1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
36 #include "addresses.h"
38 #include "hard-reg-set.h"
40 /* Forward declarations */
41 static void set_of_1 (rtx
, const_rtx
, void *);
42 static bool covers_regno_p (const_rtx
, unsigned int);
43 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
44 static int computed_jump_p_1 (const_rtx
);
45 static void parms_set (rtx
, const_rtx
, void *);
47 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, scalar_int_mode
,
48 const_rtx
, machine_mode
,
49 unsigned HOST_WIDE_INT
);
50 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, scalar_int_mode
,
51 const_rtx
, machine_mode
,
52 unsigned HOST_WIDE_INT
);
53 static unsigned int cached_num_sign_bit_copies (const_rtx
, scalar_int_mode
,
54 const_rtx
, machine_mode
,
56 static unsigned int num_sign_bit_copies1 (const_rtx
, scalar_int_mode
,
57 const_rtx
, machine_mode
,
60 rtx_subrtx_bound_info rtx_all_subrtx_bounds
[NUM_RTX_CODE
];
61 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds
[NUM_RTX_CODE
];
63 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
64 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
65 SIGN_EXTEND then while narrowing we also have to enforce the
66 representation and sign-extend the value to mode DESTINATION_REP.
68 If the value is already sign-extended to DESTINATION_REP mode we
69 can just switch to DESTINATION mode on it. For each pair of
70 integral modes SOURCE and DESTINATION, when truncating from SOURCE
71 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
72 contains the number of high-order bits in SOURCE that have to be
73 copies of the sign-bit so that we can do this mode-switch to
77 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
79 /* Store X into index I of ARRAY. ARRAY is known to have at least I
80 elements. Return the new base of ARRAY. */
83 typename
T::value_type
*
84 generic_subrtx_iterator
<T
>::add_single_to_queue (array_type
&array
,
86 size_t i
, value_type x
)
88 if (base
== array
.stack
)
95 gcc_checking_assert (i
== LOCAL_ELEMS
);
96 /* A previous iteration might also have moved from the stack to the
97 heap, in which case the heap array will already be big enough. */
98 if (vec_safe_length (array
.heap
) <= i
)
99 vec_safe_grow (array
.heap
, i
+ 1);
100 base
= array
.heap
->address ();
101 memcpy (base
, array
.stack
, sizeof (array
.stack
));
102 base
[LOCAL_ELEMS
] = x
;
105 unsigned int length
= array
.heap
->length ();
108 gcc_checking_assert (base
== array
.heap
->address ());
114 gcc_checking_assert (i
== length
);
115 vec_safe_push (array
.heap
, x
);
116 return array
.heap
->address ();
120 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
121 number of elements added to the worklist. */
123 template <typename T
>
125 generic_subrtx_iterator
<T
>::add_subrtxes_to_queue (array_type
&array
,
127 size_t end
, rtx_type x
)
129 enum rtx_code code
= GET_CODE (x
);
130 const char *format
= GET_RTX_FORMAT (code
);
131 size_t orig_end
= end
;
132 if (__builtin_expect (INSN_P (x
), false))
134 /* Put the pattern at the top of the queue, since that's what
135 we're likely to want most. It also allows for the SEQUENCE
137 for (int i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; --i
)
138 if (format
[i
] == 'e')
140 value_type subx
= T::get_value (x
->u
.fld
[i
].rt_rtx
);
141 if (__builtin_expect (end
< LOCAL_ELEMS
, true))
144 base
= add_single_to_queue (array
, base
, end
++, subx
);
148 for (int i
= 0; format
[i
]; ++i
)
149 if (format
[i
] == 'e')
151 value_type subx
= T::get_value (x
->u
.fld
[i
].rt_rtx
);
152 if (__builtin_expect (end
< LOCAL_ELEMS
, true))
155 base
= add_single_to_queue (array
, base
, end
++, subx
);
157 else if (format
[i
] == 'E')
159 unsigned int length
= GET_NUM_ELEM (x
->u
.fld
[i
].rt_rtvec
);
160 rtx
*vec
= x
->u
.fld
[i
].rt_rtvec
->elem
;
161 if (__builtin_expect (end
+ length
<= LOCAL_ELEMS
, true))
162 for (unsigned int j
= 0; j
< length
; j
++)
163 base
[end
++] = T::get_value (vec
[j
]);
165 for (unsigned int j
= 0; j
< length
; j
++)
166 base
= add_single_to_queue (array
, base
, end
++,
167 T::get_value (vec
[j
]));
168 if (code
== SEQUENCE
&& end
== length
)
169 /* If the subrtxes of the sequence fill the entire array then
170 we know that no other parts of a containing insn are queued.
171 The caller is therefore iterating over the sequence as a
172 PATTERN (...), so we also want the patterns of the
174 for (unsigned int j
= 0; j
< length
; j
++)
176 typename
T::rtx_type x
= T::get_rtx (base
[j
]);
178 base
[j
] = T::get_value (PATTERN (x
));
181 return end
- orig_end
;
184 template <typename T
>
186 generic_subrtx_iterator
<T
>::free_array (array_type
&array
)
188 vec_free (array
.heap
);
191 template <typename T
>
192 const size_t generic_subrtx_iterator
<T
>::LOCAL_ELEMS
;
194 template class generic_subrtx_iterator
<const_rtx_accessor
>;
195 template class generic_subrtx_iterator
<rtx_var_accessor
>;
196 template class generic_subrtx_iterator
<rtx_ptr_accessor
>;
198 /* Return 1 if the value of X is unstable
199 (would be different at a different point in the program).
200 The frame pointer, arg pointer, etc. are considered stable
201 (within one function) and so is anything marked `unchanging'. */
204 rtx_unstable_p (const_rtx x
)
206 const RTX_CODE code
= GET_CODE (x
);
213 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
222 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
223 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
224 /* The arg pointer varies if it is not a fixed register. */
225 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
227 /* ??? When call-clobbered, the value is stable modulo the restore
228 that must happen after a call. This currently screws up local-alloc
229 into believing that the restore is not needed. */
230 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
235 if (MEM_VOLATILE_P (x
))
244 fmt
= GET_RTX_FORMAT (code
);
245 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
248 if (rtx_unstable_p (XEXP (x
, i
)))
251 else if (fmt
[i
] == 'E')
254 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
255 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
262 /* Return 1 if X has a value that can vary even between two
263 executions of the program. 0 means X can be compared reliably
264 against certain constants or near-constants.
265 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
266 zero, we are slightly more conservative.
267 The frame pointer and the arg pointer are considered constant. */
270 rtx_varies_p (const_rtx x
, bool for_alias
)
283 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
292 /* Note that we have to test for the actual rtx used for the frame
293 and arg pointers and not just the register number in case we have
294 eliminated the frame and/or arg pointer and are using it
296 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
297 /* The arg pointer varies if it is not a fixed register. */
298 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
300 if (x
== pic_offset_table_rtx
301 /* ??? When call-clobbered, the value is stable modulo the restore
302 that must happen after a call. This currently screws up
303 local-alloc into believing that the restore is not needed, so we
304 must return 0 only if we are called from alias analysis. */
305 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
310 /* The operand 0 of a LO_SUM is considered constant
311 (in fact it is related specifically to operand 1)
312 during alias analysis. */
313 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
314 || rtx_varies_p (XEXP (x
, 1), for_alias
);
317 if (MEM_VOLATILE_P (x
))
326 fmt
= GET_RTX_FORMAT (code
);
327 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
330 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
333 else if (fmt
[i
] == 'E')
336 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
337 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
344 /* Compute an approximation for the offset between the register
345 FROM and TO for the current function, as it was at the start
349 get_initial_register_offset (int from
, int to
)
351 static const struct elim_table_t
355 } table
[] = ELIMINABLE_REGS
;
356 poly_int64 offset1
, offset2
;
362 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
363 before the reload pass. We need to give at least
364 an estimation for the resulting frame size. */
365 if (! reload_completed
)
367 offset1
= crtl
->outgoing_args_size
+ get_frame_size ();
368 #if !STACK_GROWS_DOWNWARD
371 if (to
== STACK_POINTER_REGNUM
)
373 else if (from
== STACK_POINTER_REGNUM
)
379 for (i
= 0; i
< ARRAY_SIZE (table
); i
++)
380 if (table
[i
].from
== from
)
382 if (table
[i
].to
== to
)
384 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
388 for (j
= 0; j
< ARRAY_SIZE (table
); j
++)
390 if (table
[j
].to
== to
391 && table
[j
].from
== table
[i
].to
)
393 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
395 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
397 return offset1
+ offset2
;
399 if (table
[j
].from
== to
400 && table
[j
].to
== table
[i
].to
)
402 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
404 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
406 return offset1
- offset2
;
410 else if (table
[i
].to
== from
)
412 if (table
[i
].from
== to
)
414 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
418 for (j
= 0; j
< ARRAY_SIZE (table
); j
++)
420 if (table
[j
].to
== to
421 && table
[j
].from
== table
[i
].from
)
423 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
425 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
427 return - offset1
+ offset2
;
429 if (table
[j
].from
== to
430 && table
[j
].to
== table
[i
].from
)
432 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
434 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
436 return - offset1
- offset2
;
441 /* If the requested register combination was not found,
442 try a different more simple combination. */
443 if (from
== ARG_POINTER_REGNUM
)
444 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM
, to
);
445 else if (to
== ARG_POINTER_REGNUM
)
446 return get_initial_register_offset (from
, HARD_FRAME_POINTER_REGNUM
);
447 else if (from
== HARD_FRAME_POINTER_REGNUM
)
448 return get_initial_register_offset (FRAME_POINTER_REGNUM
, to
);
449 else if (to
== HARD_FRAME_POINTER_REGNUM
)
450 return get_initial_register_offset (from
, FRAME_POINTER_REGNUM
);
455 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
456 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
457 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
458 references on strict alignment machines. */
461 rtx_addr_can_trap_p_1 (const_rtx x
, poly_int64 offset
, poly_int64 size
,
462 machine_mode mode
, bool unaligned_mems
)
464 enum rtx_code code
= GET_CODE (x
);
465 gcc_checking_assert (mode
== BLKmode
|| known_size_p (size
));
468 /* The offset must be a multiple of the mode size if we are considering
469 unaligned memory references on strict alignment machines. */
470 if (STRICT_ALIGNMENT
&& unaligned_mems
&& mode
!= BLKmode
)
472 poly_int64 actual_offset
= offset
;
474 #ifdef SPARC_STACK_BOUNDARY_HACK
475 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
476 the real alignment of %sp. However, when it does this, the
477 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
478 if (SPARC_STACK_BOUNDARY_HACK
479 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
480 actual_offset
-= STACK_POINTER_OFFSET
;
483 if (!multiple_p (actual_offset
, GET_MODE_SIZE (mode
)))
490 if (SYMBOL_REF_WEAK (x
))
492 if (!CONSTANT_POOL_ADDRESS_P (x
) && !SYMBOL_REF_FUNCTION_P (x
))
495 poly_int64 decl_size
;
497 if (maybe_lt (offset
, 0))
499 if (!known_size_p (size
))
500 return maybe_ne (offset
, 0);
502 /* If the size of the access or of the symbol is unknown,
504 decl
= SYMBOL_REF_DECL (x
);
506 /* Else check that the access is in bounds. TODO: restructure
507 expr_size/tree_expr_size/int_expr_size and just use the latter. */
510 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
512 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl
), &decl_size
))
515 else if (TREE_CODE (decl
) == STRING_CST
)
516 decl_size
= TREE_STRING_LENGTH (decl
);
517 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
518 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
522 return (!known_size_p (decl_size
) || known_eq (decl_size
, 0)
523 ? maybe_ne (offset
, 0)
524 : maybe_gt (offset
+ size
, decl_size
));
533 /* Stack references are assumed not to trap, but we need to deal with
534 nonsensical offsets. */
535 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
536 || x
== stack_pointer_rtx
537 /* The arg pointer varies if it is not a fixed register. */
538 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
541 poly_int64 red_zone_size
= RED_ZONE_SIZE
;
543 poly_int64 red_zone_size
= 0;
545 poly_int64 stack_boundary
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
546 poly_int64 low_bound
, high_bound
;
548 if (!known_size_p (size
))
551 if (x
== frame_pointer_rtx
)
553 if (FRAME_GROWS_DOWNWARD
)
555 high_bound
= targetm
.starting_frame_offset ();
556 low_bound
= high_bound
- get_frame_size ();
560 low_bound
= targetm
.starting_frame_offset ();
561 high_bound
= low_bound
+ get_frame_size ();
564 else if (x
== hard_frame_pointer_rtx
)
567 = get_initial_register_offset (STACK_POINTER_REGNUM
,
568 HARD_FRAME_POINTER_REGNUM
);
570 = get_initial_register_offset (ARG_POINTER_REGNUM
,
571 HARD_FRAME_POINTER_REGNUM
);
573 #if STACK_GROWS_DOWNWARD
574 low_bound
= sp_offset
- red_zone_size
- stack_boundary
;
575 high_bound
= ap_offset
576 + FIRST_PARM_OFFSET (current_function_decl
)
577 #if !ARGS_GROW_DOWNWARD
582 high_bound
= sp_offset
+ red_zone_size
+ stack_boundary
;
583 low_bound
= ap_offset
584 + FIRST_PARM_OFFSET (current_function_decl
)
585 #if ARGS_GROW_DOWNWARD
591 else if (x
== stack_pointer_rtx
)
594 = get_initial_register_offset (ARG_POINTER_REGNUM
,
595 STACK_POINTER_REGNUM
);
597 #if STACK_GROWS_DOWNWARD
598 low_bound
= - red_zone_size
- stack_boundary
;
599 high_bound
= ap_offset
600 + FIRST_PARM_OFFSET (current_function_decl
)
601 #if !ARGS_GROW_DOWNWARD
606 high_bound
= red_zone_size
+ stack_boundary
;
607 low_bound
= ap_offset
608 + FIRST_PARM_OFFSET (current_function_decl
)
609 #if ARGS_GROW_DOWNWARD
617 /* We assume that accesses are safe to at least the
619 Examples are varargs and __builtin_return_address. */
620 #if ARGS_GROW_DOWNWARD
621 high_bound
= FIRST_PARM_OFFSET (current_function_decl
)
623 low_bound
= FIRST_PARM_OFFSET (current_function_decl
)
624 - crtl
->args
.size
- stack_boundary
;
626 low_bound
= FIRST_PARM_OFFSET (current_function_decl
)
628 high_bound
= FIRST_PARM_OFFSET (current_function_decl
)
629 + crtl
->args
.size
+ stack_boundary
;
633 if (known_ge (offset
, low_bound
)
634 && known_le (offset
, high_bound
- size
))
638 /* All of the virtual frame registers are stack references. */
639 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
645 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
646 mode
, unaligned_mems
);
649 /* An address is assumed not to trap if:
650 - it is the pic register plus a const unspec without offset. */
651 if (XEXP (x
, 0) == pic_offset_table_rtx
652 && GET_CODE (XEXP (x
, 1)) == CONST
653 && GET_CODE (XEXP (XEXP (x
, 1), 0)) == UNSPEC
654 && known_eq (offset
, 0))
657 /* - or it is an address that can't trap plus a constant integer. */
658 if (poly_int_rtx_p (XEXP (x
, 1), &const_x1
)
659 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ const_x1
,
660 size
, mode
, unaligned_mems
))
667 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
668 mode
, unaligned_mems
);
675 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
676 mode
, unaligned_mems
);
682 /* If it isn't one of the case above, it can cause a trap. */
686 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
689 rtx_addr_can_trap_p (const_rtx x
)
691 return rtx_addr_can_trap_p_1 (x
, 0, -1, BLKmode
, false);
694 /* Return true if X contains a MEM subrtx. */
697 contains_mem_rtx_p (rtx x
)
699 subrtx_iterator::array_type array
;
700 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
707 /* Return true if X is an address that is known to not be zero. */
710 nonzero_address_p (const_rtx x
)
712 const enum rtx_code code
= GET_CODE (x
);
717 return flag_delete_null_pointer_checks
&& !SYMBOL_REF_WEAK (x
);
723 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
724 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
725 || x
== stack_pointer_rtx
726 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
728 /* All of the virtual frame registers are stack references. */
729 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
730 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
735 return nonzero_address_p (XEXP (x
, 0));
738 /* Handle PIC references. */
739 if (XEXP (x
, 0) == pic_offset_table_rtx
740 && CONSTANT_P (XEXP (x
, 1)))
745 /* Similar to the above; allow positive offsets. Further, since
746 auto-inc is only allowed in memories, the register must be a
748 if (CONST_INT_P (XEXP (x
, 1))
749 && INTVAL (XEXP (x
, 1)) > 0)
751 return nonzero_address_p (XEXP (x
, 0));
754 /* Similarly. Further, the offset is always positive. */
761 return nonzero_address_p (XEXP (x
, 0));
764 return nonzero_address_p (XEXP (x
, 1));
770 /* If it isn't one of the case above, might be zero. */
774 /* Return 1 if X refers to a memory location whose address
775 cannot be compared reliably with constant addresses,
776 or if X refers to a BLKmode memory object.
