C++: suggestions for misspelled private members (PR c++/84993)
[official-gcc.git] / gcc / rtlanal.c
blobe8b6b9c7a4288fe21362903a28b62d4a797e82c4
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
40 /* Forward declarations */
41 static void set_of_1 (rtx, const_rtx, void *);
42 static bool covers_regno_p (const_rtx, unsigned int);
43 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
44 static int computed_jump_p_1 (const_rtx);
45 static void parms_set (rtx, const_rtx, void *);
47 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
48 const_rtx, machine_mode,
49 unsigned HOST_WIDE_INT);
50 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
51 const_rtx, machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
54 const_rtx, machine_mode,
55 unsigned int);
56 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
57 const_rtx, machine_mode,
58 unsigned int);
60 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
61 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
63 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
64 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
65 SIGN_EXTEND then while narrowing we also have to enforce the
66 representation and sign-extend the value to mode DESTINATION_REP.
68 If the value is already sign-extended to DESTINATION_REP mode we
69 can just switch to DESTINATION mode on it. For each pair of
70 integral modes SOURCE and DESTINATION, when truncating from SOURCE
71 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
72 contains the number of high-order bits in SOURCE that have to be
73 copies of the sign-bit so that we can do this mode-switch to
74 DESTINATION. */
76 static unsigned int
77 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
79 /* Store X into index I of ARRAY. ARRAY is known to have at least I
80 elements. Return the new base of ARRAY. */
82 template <typename T>
83 typename T::value_type *
84 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
85 value_type *base,
86 size_t i, value_type x)
88 if (base == array.stack)
90 if (i < LOCAL_ELEMS)
92 base[i] = x;
93 return base;
95 gcc_checking_assert (i == LOCAL_ELEMS);
96 /* A previous iteration might also have moved from the stack to the
97 heap, in which case the heap array will already be big enough. */
98 if (vec_safe_length (array.heap) <= i)
99 vec_safe_grow (array.heap, i + 1);
100 base = array.heap->address ();
101 memcpy (base, array.stack, sizeof (array.stack));
102 base[LOCAL_ELEMS] = x;
103 return base;
105 unsigned int length = array.heap->length ();
106 if (length > i)
108 gcc_checking_assert (base == array.heap->address ());
109 base[i] = x;
110 return base;
112 else
114 gcc_checking_assert (i == length);
115 vec_safe_push (array.heap, x);
116 return array.heap->address ();
120 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
121 number of elements added to the worklist. */
123 template <typename T>
124 size_t
125 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
126 value_type *base,
127 size_t end, rtx_type x)
129 enum rtx_code code = GET_CODE (x);
130 const char *format = GET_RTX_FORMAT (code);
131 size_t orig_end = end;
132 if (__builtin_expect (INSN_P (x), false))
134 /* Put the pattern at the top of the queue, since that's what
135 we're likely to want most. It also allows for the SEQUENCE
136 code below. */
137 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
138 if (format[i] == 'e')
140 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
141 if (__builtin_expect (end < LOCAL_ELEMS, true))
142 base[end++] = subx;
143 else
144 base = add_single_to_queue (array, base, end++, subx);
147 else
148 for (int i = 0; format[i]; ++i)
149 if (format[i] == 'e')
151 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
152 if (__builtin_expect (end < LOCAL_ELEMS, true))
153 base[end++] = subx;
154 else
155 base = add_single_to_queue (array, base, end++, subx);
157 else if (format[i] == 'E')
159 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
160 rtx *vec = x->u.fld[i].rt_rtvec->elem;
161 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
162 for (unsigned int j = 0; j < length; j++)
163 base[end++] = T::get_value (vec[j]);
164 else
165 for (unsigned int j = 0; j < length; j++)
166 base = add_single_to_queue (array, base, end++,
167 T::get_value (vec[j]));
168 if (code == SEQUENCE && end == length)
169 /* If the subrtxes of the sequence fill the entire array then
170 we know that no other parts of a containing insn are queued.
171 The caller is therefore iterating over the sequence as a
172 PATTERN (...), so we also want the patterns of the
173 subinstructions. */
174 for (unsigned int j = 0; j < length; j++)
176 typename T::rtx_type x = T::get_rtx (base[j]);
177 if (INSN_P (x))
178 base[j] = T::get_value (PATTERN (x));
181 return end - orig_end;
184 template <typename T>
185 void
186 generic_subrtx_iterator <T>::free_array (array_type &array)
188 vec_free (array.heap);
191 template <typename T>
192 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
194 template class generic_subrtx_iterator <const_rtx_accessor>;
195 template class generic_subrtx_iterator <rtx_var_accessor>;
196 template class generic_subrtx_iterator <rtx_ptr_accessor>;
198 /* Return 1 if the value of X is unstable
199 (would be different at a different point in the program).
200 The frame pointer, arg pointer, etc. are considered stable
201 (within one function) and so is anything marked `unchanging'. */
204 rtx_unstable_p (const_rtx x)
206 const RTX_CODE code = GET_CODE (x);
207 int i;
208 const char *fmt;
210 switch (code)
212 case MEM:
213 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
215 case CONST:
216 CASE_CONST_ANY:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return 0;
221 case REG:
222 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
223 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
224 /* The arg pointer varies if it is not a fixed register. */
225 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
226 return 0;
227 /* ??? When call-clobbered, the value is stable modulo the restore
228 that must happen after a call. This currently screws up local-alloc
229 into believing that the restore is not needed. */
230 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
231 return 0;
232 return 1;
234 case ASM_OPERANDS:
235 if (MEM_VOLATILE_P (x))
236 return 1;
238 /* Fall through. */
240 default:
241 break;
244 fmt = GET_RTX_FORMAT (code);
245 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246 if (fmt[i] == 'e')
248 if (rtx_unstable_p (XEXP (x, i)))
249 return 1;
251 else if (fmt[i] == 'E')
253 int j;
254 for (j = 0; j < XVECLEN (x, i); j++)
255 if (rtx_unstable_p (XVECEXP (x, i, j)))
256 return 1;
259 return 0;
262 /* Return 1 if X has a value that can vary even between two
263 executions of the program. 0 means X can be compared reliably
264 against certain constants or near-constants.
265 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
266 zero, we are slightly more conservative.
267 The frame pointer and the arg pointer are considered constant. */
269 bool
270 rtx_varies_p (const_rtx x, bool for_alias)
272 RTX_CODE code;
273 int i;
274 const char *fmt;
276 if (!x)
277 return 0;
279 code = GET_CODE (x);
280 switch (code)
282 case MEM:
283 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
285 case CONST:
286 CASE_CONST_ANY:
287 case SYMBOL_REF:
288 case LABEL_REF:
289 return 0;
291 case REG:
292 /* Note that we have to test for the actual rtx used for the frame
293 and arg pointers and not just the register number in case we have
294 eliminated the frame and/or arg pointer and are using it
295 for pseudos. */
296 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
297 /* The arg pointer varies if it is not a fixed register. */
298 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
299 return 0;
300 if (x == pic_offset_table_rtx
301 /* ??? When call-clobbered, the value is stable modulo the restore
302 that must happen after a call. This currently screws up
303 local-alloc into believing that the restore is not needed, so we
304 must return 0 only if we are called from alias analysis. */
305 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
306 return 0;
307 return 1;
309 case LO_SUM:
310 /* The operand 0 of a LO_SUM is considered constant
311 (in fact it is related specifically to operand 1)
312 during alias analysis. */
313 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
314 || rtx_varies_p (XEXP (x, 1), for_alias);
316 case ASM_OPERANDS:
317 if (MEM_VOLATILE_P (x))
318 return 1;
320 /* Fall through. */
322 default:
323 break;
326 fmt = GET_RTX_FORMAT (code);
327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328 if (fmt[i] == 'e')
330 if (rtx_varies_p (XEXP (x, i), for_alias))
331 return 1;
333 else if (fmt[i] == 'E')
335 int j;
336 for (j = 0; j < XVECLEN (x, i); j++)
337 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
338 return 1;
341 return 0;
344 /* Compute an approximation for the offset between the register
345 FROM and TO for the current function, as it was at the start
346 of the routine. */
348 static poly_int64
349 get_initial_register_offset (int from, int to)
351 static const struct elim_table_t
353 const int from;
354 const int to;
355 } table[] = ELIMINABLE_REGS;
356 poly_int64 offset1, offset2;
357 unsigned int i, j;
359 if (to == from)
360 return 0;
362 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
363 before the reload pass. We need to give at least
364 an estimation for the resulting frame size. */
365 if (! reload_completed)
367 offset1 = crtl->outgoing_args_size + get_frame_size ();
368 #if !STACK_GROWS_DOWNWARD
369 offset1 = - offset1;
370 #endif
371 if (to == STACK_POINTER_REGNUM)
372 return offset1;
373 else if (from == STACK_POINTER_REGNUM)
374 return - offset1;
375 else
376 return 0;
379 for (i = 0; i < ARRAY_SIZE (table); i++)
380 if (table[i].from == from)
382 if (table[i].to == to)
384 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
385 offset1);
386 return offset1;
388 for (j = 0; j < ARRAY_SIZE (table); j++)
390 if (table[j].to == to
391 && table[j].from == table[i].to)
393 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
394 offset1);
395 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
396 offset2);
397 return offset1 + offset2;
399 if (table[j].from == to
400 && table[j].to == table[i].to)
402 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
403 offset1);
404 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
405 offset2);
406 return offset1 - offset2;
410 else if (table[i].to == from)
412 if (table[i].from == to)
414 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
415 offset1);
416 return - offset1;
418 for (j = 0; j < ARRAY_SIZE (table); j++)
420 if (table[j].to == to
421 && table[j].from == table[i].from)
423 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
424 offset1);
425 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
426 offset2);
427 return - offset1 + offset2;
429 if (table[j].from == to
430 && table[j].to == table[i].from)
432 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
433 offset1);
434 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
435 offset2);
436 return - offset1 - offset2;
441 /* If the requested register combination was not found,
442 try a different more simple combination. */
443 if (from == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
445 else if (to == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
447 else if (from == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
449 else if (to == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
451 else
452 return 0;
455 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
456 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
457 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
458 references on strict alignment machines. */
460 static int
461 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
462 machine_mode mode, bool unaligned_mems)
464 enum rtx_code code = GET_CODE (x);
465 gcc_checking_assert (mode == BLKmode || known_size_p (size));
466 poly_int64 const_x1;
468 /* The offset must be a multiple of the mode size if we are considering
469 unaligned memory references on strict alignment machines. */
470 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
472 poly_int64 actual_offset = offset;
474 #ifdef SPARC_STACK_BOUNDARY_HACK
475 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
476 the real alignment of %sp. However, when it does this, the
477 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
478 if (SPARC_STACK_BOUNDARY_HACK
479 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
480 actual_offset -= STACK_POINTER_OFFSET;
481 #endif
483 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
484 return 1;
487 switch (code)
489 case SYMBOL_REF:
490 if (SYMBOL_REF_WEAK (x))
491 return 1;
492 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
494 tree decl;
495 poly_int64 decl_size;
497 if (maybe_lt (offset, 0))
498 return 1;
499 if (!known_size_p (size))
500 return maybe_ne (offset, 0);
502 /* If the size of the access or of the symbol is unknown,
503 assume the worst. */
504 decl = SYMBOL_REF_DECL (x);
506 /* Else check that the access is in bounds. TODO: restructure
507 expr_size/tree_expr_size/int_expr_size and just use the latter. */
508 if (!decl)
509 decl_size = -1;
510 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
512 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
513 decl_size = -1;
515 else if (TREE_CODE (decl) == STRING_CST)
516 decl_size = TREE_STRING_LENGTH (decl);
517 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
518 decl_size = int_size_in_bytes (TREE_TYPE (decl));
519 else
520 decl_size = -1;
522 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
523 ? maybe_ne (offset, 0)
524 : maybe_gt (offset + size, decl_size));
527 return 0;
529 case LABEL_REF:
530 return 0;
532 case REG:
533 /* Stack references are assumed not to trap, but we need to deal with
534 nonsensical offsets. */
535 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
536 || x == stack_pointer_rtx
537 /* The arg pointer varies if it is not a fixed register. */
538 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
540 #ifdef RED_ZONE_SIZE
541 poly_int64 red_zone_size = RED_ZONE_SIZE;
542 #else
543 poly_int64 red_zone_size = 0;
544 #endif
545 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
546 poly_int64 low_bound, high_bound;
548 if (!known_size_p (size))
549 return 1;
551 if (x == frame_pointer_rtx)
553 if (FRAME_GROWS_DOWNWARD)
555 high_bound = targetm.starting_frame_offset ();
556 low_bound = high_bound - get_frame_size ();
558 else
560 low_bound = targetm.starting_frame_offset ();
561 high_bound = low_bound + get_frame_size ();
564 else if (x == hard_frame_pointer_rtx)
566 poly_int64 sp_offset
567 = get_initial_register_offset (STACK_POINTER_REGNUM,
568 HARD_FRAME_POINTER_REGNUM);
569 poly_int64 ap_offset
570 = get_initial_register_offset (ARG_POINTER_REGNUM,
571 HARD_FRAME_POINTER_REGNUM);
573 #if STACK_GROWS_DOWNWARD
574 low_bound = sp_offset - red_zone_size - stack_boundary;
575 high_bound = ap_offset
576 + FIRST_PARM_OFFSET (current_function_decl)
577 #if !ARGS_GROW_DOWNWARD
578 + crtl->args.size
579 #endif
580 + stack_boundary;
581 #else
582 high_bound = sp_offset + red_zone_size + stack_boundary;
583 low_bound = ap_offset
584 + FIRST_PARM_OFFSET (current_function_decl)
585 #if ARGS_GROW_DOWNWARD
586 - crtl->args.size
587 #endif
588 - stack_boundary;
589 #endif
591 else if (x == stack_pointer_rtx)
593 poly_int64 ap_offset
594 = get_initial_register_offset (ARG_POINTER_REGNUM,
595 STACK_POINTER_REGNUM);
597 #if STACK_GROWS_DOWNWARD
598 low_bound = - red_zone_size - stack_boundary;
599 high_bound = ap_offset
600 + FIRST_PARM_OFFSET (current_function_decl)
601 #if !ARGS_GROW_DOWNWARD
602 + crtl->args.size
603 #endif
604 + stack_boundary;
605 #else
606 high_bound = red_zone_size + stack_boundary;
607 low_bound = ap_offset
608 + FIRST_PARM_OFFSET (current_function_decl)
609 #if ARGS_GROW_DOWNWARD
610 - crtl->args.size
611 #endif
612 - stack_boundary;
613 #endif
615 else
617 /* We assume that accesses are safe to at least the
618 next stack boundary.
619 Examples are varargs and __builtin_return_address. */
620 #if ARGS_GROW_DOWNWARD
621 high_bound = FIRST_PARM_OFFSET (current_function_decl)
622 + stack_boundary;
623 low_bound = FIRST_PARM_OFFSET (current_function_decl)
624 - crtl->args.size - stack_boundary;
625 #else
626 low_bound = FIRST_PARM_OFFSET (current_function_decl)
627 - stack_boundary;
628 high_bound = FIRST_PARM_OFFSET (current_function_decl)
629 + crtl->args.size + stack_boundary;
630 #endif
633 if (known_ge (offset, low_bound)
634 && known_le (offset, high_bound - size))
635 return 0;
636 return 1;
638 /* All of the virtual frame registers are stack references. */
639 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
641 return 0;
642 return 1;
644 case CONST:
645 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
646 mode, unaligned_mems);
648 case PLUS:
649 /* An address is assumed not to trap if:
650 - it is the pic register plus a const unspec without offset. */
651 if (XEXP (x, 0) == pic_offset_table_rtx
652 && GET_CODE (XEXP (x, 1)) == CONST
653 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
654 && known_eq (offset, 0))
655 return 0;
657 /* - or it is an address that can't trap plus a constant integer. */
658 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
659 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
660 size, mode, unaligned_mems))
661 return 0;
663 return 1;
665 case LO_SUM:
666 case PRE_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
668 mode, unaligned_mems);
670 case PRE_DEC:
671 case PRE_INC:
672 case POST_DEC:
673 case POST_INC:
674 case POST_MODIFY:
675 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
676 mode, unaligned_mems);
678 default:
679 break;
682 /* If it isn't one of the case above, it can cause a trap. */
683 return 1;
686 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
689 rtx_addr_can_trap_p (const_rtx x)
691 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
694 /* Return true if X contains a MEM subrtx. */
696 bool
697 contains_mem_rtx_p (rtx x)
699 subrtx_iterator::array_type array;
700 FOR_EACH_SUBRTX (iter, array, x, ALL)
701 if (MEM_P (*iter))
702 return true;
704 return false;
707 /* Return true if X is an address that is known to not be zero. */
709 bool
710 nonzero_address_p (const_rtx x)
712 const enum rtx_code code = GET_CODE (x);
714 switch (code)
716 case SYMBOL_REF:
717 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
719 case LABEL_REF:
720 return true;
722 case REG:
723 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
724 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
725 || x == stack_pointer_rtx
726 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
727 return true;
728 /* All of the virtual frame registers are stack references. */
729 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
730 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
731 return true;
732 return false;
734 case CONST:
735 return nonzero_address_p (XEXP (x, 0));
737 case PLUS:
738 /* Handle PIC references. */
739 if (XEXP (x, 0) == pic_offset_table_rtx
740 && CONSTANT_P (XEXP (x, 1)))
741 return true;
742 return false;
744 case PRE_MODIFY:
745 /* Similar to the above; allow positive offsets. Further, since
746 auto-inc is only allowed in memories, the register must be a
747 pointer. */
748 if (CONST_INT_P (XEXP (x, 1))
749 && INTVAL (XEXP (x, 1)) > 0)
750 return true;
751 return nonzero_address_p (XEXP (x, 0));
753 case PRE_INC:
754 /* Similarly. Further, the offset is always positive. */
755 return true;
757 case PRE_DEC:
758 case POST_DEC:
759 case POST_INC:
760 case POST_MODIFY:
761 return nonzero_address_p (XEXP (x, 0));
763 case LO_SUM:
764 return nonzero_address_p (XEXP (x, 1));
766 default:
767 break;
770 /* If it isn't one of the case above, might be zero. */
771 return false;
774 /* Return 1 if X refers to a memory location whose address
775 cannot be compared reliably with constant addresses,
776 or if X refers to a BLKmode memory object.
777 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
778 zero, we are slightly more conservative. */
780 bool
781 rtx_addr_varies_p (const_rtx x, bool for_alias)
783 enum rtx_code code;
784 int i;
785 const char *fmt;
787 if (x == 0)
788 return 0;
790 code = GET_CODE (x);
791 if (code == MEM)
792 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
794 fmt = GET_RTX_FORMAT (code);
795 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
796 if (fmt[i] == 'e')
798 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
799 return 1;
801 else if (fmt[i] == 'E')
803 int j;
804 for (j = 0; j < XVECLEN (x, i); j++)
805 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
806 return 1;
808 return 0;
811 /* Return the CALL in X if there is one. */
814 get_call_rtx_from (rtx x)
816 if (INSN_P (x))
817 x = PATTERN (x);
818 if (GET_CODE (x) == PARALLEL)
819 x = XVECEXP (x, 0, 0);
820 if (GET_CODE (x) == SET)
821 x = SET_SRC (x);
822 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823 return x;
824 return NULL_RTX;
827 /* Return the value of the integer term in X, if one is apparent;
828 otherwise return 0.
829 Only obvious integer terms are detected.
830 This is used in cse.c with the `related_value' field. */
832 HOST_WIDE_INT
833 get_integer_term (const_rtx x)
835 if (GET_CODE (x) == CONST)
836 x = XEXP (x, 0);
838 if (GET_CODE (x) == MINUS
839 && CONST_INT_P (XEXP (x, 1)))
840 return - INTVAL (XEXP (x, 1));
841 if (GET_CODE (x) == PLUS
842 && CONST_INT_P (XEXP (x, 1)))
843 return INTVAL (XEXP (x, 1));
844 return 0;
847 /* If X is a constant, return the value sans apparent integer term;
848 otherwise return 0.
