* gcc.dg/c11-complex-1.c: Use dg-add-options ieee.
[official-gcc.git] / gcc / tree-eh.c
blob656ba6f5cb3dd07953c1629f954884dc77c2f119
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "gimple.h"
31 #include "gimple-iterator.h"
32 #include "gimple-ssa.h"
33 #include "cgraph.h"
34 #include "tree-cfg.h"
35 #include "tree-phinodes.h"
36 #include "ssa-iterators.h"
37 #include "tree-ssanames.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "tree-inline.h"
41 #include "tree-pass.h"
42 #include "langhooks.h"
43 #include "ggc.h"
44 #include "diagnostic-core.h"
45 #include "target.h"
46 #include "cfgloop.h"
47 #include "gimple-low.h"
49 /* In some instances a tree and a gimple need to be stored in a same table,
50 i.e. in hash tables. This is a structure to do this. */
51 typedef union {tree *tp; tree t; gimple g;} treemple;
53 /* Misc functions used in this file. */
55 /* Remember and lookup EH landing pad data for arbitrary statements.
56 Really this means any statement that could_throw_p. We could
57 stuff this information into the stmt_ann data structure, but:
59 (1) We absolutely rely on this information being kept until
60 we get to rtl. Once we're done with lowering here, if we lose
61 the information there's no way to recover it!
63 (2) There are many more statements that *cannot* throw as
64 compared to those that can. We should be saving some amount
65 of space by only allocating memory for those that can throw. */
67 /* Add statement T in function IFUN to landing pad NUM. */
69 static void
70 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
72 struct throw_stmt_node *n;
73 void **slot;
75 gcc_assert (num != 0);
77 n = ggc_alloc_throw_stmt_node ();
78 n->stmt = t;
79 n->lp_nr = num;
81 if (!get_eh_throw_stmt_table (ifun))
82 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
83 struct_ptr_eq,
84 ggc_free));
86 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
87 gcc_assert (!*slot);
88 *slot = n;
91 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
93 void
94 add_stmt_to_eh_lp (gimple t, int num)
96 add_stmt_to_eh_lp_fn (cfun, t, num);
99 /* Add statement T to the single EH landing pad in REGION. */
101 static void
102 record_stmt_eh_region (eh_region region, gimple t)
104 if (region == NULL)
105 return;
106 if (region->type == ERT_MUST_NOT_THROW)
107 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
108 else
110 eh_landing_pad lp = region->landing_pads;
111 if (lp == NULL)
112 lp = gen_eh_landing_pad (region);
113 else
114 gcc_assert (lp->next_lp == NULL);
115 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
120 /* Remove statement T in function IFUN from its EH landing pad. */
122 bool
123 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
125 struct throw_stmt_node dummy;
126 void **slot;
128 if (!get_eh_throw_stmt_table (ifun))
129 return false;
131 dummy.stmt = t;
132 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
133 NO_INSERT);
134 if (slot)
136 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
137 return true;
139 else
140 return false;
144 /* Remove statement T in the current function (cfun) from its
145 EH landing pad. */
147 bool
148 remove_stmt_from_eh_lp (gimple t)
150 return remove_stmt_from_eh_lp_fn (cfun, t);
153 /* Determine if statement T is inside an EH region in function IFUN.
154 Positive numbers indicate a landing pad index; negative numbers
155 indicate a MUST_NOT_THROW region index; zero indicates that the
156 statement is not recorded in the region table. */
159 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
161 struct throw_stmt_node *p, n;
163 if (ifun->eh->throw_stmt_table == NULL)
164 return 0;
166 n.stmt = t;
167 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
168 return p ? p->lp_nr : 0;
171 /* Likewise, but always use the current function. */
174 lookup_stmt_eh_lp (gimple t)
176 /* We can get called from initialized data when -fnon-call-exceptions
177 is on; prevent crash. */
178 if (!cfun)
179 return 0;
180 return lookup_stmt_eh_lp_fn (cfun, t);
183 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
184 nodes and LABEL_DECL nodes. We will use this during the second phase to
185 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
187 struct finally_tree_node
189 /* When storing a GIMPLE_TRY, we have to record a gimple. However
190 when deciding whether a GOTO to a certain LABEL_DECL (which is a
191 tree) leaves the TRY block, its necessary to record a tree in
192 this field. Thus a treemple is used. */
193 treemple child;
194 gimple parent;
197 /* Hashtable helpers. */
199 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
201 typedef finally_tree_node value_type;
202 typedef finally_tree_node compare_type;
203 static inline hashval_t hash (const value_type *);
204 static inline bool equal (const value_type *, const compare_type *);
207 inline hashval_t
208 finally_tree_hasher::hash (const value_type *v)
210 return (intptr_t)v->child.t >> 4;
213 inline bool
214 finally_tree_hasher::equal (const value_type *v, const compare_type *c)
216 return v->child.t == c->child.t;
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static hash_table <finally_tree_hasher> finally_tree;
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
225 struct finally_tree_node *n;
226 finally_tree_node **slot;
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
232 slot = finally_tree.find_slot (n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
246 gimple_stmt_iterator gsi;
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
255 treemple temp;
257 switch (gimple_code (stmt))
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
277 break;
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
287 case GIMPLE_EH_ELSE:
288 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
289 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
290 break;
292 default:
293 /* A type, a decl, or some kind of statement that we're not
294 interested in. Don't walk them. */
295 break;
300 /* Use the finally tree to determine if a jump from START to TARGET
301 would leave the try_finally node that START lives in. */
303 static bool
304 outside_finally_tree (treemple start, gimple target)
306 struct finally_tree_node n, *p;
310 n.child = start;
311 p = finally_tree.find (&n);
312 if (!p)
313 return true;
314 start.g = p->parent;
316 while (start.g != target);
318 return false;
321 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
322 nodes into a set of gotos, magic labels, and eh regions.
323 The eh region creation is straight-forward, but frobbing all the gotos
324 and such into shape isn't. */
326 /* The sequence into which we record all EH stuff. This will be
327 placed at the end of the function when we're all done. */
328 static gimple_seq eh_seq;
330 /* Record whether an EH region contains something that can throw,
331 indexed by EH region number. */
332 static bitmap eh_region_may_contain_throw_map;
334 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
335 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
336 The idea is to record a gimple statement for everything except for
337 the conditionals, which get their labels recorded. Since labels are
338 of type 'tree', we need this node to store both gimple and tree
339 objects. REPL_STMT is the sequence used to replace the goto/return
340 statement. CONT_STMT is used to store the statement that allows
341 the return/goto to jump to the original destination. */
343 struct goto_queue_node
345 treemple stmt;
346 location_t location;
347 gimple_seq repl_stmt;
348 gimple cont_stmt;
349 int index;
350 /* This is used when index >= 0 to indicate that stmt is a label (as
351 opposed to a goto stmt). */
352 int is_label;
355 /* State of the world while lowering. */
357 struct leh_state
359 /* What's "current" while constructing the eh region tree. These
360 correspond to variables of the same name in cfun->eh, which we
361 don't have easy access to. */
362 eh_region cur_region;
364 /* What's "current" for the purposes of __builtin_eh_pointer. For
365 a CATCH, this is the associated TRY. For an EH_FILTER, this is
366 the associated ALLOWED_EXCEPTIONS, etc. */
367 eh_region ehp_region;
369 /* Processing of TRY_FINALLY requires a bit more state. This is
370 split out into a separate structure so that we don't have to
371 copy so much when processing other nodes. */
372 struct leh_tf_state *tf;
375 struct leh_tf_state
377 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
378 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
379 this so that outside_finally_tree can reliably reference the tree used
380 in the collect_finally_tree data structures. */
381 gimple try_finally_expr;
382 gimple top_p;
384 /* While lowering a top_p usually it is expanded into multiple statements,
385 thus we need the following field to store them. */
386 gimple_seq top_p_seq;
388 /* The state outside this try_finally node. */
389 struct leh_state *outer;
391 /* The exception region created for it. */
392 eh_region region;
394 /* The goto queue. */
395 struct goto_queue_node *goto_queue;
396 size_t goto_queue_size;
397 size_t goto_queue_active;
399 /* Pointer map to help in searching goto_queue when it is large. */
400 struct pointer_map_t *goto_queue_map;
402 /* The set of unique labels seen as entries in the goto queue. */
403 vec<tree> dest_array;
405 /* A label to be added at the end of the completed transformed
406 sequence. It will be set if may_fallthru was true *at one time*,
407 though subsequent transformations may have cleared that flag. */
408 tree fallthru_label;
410 /* True if it is possible to fall out the bottom of the try block.
411 Cleared if the fallthru is converted to a goto. */
412 bool may_fallthru;
414 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
415 bool may_return;
417 /* True if the finally block can receive an exception edge.
418 Cleared if the exception case is handled by code duplication. */
419 bool may_throw;
422 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
424 /* Search for STMT in the goto queue. Return the replacement,
425 or null if the statement isn't in the queue. */
427 #define LARGE_GOTO_QUEUE 20
429 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
431 static gimple_seq
432 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
434 unsigned int i;
435 void **slot;
437 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
439 for (i = 0; i < tf->goto_queue_active; i++)
440 if ( tf->goto_queue[i].stmt.g == stmt.g)
441 return tf->goto_queue[i].repl_stmt;
442 return NULL;
445 /* If we have a large number of entries in the goto_queue, create a
446 pointer map and use that for searching. */
448 if (!tf->goto_queue_map)
450 tf->goto_queue_map = pointer_map_create ();
451 for (i = 0; i < tf->goto_queue_active; i++)
453 slot = pointer_map_insert (tf->goto_queue_map,
454 tf->goto_queue[i].stmt.g);
455 gcc_assert (*slot == NULL);
456 *slot = &tf->goto_queue[i];
460 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
461 if (slot != NULL)
462 return (((struct goto_queue_node *) *slot)->repl_stmt);
464 return NULL;
467 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
468 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
469 then we can just splat it in, otherwise we add the new stmts immediately
470 after the GIMPLE_COND and redirect. */
472 static void
473 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
474 gimple_stmt_iterator *gsi)
476 tree label;
477 gimple_seq new_seq;
478 treemple temp;
479 location_t loc = gimple_location (gsi_stmt (*gsi));
481 temp.tp = tp;
482 new_seq = find_goto_replacement (tf, temp);
483 if (!new_seq)
484 return;
486 if (gimple_seq_singleton_p (new_seq)
487 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
489 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
490 return;
493 label = create_artificial_label (loc);
494 /* Set the new label for the GIMPLE_COND */
495 *tp = label;
497 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
498 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
501 /* The real work of replace_goto_queue. Returns with TSI updated to
502 point to the next statement. */
504 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
506 static void
507 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
508 gimple_stmt_iterator *gsi)
510 gimple_seq seq;
511 treemple temp;
512 temp.g = NULL;
514 switch (gimple_code (stmt))
516 case GIMPLE_GOTO:
517 case GIMPLE_RETURN:
518 temp.g = stmt;
519 seq = find_goto_replacement (tf, temp);
520 if (seq)
522 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
523 gsi_remove (gsi, false);
524 return;
526 break;
528 case GIMPLE_COND:
529 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
530 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
531 break;
533 case GIMPLE_TRY:
534 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
535 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
536 break;
537 case GIMPLE_CATCH:
538 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
539 break;
540 case GIMPLE_EH_FILTER:
541 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
542 break;
543 case GIMPLE_EH_ELSE:
544 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
545 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
546 break;
548 default:
549 /* These won't have gotos in them. */
550 break;
553 gsi_next (gsi);
556 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
558 static void
559 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
561 gimple_stmt_iterator gsi = gsi_start (*seq);
563 while (!gsi_end_p (gsi))
564 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
567 /* Replace all goto queue members. */
569 static void
570 replace_goto_queue (struct leh_tf_state *tf)
572 if (tf->goto_queue_active == 0)
573 return;
574 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
575 replace_goto_queue_stmt_list (&eh_seq, tf);
578 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
579 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
580 a gimple return. */
582 static void
583 record_in_goto_queue (struct leh_tf_state *tf,
584 treemple new_stmt,
585 int index,
586 bool is_label,
587 location_t location)
589 size_t active, size;
590 struct goto_queue_node *q;
592 gcc_assert (!tf->goto_queue_map);
594 active = tf->goto_queue_active;
595 size = tf->goto_queue_size;
596 if (active >= size)
598 size = (size ? size * 2 : 32);
599 tf->goto_queue_size = size;
600 tf->goto_queue
601 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
604 q = &tf->goto_queue[active];
605 tf->goto_queue_active = active + 1;
607 memset (q, 0, sizeof (*q));
608 q->stmt = new_stmt;
609 q->index = index;
610 q->location = location;
611 q->is_label = is_label;
614 /* Record the LABEL label in the goto queue contained in TF.