777 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
778 zero, we are slightly more conservative. */
781 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
792 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
794 fmt
= GET_RTX_FORMAT (code
);
795 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
798 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
801 else if (fmt
[i
] == 'E')
804 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
805 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
811 /* Return the CALL in X if there is one. */
814 get_call_rtx_from (rtx x
)
818 if (GET_CODE (x
) == PARALLEL
)
819 x
= XVECEXP (x
, 0, 0);
820 if (GET_CODE (x
) == SET
)
822 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
827 /* Return the value of the integer term in X, if one is apparent;
829 Only obvious integer terms are detected.
830 This is used in cse.c with the `related_value' field. */
833 get_integer_term (const_rtx x
)
835 if (GET_CODE (x
) == CONST
)
838 if (GET_CODE (x
) == MINUS
839 && CONST_INT_P (XEXP (x
, 1)))
840 return - INTVAL (XEXP (x
, 1));
841 if (GET_CODE (x
) == PLUS
842 && CONST_INT_P (XEXP (x
, 1)))
843 return INTVAL (XEXP (x
, 1));
847 /* If X is a constant, return the value sans apparent integer term;
849 Only obvious integer terms are detected. */
852 get_related_value (const_rtx x
)
854 if (GET_CODE (x
) != CONST
)
857 if (GET_CODE (x
) == PLUS
858 && CONST_INT_P (XEXP (x
, 1)))
860 else if (GET_CODE (x
) == MINUS
861 && CONST_INT_P (XEXP (x
, 1)))
866 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
867 to somewhere in the same object or object_block as SYMBOL. */
870 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
874 if (GET_CODE (symbol
) != SYMBOL_REF
)
882 if (CONSTANT_POOL_ADDRESS_P (symbol
)
883 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
886 decl
= SYMBOL_REF_DECL (symbol
);
887 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
891 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
892 && SYMBOL_REF_BLOCK (symbol
)
893 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
894 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
895 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
901 /* Split X into a base and a constant offset, storing them in *BASE_OUT
902 and *OFFSET_OUT respectively. */
905 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
907 if (GET_CODE (x
) == CONST
)
910 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
912 *base_out
= XEXP (x
, 0);
913 *offset_out
= XEXP (x
, 1);
918 *offset_out
= const0_rtx
;
921 /* Express integer value X as some value Y plus a polynomial offset,
922 where Y is either const0_rtx, X or something within X (as opposed
923 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
926 strip_offset (rtx x
, poly_int64_pod
*offset_out
)
928 rtx base
= const0_rtx
;
930 if (GET_CODE (test
) == CONST
)
931 test
= XEXP (test
, 0);
932 if (GET_CODE (test
) == PLUS
)
934 base
= XEXP (test
, 0);
935 test
= XEXP (test
, 1);
937 if (poly_int_rtx_p (test
, offset_out
))
943 /* Return the argument size in REG_ARGS_SIZE note X. */
946 get_args_size (const_rtx x
)
948 gcc_checking_assert (REG_NOTE_KIND (x
) == REG_ARGS_SIZE
);
949 return rtx_to_poly_int64 (XEXP (x
, 0));
952 /* Return the number of places FIND appears within X. If COUNT_DEST is
953 zero, we do not count occurrences inside the destination of a SET. */
956 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
960 const char *format_ptr
;
979 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
981 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
985 if (MEM_P (find
) && rtx_equal_p (x
, find
))
990 if (SET_DEST (x
) == find
&& ! count_dest
)
991 return count_occurrences (SET_SRC (x
), find
, count_dest
);
998 format_ptr
= GET_RTX_FORMAT (code
);
1001 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1003 switch (*format_ptr
++)
1006 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
1010 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1011 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
1019 /* Return TRUE if OP is a register or subreg of a register that
1020 holds an unsigned quantity. Otherwise, return FALSE. */
1023 unsigned_reg_p (rtx op
)
1027 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
1030 if (GET_CODE (op
) == SUBREG
1031 && SUBREG_PROMOTED_SIGN (op
))
1038 /* Nonzero if register REG appears somewhere within IN.
1039 Also works if REG is not a register; in this case it checks
1040 for a subexpression of IN that is Lisp "equal" to REG. */
1043 reg_mentioned_p (const_rtx reg
, const_rtx in
)
1055 if (GET_CODE (in
) == LABEL_REF
)
1056 return reg
== label_ref_label (in
);
1058 code
= GET_CODE (in
);
1062 /* Compare registers by number. */
1064 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
1066 /* These codes have no constituent expressions
1074 /* These are kept unique for a given value. */
1081 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
1084 fmt
= GET_RTX_FORMAT (code
);
1086 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1091 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
1092 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
1095 else if (fmt
[i
] == 'e'
1096 && reg_mentioned_p (reg
, XEXP (in
, i
)))
1102 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1103 no CODE_LABEL insn. */
1106 no_labels_between_p (const rtx_insn
*beg
, const rtx_insn
*end
)
1111 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
1117 /* Nonzero if register REG is used in an insn between
1118 FROM_INSN and TO_INSN (exclusive of those two). */
1121 reg_used_between_p (const_rtx reg
, const rtx_insn
*from_insn
,
1122 const rtx_insn
*to_insn
)
1126 if (from_insn
== to_insn
)
1129 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
1130 if (NONDEBUG_INSN_P (insn
)
1131 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
1132 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
1137 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1138 is entirely replaced by a new value and the only use is as a SET_DEST,
1139 we do not consider it a reference. */
1142 reg_referenced_p (const_rtx x
, const_rtx body
)
1146 switch (GET_CODE (body
))
1149 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
1152 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1153 of a REG that occupies all of the REG, the insn references X if
1154 it is mentioned in the destination. */
1155 if (GET_CODE (SET_DEST (body
)) != CC0
1156 && GET_CODE (SET_DEST (body
)) != PC
1157 && !REG_P (SET_DEST (body
))
1158 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
1159 && REG_P (SUBREG_REG (SET_DEST (body
)))
1160 && !read_modify_subreg_p (SET_DEST (body
)))
1161 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
1166 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1167 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
1174 return reg_overlap_mentioned_p (x
, body
);
1177 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
1180 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
1183 case UNSPEC_VOLATILE
:
1184 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1185 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
1190 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1191 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
1196 if (MEM_P (XEXP (body
, 0)))
1197 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
1202 gcc_assert (REG_P (XEXP (body
, 0)));
1206 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
1208 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
1215 /* Nonzero if register REG is set or clobbered in an insn between
1216 FROM_INSN and TO_INSN (exclusive of those two). */
1219 reg_set_between_p (const_rtx reg
, const rtx_insn
*from_insn
,
1220 const rtx_insn
*to_insn
)
1222 const rtx_insn
*insn
;
1224 if (from_insn
== to_insn
)
1227 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
1228 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
1233 /* Return true if REG is set or clobbered inside INSN. */
1236 reg_set_p (const_rtx reg
, const_rtx insn
)
1238 /* After delay slot handling, call and branch insns might be in a
1239 sequence. Check all the elements there. */
1240 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1242 for (int i
= 0; i
< XVECLEN (PATTERN (insn
), 0); ++i
)
1243 if (reg_set_p (reg
, XVECEXP (PATTERN (insn
), 0, i
)))
1249 /* We can be passed an insn or part of one. If we are passed an insn,
1250 check if a side-effect of the insn clobbers REG. */
1252 && (FIND_REG_INC_NOTE (insn
, reg
)
1255 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
1256 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
1257 GET_MODE (reg
), REGNO (reg
)))
1259 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
1262 /* There are no REG_INC notes for SP autoinc. */
1263 if (reg
== stack_pointer_rtx
&& INSN_P (insn
))
1265 subrtx_var_iterator::array_type array
;
1266 FOR_EACH_SUBRTX_VAR (iter
, array
, PATTERN (insn
), NONCONST
)
1271 && GET_RTX_CLASS (GET_CODE (XEXP (mem
, 0))) == RTX_AUTOINC
)
1273 if (XEXP (XEXP (mem
, 0), 0) == stack_pointer_rtx
)
1275 iter
.skip_subrtxes ();
1280 return set_of (reg
, insn
) != NULL_RTX
;
1283 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1284 only if none of them are modified between START and END. Return 1 if
1285 X contains a MEM; this routine does use memory aliasing. */
1288 modified_between_p (const_rtx x
, const rtx_insn
*start
, const rtx_insn
*end
)
1290 const enum rtx_code code
= GET_CODE (x
);
1311 if (modified_between_p (XEXP (x
, 0), start
, end
))
1313 if (MEM_READONLY_P (x
))
1315 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
1316 if (memory_modified_in_insn_p (x
, insn
))
1321 return reg_set_between_p (x
, start
, end
);
1327 fmt
= GET_RTX_FORMAT (code
);
1328 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1330 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
1333 else if (fmt
[i
] == 'E')
1334 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1335 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
1342 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1343 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1344 does use memory aliasing. */
1347 modified_in_p (const_rtx x
, const_rtx insn
)
1349 const enum rtx_code code
= GET_CODE (x
);
1366 if (modified_in_p (XEXP (x
, 0), insn
))
1368 if (MEM_READONLY_P (x
))
1370 if (memory_modified_in_insn_p (x
, insn
))
1375 return reg_set_p (x
, insn
);
1381 fmt
= GET_RTX_FORMAT (code
);
1382 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1384 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
1387 else if (fmt
[i
] == 'E')
1388 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1389 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
1396 /* Return true if X is a SUBREG and if storing a value to X would
1397 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1398 target, using a SUBREG to store to one half of a DImode REG would
1399 preserve the other half. */
1402 read_modify_subreg_p (const_rtx x
)
1404 if (GET_CODE (x
) != SUBREG
)
1406 poly_uint64 isize
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
1407 poly_uint64 osize
= GET_MODE_SIZE (GET_MODE (x
));
1408 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x
)));
1409 /* The inner and outer modes of a subreg must be ordered, so that we
1410 can tell whether they're paradoxical or partial. */
1411 gcc_checking_assert (ordered_p (isize
, osize
));
1412 return (maybe_gt (isize
, osize
) && maybe_gt (isize
, regsize
));
1415 /* Helper function for set_of. */
1423 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
1425 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1426 if (rtx_equal_p (x
, data
->pat
)
1427 || (GET_CODE (pat
) == CLOBBER_HIGH
1428 && REGNO(data
->pat
) == REGNO(XEXP (pat
, 0))
1429 && reg_is_clobbered_by_clobber_high (data
->pat
, XEXP (pat
, 0)))
1430 || (GET_CODE (pat
) != CLOBBER_HIGH
&& !MEM_P (x
)
1431 && reg_overlap_mentioned_p (data
->pat
, x
)))
1435 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1436 (either directly or via STRICT_LOW_PART and similar modifiers). */
1438 set_of (const_rtx pat
, const_rtx insn
)
1440 struct set_of_data data
;
1441 data
.found
= NULL_RTX
;
1443 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1447 /* Add all hard register in X to *PSET. */
1449 find_all_hard_regs (const_rtx x
, HARD_REG_SET
*pset
)
1451 subrtx_iterator::array_type array
;
1452 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
1454 const_rtx x
= *iter
;
1455 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1456 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1460 /* This function, called through note_stores, collects sets and
1461 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1464 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1466 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1467 if (REG_P (x
) && HARD_REGISTER_P (x
))
1468 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1471 /* Examine INSN, and compute the set of hard registers written by it.
1472 Store it in *PSET. Should only be called after reload. */
1474 find_all_hard_reg_sets (const rtx_insn
*insn
, HARD_REG_SET
*pset
, bool implicit
)
1478 CLEAR_HARD_REG_SET (*pset
);
1479 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1483 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1485 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1486 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1488 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1489 if (REG_NOTE_KIND (link
) == REG_INC
)
1490 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1493 /* Like record_hard_reg_sets, but called through note_uses. */
1495 record_hard_reg_uses (rtx
*px
, void *data
)
1497 find_all_hard_regs (*px
, (HARD_REG_SET
*) data
);
1500 /* Given an INSN, return a SET expression if this insn has only a single SET.
1501 It may also have CLOBBERs, USEs, or SET whose output
1502 will not be used, which we ignore. */
1505 single_set_2 (const rtx_insn
*insn
, const_rtx pat
)
1508 int set_verified
= 1;
1511 if (GET_CODE (pat
) == PARALLEL
)
1513 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1515 rtx sub
= XVECEXP (pat
, 0, i
);
1516 switch (GET_CODE (sub
))
1524 /* We can consider insns having multiple sets, where all
1525 but one are dead as single set insns. In common case
1526 only single set is present in the pattern so we want
1527 to avoid checking for REG_UNUSED notes unless necessary.
1529 When we reach set first time, we just expect this is
1530 the single set we are looking for and only when more
1531 sets are found in the insn, we check them. */
1534 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1535 && !side_effects_p (set
))
1541 set
= sub
, set_verified
= 0;
1542 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1543 || side_effects_p (sub
))
1555 /* Given an INSN, return nonzero if it has more than one SET, else return
1559 multiple_sets (const_rtx insn
)
1564 /* INSN must be an insn. */
1565 if (! INSN_P (insn
))
1568 /* Only a PARALLEL can have multiple SETs. */
1569 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1571 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1572 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1574 /* If we have already found a SET, then return now. */
1582 /* Either zero or one SET. */
1586 /* Return nonzero if the destination of SET equals the source
1587 and there are no side effects. */
1590 set_noop_p (const_rtx set
)
1592 rtx src
= SET_SRC (set
);
1593 rtx dst
= SET_DEST (set
);
1595 if (dst
== pc_rtx
&& src
== pc_rtx
)
1598 if (MEM_P (dst
) && MEM_P (src
))
1599 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1601 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1602 return rtx_equal_p (XEXP (dst
, 0), src
)
1603 && !BITS_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1604 && !side_effects_p (src
);
1606 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1607 dst
= XEXP (dst
, 0);
1609 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1611 if (maybe_ne (SUBREG_BYTE (src
), SUBREG_BYTE (dst
)))
1613 src
= SUBREG_REG (src
);
1614 dst
= SUBREG_REG (dst
);
1617 /* It is a NOOP if destination overlaps with selected src vector
1619 if (GET_CODE (src
) == VEC_SELECT
1620 && REG_P (XEXP (src
, 0)) && REG_P (dst
)
1621 && HARD_REGISTER_P (XEXP (src
, 0))
1622 && HARD_REGISTER_P (dst
))
1625 rtx par
= XEXP (src
, 1);
1626 rtx src0
= XEXP (src
, 0);
1627 poly_int64 c0
= rtx_to_poly_int64 (XVECEXP (par
, 0, 0));
1628 poly_int64 offset
= GET_MODE_UNIT_SIZE (GET_MODE (src0
)) * c0
;
1630 for (i
= 1; i
< XVECLEN (par
, 0); i
++)
1631 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par
, 0, i
)), c0
+ i
))
1634 REG_CAN_CHANGE_MODE_P (REGNO (dst
), GET_MODE (src0
), GET_MODE (dst
))
1635 && simplify_subreg_regno (REGNO (src0
), GET_MODE (src0
),
1636 offset
, GET_MODE (dst
)) == (int) REGNO (dst
);
1639 return (REG_P (src
) && REG_P (dst
)
1640 && REGNO (src
) == REGNO (dst
));
1643 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1647 noop_move_p (const rtx_insn
*insn
)
1649 rtx pat
= PATTERN (insn
);
1651 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1654 /* Insns carrying these notes are useful later on. */
1655 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1658 /* Check the code to be executed for COND_EXEC. */
1659 if (GET_CODE (pat
) == COND_EXEC
)
1660 pat
= COND_EXEC_CODE (pat
);
1662 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1665 if (GET_CODE (pat
) == PARALLEL
)
1668 /* If nothing but SETs of registers to themselves,
1669 this insn can also be deleted. */
1670 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1672 rtx tem
= XVECEXP (pat
, 0, i
);
1674 if (GET_CODE (tem
) == USE
1675 || GET_CODE (tem
) == CLOBBER
1676 || GET_CODE (tem
) == CLOBBER_HIGH
)
1679 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1689 /* Return nonzero if register in range [REGNO, ENDREGNO)
1690 appears either explicitly or implicitly in X
1691 other than being stored into.
1693 References contained within the substructure at LOC do not count.
1694 LOC may be zero, meaning don't ignore anything. */
1697 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1701 unsigned int x_regno
;
1706 /* The contents of a REG_NONNEG note is always zero, so we must come here
1707 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1711 code
= GET_CODE (x
);
1716 x_regno
= REGNO (x
);
1718 /* If we modifying the stack, frame, or argument pointer, it will
1719 clobber a virtual register. In fact, we could be more precise,
1720 but it isn't worth it. */
1721 if ((x_regno
== STACK_POINTER_REGNUM
1722 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1723 && x_regno
== ARG_POINTER_REGNUM
)
1724 || x_regno
== FRAME_POINTER_REGNUM
)
1725 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1728 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1731 /* If this is a SUBREG of a hard reg, we can see exactly which
1732 registers are being modified. Otherwise, handle normally. */
1733 if (REG_P (SUBREG_REG (x
))
1734 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1736 unsigned int inner_regno
= subreg_regno (x
);
1737 unsigned int inner_endregno
1738 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1739 ? subreg_nregs (x
) : 1);
1741 return endregno
> inner_regno
&& regno
< inner_endregno
;
1747 if (&SET_DEST (x
) != loc
1748 /* Note setting a SUBREG counts as referring to the REG it is in for
1749 a pseudo but not for hard registers since we can
1750 treat each word individually. */
1751 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1752 && loc
!= &SUBREG_REG (SET_DEST (x
))
1753 && REG_P (SUBREG_REG (SET_DEST (x
)))
1754 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1755 && refers_to_regno_p (regno
, endregno
,
1756 SUBREG_REG (SET_DEST (x
)), loc
))
1757 || (!REG_P (SET_DEST (x
))
1758 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1761 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1770 /* X does not match, so try its subexpressions. */
1772 fmt
= GET_RTX_FORMAT (code
);
1773 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1775 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1783 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1786 else if (fmt
[i
] == 'E')
1789 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1790 if (loc
!= &XVECEXP (x
, i
, j
)
1791 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1798 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1799 we check if any register number in X conflicts with the relevant register
1800 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1801 contains a MEM (we don't bother checking for memory addresses that can't
1802 conflict because we expect this to be a rare case. */
1805 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1807 unsigned int regno
, endregno
;
1809 /* If either argument is a constant, then modifying X can not
1810 affect IN. Here we look at IN, we can profitably combine
1811 CONSTANT_P (x) with the switch statement below. */
1812 if (CONSTANT_P (in
))
1816 switch (GET_CODE (x
))
1819 case STRICT_LOW_PART
:
1822 /* Overly conservative. */
1827 regno
= REGNO (SUBREG_REG (x
));
1828 if (regno
< FIRST_PSEUDO_REGISTER
)
1829 regno
= subreg_regno (x
);
1830 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1831 ? subreg_nregs (x
) : 1);
1836 endregno
= END_REGNO (x
);
1838 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1848 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1849 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1852 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1855 else if (fmt
[i
] == 'E')
1858 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1859 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1869 return reg_mentioned_p (x
, in
);
1875 /* If any register in here refers to it we return true. */
1876 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1877 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1878 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1884 gcc_assert (CONSTANT_P (x
));
1889 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1890 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1891 ignored by note_stores, but passed to FUN.
1893 FUN receives three arguments:
1894 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1895 2. the SET or CLOBBER rtx that does the store,
1896 3. the pointer DATA provided to note_stores.