849 Only obvious integer terms are detected. */
852 get_related_value (const_rtx x)
854 if (GET_CODE (x) != CONST)
855 return 0;
856 x = XEXP (x, 0);
857 if (GET_CODE (x) == PLUS
858 && CONST_INT_P (XEXP (x, 1)))
859 return XEXP (x, 0);
860 else if (GET_CODE (x) == MINUS
861 && CONST_INT_P (XEXP (x, 1)))
862 return XEXP (x, 0);
863 return 0;
866 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
867 to somewhere in the same object or object_block as SYMBOL. */
869 bool
870 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
872 tree decl;
874 if (GET_CODE (symbol) != SYMBOL_REF)
875 return false;
877 if (offset == 0)
878 return true;
880 if (offset > 0)
882 if (CONSTANT_POOL_ADDRESS_P (symbol)
883 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
884 return true;
886 decl = SYMBOL_REF_DECL (symbol);
887 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
888 return true;
891 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
892 && SYMBOL_REF_BLOCK (symbol)
893 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
894 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
895 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
896 return true;
898 return false;
901 /* Split X into a base and a constant offset, storing them in *BASE_OUT
902 and *OFFSET_OUT respectively. */
904 void
905 split_const (rtx x, rtx *base_out, rtx *offset_out)
907 if (GET_CODE (x) == CONST)
909 x = XEXP (x, 0);
910 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
912 *base_out = XEXP (x, 0);
913 *offset_out = XEXP (x, 1);
914 return;
917 *base_out = x;
918 *offset_out = const0_rtx;
921 /* Express integer value X as some value Y plus a polynomial offset,
922 where Y is either const0_rtx, X or something within X (as opposed
923 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
926 strip_offset (rtx x, poly_int64_pod *offset_out)
928 rtx base = const0_rtx;
929 rtx test = x;
930 if (GET_CODE (test) == CONST)
931 test = XEXP (test, 0);
932 if (GET_CODE (test) == PLUS)
934 base = XEXP (test, 0);
935 test = XEXP (test, 1);
937 if (poly_int_rtx_p (test, offset_out))
938 return base;
939 *offset_out = 0;
940 return x;
943 /* Return the argument size in REG_ARGS_SIZE note X. */
945 poly_int64
946 get_args_size (const_rtx x)
948 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
949 return rtx_to_poly_int64 (XEXP (x, 0));
952 /* Return the number of places FIND appears within X. If COUNT_DEST is
953 zero, we do not count occurrences inside the destination of a SET. */
956 count_occurrences (const_rtx x, const_rtx find, int count_dest)
958 int i, j;
959 enum rtx_code code;
960 const char *format_ptr;
961 int count;
963 if (x == find)
964 return 1;
966 code = GET_CODE (x);
968 switch (code)
970 case REG:
971 CASE_CONST_ANY:
972 case SYMBOL_REF:
973 case CODE_LABEL:
974 case PC:
975 case CC0:
976 return 0;
978 case EXPR_LIST:
979 count = count_occurrences (XEXP (x, 0), find, count_dest);
980 if (XEXP (x, 1))
981 count += count_occurrences (XEXP (x, 1), find, count_dest);
982 return count;
984 case MEM:
985 if (MEM_P (find) && rtx_equal_p (x, find))
986 return 1;
987 break;
989 case SET:
990 if (SET_DEST (x) == find && ! count_dest)
991 return count_occurrences (SET_SRC (x), find, count_dest);
992 break;
994 default:
995 break;
998 format_ptr = GET_RTX_FORMAT (code);
999 count = 0;
1001 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1003 switch (*format_ptr++)
1005 case 'e':
1006 count += count_occurrences (XEXP (x, i), find, count_dest);
1007 break;
1009 case 'E':
1010 for (j = 0; j < XVECLEN (x, i); j++)
1011 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1012 break;
1015 return count;
1019 /* Return TRUE if OP is a register or subreg of a register that
1020 holds an unsigned quantity. Otherwise, return FALSE. */
1022 bool
1023 unsigned_reg_p (rtx op)
1025 if (REG_P (op)
1026 && REG_EXPR (op)
1027 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1028 return true;
1030 if (GET_CODE (op) == SUBREG
1031 && SUBREG_PROMOTED_SIGN (op))
1032 return true;
1034 return false;
1038 /* Nonzero if register REG appears somewhere within IN.
1039 Also works if REG is not a register; in this case it checks
1040 for a subexpression of IN that is Lisp "equal" to REG. */
1043 reg_mentioned_p (const_rtx reg, const_rtx in)
1045 const char *fmt;
1046 int i;
1047 enum rtx_code code;
1049 if (in == 0)
1050 return 0;
1052 if (reg == in)
1053 return 1;
1055 if (GET_CODE (in) == LABEL_REF)
1056 return reg == label_ref_label (in);
1058 code = GET_CODE (in);
1060 switch (code)
1062 /* Compare registers by number. */
1063 case REG:
1064 return REG_P (reg) && REGNO (in) == REGNO (reg);
1066 /* These codes have no constituent expressions
1067 and are unique. */
1068 case SCRATCH:
1069 case CC0:
1070 case PC:
1071 return 0;
1073 CASE_CONST_ANY:
1074 /* These are kept unique for a given value. */
1075 return 0;
1077 default:
1078 break;
1081 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1082 return 1;
1084 fmt = GET_RTX_FORMAT (code);
1086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1088 if (fmt[i] == 'E')
1090 int j;
1091 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1092 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1093 return 1;
1095 else if (fmt[i] == 'e'
1096 && reg_mentioned_p (reg, XEXP (in, i)))
1097 return 1;
1099 return 0;
1102 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1103 no CODE_LABEL insn. */
1106 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1108 rtx_insn *p;
1109 if (beg == end)
1110 return 0;
1111 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1112 if (LABEL_P (p))
1113 return 0;
1114 return 1;
1117 /* Nonzero if register REG is used in an insn between
1118 FROM_INSN and TO_INSN (exclusive of those two). */
1121 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1122 const rtx_insn *to_insn)
1124 rtx_insn *insn;
1126 if (from_insn == to_insn)
1127 return 0;
1129 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1130 if (NONDEBUG_INSN_P (insn)
1131 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1132 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1133 return 1;
1134 return 0;
1137 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1138 is entirely replaced by a new value and the only use is as a SET_DEST,
1139 we do not consider it a reference. */
1142 reg_referenced_p (const_rtx x, const_rtx body)
1144 int i;
1146 switch (GET_CODE (body))
1148 case SET:
1149 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1150 return 1;
1152 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1153 of a REG that occupies all of the REG, the insn references X if
1154 it is mentioned in the destination. */
1155 if (GET_CODE (SET_DEST (body)) != CC0
1156 && GET_CODE (SET_DEST (body)) != PC
1157 && !REG_P (SET_DEST (body))
1158 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1159 && REG_P (SUBREG_REG (SET_DEST (body)))
1160 && !read_modify_subreg_p (SET_DEST (body)))
1161 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1162 return 1;
1163 return 0;
1165 case ASM_OPERANDS:
1166 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1167 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1168 return 1;
1169 return 0;
1171 case CALL:
1172 case USE:
1173 case IF_THEN_ELSE:
1174 return reg_overlap_mentioned_p (x, body);
1176 case TRAP_IF:
1177 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1179 case PREFETCH:
1180 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1182 case UNSPEC:
1183 case UNSPEC_VOLATILE:
1184 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1185 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1186 return 1;
1187 return 0;
1189 case PARALLEL:
1190 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1191 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1192 return 1;
1193 return 0;
1195 case CLOBBER:
1196 if (MEM_P (XEXP (body, 0)))
1197 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1198 return 1;
1199 return 0;
1201 case CLOBBER_HIGH:
1202 gcc_assert (REG_P (XEXP (body, 0)));
1203 return 0;
1205 case COND_EXEC:
1206 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1207 return 1;
1208 return reg_referenced_p (x, COND_EXEC_CODE (body));
1210 default:
1211 return 0;
1215 /* Nonzero if register REG is set or clobbered in an insn between
1216 FROM_INSN and TO_INSN (exclusive of those two). */
1219 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1220 const rtx_insn *to_insn)
1222 const rtx_insn *insn;
1224 if (from_insn == to_insn)
1225 return 0;
1227 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1228 if (INSN_P (insn) && reg_set_p (reg, insn))
1229 return 1;
1230 return 0;
1233 /* Return true if REG is set or clobbered inside INSN. */
1236 reg_set_p (const_rtx reg, const_rtx insn)
1238 /* After delay slot handling, call and branch insns might be in a
1239 sequence. Check all the elements there. */
1240 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1242 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1243 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1244 return true;
1246 return false;
1249 /* We can be passed an insn or part of one. If we are passed an insn,
1250 check if a side-effect of the insn clobbers REG. */
1251 if (INSN_P (insn)
1252 && (FIND_REG_INC_NOTE (insn, reg)
1253 || (CALL_P (insn)
1254 && ((REG_P (reg)
1255 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1256 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1257 GET_MODE (reg), REGNO (reg)))
1258 || MEM_P (reg)
1259 || find_reg_fusage (insn, CLOBBER, reg)))))
1260 return true;
1262 /* There are no REG_INC notes for SP autoinc. */
1263 if (reg == stack_pointer_rtx && INSN_P (insn))
1265 subrtx_var_iterator::array_type array;
1266 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1268 rtx mem = *iter;
1269 if (mem
1270 && MEM_P (mem)
1271 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1273 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1274 return true;
1275 iter.skip_subrtxes ();
1280 return set_of (reg, insn) != NULL_RTX;
1283 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1284 only if none of them are modified between START and END. Return 1 if
1285 X contains a MEM; this routine does use memory aliasing. */
1288 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1290 const enum rtx_code code = GET_CODE (x);
1291 const char *fmt;
1292 int i, j;
1293 rtx_insn *insn;
1295 if (start == end)
1296 return 0;
1298 switch (code)
1300 CASE_CONST_ANY:
1301 case CONST:
1302 case SYMBOL_REF:
1303 case LABEL_REF:
1304 return 0;
1306 case PC:
1307 case CC0:
1308 return 1;
1310 case MEM:
1311 if (modified_between_p (XEXP (x, 0), start, end))
1312 return 1;
1313 if (MEM_READONLY_P (x))
1314 return 0;
1315 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1316 if (memory_modified_in_insn_p (x, insn))
1317 return 1;
1318 return 0;
1320 case REG:
1321 return reg_set_between_p (x, start, end);
1323 default:
1324 break;
1327 fmt = GET_RTX_FORMAT (code);
1328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1330 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1331 return 1;
1333 else if (fmt[i] == 'E')
1334 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1335 if (modified_between_p (XVECEXP (x, i, j), start, end))
1336 return 1;
1339 return 0;
1342 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1343 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1344 does use memory aliasing. */
1347 modified_in_p (const_rtx x, const_rtx insn)
1349 const enum rtx_code code = GET_CODE (x);
1350 const char *fmt;
1351 int i, j;
1353 switch (code)
1355 CASE_CONST_ANY:
1356 case CONST:
1357 case SYMBOL_REF:
1358 case LABEL_REF:
1359 return 0;
1361 case PC:
1362 case CC0:
1363 return 1;
1365 case MEM:
1366 if (modified_in_p (XEXP (x, 0), insn))
1367 return 1;
1368 if (MEM_READONLY_P (x))
1369 return 0;
1370 if (memory_modified_in_insn_p (x, insn))
1371 return 1;
1372 return 0;
1374 case REG:
1375 return reg_set_p (x, insn);
1377 default:
1378 break;
1381 fmt = GET_RTX_FORMAT (code);
1382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1384 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1385 return 1;
1387 else if (fmt[i] == 'E')
1388 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1389 if (modified_in_p (XVECEXP (x, i, j), insn))
1390 return 1;
1393 return 0;
1396 /* Return true if X is a SUBREG and if storing a value to X would
1397 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1398 target, using a SUBREG to store to one half of a DImode REG would
1399 preserve the other half. */
1401 bool
1402 read_modify_subreg_p (const_rtx x)
1404 if (GET_CODE (x) != SUBREG)
1405 return false;
1406 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1407 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1408 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1409 /* The inner and outer modes of a subreg must be ordered, so that we
1410 can tell whether they're paradoxical or partial. */
1411 gcc_checking_assert (ordered_p (isize, osize));
1412 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1415 /* Helper function for set_of. */
1416 struct set_of_data
1418 const_rtx found;
1419 const_rtx pat;
1422 static void
1423 set_of_1 (rtx x, const_rtx pat, void *data1)
1425 struct set_of_data *const data = (struct set_of_data *) (data1);
1426 if (rtx_equal_p (x, data->pat)
1427 || (GET_CODE (pat) == CLOBBER_HIGH
1428 && REGNO(data->pat) == REGNO(XEXP (pat, 0))
1429 && reg_is_clobbered_by_clobber_high (data->pat, XEXP (pat, 0)))
1430 || (GET_CODE (pat) != CLOBBER_HIGH && !MEM_P (x)
1431 && reg_overlap_mentioned_p (data->pat, x)))
1432 data->found = pat;
1435 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1436 (either directly or via STRICT_LOW_PART and similar modifiers). */
1437 const_rtx
1438 set_of (const_rtx pat, const_rtx insn)
1440 struct set_of_data data;
1441 data.found = NULL_RTX;
1442 data.pat = pat;
1443 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1444 return data.found;
1447 /* Add all hard register in X to *PSET. */
1448 void
1449 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1451 subrtx_iterator::array_type array;
1452 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1454 const_rtx x = *iter;
1455 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1456 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1460 /* This function, called through note_stores, collects sets and
1461 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1462 by DATA. */
1463 void
1464 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1466 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1467 if (REG_P (x) && HARD_REGISTER_P (x))
1468 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1471 /* Examine INSN, and compute the set of hard registers written by it.
1472 Store it in *PSET. Should only be called after reload. */
1473 void
1474 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1476 rtx link;
1478 CLEAR_HARD_REG_SET (*pset);
1479 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1480 if (CALL_P (insn))
1482 if (implicit)
1483 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1485 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1486 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1488 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1489 if (REG_NOTE_KIND (link) == REG_INC)
1490 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1493 /* Like record_hard_reg_sets, but called through note_uses. */
1494 void
1495 record_hard_reg_uses (rtx *px, void *data)
1497 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1500 /* Given an INSN, return a SET expression if this insn has only a single SET.
1501 It may also have CLOBBERs, USEs, or SET whose output
1502 will not be used, which we ignore. */
1505 single_set_2 (const rtx_insn *insn, const_rtx pat)
1507 rtx set = NULL;
1508 int set_verified = 1;
1509 int i;
1511 if (GET_CODE (pat) == PARALLEL)
1513 for (i = 0; i < XVECLEN (pat, 0); i++)
1515 rtx sub = XVECEXP (pat, 0, i);
1516 switch (GET_CODE (sub))
1518 case USE:
1519 case CLOBBER:
1520 case CLOBBER_HIGH:
1521 break;
1523 case SET:
1524 /* We can consider insns having multiple sets, where all
1525 but one are dead as single set insns. In common case
1526 only single set is present in the pattern so we want
1527 to avoid checking for REG_UNUSED notes unless necessary.
1529 When we reach set first time, we just expect this is
1530 the single set we are looking for and only when more
1531 sets are found in the insn, we check them. */
1532 if (!set_verified)
1534 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1535 && !side_effects_p (set))
1536 set = NULL;
1537 else
1538 set_verified = 1;
1540 if (!set)
1541 set = sub, set_verified = 0;
1542 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1543 || side_effects_p (sub))
1544 return NULL_RTX;
1545 break;
1547 default:
1548 return NULL_RTX;
1552 return set;
1555 /* Given an INSN, return nonzero if it has more than one SET, else return
1556 zero. */
1559 multiple_sets (const_rtx insn)
1561 int found;
1562 int i;
1564 /* INSN must be an insn. */
1565 if (! INSN_P (insn))
1566 return 0;
1568 /* Only a PARALLEL can have multiple SETs. */
1569 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1571 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1572 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1574 /* If we have already found a SET, then return now. */
1575 if (found)
1576 return 1;
1577 else
1578 found = 1;
1582 /* Either zero or one SET. */
1583 return 0;
1586 /* Return nonzero if the destination of SET equals the source
1587 and there are no side effects. */
1590 set_noop_p (const_rtx set)
1592 rtx src = SET_SRC (set);
1593 rtx dst = SET_DEST (set);
1595 if (dst == pc_rtx && src == pc_rtx)
1596 return 1;
1598 if (MEM_P (dst) && MEM_P (src))
1599 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1601 if (GET_CODE (dst) == ZERO_EXTRACT)
1602 return rtx_equal_p (XEXP (dst, 0), src)
1603 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1604 && !side_effects_p (src);
1606 if (GET_CODE (dst) == STRICT_LOW_PART)
1607 dst = XEXP (dst, 0);
1609 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1611 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1612 return 0;
1613 src = SUBREG_REG (src);
1614 dst = SUBREG_REG (dst);
1617 /* It is a NOOP if destination overlaps with selected src vector
1618 elements. */
1619 if (GET_CODE (src) == VEC_SELECT
1620 && REG_P (XEXP (src, 0)) && REG_P (dst)
1621 && HARD_REGISTER_P (XEXP (src, 0))
1622 && HARD_REGISTER_P (dst))
1624 int i;
1625 rtx par = XEXP (src, 1);
1626 rtx src0 = XEXP (src, 0);
1627 poly_int64 c0 = rtx_to_poly_int64 (XVECEXP (par, 0, 0));
1628 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1630 for (i = 1; i < XVECLEN (par, 0); i++)
1631 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par, 0, i)), c0 + i))
1632 return 0;
1633 return
1634 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1635 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1636 offset, GET_MODE (dst)) == (int) REGNO (dst);
1639 return (REG_P (src) && REG_P (dst)
1640 && REGNO (src) == REGNO (dst));
1643 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1644 value to itself. */
1647 noop_move_p (const rtx_insn *insn)
1649 rtx pat = PATTERN (insn);
1651 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1652 return 1;
1654 /* Insns carrying these notes are useful later on. */
1655 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1656 return 0;
1658 /* Check the code to be executed for COND_EXEC. */
1659 if (GET_CODE (pat) == COND_EXEC)
1660 pat = COND_EXEC_CODE (pat);
1662 if (GET_CODE (pat) == SET && set_noop_p (pat))
1663 return 1;
1665 if (GET_CODE (pat) == PARALLEL)
1667 int i;
1668 /* If nothing but SETs of registers to themselves,
1669 this insn can also be deleted. */
1670 for (i = 0; i < XVECLEN (pat, 0); i++)
1672 rtx tem = XVECEXP (pat, 0, i);
1674 if (GET_CODE (tem) == USE
1675 || GET_CODE (tem) == CLOBBER
1676 || GET_CODE (tem) == CLOBBER_HIGH)
1677 continue;
1679 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1680 return 0;
1683 return 1;
1685 return 0;
1689 /* Return nonzero if register in range [REGNO, ENDREGNO)
1690 appears either explicitly or implicitly in X
1691 other than being stored into.
1693 References contained within the substructure at LOC do not count.
1694 LOC may be zero, meaning don't ignore anything. */
1696 bool
1697 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1698 rtx *loc)
1700 int i;
1701 unsigned int x_regno;
1702 RTX_CODE code;
1703 const char *fmt;
1705 repeat:
1706 /* The contents of a REG_NONNEG note is always zero, so we must come here
1707 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1708 if (x == 0)
1709 return false;
1711 code = GET_CODE (x);
1713 switch (code)
1715 case REG:
1716 x_regno = REGNO (x);
1718 /* If we modifying the stack, frame, or argument pointer, it will
1719 clobber a virtual register. In fact, we could be more precise,
1720 but it isn't worth it. */
1721 if ((x_regno == STACK_POINTER_REGNUM
1722 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1723 && x_regno == ARG_POINTER_REGNUM)
1724 || x_regno == FRAME_POINTER_REGNUM)
1725 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1726 return true;
1728 return endregno > x_regno && regno < END_REGNO (x);
1730 case SUBREG:
1731 /* If this is a SUBREG of a hard reg, we can see exactly which
1732 registers are being modified. Otherwise, handle normally. */
1733 if (REG_P (SUBREG_REG (x))
1734 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1736 unsigned int inner_regno = subreg_regno (x);
1737 unsigned int inner_endregno
1738 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1739 ? subreg_nregs (x) : 1);
1741 return endregno > inner_regno && regno < inner_endregno;
1743 break;
1745 case CLOBBER:
1746 case SET:
1747 if (&SET_DEST (x) != loc
1748 /* Note setting a SUBREG counts as referring to the REG it is in for
1749 a pseudo but not for hard registers since we can
1750 treat each word individually. */
1751 && ((GET_CODE (SET_DEST (x)) == SUBREG
1752 && loc != &SUBREG_REG (SET_DEST (x))
1753 && REG_P (SUBREG_REG (SET_DEST (x)))
1754 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1755 && refers_to_regno_p (regno, endregno,
1756 SUBREG_REG (SET_DEST (x)), loc))
1757 || (!REG_P (SET_DEST (x))
1758 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1759 return true;
1761 if (code == CLOBBER || loc == &SET_SRC (x))
1762 return false;
1763 x = SET_SRC (x);
1764 goto repeat;
1766 default:
1767 break;
1770 /* X does not match, so try its subexpressions. */
1772 fmt = GET_RTX_FORMAT (code);
1773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1775 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1777 if (i == 0)
1779 x = XEXP (x, 0);
1780 goto repeat;
1782 else
1783 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1784 return true;
1786 else if (fmt[i] == 'E')
1788 int j;
1789 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1790 if (loc != &XVECEXP (x, i, j)
1791 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1792 return true;
1795 return false;
1798 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1799 we check if any register number in X conflicts with the relevant register
1800 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1801 contains a MEM (we don't bother checking for memory addresses that can't
1802 conflict because we expect this to be a rare case. */
1805 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1807 unsigned int regno, endregno;
1809 /* If either argument is a constant, then modifying X can not
1810 affect IN. Here we look at IN, we can profitably combine
1811 CONSTANT_P (x) with the switch statement below. */
1812 if (CONSTANT_P (in))
1813 return 0;
1815 recurse:
1816 switch (GET_CODE (x))
1818 case CLOBBER:
1819 case STRICT_LOW_PART:
1820 case ZERO_EXTRACT:
1821 case SIGN_EXTRACT:
1822 /* Overly conservative. */
1823 x = XEXP (x, 0);
1824 goto recurse;
1826 case SUBREG:
1827 regno = REGNO (SUBREG_REG (x));
1828 if (regno < FIRST_PSEUDO_REGISTER)
1829 regno = subreg_regno (x);
1830 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1831 ? subreg_nregs (x) : 1);
1832 goto do_reg;
1834 case REG:
1835 regno = REGNO (x);
1836 endregno = END_REGNO (x);
1837 do_reg:
1838 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1840 case MEM:
1842 const char *fmt;
1843 int i;
1845 if (MEM_P (in))
1846 return 1;
1848 fmt = GET_RTX_FORMAT (GET_CODE (in));
1849 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1850 if (fmt[i] == 'e')
1852 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1853 return 1;
1855 else if (fmt[i] == 'E')
1857 int j;
1858 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1859 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1860 return 1;
1863 return 0;
1866 case SCRATCH:
1867 case PC:
1868 case CC0:
1869 return reg_mentioned_p (x, in);
1871 case PARALLEL:
1873 int i;
1875 /* If any register in here refers to it we return true. */
1876 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1877 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1878 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1879 return 1;
1880 return 0;
1883 default:
1884 gcc_assert (CONSTANT_P (x));
1885 return 0;
1889 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1890 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1891 ignored by note_stores, but passed to FUN.
