* gcc.dg/c11-complex-1.c: Use dg-add-options ieee.
[official-gcc.git] / gcc / tree-ssa-sink.c
blobcaf10bb522fc3e55a5f8b5ecf4bdbd7771e579c2
1 /* Code sinking for trees
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "tree-inline.h"
29 #include "gimple.h"
30 #include "gimple-iterator.h"
31 #include "gimple-ssa.h"
32 #include "tree-cfg.h"
33 #include "tree-phinodes.h"
34 #include "ssa-iterators.h"
35 #include "hashtab.h"
36 #include "tree-iterator.h"
37 #include "alloc-pool.h"
38 #include "tree-pass.h"
39 #include "flags.h"
40 #include "cfgloop.h"
41 #include "params.h"
43 /* TODO:
44 1. Sinking store only using scalar promotion (IE without moving the RHS):
46 *q = p;
47 p = p + 1;
48 if (something)
49 *q = <not p>;
50 else
51 y = *q;
54 should become
55 sinktemp = p;
56 p = p + 1;
57 if (something)
58 *q = <not p>;
59 else
61 *q = sinktemp;
62 y = *q
64 Store copy propagation will take care of the store elimination above.
67 2. Sinking using Partial Dead Code Elimination. */
70 static struct
72 /* The number of statements sunk down the flowgraph by code sinking. */
73 int sunk;
75 } sink_stats;
78 /* Given a PHI, and one of its arguments (DEF), find the edge for
79 that argument and return it. If the argument occurs twice in the PHI node,
80 we return NULL. */
82 static basic_block
83 find_bb_for_arg (gimple phi, tree def)
85 size_t i;
86 bool foundone = false;
87 basic_block result = NULL;
88 for (i = 0; i < gimple_phi_num_args (phi); i++)
89 if (PHI_ARG_DEF (phi, i) == def)
91 if (foundone)
92 return NULL;
93 foundone = true;
94 result = gimple_phi_arg_edge (phi, i)->src;
96 return result;
99 /* When the first immediate use is in a statement, then return true if all
100 immediate uses in IMM are in the same statement.
101 We could also do the case where the first immediate use is in a phi node,
102 and all the other uses are in phis in the same basic block, but this
103 requires some expensive checking later (you have to make sure no def/vdef
104 in the statement occurs for multiple edges in the various phi nodes it's
105 used in, so that you only have one place you can sink it to. */
107 static bool
108 all_immediate_uses_same_place (gimple stmt)
110 gimple firstuse = NULL;
111 ssa_op_iter op_iter;
112 imm_use_iterator imm_iter;
113 use_operand_p use_p;
114 tree var;
116 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
118 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
120 if (is_gimple_debug (USE_STMT (use_p)))
121 continue;
122 if (firstuse == NULL)
123 firstuse = USE_STMT (use_p);
124 else
125 if (firstuse != USE_STMT (use_p))
126 return false;
130 return true;
133 /* Find the nearest common dominator of all of the immediate uses in IMM. */
135 static basic_block
136 nearest_common_dominator_of_uses (gimple stmt, bool *debug_stmts)
138 bitmap blocks = BITMAP_ALLOC (NULL);
139 basic_block commondom;
140 unsigned int j;
141 bitmap_iterator bi;
142 ssa_op_iter op_iter;
143 imm_use_iterator imm_iter;
144 use_operand_p use_p;
145 tree var;
147 bitmap_clear (blocks);
148 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
150 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
152 gimple usestmt = USE_STMT (use_p);
153 basic_block useblock;
155 if (gimple_code (usestmt) == GIMPLE_PHI)
157 int idx = PHI_ARG_INDEX_FROM_USE (use_p);
159 useblock = gimple_phi_arg_edge (usestmt, idx)->src;
161 else if (is_gimple_debug (usestmt))
163 *debug_stmts = true;
164 continue;
166 else
168 useblock = gimple_bb (usestmt);
171 /* Short circuit. Nothing dominates the entry block. */
172 if (useblock == ENTRY_BLOCK_PTR)
174 BITMAP_FREE (blocks);
175 return NULL;
177 bitmap_set_bit (blocks, useblock->index);
180 commondom = BASIC_BLOCK (bitmap_first_set_bit (blocks));
181 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
182 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
183 BASIC_BLOCK (j));
184 BITMAP_FREE (blocks);
185 return commondom;
188 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
189 tree, return the best basic block between them (inclusive) to place
190 statements.