1898 If the item being stored in or clobbered is a SUBREG of a hard register,
1899 the SUBREG will be passed. */
1902 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1906 if (GET_CODE (x
) == COND_EXEC
)
1907 x
= COND_EXEC_CODE (x
);
1909 if (GET_CODE (x
) == SET
1910 || GET_CODE (x
) == CLOBBER
1911 || GET_CODE (x
) == CLOBBER_HIGH
)
1913 rtx dest
= SET_DEST (x
);
1915 while ((GET_CODE (dest
) == SUBREG
1916 && (!REG_P (SUBREG_REG (dest
))
1917 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1918 || GET_CODE (dest
) == ZERO_EXTRACT
1919 || GET_CODE (dest
) == STRICT_LOW_PART
)
1920 dest
= XEXP (dest
, 0);
1922 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1923 each of whose first operand is a register. */
1924 if (GET_CODE (dest
) == PARALLEL
)
1926 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1927 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1928 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1931 (*fun
) (dest
, x
, data
);
1934 else if (GET_CODE (x
) == PARALLEL
)
1935 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1936 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1939 /* Like notes_stores, but call FUN for each expression that is being
1940 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1941 FUN for each expression, not any interior subexpressions. FUN receives a
1942 pointer to the expression and the DATA passed to this function.
1944 Note that this is not quite the same test as that done in reg_referenced_p
1945 since that considers something as being referenced if it is being
1946 partially set, while we do not. */
1949 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1954 switch (GET_CODE (body
))
1957 (*fun
) (&COND_EXEC_TEST (body
), data
);
1958 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1962 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1963 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1967 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1968 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1972 (*fun
) (&XEXP (body
, 0), data
);
1976 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1977 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1981 (*fun
) (&TRAP_CONDITION (body
), data
);
1985 (*fun
) (&XEXP (body
, 0), data
);
1989 case UNSPEC_VOLATILE
:
1990 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1991 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1995 if (MEM_P (XEXP (body
, 0)))
1996 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
2001 rtx dest
= SET_DEST (body
);
2003 /* For sets we replace everything in source plus registers in memory
2004 expression in store and operands of a ZERO_EXTRACT. */
2005 (*fun
) (&SET_SRC (body
), data
);
2007 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2009 (*fun
) (&XEXP (dest
, 1), data
);
2010 (*fun
) (&XEXP (dest
, 2), data
);
2013 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
2014 dest
= XEXP (dest
, 0);
2017 (*fun
) (&XEXP (dest
, 0), data
);
2022 /* All the other possibilities never store. */
2023 (*fun
) (pbody
, data
);
2028 /* Return nonzero if X's old contents don't survive after INSN.
2029 This will be true if X is (cc0) or if X is a register and
2030 X dies in INSN or because INSN entirely sets X.
2032 "Entirely set" means set directly and not through a SUBREG, or
2033 ZERO_EXTRACT, so no trace of the old contents remains.
2034 Likewise, REG_INC does not count.
2036 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2037 but for this use that makes no difference, since regs don't overlap
2038 during their lifetimes. Therefore, this function may be used
2039 at any time after deaths have been computed.
2041 If REG is a hard reg that occupies multiple machine registers, this
2042 function will only return 1 if each of those registers will be replaced
2046 dead_or_set_p (const rtx_insn
*insn
, const_rtx x
)
2048 unsigned int regno
, end_regno
;
2051 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2052 if (GET_CODE (x
) == CC0
)
2055 gcc_assert (REG_P (x
));
2058 end_regno
= END_REGNO (x
);
2059 for (i
= regno
; i
< end_regno
; i
++)
2060 if (! dead_or_set_regno_p (insn
, i
))
2066 /* Return TRUE iff DEST is a register or subreg of a register, is a
2067 complete rather than read-modify-write destination, and contains
2068 register TEST_REGNO. */
2071 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
2073 unsigned int regno
, endregno
;
2075 if (GET_CODE (dest
) == SUBREG
&& !read_modify_subreg_p (dest
))
2076 dest
= SUBREG_REG (dest
);
2081 regno
= REGNO (dest
);
2082 endregno
= END_REGNO (dest
);
2083 return (test_regno
>= regno
&& test_regno
< endregno
);
2086 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2087 any member matches the covers_regno_no_parallel_p criteria. */
2090 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
2092 if (GET_CODE (dest
) == PARALLEL
)
2094 /* Some targets place small structures in registers for return
2095 values of functions, and those registers are wrapped in
2096 PARALLELs that we may see as the destination of a SET. */
2099 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
2101 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
2102 if (inner
!= NULL_RTX
2103 && covers_regno_no_parallel_p (inner
, test_regno
))
2110 return covers_regno_no_parallel_p (dest
, test_regno
);
2113 /* Utility function for dead_or_set_p to check an individual register. */
2116 dead_or_set_regno_p (const rtx_insn
*insn
, unsigned int test_regno
)
2120 /* See if there is a death note for something that includes TEST_REGNO. */
2121 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
2125 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
2128 pattern
= PATTERN (insn
);
2130 /* If a COND_EXEC is not executed, the value survives. */
2131 if (GET_CODE (pattern
) == COND_EXEC
)
2134 if (GET_CODE (pattern
) == SET
|| GET_CODE (pattern
) == CLOBBER
)
2135 return covers_regno_p (SET_DEST (pattern
), test_regno
);
2136 else if (GET_CODE (pattern
) == PARALLEL
)
2140 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
2142 rtx body
= XVECEXP (pattern
, 0, i
);
2144 if (GET_CODE (body
) == COND_EXEC
)
2145 body
= COND_EXEC_CODE (body
);
2147 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
2148 && covers_regno_p (SET_DEST (body
), test_regno
))
2156 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2157 If DATUM is nonzero, look for one whose datum is DATUM. */
2160 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
2164 gcc_checking_assert (insn
);
2166 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2167 if (! INSN_P (insn
))
2171 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2172 if (REG_NOTE_KIND (link
) == kind
)
2177 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2178 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
2183 /* Return the reg-note of kind KIND in insn INSN which applies to register
2184 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2185 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2186 it might be the case that the note overlaps REGNO. */
2189 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
2193 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2194 if (! INSN_P (insn
))
2197 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2198 if (REG_NOTE_KIND (link
) == kind
2199 /* Verify that it is a register, so that scratch and MEM won't cause a
2201 && REG_P (XEXP (link
, 0))
2202 && REGNO (XEXP (link
, 0)) <= regno
2203 && END_REGNO (XEXP (link
, 0)) > regno
)
2208 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2212 find_reg_equal_equiv_note (const_rtx insn
)
2219 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2220 if (REG_NOTE_KIND (link
) == REG_EQUAL
2221 || REG_NOTE_KIND (link
) == REG_EQUIV
)
2223 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2224 insns that have multiple sets. Checking single_set to
2225 make sure of this is not the proper check, as explained
2226 in the comment in set_unique_reg_note.
2228 This should be changed into an assert. */
2229 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
2236 /* Check whether INSN is a single_set whose source is known to be
2237 equivalent to a constant. Return that constant if so, otherwise
2241 find_constant_src (const rtx_insn
*insn
)
2245 set
= single_set (insn
);
2248 x
= avoid_constant_pool_reference (SET_SRC (set
));
2253 note
= find_reg_equal_equiv_note (insn
);
2254 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2255 return XEXP (note
, 0);
2260 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2261 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2264 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
2266 /* If it's not a CALL_INSN, it can't possibly have a
2267 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2277 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
2279 link
= XEXP (link
, 1))
2280 if (GET_CODE (XEXP (link
, 0)) == code
2281 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
2286 unsigned int regno
= REGNO (datum
);
2288 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2289 to pseudo registers, so don't bother checking. */
2291 if (regno
< FIRST_PSEUDO_REGISTER
)
2293 unsigned int end_regno
= END_REGNO (datum
);
2296 for (i
= regno
; i
< end_regno
; i
++)
2297 if (find_regno_fusage (insn
, code
, i
))
2305 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2306 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2309 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
2313 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2314 to pseudo registers, so don't bother checking. */
2316 if (regno
>= FIRST_PSEUDO_REGISTER
2320 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
2324 if (GET_CODE (op
= XEXP (link
, 0)) == code
2325 && REG_P (reg
= XEXP (op
, 0))
2326 && REGNO (reg
) <= regno
2327 && END_REGNO (reg
) > regno
)
2335 /* Return true if KIND is an integer REG_NOTE. */
2338 int_reg_note_p (enum reg_note kind
)
2340 return kind
== REG_BR_PROB
;
2343 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2344 stored as the pointer to the next register note. */
2347 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
2351 gcc_checking_assert (!int_reg_note_p (kind
));
2356 case REG_LABEL_TARGET
:
2357 case REG_LABEL_OPERAND
:
2359 /* These types of register notes use an INSN_LIST rather than an
2360 EXPR_LIST, so that copying is done right and dumps look
2362 note
= alloc_INSN_LIST (datum
, list
);
2363 PUT_REG_NOTE_KIND (note
, kind
);
2367 note
= alloc_EXPR_LIST (kind
, datum
, list
);
2374 /* Add register note with kind KIND and datum DATUM to INSN. */
2377 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
2379 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
2382 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2385 add_int_reg_note (rtx_insn
*insn
, enum reg_note kind
, int datum
)
2387 gcc_checking_assert (int_reg_note_p (kind
));
2388 REG_NOTES (insn
) = gen_rtx_INT_LIST ((machine_mode
) kind
,
2389 datum
, REG_NOTES (insn
));
2392 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2395 add_args_size_note (rtx_insn
*insn
, poly_int64 value
)
2397 gcc_checking_assert (!find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
));
2398 add_reg_note (insn
, REG_ARGS_SIZE
, gen_int_mode (value
, Pmode
));
2401 /* Add a register note like NOTE to INSN. */
2404 add_shallow_copy_of_reg_note (rtx_insn
*insn
, rtx note
)
2406 if (GET_CODE (note
) == INT_LIST
)
2407 add_int_reg_note (insn
, REG_NOTE_KIND (note
), XINT (note
, 0));
2409 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
2412 /* Duplicate NOTE and return the copy. */
2414 duplicate_reg_note (rtx note
)
2416 reg_note kind
= REG_NOTE_KIND (note
);
2418 if (GET_CODE (note
) == INT_LIST
)
2419 return gen_rtx_INT_LIST ((machine_mode
) kind
, XINT (note
, 0), NULL_RTX
);
2420 else if (GET_CODE (note
) == EXPR_LIST
)
2421 return alloc_reg_note (kind
, copy_insn_1 (XEXP (note
, 0)), NULL_RTX
);
2423 return alloc_reg_note (kind
, XEXP (note
, 0), NULL_RTX
);
2426 /* Remove register note NOTE from the REG_NOTES of INSN. */
2429 remove_note (rtx_insn
*insn
, const_rtx note
)
2433 if (note
== NULL_RTX
)
2436 if (REG_NOTES (insn
) == note
)
2437 REG_NOTES (insn
) = XEXP (note
, 1);
2439 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2440 if (XEXP (link
, 1) == note
)
2442 XEXP (link
, 1) = XEXP (note
, 1);
2446 switch (REG_NOTE_KIND (note
))
2450 df_notes_rescan (insn
);
2457 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2458 Return true if any note has been removed. */
2461 remove_reg_equal_equiv_notes (rtx_insn
*insn
)
2466 loc
= ®_NOTES (insn
);
2469 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2470 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2472 *loc
= XEXP (*loc
, 1);
2476 loc
= &XEXP (*loc
, 1);
2481 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2484 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2491 /* This loop is a little tricky. We cannot just go down the chain because
2492 it is being modified by some actions in the loop. So we just iterate
2493 over the head. We plan to drain the list anyway. */
2494 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2496 rtx_insn
*insn
= DF_REF_INSN (eq_use
);
2497 rtx note
= find_reg_equal_equiv_note (insn
);
2499 /* This assert is generally triggered when someone deletes a REG_EQUAL
2500 or REG_EQUIV note by hacking the list manually rather than calling
2504 remove_note (insn
, note
);
2508 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2509 return 1 if it is found. A simple equality test is used to determine if
2513 in_insn_list_p (const rtx_insn_list
*listp
, const rtx_insn
*node
)
2517 for (x
= listp
; x
; x
= XEXP (x
, 1))
2518 if (node
== XEXP (x
, 0))
2524 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2525 remove that entry from the list if it is found.
2527 A simple equality test is used to determine if NODE matches. */
2530 remove_node_from_expr_list (const_rtx node
, rtx_expr_list
**listp
)
2532 rtx_expr_list
*temp
= *listp
;
2533 rtx_expr_list
*prev
= NULL
;
2537 if (node
== temp
->element ())
2539 /* Splice the node out of the list. */
2541 XEXP (prev
, 1) = temp
->next ();
2543 *listp
= temp
->next ();
2549 temp
= temp
->next ();
2553 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2554 remove that entry from the list if it is found.
2556 A simple equality test is used to determine if NODE matches. */
2559 remove_node_from_insn_list (const rtx_insn
*node
, rtx_insn_list
**listp
)
2561 rtx_insn_list
*temp
= *listp
;
2562 rtx_insn_list
*prev
= NULL
;
2566 if (node
== temp
->insn ())
2568 /* Splice the node out of the list. */
2570 XEXP (prev
, 1) = temp
->next ();
2572 *listp
= temp
->next ();
2578 temp
= temp
->next ();
2582 /* Nonzero if X contains any volatile instructions. These are instructions
2583 which may cause unpredictable machine state instructions, and thus no
2584 instructions or register uses should be moved or combined across them.
2585 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2588 volatile_insn_p (const_rtx x
)
2590 const RTX_CODE code
= GET_CODE (x
);
2608 case UNSPEC_VOLATILE
:
2613 if (MEM_VOLATILE_P (x
))
2620 /* Recursively scan the operands of this expression. */
2623 const char *const fmt
= GET_RTX_FORMAT (code
);
2626 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2630 if (volatile_insn_p (XEXP (x
, i
)))
2633 else if (fmt
[i
] == 'E')
2636 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2637 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2645 /* Nonzero if X contains any volatile memory references
2646 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2649 volatile_refs_p (const_rtx x
)
2651 const RTX_CODE code
= GET_CODE (x
);
2667 case UNSPEC_VOLATILE
:
2673 if (MEM_VOLATILE_P (x
))
2680 /* Recursively scan the operands of this expression. */
2683 const char *const fmt
= GET_RTX_FORMAT (code
);
2686 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2690 if (volatile_refs_p (XEXP (x
, i
)))
2693 else if (fmt
[i
] == 'E')
2696 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2697 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2705 /* Similar to above, except that it also rejects register pre- and post-
2709 side_effects_p (const_rtx x
)
2711 const RTX_CODE code
= GET_CODE (x
);
2728 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2729 when some combination can't be done. If we see one, don't think
2730 that we can simplify the expression. */
2731 return (GET_MODE (x
) != VOIDmode
);
2740 case UNSPEC_VOLATILE
:
2746 if (MEM_VOLATILE_P (x
))
2753 /* Recursively scan the operands of this expression. */
2756 const char *fmt
= GET_RTX_FORMAT (code
);
2759 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2763 if (side_effects_p (XEXP (x
, i
)))
2766 else if (fmt
[i
] == 'E')
2769 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2770 if (side_effects_p (XVECEXP (x
, i
, j
)))
2778 /* Return nonzero if evaluating rtx X might cause a trap.
2779 FLAGS controls how to consider MEMs. A nonzero means the context
2780 of the access may have changed from the original, such that the
2781 address may have become invalid. */
2784 may_trap_p_1 (const_rtx x
, unsigned flags
)
2790 /* We make no distinction currently, but this function is part of
2791 the internal target-hooks ABI so we keep the parameter as
2792 "unsigned flags". */
2793 bool code_changed
= flags
!= 0;
2797 code
= GET_CODE (x
);
2800 /* Handle these cases quickly. */
2812 return targetm
.unspec_may_trap_p (x
, flags
);
2814 case UNSPEC_VOLATILE
:
2820 return MEM_VOLATILE_P (x
);
2822 /* Memory ref can trap unless it's a static var or a stack slot. */
2824 /* Recognize specific pattern of stack checking probes. */
2825 if (flag_stack_check
2826 && MEM_VOLATILE_P (x
)
2827 && XEXP (x
, 0) == stack_pointer_rtx
)
2829 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2830 reference; moving it out of context such as when moving code
2831 when optimizing, might cause its address to become invalid. */
2833 || !MEM_NOTRAP_P (x
))
2835 poly_int64 size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : -1;
2836 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2837 GET_MODE (x
), code_changed
);
2842 /* Division by a non-constant might trap. */
2847 if (HONOR_SNANS (x
))
2849 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2850 return flag_trapping_math
;
2851 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2856 /* An EXPR_LIST is used to represent a function call. This
2857 certainly may trap. */
2866 /* Some floating point comparisons may trap. */
2867 if (!flag_trapping_math
)
2869 /* ??? There is no machine independent way to check for tests that trap
2870 when COMPARE is used, though many targets do make this distinction.
2871 For instance, sparc uses CCFPE for compares which generate exceptions
2872 and CCFP for compares which do not generate exceptions. */
2875 /* But often the compare has some CC mode, so check operand
2877 if (HONOR_NANS (XEXP (x
, 0))
2878 || HONOR_NANS (XEXP (x
, 1)))
2884 if (HONOR_SNANS (x
))
2886 /* Often comparison is CC mode, so check operand modes. */
2887 if (HONOR_SNANS (XEXP (x
, 0))
2888 || HONOR_SNANS (XEXP (x
, 1)))
2893 /* Conversion of floating point might trap. */
2894 if (flag_trapping_math
&& HONOR_NANS (XEXP (x
, 0)))
2901 /* These operations don't trap even with floating point. */
2905 /* Any floating arithmetic may trap. */
2906 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)) && flag_trapping_math
)
2910 fmt
= GET_RTX_FORMAT (code
);
2911 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2915 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2918 else if (fmt
[i
] == 'E')
2921 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2922 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2929 /* Return nonzero if evaluating rtx X might cause a trap. */
2932 may_trap_p (const_rtx x
)
2934 return may_trap_p_1 (x
, 0);
2937 /* Same as above, but additionally return nonzero if evaluating rtx X might
2938 cause a fault. We define a fault for the purpose of this function as a
2939 erroneous execution condition that cannot be encountered during the normal
2940 execution of a valid program; the typical example is an unaligned memory
2941 access on a strict alignment machine. The compiler guarantees that it
2942 doesn't generate code that will fault from a valid program, but this
2943 guarantee doesn't mean anything for individual instructions. Consider
2944 the following example:
2946 struct S { int d; union { char *cp; int *ip; }; };
2948 int foo(struct S *s)
2956 on a strict alignment machine. In a valid program, foo will never be
2957 invoked on a structure for which d is equal to 1 and the underlying
2958 unique field of the union not aligned on a 4-byte boundary, but the
2959 expression *s->ip might cause a fault if considered individually.