615 TF is not null. */
617 static void
618 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
619 location_t location)
621 int index;
622 treemple temp, new_stmt;
624 if (!label)
625 return;
627 /* Computed and non-local gotos do not get processed. Given
628 their nature we can neither tell whether we've escaped the
629 finally block nor redirect them if we knew. */
630 if (TREE_CODE (label) != LABEL_DECL)
631 return;
633 /* No need to record gotos that don't leave the try block. */
634 temp.t = label;
635 if (!outside_finally_tree (temp, tf->try_finally_expr))
636 return;
638 if (! tf->dest_array.exists ())
640 tf->dest_array.create (10);
641 tf->dest_array.quick_push (label);
642 index = 0;
644 else
646 int n = tf->dest_array.length ();
647 for (index = 0; index < n; ++index)
648 if (tf->dest_array[index] == label)
649 break;
650 if (index == n)
651 tf->dest_array.safe_push (label);
654 /* In the case of a GOTO we want to record the destination label,
655 since with a GIMPLE_COND we have an easy access to the then/else
656 labels. */
657 new_stmt = stmt;
658 record_in_goto_queue (tf, new_stmt, index, true, location);
661 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
662 node, and if so record that fact in the goto queue associated with that
663 try_finally node. */
665 static void
666 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
668 struct leh_tf_state *tf = state->tf;
669 treemple new_stmt;
671 if (!tf)
672 return;
674 switch (gimple_code (stmt))
676 case GIMPLE_COND:
677 new_stmt.tp = gimple_op_ptr (stmt, 2);
678 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
679 EXPR_LOCATION (*new_stmt.tp));
680 new_stmt.tp = gimple_op_ptr (stmt, 3);
681 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
682 EXPR_LOCATION (*new_stmt.tp));
683 break;
684 case GIMPLE_GOTO:
685 new_stmt.g = stmt;
686 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
687 gimple_location (stmt));
688 break;
690 case GIMPLE_RETURN:
691 tf->may_return = true;
692 new_stmt.g = stmt;
693 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
694 break;
696 default:
697 gcc_unreachable ();
702 #ifdef ENABLE_CHECKING
703 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
704 was in fact structured, and we've not yet done jump threading, then none
705 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
707 static void
708 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
710 struct leh_tf_state *tf = state->tf;
711 size_t i, n;
713 if (!tf)
714 return;
716 n = gimple_switch_num_labels (switch_expr);
718 for (i = 0; i < n; ++i)
720 treemple temp;
721 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
722 temp.t = lab;
723 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
726 #else
727 #define verify_norecord_switch_expr(state, switch_expr)
728 #endif
730 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
731 non-null, insert it before the new branch. */
733 static void
734 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
736 gimple x;
738 /* In the case of a return, the queue node must be a gimple statement. */
739 gcc_assert (!q->is_label);
741 /* Note that the return value may have already been computed, e.g.,
743 int x;
744 int foo (void)
746 x = 0;
747 try {
748 return x;
749 } finally {
750 x++;
754 should return 0, not 1. We don't have to do anything to make
755 this happens because the return value has been placed in the
756 RESULT_DECL already. */
758 q->cont_stmt = q->stmt.g;
760 if (mod)
761 gimple_seq_add_seq (&q->repl_stmt, mod);
763 x = gimple_build_goto (finlab);
764 gimple_set_location (x, q->location);
765 gimple_seq_add_stmt (&q->repl_stmt, x);
768 /* Similar, but easier, for GIMPLE_GOTO. */
770 static void
771 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
772 struct leh_tf_state *tf)
774 gimple x;
776 gcc_assert (q->is_label);
778 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
780 if (mod)
781 gimple_seq_add_seq (&q->repl_stmt, mod);
783 x = gimple_build_goto (finlab);
784 gimple_set_location (x, q->location);
785 gimple_seq_add_stmt (&q->repl_stmt, x);
788 /* Emit a standard landing pad sequence into SEQ for REGION. */
790 static void
791 emit_post_landing_pad (gimple_seq *seq, eh_region region)
793 eh_landing_pad lp = region->landing_pads;
794 gimple x;
796 if (lp == NULL)
797 lp = gen_eh_landing_pad (region);
799 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
800 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
802 x = gimple_build_label (lp->post_landing_pad);
803 gimple_seq_add_stmt (seq, x);
806 /* Emit a RESX statement into SEQ for REGION. */
808 static void
809 emit_resx (gimple_seq *seq, eh_region region)
811 gimple x = gimple_build_resx (region->index);
812 gimple_seq_add_stmt (seq, x);
813 if (region->outer)
814 record_stmt_eh_region (region->outer, x);
817 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
819 static void
820 emit_eh_dispatch (gimple_seq *seq, eh_region region)
822 gimple x = gimple_build_eh_dispatch (region->index);
823 gimple_seq_add_stmt (seq, x);
826 /* Note that the current EH region may contain a throw, or a
827 call to a function which itself may contain a throw. */
829 static void
830 note_eh_region_may_contain_throw (eh_region region)
832 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
834 if (region->type == ERT_MUST_NOT_THROW)
835 break;
836 region = region->outer;
837 if (region == NULL)
838 break;
842 /* Check if REGION has been marked as containing a throw. If REGION is
843 NULL, this predicate is false. */
845 static inline bool
846 eh_region_may_contain_throw (eh_region r)
848 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
851 /* We want to transform
852 try { body; } catch { stuff; }
854 normal_seqence:
855 body;
856 over:
857 eh_seqence:
858 landing_pad:
859 stuff;
860 goto over;
862 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
863 should be placed before the second operand, or NULL. OVER is
864 an existing label that should be put at the exit, or NULL. */
866 static gimple_seq
867 frob_into_branch_around (gimple tp, eh_region region, tree over)
869 gimple x;
870 gimple_seq cleanup, result;
871 location_t loc = gimple_location (tp);
873 cleanup = gimple_try_cleanup (tp);
874 result = gimple_try_eval (tp);
876 if (region)
877 emit_post_landing_pad (&eh_seq, region);
879 if (gimple_seq_may_fallthru (cleanup))
881 if (!over)
882 over = create_artificial_label (loc);
883 x = gimple_build_goto (over);
884 gimple_set_location (x, loc);
885 gimple_seq_add_stmt (&cleanup, x);
887 gimple_seq_add_seq (&eh_seq, cleanup);
889 if (over)
891 x = gimple_build_label (over);
892 gimple_seq_add_stmt (&result, x);
894 return result;
897 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
898 Make sure to record all new labels found. */
900 static gimple_seq
901 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
902 location_t loc)
904 gimple region = NULL;
905 gimple_seq new_seq;
906 gimple_stmt_iterator gsi;
908 new_seq = copy_gimple_seq_and_replace_locals (seq);
910 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
912 gimple stmt = gsi_stmt (gsi);
913 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
915 tree block = gimple_block (stmt);
916 gimple_set_location (stmt, loc);
917 gimple_set_block (stmt, block);
921 if (outer_state->tf)
922 region = outer_state->tf->try_finally_expr;
923 collect_finally_tree_1 (new_seq, region);
925 return new_seq;
928 /* A subroutine of lower_try_finally. Create a fallthru label for
929 the given try_finally state. The only tricky bit here is that
930 we have to make sure to record the label in our outer context. */
932 static tree
933 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
935 tree label = tf->fallthru_label;
936 treemple temp;
938 if (!label)
940 label = create_artificial_label (gimple_location (tf->try_finally_expr));
941 tf->fallthru_label = label;
942 if (tf->outer->tf)
944 temp.t = label;
945 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
948 return label;
951 /* A subroutine of lower_try_finally. If FINALLY consits of a
952 GIMPLE_EH_ELSE node, return it. */
954 static inline gimple
955 get_eh_else (gimple_seq finally)
957 gimple x = gimple_seq_first_stmt (finally);
958 if (gimple_code (x) == GIMPLE_EH_ELSE)
960 gcc_assert (gimple_seq_singleton_p (finally));
961 return x;
963 return NULL;
966 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
967 langhook returns non-null, then the language requires that the exception
968 path out of a try_finally be treated specially. To wit: the code within
969 the finally block may not itself throw an exception. We have two choices
970 here. First we can duplicate the finally block and wrap it in a
971 must_not_throw region. Second, we can generate code like
973 try {
974 finally_block;
975 } catch {
976 if (fintmp == eh_edge)
977 protect_cleanup_actions;
980 where "fintmp" is the temporary used in the switch statement generation
981 alternative considered below. For the nonce, we always choose the first
982 option.