1893 FUN receives three arguments:
1894 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1895 2. the SET or CLOBBER rtx that does the store,
1896 3. the pointer DATA provided to note_stores.
1898 If the item being stored in or clobbered is a SUBREG of a hard register,
1899 the SUBREG will be passed. */
1901 void
1902 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1904 int i;
1906 if (GET_CODE (x) == COND_EXEC)
1907 x = COND_EXEC_CODE (x);
1909 if (GET_CODE (x) == SET
1910 || GET_CODE (x) == CLOBBER
1911 || GET_CODE (x) == CLOBBER_HIGH)
1913 rtx dest = SET_DEST (x);
1915 while ((GET_CODE (dest) == SUBREG
1916 && (!REG_P (SUBREG_REG (dest))
1917 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1918 || GET_CODE (dest) == ZERO_EXTRACT
1919 || GET_CODE (dest) == STRICT_LOW_PART)
1920 dest = XEXP (dest, 0);
1922 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1923 each of whose first operand is a register. */
1924 if (GET_CODE (dest) == PARALLEL)
1926 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1927 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1928 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1930 else
1931 (*fun) (dest, x, data);
1934 else if (GET_CODE (x) == PARALLEL)
1935 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1936 note_stores (XVECEXP (x, 0, i), fun, data);
1939 /* Like notes_stores, but call FUN for each expression that is being
1940 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1941 FUN for each expression, not any interior subexpressions. FUN receives a
1942 pointer to the expression and the DATA passed to this function.
1944 Note that this is not quite the same test as that done in reg_referenced_p
1945 since that considers something as being referenced if it is being
1946 partially set, while we do not. */
1948 void
1949 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1951 rtx body = *pbody;
1952 int i;
1954 switch (GET_CODE (body))
1956 case COND_EXEC:
1957 (*fun) (&COND_EXEC_TEST (body), data);
1958 note_uses (&COND_EXEC_CODE (body), fun, data);
1959 return;
1961 case PARALLEL:
1962 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1963 note_uses (&XVECEXP (body, 0, i), fun, data);
1964 return;
1966 case SEQUENCE:
1967 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1968 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1969 return;
1971 case USE:
1972 (*fun) (&XEXP (body, 0), data);
1973 return;
1975 case ASM_OPERANDS:
1976 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1977 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1978 return;
1980 case TRAP_IF:
1981 (*fun) (&TRAP_CONDITION (body), data);
1982 return;
1984 case PREFETCH:
1985 (*fun) (&XEXP (body, 0), data);
1986 return;
1988 case UNSPEC:
1989 case UNSPEC_VOLATILE:
1990 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1991 (*fun) (&XVECEXP (body, 0, i), data);
1992 return;
1994 case CLOBBER:
1995 if (MEM_P (XEXP (body, 0)))
1996 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1997 return;
1999 case SET:
2001 rtx dest = SET_DEST (body);
2003 /* For sets we replace everything in source plus registers in memory
2004 expression in store and operands of a ZERO_EXTRACT. */
2005 (*fun) (&SET_SRC (body), data);
2007 if (GET_CODE (dest) == ZERO_EXTRACT)
2009 (*fun) (&XEXP (dest, 1), data);
2010 (*fun) (&XEXP (dest, 2), data);
2013 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2014 dest = XEXP (dest, 0);
2016 if (MEM_P (dest))
2017 (*fun) (&XEXP (dest, 0), data);
2019 return;
2021 default:
2022 /* All the other possibilities never store. */
2023 (*fun) (pbody, data);
2024 return;
2028 /* Return nonzero if X's old contents don't survive after INSN.
2029 This will be true if X is (cc0) or if X is a register and
2030 X dies in INSN or because INSN entirely sets X.
2032 "Entirely set" means set directly and not through a SUBREG, or
2033 ZERO_EXTRACT, so no trace of the old contents remains.
2034 Likewise, REG_INC does not count.
2036 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2037 but for this use that makes no difference, since regs don't overlap
2038 during their lifetimes. Therefore, this function may be used
2039 at any time after deaths have been computed.
2041 If REG is a hard reg that occupies multiple machine registers, this
2042 function will only return 1 if each of those registers will be replaced
2043 by INSN. */
2046 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2048 unsigned int regno, end_regno;
2049 unsigned int i;
2051 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2052 if (GET_CODE (x) == CC0)
2053 return 1;
2055 gcc_assert (REG_P (x));
2057 regno = REGNO (x);
2058 end_regno = END_REGNO (x);
2059 for (i = regno; i < end_regno; i++)
2060 if (! dead_or_set_regno_p (insn, i))
2061 return 0;
2063 return 1;
2066 /* Return TRUE iff DEST is a register or subreg of a register, is a
2067 complete rather than read-modify-write destination, and contains
2068 register TEST_REGNO. */
2070 static bool
2071 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2073 unsigned int regno, endregno;
2075 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2076 dest = SUBREG_REG (dest);
2078 if (!REG_P (dest))
2079 return false;
2081 regno = REGNO (dest);
2082 endregno = END_REGNO (dest);
2083 return (test_regno >= regno && test_regno < endregno);
2086 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2087 any member matches the covers_regno_no_parallel_p criteria. */
2089 static bool
2090 covers_regno_p (const_rtx dest, unsigned int test_regno)
2092 if (GET_CODE (dest) == PARALLEL)
2094 /* Some targets place small structures in registers for return
2095 values of functions, and those registers are wrapped in
2096 PARALLELs that we may see as the destination of a SET. */
2097 int i;
2099 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2101 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2102 if (inner != NULL_RTX
2103 && covers_regno_no_parallel_p (inner, test_regno))
2104 return true;
2107 return false;
2109 else
2110 return covers_regno_no_parallel_p (dest, test_regno);
2113 /* Utility function for dead_or_set_p to check an individual register. */
2116 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2118 const_rtx pattern;
2120 /* See if there is a death note for something that includes TEST_REGNO. */
2121 if (find_regno_note (insn, REG_DEAD, test_regno))
2122 return 1;
2124 if (CALL_P (insn)
2125 && find_regno_fusage (insn, CLOBBER, test_regno))
2126 return 1;
2128 pattern = PATTERN (insn);
2130 /* If a COND_EXEC is not executed, the value survives. */
2131 if (GET_CODE (pattern) == COND_EXEC)
2132 return 0;
2134 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2135 return covers_regno_p (SET_DEST (pattern), test_regno);
2136 else if (GET_CODE (pattern) == PARALLEL)
2138 int i;
2140 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2142 rtx body = XVECEXP (pattern, 0, i);
2144 if (GET_CODE (body) == COND_EXEC)
2145 body = COND_EXEC_CODE (body);
2147 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2148 && covers_regno_p (SET_DEST (body), test_regno))
2149 return 1;
2153 return 0;
2156 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2157 If DATUM is nonzero, look for one whose datum is DATUM. */
2160 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2162 rtx link;
2164 gcc_checking_assert (insn);
2166 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2167 if (! INSN_P (insn))
2168 return 0;
2169 if (datum == 0)
2171 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2172 if (REG_NOTE_KIND (link) == kind)
2173 return link;
2174 return 0;
2177 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2178 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2179 return link;
2180 return 0;
2183 /* Return the reg-note of kind KIND in insn INSN which applies to register
2184 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2185 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2186 it might be the case that the note overlaps REGNO. */
2189 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2191 rtx link;
2193 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2194 if (! INSN_P (insn))
2195 return 0;
2197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2198 if (REG_NOTE_KIND (link) == kind
2199 /* Verify that it is a register, so that scratch and MEM won't cause a
2200 problem here. */
2201 && REG_P (XEXP (link, 0))
2202 && REGNO (XEXP (link, 0)) <= regno
2203 && END_REGNO (XEXP (link, 0)) > regno)
2204 return link;
2205 return 0;
2208 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2209 has such a note. */
2212 find_reg_equal_equiv_note (const_rtx insn)
2214 rtx link;
2216 if (!INSN_P (insn))
2217 return 0;
2219 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2220 if (REG_NOTE_KIND (link) == REG_EQUAL
2221 || REG_NOTE_KIND (link) == REG_EQUIV)
2223 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2224 insns that have multiple sets. Checking single_set to
2225 make sure of this is not the proper check, as explained
2226 in the comment in set_unique_reg_note.
2228 This should be changed into an assert. */
2229 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2230 return 0;
2231 return link;
2233 return NULL;
2236 /* Check whether INSN is a single_set whose source is known to be
2237 equivalent to a constant. Return that constant if so, otherwise
2238 return null. */
2241 find_constant_src (const rtx_insn *insn)
2243 rtx note, set, x;
2245 set = single_set (insn);
2246 if (set)
2248 x = avoid_constant_pool_reference (SET_SRC (set));
2249 if (CONSTANT_P (x))
2250 return x;
2253 note = find_reg_equal_equiv_note (insn);
2254 if (note && CONSTANT_P (XEXP (note, 0)))
2255 return XEXP (note, 0);
2257 return NULL_RTX;
2260 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2261 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2264 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2266 /* If it's not a CALL_INSN, it can't possibly have a
2267 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2268 if (!CALL_P (insn))
2269 return 0;
2271 gcc_assert (datum);
2273 if (!REG_P (datum))
2275 rtx link;
2277 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2278 link;
2279 link = XEXP (link, 1))
2280 if (GET_CODE (XEXP (link, 0)) == code
2281 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2282 return 1;
2284 else
2286 unsigned int regno = REGNO (datum);
2288 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2289 to pseudo registers, so don't bother checking. */
2291 if (regno < FIRST_PSEUDO_REGISTER)
2293 unsigned int end_regno = END_REGNO (datum);
2294 unsigned int i;
2296 for (i = regno; i < end_regno; i++)
2297 if (find_regno_fusage (insn, code, i))
2298 return 1;
2302 return 0;
2305 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2306 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2309 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2311 rtx link;
2313 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2314 to pseudo registers, so don't bother checking. */
2316 if (regno >= FIRST_PSEUDO_REGISTER
2317 || !CALL_P (insn) )
2318 return 0;
2320 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2322 rtx op, reg;
2324 if (GET_CODE (op = XEXP (link, 0)) == code
2325 && REG_P (reg = XEXP (op, 0))
2326 && REGNO (reg) <= regno
2327 && END_REGNO (reg) > regno)
2328 return 1;
2331 return 0;
2335 /* Return true if KIND is an integer REG_NOTE. */
2337 static bool
2338 int_reg_note_p (enum reg_note kind)
2340 return kind == REG_BR_PROB;
2343 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2344 stored as the pointer to the next register note. */
2347 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2349 rtx note;
2351 gcc_checking_assert (!int_reg_note_p (kind));
2352 switch (kind)
2354 case REG_CC_SETTER:
2355 case REG_CC_USER:
2356 case REG_LABEL_TARGET:
2357 case REG_LABEL_OPERAND:
2358 case REG_TM:
2359 /* These types of register notes use an INSN_LIST rather than an
2360 EXPR_LIST, so that copying is done right and dumps look
2361 better. */
2362 note = alloc_INSN_LIST (datum, list);
2363 PUT_REG_NOTE_KIND (note, kind);
2364 break;
2366 default:
2367 note = alloc_EXPR_LIST (kind, datum, list);
2368 break;
2371 return note;
2374 /* Add register note with kind KIND and datum DATUM to INSN. */
2376 void
2377 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2379 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2382 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2384 void
2385 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2387 gcc_checking_assert (int_reg_note_p (kind));
2388 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2389 datum, REG_NOTES (insn));
2392 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2394 void
2395 add_args_size_note (rtx_insn *insn, poly_int64 value)
2397 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2398 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2401 /* Add a register note like NOTE to INSN. */
2403 void
2404 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2406 if (GET_CODE (note) == INT_LIST)
2407 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2408 else
2409 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2412 /* Duplicate NOTE and return the copy. */
2414 duplicate_reg_note (rtx note)
2416 reg_note kind = REG_NOTE_KIND (note);
2418 if (GET_CODE (note) == INT_LIST)
2419 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2420 else if (GET_CODE (note) == EXPR_LIST)
2421 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2422 else
2423 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2426 /* Remove register note NOTE from the REG_NOTES of INSN. */
2428 void
2429 remove_note (rtx_insn *insn, const_rtx note)
2431 rtx link;
2433 if (note == NULL_RTX)
2434 return;
2436 if (REG_NOTES (insn) == note)
2437 REG_NOTES (insn) = XEXP (note, 1);
2438 else
2439 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2440 if (XEXP (link, 1) == note)
2442 XEXP (link, 1) = XEXP (note, 1);
2443 break;
2446 switch (REG_NOTE_KIND (note))
2448 case REG_EQUAL:
2449 case REG_EQUIV:
2450 df_notes_rescan (insn);
2451 break;
2452 default:
2453 break;
2457 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2458 Return true if any note has been removed. */
2460 bool
2461 remove_reg_equal_equiv_notes (rtx_insn *insn)
2463 rtx *loc;
2464 bool ret = false;
2466 loc = &REG_NOTES (insn);
2467 while (*loc)
2469 enum reg_note kind = REG_NOTE_KIND (*loc);
2470 if (kind == REG_EQUAL || kind == REG_EQUIV)
2472 *loc = XEXP (*loc, 1);
2473 ret = true;
2475 else
2476 loc = &XEXP (*loc, 1);
2478 return ret;
2481 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2483 void
2484 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2486 df_ref eq_use;
2488 if (!df)
2489 return;
2491 /* This loop is a little tricky. We cannot just go down the chain because
2492 it is being modified by some actions in the loop. So we just iterate
2493 over the head. We plan to drain the list anyway. */
2494 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2496 rtx_insn *insn = DF_REF_INSN (eq_use);
2497 rtx note = find_reg_equal_equiv_note (insn);
2499 /* This assert is generally triggered when someone deletes a REG_EQUAL
2500 or REG_EQUIV note by hacking the list manually rather than calling
2501 remove_note. */
2502 gcc_assert (note);
2504 remove_note (insn, note);
2508 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2509 return 1 if it is found. A simple equality test is used to determine if
2510 NODE matches. */
2512 bool
2513 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2515 const_rtx x;
2517 for (x = listp; x; x = XEXP (x, 1))
2518 if (node == XEXP (x, 0))
2519 return true;
2521 return false;
2524 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2525 remove that entry from the list if it is found.
2527 A simple equality test is used to determine if NODE matches. */
2529 void
2530 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2532 rtx_expr_list *temp = *listp;
2533 rtx_expr_list *prev = NULL;
2535 while (temp)
2537 if (node == temp->element ())
2539 /* Splice the node out of the list. */
2540 if (prev)
2541 XEXP (prev, 1) = temp->next ();
2542 else
2543 *listp = temp->next ();
2545 return;
2548 prev = temp;
2549 temp = temp->next ();
2553 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2554 remove that entry from the list if it is found.
2556 A simple equality test is used to determine if NODE matches. */
2558 void
2559 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2561 rtx_insn_list *temp = *listp;
2562 rtx_insn_list *prev = NULL;
2564 while (temp)
2566 if (node == temp->insn ())
2568 /* Splice the node out of the list. */
2569 if (prev)
2570 XEXP (prev, 1) = temp->next ();
2571 else
2572 *listp = temp->next ();
2574 return;
2577 prev = temp;
2578 temp = temp->next ();
2582 /* Nonzero if X contains any volatile instructions. These are instructions
2583 which may cause unpredictable machine state instructions, and thus no
2584 instructions or register uses should be moved or combined across them.
2585 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2588 volatile_insn_p (const_rtx x)
2590 const RTX_CODE code = GET_CODE (x);
2591 switch (code)
2593 case LABEL_REF:
2594 case SYMBOL_REF:
2595 case CONST:
2596 CASE_CONST_ANY:
2597 case CC0:
2598 case PC:
2599 case REG:
2600 case SCRATCH:
2601 case CLOBBER:
2602 case ADDR_VEC:
2603 case ADDR_DIFF_VEC:
2604 case CALL:
2605 case MEM:
2606 return 0;
2608 case UNSPEC_VOLATILE:
2609 return 1;
2611 case ASM_INPUT:
2612 case ASM_OPERANDS:
2613 if (MEM_VOLATILE_P (x))
2614 return 1;
2616 default:
2617 break;
2620 /* Recursively scan the operands of this expression. */
2623 const char *const fmt = GET_RTX_FORMAT (code);
2624 int i;
2626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2628 if (fmt[i] == 'e')
2630 if (volatile_insn_p (XEXP (x, i)))
2631 return 1;
2633 else if (fmt[i] == 'E')
2635 int j;
2636 for (j = 0; j < XVECLEN (x, i); j++)
2637 if (volatile_insn_p (XVECEXP (x, i, j)))
2638 return 1;
2642 return 0;
2645 /* Nonzero if X contains any volatile memory references
2646 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2649 volatile_refs_p (const_rtx x)
2651 const RTX_CODE code = GET_CODE (x);
2652 switch (code)
2654 case LABEL_REF:
2655 case SYMBOL_REF:
2656 case CONST:
2657 CASE_CONST_ANY:
2658 case CC0:
2659 case PC:
2660 case REG:
2661 case SCRATCH:
2662 case CLOBBER:
2663 case ADDR_VEC:
2664 case ADDR_DIFF_VEC:
2665 return 0;
2667 case UNSPEC_VOLATILE:
2668 return 1;
2670 case MEM:
2671 case ASM_INPUT:
2672 case ASM_OPERANDS:
2673 if (MEM_VOLATILE_P (x))
2674 return 1;
2676 default:
2677 break;
2680 /* Recursively scan the operands of this expression. */
2683 const char *const fmt = GET_RTX_FORMAT (code);
2684 int i;
2686 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2688 if (fmt[i] == 'e')
2690 if (volatile_refs_p (XEXP (x, i)))
2691 return 1;
2693 else if (fmt[i] == 'E')
2695 int j;
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 if (volatile_refs_p (XVECEXP (x, i, j)))
2698 return 1;
2702 return 0;
2705 /* Similar to above, except that it also rejects register pre- and post-
2706 incrementing. */
2709 side_effects_p (const_rtx x)
2711 const RTX_CODE code = GET_CODE (x);
2712 switch (code)
2714 case LABEL_REF:
2715 case SYMBOL_REF:
2716 case CONST:
2717 CASE_CONST_ANY:
2718 case CC0:
2719 case PC:
2720 case REG:
2721 case SCRATCH:
2722 case ADDR_VEC:
2723 case ADDR_DIFF_VEC:
2724 case VAR_LOCATION:
2725 return 0;
2727 case CLOBBER:
2728 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2729 when some combination can't be done. If we see one, don't think
2730 that we can simplify the expression. */
2731 return (GET_MODE (x) != VOIDmode);
2733 case PRE_INC:
2734 case PRE_DEC:
2735 case POST_INC:
2736 case POST_DEC:
2737 case PRE_MODIFY:
2738 case POST_MODIFY:
2739 case CALL:
2740 case UNSPEC_VOLATILE:
2741 return 1;
2743 case MEM:
2744 case ASM_INPUT:
2745 case ASM_OPERANDS:
2746 if (MEM_VOLATILE_P (x))
2747 return 1;
2749 default:
2750 break;
2753 /* Recursively scan the operands of this expression. */
2756 const char *fmt = GET_RTX_FORMAT (code);
2757 int i;
2759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2761 if (fmt[i] == 'e')
2763 if (side_effects_p (XEXP (x, i)))
2764 return 1;
2766 else if (fmt[i] == 'E')
2768 int j;
2769 for (j = 0; j < XVECLEN (x, i); j++)
2770 if (side_effects_p (XVECEXP (x, i, j)))
2771 return 1;
2775 return 0;
2778 /* Return nonzero if evaluating rtx X might cause a trap.