2961 At the RTL level, potentially problematic expressions will almost always
2962 verify may_trap_p; for example, the above dereference can be emitted as
2963 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2964 However, suppose that foo is inlined in a caller that causes s->cp to
2965 point to a local character variable and guarantees that s->d is not set
2966 to 1; foo may have been effectively translated into pseudo-RTL as:
2969 (set (reg:SI) (mem:SI (%fp - 7)))
2971 (set (reg:QI) (mem:QI (%fp - 7)))
2973 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2974 memory reference to a stack slot, but it will certainly cause a fault
2975 on a strict alignment machine. */
2978 may_trap_or_fault_p (const_rtx x
)
2980 return may_trap_p_1 (x
, 1);
2983 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2984 i.e., an inequality. */
2987 inequality_comparisons_p (const_rtx x
)
2991 const enum rtx_code code
= GET_CODE (x
);
3019 len
= GET_RTX_LENGTH (code
);
3020 fmt
= GET_RTX_FORMAT (code
);
3022 for (i
= 0; i
< len
; i
++)
3026 if (inequality_comparisons_p (XEXP (x
, i
)))
3029 else if (fmt
[i
] == 'E')
3032 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3033 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
3041 /* Replace any occurrence of FROM in X with TO. The function does
3042 not enter into CONST_DOUBLE for the replace.
3044 Note that copying is not done so X must not be shared unless all copies
3047 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3048 those pointer-equal ones. */
3051 replace_rtx (rtx x
, rtx from
, rtx to
, bool all_regs
)
3059 /* Allow this function to make replacements in EXPR_LISTs. */
3066 && REGNO (x
) == REGNO (from
))
3068 gcc_assert (GET_MODE (x
) == GET_MODE (from
));
3071 else if (GET_CODE (x
) == SUBREG
)
3073 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
, all_regs
);
3075 if (CONST_INT_P (new_rtx
))
3077 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
3078 GET_MODE (SUBREG_REG (x
)),
3083 SUBREG_REG (x
) = new_rtx
;
3087 else if (GET_CODE (x
) == ZERO_EXTEND
)
3089 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
, all_regs
);
3091 if (CONST_INT_P (new_rtx
))
3093 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
3094 new_rtx
, GET_MODE (XEXP (x
, 0)));
3098 XEXP (x
, 0) = new_rtx
;
3103 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3104 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3107 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
, all_regs
);
3108 else if (fmt
[i
] == 'E')
3109 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3110 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
),
3111 from
, to
, all_regs
);
3117 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3118 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3121 replace_label (rtx
*loc
, rtx old_label
, rtx new_label
, bool update_label_nuses
)
3123 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3125 if (JUMP_TABLE_DATA_P (x
))
3128 rtvec vec
= XVEC (x
, GET_CODE (x
) == ADDR_DIFF_VEC
);
3129 int len
= GET_NUM_ELEM (vec
);
3130 for (int i
= 0; i
< len
; ++i
)
3132 rtx ref
= RTVEC_ELT (vec
, i
);
3133 if (XEXP (ref
, 0) == old_label
)
3135 XEXP (ref
, 0) = new_label
;
3136 if (update_label_nuses
)
3138 ++LABEL_NUSES (new_label
);
3139 --LABEL_NUSES (old_label
);
3146 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3147 field. This is not handled by the iterator because it doesn't
3148 handle unprinted ('0') fields. */
3149 if (JUMP_P (x
) && JUMP_LABEL (x
) == old_label
)
3150 JUMP_LABEL (x
) = new_label
;
3152 subrtx_ptr_iterator::array_type array
;
3153 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, ALL
)
3158 if (GET_CODE (x
) == SYMBOL_REF
3159 && CONSTANT_POOL_ADDRESS_P (x
))
3161 rtx c
= get_pool_constant (x
);
3162 if (rtx_referenced_p (old_label
, c
))
3164 /* Create a copy of constant C; replace the label inside
3165 but do not update LABEL_NUSES because uses in constant pool
3167 rtx new_c
= copy_rtx (c
);
3168 replace_label (&new_c
, old_label
, new_label
, false);
3170 /* Add the new constant NEW_C to constant pool and replace
3171 the old reference to constant by new reference. */
3172 rtx new_mem
= force_const_mem (get_pool_mode (x
), new_c
);
3173 *loc
= replace_rtx (x
, x
, XEXP (new_mem
, 0));
3177 if ((GET_CODE (x
) == LABEL_REF
3178 || GET_CODE (x
) == INSN_LIST
)
3179 && XEXP (x
, 0) == old_label
)
3181 XEXP (x
, 0) = new_label
;
3182 if (update_label_nuses
)
3184 ++LABEL_NUSES (new_label
);
3185 --LABEL_NUSES (old_label
);
3193 replace_label_in_insn (rtx_insn
*insn
, rtx_insn
*old_label
,
3194 rtx_insn
*new_label
, bool update_label_nuses
)
3196 rtx insn_as_rtx
= insn
;
3197 replace_label (&insn_as_rtx
, old_label
, new_label
, update_label_nuses
);
3198 gcc_checking_assert (insn_as_rtx
== insn
);
3201 /* Return true if X is referenced in BODY. */
3204 rtx_referenced_p (const_rtx x
, const_rtx body
)
3206 subrtx_iterator::array_type array
;
3207 FOR_EACH_SUBRTX (iter
, array
, body
, ALL
)
3208 if (const_rtx y
= *iter
)
3210 /* Check if a label_ref Y refers to label X. */
3211 if (GET_CODE (y
) == LABEL_REF
3213 && label_ref_label (y
) == x
)
3216 if (rtx_equal_p (x
, y
))
3219 /* If Y is a reference to pool constant traverse the constant. */
3220 if (GET_CODE (y
) == SYMBOL_REF
3221 && CONSTANT_POOL_ADDRESS_P (y
))
3222 iter
.substitute (get_pool_constant (y
));
3227 /* If INSN is a tablejump return true and store the label (before jump table) to
3228 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3231 tablejump_p (const rtx_insn
*insn
, rtx_insn
**labelp
,
3232 rtx_jump_table_data
**tablep
)
3237 rtx target
= JUMP_LABEL (insn
);
3238 if (target
== NULL_RTX
|| ANY_RETURN_P (target
))
3241 rtx_insn
*label
= as_a
<rtx_insn
*> (target
);
3242 rtx_insn
*table
= next_insn (label
);
3243 if (table
== NULL_RTX
|| !JUMP_TABLE_DATA_P (table
))
3249 *tablep
= as_a
<rtx_jump_table_data
*> (table
);
3253 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3254 constant that is not in the constant pool and not in the condition
3255 of an IF_THEN_ELSE. */
3258 computed_jump_p_1 (const_rtx x
)
3260 const enum rtx_code code
= GET_CODE (x
);
3277 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
3278 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
3281 return (computed_jump_p_1 (XEXP (x
, 1))
3282 || computed_jump_p_1 (XEXP (x
, 2)));
3288 fmt
= GET_RTX_FORMAT (code
);
3289 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3292 && computed_jump_p_1 (XEXP (x
, i
)))
3295 else if (fmt
[i
] == 'E')
3296 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3297 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
3304 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3306 Tablejumps and casesi insns are not considered indirect jumps;
3307 we can recognize them by a (use (label_ref)). */
3310 computed_jump_p (const rtx_insn
*insn
)
3315 rtx pat
= PATTERN (insn
);
3317 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3318 if (JUMP_LABEL (insn
) != NULL
)
3321 if (GET_CODE (pat
) == PARALLEL
)
3323 int len
= XVECLEN (pat
, 0);
3324 int has_use_labelref
= 0;
3326 for (i
= len
- 1; i
>= 0; i
--)
3327 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
3328 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
3331 has_use_labelref
= 1;
3335 if (! has_use_labelref
)
3336 for (i
= len
- 1; i
>= 0; i
--)
3337 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
3338 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
3339 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
3342 else if (GET_CODE (pat
) == SET
3343 && SET_DEST (pat
) == pc_rtx
3344 && computed_jump_p_1 (SET_SRC (pat
)))
3352 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3353 the equivalent add insn and pass the result to FN, using DATA as the
3357 for_each_inc_dec_find_inc_dec (rtx mem
, for_each_inc_dec_fn fn
, void *data
)
3359 rtx x
= XEXP (mem
, 0);
3360 switch (GET_CODE (x
))
3365 poly_int64 size
= GET_MODE_SIZE (GET_MODE (mem
));
3366 rtx r1
= XEXP (x
, 0);
3367 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
3368 return fn (mem
, x
, r1
, r1
, c
, data
);
3374 poly_int64 size
= GET_MODE_SIZE (GET_MODE (mem
));
3375 rtx r1
= XEXP (x
, 0);
3376 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
3377 return fn (mem
, x
, r1
, r1
, c
, data
);
3383 rtx r1
= XEXP (x
, 0);
3384 rtx add
= XEXP (x
, 1);
3385 return fn (mem
, x
, r1
, add
, NULL
, data
);
3393 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3394 For each such autoinc operation found, call FN, passing it
3395 the innermost enclosing MEM, the operation itself, the RTX modified
3396 by the operation, two RTXs (the second may be NULL) that, once
3397 added, represent the value to be held by the modified RTX
3398 afterwards, and DATA. FN is to return 0 to continue the
3399 traversal or any other value to have it returned to the caller of
3400 for_each_inc_dec. */
3403 for_each_inc_dec (rtx x
,
3404 for_each_inc_dec_fn fn
,
3407 subrtx_var_iterator::array_type array
;
3408 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
3413 && GET_RTX_CLASS (GET_CODE (XEXP (mem
, 0))) == RTX_AUTOINC
)
3415 int res
= for_each_inc_dec_find_inc_dec (mem
, fn
, data
);
3418 iter
.skip_subrtxes ();
3425 /* Searches X for any reference to REGNO, returning the rtx of the
3426 reference found if any. Otherwise, returns NULL_RTX. */
3429 regno_use_in (unsigned int regno
, rtx x
)
3435 if (REG_P (x
) && REGNO (x
) == regno
)
3438 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3439 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3443 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3446 else if (fmt
[i
] == 'E')
3447 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3448 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3455 /* Return a value indicating whether OP, an operand of a commutative
3456 operation, is preferred as the first or second operand. The more
3457 positive the value, the stronger the preference for being the first
3461 commutative_operand_precedence (rtx op
)
3463 enum rtx_code code
= GET_CODE (op
);
3465 /* Constants always become the second operand. Prefer "nice" constants. */
3466 if (code
== CONST_INT
)
3468 if (code
== CONST_WIDE_INT
)
3470 if (code
== CONST_POLY_INT
)
3472 if (code
== CONST_DOUBLE
)
3474 if (code
== CONST_FIXED
)
3476 op
= avoid_constant_pool_reference (op
);
3477 code
= GET_CODE (op
);
3479 switch (GET_RTX_CLASS (code
))
3482 if (code
== CONST_INT
)
3484 if (code
== CONST_WIDE_INT
)
3486 if (code
== CONST_POLY_INT
)
3488 if (code
== CONST_DOUBLE
)
3490 if (code
== CONST_FIXED
)
3495 /* SUBREGs of objects should come second. */
3496 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3501 /* Complex expressions should be the first, so decrease priority
3502 of objects. Prefer pointer objects over non pointer objects. */
3503 if ((REG_P (op
) && REG_POINTER (op
))
3504 || (MEM_P (op
) && MEM_POINTER (op
)))
3508 case RTX_COMM_ARITH
:
3509 /* Prefer operands that are themselves commutative to be first.
3510 This helps to make things linear. In particular,
3511 (and (and (reg) (reg)) (not (reg))) is canonical. */
3515 /* If only one operand is a binary expression, it will be the first
3516 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3517 is canonical, although it will usually be further simplified. */
3521 /* Then prefer NEG and NOT. */
3522 if (code
== NEG
|| code
== NOT
)
3531 /* Return 1 iff it is necessary to swap operands of commutative operation
3532 in order to canonicalize expression. */
3535 swap_commutative_operands_p (rtx x
, rtx y
)
3537 return (commutative_operand_precedence (x
)
3538 < commutative_operand_precedence (y
));
3541 /* Return 1 if X is an autoincrement side effect and the register is
3542 not the stack pointer. */
3544 auto_inc_p (const_rtx x
)
3546 switch (GET_CODE (x
))
3554 /* There are no REG_INC notes for SP. */
3555 if (XEXP (x
, 0) != stack_pointer_rtx
)
3563 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3565 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3574 code
= GET_CODE (in
);
3575 fmt
= GET_RTX_FORMAT (code
);
3576 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3580 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3583 else if (fmt
[i
] == 'E')
3584 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3585 if (loc
== &XVECEXP (in
, i
, j
)
3586 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3592 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3593 and SUBREG_BYTE, return the bit offset where the subreg begins
3594 (counting from the least significant bit of the operand). */
3597 subreg_lsb_1 (machine_mode outer_mode
,
3598 machine_mode inner_mode
,
3599 poly_uint64 subreg_byte
)
3601 poly_uint64 subreg_end
, trailing_bytes
, byte_pos
;
3603 /* A paradoxical subreg begins at bit position 0. */
3604 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
3607 subreg_end
= subreg_byte
+ GET_MODE_SIZE (outer_mode
);
3608 trailing_bytes
= GET_MODE_SIZE (inner_mode
) - subreg_end
;
3609 if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
3610 byte_pos
= trailing_bytes
;
3611 else if (!WORDS_BIG_ENDIAN
&& !BYTES_BIG_ENDIAN
)
3612 byte_pos
= subreg_byte
;
3615 /* When bytes and words have opposite endianness, we must be able
3616 to split offsets into words and bytes at compile time. */
3617 poly_uint64 leading_word_part
3618 = force_align_down (subreg_byte
, UNITS_PER_WORD
);
3619 poly_uint64 trailing_word_part
3620 = force_align_down (trailing_bytes
, UNITS_PER_WORD
);
3621 /* If the subreg crosses a word boundary ensure that
3622 it also begins and ends on a word boundary. */
3623 gcc_assert (known_le (subreg_end
- leading_word_part
,
3624 (unsigned int) UNITS_PER_WORD
)
3625 || (known_eq (leading_word_part
, subreg_byte
)
3626 && known_eq (trailing_word_part
, trailing_bytes
)));
3627 if (WORDS_BIG_ENDIAN
)
3628 byte_pos
= trailing_word_part
+ (subreg_byte
- leading_word_part
);
3630 byte_pos
= leading_word_part
+ (trailing_bytes
- trailing_word_part
);
3633 return byte_pos
* BITS_PER_UNIT
;
3636 /* Given a subreg X, return the bit offset where the subreg begins
3637 (counting from the least significant bit of the reg). */
3640 subreg_lsb (const_rtx x
)
3642 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3646 /* Return the subreg byte offset for a subreg whose outer value has
3647 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3648 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3649 lsb of the inner value. This is the inverse of the calculation
3650 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3653 subreg_size_offset_from_lsb (poly_uint64 outer_bytes
, poly_uint64 inner_bytes
,
3654 poly_uint64 lsb_shift
)
3656 /* A paradoxical subreg begins at bit position 0. */
3657 gcc_checking_assert (ordered_p (outer_bytes
, inner_bytes
));
3658 if (maybe_gt (outer_bytes
, inner_bytes
))
3660 gcc_checking_assert (known_eq (lsb_shift
, 0U));
3664 poly_uint64 lower_bytes
= exact_div (lsb_shift
, BITS_PER_UNIT
);
3665 poly_uint64 upper_bytes
= inner_bytes
- (lower_bytes
+ outer_bytes
);
3666 if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
3668 else if (!WORDS_BIG_ENDIAN
&& !BYTES_BIG_ENDIAN
)
3672 /* When bytes and words have opposite endianness, we must be able
3673 to split offsets into words and bytes at compile time. */
3674 poly_uint64 lower_word_part
= force_align_down (lower_bytes
,
3676 poly_uint64 upper_word_part
= force_align_down (upper_bytes
,
3678 if (WORDS_BIG_ENDIAN
)
3679 return upper_word_part
+ (lower_bytes
- lower_word_part
);
3681 return lower_word_part
+ (upper_bytes
- upper_word_part
);
3685 /* Fill in information about a subreg of a hard register.
3686 xregno - A regno of an inner hard subreg_reg (or what will become one).
3687 xmode - The mode of xregno.
3688 offset - The byte offset.
3689 ymode - The mode of a top level SUBREG (or what may become one).
3690 info - Pointer to structure to fill in.
3692 Rather than considering one particular inner register (and thus one
3693 particular "outer" register) in isolation, this function really uses
3694 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3695 function does not check whether adding INFO->offset to XREGNO gives
3696 a valid hard register; even if INFO->offset + XREGNO is out of range,
3697 there might be another register of the same type that is in range.
3698 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3699 the new register, since that can depend on things like whether the final
3700 register number is even or odd. Callers that want to check whether
3701 this particular subreg can be replaced by a simple (reg ...) should
3702 use simplify_subreg_regno. */
3705 subreg_get_info (unsigned int xregno
, machine_mode xmode
,
3706 poly_uint64 offset
, machine_mode ymode
,
3707 struct subreg_info
*info
)
3709 unsigned int nregs_xmode
, nregs_ymode
;
3711 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3713 poly_uint64 xsize
= GET_MODE_SIZE (xmode
);
3714 poly_uint64 ysize
= GET_MODE_SIZE (ymode
);
3716 bool rknown
= false;
3718 /* If the register representation of a non-scalar mode has holes in it,
3719 we expect the scalar units to be concatenated together, with the holes
3720 distributed evenly among the scalar units. Each scalar unit must occupy
3721 at least one register. */
3722 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3724 /* As a consequence, we must be dealing with a constant number of
3725 scalars, and thus a constant offset and number of units. */
3726 HOST_WIDE_INT coffset
= offset
.to_constant ();
3727 HOST_WIDE_INT cysize
= ysize
.to_constant ();
3728 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3729 unsigned int nunits
= GET_MODE_NUNITS (xmode
).to_constant ();
3730 scalar_mode xmode_unit
= GET_MODE_INNER (xmode
);
3731 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3732 gcc_assert (nregs_xmode
3734 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3735 gcc_assert (hard_regno_nregs (xregno
, xmode
)
3736 == hard_regno_nregs (xregno
, xmode_unit
) * nunits
);
3738 /* You can only ask for a SUBREG of a value with holes in the middle
3739 if you don't cross the holes. (Such a SUBREG should be done by
3740 picking a different register class, or doing it in memory if
3741 necessary.) An example of a value with holes is XCmode on 32-bit
3742 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3743 3 for each part, but in memory it's two 128-bit parts.