984 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
986 static void
987 honor_protect_cleanup_actions (struct leh_state *outer_state,
988 struct leh_state *this_state,
989 struct leh_tf_state *tf)
991 tree protect_cleanup_actions;
992 gimple_stmt_iterator gsi;
993 bool finally_may_fallthru;
994 gimple_seq finally;
995 gimple x, eh_else;
997 /* First check for nothing to do. */
998 if (lang_hooks.eh_protect_cleanup_actions == NULL)
999 return;
1000 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1001 if (protect_cleanup_actions == NULL)
1002 return;
1004 finally = gimple_try_cleanup (tf->top_p);
1005 eh_else = get_eh_else (finally);
1007 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1008 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1009 if (eh_else)
1011 finally = gimple_eh_else_e_body (eh_else);
1012 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1014 else if (this_state)
1015 finally = lower_try_finally_dup_block (finally, outer_state,
1016 gimple_location (tf->try_finally_expr));
1017 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1019 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1020 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1021 to be in an enclosing scope, but needs to be implemented at this level
1022 to avoid a nesting violation (see wrap_temporary_cleanups in
1023 cp/decl.c). Since it's logically at an outer level, we should call
1024 terminate before we get to it, so strip it away before adding the
1025 MUST_NOT_THROW filter. */
1026 gsi = gsi_start (finally);
1027 x = gsi_stmt (gsi);
1028 if (gimple_code (x) == GIMPLE_TRY
1029 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1030 && gimple_try_catch_is_cleanup (x))
1032 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1033 gsi_remove (&gsi, false);
1036 /* Wrap the block with protect_cleanup_actions as the action. */
1037 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1038 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1039 GIMPLE_TRY_CATCH);
1040 finally = lower_eh_must_not_throw (outer_state, x);
1042 /* Drop all of this into the exception sequence. */
1043 emit_post_landing_pad (&eh_seq, tf->region);
1044 gimple_seq_add_seq (&eh_seq, finally);
1045 if (finally_may_fallthru)
1046 emit_resx (&eh_seq, tf->region);
1048 /* Having now been handled, EH isn't to be considered with
1049 the rest of the outgoing edges. */
1050 tf->may_throw = false;
1053 /* A subroutine of lower_try_finally. We have determined that there is
1054 no fallthru edge out of the finally block. This means that there is
1055 no outgoing edge corresponding to any incoming edge. Restructure the
1056 try_finally node for this special case. */
1058 static void
1059 lower_try_finally_nofallthru (struct leh_state *state,
1060 struct leh_tf_state *tf)
1062 tree lab;
1063 gimple x, eh_else;
1064 gimple_seq finally;
1065 struct goto_queue_node *q, *qe;
1067 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1069 /* We expect that tf->top_p is a GIMPLE_TRY. */
1070 finally = gimple_try_cleanup (tf->top_p);
1071 tf->top_p_seq = gimple_try_eval (tf->top_p);
1073 x = gimple_build_label (lab);
1074 gimple_seq_add_stmt (&tf->top_p_seq, x);
1076 q = tf->goto_queue;
1077 qe = q + tf->goto_queue_active;
1078 for (; q < qe; ++q)
1079 if (q->index < 0)
1080 do_return_redirection (q, lab, NULL);
1081 else
1082 do_goto_redirection (q, lab, NULL, tf);
1084 replace_goto_queue (tf);
1086 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1087 eh_else = get_eh_else (finally);
1088 if (eh_else)
1090 finally = gimple_eh_else_n_body (eh_else);
1091 lower_eh_constructs_1 (state, &finally);
1092 gimple_seq_add_seq (&tf->top_p_seq, finally);
1094 if (tf->may_throw)
1096 finally = gimple_eh_else_e_body (eh_else);
1097 lower_eh_constructs_1 (state, &finally);
1099 emit_post_landing_pad (&eh_seq, tf->region);
1100 gimple_seq_add_seq (&eh_seq, finally);
1103 else
1105 lower_eh_constructs_1 (state, &finally);
1106 gimple_seq_add_seq (&tf->top_p_seq, finally);
1108 if (tf->may_throw)
1110 emit_post_landing_pad (&eh_seq, tf->region);
1112 x = gimple_build_goto (lab);
1113 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1114 gimple_seq_add_stmt (&eh_seq, x);
1119 /* A subroutine of lower_try_finally. We have determined that there is
1120 exactly one destination of the finally block. Restructure the
1121 try_finally node for this special case. */
1123 static void
1124 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1126 struct goto_queue_node *q, *qe;
1127 gimple x;
1128 gimple_seq finally;
1129 gimple_stmt_iterator gsi;
1130 tree finally_label;
1131 location_t loc = gimple_location (tf->try_finally_expr);
1133 finally = gimple_try_cleanup (tf->top_p);
1134 tf->top_p_seq = gimple_try_eval (tf->top_p);
1136 /* Since there's only one destination, and the destination edge can only
1137 either be EH or non-EH, that implies that all of our incoming edges
1138 are of the same type. Therefore we can lower EH_ELSE immediately. */
1139 x = get_eh_else (finally);
1140 if (x)
1142 if (tf->may_throw)
1143 finally = gimple_eh_else_e_body (x);
1144 else
1145 finally = gimple_eh_else_n_body (x);
1148 lower_eh_constructs_1 (state, &finally);
1150 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1152 gimple stmt = gsi_stmt (gsi);
1153 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1155 tree block = gimple_block (stmt);
1156 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1157 gimple_set_block (stmt, block);
1161 if (tf->may_throw)
1163 /* Only reachable via the exception edge. Add the given label to
1164 the head of the FINALLY block. Append a RESX at the end. */
1165 emit_post_landing_pad (&eh_seq, tf->region);
1166 gimple_seq_add_seq (&eh_seq, finally);
1167 emit_resx (&eh_seq, tf->region);
1168 return;
1171 if (tf->may_fallthru)
1173 /* Only reachable via the fallthru edge. Do nothing but let
1174 the two blocks run together; we'll fall out the bottom. */
1175 gimple_seq_add_seq (&tf->top_p_seq, finally);
1176 return;
1179 finally_label = create_artificial_label (loc);
1180 x = gimple_build_label (finally_label);
1181 gimple_seq_add_stmt (&tf->top_p_seq, x);
1183 gimple_seq_add_seq (&tf->top_p_seq, finally);
1185 q = tf->goto_queue;
1186 qe = q + tf->goto_queue_active;
1188 if (tf->may_return)
1190 /* Reachable by return expressions only. Redirect them. */
1191 for (; q < qe; ++q)
1192 do_return_redirection (q, finally_label, NULL);
1193 replace_goto_queue (tf);
1195 else
1197 /* Reachable by goto expressions only. Redirect them. */
1198 for (; q < qe; ++q)
1199 do_goto_redirection (q, finally_label, NULL, tf);
1200 replace_goto_queue (tf);
1202 if (tf->dest_array[0] == tf->fallthru_label)
1204 /* Reachable by goto to fallthru label only. Redirect it
1205 to the new label (already created, sadly), and do not
1206 emit the final branch out, or the fallthru label. */
1207 tf->fallthru_label = NULL;
1208 return;
1212 /* Place the original return/goto to the original destination
1213 immediately after the finally block. */
1214 x = tf->goto_queue[0].cont_stmt;
1215 gimple_seq_add_stmt (&tf->top_p_seq, x);
1216 maybe_record_in_goto_queue (state, x);
1219 /* A subroutine of lower_try_finally. There are multiple edges incoming
1220 and outgoing from the finally block. Implement this by duplicating the
1221 finally block for every destination. */
1223 static void
1224 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1226 gimple_seq finally;
1227 gimple_seq new_stmt;
1228 gimple_seq seq;
1229 gimple x, eh_else;
1230 tree tmp;
1231 location_t tf_loc = gimple_location (tf->try_finally_expr);
1233 finally = gimple_try_cleanup (tf->top_p);
1235 /* Notice EH_ELSE, and simplify some of the remaining code
1236 by considering FINALLY to be the normal return path only. */
1237 eh_else = get_eh_else (finally);
1238 if (eh_else)
1239 finally = gimple_eh_else_n_body (eh_else);
1241 tf->top_p_seq = gimple_try_eval (tf->top_p);
1242 new_stmt = NULL;
1244 if (tf->may_fallthru)
1246 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1247 lower_eh_constructs_1 (state, &seq);
1248 gimple_seq_add_seq (&new_stmt, seq);
1250 tmp = lower_try_finally_fallthru_label (tf);
1251 x = gimple_build_goto (tmp);
1252 gimple_set_location (x, tf_loc);
1253 gimple_seq_add_stmt (&new_stmt, x);
1256 if (tf->may_throw)
1258 /* We don't need to copy the EH path of EH_ELSE,
1259 since it is only emitted once. */
1260 if (eh_else)
1261 seq = gimple_eh_else_e_body (eh_else);
1262 else
1263 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1264 lower_eh_constructs_1 (state, &seq);
1266 emit_post_landing_pad (&eh_seq, tf->region);
1267 gimple_seq_add_seq (&eh_seq, seq);
1268 emit_resx (&eh_seq, tf->region);
1271 if (tf->goto_queue)
1273 struct goto_queue_node *q, *qe;
1274 int return_index, index;
1275 struct labels_s
1277 struct goto_queue_node *q;
1278 tree label;
1279 } *labels;
1281 return_index = tf->dest_array.length ();
1282 labels = XCNEWVEC (struct labels_s, return_index + 1);
1284 q = tf->goto_queue;
1285 qe = q + tf->goto_queue_active;
1286 for (; q < qe; q++)
1288 index = q->index < 0 ? return_index : q->index;
1290 if (!labels[index].q)
1291 labels[index].q = q;
1294 for (index = 0; index < return_index + 1; index++)
1296 tree lab;
1298 q = labels[index].q;
1299 if (! q)
1300 continue;
1302 lab = labels[index].label
1303 = create_artificial_label (tf_loc);
1305 if (index == return_index)
1306 do_return_redirection (q, lab, NULL);
1307 else
1308 do_goto_redirection (q, lab, NULL, tf);
1310 x = gimple_build_label (lab);
1311 gimple_seq_add_stmt (&new_stmt, x);
1313 seq = lower_try_finally_dup_block (finally, state, q->location);
1314 lower_eh_constructs_1 (state, &seq);
1315 gimple_seq_add_seq (&new_stmt, seq);
1317 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1318 maybe_record_in_goto_queue (state, q->cont_stmt);
1321 for (q = tf->goto_queue; q < qe; q++)
1323 tree lab;
1325 index = q->index < 0 ? return_index : q->index;
1327 if (labels[index].q == q)
1328 continue;
1330 lab = labels[index].label;
1332 if (index == return_index)
1333 do_return_redirection (q, lab, NULL);
1334 else
1335 do_goto_redirection (q, lab, NULL, tf);
1338 replace_goto_queue (tf);
1339 free (labels);
1342 /* Need to link new stmts after running replace_goto_queue due
1343 to not wanting to process the same goto stmts twice. */
1344 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1347 /* A subroutine of lower_try_finally. There are multiple edges incoming
1348 and outgoing from the finally block. Implement this by instrumenting
1349 each incoming edge and creating a switch statement at the end of the
1350 finally block that branches to the appropriate destination. */
1352 static void
1353 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1355 struct goto_queue_node *q, *qe;
1356 tree finally_tmp, finally_label;
1357 int return_index, eh_index, fallthru_index;
1358 int nlabels, ndests, j, last_case_index;
1359 tree last_case;
1360 vec<tree> case_label_vec;
1361 gimple_seq switch_body = NULL;
1362 gimple x, eh_else;
1363 tree tmp;
1364 gimple switch_stmt;
1365 gimple_seq finally;
1366 struct pointer_map_t *cont_map = NULL;
1367 /* The location of the TRY_FINALLY stmt. */
1368 location_t tf_loc = gimple_location (tf->try_finally_expr);
1369 /* The location of the finally block. */
1370 location_t finally_loc;
1372 finally = gimple_try_cleanup (tf->top_p);
1373 eh_else = get_eh_else (finally);
1375 /* Mash the TRY block to the head of the chain. */
1376 tf->top_p_seq = gimple_try_eval (tf->top_p);
1378 /* The location of the finally is either the last stmt in the finally
1379 block or the location of the TRY_FINALLY itself. */
1380 x = gimple_seq_last_stmt (finally);
1381 finally_loc = x ? gimple_location (x) : tf_loc;
1383 /* Lower the finally block itself. */
1384 lower_eh_constructs_1 (state, &finally);
1386 /* Prepare for switch statement generation. */
1387 nlabels = tf->dest_array.length ();
1388 return_index = nlabels;
1389 eh_index = return_index + tf->may_return;
1390 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1391 ndests = fallthru_index + tf->may_fallthru;
1393 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1394 finally_label = create_artificial_label (finally_loc);
1396 /* We use vec::quick_push on case_label_vec throughout this function,
1397 since we know the size in advance and allocate precisely as muce
1398 space as needed. */
1399 case_label_vec.create (ndests);
1400 last_case = NULL;
1401 last_case_index = 0;
1403 /* Begin inserting code for getting to the finally block. Things
1404 are done in this order to correspond to the sequence the code is
1405 laid out. */
1407 if (tf->may_fallthru)
1409 x = gimple_build_assign (finally_tmp,
1410 build_int_cst (integer_type_node,
1411 fallthru_index));
1412 gimple_seq_add_stmt (&tf->top_p_seq, x);
1414 tmp = build_int_cst (integer_type_node, fallthru_index);
1415 last_case = build_case_label (tmp, NULL,
1416 create_artificial_label (tf_loc));
1417 case_label_vec.quick_push (last_case);
1418 last_case_index++;
1420 x = gimple_build_label (CASE_LABEL (last_case));
1421 gimple_seq_add_stmt (&switch_body, x);
1423 tmp = lower_try_finally_fallthru_label (tf);
1424 x = gimple_build_goto (tmp);
1425 gimple_set_location (x, tf_loc);
1426 gimple_seq_add_stmt (&switch_body, x);
1429 /* For EH_ELSE, emit the exception path (plus resx) now, then
1430 subsequently we only need consider the normal path. */
1431 if (eh_else)
1433 if (tf->may_throw)
1435 finally = gimple_eh_else_e_body (eh_else);
1436 lower_eh_constructs_1 (state, &finally);
1438 emit_post_landing_pad (&eh_seq, tf->region);
1439 gimple_seq_add_seq (&eh_seq, finally);
1440 emit_resx (&eh_seq, tf->region);
1443 finally = gimple_eh_else_n_body (eh_else);
1445 else if (tf->may_throw)
1447 emit_post_landing_pad (&eh_seq, tf->region);
1449 x = gimple_build_assign (finally_tmp,
1450 build_int_cst (integer_type_node, eh_index));
1451 gimple_seq_add_stmt (&eh_seq, x);
1453 x = gimple_build_goto (finally_label);
1454 gimple_set_location (x, tf_loc);
1455 gimple_seq_add_stmt (&eh_seq, x);
1457 tmp = build_int_cst (integer_type_node, eh_index);
1458 last_case = build_case_label (tmp, NULL,
1459 create_artificial_label (tf_loc));
1460 case_label_vec.quick_push (last_case);
1461 last_case_index++;
1463 x = gimple_build_label (CASE_LABEL (last_case));
1464 gimple_seq_add_stmt (&eh_seq, x);
1465 emit_resx (&eh_seq, tf->region);
1468 x = gimple_build_label (finally_label);
1469 gimple_seq_add_stmt (&tf->top_p_seq, x);
1471 gimple_seq_add_seq (&tf->top_p_seq, finally);
1473 /* Redirect each incoming goto edge. */
1474 q = tf->goto_queue;
1475 qe = q + tf->goto_queue_active;
1476 j = last_case_index + tf->may_return;
1477 /* Prepare the assignments to finally_tmp that are executed upon the
1478 entrance through a particular edge. */
1479 for (; q < qe; ++q)
1481 gimple_seq mod = NULL;
1482 int switch_id;
1483 unsigned int case_index;
1485 if (q->index < 0)
1487 x = gimple_build_assign (finally_tmp,
1488 build_int_cst (integer_type_node,
1489 return_index));
1490 gimple_seq_add_stmt (&mod, x);
1491 do_return_redirection (q, finally_label, mod);
1492 switch_id = return_index;
1494 else
1496 x = gimple_build_assign (finally_tmp,
1497 build_int_cst (integer_type_node, q->index));
1498 gimple_seq_add_stmt (&mod, x);
1499 do_goto_redirection (q, finally_label, mod, tf);
1500 switch_id = q->index;
1503 case_index = j + q->index;
1504 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1506 tree case_lab;
1507 void **slot;
1508 tmp = build_int_cst (integer_type_node, switch_id);
1509 case_lab = build_case_label (tmp, NULL,
1510 create_artificial_label (tf_loc));
1511 /* We store the cont_stmt in the pointer map, so that we can recover
1512 it in the loop below. */
1513 if (!cont_map)
1514 cont_map = pointer_map_create ();
1515 slot = pointer_map_insert (cont_map, case_lab);
1516 *slot = q->cont_stmt;
1517 case_label_vec.quick_push (case_lab);
1520 for (j = last_case_index; j < last_case_index + nlabels; j++)
1522 gimple cont_stmt;
1523 void **slot;
1525 last_case = case_label_vec[j];
1527 gcc_assert (last_case);
1528 gcc_assert (cont_map);
1530 slot = pointer_map_contains (cont_map, last_case);
1531 gcc_assert (slot);
1532 cont_stmt = *(gimple *) slot;
1534 x = gimple_build_label (CASE_LABEL (last_case));
1535 gimple_seq_add_stmt (&switch_body, x);
1536 gimple_seq_add_stmt (&switch_body, cont_stmt);
1537 maybe_record_in_goto_queue (state, cont_stmt);
1539 if (cont_map)
1540 pointer_map_destroy (cont_map);
1542 replace_goto_queue (tf);
1544 /* Make sure that the last case is the default label, as one is required.