2779 FLAGS controls how to consider MEMs. A nonzero means the context
2780 of the access may have changed from the original, such that the
2781 address may have become invalid. */
2784 may_trap_p_1 (const_rtx x, unsigned flags)
2786 int i;
2787 enum rtx_code code;
2788 const char *fmt;
2790 /* We make no distinction currently, but this function is part of
2791 the internal target-hooks ABI so we keep the parameter as
2792 "unsigned flags". */
2793 bool code_changed = flags != 0;
2795 if (x == 0)
2796 return 0;
2797 code = GET_CODE (x);
2798 switch (code)
2800 /* Handle these cases quickly. */
2801 CASE_CONST_ANY:
2802 case SYMBOL_REF:
2803 case LABEL_REF:
2804 case CONST:
2805 case PC:
2806 case CC0:
2807 case REG:
2808 case SCRATCH:
2809 return 0;
2811 case UNSPEC:
2812 return targetm.unspec_may_trap_p (x, flags);
2814 case UNSPEC_VOLATILE:
2815 case ASM_INPUT:
2816 case TRAP_IF:
2817 return 1;
2819 case ASM_OPERANDS:
2820 return MEM_VOLATILE_P (x);
2822 /* Memory ref can trap unless it's a static var or a stack slot. */
2823 case MEM:
2824 /* Recognize specific pattern of stack checking probes. */
2825 if (flag_stack_check
2826 && MEM_VOLATILE_P (x)
2827 && XEXP (x, 0) == stack_pointer_rtx)
2828 return 1;
2829 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2830 reference; moving it out of context such as when moving code
2831 when optimizing, might cause its address to become invalid. */
2832 code_changed
2833 || !MEM_NOTRAP_P (x))
2835 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2836 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2837 GET_MODE (x), code_changed);
2840 return 0;
2842 /* Division by a non-constant might trap. */
2843 case DIV:
2844 case MOD:
2845 case UDIV:
2846 case UMOD:
2847 if (HONOR_SNANS (x))
2848 return 1;
2849 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2850 return flag_trapping_math;
2851 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2852 return 1;
2853 break;
2855 case EXPR_LIST:
2856 /* An EXPR_LIST is used to represent a function call. This
2857 certainly may trap. */
2858 return 1;
2860 case GE:
2861 case GT:
2862 case LE:
2863 case LT:
2864 case LTGT:
2865 case COMPARE:
2866 /* Some floating point comparisons may trap. */
2867 if (!flag_trapping_math)
2868 break;
2869 /* ??? There is no machine independent way to check for tests that trap
2870 when COMPARE is used, though many targets do make this distinction.
2871 For instance, sparc uses CCFPE for compares which generate exceptions
2872 and CCFP for compares which do not generate exceptions. */
2873 if (HONOR_NANS (x))
2874 return 1;
2875 /* But often the compare has some CC mode, so check operand
2876 modes as well. */
2877 if (HONOR_NANS (XEXP (x, 0))
2878 || HONOR_NANS (XEXP (x, 1)))
2879 return 1;
2880 break;
2882 case EQ:
2883 case NE:
2884 if (HONOR_SNANS (x))
2885 return 1;
2886 /* Often comparison is CC mode, so check operand modes. */
2887 if (HONOR_SNANS (XEXP (x, 0))
2888 || HONOR_SNANS (XEXP (x, 1)))
2889 return 1;
2890 break;
2892 case FIX:
2893 /* Conversion of floating point might trap. */
2894 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2895 return 1;
2896 break;
2898 case NEG:
2899 case ABS:
2900 case SUBREG:
2901 /* These operations don't trap even with floating point. */
2902 break;
2904 default:
2905 /* Any floating arithmetic may trap. */
2906 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2907 return 1;
2910 fmt = GET_RTX_FORMAT (code);
2911 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2913 if (fmt[i] == 'e')
2915 if (may_trap_p_1 (XEXP (x, i), flags))
2916 return 1;
2918 else if (fmt[i] == 'E')
2920 int j;
2921 for (j = 0; j < XVECLEN (x, i); j++)
2922 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2923 return 1;
2926 return 0;
2929 /* Return nonzero if evaluating rtx X might cause a trap. */
2932 may_trap_p (const_rtx x)
2934 return may_trap_p_1 (x, 0);
2937 /* Same as above, but additionally return nonzero if evaluating rtx X might
2938 cause a fault. We define a fault for the purpose of this function as a
2939 erroneous execution condition that cannot be encountered during the normal
2940 execution of a valid program; the typical example is an unaligned memory
2941 access on a strict alignment machine. The compiler guarantees that it
2942 doesn't generate code that will fault from a valid program, but this
2943 guarantee doesn't mean anything for individual instructions. Consider
2944 the following example:
2946 struct S { int d; union { char *cp; int *ip; }; };
2948 int foo(struct S *s)
2950 if (s->d == 1)
2951 return *s->ip;
2952 else
2953 return *s->cp;
2956 on a strict alignment machine. In a valid program, foo will never be
2957 invoked on a structure for which d is equal to 1 and the underlying
2958 unique field of the union not aligned on a 4-byte boundary, but the
2959 expression *s->ip might cause a fault if considered individually.
2961 At the RTL level, potentially problematic expressions will almost always
2962 verify may_trap_p; for example, the above dereference can be emitted as
2963 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2964 However, suppose that foo is inlined in a caller that causes s->cp to
2965 point to a local character variable and guarantees that s->d is not set
2966 to 1; foo may have been effectively translated into pseudo-RTL as:
2968 if ((reg:SI) == 1)
2969 (set (reg:SI) (mem:SI (%fp - 7)))
2970 else
2971 (set (reg:QI) (mem:QI (%fp - 7)))
2973 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2974 memory reference to a stack slot, but it will certainly cause a fault
2975 on a strict alignment machine. */
2978 may_trap_or_fault_p (const_rtx x)
2980 return may_trap_p_1 (x, 1);
2983 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2984 i.e., an inequality. */
2987 inequality_comparisons_p (const_rtx x)
2989 const char *fmt;
2990 int len, i;
2991 const enum rtx_code code = GET_CODE (x);
2993 switch (code)
2995 case REG:
2996 case SCRATCH:
2997 case PC:
2998 case CC0:
2999 CASE_CONST_ANY:
3000 case CONST:
3001 case LABEL_REF:
3002 case SYMBOL_REF:
3003 return 0;
3005 case LT:
3006 case LTU:
3007 case GT:
3008 case GTU:
3009 case LE:
3010 case LEU:
3011 case GE:
3012 case GEU:
3013 return 1;
3015 default:
3016 break;
3019 len = GET_RTX_LENGTH (code);
3020 fmt = GET_RTX_FORMAT (code);
3022 for (i = 0; i < len; i++)
3024 if (fmt[i] == 'e')
3026 if (inequality_comparisons_p (XEXP (x, i)))
3027 return 1;
3029 else if (fmt[i] == 'E')
3031 int j;
3032 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3033 if (inequality_comparisons_p (XVECEXP (x, i, j)))
3034 return 1;
3038 return 0;
3041 /* Replace any occurrence of FROM in X with TO. The function does
3042 not enter into CONST_DOUBLE for the replace.
3044 Note that copying is not done so X must not be shared unless all copies
3045 are to be modified.
3047 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3048 those pointer-equal ones. */
3051 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3053 int i, j;
3054 const char *fmt;
3056 if (x == from)
3057 return to;
3059 /* Allow this function to make replacements in EXPR_LISTs. */
3060 if (x == 0)
3061 return 0;
3063 if (all_regs
3064 && REG_P (x)
3065 && REG_P (from)
3066 && REGNO (x) == REGNO (from))
3068 gcc_assert (GET_MODE (x) == GET_MODE (from));
3069 return to;
3071 else if (GET_CODE (x) == SUBREG)
3073 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3075 if (CONST_INT_P (new_rtx))
3077 x = simplify_subreg (GET_MODE (x), new_rtx,
3078 GET_MODE (SUBREG_REG (x)),
3079 SUBREG_BYTE (x));
3080 gcc_assert (x);
3082 else
3083 SUBREG_REG (x) = new_rtx;
3085 return x;
3087 else if (GET_CODE (x) == ZERO_EXTEND)
3089 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3091 if (CONST_INT_P (new_rtx))
3093 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3094 new_rtx, GET_MODE (XEXP (x, 0)));
3095 gcc_assert (x);
3097 else
3098 XEXP (x, 0) = new_rtx;
3100 return x;
3103 fmt = GET_RTX_FORMAT (GET_CODE (x));
3104 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3106 if (fmt[i] == 'e')
3107 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3108 else if (fmt[i] == 'E')
3109 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3110 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3111 from, to, all_regs);
3114 return x;
3117 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3118 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3120 void
3121 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3123 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3124 rtx x = *loc;
3125 if (JUMP_TABLE_DATA_P (x))
3127 x = PATTERN (x);
3128 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3129 int len = GET_NUM_ELEM (vec);
3130 for (int i = 0; i < len; ++i)
3132 rtx ref = RTVEC_ELT (vec, i);
3133 if (XEXP (ref, 0) == old_label)
3135 XEXP (ref, 0) = new_label;
3136 if (update_label_nuses)
3138 ++LABEL_NUSES (new_label);
3139 --LABEL_NUSES (old_label);
3143 return;
3146 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3147 field. This is not handled by the iterator because it doesn't
3148 handle unprinted ('0') fields. */
3149 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3150 JUMP_LABEL (x) = new_label;
3152 subrtx_ptr_iterator::array_type array;
3153 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3155 rtx *loc = *iter;
3156 if (rtx x = *loc)
3158 if (GET_CODE (x) == SYMBOL_REF
3159 && CONSTANT_POOL_ADDRESS_P (x))
3161 rtx c = get_pool_constant (x);
3162 if (rtx_referenced_p (old_label, c))
3164 /* Create a copy of constant C; replace the label inside
3165 but do not update LABEL_NUSES because uses in constant pool
3166 are not counted. */
3167 rtx new_c = copy_rtx (c);
3168 replace_label (&new_c, old_label, new_label, false);
3170 /* Add the new constant NEW_C to constant pool and replace
3171 the old reference to constant by new reference. */
3172 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3173 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3177 if ((GET_CODE (x) == LABEL_REF
3178 || GET_CODE (x) == INSN_LIST)
3179 && XEXP (x, 0) == old_label)
3181 XEXP (x, 0) = new_label;
3182 if (update_label_nuses)
3184 ++LABEL_NUSES (new_label);
3185 --LABEL_NUSES (old_label);
3192 void
3193 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3194 rtx_insn *new_label, bool update_label_nuses)
3196 rtx insn_as_rtx = insn;
3197 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3198 gcc_checking_assert (insn_as_rtx == insn);
3201 /* Return true if X is referenced in BODY. */
3203 bool
3204 rtx_referenced_p (const_rtx x, const_rtx body)
3206 subrtx_iterator::array_type array;
3207 FOR_EACH_SUBRTX (iter, array, body, ALL)
3208 if (const_rtx y = *iter)
3210 /* Check if a label_ref Y refers to label X. */
3211 if (GET_CODE (y) == LABEL_REF
3212 && LABEL_P (x)
3213 && label_ref_label (y) == x)
3214 return true;
3216 if (rtx_equal_p (x, y))
3217 return true;
3219 /* If Y is a reference to pool constant traverse the constant. */
3220 if (GET_CODE (y) == SYMBOL_REF
3221 && CONSTANT_POOL_ADDRESS_P (y))
3222 iter.substitute (get_pool_constant (y));
3224 return false;
3227 /* If INSN is a tablejump return true and store the label (before jump table) to
3228 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3230 bool
3231 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3232 rtx_jump_table_data **tablep)
3234 if (!JUMP_P (insn))
3235 return false;
3237 rtx target = JUMP_LABEL (insn);
3238 if (target == NULL_RTX || ANY_RETURN_P (target))
3239 return false;
3241 rtx_insn *label = as_a<rtx_insn *> (target);
3242 rtx_insn *table = next_insn (label);
3243 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3244 return false;
3246 if (labelp)
3247 *labelp = label;
3248 if (tablep)
3249 *tablep = as_a <rtx_jump_table_data *> (table);
3250 return true;
3253 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3254 constant that is not in the constant pool and not in the condition
3255 of an IF_THEN_ELSE. */
3257 static int
3258 computed_jump_p_1 (const_rtx x)
3260 const enum rtx_code code = GET_CODE (x);
3261 int i, j;
3262 const char *fmt;
3264 switch (code)
3266 case LABEL_REF:
3267 case PC:
3268 return 0;
3270 case CONST:
3271 CASE_CONST_ANY:
3272 case SYMBOL_REF:
3273 case REG:
3274 return 1;
3276 case MEM:
3277 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3278 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3280 case IF_THEN_ELSE:
3281 return (computed_jump_p_1 (XEXP (x, 1))
3282 || computed_jump_p_1 (XEXP (x, 2)));
3284 default:
3285 break;
3288 fmt = GET_RTX_FORMAT (code);
3289 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3291 if (fmt[i] == 'e'
3292 && computed_jump_p_1 (XEXP (x, i)))
3293 return 1;
3295 else if (fmt[i] == 'E')
3296 for (j = 0; j < XVECLEN (x, i); j++)
3297 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3298 return 1;
3301 return 0;
3304 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3306 Tablejumps and casesi insns are not considered indirect jumps;
3307 we can recognize them by a (use (label_ref)). */
3310 computed_jump_p (const rtx_insn *insn)
3312 int i;
3313 if (JUMP_P (insn))
3315 rtx pat = PATTERN (insn);
3317 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3318 if (JUMP_LABEL (insn) != NULL)
3319 return 0;
3321 if (GET_CODE (pat) == PARALLEL)
3323 int len = XVECLEN (pat, 0);
3324 int has_use_labelref = 0;
3326 for (i = len - 1; i >= 0; i--)
3327 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3328 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3329 == LABEL_REF))
3331 has_use_labelref = 1;
3332 break;
3335 if (! has_use_labelref)
3336 for (i = len - 1; i >= 0; i--)
3337 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3338 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3339 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3340 return 1;
3342 else if (GET_CODE (pat) == SET
3343 && SET_DEST (pat) == pc_rtx
3344 && computed_jump_p_1 (SET_SRC (pat)))
3345 return 1;
3347 return 0;
3352 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3353 the equivalent add insn and pass the result to FN, using DATA as the
3354 final argument. */
3356 static int
3357 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3359 rtx x = XEXP (mem, 0);
3360 switch (GET_CODE (x))
3362 case PRE_INC:
3363 case POST_INC:
3365 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3366 rtx r1 = XEXP (x, 0);
3367 rtx c = gen_int_mode (size, GET_MODE (r1));
3368 return fn (mem, x, r1, r1, c, data);
3371 case PRE_DEC:
3372 case POST_DEC:
3374 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3375 rtx r1 = XEXP (x, 0);
3376 rtx c = gen_int_mode (-size, GET_MODE (r1));
3377 return fn (mem, x, r1, r1, c, data);
3380 case PRE_MODIFY:
3381 case POST_MODIFY:
3383 rtx r1 = XEXP (x, 0);
3384 rtx add = XEXP (x, 1);
3385 return fn (mem, x, r1, add, NULL, data);
3388 default:
3389 gcc_unreachable ();
3393 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3394 For each such autoinc operation found, call FN, passing it
3395 the innermost enclosing MEM, the operation itself, the RTX modified
3396 by the operation, two RTXs (the second may be NULL) that, once
3397 added, represent the value to be held by the modified RTX
3398 afterwards, and DATA. FN is to return 0 to continue the
3399 traversal or any other value to have it returned to the caller of
3400 for_each_inc_dec. */
3403 for_each_inc_dec (rtx x,
3404 for_each_inc_dec_fn fn,
3405 void *data)
3407 subrtx_var_iterator::array_type array;
3408 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3410 rtx mem = *iter;
3411 if (mem
3412 && MEM_P (mem)
3413 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3415 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3416 if (res != 0)
3417 return res;
3418 iter.skip_subrtxes ();
3421 return 0;
3425 /* Searches X for any reference to REGNO, returning the rtx of the
3426 reference found if any. Otherwise, returns NULL_RTX. */
3429 regno_use_in (unsigned int regno, rtx x)
3431 const char *fmt;
3432 int i, j;
3433 rtx tem;
3435 if (REG_P (x) && REGNO (x) == regno)
3436 return x;
3438 fmt = GET_RTX_FORMAT (GET_CODE (x));
3439 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3441 if (fmt[i] == 'e')
3443 if ((tem = regno_use_in (regno, XEXP (x, i))))
3444 return tem;
3446 else if (fmt[i] == 'E')
3447 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3448 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3449 return tem;
3452 return NULL_RTX;
3455 /* Return a value indicating whether OP, an operand of a commutative
3456 operation, is preferred as the first or second operand. The more
3457 positive the value, the stronger the preference for being the first
3458 operand. */
3461 commutative_operand_precedence (rtx op)
3463 enum rtx_code code = GET_CODE (op);
3465 /* Constants always become the second operand. Prefer "nice" constants. */
3466 if (code == CONST_INT)
3467 return -10;
3468 if (code == CONST_WIDE_INT)
3469 return -9;
3470 if (code == CONST_POLY_INT)
3471 return -8;
3472 if (code == CONST_DOUBLE)
3473 return -8;
3474 if (code == CONST_FIXED)
3475 return -8;
3476 op = avoid_constant_pool_reference (op);
3477 code = GET_CODE (op);
3479 switch (GET_RTX_CLASS (code))
3481 case RTX_CONST_OBJ:
3482 if (code == CONST_INT)
3483 return -7;
3484 if (code == CONST_WIDE_INT)
3485 return -6;
3486 if (code == CONST_POLY_INT)
3487 return -5;
3488 if (code == CONST_DOUBLE)
3489 return -5;
3490 if (code == CONST_FIXED)
3491 return -5;
3492 return -4;
3494 case RTX_EXTRA:
3495 /* SUBREGs of objects should come second. */
3496 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3497 return -3;
3498 return 0;
3500 case RTX_OBJ:
3501 /* Complex expressions should be the first, so decrease priority
3502 of objects. Prefer pointer objects over non pointer objects. */
3503 if ((REG_P (op) && REG_POINTER (op))
3504 || (MEM_P (op) && MEM_POINTER (op)))
3505 return -1;
3506 return -2;
3508 case RTX_COMM_ARITH:
3509 /* Prefer operands that are themselves commutative to be first.