192 We want the most control dependent block in the shallowest loop nest.
194 If the resulting block is in a shallower loop nest, then use it. Else
195 only use the resulting block if it has significantly lower execution
196 frequency than EARLY_BB to avoid gratutious statement movement. We
197 consider statements with VOPS more desirable to move.
199 This pass would obviously benefit from PDO as it utilizes block
200 frequencies. It would also benefit from recomputing frequencies
201 if profile data is not available since frequencies often get out
202 of sync with reality. */
204 static basic_block
205 select_best_block (basic_block early_bb,
206 basic_block late_bb,
207 gimple stmt)
209 basic_block best_bb = late_bb;
210 basic_block temp_bb = late_bb;
211 int threshold;
213 while (temp_bb != early_bb)
215 /* If we've moved into a lower loop nest, then that becomes
216 our best block. */
217 if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb))
218 best_bb = temp_bb;
220 /* Walk up the dominator tree, hopefully we'll find a shallower
221 loop nest. */
222 temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
225 /* If we found a shallower loop nest, then we always consider that
226 a win. This will always give us the most control dependent block
227 within that loop nest. */
228 if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb))
229 return best_bb;
231 /* Get the sinking threshold. If the statement to be moved has memory
232 operands, then increase the threshold by 7% as those are even more
233 profitable to avoid, clamping at 100%. */
234 threshold = PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD);
235 if (gimple_vuse (stmt) || gimple_vdef (stmt))
237 threshold += 7;
238 if (threshold > 100)
239 threshold = 100;
242 /* If BEST_BB is at the same nesting level, then require it to have
243 significantly lower execution frequency to avoid gratutious movement. */
244 if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb)
245 && best_bb->frequency < (early_bb->frequency * threshold / 100.0))
246 return best_bb;
248 /* No better block found, so return EARLY_BB, which happens to be the
249 statement's original block. */
250 return early_bb;
253 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
254 determine the location to sink the statement to, if any.
255 Returns true if there is such location; in that case, TOGSI points to the
256 statement before that STMT should be moved. */
258 static bool
259 statement_sink_location (gimple stmt, basic_block frombb,
260 gimple_stmt_iterator *togsi)
262 gimple use;
263 use_operand_p one_use = NULL_USE_OPERAND_P;
264 basic_block sinkbb;
265 use_operand_p use_p;
266 def_operand_p def_p;
267 ssa_op_iter iter;
268 imm_use_iterator imm_iter;
270 /* We only can sink assignments. */
271 if (!is_gimple_assign (stmt))
272 return false;
274 /* We only can sink stmts with a single definition. */
275 def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
276 if (def_p == NULL_DEF_OPERAND_P)
277 return false;
279 /* Return if there are no immediate uses of this stmt. */
280 if (has_zero_uses (DEF_FROM_PTR (def_p)))
281 return false;
283 /* There are a few classes of things we can't or don't move, some because we
284 don't have code to handle it, some because it's not profitable and some
285 because it's not legal.
287 We can't sink things that may be global stores, at least not without
288 calculating a lot more information, because we may cause it to no longer
289 be seen by an external routine that needs it depending on where it gets
290 moved to.
292 We don't want to sink loads from memory.
294 We can't sink statements that end basic blocks without splitting the
295 incoming edge for the sink location to place it there.
297 We can't sink statements that have volatile operands.
299 We don't want to sink dead code, so anything with 0 immediate uses is not
300 sunk.
302 Don't sink BLKmode assignments if current function has any local explicit
303 register variables, as BLKmode assignments may involve memcpy or memset
304 calls or, on some targets, inline expansion thereof that sometimes need
305 to use specific hard registers.