1545 Then sort the labels, which is also required in GIMPLE. */
1546 CASE_LOW (last_case) = NULL;
1547 sort_case_labels (case_label_vec);
1549 /* Build the switch statement, setting last_case to be the default
1550 label. */
1551 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1552 case_label_vec);
1553 gimple_set_location (switch_stmt, finally_loc);
1555 /* Need to link SWITCH_STMT after running replace_goto_queue
1556 due to not wanting to process the same goto stmts twice. */
1557 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1558 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1561 /* Decide whether or not we are going to duplicate the finally block.
1562 There are several considerations.
1564 First, if this is Java, then the finally block contains code
1565 written by the user. It has line numbers associated with it,
1566 so duplicating the block means it's difficult to set a breakpoint.
1567 Since controlling code generation via -g is verboten, we simply
1568 never duplicate code without optimization.
1570 Second, we'd like to prevent egregious code growth. One way to
1571 do this is to estimate the size of the finally block, multiply
1572 that by the number of copies we'd need to make, and compare against
1573 the estimate of the size of the switch machinery we'd have to add. */
1575 static bool
1576 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1578 int f_estimate, sw_estimate;
1579 gimple eh_else;
1581 /* If there's an EH_ELSE involved, the exception path is separate
1582 and really doesn't come into play for this computation. */
1583 eh_else = get_eh_else (finally);
1584 if (eh_else)
1586 ndests -= may_throw;
1587 finally = gimple_eh_else_n_body (eh_else);
1590 if (!optimize)
1592 gimple_stmt_iterator gsi;
1594 if (ndests == 1)
1595 return true;
1597 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1599 gimple stmt = gsi_stmt (gsi);
1600 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1601 return false;
1603 return true;
1606 /* Finally estimate N times, plus N gotos. */
1607 f_estimate = count_insns_seq (finally, &eni_size_weights);
1608 f_estimate = (f_estimate + 1) * ndests;
1610 /* Switch statement (cost 10), N variable assignments, N gotos. */
1611 sw_estimate = 10 + 2 * ndests;
1613 /* Optimize for size clearly wants our best guess. */
1614 if (optimize_function_for_size_p (cfun))
1615 return f_estimate < sw_estimate;
1617 /* ??? These numbers are completely made up so far. */
1618 if (optimize > 1)
1619 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1620 else
1621 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1624 /* REG is the enclosing region for a possible cleanup region, or the region
1625 itself. Returns TRUE if such a region would be unreachable.
1627 Cleanup regions within a must-not-throw region aren't actually reachable
1628 even if there are throwing stmts within them, because the personality
1629 routine will call terminate before unwinding. */
1631 static bool
1632 cleanup_is_dead_in (eh_region reg)
1634 while (reg && reg->type == ERT_CLEANUP)
1635 reg = reg->outer;
1636 return (reg && reg->type == ERT_MUST_NOT_THROW);
1639 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1640 to a sequence of labels and blocks, plus the exception region trees
1641 that record all the magic. This is complicated by the need to
1642 arrange for the FINALLY block to be executed on all exits. */
1644 static gimple_seq
1645 lower_try_finally (struct leh_state *state, gimple tp)
1647 struct leh_tf_state this_tf;
1648 struct leh_state this_state;
1649 int ndests;
1650 gimple_seq old_eh_seq;
1652 /* Process the try block. */
1654 memset (&this_tf, 0, sizeof (this_tf));
1655 this_tf.try_finally_expr = tp;
1656 this_tf.top_p = tp;
1657 this_tf.outer = state;
1658 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1660 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1661 this_state.cur_region = this_tf.region;
1663 else
1665 this_tf.region = NULL;
1666 this_state.cur_region = state->cur_region;
1669 this_state.ehp_region = state->ehp_region;
1670 this_state.tf = &this_tf;
1672 old_eh_seq = eh_seq;
1673 eh_seq = NULL;
1675 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1677 /* Determine if the try block is escaped through the bottom. */
1678 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1680 /* Determine if any exceptions are possible within the try block. */
1681 if (this_tf.region)
1682 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1683 if (this_tf.may_throw)
1684 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1686 /* Determine how many edges (still) reach the finally block. Or rather,
1687 how many destinations are reached by the finally block. Use this to
1688 determine how we process the finally block itself. */
1690 ndests = this_tf.dest_array.length ();
1691 ndests += this_tf.may_fallthru;
1692 ndests += this_tf.may_return;
1693 ndests += this_tf.may_throw;
1695 /* If the FINALLY block is not reachable, dike it out. */
1696 if (ndests == 0)
1698 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1699 gimple_try_set_cleanup (tp, NULL);
1701 /* If the finally block doesn't fall through, then any destination
1702 we might try to impose there isn't reached either. There may be
1703 some minor amount of cleanup and redirection still needed. */
1704 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1705 lower_try_finally_nofallthru (state, &this_tf);
1707 /* We can easily special-case redirection to a single destination. */
1708 else if (ndests == 1)
1709 lower_try_finally_onedest (state, &this_tf);
1710 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1711 gimple_try_cleanup (tp)))
1712 lower_try_finally_copy (state, &this_tf);
1713 else
1714 lower_try_finally_switch (state, &this_tf);
1716 /* If someone requested we add a label at the end of the transformed
1717 block, do so. */
1718 if (this_tf.fallthru_label)
1720 /* This must be reached only if ndests == 0. */
1721 gimple x = gimple_build_label (this_tf.fallthru_label);
1722 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1725 this_tf.dest_array.release ();
1726 free (this_tf.goto_queue);
1727 if (this_tf.goto_queue_map)
1728 pointer_map_destroy (this_tf.goto_queue_map);
1730 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1731 If there was no old eh_seq, then the append is trivially already done. */
1732 if (old_eh_seq)
1734 if (eh_seq == NULL)
1735 eh_seq = old_eh_seq;
1736 else
1738 gimple_seq new_eh_seq = eh_seq;
1739 eh_seq = old_eh_seq;
1740 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1744 return this_tf.top_p_seq;
1747 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1748 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1749 exception region trees that records all the magic. */
1751 static gimple_seq
1752 lower_catch (struct leh_state *state, gimple tp)
1754 eh_region try_region = NULL;
1755 struct leh_state this_state = *state;
1756 gimple_stmt_iterator gsi;
1757 tree out_label;
1758 gimple_seq new_seq, cleanup;
1759 gimple x;
1760 location_t try_catch_loc = gimple_location (tp);
1762 if (flag_exceptions)
1764 try_region = gen_eh_region_try (state->cur_region);
1765 this_state.cur_region = try_region;
1768 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1770 if (!eh_region_may_contain_throw (try_region))
1771 return gimple_try_eval (tp);
1773 new_seq = NULL;
1774 emit_eh_dispatch (&new_seq, try_region);
1775 emit_resx (&new_seq, try_region);
1777 this_state.cur_region = state->cur_region;
1778 this_state.ehp_region = try_region;
1780 out_label = NULL;
1781 cleanup = gimple_try_cleanup (tp);
1782 for (gsi = gsi_start (cleanup);
1783 !gsi_end_p (gsi);
1784 gsi_next (&gsi))
1786 eh_catch c;
1787 gimple gcatch;
1788 gimple_seq handler;
1790 gcatch = gsi_stmt (gsi);
1791 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1793 handler = gimple_catch_handler (gcatch);
1794 lower_eh_constructs_1 (&this_state, &handler);
1796 c->label = create_artificial_label (UNKNOWN_LOCATION);
1797 x = gimple_build_label (c->label);
1798 gimple_seq_add_stmt (&new_seq, x);
1800 gimple_seq_add_seq (&new_seq, handler);
1802 if (gimple_seq_may_fallthru (new_seq))
1804 if (!out_label)
1805 out_label = create_artificial_label (try_catch_loc);
1807 x = gimple_build_goto (out_label);
1808 gimple_seq_add_stmt (&new_seq, x);
1810 if (!c->type_list)
1811 break;
1814 gimple_try_set_cleanup (tp, new_seq);
1816 return frob_into_branch_around (tp, try_region, out_label);
1819 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1820 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1821 region trees that record all the magic. */
1823 static gimple_seq
1824 lower_eh_filter (struct leh_state *state, gimple tp)
1826 struct leh_state this_state = *state;
1827 eh_region this_region = NULL;
1828 gimple inner, x;
1829 gimple_seq new_seq;
1831 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1833 if (flag_exceptions)
1835 this_region = gen_eh_region_allowed (state->cur_region,
1836 gimple_eh_filter_types (inner));
1837 this_state.cur_region = this_region;
1840 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1842 if (!eh_region_may_contain_throw (this_region))
1843 return gimple_try_eval (tp);
1845 new_seq = NULL;
1846 this_state.cur_region = state->cur_region;
1847 this_state.ehp_region = this_region;
1849 emit_eh_dispatch (&new_seq, this_region);
1850 emit_resx (&new_seq, this_region);
1852 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1853 x = gimple_build_label (this_region->u.allowed.label);
1854 gimple_seq_add_stmt (&new_seq, x);
1856 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1857 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1859 gimple_try_set_cleanup (tp, new_seq);
1861 return frob_into_branch_around (tp, this_region, NULL);
1864 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1865 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1866 plus the exception region trees that record all the magic. */
1868 static gimple_seq
1869 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1871 struct leh_state this_state = *state;
1873 if (flag_exceptions)
1875 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1876 eh_region this_region;
1878 this_region = gen_eh_region_must_not_throw (state->cur_region);
1879 this_region->u.must_not_throw.failure_decl
1880 = gimple_eh_must_not_throw_fndecl (inner);
1881 this_region->u.must_not_throw.failure_loc
1882 = LOCATION_LOCUS (gimple_location (tp));
1884 /* In order to get mangling applied to this decl, we must mark it
1885 used now. Otherwise, pass_ipa_free_lang_data won't think it
1886 needs to happen. */
1887 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1889 this_state.cur_region = this_region;
1892 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1894 return gimple_try_eval (tp);
1897 /* Implement a cleanup expression. This is similar to try-finally,
1898 except that we only execute the cleanup block for exception edges. */
1900 static gimple_seq
1901 lower_cleanup (struct leh_state *state, gimple tp)
1903 struct leh_state this_state = *state;
1904 eh_region this_region = NULL;
1905 struct leh_tf_state fake_tf;
1906 gimple_seq result;
1907 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1909 if (flag_exceptions && !cleanup_dead)
1911 this_region = gen_eh_region_cleanup (state->cur_region);
1912 this_state.cur_region = this_region;
1915 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1917 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1918 return gimple_try_eval (tp);