3510 This helps to make things linear. In particular,
3511 (and (and (reg) (reg)) (not (reg))) is canonical. */
3512 return 4;
3514 case RTX_BIN_ARITH:
3515 /* If only one operand is a binary expression, it will be the first
3516 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3517 is canonical, although it will usually be further simplified. */
3518 return 2;
3520 case RTX_UNARY:
3521 /* Then prefer NEG and NOT. */
3522 if (code == NEG || code == NOT)
3523 return 1;
3524 /* FALLTHRU */
3526 default:
3527 return 0;
3531 /* Return 1 iff it is necessary to swap operands of commutative operation
3532 in order to canonicalize expression. */
3534 bool
3535 swap_commutative_operands_p (rtx x, rtx y)
3537 return (commutative_operand_precedence (x)
3538 < commutative_operand_precedence (y));
3541 /* Return 1 if X is an autoincrement side effect and the register is
3542 not the stack pointer. */
3544 auto_inc_p (const_rtx x)
3546 switch (GET_CODE (x))
3548 case PRE_INC:
3549 case POST_INC:
3550 case PRE_DEC:
3551 case POST_DEC:
3552 case PRE_MODIFY:
3553 case POST_MODIFY:
3554 /* There are no REG_INC notes for SP. */
3555 if (XEXP (x, 0) != stack_pointer_rtx)
3556 return 1;
3557 default:
3558 break;
3560 return 0;
3563 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3565 loc_mentioned_in_p (rtx *loc, const_rtx in)
3567 enum rtx_code code;
3568 const char *fmt;
3569 int i, j;
3571 if (!in)
3572 return 0;
3574 code = GET_CODE (in);
3575 fmt = GET_RTX_FORMAT (code);
3576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3578 if (fmt[i] == 'e')
3580 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3581 return 1;
3583 else if (fmt[i] == 'E')
3584 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3585 if (loc == &XVECEXP (in, i, j)
3586 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3587 return 1;
3589 return 0;
3592 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3593 and SUBREG_BYTE, return the bit offset where the subreg begins
3594 (counting from the least significant bit of the operand). */
3596 poly_uint64
3597 subreg_lsb_1 (machine_mode outer_mode,
3598 machine_mode inner_mode,
3599 poly_uint64 subreg_byte)
3601 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3603 /* A paradoxical subreg begins at bit position 0. */
3604 if (paradoxical_subreg_p (outer_mode, inner_mode))
3605 return 0;
3607 subreg_end = subreg_byte + GET_MODE_SIZE (outer_mode);
3608 trailing_bytes = GET_MODE_SIZE (inner_mode) - subreg_end;
3609 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3610 byte_pos = trailing_bytes;
3611 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3612 byte_pos = subreg_byte;
3613 else
3615 /* When bytes and words have opposite endianness, we must be able
3616 to split offsets into words and bytes at compile time. */
3617 poly_uint64 leading_word_part
3618 = force_align_down (subreg_byte, UNITS_PER_WORD);
3619 poly_uint64 trailing_word_part
3620 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3621 /* If the subreg crosses a word boundary ensure that
3622 it also begins and ends on a word boundary. */
3623 gcc_assert (known_le (subreg_end - leading_word_part,
3624 (unsigned int) UNITS_PER_WORD)
3625 || (known_eq (leading_word_part, subreg_byte)
3626 && known_eq (trailing_word_part, trailing_bytes)));
3627 if (WORDS_BIG_ENDIAN)
3628 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3629 else
3630 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3633 return byte_pos * BITS_PER_UNIT;
3636 /* Given a subreg X, return the bit offset where the subreg begins
3637 (counting from the least significant bit of the reg). */
3639 poly_uint64
3640 subreg_lsb (const_rtx x)
3642 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3643 SUBREG_BYTE (x));
3646 /* Return the subreg byte offset for a subreg whose outer value has
3647 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3648 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3649 lsb of the inner value. This is the inverse of the calculation
3650 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3652 poly_uint64
3653 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3654 poly_uint64 lsb_shift)
3656 /* A paradoxical subreg begins at bit position 0. */
3657 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3658 if (maybe_gt (outer_bytes, inner_bytes))
3660 gcc_checking_assert (known_eq (lsb_shift, 0U));
3661 return 0;
3664 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3665 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3666 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3667 return upper_bytes;
3668 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3669 return lower_bytes;
3670 else
3672 /* When bytes and words have opposite endianness, we must be able
3673 to split offsets into words and bytes at compile time. */
3674 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3675 UNITS_PER_WORD);
3676 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3677 UNITS_PER_WORD);
3678 if (WORDS_BIG_ENDIAN)
3679 return upper_word_part + (lower_bytes - lower_word_part);
3680 else
3681 return lower_word_part + (upper_bytes - upper_word_part);
3685 /* Fill in information about a subreg of a hard register.
3686 xregno - A regno of an inner hard subreg_reg (or what will become one).
3687 xmode - The mode of xregno.
3688 offset - The byte offset.
3689 ymode - The mode of a top level SUBREG (or what may become one).
3690 info - Pointer to structure to fill in.
3692 Rather than considering one particular inner register (and thus one
3693 particular "outer" register) in isolation, this function really uses
3694 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3695 function does not check whether adding INFO->offset to XREGNO gives
3696 a valid hard register; even if INFO->offset + XREGNO is out of range,
3697 there might be another register of the same type that is in range.
3698 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3699 the new register, since that can depend on things like whether the final
3700 register number is even or odd. Callers that want to check whether
3701 this particular subreg can be replaced by a simple (reg ...) should
3702 use simplify_subreg_regno. */
3704 void
3705 subreg_get_info (unsigned int xregno, machine_mode xmode,
3706 poly_uint64 offset, machine_mode ymode,
3707 struct subreg_info *info)
3709 unsigned int nregs_xmode, nregs_ymode;
3711 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3713 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3714 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3716 bool rknown = false;
3718 /* If the register representation of a non-scalar mode has holes in it,
3719 we expect the scalar units to be concatenated together, with the holes
3720 distributed evenly among the scalar units. Each scalar unit must occupy
3721 at least one register. */
3722 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3724 /* As a consequence, we must be dealing with a constant number of
3725 scalars, and thus a constant offset and number of units. */
3726 HOST_WIDE_INT coffset = offset.to_constant ();
3727 HOST_WIDE_INT cysize = ysize.to_constant ();
3728 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3729 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3730 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3731 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3732 gcc_assert (nregs_xmode
3733 == (nunits
3734 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3735 gcc_assert (hard_regno_nregs (xregno, xmode)
3736 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3738 /* You can only ask for a SUBREG of a value with holes in the middle
3739 if you don't cross the holes. (Such a SUBREG should be done by
3740 picking a different register class, or doing it in memory if
3741 necessary.) An example of a value with holes is XCmode on 32-bit
3742 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3743 3 for each part, but in memory it's two 128-bit parts.
3744 Padding is assumed to be at the end (not necessarily the 'high part')
3745 of each unit. */
3746 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3747 && (coffset / GET_MODE_SIZE (xmode_unit)
3748 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3750 info->representable_p = false;
3751 rknown = true;
3754 else
3755 nregs_xmode = hard_regno_nregs (xregno, xmode);
3757 nregs_ymode = hard_regno_nregs (xregno, ymode);
3759 /* Subreg sizes must be ordered, so that we can tell whether they are
3760 partial, paradoxical or complete. */
3761 gcc_checking_assert (ordered_p (xsize, ysize));
3763 /* Paradoxical subregs are otherwise valid. */
3764 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3766 info->representable_p = true;
3767 /* If this is a big endian paradoxical subreg, which uses more
3768 actual hard registers than the original register, we must
3769 return a negative offset so that we find the proper highpart
3770 of the register.
3772 We assume that the ordering of registers within a multi-register
3773 value has a consistent endianness: if bytes and register words
3774 have different endianness, the hard registers that make up a
3775 multi-register value must be at least word-sized. */
3776 if (REG_WORDS_BIG_ENDIAN)
3777 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3778 else
3779 info->offset = 0;
3780 info->nregs = nregs_ymode;
3781 return;
3784 /* If registers store different numbers of bits in the different
3785 modes, we cannot generally form this subreg. */
3786 poly_uint64 regsize_xmode, regsize_ymode;
3787 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3788 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3789 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3790 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3792 if (!rknown
3793 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3794 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3796 info->representable_p = false;
3797 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3798 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3799 /* Checked by validate_subreg. We must know at compile time
3800 which inner registers are being accessed. */
3801 gcc_unreachable ();
3802 return;
3804 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3805 would go outside of XMODE. */
3806 if (!rknown && maybe_gt (ysize + offset, xsize))
3808 info->representable_p = false;
3809 info->nregs = nregs_ymode;
3810 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3811 /* Checked by validate_subreg. We must know at compile time
3812 which inner registers are being accessed. */
3813 gcc_unreachable ();
3814 return;
3816 /* Quick exit for the simple and common case of extracting whole
3817 subregisters from a multiregister value. */
3818 /* ??? It would be better to integrate this into the code below,
3819 if we can generalize the concept enough and figure out how
3820 odd-sized modes can coexist with the other weird cases we support. */
3821 HOST_WIDE_INT count;
3822 if (!rknown
3823 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3824 && known_eq (regsize_xmode, regsize_ymode)
3825 && constant_multiple_p (offset, regsize_ymode, &count))
3827 info->representable_p = true;
3828 info->nregs = nregs_ymode;
3829 info->offset = count;
3830 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3831 return;
3835 /* Lowpart subregs are otherwise valid. */
3836 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3838 info->representable_p = true;
3839 rknown = true;
3841 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3843 info->offset = 0;
3844 info->nregs = nregs_ymode;
3845 return;
3849 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3850 values there are in (reg:XMODE XREGNO). We can view the register
3851 as consisting of this number of independent "blocks", where each
3852 block occupies NREGS_YMODE registers and contains exactly one
3853 representable YMODE value. */
3854 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3855 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3857 /* Calculate the number of bytes in each block. This must always
3858 be exact, otherwise we don't know how to verify the constraint.
3859 These conditions may be relaxed but subreg_regno_offset would
3860 need to be redesigned. */
3861 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3863 /* Get the number of the first block that contains the subreg and the byte
3864 offset of the subreg from the start of that block. */
3865 unsigned int block_number;
3866 poly_uint64 subblock_offset;
3867 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3868 &subblock_offset))
3869 /* Checked by validate_subreg. We must know at compile time which
3870 inner registers are being accessed. */
3871 gcc_unreachable ();
3873 if (!rknown)
3875 /* Only the lowpart of each block is representable. */
3876 info->representable_p
3877 = known_eq (subblock_offset,
3878 subreg_size_lowpart_offset (ysize, bytes_per_block));
3879 rknown = true;
3882 /* We assume that the ordering of registers within a multi-register
3883 value has a consistent endianness: if bytes and register words
3884 have different endianness, the hard registers that make up a
3885 multi-register value must be at least word-sized. */
3886 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3887 /* The block number we calculated above followed memory endianness.
3888 Convert it to register endianness by counting back from the end.
3889 (Note that, because of the assumption above, each block must be
3890 at least word-sized.) */
3891 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3892 else
3893 info->offset = block_number * nregs_ymode;
3894 info->nregs = nregs_ymode;
3897 /* This function returns the regno offset of a subreg expression.
3898 xregno - A regno of an inner hard subreg_reg (or what will become one).
3899 xmode - The mode of xregno.
3900 offset - The byte offset.
3901 ymode - The mode of a top level SUBREG (or what may become one).
3902 RETURN - The regno offset which would be used. */
3903 unsigned int
3904 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3905 poly_uint64 offset, machine_mode ymode)
3907 struct subreg_info info;
3908 subreg_get_info (xregno, xmode, offset, ymode, &info);
3909 return info.offset;
3912 /* This function returns true when the offset is representable via
3913 subreg_offset in the given regno.
3914 xregno - A regno of an inner hard subreg_reg (or what will become one).
3915 xmode - The mode of xregno.
3916 offset - The byte offset.
3917 ymode - The mode of a top level SUBREG (or what may become one).
3918 RETURN - Whether the offset is representable. */
3919 bool
3920 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3921 poly_uint64 offset, machine_mode ymode)
3923 struct subreg_info info;
3924 subreg_get_info (xregno, xmode, offset, ymode, &info);
3925 return info.representable_p;
3928 /* Return the number of a YMODE register to which
3930 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3932 can be simplified. Return -1 if the subreg can't be simplified.
3934 XREGNO is a hard register number. */
3937 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3938 poly_uint64 offset, machine_mode ymode)
3940 struct subreg_info info;
3941 unsigned int yregno;
3943 /* Give the backend a chance to disallow the mode change. */
3944 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3945 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3946 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3947 /* We can use mode change in LRA for some transformations. */
3948 && ! lra_in_progress)
3949 return -1;
3951 /* We shouldn't simplify stack-related registers. */
3952 if ((!reload_completed || frame_pointer_needed)
3953 && xregno == FRAME_POINTER_REGNUM)
3954 return -1;
3956 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3957 && xregno == ARG_POINTER_REGNUM)
3958 return -1;
3960 if (xregno == STACK_POINTER_REGNUM
3961 /* We should convert hard stack register in LRA if it is
3962 possible. */
3963 && ! lra_in_progress)
3964 return -1;
3966 /* Try to get the register offset. */
3967 subreg_get_info (xregno, xmode, offset, ymode, &info);
3968 if (!info.representable_p)
3969 return -1;
3971 /* Make sure that the offsetted register value is in range. */
3972 yregno = xregno + info.offset;
3973 if (!HARD_REGISTER_NUM_P (yregno))
3974 return -1;
3976 /* See whether (reg:YMODE YREGNO) is valid.
3978 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3979 This is a kludge to work around how complex FP arguments are passed
3980 on IA-64 and should be fixed. See PR target/49226. */
3981 if (!targetm.hard_regno_mode_ok (yregno, ymode)
3982 && targetm.hard_regno_mode_ok (xregno, xmode))
3983 return -1;
3985 return (int) yregno;
3988 /* Return the final regno that a subreg expression refers to. */
3989 unsigned int
3990 subreg_regno (const_rtx x)
3992 unsigned int ret;
3993 rtx subreg = SUBREG_REG (x);
3994 int regno = REGNO (subreg);
3996 ret = regno + subreg_regno_offset (regno,
3997 GET_MODE (subreg),
3998 SUBREG_BYTE (x),
3999 GET_MODE (x));
4000 return ret;
4004 /* Return the number of registers that a subreg expression refers
4005 to. */
4006 unsigned int
4007 subreg_nregs (const_rtx x)
4009 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4012 /* Return the number of registers that a subreg REG with REGNO
4013 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4014 changed so that the regno can be passed in. */
4016 unsigned int
4017 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4019 struct subreg_info info;
4020 rtx subreg = SUBREG_REG (x);
4022 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4023 &info);
4024 return info.nregs;
4027 struct parms_set_data
4029 int nregs;
4030 HARD_REG_SET regs;
4033 /* Helper function for noticing stores to parameter registers. */
4034 static void
4035 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4037 struct parms_set_data *const d = (struct parms_set_data *) data;
4038 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4039 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4041 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4042 d->nregs--;
4046 /* Look backward for first parameter to be loaded.
4047 Note that loads of all parameters will not necessarily be
4048 found if CSE has eliminated some of them (e.g., an argument
4049 to the outer function is passed down as a parameter).
4050 Do not skip BOUNDARY. */
4051 rtx_insn *
4052 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4054 struct parms_set_data parm;
4055 rtx p;
4056 rtx_insn *before, *first_set;
4058 /* Since different machines initialize their parameter registers
4059 in different orders, assume nothing. Collect the set of all
4060 parameter registers. */
4061 CLEAR_HARD_REG_SET (parm.regs);
4062 parm.nregs = 0;
4063 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4064 if (GET_CODE (XEXP (p, 0)) == USE
4065 && REG_P (XEXP (XEXP (p, 0), 0))
4066 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4068 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4070 /* We only care about registers which can hold function
4071 arguments. */
4072 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4073 continue;
4075 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4076 parm.nregs++;
4078 before = call_insn;
4079 first_set = call_insn;
4081 /* Search backward for the first set of a register in this set. */
4082 while (parm.nregs && before != boundary)
4084 before = PREV_INSN (before);
4086 /* It is possible that some loads got CSEed from one call to
4087 another. Stop in that case. */
4088 if (CALL_P (before))
4089 break;
4091 /* Our caller needs either ensure that we will find all sets
4092 (in case code has not been optimized yet), or take care
4093 for possible labels in a way by setting boundary to preceding
4094 CODE_LABEL. */
4095 if (LABEL_P (before))
4097 gcc_assert (before == boundary);
4098 break;
4101 if (INSN_P (before))
4103 int nregs_old = parm.nregs;
4104 note_stores (PATTERN (before), parms_set, &parm);
4105 /* If we found something that did not set a parameter reg,
4106 we're done. Do not keep going, as that might result
4107 in hoisting an insn before the setting of a pseudo
4108 that is used by the hoisted insn. */
4109 if (nregs_old != parm.nregs)
4110 first_set = before;
4111 else
4112 break;
4115 return first_set;
4118 /* Return true if we should avoid inserting code between INSN and preceding
4119 call instruction. */
4121 bool
4122 keep_with_call_p (const rtx_insn *insn)
4124 rtx set;
4126 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4128 if (REG_P (SET_DEST (set))
4129 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4130 && fixed_regs[REGNO (SET_DEST (set))]
4131 && general_operand (SET_SRC (set), VOIDmode))
4132 return true;
4133 if (REG_P (SET_SRC (set))
4134 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4135 && REG_P (SET_DEST (set))
4136 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4137 return true;
4138 /* There may be a stack pop just after the call and before the store
4139 of the return register. Search for the actual store when deciding
4140 if we can break or not. */
4141 if (SET_DEST (set) == stack_pointer_rtx)
4143 /* This CONST_CAST is okay because next_nonnote_insn just
4144 returns its argument and we assign it to a const_rtx
4145 variable. */
4146 const rtx_insn *i2
4147 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4148 if (i2 && keep_with_call_p (i2))
4149 return true;
4152 return false;
4155 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4156 to non-complex jumps. That is, direct unconditional, conditional,
4157 and tablejumps, but not computed jumps or returns. It also does
4158 not apply to the fallthru case of a conditional jump. */
4160 bool
4161 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4163 rtx tmp = JUMP_LABEL (jump_insn);
4164 rtx_jump_table_data *table;
4166 if (label == tmp)
4167 return true;
4169 if (tablejump_p (jump_insn, NULL, &table))
4171 rtvec vec = table->get_labels ();
4172 int i, veclen = GET_NUM_ELEM (vec);
4174 for (i = 0; i < veclen; ++i)
4175 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4176 return true;
4179 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4180 return true;
4182 return false;
4186 /* Return an estimate of the cost of computing rtx X.
4187 One use is in cse, to decide which expression to keep in the hash table.
4188 Another is in rtl generation, to pick the cheapest way to multiply.
4189 Other uses like the latter are expected in the future.
4191 X appears as operand OPNO in an expression with code OUTER_CODE.
4192 SPEED specifies whether costs optimized for speed or size should
4193 be returned. */
4196 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4197 int opno, bool speed)
4199 int i, j;
4200 enum rtx_code code;
4201 const char *fmt;
4202 int total;
4203 int factor;
4205 if (x == 0)
4206 return 0;
4208 if (GET_MODE (x) != VOIDmode)
4209 mode = GET_MODE (x);
4211 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4212 many insns, taking N times as long. */
4213 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4214 if (factor == 0)
4215 factor = 1;
4217 /* Compute the default costs of certain things.
4218 Note that targetm.rtx_costs can override the defaults. */
4220 code = GET_CODE (x);
4221 switch (code)
4223 case MULT:
4224 /* Multiplication has time-complexity O(N*N), where N is the
4225 number of units (translated from digits) when using
4226 schoolbook long multiplication. */
4227 total = factor * factor * COSTS_N_INSNS (5);
4228 break;
4229 case DIV:
4230 case UDIV:
4231 case MOD:
4232 case UMOD:
4233 /* Similarly, complexity for schoolbook long division. */
4234 total = factor * factor * COSTS_N_INSNS (7);
4235 break;
4236 case USE:
4237 /* Used in combine.c as a marker. */
4238 total = 0;
4239 break;
4240 case SET:
4241 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4242 the mode for the factor. */
4243 mode = GET_MODE (SET_DEST (x));
4244 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4245 if (factor == 0)
4246 factor = 1;
4247 /* FALLTHRU */
4248 default:
4249 total = factor * COSTS_N_INSNS (1);
4252 switch (code)
4254 case REG:
4255 return 0;
4257 case SUBREG:
4258 total = 0;
4259 /* If we can't tie these modes, make this expensive. The larger
4260 the mode, the more expensive it is. */
4261 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4262 return COSTS_N_INSNS (2 + factor);
4263 break;
4265 case TRUNCATE:
4266 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4268 total = 0;
4269 break;
4271 /* FALLTHRU */
4272 default:
4273 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4274 return total;
4275 break;
4278 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4279 which is already in total. */
4281 fmt = GET_RTX_FORMAT (code);
4282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4283 if (fmt[i] == 'e')
4284 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4285 else if (fmt[i] == 'E')
4286 for (j = 0; j < XVECLEN (x, i); j++)
4287 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4289 return total;
4292 /* Fill in the structure C with information about both speed and size rtx
4293 costs for X, which is operand OPNO in an expression with code OUTER. */
4295 void
4296 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4297 struct full_rtx_costs *c)
4299 c->speed = rtx_cost (x, mode, outer, opno, true);
4300 c->size = rtx_cost (x, mode, outer, opno, false);
4304 /* Return cost of address expression X.