308 if (stmt_ends_bb_p (stmt)
309 || gimple_has_side_effects (stmt)
310 || gimple_has_volatile_ops (stmt)
311 || (gimple_vuse (stmt) && !gimple_vdef (stmt))
312 || (cfun->has_local_explicit_reg_vars
313 && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode))
314 return false;
316 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
317 return false;
319 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
321 tree use = USE_FROM_PTR (use_p);
322 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
323 return false;
326 use = NULL;
328 /* If stmt is a store the one and only use needs to be the VOP
329 merging PHI node. */
330 if (gimple_vdef (stmt))
332 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
334 gimple use_stmt = USE_STMT (use_p);
336 /* A killing definition is not a use. */
337 if ((gimple_has_lhs (use_stmt)
338 && operand_equal_p (gimple_assign_lhs (stmt),
339 gimple_get_lhs (use_stmt), 0))
340 || stmt_kills_ref_p (use_stmt, gimple_assign_lhs (stmt)))
342 /* If use_stmt is or might be a nop assignment then USE_STMT
343 acts as a use as well as definition. */
344 if (stmt != use_stmt
345 && ref_maybe_used_by_stmt_p (use_stmt,
346 gimple_assign_lhs (stmt)))
347 return false;
348 continue;
351 if (gimple_code (use_stmt) != GIMPLE_PHI)
352 return false;
354 if (use
355 && use != use_stmt)
356 return false;
358 use = use_stmt;
360 if (!use)
361 return false;
363 /* If all the immediate uses are not in the same place, find the nearest
364 common dominator of all the immediate uses. For PHI nodes, we have to
365 find the nearest common dominator of all of the predecessor blocks, since
366 that is where insertion would have to take place. */
367 else if (!all_immediate_uses_same_place (stmt))
369 bool debug_stmts = false;
370 basic_block commondom = nearest_common_dominator_of_uses (stmt,
371 &debug_stmts);
373 if (commondom == frombb)
374 return false;
376 /* Our common dominator has to be dominated by frombb in order to be a
377 trivially safe place to put this statement, since it has multiple
378 uses. */
379 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
380 return false;
382 commondom = select_best_block (frombb, commondom, stmt);
384 if (commondom == frombb)
385 return false;
387 *togsi = gsi_after_labels (commondom);
389 return true;
391 else
393 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
395 if (is_gimple_debug (USE_STMT (one_use)))
396 continue;
397 break;
399 use = USE_STMT (one_use);
401 if (gimple_code (use) != GIMPLE_PHI)
403 sinkbb = gimple_bb (use);
404 sinkbb = select_best_block (frombb, gimple_bb (use), stmt);
406 if (sinkbb == frombb)
407 return false;
409 *togsi = gsi_for_stmt (use);
411 return true;
415 sinkbb = find_bb_for_arg (use, DEF_FROM_PTR (def_p));
417 /* This can happen if there are multiple uses in a PHI. */
418 if (!sinkbb)
419 return false;
421 sinkbb = select_best_block (frombb, sinkbb, stmt);
422 if (!sinkbb || sinkbb == frombb)
423 return false;
425 /* If the latch block is empty, don't make it non-empty by sinking
426 something into it. */
427 if (sinkbb == frombb->loop_father->latch
428 && empty_block_p (sinkbb))
429 return false;
431 *togsi = gsi_after_labels (sinkbb);
433 return true;
436 /* Perform code sinking on BB */
438 static void
439 sink_code_in_bb (basic_block bb)
441 basic_block son;
442 gimple_stmt_iterator gsi;
443 edge_iterator ei;
444 edge e;
445 bool last = true;
447 /* If this block doesn't dominate anything, there can't be any place to sink
448 the statements to. */
449 if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
450 goto earlyout;
452 /* We can't move things across abnormal edges, so don't try. */
453 FOR_EACH_EDGE (e, ei, bb->succs)
454 if (e->flags & EDGE_ABNORMAL)
455 goto earlyout;
457 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