1920 /* Build enough of a try-finally state so that we can reuse
1921 honor_protect_cleanup_actions. */
1922 memset (&fake_tf, 0, sizeof (fake_tf));
1923 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1924 fake_tf.outer = state;
1925 fake_tf.region = this_region;
1926 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1927 fake_tf.may_throw = true;
1929 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1931 if (fake_tf.may_throw)
1933 /* In this case honor_protect_cleanup_actions had nothing to do,
1934 and we should process this normally. */
1935 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1936 result = frob_into_branch_around (tp, this_region,
1937 fake_tf.fallthru_label);
1939 else
1941 /* In this case honor_protect_cleanup_actions did nearly all of
1942 the work. All we have left is to append the fallthru_label. */
1944 result = gimple_try_eval (tp);
1945 if (fake_tf.fallthru_label)
1947 gimple x = gimple_build_label (fake_tf.fallthru_label);
1948 gimple_seq_add_stmt (&result, x);
1951 return result;
1954 /* Main loop for lowering eh constructs. Also moves gsi to the next
1955 statement. */
1957 static void
1958 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1960 gimple_seq replace;
1961 gimple x;
1962 gimple stmt = gsi_stmt (*gsi);
1964 switch (gimple_code (stmt))
1966 case GIMPLE_CALL:
1968 tree fndecl = gimple_call_fndecl (stmt);
1969 tree rhs, lhs;
1971 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1972 switch (DECL_FUNCTION_CODE (fndecl))
1974 case BUILT_IN_EH_POINTER:
1975 /* The front end may have generated a call to
1976 __builtin_eh_pointer (0) within a catch region. Replace
1977 this zero argument with the current catch region number. */
1978 if (state->ehp_region)
1980 tree nr = build_int_cst (integer_type_node,
1981 state->ehp_region->index);
1982 gimple_call_set_arg (stmt, 0, nr);
1984 else
1986 /* The user has dome something silly. Remove it. */
1987 rhs = null_pointer_node;
1988 goto do_replace;
1990 break;
1992 case BUILT_IN_EH_FILTER:
1993 /* ??? This should never appear, but since it's a builtin it
1994 is accessible to abuse by users. Just remove it and
1995 replace the use with the arbitrary value zero. */
1996 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1997 do_replace:
1998 lhs = gimple_call_lhs (stmt);
1999 x = gimple_build_assign (lhs, rhs);
2000 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2001 /* FALLTHRU */
2003 case BUILT_IN_EH_COPY_VALUES:
2004 /* Likewise this should not appear. Remove it. */
2005 gsi_remove (gsi, true);
2006 return;
2008 default:
2009 break;
2012 /* FALLTHRU */
2014 case GIMPLE_ASSIGN:
2015 /* If the stmt can throw use a new temporary for the assignment
2016 to a LHS. This makes sure the old value of the LHS is
2017 available on the EH edge. Only do so for statements that
2018 potentially fall through (no noreturn calls e.g.), otherwise
2019 this new assignment might create fake fallthru regions. */
2020 if (stmt_could_throw_p (stmt)
2021 && gimple_has_lhs (stmt)
2022 && gimple_stmt_may_fallthru (stmt)
2023 && !tree_could_throw_p (gimple_get_lhs (stmt))
2024 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2026 tree lhs = gimple_get_lhs (stmt);
2027 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2028 gimple s = gimple_build_assign (lhs, tmp);
2029 gimple_set_location (s, gimple_location (stmt));
2030 gimple_set_block (s, gimple_block (stmt));
2031 gimple_set_lhs (stmt, tmp);
2032 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2033 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2034 DECL_GIMPLE_REG_P (tmp) = 1;
2035 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2037 /* Look for things that can throw exceptions, and record them. */
2038 if (state->cur_region && stmt_could_throw_p (stmt))
2040 record_stmt_eh_region (state->cur_region, stmt);
2041 note_eh_region_may_contain_throw (state->cur_region);
2043 break;
2045 case GIMPLE_COND:
2046 case GIMPLE_GOTO:
2047 case GIMPLE_RETURN:
2048 maybe_record_in_goto_queue (state, stmt);
2049 break;
2051 case GIMPLE_SWITCH:
2052 verify_norecord_switch_expr (state, stmt);
2053 break;
2055 case GIMPLE_TRY:
2056 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2057 replace = lower_try_finally (state, stmt);
2058 else
2060 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2061 if (!x)
2063 replace = gimple_try_eval (stmt);
2064 lower_eh_constructs_1 (state, &replace);
2066 else
2067 switch (gimple_code (x))
2069 case GIMPLE_CATCH:
2070 replace = lower_catch (state, stmt);
2071 break;
2072 case GIMPLE_EH_FILTER:
2073 replace = lower_eh_filter (state, stmt);
2074 break;
2075 case GIMPLE_EH_MUST_NOT_THROW:
2076 replace = lower_eh_must_not_throw (state, stmt);
2077 break;
2078 case GIMPLE_EH_ELSE:
2079 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2080 gcc_unreachable ();
2081 default:
2082 replace = lower_cleanup (state, stmt);
2083 break;
2087 /* Remove the old stmt and insert the transformed sequence
2088 instead. */
2089 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2090 gsi_remove (gsi, true);
2092 /* Return since we don't want gsi_next () */
2093 return;
2095 case GIMPLE_EH_ELSE:
2096 /* We should be eliminating this in lower_try_finally et al. */
2097 gcc_unreachable ();
2099 default:
2100 /* A type, a decl, or some kind of statement that we're not
2101 interested in. Don't walk them. */
2102 break;
2105 gsi_next (gsi);
2108 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2110 static void
2111 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2113 gimple_stmt_iterator gsi;
2114 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2115 lower_eh_constructs_2 (state, &gsi);
2118 static unsigned int
2119 lower_eh_constructs (void)
2121 struct leh_state null_state;
2122 gimple_seq bodyp;
2124 bodyp = gimple_body (current_function_decl);
2125 if (bodyp == NULL)
2126 return 0;
2128 finally_tree.create (31);
2129 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2130 memset (&null_state, 0, sizeof (null_state));
2132 collect_finally_tree_1 (bodyp, NULL);
2133 lower_eh_constructs_1 (&null_state, &bodyp);
2134 gimple_set_body (current_function_decl, bodyp);
2136 /* We assume there's a return statement, or something, at the end of
2137 the function, and thus ploping the EH sequence afterward won't
2138 change anything. */
2139 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2140 gimple_seq_add_seq (&bodyp, eh_seq);
2142 /* We assume that since BODYP already existed, adding EH_SEQ to it
2143 didn't change its value, and we don't have to re-set the function. */
2144 gcc_assert (bodyp == gimple_body (current_function_decl));
2146 finally_tree.dispose ();
2147 BITMAP_FREE (eh_region_may_contain_throw_map);
2148 eh_seq = NULL;
2150 /* If this function needs a language specific EH personality routine
2151 and the frontend didn't already set one do so now. */
2152 if (function_needs_eh_personality (cfun) == eh_personality_lang
2153 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2154 DECL_FUNCTION_PERSONALITY (current_function_decl)
2155 = lang_hooks.eh_personality ();
2157 return 0;
2160 namespace {
2162 const pass_data pass_data_lower_eh =
2164 GIMPLE_PASS, /* type */
2165 "eh", /* name */
2166 OPTGROUP_NONE, /* optinfo_flags */
2167 false, /* has_gate */
2168 true, /* has_execute */
2169 TV_TREE_EH, /* tv_id */
2170 PROP_gimple_lcf, /* properties_required */
2171 PROP_gimple_leh, /* properties_provided */
2172 0, /* properties_destroyed */
2173 0, /* todo_flags_start */
2174 0, /* todo_flags_finish */
2177 class pass_lower_eh : public gimple_opt_pass
2179 public:
2180 pass_lower_eh (gcc::context *ctxt)
2181 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2184 /* opt_pass methods: */
2185 unsigned int execute () { return lower_eh_constructs (); }
2187 }; // class pass_lower_eh
2189 } // anon namespace
2191 gimple_opt_pass *
2192 make_pass_lower_eh (gcc::context *ctxt)
2194 return new pass_lower_eh (ctxt);
2197 /* Create the multiple edges from an EH_DISPATCH statement to all of
2198 the possible handlers for its EH region. Return true if there's
2199 no fallthru edge; false if there is. */
2201 bool
2202 make_eh_dispatch_edges (gimple stmt)
2204 eh_region r;
2205 eh_catch c;
2206 basic_block src, dst;
2208 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2209 src = gimple_bb (stmt);
2211 switch (r->type)
2213 case ERT_TRY:
2214 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2216 dst = label_to_block (c->label);
2217 make_edge (src, dst, 0);
2219 /* A catch-all handler doesn't have a fallthru. */
2220 if (c->type_list == NULL)
2221 return false;
2223 break;
2225 case ERT_ALLOWED_EXCEPTIONS:
2226 dst = label_to_block (r->u.allowed.label);
2227 make_edge (src, dst, 0);
2228 break;
2230 default:
2231 gcc_unreachable ();
2234 return true;
2237 /* Create the single EH edge from STMT to its nearest landing pad,
2238 if there is such a landing pad within the current function. */
2240 void
2241 make_eh_edges (gimple stmt)
2243 basic_block src, dst;
2244 eh_landing_pad lp;
2245 int lp_nr;
2247 lp_nr = lookup_stmt_eh_lp (stmt);
2248 if (lp_nr <= 0)
2249 return;
2251 lp = get_eh_landing_pad_from_number (lp_nr);
2252 gcc_assert (lp != NULL);
2254 src = gimple_bb (stmt);
2255 dst = label_to_block (lp->post_landing_pad);
2256 make_edge (src, dst, EDGE_EH);
2259 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2260 do not actually perform the final edge redirection.
2262 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2263 we intend to change the destination EH region as well; this means
2264 EH_LANDING_PAD_NR must already be set on the destination block label.
2265 If false, we're being called from generic cfg manipulation code and we
2266 should preserve our place within the region tree. */
2268 static void
2269 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2271 eh_landing_pad old_lp, new_lp;
2272 basic_block old_bb;
2273 gimple throw_stmt;
2274 int old_lp_nr, new_lp_nr;
2275 tree old_label, new_label;
2276 edge_iterator ei;
2277 edge e;
2279 old_bb = edge_in->dest;
2280 old_label = gimple_block_label (old_bb);
2281 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2282 gcc_assert (old_lp_nr > 0);
2283 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2285 throw_stmt = last_stmt (edge_in->src);
2286 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2288 new_label = gimple_block_label (new_bb);
2290 /* Look for an existing region that might be using NEW_BB already. */
2291 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2292 if (new_lp_nr)
2294 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2295 gcc_assert (new_lp);
2297 /* Unless CHANGE_REGION is true, the new and old landing pad
2298 had better be associated with the same EH region. */
2299 gcc_assert (change_region || new_lp->region == old_lp->region);
2301 else
2303 new_lp = NULL;
2304 gcc_assert (!change_region);
2307 /* Notice when we redirect the last EH edge away from OLD_BB. */
2308 FOR_EACH_EDGE (e, ei, old_bb->preds)
2309 if (e != edge_in && (e->flags & EDGE_EH))
2310 break;
2312 if (new_lp)
2314 /* NEW_LP already exists. If there are still edges into OLD_LP,
2315 there's nothing to do with the EH tree. If there are no more
2316 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2317 If CHANGE_REGION is true, then our caller is expecting to remove
2318 the landing pad. */
2319 if (e == NULL && !change_region)
2320 remove_eh_landing_pad (old_lp);
2322 else
2324 /* No correct landing pad exists. If there are no more edges
2325 into OLD_LP, then we can simply re-use the existing landing pad.