4305 Expect that X is properly formed address reference.
4307 SPEED parameter specify whether costs optimized for speed or size should
4308 be returned. */
4311 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4313 /* We may be asked for cost of various unusual addresses, such as operands
4314 of push instruction. It is not worthwhile to complicate writing
4315 of the target hook by such cases. */
4317 if (!memory_address_addr_space_p (mode, x, as))
4318 return 1000;
4320 return targetm.address_cost (x, mode, as, speed);
4323 /* If the target doesn't override, compute the cost as with arithmetic. */
4326 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4328 return rtx_cost (x, Pmode, MEM, 0, speed);
4332 unsigned HOST_WIDE_INT
4333 nonzero_bits (const_rtx x, machine_mode mode)
4335 if (mode == VOIDmode)
4336 mode = GET_MODE (x);
4337 scalar_int_mode int_mode;
4338 if (!is_a <scalar_int_mode> (mode, &int_mode))
4339 return GET_MODE_MASK (mode);
4340 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4343 unsigned int
4344 num_sign_bit_copies (const_rtx x, machine_mode mode)
4346 if (mode == VOIDmode)
4347 mode = GET_MODE (x);
4348 scalar_int_mode int_mode;
4349 if (!is_a <scalar_int_mode> (mode, &int_mode))
4350 return 1;
4351 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4354 /* Return true if nonzero_bits1 might recurse into both operands
4355 of X. */
4357 static inline bool
4358 nonzero_bits_binary_arith_p (const_rtx x)
4360 if (!ARITHMETIC_P (x))
4361 return false;
4362 switch (GET_CODE (x))
4364 case AND:
4365 case XOR:
4366 case IOR:
4367 case UMIN:
4368 case UMAX:
4369 case SMIN:
4370 case SMAX:
4371 case PLUS:
4372 case MINUS:
4373 case MULT:
4374 case DIV:
4375 case UDIV:
4376 case MOD:
4377 case UMOD:
4378 return true;
4379 default:
4380 return false;
4384 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4385 It avoids exponential behavior in nonzero_bits1 when X has
4386 identical subexpressions on the first or the second level. */
4388 static unsigned HOST_WIDE_INT
4389 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4390 machine_mode known_mode,
4391 unsigned HOST_WIDE_INT known_ret)
4393 if (x == known_x && mode == known_mode)
4394 return known_ret;
4396 /* Try to find identical subexpressions. If found call
4397 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4398 precomputed value for the subexpression as KNOWN_RET. */
4400 if (nonzero_bits_binary_arith_p (x))
4402 rtx x0 = XEXP (x, 0);
4403 rtx x1 = XEXP (x, 1);
4405 /* Check the first level. */
4406 if (x0 == x1)
4407 return nonzero_bits1 (x, mode, x0, mode,
4408 cached_nonzero_bits (x0, mode, known_x,
4409 known_mode, known_ret));
4411 /* Check the second level. */
4412 if (nonzero_bits_binary_arith_p (x0)
4413 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4414 return nonzero_bits1 (x, mode, x1, mode,
4415 cached_nonzero_bits (x1, mode, known_x,
4416 known_mode, known_ret));
4418 if (nonzero_bits_binary_arith_p (x1)
4419 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4420 return nonzero_bits1 (x, mode, x0, mode,
4421 cached_nonzero_bits (x0, mode, known_x,
4422 known_mode, known_ret));
4425 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4428 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4429 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4430 is less useful. We can't allow both, because that results in exponential
4431 run time recursion. There is a nullstone testcase that triggered
4432 this. This macro avoids accidental uses of num_sign_bit_copies. */
4433 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4435 /* Given an expression, X, compute which bits in X can be nonzero.
4436 We don't care about bits outside of those defined in MODE.
4438 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4439 an arithmetic operation, we can do better. */
4441 static unsigned HOST_WIDE_INT
4442 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4443 machine_mode known_mode,
4444 unsigned HOST_WIDE_INT known_ret)
4446 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4447 unsigned HOST_WIDE_INT inner_nz;
4448 enum rtx_code code = GET_CODE (x);
4449 machine_mode inner_mode;
4450 unsigned int inner_width;
4451 scalar_int_mode xmode;
4453 unsigned int mode_width = GET_MODE_PRECISION (mode);
4455 if (CONST_INT_P (x))
4457 if (SHORT_IMMEDIATES_SIGN_EXTEND
4458 && INTVAL (x) > 0
4459 && mode_width < BITS_PER_WORD
4460 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4461 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4463 return UINTVAL (x);
4466 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4467 return nonzero;
4468 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4470 /* If X is wider than MODE, use its mode instead. */
4471 if (xmode_width > mode_width)
4473 mode = xmode;
4474 nonzero = GET_MODE_MASK (mode);
4475 mode_width = xmode_width;
4478 if (mode_width > HOST_BITS_PER_WIDE_INT)
4479 /* Our only callers in this case look for single bit values. So
4480 just return the mode mask. Those tests will then be false. */
4481 return nonzero;
4483 /* If MODE is wider than X, but both are a single word for both the host
4484 and target machines, we can compute this from which bits of the object
4485 might be nonzero in its own mode, taking into account the fact that, on
4486 CISC machines, accessing an object in a wider mode generally causes the
4487 high-order bits to become undefined, so they are not known to be zero.
4488 We extend this reasoning to RISC machines for rotate operations since the
4489 semantics of the operations in the larger mode is not well defined. */
4490 if (mode_width > xmode_width
4491 && xmode_width <= BITS_PER_WORD
4492 && xmode_width <= HOST_BITS_PER_WIDE_INT
4493 && (!WORD_REGISTER_OPERATIONS || code == ROTATE || code == ROTATERT))
4495 nonzero &= cached_nonzero_bits (x, xmode,
4496 known_x, known_mode, known_ret);
4497 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4498 return nonzero;
4501 /* Please keep nonzero_bits_binary_arith_p above in sync with
4502 the code in the switch below. */
4503 switch (code)
4505 case REG:
4506 #if defined(POINTERS_EXTEND_UNSIGNED)
4507 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4508 all the bits above ptr_mode are known to be zero. */
4509 /* As we do not know which address space the pointer is referring to,
4510 we can do this only if the target does not support different pointer
4511 or address modes depending on the address space. */
4512 if (target_default_pointer_address_modes_p ()
4513 && POINTERS_EXTEND_UNSIGNED
4514 && xmode == Pmode
4515 && REG_POINTER (x)
4516 && !targetm.have_ptr_extend ())
4517 nonzero &= GET_MODE_MASK (ptr_mode);
4518 #endif
4520 /* Include declared information about alignment of pointers. */
4521 /* ??? We don't properly preserve REG_POINTER changes across
4522 pointer-to-integer casts, so we can't trust it except for
4523 things that we know must be pointers. See execute/960116-1.c. */
4524 if ((x == stack_pointer_rtx
4525 || x == frame_pointer_rtx
4526 || x == arg_pointer_rtx)
4527 && REGNO_POINTER_ALIGN (REGNO (x)))
4529 unsigned HOST_WIDE_INT alignment
4530 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4532 #ifdef PUSH_ROUNDING
4533 /* If PUSH_ROUNDING is defined, it is possible for the
4534 stack to be momentarily aligned only to that amount,
4535 so we pick the least alignment. */
4536 if (x == stack_pointer_rtx && PUSH_ARGS)
4538 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4539 alignment = MIN (known_alignment (rounded_1), alignment);
4541 #endif
4543 nonzero &= ~(alignment - 1);
4547 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4548 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4549 &nonzero_for_hook);
4551 if (new_rtx)
4552 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4553 known_mode, known_ret);
4555 return nonzero_for_hook;
4558 case MEM:
4559 /* In many, if not most, RISC machines, reading a byte from memory
4560 zeros the rest of the register. Noticing that fact saves a lot
4561 of extra zero-extends. */
4562 if (load_extend_op (xmode) == ZERO_EXTEND)
4563 nonzero &= GET_MODE_MASK (xmode);
4564 break;
4566 case EQ: case NE:
4567 case UNEQ: case LTGT:
4568 case GT: case GTU: case UNGT:
4569 case LT: case LTU: case UNLT:
4570 case GE: case GEU: case UNGE:
4571 case LE: case LEU: case UNLE:
4572 case UNORDERED: case ORDERED:
4573 /* If this produces an integer result, we know which bits are set.
4574 Code here used to clear bits outside the mode of X, but that is
4575 now done above. */
4576 /* Mind that MODE is the mode the caller wants to look at this
4577 operation in, and not the actual operation mode. We can wind
4578 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4579 that describes the results of a vector compare. */
4580 if (GET_MODE_CLASS (xmode) == MODE_INT
4581 && mode_width <= HOST_BITS_PER_WIDE_INT)
4582 nonzero = STORE_FLAG_VALUE;
4583 break;
4585 case NEG:
4586 #if 0
4587 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4588 and num_sign_bit_copies. */
4589 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4590 nonzero = 1;
4591 #endif
4593 if (xmode_width < mode_width)
4594 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4595 break;
4597 case ABS:
4598 #if 0
4599 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4600 and num_sign_bit_copies. */
4601 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4602 nonzero = 1;
4603 #endif
4604 break;
4606 case TRUNCATE:
4607 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4608 known_x, known_mode, known_ret)
4609 & GET_MODE_MASK (mode));
4610 break;
4612 case ZERO_EXTEND:
4613 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4614 known_x, known_mode, known_ret);
4615 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4616 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4617 break;
4619 case SIGN_EXTEND:
4620 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4621 Otherwise, show all the bits in the outer mode but not the inner
4622 may be nonzero. */
4623 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4624 known_x, known_mode, known_ret);
4625 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4627 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4628 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4629 inner_nz |= (GET_MODE_MASK (mode)
4630 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4633 nonzero &= inner_nz;
4634 break;
4636 case AND:
4637 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4638 known_x, known_mode, known_ret)
4639 & cached_nonzero_bits (XEXP (x, 1), mode,
4640 known_x, known_mode, known_ret);
4641 break;
4643 case XOR: case IOR:
4644 case UMIN: case UMAX: case SMIN: case SMAX:
4646 unsigned HOST_WIDE_INT nonzero0
4647 = cached_nonzero_bits (XEXP (x, 0), mode,
4648 known_x, known_mode, known_ret);
4650 /* Don't call nonzero_bits for the second time if it cannot change
4651 anything. */
4652 if ((nonzero & nonzero0) != nonzero)
4653 nonzero &= nonzero0
4654 | cached_nonzero_bits (XEXP (x, 1), mode,
4655 known_x, known_mode, known_ret);
4657 break;
4659 case PLUS: case MINUS:
4660 case MULT:
4661 case DIV: case UDIV:
4662 case MOD: case UMOD:
4663 /* We can apply the rules of arithmetic to compute the number of
4664 high- and low-order zero bits of these operations. We start by
4665 computing the width (position of the highest-order nonzero bit)
4666 and the number of low-order zero bits for each value. */
4668 unsigned HOST_WIDE_INT nz0
4669 = cached_nonzero_bits (XEXP (x, 0), mode,
4670 known_x, known_mode, known_ret);
4671 unsigned HOST_WIDE_INT nz1
4672 = cached_nonzero_bits (XEXP (x, 1), mode,
4673 known_x, known_mode, known_ret);
4674 int sign_index = xmode_width - 1;
4675 int width0 = floor_log2 (nz0) + 1;
4676 int width1 = floor_log2 (nz1) + 1;
4677 int low0 = ctz_or_zero (nz0);
4678 int low1 = ctz_or_zero (nz1);
4679 unsigned HOST_WIDE_INT op0_maybe_minusp
4680 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4681 unsigned HOST_WIDE_INT op1_maybe_minusp
4682 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4683 unsigned int result_width = mode_width;
4684 int result_low = 0;
4686 switch (code)
4688 case PLUS:
4689 result_width = MAX (width0, width1) + 1;
4690 result_low = MIN (low0, low1);
4691 break;
4692 case MINUS:
4693 result_low = MIN (low0, low1);
4694 break;
4695 case MULT:
4696 result_width = width0 + width1;
4697 result_low = low0 + low1;
4698 break;
4699 case DIV:
4700 if (width1 == 0)
4701 break;
4702 if (!op0_maybe_minusp && !op1_maybe_minusp)
4703 result_width = width0;
4704 break;
4705 case UDIV:
4706 if (width1 == 0)
4707 break;
4708 result_width = width0;
4709 break;
4710 case MOD:
4711 if (width1 == 0)
4712 break;
4713 if (!op0_maybe_minusp && !op1_maybe_minusp)
4714 result_width = MIN (width0, width1);
4715 result_low = MIN (low0, low1);
4716 break;
4717 case UMOD:
4718 if (width1 == 0)
4719 break;
4720 result_width = MIN (width0, width1);
4721 result_low = MIN (low0, low1);
4722 break;
4723 default:
4724 gcc_unreachable ();
4727 if (result_width < mode_width)
4728 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4730 if (result_low > 0)
4731 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4733 break;
4735 case ZERO_EXTRACT:
4736 if (CONST_INT_P (XEXP (x, 1))
4737 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4738 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4739 break;
4741 case SUBREG:
4742 /* If this is a SUBREG formed for a promoted variable that has
4743 been zero-extended, we know that at least the high-order bits
4744 are zero, though others might be too. */
4745 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4746 nonzero = GET_MODE_MASK (xmode)
4747 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4748 known_x, known_mode, known_ret);
4750 /* If the inner mode is a single word for both the host and target
4751 machines, we can compute this from which bits of the inner
4752 object might be nonzero. */
4753 inner_mode = GET_MODE (SUBREG_REG (x));
4754 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4755 && inner_width <= BITS_PER_WORD
4756 && inner_width <= HOST_BITS_PER_WIDE_INT)
4758 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4759 known_x, known_mode, known_ret);
4761 /* On many CISC machines, accessing an object in a wider mode
4762 causes the high-order bits to become undefined. So they are
4763 not known to be zero. */
4764 rtx_code extend_op;
4765 if ((!WORD_REGISTER_OPERATIONS
4766 /* If this is a typical RISC machine, we only have to worry
4767 about the way loads are extended. */
4768 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4769 ? val_signbit_known_set_p (inner_mode, nonzero)
4770 : extend_op != ZERO_EXTEND)
4771 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4772 && xmode_width > inner_width)
4773 nonzero
4774 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4776 break;
4778 case ASHIFT:
4779 case ASHIFTRT:
4780 case LSHIFTRT:
4781 case ROTATE:
4782 case ROTATERT:
4783 /* The nonzero bits are in two classes: any bits within MODE
4784 that aren't in xmode are always significant. The rest of the
4785 nonzero bits are those that are significant in the operand of
4786 the shift when shifted the appropriate number of bits. This
4787 shows that high-order bits are cleared by the right shift and
4788 low-order bits by left shifts. */
4789 if (CONST_INT_P (XEXP (x, 1))
4790 && INTVAL (XEXP (x, 1)) >= 0
4791 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4792 && INTVAL (XEXP (x, 1)) < xmode_width)
4794 int count = INTVAL (XEXP (x, 1));
4795 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4796 unsigned HOST_WIDE_INT op_nonzero
4797 = cached_nonzero_bits (XEXP (x, 0), mode,
4798 known_x, known_mode, known_ret);
4799 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4800 unsigned HOST_WIDE_INT outer = 0;
4802 if (mode_width > xmode_width)
4803 outer = (op_nonzero & nonzero & ~mode_mask);
4805 switch (code)
4807 case ASHIFT:
4808 inner <<= count;
4809 break;
4811 case LSHIFTRT:
4812 inner >>= count;
4813 break;
4815 case ASHIFTRT:
4816 inner >>= count;
4818 /* If the sign bit may have been nonzero before the shift, we
4819 need to mark all the places it could have been copied to
4820 by the shift as possibly nonzero. */
4821 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4822 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4823 << (xmode_width - count));
4824 break;
4826 case ROTATE:
4827 inner = (inner << (count % xmode_width)
4828 | (inner >> (xmode_width - (count % xmode_width))))
4829 & mode_mask;
4830 break;
4832 case ROTATERT:
4833 inner = (inner >> (count % xmode_width)
4834 | (inner << (xmode_width - (count % xmode_width))))
4835 & mode_mask;
4836 break;
4838 default:
4839 gcc_unreachable ();
4842 nonzero &= (outer | inner);
4844 break;
4846 case FFS:
4847 case POPCOUNT:
4848 /* This is at most the number of bits in the mode. */
4849 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4850 break;
4852 case CLZ:
4853 /* If CLZ has a known value at zero, then the nonzero bits are
4854 that value, plus the number of bits in the mode minus one. */
4855 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4856 nonzero
4857 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4858 else
4859 nonzero = -1;
4860 break;
4862 case CTZ:
4863 /* If CTZ has a known value at zero, then the nonzero bits are
4864 that value, plus the number of bits in the mode minus one. */
4865 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4866 nonzero
4867 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4868 else
4869 nonzero = -1;
4870 break;
4872 case CLRSB:
4873 /* This is at most the number of bits in the mode minus 1. */
4874 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4875 break;
4877 case PARITY:
4878 nonzero = 1;
4879 break;
4881 case IF_THEN_ELSE:
4883 unsigned HOST_WIDE_INT nonzero_true
4884 = cached_nonzero_bits (XEXP (x, 1), mode,
4885 known_x, known_mode, known_ret);
4887 /* Don't call nonzero_bits for the second time if it cannot change
4888 anything. */
4889 if ((nonzero & nonzero_true) != nonzero)
4890 nonzero &= nonzero_true
4891 | cached_nonzero_bits (XEXP (x, 2), mode,
4892 known_x, known_mode, known_ret);
4894 break;
4896 default:
4897 break;
4900 return nonzero;
4903 /* See the macro definition above. */
4904 #undef cached_num_sign_bit_copies
4907 /* Return true if num_sign_bit_copies1 might recurse into both operands
4908 of X. */
4910 static inline bool
4911 num_sign_bit_copies_binary_arith_p (const_rtx x)
4913 if (!ARITHMETIC_P (x))
4914 return false;
4915 switch (GET_CODE (x))
4917 case IOR:
4918 case AND:
4919 case XOR:
4920 case SMIN:
4921 case SMAX:
4922 case UMIN:
4923 case UMAX:
4924 case PLUS:
4925 case MINUS:
4926 case MULT:
4927 return true;
4928 default:
4929 return false;
4933 /* The function cached_num_sign_bit_copies is a wrapper around
4934 num_sign_bit_copies1. It avoids exponential behavior in
4935 num_sign_bit_copies1 when X has identical subexpressions on the
4936 first or the second level. */
4938 static unsigned int
4939 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4940 const_rtx known_x, machine_mode known_mode,
4941 unsigned int known_ret)
4943 if (x == known_x && mode == known_mode)
4944 return known_ret;
4946 /* Try to find identical subexpressions. If found call
4947 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4948 the precomputed value for the subexpression as KNOWN_RET. */
4950 if (num_sign_bit_copies_binary_arith_p (x))
4952 rtx x0 = XEXP (x, 0);
4953 rtx x1 = XEXP (x, 1);
4955 /* Check the first level. */
4956 if (x0 == x1)
4957 return
4958 num_sign_bit_copies1 (x, mode, x0, mode,
4959 cached_num_sign_bit_copies (x0, mode, known_x,
4960 known_mode,
4961 known_ret));
4963 /* Check the second level. */
4964 if (num_sign_bit_copies_binary_arith_p (x0)
4965 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4966 return
4967 num_sign_bit_copies1 (x, mode, x1, mode,
4968 cached_num_sign_bit_copies (x1, mode, known_x,
4969 known_mode,
4970 known_ret));
4972 if (num_sign_bit_copies_binary_arith_p (x1)
4973 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4974 return
4975 num_sign_bit_copies1 (x, mode, x0, mode,
4976 cached_num_sign_bit_copies (x0, mode, known_x,
4977 known_mode,
4978 known_ret));
4981 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4984 /* Return the number of bits at the high-order end of X that are known to
4985 be equal to the sign bit. X will be used in mode MODE. The returned
4986 value will always be between 1 and the number of bits in MODE. */
4988 static unsigned int
4989 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4990 machine_mode known_mode,
4991 unsigned int known_ret)
4993 enum rtx_code code = GET_CODE (x);
4994 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4995 int num0, num1, result;
4996 unsigned HOST_WIDE_INT nonzero;
4998 if (CONST_INT_P (x))
5000 /* If the constant is negative, take its 1's complement and remask.