3744 Padding is assumed to be at the end (not necessarily the 'high part')
3746 if ((coffset
/ GET_MODE_SIZE (xmode_unit
) + 1 < nunits
)
3747 && (coffset
/ GET_MODE_SIZE (xmode_unit
)
3748 != ((coffset
+ cysize
- 1) / GET_MODE_SIZE (xmode_unit
))))
3750 info
->representable_p
= false;
3755 nregs_xmode
= hard_regno_nregs (xregno
, xmode
);
3757 nregs_ymode
= hard_regno_nregs (xregno
, ymode
);
3759 /* Subreg sizes must be ordered, so that we can tell whether they are
3760 partial, paradoxical or complete. */
3761 gcc_checking_assert (ordered_p (xsize
, ysize
));
3763 /* Paradoxical subregs are otherwise valid. */
3764 if (!rknown
&& known_eq (offset
, 0U) && maybe_gt (ysize
, xsize
))
3766 info
->representable_p
= true;
3767 /* If this is a big endian paradoxical subreg, which uses more
3768 actual hard registers than the original register, we must
3769 return a negative offset so that we find the proper highpart
3772 We assume that the ordering of registers within a multi-register
3773 value has a consistent endianness: if bytes and register words
3774 have different endianness, the hard registers that make up a
3775 multi-register value must be at least word-sized. */
3776 if (REG_WORDS_BIG_ENDIAN
)
3777 info
->offset
= (int) nregs_xmode
- (int) nregs_ymode
;
3780 info
->nregs
= nregs_ymode
;
3784 /* If registers store different numbers of bits in the different
3785 modes, we cannot generally form this subreg. */
3786 poly_uint64 regsize_xmode
, regsize_ymode
;
3787 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3788 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3789 && multiple_p (xsize
, nregs_xmode
, ®size_xmode
)
3790 && multiple_p (ysize
, nregs_ymode
, ®size_ymode
))
3793 && ((nregs_ymode
> 1 && maybe_gt (regsize_xmode
, regsize_ymode
))
3794 || (nregs_xmode
> 1 && maybe_gt (regsize_ymode
, regsize_xmode
))))
3796 info
->representable_p
= false;
3797 if (!can_div_away_from_zero_p (ysize
, regsize_xmode
, &info
->nregs
)
3798 || !can_div_trunc_p (offset
, regsize_xmode
, &info
->offset
))
3799 /* Checked by validate_subreg. We must know at compile time
3800 which inner registers are being accessed. */
3804 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3805 would go outside of XMODE. */
3806 if (!rknown
&& maybe_gt (ysize
+ offset
, xsize
))
3808 info
->representable_p
= false;
3809 info
->nregs
= nregs_ymode
;
3810 if (!can_div_trunc_p (offset
, regsize_xmode
, &info
->offset
))
3811 /* Checked by validate_subreg. We must know at compile time
3812 which inner registers are being accessed. */
3816 /* Quick exit for the simple and common case of extracting whole
3817 subregisters from a multiregister value. */
3818 /* ??? It would be better to integrate this into the code below,
3819 if we can generalize the concept enough and figure out how
3820 odd-sized modes can coexist with the other weird cases we support. */
3821 HOST_WIDE_INT count
;
3823 && WORDS_BIG_ENDIAN
== REG_WORDS_BIG_ENDIAN
3824 && known_eq (regsize_xmode
, regsize_ymode
)
3825 && constant_multiple_p (offset
, regsize_ymode
, &count
))
3827 info
->representable_p
= true;
3828 info
->nregs
= nregs_ymode
;
3829 info
->offset
= count
;
3830 gcc_assert (info
->offset
+ info
->nregs
<= (int) nregs_xmode
);
3835 /* Lowpart subregs are otherwise valid. */
3836 if (!rknown
&& known_eq (offset
, subreg_lowpart_offset (ymode
, xmode
)))
3838 info
->representable_p
= true;
3841 if (known_eq (offset
, 0U) || nregs_xmode
== nregs_ymode
)
3844 info
->nregs
= nregs_ymode
;
3849 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3850 values there are in (reg:XMODE XREGNO). We can view the register
3851 as consisting of this number of independent "blocks", where each
3852 block occupies NREGS_YMODE registers and contains exactly one
3853 representable YMODE value. */
3854 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3855 unsigned int num_blocks
= nregs_xmode
/ nregs_ymode
;
3857 /* Calculate the number of bytes in each block. This must always
3858 be exact, otherwise we don't know how to verify the constraint.
3859 These conditions may be relaxed but subreg_regno_offset would
3860 need to be redesigned. */
3861 poly_uint64 bytes_per_block
= exact_div (xsize
, num_blocks
);
3863 /* Get the number of the first block that contains the subreg and the byte
3864 offset of the subreg from the start of that block. */
3865 unsigned int block_number
;
3866 poly_uint64 subblock_offset
;
3867 if (!can_div_trunc_p (offset
, bytes_per_block
, &block_number
,
3869 /* Checked by validate_subreg. We must know at compile time which
3870 inner registers are being accessed. */
3875 /* Only the lowpart of each block is representable. */
3876 info
->representable_p
3877 = known_eq (subblock_offset
,
3878 subreg_size_lowpart_offset (ysize
, bytes_per_block
));
3882 /* We assume that the ordering of registers within a multi-register
3883 value has a consistent endianness: if bytes and register words
3884 have different endianness, the hard registers that make up a
3885 multi-register value must be at least word-sized. */
3886 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
)
3887 /* The block number we calculated above followed memory endianness.
3888 Convert it to register endianness by counting back from the end.
3889 (Note that, because of the assumption above, each block must be
3890 at least word-sized.) */
3891 info
->offset
= (num_blocks
- block_number
- 1) * nregs_ymode
;
3893 info
->offset
= block_number
* nregs_ymode
;
3894 info
->nregs
= nregs_ymode
;
3897 /* This function returns the regno offset of a subreg expression.
3898 xregno - A regno of an inner hard subreg_reg (or what will become one).
3899 xmode - The mode of xregno.
3900 offset - The byte offset.
3901 ymode - The mode of a top level SUBREG (or what may become one).
3902 RETURN - The regno offset which would be used. */
3904 subreg_regno_offset (unsigned int xregno
, machine_mode xmode
,
3905 poly_uint64 offset
, machine_mode ymode
)
3907 struct subreg_info info
;
3908 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3912 /* This function returns true when the offset is representable via
3913 subreg_offset in the given regno.
3914 xregno - A regno of an inner hard subreg_reg (or what will become one).
3915 xmode - The mode of xregno.
3916 offset - The byte offset.
3917 ymode - The mode of a top level SUBREG (or what may become one).
3918 RETURN - Whether the offset is representable. */
3920 subreg_offset_representable_p (unsigned int xregno
, machine_mode xmode
,
3921 poly_uint64 offset
, machine_mode ymode
)
3923 struct subreg_info info
;
3924 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3925 return info
.representable_p
;
3928 /* Return the number of a YMODE register to which
3930 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3932 can be simplified. Return -1 if the subreg can't be simplified.
3934 XREGNO is a hard register number. */
3937 simplify_subreg_regno (unsigned int xregno
, machine_mode xmode
,
3938 poly_uint64 offset
, machine_mode ymode
)
3940 struct subreg_info info
;
3941 unsigned int yregno
;
3943 /* Give the backend a chance to disallow the mode change. */
3944 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3945 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3946 && !REG_CAN_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3947 /* We can use mode change in LRA for some transformations. */
3948 && ! lra_in_progress
)
3951 /* We shouldn't simplify stack-related registers. */
3952 if ((!reload_completed
|| frame_pointer_needed
)
3953 && xregno
== FRAME_POINTER_REGNUM
)
3956 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3957 && xregno
== ARG_POINTER_REGNUM
)
3960 if (xregno
== STACK_POINTER_REGNUM
3961 /* We should convert hard stack register in LRA if it is
3963 && ! lra_in_progress
)
3966 /* Try to get the register offset. */
3967 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3968 if (!info
.representable_p
)
3971 /* Make sure that the offsetted register value is in range. */
3972 yregno
= xregno
+ info
.offset
;
3973 if (!HARD_REGISTER_NUM_P (yregno
))
3976 /* See whether (reg:YMODE YREGNO) is valid.
3978 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3979 This is a kludge to work around how complex FP arguments are passed
3980 on IA-64 and should be fixed. See PR target/49226. */
3981 if (!targetm
.hard_regno_mode_ok (yregno
, ymode
)
3982 && targetm
.hard_regno_mode_ok (xregno
, xmode
))
3985 return (int) yregno
;
3988 /* Return the final regno that a subreg expression refers to. */
3990 subreg_regno (const_rtx x
)
3993 rtx subreg
= SUBREG_REG (x
);
3994 int regno
= REGNO (subreg
);
3996 ret
= regno
+ subreg_regno_offset (regno
,
4004 /* Return the number of registers that a subreg expression refers
4007 subreg_nregs (const_rtx x
)
4009 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
4012 /* Return the number of registers that a subreg REG with REGNO
4013 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4014 changed so that the regno can be passed in. */
4017 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
4019 struct subreg_info info
;
4020 rtx subreg
= SUBREG_REG (x
);
4022 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
4027 struct parms_set_data
4033 /* Helper function for noticing stores to parameter registers. */
4035 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
4037 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
4038 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4039 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
4041 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
4046 /* Look backward for first parameter to be loaded.
4047 Note that loads of all parameters will not necessarily be
4048 found if CSE has eliminated some of them (e.g., an argument
4049 to the outer function is passed down as a parameter).
4050 Do not skip BOUNDARY. */
4052 find_first_parameter_load (rtx_insn
*call_insn
, rtx_insn
*boundary
)
4054 struct parms_set_data parm
;
4056 rtx_insn
*before
, *first_set
;
4058 /* Since different machines initialize their parameter registers
4059 in different orders, assume nothing. Collect the set of all
4060 parameter registers. */
4061 CLEAR_HARD_REG_SET (parm
.regs
);
4063 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
4064 if (GET_CODE (XEXP (p
, 0)) == USE
4065 && REG_P (XEXP (XEXP (p
, 0), 0))
4066 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p
, 0), 0)))
4068 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
4070 /* We only care about registers which can hold function
4072 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
4075 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
4079 first_set
= call_insn
;
4081 /* Search backward for the first set of a register in this set. */
4082 while (parm
.nregs
&& before
!= boundary
)
4084 before
= PREV_INSN (before
);
4086 /* It is possible that some loads got CSEed from one call to
4087 another. Stop in that case. */
4088 if (CALL_P (before
))
4091 /* Our caller needs either ensure that we will find all sets
4092 (in case code has not been optimized yet), or take care
4093 for possible labels in a way by setting boundary to preceding
4095 if (LABEL_P (before
))
4097 gcc_assert (before
== boundary
);
4101 if (INSN_P (before
))
4103 int nregs_old
= parm
.nregs
;
4104 note_stores (PATTERN (before
), parms_set
, &parm
);
4105 /* If we found something that did not set a parameter reg,
4106 we're done. Do not keep going, as that might result
4107 in hoisting an insn before the setting of a pseudo
4108 that is used by the hoisted insn. */
4109 if (nregs_old
!= parm
.nregs
)
4118 /* Return true if we should avoid inserting code between INSN and preceding
4119 call instruction. */
4122 keep_with_call_p (const rtx_insn
*insn
)
4126 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
4128 if (REG_P (SET_DEST (set
))
4129 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
4130 && fixed_regs
[REGNO (SET_DEST (set
))]
4131 && general_operand (SET_SRC (set
), VOIDmode
))
4133 if (REG_P (SET_SRC (set
))
4134 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
4135 && REG_P (SET_DEST (set
))
4136 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
4138 /* There may be a stack pop just after the call and before the store
4139 of the return register. Search for the actual store when deciding
4140 if we can break or not. */
4141 if (SET_DEST (set
) == stack_pointer_rtx
)
4143 /* This CONST_CAST is okay because next_nonnote_insn just
4144 returns its argument and we assign it to a const_rtx
4147 = next_nonnote_insn (const_cast<rtx_insn
*> (insn
));
4148 if (i2
&& keep_with_call_p (i2
))
4155 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4156 to non-complex jumps. That is, direct unconditional, conditional,
4157 and tablejumps, but not computed jumps or returns. It also does
4158 not apply to the fallthru case of a conditional jump. */
4161 label_is_jump_target_p (const_rtx label
, const rtx_insn
*jump_insn
)
4163 rtx tmp
= JUMP_LABEL (jump_insn
);
4164 rtx_jump_table_data
*table
;
4169 if (tablejump_p (jump_insn
, NULL
, &table
))
4171 rtvec vec
= table
->get_labels ();
4172 int i
, veclen
= GET_NUM_ELEM (vec
);
4174 for (i
= 0; i
< veclen
; ++i
)
4175 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
4179 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
4186 /* Return an estimate of the cost of computing rtx X.
4187 One use is in cse, to decide which expression to keep in the hash table.
4188 Another is in rtl generation, to pick the cheapest way to multiply.
4189 Other uses like the latter are expected in the future.
4191 X appears as operand OPNO in an expression with code OUTER_CODE.
4192 SPEED specifies whether costs optimized for speed or size should
4196 rtx_cost (rtx x
, machine_mode mode
, enum rtx_code outer_code
,
4197 int opno
, bool speed
)
4208 if (GET_MODE (x
) != VOIDmode
)
4209 mode
= GET_MODE (x
);
4211 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4212 many insns, taking N times as long. */
4213 factor
= estimated_poly_value (GET_MODE_SIZE (mode
)) / UNITS_PER_WORD
;
4217 /* Compute the default costs of certain things.
4218 Note that targetm.rtx_costs can override the defaults. */
4220 code
= GET_CODE (x
);
4224 /* Multiplication has time-complexity O(N*N), where N is the
4225 number of units (translated from digits) when using
4226 schoolbook long multiplication. */
4227 total
= factor
* factor
* COSTS_N_INSNS (5);
4233 /* Similarly, complexity for schoolbook long division. */
4234 total
= factor
* factor
* COSTS_N_INSNS (7);
4237 /* Used in combine.c as a marker. */
4241 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4242 the mode for the factor. */
4243 mode
= GET_MODE (SET_DEST (x
));
4244 factor
= estimated_poly_value (GET_MODE_SIZE (mode
)) / UNITS_PER_WORD
;
4249 total
= factor
* COSTS_N_INSNS (1);
4259 /* If we can't tie these modes, make this expensive. The larger
4260 the mode, the more expensive it is. */
4261 if (!targetm
.modes_tieable_p (mode
, GET_MODE (SUBREG_REG (x
))))
4262 return COSTS_N_INSNS (2 + factor
);
4266 if (targetm
.modes_tieable_p (mode
, GET_MODE (XEXP (x
, 0))))
4273 if (targetm
.rtx_costs (x
, mode
, outer_code
, opno
, &total
, speed
))
4278 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4279 which is already in total. */
4281 fmt
= GET_RTX_FORMAT (code
);
4282 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4284 total
+= rtx_cost (XEXP (x
, i
), mode
, code
, i
, speed
);
4285 else if (fmt
[i
] == 'E')
4286 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4287 total
+= rtx_cost (XVECEXP (x
, i
, j
), mode
, code
, i
, speed
);
4292 /* Fill in the structure C with information about both speed and size rtx
4293 costs for X, which is operand OPNO in an expression with code OUTER. */
4296 get_full_rtx_cost (rtx x
, machine_mode mode
, enum rtx_code outer
, int opno
,
4297 struct full_rtx_costs
*c
)
4299 c
->speed
= rtx_cost (x
, mode
, outer
, opno
, true);
4300 c
->size
= rtx_cost (x
, mode
, outer
, opno
, false);
4304 /* Return cost of address expression X.
4305 Expect that X is properly formed address reference.
4307 SPEED parameter specify whether costs optimized for speed or size should
4311 address_cost (rtx x
, machine_mode mode
, addr_space_t as
, bool speed
)
4313 /* We may be asked for cost of various unusual addresses, such as operands
4314 of push instruction. It is not worthwhile to complicate writing
4315 of the target hook by such cases. */
4317 if (!memory_address_addr_space_p (mode
, x
, as
))
4320 return targetm
.address_cost (x
, mode
, as
, speed
);
4323 /* If the target doesn't override, compute the cost as with arithmetic. */
4326 default_address_cost (rtx x
, machine_mode
, addr_space_t
, bool speed
)
4328 return rtx_cost (x
, Pmode
, MEM
, 0, speed
);
4332 unsigned HOST_WIDE_INT
4333 nonzero_bits (const_rtx x
, machine_mode mode
)
4335 if (mode
== VOIDmode
)
4336 mode
= GET_MODE (x
);
4337 scalar_int_mode int_mode
;
4338 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
4339 return GET_MODE_MASK (mode
);
4340 return cached_nonzero_bits (x
, int_mode
, NULL_RTX
, VOIDmode
, 0);
4344 num_sign_bit_copies (const_rtx x
, machine_mode mode
)
4346 if (mode
== VOIDmode
)
4347 mode
= GET_MODE (x
);
4348 scalar_int_mode int_mode
;
4349 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
4351 return cached_num_sign_bit_copies (x
, int_mode
, NULL_RTX
, VOIDmode
, 0);
4354 /* Return true if nonzero_bits1 might recurse into both operands
4358 nonzero_bits_binary_arith_p (const_rtx x
)
4360 if (!ARITHMETIC_P (x
))
4362 switch (GET_CODE (x
))
4384 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4385 It avoids exponential behavior in nonzero_bits1 when X has
4386 identical subexpressions on the first or the second level. */
4388 static unsigned HOST_WIDE_INT
4389 cached_nonzero_bits (const_rtx x
, scalar_int_mode mode
, const_rtx known_x
,
4390 machine_mode known_mode
,
4391 unsigned HOST_WIDE_INT known_ret
)
4393 if (x
== known_x
&& mode
== known_mode
)
4396 /* Try to find identical subexpressions. If found call
4397 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4398 precomputed value for the subexpression as KNOWN_RET. */
4400 if (nonzero_bits_binary_arith_p (x
))
4402 rtx x0
= XEXP (x
, 0);
4403 rtx x1
= XEXP (x
, 1);
4405 /* Check the first level. */
4407 return nonzero_bits1 (x
, mode
, x0
, mode
,
4408 cached_nonzero_bits (x0
, mode
, known_x
,
4409 known_mode
, known_ret
));
4411 /* Check the second level. */
4412 if (nonzero_bits_binary_arith_p (x0
)
4413 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4414 return nonzero_bits1 (x
, mode
, x1
, mode
,
4415 cached_nonzero_bits (x1
, mode
, known_x
,
4416 known_mode
, known_ret
));
4418 if (nonzero_bits_binary_arith_p (x1
)
4419 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4420 return nonzero_bits1 (x
, mode
, x0
, mode
,
4421 cached_nonzero_bits (x0
, mode
, known_x
,
4422 known_mode
, known_ret
));
4425 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
4428 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4429 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4430 is less useful. We can't allow both, because that results in exponential
4431 run time recursion. There is a nullstone testcase that triggered
4432 this. This macro avoids accidental uses of num_sign_bit_copies. */
4433 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4435 /* Given an expression, X, compute which bits in X can be nonzero.