2326 Otherwise, we have to create a new landing pad. */
2327 if (e == NULL)
2329 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2330 new_lp = old_lp;
2332 else
2333 new_lp = gen_eh_landing_pad (old_lp->region);
2334 new_lp->post_landing_pad = new_label;
2335 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2338 /* Maybe move the throwing statement to the new region. */
2339 if (old_lp != new_lp)
2341 remove_stmt_from_eh_lp (throw_stmt);
2342 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2346 /* Redirect EH edge E to NEW_BB. */
2348 edge
2349 redirect_eh_edge (edge edge_in, basic_block new_bb)
2351 redirect_eh_edge_1 (edge_in, new_bb, false);
2352 return ssa_redirect_edge (edge_in, new_bb);
2355 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2356 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2357 The actual edge update will happen in the caller. */
2359 void
2360 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2362 tree new_lab = gimple_block_label (new_bb);
2363 bool any_changed = false;
2364 basic_block old_bb;
2365 eh_region r;
2366 eh_catch c;
2368 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2369 switch (r->type)
2371 case ERT_TRY:
2372 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2374 old_bb = label_to_block (c->label);
2375 if (old_bb == e->dest)
2377 c->label = new_lab;
2378 any_changed = true;
2381 break;
2383 case ERT_ALLOWED_EXCEPTIONS:
2384 old_bb = label_to_block (r->u.allowed.label);
2385 gcc_assert (old_bb == e->dest);
2386 r->u.allowed.label = new_lab;
2387 any_changed = true;
2388 break;
2390 default:
2391 gcc_unreachable ();
2394 gcc_assert (any_changed);
2397 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2399 bool
2400 operation_could_trap_helper_p (enum tree_code op,
2401 bool fp_operation,
2402 bool honor_trapv,
2403 bool honor_nans,
2404 bool honor_snans,
2405 tree divisor,
2406 bool *handled)
2408 *handled = true;
2409 switch (op)
2411 case TRUNC_DIV_EXPR:
2412 case CEIL_DIV_EXPR:
2413 case FLOOR_DIV_EXPR:
2414 case ROUND_DIV_EXPR:
2415 case EXACT_DIV_EXPR:
2416 case CEIL_MOD_EXPR:
2417 case FLOOR_MOD_EXPR:
2418 case ROUND_MOD_EXPR:
2419 case TRUNC_MOD_EXPR:
2420 case RDIV_EXPR:
2421 if (honor_snans || honor_trapv)
2422 return true;
2423 if (fp_operation)
2424 return flag_trapping_math;
2425 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2426 return true;
2427 return false;
2429 case LT_EXPR:
2430 case LE_EXPR:
2431 case GT_EXPR:
2432 case GE_EXPR:
2433 case LTGT_EXPR:
2434 /* Some floating point comparisons may trap. */
2435 return honor_nans;
2437 case EQ_EXPR:
2438 case NE_EXPR:
2439 case UNORDERED_EXPR:
2440 case ORDERED_EXPR:
2441 case UNLT_EXPR:
2442 case UNLE_EXPR:
2443 case UNGT_EXPR:
2444 case UNGE_EXPR:
2445 case UNEQ_EXPR:
2446 return honor_snans;
2448 case CONVERT_EXPR:
2449 case FIX_TRUNC_EXPR:
2450 /* Conversion of floating point might trap. */
2451 return honor_nans;
2453 case NEGATE_EXPR:
2454 case ABS_EXPR:
2455 case CONJ_EXPR:
2456 /* These operations don't trap with floating point. */
2457 if (honor_trapv)
2458 return true;
2459 return false;
2461 case PLUS_EXPR:
2462 case MINUS_EXPR:
2463 case MULT_EXPR:
2464 /* Any floating arithmetic may trap. */
2465 if (fp_operation && flag_trapping_math)
2466 return true;
2467 if (honor_trapv)
2468 return true;
2469 return false;
2471 case COMPLEX_EXPR:
2472 case CONSTRUCTOR:
2473 /* Constructing an object cannot trap. */
2474 return false;
2476 default:
2477 /* Any floating arithmetic may trap. */
2478 if (fp_operation && flag_trapping_math)
2479 return true;
2481 *handled = false;
2482 return false;
2486 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2487 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2488 type operands that may trap. If OP is a division operator, DIVISOR contains
2489 the value of the divisor. */
2491 bool
2492 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2493 tree divisor)
2495 bool honor_nans = (fp_operation && flag_trapping_math
2496 && !flag_finite_math_only);
2497 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2498 bool handled;
2500 if (TREE_CODE_CLASS (op) != tcc_comparison
2501 && TREE_CODE_CLASS (op) != tcc_unary
2502 && TREE_CODE_CLASS (op) != tcc_binary)
2503 return false;
2505 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2506 honor_nans, honor_snans, divisor,
2507 &handled);
2511 /* Returns true if it is possible to prove that the index of
2512 an array access REF (an ARRAY_REF expression) falls into the
2513 array bounds. */
2515 static bool
2516 in_array_bounds_p (tree ref)
2518 tree idx = TREE_OPERAND (ref, 1);
2519 tree min, max;
2521 if (TREE_CODE (idx) != INTEGER_CST)
2522 return false;
2524 min = array_ref_low_bound (ref);
2525 max = array_ref_up_bound (ref);
2526 if (!min
2527 || !max
2528 || TREE_CODE (min) != INTEGER_CST
2529 || TREE_CODE (max) != INTEGER_CST)
2530 return false;
2532 if (tree_int_cst_lt (idx, min)
2533 || tree_int_cst_lt (max, idx))
2534 return false;
2536 return true;
2539 /* Returns true if it is possible to prove that the range of
2540 an array access REF (an ARRAY_RANGE_REF expression) falls
2541 into the array bounds. */
2543 static bool
2544 range_in_array_bounds_p (tree ref)
2546 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2547 tree range_min, range_max, min, max;
2549 range_min = TYPE_MIN_VALUE (domain_type);
2550 range_max = TYPE_MAX_VALUE (domain_type);
2551 if (!range_min
2552 || !range_max
2553 || TREE_CODE (range_min) != INTEGER_CST
2554 || TREE_CODE (range_max) != INTEGER_CST)
2555 return false;
2557 min = array_ref_low_bound (ref);
2558 max = array_ref_up_bound (ref);
2559 if (!min
2560 || !max
2561 || TREE_CODE (min) != INTEGER_CST
2562 || TREE_CODE (max) != INTEGER_CST)
2563 return false;
2565 if (tree_int_cst_lt (range_min, min)
2566 || tree_int_cst_lt (max, range_max))
2567 return false;
2569 return true;
2572 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2573 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2574 This routine expects only GIMPLE lhs or rhs input. */
2576 bool
2577 tree_could_trap_p (tree expr)
2579 enum tree_code code;
2580 bool fp_operation = false;
2581 bool honor_trapv = false;
2582 tree t, base, div = NULL_TREE;
2584 if (!expr)
2585 return false;
2587 code = TREE_CODE (expr);
2588 t = TREE_TYPE (expr);
2590 if (t)
2592 if (COMPARISON_CLASS_P (expr))
2593 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2594 else
2595 fp_operation = FLOAT_TYPE_P (t);
2596 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2599 if (TREE_CODE_CLASS (code) == tcc_binary)
2600 div = TREE_OPERAND (expr, 1);
2601 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2602 return true;
2604 restart:
2605 switch (code)
2607 case TARGET_MEM_REF:
2608 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2609 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2610 return false;
2611 return !TREE_THIS_NOTRAP (expr);
2613 case COMPONENT_REF:
2614 case REALPART_EXPR:
2615 case IMAGPART_EXPR:
2616 case BIT_FIELD_REF:
2617 case VIEW_CONVERT_EXPR:
2618 case WITH_SIZE_EXPR:
2619 expr = TREE_OPERAND (expr, 0);
2620 code = TREE_CODE (expr);
2621 goto restart;
2623 case ARRAY_RANGE_REF:
2624 base = TREE_OPERAND (expr, 0);
2625 if (tree_could_trap_p (base))
2626 return true;
2627 if (TREE_THIS_NOTRAP (expr))
2628 return false;
2629 return !range_in_array_bounds_p (expr);
2631 case ARRAY_REF:
2632 base = TREE_OPERAND (expr, 0);
2633 if (tree_could_trap_p (base))
2634 return true;
2635 if (TREE_THIS_NOTRAP (expr))
2636 return false;
2637 return !in_array_bounds_p (expr);
2639 case MEM_REF:
2640 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2641 return false;
2642 /* Fallthru. */
2643 case INDIRECT_REF:
2644 return !TREE_THIS_NOTRAP (expr);
2646 case ASM_EXPR:
2647 return TREE_THIS_VOLATILE (expr);
2649 case CALL_EXPR:
2650 t = get_callee_fndecl (expr);
2651 /* Assume that calls to weak functions may trap. */
2652 if (!t || !DECL_P (t))
2653 return true;
2654 if (DECL_WEAK (t))
2655 return tree_could_trap_p (t);
2656 return false;
2658 case FUNCTION_DECL:
2659 /* Assume that accesses to weak functions may trap, unless we know
2660 they are certainly defined in current TU or in some other
2661 LTO partition. */
2662 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2664 struct cgraph_node *node;
2665 if (!DECL_EXTERNAL (expr))
2666 return false;
2667 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2668 if (node && node->in_other_partition)
2669 return false;
2670 return true;
2672 return false;
2674 case VAR_DECL:
2675 /* Assume that accesses to weak vars may trap, unless we know
2676 they are certainly defined in current TU or in some other
2677 LTO partition. */
2678 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2680 struct varpool_node *node;
2681 if (!DECL_EXTERNAL (expr))
2682 return false;
2683 node = varpool_variable_node (varpool_get_node (expr), NULL);
2684 if (node && node->in_other_partition)
2685 return false;
2686 return true;
2688 return false;
2690 default:
2691 return false;
2696 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2697 an assignment or a conditional) may throw. */
2699 static bool
2700 stmt_could_throw_1_p (gimple stmt)
2702 enum tree_code code = gimple_expr_code (stmt);
2703 bool honor_nans = false;
2704 bool honor_snans = false;
2705 bool fp_operation = false;
2706 bool honor_trapv = false;
2707 tree t;
2708 size_t i;
2709 bool handled, ret;
2711 if (TREE_CODE_CLASS (code) == tcc_comparison
2712 || TREE_CODE_CLASS (code) == tcc_unary
2713 || TREE_CODE_CLASS (code) == tcc_binary)
2715 if (is_gimple_assign (stmt)
2716 && TREE_CODE_CLASS (code) == tcc_comparison)
2717 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2718 else if (gimple_code (stmt) == GIMPLE_COND)
2719 t = TREE_TYPE (gimple_cond_lhs (stmt));
2720 else
2721 t = gimple_expr_type (stmt);
2722 fp_operation = FLOAT_TYPE_P (t);
2723 if (fp_operation)
2725 honor_nans = flag_trapping_math && !flag_finite_math_only;
2726 honor_snans = flag_signaling_nans != 0;
2728 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2729 honor_trapv = true;
2732 /* Check if the main expression may trap. */
2733 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2734 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2735 honor_nans, honor_snans, t,
2736 &handled);
2737 if (handled)
2738 return ret;