5001 Then see how many zero bits we have. */
5002 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5003 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5004 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5005 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5007 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5010 scalar_int_mode xmode, inner_mode;
5011 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5012 return 1;
5014 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5016 /* For a smaller mode, just ignore the high bits. */
5017 if (bitwidth < xmode_width)
5019 num0 = cached_num_sign_bit_copies (x, xmode,
5020 known_x, known_mode, known_ret);
5021 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5024 if (bitwidth > xmode_width)
5026 /* If this machine does not do all register operations on the entire
5027 register and MODE is wider than the mode of X, we can say nothing
5028 at all about the high-order bits. We extend this reasoning to every
5029 machine for rotate operations since the semantics of the operations
5030 in the larger mode is not well defined. */
5031 if (!WORD_REGISTER_OPERATIONS || code == ROTATE || code == ROTATERT)
5032 return 1;
5034 /* Likewise on machines that do, if the mode of the object is smaller
5035 than a word and loads of that size don't sign extend, we can say
5036 nothing about the high order bits. */
5037 if (xmode_width < BITS_PER_WORD
5038 && load_extend_op (xmode) != SIGN_EXTEND)
5039 return 1;
5042 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5043 the code in the switch below. */
5044 switch (code)
5046 case REG:
5048 #if defined(POINTERS_EXTEND_UNSIGNED)
5049 /* If pointers extend signed and this is a pointer in Pmode, say that
5050 all the bits above ptr_mode are known to be sign bit copies. */
5051 /* As we do not know which address space the pointer is referring to,
5052 we can do this only if the target does not support different pointer
5053 or address modes depending on the address space. */
5054 if (target_default_pointer_address_modes_p ()
5055 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5056 && mode == Pmode && REG_POINTER (x)
5057 && !targetm.have_ptr_extend ())
5058 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5059 #endif
5062 unsigned int copies_for_hook = 1, copies = 1;
5063 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5064 &copies_for_hook);
5066 if (new_rtx)
5067 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5068 known_mode, known_ret);
5070 if (copies > 1 || copies_for_hook > 1)
5071 return MAX (copies, copies_for_hook);
5073 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5075 break;
5077 case MEM:
5078 /* Some RISC machines sign-extend all loads of smaller than a word. */
5079 if (load_extend_op (xmode) == SIGN_EXTEND)
5080 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5081 break;
5083 case SUBREG:
5084 /* If this is a SUBREG for a promoted object that is sign-extended
5085 and we are looking at it in a wider mode, we know that at least the
5086 high-order bits are known to be sign bit copies. */
5088 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5090 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5091 known_x, known_mode, known_ret);
5092 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5095 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5097 /* For a smaller object, just ignore the high bits. */
5098 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5100 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5101 known_x, known_mode,
5102 known_ret);
5103 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5104 - bitwidth));
5107 /* For paradoxical SUBREGs on machines where all register operations
5108 affect the entire register, just look inside. Note that we are
5109 passing MODE to the recursive call, so the number of sign bit
5110 copies will remain relative to that mode, not the inner mode. */
5112 /* This works only if loads sign extend. Otherwise, if we get a
5113 reload for the inner part, it may be loaded from the stack, and
5114 then we lose all sign bit copies that existed before the store
5115 to the stack. */
5117 if (WORD_REGISTER_OPERATIONS
5118 && load_extend_op (inner_mode) == SIGN_EXTEND
5119 && paradoxical_subreg_p (x)
5120 && MEM_P (SUBREG_REG (x)))
5121 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5122 known_x, known_mode, known_ret);
5124 break;
5126 case SIGN_EXTRACT:
5127 if (CONST_INT_P (XEXP (x, 1)))
5128 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5129 break;
5131 case SIGN_EXTEND:
5132 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5133 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5134 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5135 known_x, known_mode, known_ret));
5136 break;
5138 case TRUNCATE:
5139 /* For a smaller object, just ignore the high bits. */
5140 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5141 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5142 known_x, known_mode, known_ret);
5143 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5144 - bitwidth)));
5146 case NOT:
5147 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5148 known_x, known_mode, known_ret);
5150 case ROTATE: case ROTATERT:
5151 /* If we are rotating left by a number of bits less than the number
5152 of sign bit copies, we can just subtract that amount from the
5153 number. */
5154 if (CONST_INT_P (XEXP (x, 1))
5155 && INTVAL (XEXP (x, 1)) >= 0
5156 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5158 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5159 known_x, known_mode, known_ret);
5160 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5161 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5163 break;
5165 case NEG:
5166 /* In general, this subtracts one sign bit copy. But if the value
5167 is known to be positive, the number of sign bit copies is the
5168 same as that of the input. Finally, if the input has just one bit
5169 that might be nonzero, all the bits are copies of the sign bit. */
5170 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5171 known_x, known_mode, known_ret);
5172 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5173 return num0 > 1 ? num0 - 1 : 1;
5175 nonzero = nonzero_bits (XEXP (x, 0), mode);
5176 if (nonzero == 1)
5177 return bitwidth;
5179 if (num0 > 1
5180 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5181 num0--;
5183 return num0;
5185 case IOR: case AND: case XOR:
5186 case SMIN: case SMAX: case UMIN: case UMAX:
5187 /* Logical operations will preserve the number of sign-bit copies.
5188 MIN and MAX operations always return one of the operands. */
5189 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5190 known_x, known_mode, known_ret);
5191 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5192 known_x, known_mode, known_ret);
5194 /* If num1 is clearing some of the top bits then regardless of
5195 the other term, we are guaranteed to have at least that many
5196 high-order zero bits. */
5197 if (code == AND
5198 && num1 > 1
5199 && bitwidth <= HOST_BITS_PER_WIDE_INT
5200 && CONST_INT_P (XEXP (x, 1))
5201 && (UINTVAL (XEXP (x, 1))
5202 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5203 return num1;
5205 /* Similarly for IOR when setting high-order bits. */
5206 if (code == IOR
5207 && num1 > 1
5208 && bitwidth <= HOST_BITS_PER_WIDE_INT
5209 && CONST_INT_P (XEXP (x, 1))
5210 && (UINTVAL (XEXP (x, 1))
5211 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5212 return num1;
5214 return MIN (num0, num1);
5216 case PLUS: case MINUS:
5217 /* For addition and subtraction, we can have a 1-bit carry. However,
5218 if we are subtracting 1 from a positive number, there will not
5219 be such a carry. Furthermore, if the positive number is known to
5220 be 0 or 1, we know the result is either -1 or 0. */
5222 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5223 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5225 nonzero = nonzero_bits (XEXP (x, 0), mode);
5226 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5227 return (nonzero == 1 || nonzero == 0 ? bitwidth
5228 : bitwidth - floor_log2 (nonzero) - 1);
5231 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5232 known_x, known_mode, known_ret);
5233 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5234 known_x, known_mode, known_ret);
5235 result = MAX (1, MIN (num0, num1) - 1);
5237 return result;
5239 case MULT:
5240 /* The number of bits of the product is the sum of the number of
5241 bits of both terms. However, unless one of the terms if known
5242 to be positive, we must allow for an additional bit since negating
5243 a negative number can remove one sign bit copy. */
5245 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5246 known_x, known_mode, known_ret);
5247 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5248 known_x, known_mode, known_ret);
5250 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5251 if (result > 0
5252 && (bitwidth > HOST_BITS_PER_WIDE_INT
5253 || (((nonzero_bits (XEXP (x, 0), mode)
5254 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5255 && ((nonzero_bits (XEXP (x, 1), mode)
5256 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5257 != 0))))
5258 result--;
5260 return MAX (1, result);
5262 case UDIV:
5263 /* The result must be <= the first operand. If the first operand
5264 has the high bit set, we know nothing about the number of sign
5265 bit copies. */
5266 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5267 return 1;
5268 else if ((nonzero_bits (XEXP (x, 0), mode)
5269 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5270 return 1;
5271 else
5272 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5273 known_x, known_mode, known_ret);
5275 case UMOD:
5276 /* The result must be <= the second operand. If the second operand
5277 has (or just might have) the high bit set, we know nothing about
5278 the number of sign bit copies. */
5279 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5280 return 1;
5281 else if ((nonzero_bits (XEXP (x, 1), mode)
5282 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5283 return 1;
5284 else
5285 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5286 known_x, known_mode, known_ret);
5288 case DIV:
5289 /* Similar to unsigned division, except that we have to worry about
5290 the case where the divisor is negative, in which case we have
5291 to add 1. */
5292 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5293 known_x, known_mode, known_ret);
5294 if (result > 1
5295 && (bitwidth > HOST_BITS_PER_WIDE_INT
5296 || (nonzero_bits (XEXP (x, 1), mode)
5297 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5298 result--;
5300 return result;
5302 case MOD:
5303 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5304 known_x, known_mode, known_ret);
5305 if (result > 1
5306 && (bitwidth > HOST_BITS_PER_WIDE_INT
5307 || (nonzero_bits (XEXP (x, 1), mode)
5308 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5309 result--;
5311 return result;
5313 case ASHIFTRT:
5314 /* Shifts by a constant add to the number of bits equal to the
5315 sign bit. */
5316 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5317 known_x, known_mode, known_ret);
5318 if (CONST_INT_P (XEXP (x, 1))
5319 && INTVAL (XEXP (x, 1)) > 0
5320 && INTVAL (XEXP (x, 1)) < xmode_width)
5321 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5323 return num0;
5325 case ASHIFT:
5326 /* Left shifts destroy copies. */
5327 if (!CONST_INT_P (XEXP (x, 1))
5328 || INTVAL (XEXP (x, 1)) < 0
5329 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5330 || INTVAL (XEXP (x, 1)) >= xmode_width)
5331 return 1;
5333 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5334 known_x, known_mode, known_ret);
5335 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5337 case IF_THEN_ELSE:
5338 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5339 known_x, known_mode, known_ret);
5340 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5341 known_x, known_mode, known_ret);
5342 return MIN (num0, num1);
5344 case EQ: case NE: case GE: case GT: case LE: case LT:
5345 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5346 case GEU: case GTU: case LEU: case LTU:
5347 case UNORDERED: case ORDERED:
5348 /* If the constant is negative, take its 1's complement and remask.
5349 Then see how many zero bits we have. */
5350 nonzero = STORE_FLAG_VALUE;
5351 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5352 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5353 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5355 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5357 default:
5358 break;
5361 /* If we haven't been able to figure it out by one of the above rules,
5362 see if some of the high-order bits are known to be zero. If so,
5363 count those bits and return one less than that amount. If we can't
5364 safely compute the mask for this mode, always return BITWIDTH. */
5366 bitwidth = GET_MODE_PRECISION (mode);
5367 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5368 return 1;
5370 nonzero = nonzero_bits (x, mode);
5371 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5372 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5375 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5376 zero indicates an instruction pattern without a known cost. */
5379 pattern_cost (rtx pat, bool speed)
5381 int i, cost;
5382 rtx set;
5384 /* Extract the single set rtx from the instruction pattern. We
5385 can't use single_set since we only have the pattern. We also
5386 consider PARALLELs of a normal set and a single comparison. In
5387 that case we use the cost of the non-comparison SET operation,
5388 which is most-likely to be the real cost of this operation. */
5389 if (GET_CODE (pat) == SET)
5390 set = pat;
5391 else if (GET_CODE (pat) == PARALLEL)
5393 set = NULL_RTX;
5394 rtx comparison = NULL_RTX;
5396 for (i = 0; i < XVECLEN (pat, 0); i++)
5398 rtx x = XVECEXP (pat, 0, i);
5399 if (GET_CODE (x) == SET)
5401 if (GET_CODE (SET_SRC (x)) == COMPARE)
5403 if (comparison)
5404 return 0;
5405 comparison = x;
5407 else
5409 if (set)
5410 return 0;
5411 set = x;
5416 if (!set && comparison)
5417 set = comparison;
5419 if (!set)
5420 return 0;
5422 else
5423 return 0;
5425 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5426 return cost > 0 ? cost : COSTS_N_INSNS (1);
5429 /* Calculate the cost of a single instruction. A return value of zero
5430 indicates an instruction pattern without a known cost. */
5433 insn_cost (rtx_insn *insn, bool speed)
5435 if (targetm.insn_cost)
5436 return targetm.insn_cost (insn, speed);
5438 return pattern_cost (PATTERN (insn), speed);
5441 /* Returns estimate on cost of computing SEQ. */
5443 unsigned
5444 seq_cost (const rtx_insn *seq, bool speed)
5446 unsigned cost = 0;
5447 rtx set;
5449 for (; seq; seq = NEXT_INSN (seq))
5451 set = single_set (seq);
5452 if (set)
5453 cost += set_rtx_cost (set, speed);
5454 else if (NONDEBUG_INSN_P (seq))
5456 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5457 if (this_cost > 0)
5458 cost += this_cost;
5459 else
5460 cost++;
5464 return cost;
5467 /* Given an insn INSN and condition COND, return the condition in a
5468 canonical form to simplify testing by callers. Specifically:
5470 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5471 (2) Both operands will be machine operands; (cc0) will have been replaced.
5472 (3) If an operand is a constant, it will be the second operand.
5473 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5474 for GE, GEU, and LEU.
5476 If the condition cannot be understood, or is an inequality floating-point
5477 comparison which needs to be reversed, 0 will be returned.
5479 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5481 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5482 insn used in locating the condition was found. If a replacement test
5483 of the condition is desired, it should be placed in front of that
5484 insn and we will be sure that the inputs are still valid.
5486 If WANT_REG is nonzero, we wish the condition to be relative to that
5487 register, if possible. Therefore, do not canonicalize the condition
5488 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5489 to be a compare to a CC mode register.
5491 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5492 and at INSN. */
5495 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5496 rtx_insn **earliest,
5497 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5499 enum rtx_code code;
5500 rtx_insn *prev = insn;
5501 const_rtx set;
5502 rtx tem;
5503 rtx op0, op1;
5504 int reverse_code = 0;
5505 machine_mode mode;
5506 basic_block bb = BLOCK_FOR_INSN (insn);
5508 code = GET_CODE (cond);
5509 mode = GET_MODE (cond);
5510 op0 = XEXP (cond, 0);
5511 op1 = XEXP (cond, 1);
5513 if (reverse)
5514 code = reversed_comparison_code (cond, insn);
5515 if (code == UNKNOWN)
5516 return 0;
5518 if (earliest)
5519 *earliest = insn;
5521 /* If we are comparing a register with zero, see if the register is set
5522 in the previous insn to a COMPARE or a comparison operation. Perform
5523 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5524 in cse.c */
5526 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5527 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5528 && op1 == CONST0_RTX (GET_MODE (op0))
5529 && op0 != want_reg)
5531 /* Set nonzero when we find something of interest. */
5532 rtx x = 0;
5534 /* If comparison with cc0, import actual comparison from compare
5535 insn. */
5536 if (op0 == cc0_rtx)
5538 if ((prev = prev_nonnote_insn (prev)) == 0
5539 || !NONJUMP_INSN_P (prev)
5540 || (set = single_set (prev)) == 0
5541 || SET_DEST (set) != cc0_rtx)
5542 return 0;
5544 op0 = SET_SRC (set);
5545 op1 = CONST0_RTX (GET_MODE (op0));
5546 if (earliest)
5547 *earliest = prev;
5550 /* If this is a COMPARE, pick up the two things being compared. */
5551 if (GET_CODE (op0) == COMPARE)
5553 op1 = XEXP (op0, 1);
5554 op0 = XEXP (op0, 0);
5555 continue;
5557 else if (!REG_P (op0))
5558 break;
5560 /* Go back to the previous insn. Stop if it is not an INSN. We also
5561 stop if it isn't a single set or if it has a REG_INC note because
5562 we don't want to bother dealing with it. */
5564 prev = prev_nonnote_nondebug_insn (prev);
5566 if (prev == 0
5567 || !NONJUMP_INSN_P (prev)
5568 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5569 /* In cfglayout mode, there do not have to be labels at the
5570 beginning of a block, or jumps at the end, so the previous
5571 conditions would not stop us when we reach bb boundary. */
5572 || BLOCK_FOR_INSN (prev) != bb)
5573 break;
5575 set = set_of (op0, prev);
5577 if (set
5578 && (GET_CODE (set) != SET
5579 || !rtx_equal_p (SET_DEST (set), op0)))
5580 break;
5582 /* If this is setting OP0, get what it sets it to if it looks
5583 relevant. */
5584 if (set)
5586 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5587 #ifdef FLOAT_STORE_FLAG_VALUE
5588 REAL_VALUE_TYPE fsfv;
5589 #endif
5591 /* ??? We may not combine comparisons done in a CCmode with
5592 comparisons not done in a CCmode. This is to aid targets
5593 like Alpha that have an IEEE compliant EQ instruction, and
5594 a non-IEEE compliant BEQ instruction. The use of CCmode is
5595 actually artificial, simply to prevent the combination, but
5596 should not affect other platforms.
5598 However, we must allow VOIDmode comparisons to match either
5599 CCmode or non-CCmode comparison, because some ports have
5600 modeless comparisons inside branch patterns.
5602 ??? This mode check should perhaps look more like the mode check
5603 in simplify_comparison in combine. */
5604 if (((GET_MODE_CLASS (mode) == MODE_CC)
5605 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5606 && mode != VOIDmode
5607 && inner_mode != VOIDmode)
5608 break;
5609 if (GET_CODE (SET_SRC (set)) == COMPARE
5610 || (((code == NE
5611 || (code == LT
5612 && val_signbit_known_set_p (inner_mode,
5613 STORE_FLAG_VALUE))
5614 #ifdef FLOAT_STORE_FLAG_VALUE
5615 || (code == LT
5616 && SCALAR_FLOAT_MODE_P (inner_mode)
5617 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5618 REAL_VALUE_NEGATIVE (fsfv)))
5619 #endif
5621 && COMPARISON_P (SET_SRC (set))))
5622 x = SET_SRC (set);
5623 else if (((code == EQ
5624 || (code == GE
5625 && val_signbit_known_set_p (inner_mode,
5626 STORE_FLAG_VALUE))
5627 #ifdef FLOAT_STORE_FLAG_VALUE
5628 || (code == GE
5629 && SCALAR_FLOAT_MODE_P (inner_mode)
5630 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5631 REAL_VALUE_NEGATIVE (fsfv)))
5632 #endif
5634 && COMPARISON_P (SET_SRC (set)))
5636 reverse_code = 1;
5637 x = SET_SRC (set);
5639 else if ((code == EQ || code == NE)
5640 && GET_CODE (SET_SRC (set)) == XOR)
5641 /* Handle sequences like:
5643 (set op0 (xor X Y))
5644 ...(eq|ne op0 (const_int 0))...
5646 in which case:
5648 (eq op0 (const_int 0)) reduces to (eq X Y)
5649 (ne op0 (const_int 0)) reduces to (ne X Y)
5651 This is the form used by MIPS16, for example. */
5652 x = SET_SRC (set);
5653 else
5654 break;
5657 else if (reg_set_p (op0, prev))
5658 /* If this sets OP0, but not directly, we have to give up. */
5659 break;
5661 if (x)
5663 /* If the caller is expecting the condition to be valid at INSN,
5664 make sure X doesn't change before INSN. */
5665 if (valid_at_insn_p)
5666 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5667 break;
5668 if (COMPARISON_P (x))
5669 code = GET_CODE (x);
5670 if (reverse_code)
5672 code = reversed_comparison_code (x, prev);
5673 if (code == UNKNOWN)
5674 return 0;
5675 reverse_code = 0;
5678 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5679 if (earliest)
5680 *earliest = prev;
5684 /* If constant is first, put it last. */
5685 if (CONSTANT_P (op0))
5686 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5688 /* If OP0 is the result of a comparison, we weren't able to find what
5689 was really being compared, so fail. */
5690 if (!allow_cc_mode
5691 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5692 return 0;
5694 /* Canonicalize any ordered comparison with integers involving equality
5695 if we can do computations in the relevant mode and we do not
5696 overflow. */
5698 scalar_int_mode op0_mode;
5699 if (CONST_INT_P (op1)
5700 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5701 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5703 HOST_WIDE_INT const_val = INTVAL (op1);
5704 unsigned HOST_WIDE_INT uconst_val = const_val;
5705 unsigned HOST_WIDE_INT max_val
5706 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5708 switch (code)
5710 case LE:
5711 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5712 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5713 break;
5715 /* When cross-compiling, const_val might be sign-extended from
5716 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5717 case GE:
5718 if ((const_val & max_val)
5719 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5720 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5721 break;
5723 case LEU:
5724 if (uconst_val < max_val)
5725 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5726 break;
5728 case GEU:
5729 if (uconst_val != 0)
5730 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5731 break;
5733 default:
5734 break;
5738 /* Never return CC0; return zero instead. */
5739 if (CC0_P (op0))
5740 return 0;
5742 /* We promised to return a comparison. */
5743 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5744 if (COMPARISON_P (ret))
5745 return ret;
5746 return 0;
5749 /* Given a jump insn JUMP, return the condition that will cause it to branch
5750 to its JUMP_LABEL. If the condition cannot be understood, or is an
5751 inequality floating-point comparison which needs to be reversed, 0 will
5752 be returned.
5754 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5755 insn used in locating the condition was found. If a replacement test
5756 of the condition is desired, it should be placed in front of that
5757 insn and we will be sure that the inputs are still valid. If EARLIEST
5758 is null, the returned condition will be valid at INSN.
5760 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5761 compare CC mode register.
5763 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5766 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5767 int valid_at_insn_p)
5769 rtx cond;
5770 int reverse;
5771 rtx set;
5773 /* If this is not a standard conditional jump, we can't parse it. */
5774 if (!JUMP_P (jump)
5775 || ! any_condjump_p (jump))
5776 return 0;
5777 set = pc_set (jump);
5779 cond = XEXP (SET_SRC (set), 0);
5781 /* If this branches to JUMP_LABEL when the condition is false, reverse
5782 the condition. */
5783 reverse
5784 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5785 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5787 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5788 allow_cc_mode, valid_at_insn_p);
5791 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5792 TARGET_MODE_REP_EXTENDED.
