3496 return false;
3497 #endif
3499 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3500 from the optimized shrink-wrapping annotations that we will compute.
3501 For now, only produce the CFI notes for dwarf2. */
3502 return dwarf2out_do_frame ();
3505 } // anon namespace
3507 rtl_opt_pass *
3508 make_pass_dwarf2_frame (gcc::context *ctxt)
3510 return new pass_dwarf2_frame (ctxt);
3513 #include "gt-dwarf2cfi.h"