2740 /* If the expression does not trap, see if any of the individual operands may
2741 trap. */
2742 for (i = 0; i < gimple_num_ops (stmt); i++)
2743 if (tree_could_trap_p (gimple_op (stmt, i)))
2744 return true;
2746 return false;
2750 /* Return true if statement STMT could throw an exception. */
2752 bool
2753 stmt_could_throw_p (gimple stmt)
2755 if (!flag_exceptions)
2756 return false;
2758 /* The only statements that can throw an exception are assignments,
2759 conditionals, calls, resx, and asms. */
2760 switch (gimple_code (stmt))
2762 case GIMPLE_RESX:
2763 return true;
2765 case GIMPLE_CALL:
2766 return !gimple_call_nothrow_p (stmt);
2768 case GIMPLE_ASSIGN:
2769 case GIMPLE_COND:
2770 if (!cfun->can_throw_non_call_exceptions)
2771 return false;
2772 return stmt_could_throw_1_p (stmt);
2774 case GIMPLE_ASM:
2775 if (!cfun->can_throw_non_call_exceptions)
2776 return false;
2777 return gimple_asm_volatile_p (stmt);
2779 default:
2780 return false;
2785 /* Return true if expression T could throw an exception. */
2787 bool
2788 tree_could_throw_p (tree t)
2790 if (!flag_exceptions)
2791 return false;
2792 if (TREE_CODE (t) == MODIFY_EXPR)
2794 if (cfun->can_throw_non_call_exceptions
2795 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2796 return true;
2797 t = TREE_OPERAND (t, 1);
2800 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2801 t = TREE_OPERAND (t, 0);
2802 if (TREE_CODE (t) == CALL_EXPR)
2803 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2804 if (cfun->can_throw_non_call_exceptions)
2805 return tree_could_trap_p (t);
2806 return false;
2809 /* Return true if STMT can throw an exception that is not caught within
2810 the current function (CFUN). */
2812 bool
2813 stmt_can_throw_external (gimple stmt)
2815 int lp_nr;
2817 if (!stmt_could_throw_p (stmt))
2818 return false;
2820 lp_nr = lookup_stmt_eh_lp (stmt);
2821 return lp_nr == 0;
2824 /* Return true if STMT can throw an exception that is caught within
2825 the current function (CFUN). */
2827 bool
2828 stmt_can_throw_internal (gimple stmt)
2830 int lp_nr;
2832 if (!stmt_could_throw_p (stmt))
2833 return false;
2835 lp_nr = lookup_stmt_eh_lp (stmt);
2836 return lp_nr > 0;
2839 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2840 remove any entry it might have from the EH table. Return true if
2841 any change was made. */
2843 bool
2844 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2846 if (stmt_could_throw_p (stmt))
2847 return false;
2848 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2851 /* Likewise, but always use the current function. */
2853 bool
2854 maybe_clean_eh_stmt (gimple stmt)
2856 return maybe_clean_eh_stmt_fn (cfun, stmt);
2859 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2860 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2861 in the table if it should be in there. Return TRUE if a replacement was
2862 done that my require an EH edge purge. */
2864 bool
2865 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2867 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2869 if (lp_nr != 0)
2871 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2873 if (new_stmt == old_stmt && new_stmt_could_throw)
2874 return false;
2876 remove_stmt_from_eh_lp (old_stmt);
2877 if (new_stmt_could_throw)
2879 add_stmt_to_eh_lp (new_stmt, lp_nr);
2880 return false;
2882 else
2883 return true;
2886 return false;
2889 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2890 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2891 operand is the return value of duplicate_eh_regions. */
2893 bool
2894 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2895 struct function *old_fun, gimple old_stmt,
2896 struct pointer_map_t *map, int default_lp_nr)
2898 int old_lp_nr, new_lp_nr;
2899 void **slot;
2901 if (!stmt_could_throw_p (new_stmt))
2902 return false;
2904 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2905 if (old_lp_nr == 0)
2907 if (default_lp_nr == 0)
2908 return false;
2909 new_lp_nr = default_lp_nr;
2911 else if (old_lp_nr > 0)
2913 eh_landing_pad old_lp, new_lp;
2915 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2916 slot = pointer_map_contains (map, old_lp);
2917 new_lp = (eh_landing_pad) *slot;
2918 new_lp_nr = new_lp->index;
2920 else
2922 eh_region old_r, new_r;
2924 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2925 slot = pointer_map_contains (map, old_r);
2926 new_r = (eh_region) *slot;
2927 new_lp_nr = -new_r->index;
2930 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2931 return true;
2934 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2935 and thus no remapping is required. */
2937 bool
2938 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2940 int lp_nr;
2942 if (!stmt_could_throw_p (new_stmt))
2943 return false;
2945 lp_nr = lookup_stmt_eh_lp (old_stmt);
2946 if (lp_nr == 0)
2947 return false;
2949 add_stmt_to_eh_lp (new_stmt, lp_nr);
2950 return true;
2953 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2954 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2955 this only handles handlers consisting of a single call, as that's the
2956 important case for C++: a destructor call for a particular object showing
2957 up in multiple handlers. */
2959 static bool
2960 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2962 gimple_stmt_iterator gsi;
2963 gimple ones, twos;
2964 unsigned int ai;
2966 gsi = gsi_start (oneh);
2967 if (!gsi_one_before_end_p (gsi))
2968 return false;
2969 ones = gsi_stmt (gsi);
2971 gsi = gsi_start (twoh);
2972 if (!gsi_one_before_end_p (gsi))
2973 return false;
2974 twos = gsi_stmt (gsi);
2976 if (!is_gimple_call (ones)
2977 || !is_gimple_call (twos)
2978 || gimple_call_lhs (ones)
2979 || gimple_call_lhs (twos)
2980 || gimple_call_chain (ones)
2981 || gimple_call_chain (twos)
2982 || !gimple_call_same_target_p (ones, twos)
2983 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2984 return false;
2986 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2987 if (!operand_equal_p (gimple_call_arg (ones, ai),
2988 gimple_call_arg (twos, ai), 0))
2989 return false;
2991 return true;
2994 /* Optimize
2995 try { A() } finally { try { ~B() } catch { ~A() } }
2996 try { ... } finally { ~A() }
2997 into
2998 try { A() } catch { ~B() }
2999 try { ~B() ... } finally { ~A() }
3001 This occurs frequently in C++, where A is a local variable and B is a
3002 temporary used in the initializer for A. */
3004 static void
3005 optimize_double_finally (gimple one, gimple two)
3007 gimple oneh;
3008 gimple_stmt_iterator gsi;
3009 gimple_seq cleanup;
3011 cleanup = gimple_try_cleanup (one);
3012 gsi = gsi_start (cleanup);
3013 if (!gsi_one_before_end_p (gsi))
3014 return;
3016 oneh = gsi_stmt (gsi);
3017 if (gimple_code (oneh) != GIMPLE_TRY
3018 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3019 return;
3021 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3023 gimple_seq seq = gimple_try_eval (oneh);
3025 gimple_try_set_cleanup (one, seq);
3026 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3027 seq = copy_gimple_seq_and_replace_locals (seq);
3028 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3029 gimple_try_set_eval (two, seq);
3033 /* Perform EH refactoring optimizations that are simpler to do when code
3034 flow has been lowered but EH structures haven't. */
3036 static void
3037 refactor_eh_r (gimple_seq seq)
3039 gimple_stmt_iterator gsi;
3040 gimple one, two;
3042 one = NULL;
3043 two = NULL;
3044 gsi = gsi_start (seq);
3045 while (1)
3047 one = two;
3048 if (gsi_end_p (gsi))
3049 two = NULL;
3050 else
3051 two = gsi_stmt (gsi);
3052 if (one
3053 && two
3054 && gimple_code (one) == GIMPLE_TRY
3055 && gimple_code (two) == GIMPLE_TRY
3056 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
3057 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
3058 optimize_double_finally (one, two);
3059 if (one)
3060 switch (gimple_code (one))
3062 case GIMPLE_TRY:
3063 refactor_eh_r (gimple_try_eval (one));
3064 refactor_eh_r (gimple_try_cleanup (one));
3065 break;
3066 case GIMPLE_CATCH:
3067 refactor_eh_r (gimple_catch_handler (one));
3068 break;
3069 case GIMPLE_EH_FILTER:
3070 refactor_eh_r (gimple_eh_filter_failure (one));
3071 break;
3072 case GIMPLE_EH_ELSE:
3073 refactor_eh_r (gimple_eh_else_n_body (one));
3074 refactor_eh_r (gimple_eh_else_e_body (one));
3075 break;
3076 default:
3077 break;
3079 if (two)
3080 gsi_next (&gsi);
3081 else
3082 break;
3086 static unsigned
3087 refactor_eh (void)
3089 refactor_eh_r (gimple_body (current_function_decl));
3090 return 0;
3093 static bool
3094 gate_refactor_eh (void)
3096 return flag_exceptions != 0;
3099 namespace {
3101 const pass_data pass_data_refactor_eh =
3103 GIMPLE_PASS, /* type */
3104 "ehopt", /* name */
3105 OPTGROUP_NONE, /* optinfo_flags */
3106 true, /* has_gate */
3107 true, /* has_execute */
3108 TV_TREE_EH, /* tv_id */
3109 PROP_gimple_lcf, /* properties_required */
3110 0, /* properties_provided */
3111 0, /* properties_destroyed */
3112 0, /* todo_flags_start */
3113 0, /* todo_flags_finish */
3116 class pass_refactor_eh : public gimple_opt_pass
3118 public:
3119 pass_refactor_eh (gcc::context *ctxt)
3120 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3123 /* opt_pass methods: */
3124 bool gate () { return gate_refactor_eh (); }
3125 unsigned int execute () { return refactor_eh (); }
3127 }; // class pass_refactor_eh
3129 } // anon namespace
3131 gimple_opt_pass *
3132 make_pass_refactor_eh (gcc::context *ctxt)
3134 return new pass_refactor_eh (ctxt);
3137 /* At the end of gimple optimization, we can lower RESX. */
3139 static bool
3140 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3142 int lp_nr;
3143 eh_region src_r, dst_r;
3144 gimple_stmt_iterator gsi;
3145 gimple x;
3146 tree fn, src_nr;
3147 bool ret = false;
3149 lp_nr = lookup_stmt_eh_lp (stmt);
3150 if (lp_nr != 0)
3151 dst_r = get_eh_region_from_lp_number (lp_nr);
3152 else
3153 dst_r = NULL;
3155 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3156 gsi = gsi_last_bb (bb);
3158 if (src_r == NULL)
3160 /* We can wind up with no source region when pass_cleanup_eh shows
3161 that there are no entries into an eh region and deletes it, but
3162 then the block that contains the resx isn't removed. This can
3163 happen without optimization when the switch statement created by
3164 lower_try_finally_switch isn't simplified to remove the eh case.