4436 We don't care about bits outside of those defined in MODE.
4438 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4439 an arithmetic operation, we can do better. */
4441 static unsigned HOST_WIDE_INT
4442 nonzero_bits1 (const_rtx x
, scalar_int_mode mode
, const_rtx known_x
,
4443 machine_mode known_mode
,
4444 unsigned HOST_WIDE_INT known_ret
)
4446 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
4447 unsigned HOST_WIDE_INT inner_nz
;
4448 enum rtx_code code
= GET_CODE (x
);
4449 machine_mode inner_mode
;
4450 unsigned int inner_width
;
4451 scalar_int_mode xmode
;
4453 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
4455 if (CONST_INT_P (x
))
4457 if (SHORT_IMMEDIATES_SIGN_EXTEND
4459 && mode_width
< BITS_PER_WORD
4460 && (UINTVAL (x
) & (HOST_WIDE_INT_1U
<< (mode_width
- 1))) != 0)
4461 return UINTVAL (x
) | (HOST_WIDE_INT_M1U
<< mode_width
);
4466 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
4468 unsigned int xmode_width
= GET_MODE_PRECISION (xmode
);
4470 /* If X is wider than MODE, use its mode instead. */
4471 if (xmode_width
> mode_width
)
4474 nonzero
= GET_MODE_MASK (mode
);
4475 mode_width
= xmode_width
;
4478 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
4479 /* Our only callers in this case look for single bit values. So
4480 just return the mode mask. Those tests will then be false. */
4483 /* If MODE is wider than X, but both are a single word for both the host
4484 and target machines, we can compute this from which bits of the object
4485 might be nonzero in its own mode, taking into account the fact that, on
4486 CISC machines, accessing an object in a wider mode generally causes the
4487 high-order bits to become undefined, so they are not known to be zero.
4488 We extend this reasoning to RISC machines for rotate operations since the
4489 semantics of the operations in the larger mode is not well defined. */
4490 if (mode_width
> xmode_width
4491 && xmode_width
<= BITS_PER_WORD
4492 && xmode_width
<= HOST_BITS_PER_WIDE_INT
4493 && (!WORD_REGISTER_OPERATIONS
|| code
== ROTATE
|| code
== ROTATERT
))
4495 nonzero
&= cached_nonzero_bits (x
, xmode
,
4496 known_x
, known_mode
, known_ret
);
4497 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (xmode
);
4501 /* Please keep nonzero_bits_binary_arith_p above in sync with
4502 the code in the switch below. */
4506 #if defined(POINTERS_EXTEND_UNSIGNED)
4507 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4508 all the bits above ptr_mode are known to be zero. */
4509 /* As we do not know which address space the pointer is referring to,
4510 we can do this only if the target does not support different pointer
4511 or address modes depending on the address space. */
4512 if (target_default_pointer_address_modes_p ()
4513 && POINTERS_EXTEND_UNSIGNED
4516 && !targetm
.have_ptr_extend ())
4517 nonzero
&= GET_MODE_MASK (ptr_mode
);
4520 /* Include declared information about alignment of pointers. */
4521 /* ??? We don't properly preserve REG_POINTER changes across
4522 pointer-to-integer casts, so we can't trust it except for
4523 things that we know must be pointers. See execute/960116-1.c. */
4524 if ((x
== stack_pointer_rtx
4525 || x
== frame_pointer_rtx
4526 || x
== arg_pointer_rtx
)
4527 && REGNO_POINTER_ALIGN (REGNO (x
)))
4529 unsigned HOST_WIDE_INT alignment
4530 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
4532 #ifdef PUSH_ROUNDING
4533 /* If PUSH_ROUNDING is defined, it is possible for the
4534 stack to be momentarily aligned only to that amount,
4535 so we pick the least alignment. */
4536 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4538 poly_uint64 rounded_1
= PUSH_ROUNDING (poly_int64 (1));
4539 alignment
= MIN (known_alignment (rounded_1
), alignment
);
4543 nonzero
&= ~(alignment
- 1);
4547 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4548 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, xmode
, mode
,
4552 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4553 known_mode
, known_ret
);
4555 return nonzero_for_hook
;
4559 /* In many, if not most, RISC machines, reading a byte from memory
4560 zeros the rest of the register. Noticing that fact saves a lot
4561 of extra zero-extends. */
4562 if (load_extend_op (xmode
) == ZERO_EXTEND
)
4563 nonzero
&= GET_MODE_MASK (xmode
);
4567 case UNEQ
: case LTGT
:
4568 case GT
: case GTU
: case UNGT
:
4569 case LT
: case LTU
: case UNLT
:
4570 case GE
: case GEU
: case UNGE
:
4571 case LE
: case LEU
: case UNLE
:
4572 case UNORDERED
: case ORDERED
:
4573 /* If this produces an integer result, we know which bits are set.
4574 Code here used to clear bits outside the mode of X, but that is
4576 /* Mind that MODE is the mode the caller wants to look at this
4577 operation in, and not the actual operation mode. We can wind
4578 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4579 that describes the results of a vector compare. */
4580 if (GET_MODE_CLASS (xmode
) == MODE_INT
4581 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4582 nonzero
= STORE_FLAG_VALUE
;
4587 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4588 and num_sign_bit_copies. */
4589 if (num_sign_bit_copies (XEXP (x
, 0), xmode
) == xmode_width
)
4593 if (xmode_width
< mode_width
)
4594 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (xmode
));
4599 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4600 and num_sign_bit_copies. */
4601 if (num_sign_bit_copies (XEXP (x
, 0), xmode
) == xmode_width
)
4607 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4608 known_x
, known_mode
, known_ret
)
4609 & GET_MODE_MASK (mode
));
4613 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4614 known_x
, known_mode
, known_ret
);
4615 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4616 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4620 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4621 Otherwise, show all the bits in the outer mode but not the inner
4623 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4624 known_x
, known_mode
, known_ret
);
4625 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4627 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4628 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4629 inner_nz
|= (GET_MODE_MASK (mode
)
4630 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4633 nonzero
&= inner_nz
;
4637 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4638 known_x
, known_mode
, known_ret
)
4639 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4640 known_x
, known_mode
, known_ret
);
4644 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4646 unsigned HOST_WIDE_INT nonzero0
4647 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4648 known_x
, known_mode
, known_ret
);
4650 /* Don't call nonzero_bits for the second time if it cannot change
4652 if ((nonzero
& nonzero0
) != nonzero
)
4654 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4655 known_x
, known_mode
, known_ret
);
4659 case PLUS
: case MINUS
:
4661 case DIV
: case UDIV
:
4662 case MOD
: case UMOD
:
4663 /* We can apply the rules of arithmetic to compute the number of
4664 high- and low-order zero bits of these operations. We start by
4665 computing the width (position of the highest-order nonzero bit)
4666 and the number of low-order zero bits for each value. */
4668 unsigned HOST_WIDE_INT nz0
4669 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4670 known_x
, known_mode
, known_ret
);
4671 unsigned HOST_WIDE_INT nz1
4672 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4673 known_x
, known_mode
, known_ret
);
4674 int sign_index
= xmode_width
- 1;
4675 int width0
= floor_log2 (nz0
) + 1;
4676 int width1
= floor_log2 (nz1
) + 1;
4677 int low0
= ctz_or_zero (nz0
);
4678 int low1
= ctz_or_zero (nz1
);
4679 unsigned HOST_WIDE_INT op0_maybe_minusp
4680 = nz0
& (HOST_WIDE_INT_1U
<< sign_index
);
4681 unsigned HOST_WIDE_INT op1_maybe_minusp
4682 = nz1
& (HOST_WIDE_INT_1U
<< sign_index
);
4683 unsigned int result_width
= mode_width
;
4689 result_width
= MAX (width0
, width1
) + 1;
4690 result_low
= MIN (low0
, low1
);
4693 result_low
= MIN (low0
, low1
);
4696 result_width
= width0
+ width1
;
4697 result_low
= low0
+ low1
;
4702 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4703 result_width
= width0
;
4708 result_width
= width0
;
4713 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4714 result_width
= MIN (width0
, width1
);
4715 result_low
= MIN (low0
, low1
);
4720 result_width
= MIN (width0
, width1
);
4721 result_low
= MIN (low0
, low1
);
4727 if (result_width
< mode_width
)
4728 nonzero
&= (HOST_WIDE_INT_1U
<< result_width
) - 1;
4731 nonzero
&= ~((HOST_WIDE_INT_1U
<< result_low
) - 1);
4736 if (CONST_INT_P (XEXP (x
, 1))
4737 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4738 nonzero
&= (HOST_WIDE_INT_1U
<< INTVAL (XEXP (x
, 1))) - 1;
4742 /* If this is a SUBREG formed for a promoted variable that has
4743 been zero-extended, we know that at least the high-order bits
4744 are zero, though others might be too. */
4745 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
))
4746 nonzero
= GET_MODE_MASK (xmode
)
4747 & cached_nonzero_bits (SUBREG_REG (x
), xmode
,
4748 known_x
, known_mode
, known_ret
);
4750 /* If the inner mode is a single word for both the host and target
4751 machines, we can compute this from which bits of the inner
4752 object might be nonzero. */
4753 inner_mode
= GET_MODE (SUBREG_REG (x
));
4754 if (GET_MODE_PRECISION (inner_mode
).is_constant (&inner_width
)
4755 && inner_width
<= BITS_PER_WORD
4756 && inner_width
<= HOST_BITS_PER_WIDE_INT
)
4758 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4759 known_x
, known_mode
, known_ret
);
4761 /* On many CISC machines, accessing an object in a wider mode
4762 causes the high-order bits to become undefined. So they are
4763 not known to be zero. */
4765 if ((!WORD_REGISTER_OPERATIONS
4766 /* If this is a typical RISC machine, we only have to worry
4767 about the way loads are extended. */
4768 || ((extend_op
= load_extend_op (inner_mode
)) == SIGN_EXTEND
4769 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4770 : extend_op
!= ZERO_EXTEND
)
4771 || (!MEM_P (SUBREG_REG (x
)) && !REG_P (SUBREG_REG (x
))))
4772 && xmode_width
> inner_width
)
4774 |= (GET_MODE_MASK (GET_MODE (x
)) & ~GET_MODE_MASK (inner_mode
));
4783 /* The nonzero bits are in two classes: any bits within MODE
4784 that aren't in xmode are always significant. The rest of the
4785 nonzero bits are those that are significant in the operand of
4786 the shift when shifted the appropriate number of bits. This
4787 shows that high-order bits are cleared by the right shift and
4788 low-order bits by left shifts. */
4789 if (CONST_INT_P (XEXP (x
, 1))
4790 && INTVAL (XEXP (x
, 1)) >= 0
4791 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4792 && INTVAL (XEXP (x
, 1)) < xmode_width
)
4794 int count
= INTVAL (XEXP (x
, 1));
4795 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (xmode
);
4796 unsigned HOST_WIDE_INT op_nonzero
4797 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4798 known_x
, known_mode
, known_ret
);
4799 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4800 unsigned HOST_WIDE_INT outer
= 0;
4802 if (mode_width
> xmode_width
)
4803 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4818 /* If the sign bit may have been nonzero before the shift, we
4819 need to mark all the places it could have been copied to
4820 by the shift as possibly nonzero. */
4821 if (inner
& (HOST_WIDE_INT_1U
<< (xmode_width
- 1 - count
)))
4822 inner
|= (((HOST_WIDE_INT_1U
<< count
) - 1)
4823 << (xmode_width
- count
));
4827 inner
= (inner
<< (count
% xmode_width
)
4828 | (inner
>> (xmode_width
- (count
% xmode_width
))))
4833 inner
= (inner
>> (count
% xmode_width
)
4834 | (inner
<< (xmode_width
- (count
% xmode_width
))))
4842 nonzero
&= (outer
| inner
);
4848 /* This is at most the number of bits in the mode. */
4849 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4853 /* If CLZ has a known value at zero, then the nonzero bits are
4854 that value, plus the number of bits in the mode minus one. */
4855 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4857 |= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4863 /* If CTZ has a known value at zero, then the nonzero bits are
4864 that value, plus the number of bits in the mode minus one. */
4865 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4867 |= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4873 /* This is at most the number of bits in the mode minus 1. */
4874 nonzero
= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4883 unsigned HOST_WIDE_INT nonzero_true
4884 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4885 known_x
, known_mode
, known_ret
);
4887 /* Don't call nonzero_bits for the second time if it cannot change
4889 if ((nonzero
& nonzero_true
) != nonzero
)
4890 nonzero
&= nonzero_true
4891 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4892 known_x
, known_mode
, known_ret
);
4903 /* See the macro definition above. */
4904 #undef cached_num_sign_bit_copies
4907 /* Return true if num_sign_bit_copies1 might recurse into both operands
4911 num_sign_bit_copies_binary_arith_p (const_rtx x
)
4913 if (!ARITHMETIC_P (x
))
4915 switch (GET_CODE (x
))
4933 /* The function cached_num_sign_bit_copies is a wrapper around
4934 num_sign_bit_copies1. It avoids exponential behavior in
4935 num_sign_bit_copies1 when X has identical subexpressions on the
4936 first or the second level. */
4939 cached_num_sign_bit_copies (const_rtx x
, scalar_int_mode mode
,
4940 const_rtx known_x
, machine_mode known_mode
,
4941 unsigned int known_ret
)
4943 if (x
== known_x
&& mode
== known_mode
)
4946 /* Try to find identical subexpressions. If found call
4947 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4948 the precomputed value for the subexpression as KNOWN_RET. */
4950 if (num_sign_bit_copies_binary_arith_p (x
))
4952 rtx x0
= XEXP (x
, 0);
4953 rtx x1
= XEXP (x
, 1);
4955 /* Check the first level. */
4958 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4959 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4963 /* Check the second level. */
4964 if (num_sign_bit_copies_binary_arith_p (x0
)
4965 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4967 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4968 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4972 if (num_sign_bit_copies_binary_arith_p (x1
)
4973 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4975 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4976 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4981 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4984 /* Return the number of bits at the high-order end of X that are known to
4985 be equal to the sign bit. X will be used in mode MODE. The returned
4986 value will always be between 1 and the number of bits in MODE. */
4989 num_sign_bit_copies1 (const_rtx x
, scalar_int_mode mode
, const_rtx known_x
,
4990 machine_mode known_mode
,
4991 unsigned int known_ret
)
4993 enum rtx_code code
= GET_CODE (x
);
4994 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4995 int num0
, num1
, result
;
4996 unsigned HOST_WIDE_INT nonzero
;
4998 if (CONST_INT_P (x
))
5000 /* If the constant is negative, take its 1's complement and remask.
5001 Then see how many zero bits we have. */
5002 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
5003 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
5004 && (nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5005 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
5007 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
5010 scalar_int_mode xmode
, inner_mode
;
5011 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
5014 unsigned int xmode_width
= GET_MODE_PRECISION (xmode
);
5016 /* For a smaller mode, just ignore the high bits. */
5017 if (bitwidth
< xmode_width
)
5019 num0
= cached_num_sign_bit_copies (x
, xmode
,
5020 known_x
, known_mode
, known_ret
);
5021 return MAX (1, num0
- (int) (xmode_width
- bitwidth
));
5024 if (bitwidth
> xmode_width
)
5026 /* If this machine does not do all register operations on the entire
5027 register and MODE is wider than the mode of X, we can say nothing
5028 at all about the high-order bits. We extend this reasoning to every
5029 machine for rotate operations since the semantics of the operations
5030 in the larger mode is not well defined. */
5031 if (!WORD_REGISTER_OPERATIONS
|| code
== ROTATE
|| code
== ROTATERT
)
5034 /* Likewise on machines that do, if the mode of the object is smaller
5035 than a word and loads of that size don't sign extend, we can say
5036 nothing about the high order bits. */
5037 if (xmode_width
< BITS_PER_WORD
5038 && load_extend_op (xmode
) != SIGN_EXTEND
)
5042 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5043 the code in the switch below. */
5048 #if defined(POINTERS_EXTEND_UNSIGNED)
5049 /* If pointers extend signed and this is a pointer in Pmode, say that
5050 all the bits above ptr_mode are known to be sign bit copies. */
5051 /* As we do not know which address space the pointer is referring to,
5052 we can do this only if the target does not support different pointer
5053 or address modes depending on the address space. */
5054 if (target_default_pointer_address_modes_p ()
5055 && ! POINTERS_EXTEND_UNSIGNED
&& xmode
== Pmode
5056 && mode
== Pmode
&& REG_POINTER (x
)
5057 && !targetm
.have_ptr_extend ())
5058 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
5062 unsigned int copies_for_hook
= 1, copies
= 1;
5063 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, xmode
, mode
,
5067 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
5068 known_mode
, known_ret
);
5070 if (copies
> 1 || copies_for_hook
> 1)
5071 return MAX (copies
, copies_for_hook
);
5073 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5078 /* Some RISC machines sign-extend all loads of smaller than a word. */
5079 if (load_extend_op (xmode
) == SIGN_EXTEND
)
5080 return MAX (1, ((int) bitwidth
- (int) xmode_width
+ 1));
5084 /* If this is a SUBREG for a promoted object that is sign-extended
5085 and we are looking at it in a wider mode, we know that at least the
5086 high-order bits are known to be sign bit copies. */
5088 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_SIGNED_P (x
))
5090 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
5091 known_x
, known_mode
, known_ret
);
5092 return MAX ((int) bitwidth
- (int) xmode_width
+ 1, num0
);
5095 if (is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (x
)), &inner_mode
))
5097 /* For a smaller object, just ignore the high bits. */
5098 if (bitwidth
<= GET_MODE_PRECISION (inner_mode
))
5100 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), inner_mode
,
5101 known_x
, known_mode
,
5103 return MAX (1, num0
- (int) (GET_MODE_PRECISION (inner_mode
)
5107 /* For paradoxical SUBREGs on machines where all register operations
5108 affect the entire register, just look inside. Note that we are
5109 passing MODE to the recursive call, so the number of sign bit
5110 copies will remain relative to that mode, not the inner mode. */
5112 /* This works only if loads sign extend. Otherwise, if we get a
5113 reload for the inner part, it may be loaded from the stack, and
5114 then we lose all sign bit copies that existed before the store
5117 if (WORD_REGISTER_OPERATIONS
5118 && load_extend_op (inner_mode
) == SIGN_EXTEND
5119 && paradoxical_subreg_p (x
)
5120 && MEM_P (SUBREG_REG (x
)))
5121 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
5122 known_x
, known_mode
, known_ret
);
5127 if (CONST_INT_P (XEXP (x
, 1)))
5128 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
5132 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
5133 return (bitwidth
- GET_MODE_PRECISION (inner_mode
)
5134 + cached_num_sign_bit_copies (XEXP (x
, 0), inner_mode
,
5135 known_x
, known_mode
, known_ret
));
5139 /* For a smaller object, just ignore the high bits. */
5140 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
5141 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), inner_mode
,
5142 known_x
, known_mode
, known_ret
);
5143 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (inner_mode
)
5147 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5148 known_x
, known_mode
, known_ret
);
5150 case ROTATE
: case ROTATERT
:
5151 /* If we are rotating left by a number of bits less than the number
5152 of sign bit copies, we can just subtract that amount from the
5154 if (CONST_INT_P (XEXP (x
, 1))
5155 && INTVAL (XEXP (x
, 1)) >= 0
5156 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
5158 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5159 known_x
, known_mode
, known_ret
);
5160 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
5161 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
5166 /* In general, this subtracts one sign bit copy. But if the value
5167 is known to be positive, the number of sign bit copies is the
5168 same as that of the input. Finally, if the input has just one bit
5169 that might be nonzero, all the bits are copies of the sign bit. */
5170 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5171 known_x
, known_mode
, known_ret
);
5172 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5173 return num0
> 1 ? num0
- 1 : 1;
5175 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
5180 && ((HOST_WIDE_INT_1U
<< (bitwidth
- 1)) & nonzero
))
5185 case IOR
: case AND
: case XOR
:
5186 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
5187 /* Logical operations will preserve the number of sign-bit copies.