5794 Note that we assume that the property of
5795 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5796 narrower than mode B. I.e., if A is a mode narrower than B then in
5797 order to be able to operate on it in mode B, mode A needs to
5798 satisfy the requirements set by the representation of mode B. */
5800 static void
5801 init_num_sign_bit_copies_in_rep (void)
5803 opt_scalar_int_mode in_mode_iter;
5804 scalar_int_mode mode;
5806 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5807 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5809 scalar_int_mode in_mode = in_mode_iter.require ();
5810 scalar_int_mode i;
5812 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5813 extends to the next widest mode. */
5814 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5815 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5817 /* We are in in_mode. Count how many bits outside of mode
5818 have to be copies of the sign-bit. */
5819 FOR_EACH_MODE (i, mode, in_mode)
5821 /* This must always exist (for the last iteration it will be
5822 IN_MODE). */
5823 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5825 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5826 /* We can only check sign-bit copies starting from the
5827 top-bit. In order to be able to check the bits we
5828 have already seen we pretend that subsequent bits
5829 have to be sign-bit copies too. */
5830 || num_sign_bit_copies_in_rep [in_mode][mode])
5831 num_sign_bit_copies_in_rep [in_mode][mode]
5832 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5837 /* Suppose that truncation from the machine mode of X to MODE is not a
5838 no-op. See if there is anything special about X so that we can
5839 assume it already contains a truncated value of MODE. */
5841 bool
5842 truncated_to_mode (machine_mode mode, const_rtx x)
5844 /* This register has already been used in MODE without explicit
5845 truncation. */
5846 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5847 return true;
5849 /* See if we already satisfy the requirements of MODE. If yes we
5850 can just switch to MODE. */
5851 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5852 && (num_sign_bit_copies (x, GET_MODE (x))
5853 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5854 return true;
5856 return false;
5859 /* Return true if RTX code CODE has a single sequence of zero or more
5860 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5861 entry in that case. */
5863 static bool
5864 setup_reg_subrtx_bounds (unsigned int code)
5866 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5867 unsigned int i = 0;
5868 for (; format[i] != 'e'; ++i)
5870 if (!format[i])
5871 /* No subrtxes. Leave start and count as 0. */
5872 return true;
5873 if (format[i] == 'E' || format[i] == 'V')
5874 return false;
5877 /* Record the sequence of 'e's. */
5878 rtx_all_subrtx_bounds[code].start = i;
5880 ++i;
5881 while (format[i] == 'e');
5882 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5883 /* rtl-iter.h relies on this. */
5884 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5886 for (; format[i]; ++i)
5887 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5888 return false;
5890 return true;
5893 /* Initialize rtx_all_subrtx_bounds. */
5894 void
5895 init_rtlanal (void)
5897 int i;
5898 for (i = 0; i < NUM_RTX_CODE; i++)
5900 if (!setup_reg_subrtx_bounds (i))
5901 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5902 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5903 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5906 init_num_sign_bit_copies_in_rep ();
5909 /* Check whether this is a constant pool constant. */
5910 bool
5911 constant_pool_constant_p (rtx x)
5913 x = avoid_constant_pool_reference (x);
5914 return CONST_DOUBLE_P (x);
5917 /* If M is a bitmask that selects a field of low-order bits within an item but
5918 not the entire word, return the length of the field. Return -1 otherwise.
5919 M is used in machine mode MODE. */
5922 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5924 if (mode != VOIDmode)
5926 if (!HWI_COMPUTABLE_MODE_P (mode))
5927 return -1;
5928 m &= GET_MODE_MASK (mode);
5931 return exact_log2 (m + 1);
5934 /* Return the mode of MEM's address. */
5936 scalar_int_mode
5937 get_address_mode (rtx mem)
5939 machine_mode mode;
5941 gcc_assert (MEM_P (mem));
5942 mode = GET_MODE (XEXP (mem, 0));
5943 if (mode != VOIDmode)
5944 return as_a <scalar_int_mode> (mode);
5945 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5948 /* Split up a CONST_DOUBLE or integer constant rtx
5949 into two rtx's for single words,
5950 storing in *FIRST the word that comes first in memory in the target
5951 and in *SECOND the other.
5953 TODO: This function needs to be rewritten to work on any size
5954 integer. */
5956 void
5957 split_double (rtx value, rtx *first, rtx *second)
5959 if (CONST_INT_P (value))
5961 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5963 /* In this case the CONST_INT holds both target words.
5964 Extract the bits from it into two word-sized pieces.
5965 Sign extend each half to HOST_WIDE_INT. */
5966 unsigned HOST_WIDE_INT low, high;
5967 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5968 unsigned bits_per_word = BITS_PER_WORD;
5970 /* Set sign_bit to the most significant bit of a word. */
5971 sign_bit = 1;
5972 sign_bit <<= bits_per_word - 1;
5974 /* Set mask so that all bits of the word are set. We could
5975 have used 1 << BITS_PER_WORD instead of basing the
5976 calculation on sign_bit. However, on machines where
5977 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5978 compiler warning, even though the code would never be
5979 executed. */
5980 mask = sign_bit << 1;
5981 mask--;
5983 /* Set sign_extend as any remaining bits. */
5984 sign_extend = ~mask;
5986 /* Pick the lower word and sign-extend it. */
5987 low = INTVAL (value);
5988 low &= mask;
5989 if (low & sign_bit)
5990 low |= sign_extend;
5992 /* Pick the higher word, shifted to the least significant
5993 bits, and sign-extend it. */
5994 high = INTVAL (value);
5995 high >>= bits_per_word - 1;
5996 high >>= 1;
5997 high &= mask;
5998 if (high & sign_bit)
5999 high |= sign_extend;
6001 /* Store the words in the target machine order. */
6002 if (WORDS_BIG_ENDIAN)
6004 *first = GEN_INT (high);
6005 *second = GEN_INT (low);
6007 else
6009 *first = GEN_INT (low);
6010 *second = GEN_INT (high);
6013 else
6015 /* The rule for using CONST_INT for a wider mode
6016 is that we regard the value as signed.
6017 So sign-extend it. */
6018 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6019 if (WORDS_BIG_ENDIAN)
6021 *first = high;
6022 *second = value;
6024 else
6026 *first = value;
6027 *second = high;
6031 else if (GET_CODE (value) == CONST_WIDE_INT)
6033 /* All of this is scary code and needs to be converted to
6034 properly work with any size integer. */
6035 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6036 if (WORDS_BIG_ENDIAN)
6038 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6039 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6041 else
6043 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6044 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6047 else if (!CONST_DOUBLE_P (value))
6049 if (WORDS_BIG_ENDIAN)
6051 *first = const0_rtx;
6052 *second = value;
6054 else
6056 *first = value;
6057 *second = const0_rtx;
6060 else if (GET_MODE (value) == VOIDmode
6061 /* This is the old way we did CONST_DOUBLE integers. */
6062 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6064 /* In an integer, the words are defined as most and least significant.
6065 So order them by the target's convention. */
6066 if (WORDS_BIG_ENDIAN)
6068 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6069 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6071 else
6073 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6074 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6077 else
6079 long l[2];
6081 /* Note, this converts the REAL_VALUE_TYPE to the target's
6082 format, splits up the floating point double and outputs
6083 exactly 32 bits of it into each of l[0] and l[1] --
6084 not necessarily BITS_PER_WORD bits. */
6085 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6087 /* If 32 bits is an entire word for the target, but not for the host,
6088 then sign-extend on the host so that the number will look the same
6089 way on the host that it would on the target. See for instance
6090 simplify_unary_operation. The #if is needed to avoid compiler
6091 warnings. */
6093 #if HOST_BITS_PER_LONG > 32
6094 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6096 if (l[0] & ((long) 1 << 31))
6097 l[0] |= ((unsigned long) (-1) << 32);
6098 if (l[1] & ((long) 1 << 31))
6099 l[1] |= ((unsigned long) (-1) << 32);
6101 #endif
6103 *first = GEN_INT (l[0]);
6104 *second = GEN_INT (l[1]);
6108 /* Return true if X is a sign_extract or zero_extract from the least
6109 significant bit. */
6111 static bool
6112 lsb_bitfield_op_p (rtx x)
6114 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6116 machine_mode mode = GET_MODE (XEXP (x, 0));
6117 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6118 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6119 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6121 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6123 return false;
6126 /* Strip outer address "mutations" from LOC and return a pointer to the
6127 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6128 stripped expression there.
6130 "Mutations" either convert between modes or apply some kind of
6131 extension, truncation or alignment. */
6133 rtx *
6134 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6136 for (;;)
6138 enum rtx_code code = GET_CODE (*loc);
6139 if (GET_RTX_CLASS (code) == RTX_UNARY)
6140 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6141 used to convert between pointer sizes. */
6142 loc = &XEXP (*loc, 0);
6143 else if (lsb_bitfield_op_p (*loc))
6144 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6145 acts as a combined truncation and extension. */
6146 loc = &XEXP (*loc, 0);
6147 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6148 /* (and ... (const_int -X)) is used to align to X bytes. */
6149 loc = &XEXP (*loc, 0);
6150 else if (code == SUBREG
6151 && !OBJECT_P (SUBREG_REG (*loc))
6152 && subreg_lowpart_p (*loc))
6153 /* (subreg (operator ...) ...) inside and is used for mode
6154 conversion too. */
6155 loc = &SUBREG_REG (*loc);
6156 else
6157 return loc;
6158 if (outer_code)
6159 *outer_code = code;
6163 /* Return true if CODE applies some kind of scale. The scaled value is
6164 is the first operand and the scale is the second. */
6166 static bool
6167 binary_scale_code_p (enum rtx_code code)
6169 return (code == MULT
6170 || code == ASHIFT
6171 /* Needed by ARM targets. */
6172 || code == ASHIFTRT
6173 || code == LSHIFTRT
6174 || code == ROTATE
6175 || code == ROTATERT);
6178 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6179 (see address_info). Return null otherwise. */
6181 static rtx *
6182 get_base_term (rtx *inner)
6184 if (GET_CODE (*inner) == LO_SUM)
6185 inner = strip_address_mutations (&XEXP (*inner, 0));
6186 if (REG_P (*inner)
6187 || MEM_P (*inner)
6188 || GET_CODE (*inner) == SUBREG
6189 || GET_CODE (*inner) == SCRATCH)
6190 return inner;
6191 return 0;
6194 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6195 (see address_info). Return null otherwise. */
6197 static rtx *
6198 get_index_term (rtx *inner)
6200 /* At present, only constant scales are allowed. */
6201 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6202 inner = strip_address_mutations (&XEXP (*inner, 0));
6203 if (REG_P (*inner)
6204 || MEM_P (*inner)
6205 || GET_CODE (*inner) == SUBREG
6206 || GET_CODE (*inner) == SCRATCH)
6207 return inner;
6208 return 0;
6211 /* Set the segment part of address INFO to LOC, given that INNER is the
6212 unmutated value. */
6214 static void
6215 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6217 gcc_assert (!info->segment);
6218 info->segment = loc;
6219 info->segment_term = inner;
6222 /* Set the base part of address INFO to LOC, given that INNER is the
6223 unmutated value. */
6225 static void
6226 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6228 gcc_assert (!info->base);
6229 info->base = loc;
6230 info->base_term = inner;
6233 /* Set the index part of address INFO to LOC, given that INNER is the
6234 unmutated value. */
6236 static void
6237 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6239 gcc_assert (!info->index);
6240 info->index = loc;
6241 info->index_term = inner;
6244 /* Set the displacement part of address INFO to LOC, given that INNER
6245 is the constant term. */
6247 static void
6248 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6250 gcc_assert (!info->disp);
6251 info->disp = loc;
6252 info->disp_term = inner;
6255 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6256 rest of INFO accordingly. */
6258 static void
6259 decompose_incdec_address (struct address_info *info)
6261 info->autoinc_p = true;
6263 rtx *base = &XEXP (*info->inner, 0);
6264 set_address_base (info, base, base);
6265 gcc_checking_assert (info->base == info->base_term);
6267 /* These addresses are only valid when the size of the addressed
6268 value is known. */
6269 gcc_checking_assert (info->mode != VOIDmode);
6272 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6273 of INFO accordingly. */
6275 static void
6276 decompose_automod_address (struct address_info *info)
6278 info->autoinc_p = true;
6280 rtx *base = &XEXP (*info->inner, 0);
6281 set_address_base (info, base, base);
6282 gcc_checking_assert (info->base == info->base_term);
6284 rtx plus = XEXP (*info->inner, 1);
6285 gcc_assert (GET_CODE (plus) == PLUS);
6287 info->base_term2 = &XEXP (plus, 0);
6288 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6290 rtx *step = &XEXP (plus, 1);
6291 rtx *inner_step = strip_address_mutations (step);
6292 if (CONSTANT_P (*inner_step))
6293 set_address_disp (info, step, inner_step);
6294 else
6295 set_address_index (info, step, inner_step);
6298 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6299 values in [PTR, END). Return a pointer to the end of the used array. */
6301 static rtx **
6302 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6304 rtx x = *loc;
6305 if (GET_CODE (x) == PLUS)
6307 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6308 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6310 else
6312 gcc_assert (ptr != end);
6313 *ptr++ = loc;
6315 return ptr;
6318 /* Evaluate the likelihood of X being a base or index value, returning
6319 positive if it is likely to be a base, negative if it is likely to be
6320 an index, and 0 if we can't tell. Make the magnitude of the return
6321 value reflect the amount of confidence we have in the answer.
6323 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6325 static int
6326 baseness (rtx x, machine_mode mode, addr_space_t as,
6327 enum rtx_code outer_code, enum rtx_code index_code)
6329 /* Believe *_POINTER unless the address shape requires otherwise. */
6330 if (REG_P (x) && REG_POINTER (x))
6331 return 2;
6332 if (MEM_P (x) && MEM_POINTER (x))
6333 return 2;
6335 if (REG_P (x) && HARD_REGISTER_P (x))
6337 /* X is a hard register. If it only fits one of the base
6338 or index classes, choose that interpretation. */
6339 int regno = REGNO (x);
6340 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6341 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6342 if (base_p != index_p)
6343 return base_p ? 1 : -1;
6345 return 0;
6348 /* INFO->INNER describes a normal, non-automodified address.
6349 Fill in the rest of INFO accordingly. */
6351 static void
6352 decompose_normal_address (struct address_info *info)
6354 /* Treat the address as the sum of up to four values. */
6355 rtx *ops[4];
6356 size_t n_ops = extract_plus_operands (info->inner, ops,
6357 ops + ARRAY_SIZE (ops)) - ops;
6359 /* If there is more than one component, any base component is in a PLUS. */
6360 if (n_ops > 1)
6361 info->base_outer_code = PLUS;
6363 /* Try to classify each sum operand now. Leave those that could be
6364 either a base or an index in OPS. */
6365 rtx *inner_ops[4];
6366 size_t out = 0;
6367 for (size_t in = 0; in < n_ops; ++in)
6369 rtx *loc = ops[in];
6370 rtx *inner = strip_address_mutations (loc);
6371 if (CONSTANT_P (*inner))
6372 set_address_disp (info, loc, inner);
6373 else if (GET_CODE (*inner) == UNSPEC)
6374 set_address_segment (info, loc, inner);
6375 else
6377 /* The only other possibilities are a base or an index. */
6378 rtx *base_term = get_base_term (inner);
6379 rtx *index_term = get_index_term (inner);
6380 gcc_assert (base_term || index_term);
6381 if (!base_term)
6382 set_address_index (info, loc, index_term);
6383 else if (!index_term)
6384 set_address_base (info, loc, base_term);
6385 else
6387 gcc_assert (base_term == index_term);
6388 ops[out] = loc;
6389 inner_ops[out] = base_term;
6390 ++out;
6395 /* Classify the remaining OPS members as bases and indexes. */
6396 if (out == 1)
6398 /* If we haven't seen a base or an index yet, assume that this is
6399 the base. If we were confident that another term was the base
6400 or index, treat the remaining operand as the other kind. */
6401 if (!info->base)
6402 set_address_base (info, ops[0], inner_ops[0]);
6403 else
6404 set_address_index (info, ops[0], inner_ops[0]);
6406 else if (out == 2)
6408 /* In the event of a tie, assume the base comes first. */
6409 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6410 GET_CODE (*ops[1]))
6411 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6412 GET_CODE (*ops[0])))
6414 set_address_base (info, ops[0], inner_ops[0]);
6415 set_address_index (info, ops[1], inner_ops[1]);
6417 else
6419 set_address_base (info, ops[1], inner_ops[1]);
6420 set_address_index (info, ops[0], inner_ops[0]);
6423 else
6424 gcc_assert (out == 0);
6427 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6428 or VOIDmode if not known. AS is the address space associated with LOC.
6429 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6431 void
6432 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6433 addr_space_t as, enum rtx_code outer_code)
6435 memset (info, 0, sizeof (*info));
6436 info->mode = mode;
6437 info->as = as;
6438 info->addr_outer_code = outer_code;
6439 info->outer = loc;
6440 info->inner = strip_address_mutations (loc, &outer_code);
6441 info->base_outer_code = outer_code;
6442 switch (GET_CODE (*info->inner))
6444 case PRE_DEC:
6445 case PRE_INC:
6446 case POST_DEC:
6447 case POST_INC:
6448 decompose_incdec_address (info);
6449 break;
6451 case PRE_MODIFY:
6452 case POST_MODIFY:
6453 decompose_automod_address (info);
6454 break;
6456 default:
6457 decompose_normal_address (info);
6458 break;
6462 /* Describe address operand LOC in INFO. */
6464 void
6465 decompose_lea_address (struct address_info *info, rtx *loc)
6467 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6470 /* Describe the address of MEM X in INFO. */
6472 void
6473 decompose_mem_address (struct address_info *info, rtx x)
6475 gcc_assert (MEM_P (x));
6476 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6477 MEM_ADDR_SPACE (x), MEM);
6480 /* Update INFO after a change to the address it describes. */
6482 void
6483 update_address (struct address_info *info)
6485 decompose_address (info, info->outer, info->mode, info->as,
6486 info->addr_outer_code);
6489 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6490 more complicated than that. */
6492 HOST_WIDE_INT
6493 get_index_scale (const struct address_info *info)
6495 rtx index = *info->index;
6496 if (GET_CODE (index) == MULT
6497 && CONST_INT_P (XEXP (index, 1))
6498 && info->index_term == &XEXP (index, 0))
6499 return INTVAL (XEXP (index, 1));
6501 if (GET_CODE (index) == ASHIFT
6502 && CONST_INT_P (XEXP (index, 1))
6503 && info->index_term == &XEXP (index, 0))
6504 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6506 if (info->index == info->index_term)
6507 return 1;
6509 return 0;
6512 /* Return the "index code" of INFO, in the form required by
6513 ok_for_base_p_1. */
6515 enum rtx_code
6516 get_index_code (const struct address_info *info)
6518 if (info->index)
6519 return GET_CODE (*info->index);
6521 if (info->disp)
6522 return GET_CODE (*info->disp);
6524 return SCRATCH;
6527 /* Return true if RTL X contains a SYMBOL_REF. */
6529 bool
6530 contains_symbol_ref_p (const_rtx x)
6532 subrtx_iterator::array_type array;
6533 FOR_EACH_SUBRTX (iter, array, x, ALL)
6534 if (SYMBOL_REF_P (*iter))
6535 return true;
6537 return false;
6540 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6542 bool
6543 contains_symbolic_reference_p (const_rtx x)
6545 subrtx_iterator::array_type array;
6546 FOR_EACH_SUBRTX (iter, array, x, ALL)
6547 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6548 return true;
6550 return false;
6553 /* Return true if X contains a thread-local symbol. */
6555 bool
6556 tls_referenced_p (const_rtx x)
6558 if (!targetm.have_tls)
6559 return false;
6561 subrtx_iterator::array_type array;
6562 FOR_EACH_SUBRTX (iter, array, x, ALL)
6563 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6564 return true;
6565 return false;
6568 /* Return true if reg REGNO with mode REG_MODE would be clobbered by the
6569 clobber_high operand in CLOBBER_HIGH_OP. */
6571 bool
6572 reg_is_clobbered_by_clobber_high (unsigned int regno, machine_mode reg_mode,
6573 const_rtx clobber_high_op)
6575 unsigned int clobber_regno = REGNO (clobber_high_op);
6576 machine_mode clobber_mode = GET_MODE (clobber_high_op);
6577 unsigned char regno_nregs = hard_regno_nregs (regno, reg_mode);
6579 /* Clobber high should always span exactly one register. */
6580 gcc_assert (REG_NREGS (clobber_high_op) == 1);
6582 /* Clobber high needs to match with one of the registers in X. */
6583 if (clobber_regno < regno || clobber_regno >= regno + regno_nregs)
6584 return false;
6586 gcc_assert (reg_mode != BLKmode && clobber_mode != BLKmode);
6588 if (reg_mode == VOIDmode)
6589 return clobber_mode != VOIDmode;
6591 /* Clobber high will clobber if its size might be greater than the size of
6592 register regno. */
6593 return maybe_gt (exact_div (GET_MODE_SIZE (reg_mode), regno_nregs),
6594 GET_MODE_SIZE (clobber_mode));