459 gimple stmt = gsi_stmt (gsi);
460 gimple_stmt_iterator togsi;
462 if (!statement_sink_location (stmt, bb, &togsi))
464 if (!gsi_end_p (gsi))
465 gsi_prev (&gsi);
466 last = false;
467 continue;
469 if (dump_file)
471 fprintf (dump_file, "Sinking ");
472 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
473 fprintf (dump_file, " from bb %d to bb %d\n",
474 bb->index, (gsi_bb (togsi))->index);
477 /* Update virtual operands of statements in the path we
478 do not sink to. */
479 if (gimple_vdef (stmt))
481 imm_use_iterator iter;
482 use_operand_p use_p;
483 gimple vuse_stmt;
485 FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
486 if (gimple_code (vuse_stmt) != GIMPLE_PHI)
487 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
488 SET_USE (use_p, gimple_vuse (stmt));
491 /* If this is the end of the basic block, we need to insert at the end
492 of the basic block. */
493 if (gsi_end_p (togsi))
494 gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
495 else
496 gsi_move_before (&gsi, &togsi);
498 sink_stats.sunk++;
500 /* If we've just removed the last statement of the BB, the
501 gsi_end_p() test below would fail, but gsi_prev() would have
502 succeeded, and we want it to succeed. So we keep track of
503 whether we're at the last statement and pick up the new last
504 statement. */
505 if (last)
507 gsi = gsi_last_bb (bb);
508 continue;
511 last = false;
512 if (!gsi_end_p (gsi))
513 gsi_prev (&gsi);
516 earlyout:
517 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
518 son;
519 son = next_dom_son (CDI_POST_DOMINATORS, son))
521 sink_code_in_bb (son);
525 /* Perform code sinking.
526 This moves code down the flowgraph when we know it would be
527 profitable to do so, or it wouldn't increase the number of
528 executions of the statement.
530 IE given
532 a_1 = b + c;
533 if (<something>)
536 else
538 foo (&b, &c);
539 a_5 = b + c;
541 a_6 = PHI (a_5, a_1);
542 USE a_6.
544 we'll transform this into:
546 if (<something>)
548 a_1 = b + c;
550 else
552 foo (&b, &c);
553 a_5 = b + c;
555 a_6 = PHI (a_5, a_1);
556 USE a_6.
558 Note that this reduces the number of computations of a = b + c to 1
559 when we take the else edge, instead of 2.
561 static void
562 execute_sink_code (void)
564 loop_optimizer_init (LOOPS_NORMAL);
566 connect_infinite_loops_to_exit ();
567 memset (&sink_stats, 0, sizeof (sink_stats));
568 calculate_dominance_info (CDI_DOMINATORS);
569 calculate_dominance_info (CDI_POST_DOMINATORS);
570 sink_code_in_bb (EXIT_BLOCK_PTR);
571 statistics_counter_event (cfun, "Sunk statements", sink_stats.sunk);
572 free_dominance_info (CDI_POST_DOMINATORS);
573 remove_fake_exit_edges ();
574 loop_optimizer_finalize ();
577 /* Gate and execute functions for PRE. */
579 static unsigned int
580 do_sink (void)
582 execute_sink_code ();
583 return 0;
586 static bool
587 gate_sink (void)
589 return flag_tree_sink != 0;
592 namespace {
594 const pass_data pass_data_sink_code =
596 GIMPLE_PASS, /* type */
597 "sink", /* name */
598 OPTGROUP_NONE, /* optinfo_flags */
599 true, /* has_gate */
600 true, /* has_execute */
601 TV_TREE_SINK, /* tv_id */
602 ( PROP_no_crit_edges | PROP_cfg | PROP_ssa ), /* properties_required */
603 0, /* properties_provided */
604 0, /* properties_destroyed */
605 0, /* todo_flags_start */
606 ( TODO_update_ssa | TODO_verify_ssa
607 | TODO_verify_flow ), /* todo_flags_finish */
610 class pass_sink_code : public gimple_opt_pass
612 public:
613 pass_sink_code (gcc::context *ctxt)
614 : gimple_opt_pass (pass_data_sink_code, ctxt)
617 /* opt_pass methods: */
618 bool gate () { return gate_sink (); }
619 unsigned int execute () { return do_sink (); }
621 }; // class pass_sink_code
623 } // anon namespace
625 gimple_opt_pass *
626 make_pass_sink_code (gcc::context *ctxt)
628 return new pass_sink_code (ctxt);