5188 MIN and MAX operations always return one of the operands. */
5189 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5190 known_x
, known_mode
, known_ret
);
5191 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5192 known_x
, known_mode
, known_ret
);
5194 /* If num1 is clearing some of the top bits then regardless of
5195 the other term, we are guaranteed to have at least that many
5196 high-order zero bits. */
5199 && bitwidth
<= HOST_BITS_PER_WIDE_INT
5200 && CONST_INT_P (XEXP (x
, 1))
5201 && (UINTVAL (XEXP (x
, 1))
5202 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) == 0)
5205 /* Similarly for IOR when setting high-order bits. */
5208 && bitwidth
<= HOST_BITS_PER_WIDE_INT
5209 && CONST_INT_P (XEXP (x
, 1))
5210 && (UINTVAL (XEXP (x
, 1))
5211 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5214 return MIN (num0
, num1
);
5216 case PLUS
: case MINUS
:
5217 /* For addition and subtraction, we can have a 1-bit carry. However,
5218 if we are subtracting 1 from a positive number, there will not
5219 be such a carry. Furthermore, if the positive number is known to
5220 be 0 or 1, we know the result is either -1 or 0. */
5222 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
5223 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
5225 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
5226 if (((HOST_WIDE_INT_1U
<< (bitwidth
- 1)) & nonzero
) == 0)
5227 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
5228 : bitwidth
- floor_log2 (nonzero
) - 1);
5231 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5232 known_x
, known_mode
, known_ret
);
5233 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5234 known_x
, known_mode
, known_ret
);
5235 result
= MAX (1, MIN (num0
, num1
) - 1);
5240 /* The number of bits of the product is the sum of the number of
5241 bits of both terms. However, unless one of the terms if known
5242 to be positive, we must allow for an additional bit since negating
5243 a negative number can remove one sign bit copy. */
5245 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5246 known_x
, known_mode
, known_ret
);
5247 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5248 known_x
, known_mode
, known_ret
);
5250 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
5252 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5253 || (((nonzero_bits (XEXP (x
, 0), mode
)
5254 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5255 && ((nonzero_bits (XEXP (x
, 1), mode
)
5256 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1)))
5260 return MAX (1, result
);
5263 /* The result must be <= the first operand. If the first operand
5264 has the high bit set, we know nothing about the number of sign
5266 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5268 else if ((nonzero_bits (XEXP (x
, 0), mode
)
5269 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5272 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5273 known_x
, known_mode
, known_ret
);
5276 /* The result must be <= the second operand. If the second operand
5277 has (or just might have) the high bit set, we know nothing about
5278 the number of sign bit copies. */
5279 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5281 else if ((nonzero_bits (XEXP (x
, 1), mode
)
5282 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5285 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5286 known_x
, known_mode
, known_ret
);
5289 /* Similar to unsigned division, except that we have to worry about
5290 the case where the divisor is negative, in which case we have
5292 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5293 known_x
, known_mode
, known_ret
);
5295 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5296 || (nonzero_bits (XEXP (x
, 1), mode
)
5297 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0))
5303 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5304 known_x
, known_mode
, known_ret
);
5306 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5307 || (nonzero_bits (XEXP (x
, 1), mode
)
5308 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0))
5314 /* Shifts by a constant add to the number of bits equal to the
5316 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5317 known_x
, known_mode
, known_ret
);
5318 if (CONST_INT_P (XEXP (x
, 1))
5319 && INTVAL (XEXP (x
, 1)) > 0
5320 && INTVAL (XEXP (x
, 1)) < xmode_width
)
5321 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
5326 /* Left shifts destroy copies. */
5327 if (!CONST_INT_P (XEXP (x
, 1))
5328 || INTVAL (XEXP (x
, 1)) < 0
5329 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
5330 || INTVAL (XEXP (x
, 1)) >= xmode_width
)
5333 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5334 known_x
, known_mode
, known_ret
);
5335 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
5338 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5339 known_x
, known_mode
, known_ret
);
5340 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
5341 known_x
, known_mode
, known_ret
);
5342 return MIN (num0
, num1
);
5344 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
5345 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
5346 case GEU
: case GTU
: case LEU
: case LTU
:
5347 case UNORDERED
: case ORDERED
:
5348 /* If the constant is negative, take its 1's complement and remask.
5349 Then see how many zero bits we have. */
5350 nonzero
= STORE_FLAG_VALUE
;
5351 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
5352 && (nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5353 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
5355 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
5361 /* If we haven't been able to figure it out by one of the above rules,
5362 see if some of the high-order bits are known to be zero. If so,
5363 count those bits and return one less than that amount. If we can't
5364 safely compute the mask for this mode, always return BITWIDTH. */
5366 bitwidth
= GET_MODE_PRECISION (mode
);
5367 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5370 nonzero
= nonzero_bits (x
, mode
);
5371 return nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))
5372 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
5375 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5376 zero indicates an instruction pattern without a known cost. */
5379 pattern_cost (rtx pat
, bool speed
)
5384 /* Extract the single set rtx from the instruction pattern. We
5385 can't use single_set since we only have the pattern. We also
5386 consider PARALLELs of a normal set and a single comparison. In
5387 that case we use the cost of the non-comparison SET operation,
5388 which is most-likely to be the real cost of this operation. */
5389 if (GET_CODE (pat
) == SET
)
5391 else if (GET_CODE (pat
) == PARALLEL
)
5394 rtx comparison
= NULL_RTX
;
5396 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
5398 rtx x
= XVECEXP (pat
, 0, i
);
5399 if (GET_CODE (x
) == SET
)
5401 if (GET_CODE (SET_SRC (x
)) == COMPARE
)
5416 if (!set
&& comparison
)
5425 cost
= set_src_cost (SET_SRC (set
), GET_MODE (SET_DEST (set
)), speed
);
5426 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
5429 /* Calculate the cost of a single instruction. A return value of zero
5430 indicates an instruction pattern without a known cost. */
5433 insn_cost (rtx_insn
*insn
, bool speed
)
5435 if (targetm
.insn_cost
)
5436 return targetm
.insn_cost (insn
, speed
);
5438 return pattern_cost (PATTERN (insn
), speed
);
5441 /* Returns estimate on cost of computing SEQ. */
5444 seq_cost (const rtx_insn
*seq
, bool speed
)
5449 for (; seq
; seq
= NEXT_INSN (seq
))
5451 set
= single_set (seq
);
5453 cost
+= set_rtx_cost (set
, speed
);
5454 else if (NONDEBUG_INSN_P (seq
))
5456 int this_cost
= insn_cost (CONST_CAST_RTX_INSN (seq
), speed
);
5467 /* Given an insn INSN and condition COND, return the condition in a
5468 canonical form to simplify testing by callers. Specifically:
5470 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5471 (2) Both operands will be machine operands; (cc0) will have been replaced.
5472 (3) If an operand is a constant, it will be the second operand.
5473 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5474 for GE, GEU, and LEU.
5476 If the condition cannot be understood, or is an inequality floating-point
5477 comparison which needs to be reversed, 0 will be returned.
5479 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5481 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5482 insn used in locating the condition was found. If a replacement test
5483 of the condition is desired, it should be placed in front of that
5484 insn and we will be sure that the inputs are still valid.
5486 If WANT_REG is nonzero, we wish the condition to be relative to that
5487 register, if possible. Therefore, do not canonicalize the condition
5488 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5489 to be a compare to a CC mode register.
5491 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5495 canonicalize_condition (rtx_insn
*insn
, rtx cond
, int reverse
,
5496 rtx_insn
**earliest
,
5497 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
5500 rtx_insn
*prev
= insn
;
5504 int reverse_code
= 0;
5506 basic_block bb
= BLOCK_FOR_INSN (insn
);
5508 code
= GET_CODE (cond
);
5509 mode
= GET_MODE (cond
);
5510 op0
= XEXP (cond
, 0);
5511 op1
= XEXP (cond
, 1);
5514 code
= reversed_comparison_code (cond
, insn
);
5515 if (code
== UNKNOWN
)
5521 /* If we are comparing a register with zero, see if the register is set
5522 in the previous insn to a COMPARE or a comparison operation. Perform
5523 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5526 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
5527 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
5528 && op1
== CONST0_RTX (GET_MODE (op0
))
5531 /* Set nonzero when we find something of interest. */
5534 /* If comparison with cc0, import actual comparison from compare
5538 if ((prev
= prev_nonnote_insn (prev
)) == 0
5539 || !NONJUMP_INSN_P (prev
)
5540 || (set
= single_set (prev
)) == 0
5541 || SET_DEST (set
) != cc0_rtx
)
5544 op0
= SET_SRC (set
);
5545 op1
= CONST0_RTX (GET_MODE (op0
));
5550 /* If this is a COMPARE, pick up the two things being compared. */
5551 if (GET_CODE (op0
) == COMPARE
)
5553 op1
= XEXP (op0
, 1);
5554 op0
= XEXP (op0
, 0);
5557 else if (!REG_P (op0
))
5560 /* Go back to the previous insn. Stop if it is not an INSN. We also
5561 stop if it isn't a single set or if it has a REG_INC note because
5562 we don't want to bother dealing with it. */
5564 prev
= prev_nonnote_nondebug_insn (prev
);
5567 || !NONJUMP_INSN_P (prev
)
5568 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
5569 /* In cfglayout mode, there do not have to be labels at the
5570 beginning of a block, or jumps at the end, so the previous
5571 conditions would not stop us when we reach bb boundary. */
5572 || BLOCK_FOR_INSN (prev
) != bb
)
5575 set
= set_of (op0
, prev
);
5578 && (GET_CODE (set
) != SET
5579 || !rtx_equal_p (SET_DEST (set
), op0
)))
5582 /* If this is setting OP0, get what it sets it to if it looks
5586 machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
5587 #ifdef FLOAT_STORE_FLAG_VALUE
5588 REAL_VALUE_TYPE fsfv
;
5591 /* ??? We may not combine comparisons done in a CCmode with
5592 comparisons not done in a CCmode. This is to aid targets
5593 like Alpha that have an IEEE compliant EQ instruction, and
5594 a non-IEEE compliant BEQ instruction. The use of CCmode is
5595 actually artificial, simply to prevent the combination, but
5596 should not affect other platforms.
5598 However, we must allow VOIDmode comparisons to match either
5599 CCmode or non-CCmode comparison, because some ports have
5600 modeless comparisons inside branch patterns.
5602 ??? This mode check should perhaps look more like the mode check
5603 in simplify_comparison in combine. */
5604 if (((GET_MODE_CLASS (mode
) == MODE_CC
)
5605 != (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5607 && inner_mode
!= VOIDmode
)
5609 if (GET_CODE (SET_SRC (set
)) == COMPARE
5612 && val_signbit_known_set_p (inner_mode
,
5614 #ifdef FLOAT_STORE_FLAG_VALUE
5616 && SCALAR_FLOAT_MODE_P (inner_mode
)
5617 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5618 REAL_VALUE_NEGATIVE (fsfv
)))
5621 && COMPARISON_P (SET_SRC (set
))))
5623 else if (((code
== EQ
5625 && val_signbit_known_set_p (inner_mode
,
5627 #ifdef FLOAT_STORE_FLAG_VALUE
5629 && SCALAR_FLOAT_MODE_P (inner_mode
)
5630 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5631 REAL_VALUE_NEGATIVE (fsfv
)))
5634 && COMPARISON_P (SET_SRC (set
)))
5639 else if ((code
== EQ
|| code
== NE
)
5640 && GET_CODE (SET_SRC (set
)) == XOR
)
5641 /* Handle sequences like:
5644 ...(eq|ne op0 (const_int 0))...
5648 (eq op0 (const_int 0)) reduces to (eq X Y)
5649 (ne op0 (const_int 0)) reduces to (ne X Y)
5651 This is the form used by MIPS16, for example. */
5657 else if (reg_set_p (op0
, prev
))
5658 /* If this sets OP0, but not directly, we have to give up. */
5663 /* If the caller is expecting the condition to be valid at INSN,
5664 make sure X doesn't change before INSN. */
5665 if (valid_at_insn_p
)
5666 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5668 if (COMPARISON_P (x
))
5669 code
= GET_CODE (x
);
5672 code
= reversed_comparison_code (x
, prev
);
5673 if (code
== UNKNOWN
)
5678 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5684 /* If constant is first, put it last. */
5685 if (CONSTANT_P (op0
))
5686 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5688 /* If OP0 is the result of a comparison, we weren't able to find what
5689 was really being compared, so fail. */
5691 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5694 /* Canonicalize any ordered comparison with integers involving equality
5695 if we can do computations in the relevant mode and we do not
5698 scalar_int_mode op0_mode
;
5699 if (CONST_INT_P (op1
)
5700 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &op0_mode
)
5701 && GET_MODE_PRECISION (op0_mode
) <= HOST_BITS_PER_WIDE_INT
)
5703 HOST_WIDE_INT const_val
= INTVAL (op1
);
5704 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5705 unsigned HOST_WIDE_INT max_val
5706 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (op0_mode
);
5711 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5712 code
= LT
, op1
= gen_int_mode (const_val
+ 1, op0_mode
);
5715 /* When cross-compiling, const_val might be sign-extended from
5716 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5718 if ((const_val
& max_val
)
5719 != (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (op0_mode
) - 1)))
5720 code
= GT
, op1
= gen_int_mode (const_val
- 1, op0_mode
);
5724 if (uconst_val
< max_val
)
5725 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, op0_mode
);
5729 if (uconst_val
!= 0)
5730 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, op0_mode
);
5738 /* Never return CC0; return zero instead. */
5742 /* We promised to return a comparison. */
5743 rtx ret
= gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5744 if (COMPARISON_P (ret
))
5749 /* Given a jump insn JUMP, return the condition that will cause it to branch
5750 to its JUMP_LABEL. If the condition cannot be understood, or is an
5751 inequality floating-point comparison which needs to be reversed, 0 will
5754 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5755 insn used in locating the condition was found. If a replacement test
5756 of the condition is desired, it should be placed in front of that
5757 insn and we will be sure that the inputs are still valid. If EARLIEST
5758 is null, the returned condition will be valid at INSN.
5760 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5761 compare CC mode register.
5763 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5766 get_condition (rtx_insn
*jump
, rtx_insn
**earliest
, int allow_cc_mode
,
5767 int valid_at_insn_p
)
5773 /* If this is not a standard conditional jump, we can't parse it. */
5775 || ! any_condjump_p (jump
))
5777 set
= pc_set (jump
);
5779 cond
= XEXP (SET_SRC (set
), 0);
5781 /* If this branches to JUMP_LABEL when the condition is false, reverse
5784 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5785 && label_ref_label (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (jump
);
5787 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5788 allow_cc_mode
, valid_at_insn_p
);
5791 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5792 TARGET_MODE_REP_EXTENDED.
5794 Note that we assume that the property of
5795 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5796 narrower than mode B. I.e., if A is a mode narrower than B then in
5797 order to be able to operate on it in mode B, mode A needs to
5798 satisfy the requirements set by the representation of mode B. */
5801 init_num_sign_bit_copies_in_rep (void)
5803 opt_scalar_int_mode in_mode_iter
;
5804 scalar_int_mode mode
;
5806 FOR_EACH_MODE_IN_CLASS (in_mode_iter
, MODE_INT
)
5807 FOR_EACH_MODE_UNTIL (mode
, in_mode_iter
.require ())
5809 scalar_int_mode in_mode
= in_mode_iter
.require ();
5812 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5813 extends to the next widest mode. */
5814 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5815 || GET_MODE_WIDER_MODE (mode
).require () == in_mode
);
5817 /* We are in in_mode. Count how many bits outside of mode
5818 have to be copies of the sign-bit. */
5819 FOR_EACH_MODE (i
, mode
, in_mode
)
5821 /* This must always exist (for the last iteration it will be
5823 scalar_int_mode wider
= GET_MODE_WIDER_MODE (i
).require ();
5825 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5826 /* We can only check sign-bit copies starting from the
5827 top-bit. In order to be able to check the bits we
5828 have already seen we pretend that subsequent bits
5829 have to be sign-bit copies too. */
5830 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5831 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5832 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5837 /* Suppose that truncation from the machine mode of X to MODE is not a
5838 no-op. See if there is anything special about X so that we can
5839 assume it already contains a truncated value of MODE. */
5842 truncated_to_mode (machine_mode mode
, const_rtx x
)
5844 /* This register has already been used in MODE without explicit
5846 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5849 /* See if we already satisfy the requirements of MODE. If yes we
5850 can just switch to MODE. */
5851 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5852 && (num_sign_bit_copies (x
, GET_MODE (x
))
5853 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5859 /* Return true if RTX code CODE has a single sequence of zero or more
5860 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5861 entry in that case. */
5864 setup_reg_subrtx_bounds (unsigned int code
)
5866 const char *format
= GET_RTX_FORMAT ((enum rtx_code
) code
);
5868 for (; format
[i
] != 'e'; ++i
)
5871 /* No subrtxes. Leave start and count as 0. */
5873 if (format
[i
] == 'E' || format
[i
] == 'V')
5877 /* Record the sequence of 'e's. */
5878 rtx_all_subrtx_bounds
[code
].start
= i
;
5881 while (format
[i
] == 'e');
5882 rtx_all_subrtx_bounds
[code
].count
= i
- rtx_all_subrtx_bounds
[code
].start
;
5883 /* rtl-iter.h relies on this. */
5884 gcc_checking_assert (rtx_all_subrtx_bounds
[code
].count
<= 3);
5886 for (; format
[i
]; ++i
)
5887 if (format
[i
] == 'E' || format
[i
] == 'V' || format
[i
] == 'e')
5893 /* Initialize rtx_all_subrtx_bounds. */
5898 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5900 if (!setup_reg_subrtx_bounds (i
))
5901 rtx_all_subrtx_bounds
[i
].count
= UCHAR_MAX
;
5902 if (GET_RTX_CLASS (i
) != RTX_CONST_OBJ
)
5903 rtx_nonconst_subrtx_bounds
[i
] = rtx_all_subrtx_bounds
[i
];
5906 init_num_sign_bit_copies_in_rep ();
5909 /* Check whether this is a constant pool constant. */
5911 constant_pool_constant_p (rtx x
)
5913 x
= avoid_constant_pool_reference (x
);
5914 return CONST_DOUBLE_P (x
);
5917 /* If M is a bitmask that selects a field of low-order bits within an item but
5918 not the entire word, return the length of the field. Return -1 otherwise.
5919 M is used in machine mode MODE. */
5922 low_bitmask_len (machine_mode mode
, unsigned HOST_WIDE_INT m
)
5924 if (mode
!= VOIDmode
)
5926 if (!HWI_COMPUTABLE_MODE_P (mode
))
5928 m
&= GET_MODE_MASK (mode
);
5931 return exact_log2 (m
+ 1);
5934 /* Return the mode of MEM's address. */
5937 get_address_mode (rtx mem
)
5941 gcc_assert (MEM_P (mem
));
5942 mode
= GET_MODE (XEXP (mem
, 0));
5943 if (mode
!= VOIDmode
)
5944 return as_a
<scalar_int_mode
> (mode
);
5945 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5948 /* Split up a CONST_DOUBLE or integer constant rtx
5949 into two rtx's for single words,
5950 storing in *FIRST the word that comes first in memory in the target
5951 and in *SECOND the other.
5953 TODO: This function needs to be rewritten to work on any size
5957 split_double (rtx value
, rtx
*first
, rtx
*second
)
5959 if (CONST_INT_P (value
))
5961 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5963 /* In this case the CONST_INT holds both target words.
5964 Extract the bits from it into two word-sized pieces.
5965 Sign extend each half to HOST_WIDE_INT. */
5966 unsigned HOST_WIDE_INT low
, high
;
5967 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5968 unsigned bits_per_word
= BITS_PER_WORD
;
5970 /* Set sign_bit to the most significant bit of a word. */
5972 sign_bit
<<= bits_per_word
- 1;
5974 /* Set mask so that all bits of the word are set. We could
5975 have used 1 << BITS_PER_WORD instead of basing the
5976 calculation on sign_bit. However, on machines where
5977 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5978 compiler warning, even though the code would never be
5980 mask
= sign_bit
<< 1;
5983 /* Set sign_extend as any remaining bits. */
5984 sign_extend
= ~mask
;
5986 /* Pick the lower word and sign-extend it. */
5987 low
= INTVAL (value
);
5992 /* Pick the higher word, shifted to the least significant
5993 bits, and sign-extend it. */
5994 high
= INTVAL (value
);
5995 high
>>= bits_per_word
- 1;
5998 if (high
& sign_bit
)
5999 high
|= sign_extend
;
6001 /* Store the words in the target machine order. */
6002 if (WORDS_BIG_ENDIAN
)
6004 *first
= GEN_INT (high
);
6005 *second
= GEN_INT (low
);
6009 *first
= GEN_INT (low
);
6010 *second
= GEN_INT (high
);
6015 /* The rule for using CONST_INT for a wider mode
6016 is that we regard the value as signed.
6017 So sign-extend it. */
6018 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
6019 if (WORDS_BIG_ENDIAN
)
6031 else if (GET_CODE (value
) == CONST_WIDE_INT
)
6033 /* All of this is scary code and needs to be converted to
6034 properly work with any size integer. */
6035 gcc_assert (CONST_WIDE_INT_NUNITS (value
) == 2);
6036 if (WORDS_BIG_ENDIAN
)
6038 *first
= GEN_INT (CONST_WIDE_INT_ELT (value
, 1));
6039 *second
= GEN_INT (CONST_WIDE_INT_ELT (value
, 0));
6043 *first
= GEN_INT (CONST_WIDE_INT_ELT (value
, 0));
6044 *second
= GEN_INT (CONST_WIDE_INT_ELT (value
, 1));
6047 else if (!CONST_DOUBLE_P (value
))
6049 if (WORDS_BIG_ENDIAN
)
6051 *first
= const0_rtx
;
6057 *second
= const0_rtx
;
6060 else if (GET_MODE (value
) == VOIDmode
6061 /* This is the old way we did CONST_DOUBLE integers. */
6062 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
6064 /* In an integer, the words are defined as most and least significant.
6065 So order them by the target's convention. */
6066 if (WORDS_BIG_ENDIAN
)
6068 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
6069 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
6073 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
6074 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
6081 /* Note, this converts the REAL_VALUE_TYPE to the target's
6082 format, splits up the floating point double and outputs
6083 exactly 32 bits of it into each of l[0] and l[1] --
6084 not necessarily BITS_PER_WORD bits. */
6085 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value
), l
);
6087 /* If 32 bits is an entire word for the target, but not for the host,
6088 then sign-extend on the host so that the number will look the same
6089 way on the host that it would on the target. See for instance
6090 simplify_unary_operation. The #if is needed to avoid compiler
6093 #if HOST_BITS_PER_LONG > 32
6094 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
6096 if (l
[0] & ((long) 1 << 31))
6097 l
[0] |= ((unsigned long) (-1) << 32);
6098 if (l
[1] & ((long) 1 << 31))
6099 l
[1] |= ((unsigned long) (-1) << 32);
6103 *first
= GEN_INT (l
[0]);
6104 *second
= GEN_INT (l
[1]);
6108 /* Return true if X is a sign_extract or zero_extract from the least
6112 lsb_bitfield_op_p (rtx x
)
6114 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_BITFIELD_OPS
)
6116 machine_mode mode
= GET_MODE (XEXP (x
, 0));
6117 HOST_WIDE_INT len
= INTVAL (XEXP (x
, 1));
6118 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
6119 poly_int64 remaining_bits
= GET_MODE_PRECISION (mode
) - len
;
6121 return known_eq (pos
, BITS_BIG_ENDIAN
? remaining_bits
: 0);
6126 /* Strip outer address "mutations" from LOC and return a pointer to the
6127 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6128 stripped expression there.
6130 "Mutations" either convert between modes or apply some kind of
6131 extension, truncation or alignment. */
6134 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
6138 enum rtx_code code
= GET_CODE (*loc
);
6139 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
6140 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6141 used to convert between pointer sizes. */
6142 loc
= &XEXP (*loc
, 0);
6143 else if (lsb_bitfield_op_p (*loc
))
6144 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6145 acts as a combined truncation and extension. */
6146 loc
= &XEXP (*loc
, 0);
6147 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
6148 /* (and ... (const_int -X)) is used to align to X bytes. */
6149 loc
= &XEXP (*loc
, 0);
6150 else if (code
== SUBREG
6151 && !OBJECT_P (SUBREG_REG (*loc
))
6152 && subreg_lowpart_p (*loc
))
6153 /* (subreg (operator ...) ...) inside and is used for mode
6155 loc
= &SUBREG_REG (*loc
);
6163 /* Return true if CODE applies some kind of scale. The scaled value is
6164 is the first operand and the scale is the second. */
6167 binary_scale_code_p (enum rtx_code code
)
6169 return (code
== MULT
6171 /* Needed by ARM targets. */
6175 || code
== ROTATERT
);
6178 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6179 (see address_info). Return null otherwise. */
6182 get_base_term (rtx
*inner
)
6184 if (GET_CODE (*inner
) == LO_SUM
)
6185 inner
= strip_address_mutations (&XEXP (*inner
, 0));
6188 || GET_CODE (*inner
) == SUBREG
6189 || GET_CODE (*inner
) == SCRATCH
)
6194 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6195 (see address_info). Return null otherwise. */
6198 get_index_term (rtx
*inner
)
6200 /* At present, only constant scales are allowed. */
6201 if (binary_scale_code_p (GET_CODE (*inner
)) && CONSTANT_P (XEXP (*inner
, 1)))
6202 inner
= strip_address_mutations (&XEXP (*inner
, 0));
6205 || GET_CODE (*inner
) == SUBREG
6206 || GET_CODE (*inner
) == SCRATCH
)
6211 /* Set the segment part of address INFO to LOC, given that INNER is the
6215 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6217 gcc_assert (!info
->segment
);
6218 info
->segment
= loc
;
6219 info
->segment_term
= inner
;
6222 /* Set the base part of address INFO to LOC, given that INNER is the
6226 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6228 gcc_assert (!info
->base
);
6230 info
->base_term
= inner
;
6233 /* Set the index part of address INFO to LOC, given that INNER is the
6237 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6239 gcc_assert (!info
->index
);
6241 info
->index_term
= inner
;
6244 /* Set the displacement part of address INFO to LOC, given that INNER
6245 is the constant term. */
6248 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6250 gcc_assert (!info
->disp
);
6252 info
->disp_term
= inner
;
6255 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6256 rest of INFO accordingly. */
6259 decompose_incdec_address (struct address_info
*info
)
6261 info
->autoinc_p
= true;
6263 rtx
*base
= &XEXP (*info
->inner
, 0);
6264 set_address_base (info
, base
, base
);
6265 gcc_checking_assert (info
->base
== info
->base_term
);
6267 /* These addresses are only valid when the size of the addressed
6269 gcc_checking_assert (info
->mode
!= VOIDmode
);
6272 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6273 of INFO accordingly. */
6276 decompose_automod_address (struct address_info
*info
)
6278 info
->autoinc_p
= true;
6280 rtx
*base
= &XEXP (*info
->inner
, 0);
6281 set_address_base (info
, base
, base
);
6282 gcc_checking_assert (info
->base
== info
->base_term
);
6284 rtx plus
= XEXP (*info
->inner
, 1);
6285 gcc_assert (GET_CODE (plus
) == PLUS
);
6287 info
->base_term2
= &XEXP (plus
, 0);
6288 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
6290 rtx
*step
= &XEXP (plus
, 1);
6291 rtx
*inner_step
= strip_address_mutations (step
);
6292 if (CONSTANT_P (*inner_step
))
6293 set_address_disp (info
, step
, inner_step
);
6295 set_address_index (info
, step
, inner_step
);
6298 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6299 values in [PTR, END). Return a pointer to the end of the used array. */
6302 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
6305 if (GET_CODE (x
) == PLUS
)
6307 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
6308 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
6312 gcc_assert (ptr
!= end
);
6318 /* Evaluate the likelihood of X being a base or index value, returning
6319 positive if it is likely to be a base, negative if it is likely to be
6320 an index, and 0 if we can't tell. Make the magnitude of the return
6321 value reflect the amount of confidence we have in the answer.
6323 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6326 baseness (rtx x
, machine_mode mode
, addr_space_t as
,
6327 enum rtx_code outer_code
, enum rtx_code index_code
)
6329 /* Believe *_POINTER unless the address shape requires otherwise. */
6330 if (REG_P (x
) && REG_POINTER (x
))
6332 if (MEM_P (x
) && MEM_POINTER (x
))
6335 if (REG_P (x
) && HARD_REGISTER_P (x
))
6337 /* X is a hard register. If it only fits one of the base
6338 or index classes, choose that interpretation. */
6339 int regno
= REGNO (x
);
6340 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
6341 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
6342 if (base_p
!= index_p
)
6343 return base_p
? 1 : -1;
6348 /* INFO->INNER describes a normal, non-automodified address.
6349 Fill in the rest of INFO accordingly. */
6352 decompose_normal_address (struct address_info
*info
)
6354 /* Treat the address as the sum of up to four values. */
6356 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
6357 ops
+ ARRAY_SIZE (ops
)) - ops
;
6359 /* If there is more than one component, any base component is in a PLUS. */
6361 info
->base_outer_code
= PLUS
;
6363 /* Try to classify each sum operand now. Leave those that could be
6364 either a base or an index in OPS. */
6367 for (size_t in
= 0; in
< n_ops
; ++in
)
6370 rtx
*inner
= strip_address_mutations (loc
);
6371 if (CONSTANT_P (*inner
))
6372 set_address_disp (info
, loc
, inner
);
6373 else if (GET_CODE (*inner
) == UNSPEC
)
6374 set_address_segment (info
, loc
, inner
);
6377 /* The only other possibilities are a base or an index. */
6378 rtx
*base_term
= get_base_term (inner
);
6379 rtx
*index_term
= get_index_term (inner
);
6380 gcc_assert (base_term
|| index_term
);
6382 set_address_index (info
, loc
, index_term
);
6383 else if (!index_term
)
6384 set_address_base (info
, loc
, base_term
);
6387 gcc_assert (base_term
== index_term
);
6389 inner_ops
[out
] = base_term
;
6395 /* Classify the remaining OPS members as bases and indexes. */
6398 /* If we haven't seen a base or an index yet, assume that this is
6399 the base. If we were confident that another term was the base
6400 or index, treat the remaining operand as the other kind. */
6402 set_address_base (info
, ops
[0], inner_ops
[0]);
6404 set_address_index (info
, ops
[0], inner_ops
[0]);
6408 /* In the event of a tie, assume the base comes first. */
6409 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
6411 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
6412 GET_CODE (*ops
[0])))
6414 set_address_base (info
, ops
[0], inner_ops
[0]);
6415 set_address_index (info
, ops
[1], inner_ops
[1]);
6419 set_address_base (info
, ops
[1], inner_ops
[1]);
6420 set_address_index (info
, ops
[0], inner_ops
[0]);
6424 gcc_assert (out
== 0);
6427 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6428 or VOIDmode if not known. AS is the address space associated with LOC.
6429 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6432 decompose_address (struct address_info
*info
, rtx
*loc
, machine_mode mode
,
6433 addr_space_t as
, enum rtx_code outer_code
)
6435 memset (info
, 0, sizeof (*info
));
6438 info
->addr_outer_code
= outer_code
;
6440 info
->inner
= strip_address_mutations (loc
, &outer_code
);
6441 info
->base_outer_code
= outer_code
;
6442 switch (GET_CODE (*info
->inner
))
6448 decompose_incdec_address (info
);
6453 decompose_automod_address (info
);
6457 decompose_normal_address (info
);
6462 /* Describe address operand LOC in INFO. */
6465 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
6467 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
6470 /* Describe the address of MEM X in INFO. */
6473 decompose_mem_address (struct address_info
*info
, rtx x
)
6475 gcc_assert (MEM_P (x
));
6476 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
6477 MEM_ADDR_SPACE (x
), MEM
);
6480 /* Update INFO after a change to the address it describes. */
6483 update_address (struct address_info
*info
)
6485 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
6486 info
->addr_outer_code
);
6489 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6490 more complicated than that. */
6493 get_index_scale (const struct address_info
*info
)
6495 rtx index
= *info
->index
;
6496 if (GET_CODE (index
) == MULT
6497 && CONST_INT_P (XEXP (index
, 1))
6498 && info
->index_term
== &XEXP (index
, 0))
6499 return INTVAL (XEXP (index
, 1));
6501 if (GET_CODE (index
) == ASHIFT
6502 && CONST_INT_P (XEXP (index
, 1))
6503 && info
->index_term
== &XEXP (index
, 0))
6504 return HOST_WIDE_INT_1
<< INTVAL (XEXP (index
, 1));
6506 if (info
->index
== info
->index_term
)
6512 /* Return the "index code" of INFO, in the form required by
6516 get_index_code (const struct address_info
*info
)
6519 return GET_CODE (*info
->index
);
6522 return GET_CODE (*info
->disp
);
6527 /* Return true if RTL X contains a SYMBOL_REF. */
6530 contains_symbol_ref_p (const_rtx x
)
6532 subrtx_iterator::array_type array
;
6533 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6534 if (SYMBOL_REF_P (*iter
))
6540 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6543 contains_symbolic_reference_p (const_rtx x
)
6545 subrtx_iterator::array_type array
;
6546 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6547 if (SYMBOL_REF_P (*iter
) || GET_CODE (*iter
) == LABEL_REF
)
6553 /* Return true if X contains a thread-local symbol. */
6556 tls_referenced_p (const_rtx x
)
6558 if (!targetm
.have_tls
)
6561 subrtx_iterator::array_type array
;
6562 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6563 if (GET_CODE (*iter
) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (*iter
) != 0)
6568 /* Return true if reg REGNO with mode REG_MODE would be clobbered by the
6569 clobber_high operand in CLOBBER_HIGH_OP. */
6572 reg_is_clobbered_by_clobber_high (unsigned int regno
, machine_mode reg_mode
,
6573 const_rtx clobber_high_op
)
6575 unsigned int clobber_regno
= REGNO (clobber_high_op
);
6576 machine_mode clobber_mode
= GET_MODE (clobber_high_op
);
6577 unsigned char regno_nregs
= hard_regno_nregs (regno
, reg_mode
);
6579 /* Clobber high should always span exactly one register. */
6580 gcc_assert (REG_NREGS (clobber_high_op
) == 1);
6582 /* Clobber high needs to match with one of the registers in X. */
6583 if (clobber_regno
< regno
|| clobber_regno
>= regno
+ regno_nregs
)
6586 gcc_assert (reg_mode
!= BLKmode
&& clobber_mode
!= BLKmode
);
6588 if (reg_mode
== VOIDmode
)
6589 return clobber_mode
!= VOIDmode
;
6591 /* Clobber high will clobber if its size might be greater than the size of
6593 return maybe_gt (exact_div (GET_MODE_SIZE (reg_mode
), regno_nregs
),
6594 GET_MODE_SIZE (clobber_mode
));