3166 Resolve this by expanding the resx node to an abort. */
3168 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3169 x = gimple_build_call (fn, 0);
3170 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3172 while (EDGE_COUNT (bb->succs) > 0)
3173 remove_edge (EDGE_SUCC (bb, 0));
3175 else if (dst_r)
3177 /* When we have a destination region, we resolve this by copying
3178 the excptr and filter values into place, and changing the edge
3179 to immediately after the landing pad. */
3180 edge e;
3182 if (lp_nr < 0)
3184 basic_block new_bb;
3185 void **slot;
3186 tree lab;
3188 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3189 the failure decl into a new block, if needed. */
3190 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3192 slot = pointer_map_contains (mnt_map, dst_r);
3193 if (slot == NULL)
3195 gimple_stmt_iterator gsi2;
3197 new_bb = create_empty_bb (bb);
3198 if (current_loops)
3199 add_bb_to_loop (new_bb, bb->loop_father);
3200 lab = gimple_block_label (new_bb);
3201 gsi2 = gsi_start_bb (new_bb);
3203 fn = dst_r->u.must_not_throw.failure_decl;
3204 x = gimple_build_call (fn, 0);
3205 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3206 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3208 slot = pointer_map_insert (mnt_map, dst_r);
3209 *slot = lab;
3211 else
3213 lab = (tree) *slot;
3214 new_bb = label_to_block (lab);
3217 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3218 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3219 e->count = bb->count;
3220 e->probability = REG_BR_PROB_BASE;
3222 else
3224 edge_iterator ei;
3225 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3227 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3228 src_nr = build_int_cst (integer_type_node, src_r->index);
3229 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3230 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3232 /* Update the flags for the outgoing edge. */
3233 e = single_succ_edge (bb);
3234 gcc_assert (e->flags & EDGE_EH);
3235 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3237 /* If there are no more EH users of the landing pad, delete it. */
3238 FOR_EACH_EDGE (e, ei, e->dest->preds)
3239 if (e->flags & EDGE_EH)
3240 break;
3241 if (e == NULL)
3243 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3244 remove_eh_landing_pad (lp);
3248 ret = true;
3250 else
3252 tree var;
3254 /* When we don't have a destination region, this exception escapes
3255 up the call chain. We resolve this by generating a call to the
3256 _Unwind_Resume library function. */
3258 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3259 with no arguments for C++ and Java. Check for that. */
3260 if (src_r->use_cxa_end_cleanup)
3262 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3263 x = gimple_build_call (fn, 0);
3264 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3266 else
3268 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3269 src_nr = build_int_cst (integer_type_node, src_r->index);
3270 x = gimple_build_call (fn, 1, src_nr);
3271 var = create_tmp_var (ptr_type_node, NULL);
3272 var = make_ssa_name (var, x);
3273 gimple_call_set_lhs (x, var);
3274 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3276 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3277 x = gimple_build_call (fn, 1, var);
3278 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3281 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3284 gsi_remove (&gsi, true);
3286 return ret;
3289 static unsigned
3290 execute_lower_resx (void)
3292 basic_block bb;
3293 struct pointer_map_t *mnt_map;
3294 bool dominance_invalidated = false;
3295 bool any_rewritten = false;
3297 mnt_map = pointer_map_create ();
3299 FOR_EACH_BB (bb)
3301 gimple last = last_stmt (bb);
3302 if (last && is_gimple_resx (last))
3304 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3305 any_rewritten = true;
3309 pointer_map_destroy (mnt_map);
3311 if (dominance_invalidated)
3313 free_dominance_info (CDI_DOMINATORS);
3314 free_dominance_info (CDI_POST_DOMINATORS);
3317 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3320 static bool
3321 gate_lower_resx (void)
3323 return flag_exceptions != 0;
3326 namespace {
3328 const pass_data pass_data_lower_resx =
3330 GIMPLE_PASS, /* type */
3331 "resx", /* name */
3332 OPTGROUP_NONE, /* optinfo_flags */
3333 true, /* has_gate */
3334 true, /* has_execute */
3335 TV_TREE_EH, /* tv_id */
3336 PROP_gimple_lcf, /* properties_required */
3337 0, /* properties_provided */
3338 0, /* properties_destroyed */
3339 0, /* todo_flags_start */
3340 TODO_verify_flow, /* todo_flags_finish */
3343 class pass_lower_resx : public gimple_opt_pass
3345 public:
3346 pass_lower_resx (gcc::context *ctxt)
3347 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3350 /* opt_pass methods: */
3351 bool gate () { return gate_lower_resx (); }
3352 unsigned int execute () { return execute_lower_resx (); }
3354 }; // class pass_lower_resx
3356 } // anon namespace
3358 gimple_opt_pass *
3359 make_pass_lower_resx (gcc::context *ctxt)
3361 return new pass_lower_resx (ctxt);
3364 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3365 external throw. */
3367 static void
3368 optimize_clobbers (basic_block bb)
3370 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3371 bool any_clobbers = false;
3372 bool seen_stack_restore = false;
3373 edge_iterator ei;
3374 edge e;
3376 /* Only optimize anything if the bb contains at least one clobber,
3377 ends with resx (checked by caller), optionally contains some
3378 debug stmts or labels, or at most one __builtin_stack_restore
3379 call, and has an incoming EH edge. */
3380 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3382 gimple stmt = gsi_stmt (gsi);
3383 if (is_gimple_debug (stmt))
3384 continue;
3385 if (gimple_clobber_p (stmt))
3387 any_clobbers = true;
3388 continue;
3390 if (!seen_stack_restore
3391 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3393 seen_stack_restore = true;
3394 continue;
3396 if (gimple_code (stmt) == GIMPLE_LABEL)
3397 break;
3398 return;
3400 if (!any_clobbers)
3401 return;
3402 FOR_EACH_EDGE (e, ei, bb->preds)
3403 if (e->flags & EDGE_EH)
3404 break;
3405 if (e == NULL)
3406 return;
3407 gsi = gsi_last_bb (bb);
3408 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3410 gimple stmt = gsi_stmt (gsi);
3411 if (!gimple_clobber_p (stmt))
3412 continue;
3413 unlink_stmt_vdef (stmt);
3414 gsi_remove (&gsi, true);
3415 release_defs (stmt);
3419 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3420 internal throw to successor BB. */
3422 static int
3423 sink_clobbers (basic_block bb)
3425 edge e;
3426 edge_iterator ei;
3427 gimple_stmt_iterator gsi, dgsi;
3428 basic_block succbb;
3429 bool any_clobbers = false;
3430 unsigned todo = 0;
3432 /* Only optimize if BB has a single EH successor and
3433 all predecessor edges are EH too. */
3434 if (!single_succ_p (bb)
3435 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3436 return 0;
3438 FOR_EACH_EDGE (e, ei, bb->preds)
3440 if ((e->flags & EDGE_EH) == 0)
3441 return 0;
3444 /* And BB contains only CLOBBER stmts before the final
3445 RESX. */
3446 gsi = gsi_last_bb (bb);
3447 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3449 gimple stmt = gsi_stmt (gsi);
3450 if (is_gimple_debug (stmt))
3451 continue;
3452 if (gimple_code (stmt) == GIMPLE_LABEL)
3453 break;
3454 if (!gimple_clobber_p (stmt))
3455 return 0;
3456 any_clobbers = true;
3458 if (!any_clobbers)
3459 return 0;
3461 edge succe = single_succ_edge (bb);
3462 succbb = succe->dest;
3464 /* See if there is a virtual PHI node to take an updated virtual
3465 operand from. */
3466 gimple vphi = NULL;
3467 tree vuse = NULL_TREE;
3468 for (gsi = gsi_start_phis (succbb); !gsi_end_p (gsi); gsi_next (&gsi))
3470 tree res = gimple_phi_result (gsi_stmt (gsi));
3471 if (virtual_operand_p (res))
3473 vphi = gsi_stmt (gsi);
3474 vuse = res;
3475 break;
3479 dgsi = gsi_after_labels (succbb);
3480 gsi = gsi_last_bb (bb);
3481 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3483 gimple stmt = gsi_stmt (gsi);
3484 tree lhs;
3485 if (is_gimple_debug (stmt))
3486 continue;
3487 if (gimple_code (stmt) == GIMPLE_LABEL)
3488 break;
3489 lhs = gimple_assign_lhs (stmt);
3490 /* Unfortunately we don't have dominance info updated at this
3491 point, so checking if
3492 dominated_by_p (CDI_DOMINATORS, succbb,
3493 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3494 would be too costly. Thus, avoid sinking any clobbers that
3495 refer to non-(D) SSA_NAMEs. */
3496 if (TREE_CODE (lhs) == MEM_REF
3497 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3498 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3500 unlink_stmt_vdef (stmt);
3501 gsi_remove (&gsi, true);
3502 release_defs (stmt);
3503 continue;
3506 /* As we do not change stmt order when sinking across a
3507 forwarder edge we can keep virtual operands in place. */
3508 gsi_remove (&gsi, false);
3509 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3511 /* But adjust virtual operands if we sunk across a PHI node. */
3512 if (vuse)
3514 gimple use_stmt;
3515 imm_use_iterator iter;
3516 use_operand_p use_p;
3517 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3518 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3519 SET_USE (use_p, gimple_vdef (stmt));
3520 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3522 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3523 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3525 /* Adjust the incoming virtual operand. */
3526 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3527 SET_USE (gimple_vuse_op (stmt), vuse);
3529 /* If there isn't a single predecessor but no virtual PHI node
3530 arrange for virtual operands to be renamed. */
3531 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3532 && !single_pred_p (succbb))
3534 /* In this case there will be no use of the VDEF of this stmt.
3535 ??? Unless this is a secondary opportunity and we have not
3536 removed unreachable blocks yet, so we cannot assert this.
3537 Which also means we will end up renaming too many times. */
3538 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3539 mark_virtual_operands_for_renaming (cfun);
3540 todo |= TODO_update_ssa_only_virtuals;
3544 return todo;
3547 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3548 we have found some duplicate labels and removed some edges. */
3550 static bool
3551 lower_eh_dispatch (basic_block src, gimple stmt)
3553 gimple_stmt_iterator gsi;
3554 int region_nr;
3555 eh_region r;
3556 tree filter, fn;
3557 gimple x;
3558 bool redirected = false;
3560 region_nr = gimple_eh_dispatch_region (stmt);
3561 r = get_eh_region_from_number (region_nr);
3563 gsi = gsi_last_bb (src);
3565 switch (r->type)
3567 case ERT_TRY:
3569 vec<tree> labels = vNULL;
3570 tree default_label = NULL;
3571 eh_catch c;
3572 edge_iterator ei;
3573 edge e;
3574 struct pointer_set_t *seen_values = pointer_set_create ();
3576 /* Collect the labels for a switch. Zero the post_landing_pad
3577 field becase we'll no longer have anything keeping these labels
3578 in existence and the optimizer will be free to merge these
3579 blocks at will. */
3580 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3582 tree tp_node, flt_node, lab = c->label;
3583 bool have_label = false;
3585 c->label = NULL;
3586 tp_node = c->type_list;
3587 flt_node = c->filter_list;
3589 if (tp_node == NULL)
3591 default_label = lab;
3592 break;
3596 /* Filter out duplicate labels that arise when this handler
3597 is shadowed by an earlier one. When no labels are
3598 attached to the handler anymore, we remove
3599 the corresponding edge and then we delete unreachable
3600 blocks at the end of this pass. */
3601 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3603 tree t = build_case_label (TREE_VALUE (flt_node),
3604 NULL, lab);
3605 labels.safe_push (t);
3606 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3607 have_label = true;
3610 tp_node = TREE_CHAIN (tp_node);
3611 flt_node = TREE_CHAIN (flt_node);
3613 while (tp_node);
3614 if (! have_label)
3616 remove_edge (find_edge (src, label_to_block (lab)));
3617 redirected = true;
3621 /* Clean up the edge flags. */
3622 FOR_EACH_EDGE (e, ei, src->succs)
3624 if (e->flags & EDGE_FALLTHRU)
3626 /* If there was no catch-all, use the fallthru edge. */
3627 if (default_label == NULL)
3628 default_label = gimple_block_label (e->dest);
3629 e->flags &= ~EDGE_FALLTHRU;
3632 gcc_assert (default_label != NULL);
3634 /* Don't generate a switch if there's only a default case.
3635 This is common in the form of try { A; } catch (...) { B; }. */
3636 if (!labels.exists ())
3638 e = single_succ_edge (src);
3639 e->flags |= EDGE_FALLTHRU;
3641 else
3643 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3644 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3645 region_nr));
3646 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3647 filter = make_ssa_name (filter, x);
3648 gimple_call_set_lhs (x, filter);
3649 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3651 /* Turn the default label into a default case. */
3652 default_label = build_case_label (NULL, NULL, default_label);
3653 sort_case_labels (labels);
3655 x = gimple_build_switch (filter, default_label, labels);
3656 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3658 labels.release ();
3660 pointer_set_destroy (seen_values);
3662 break;
3664 case ERT_ALLOWED_EXCEPTIONS:
3666 edge b_e = BRANCH_EDGE (src);
3667 edge f_e = FALLTHRU_EDGE (src);
3669 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3670 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3671 region_nr));
3672 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3673 filter = make_ssa_name (filter, x);
3674 gimple_call_set_lhs (x, filter);
3675 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3677 r->u.allowed.label = NULL;
3678 x = gimple_build_cond (EQ_EXPR, filter,
3679 build_int_cst (TREE_TYPE (filter),
3680 r->u.allowed.filter),
3681 NULL_TREE, NULL_TREE);
3682 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3684 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3685 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3687 break;
3689 default:
3690 gcc_unreachable ();
3693 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3694 gsi_remove (&gsi, true);
3695 return redirected;
3698 static unsigned
3699 execute_lower_eh_dispatch (void)
3701 basic_block bb;
3702 int flags = 0;
3703 bool redirected = false;
3705 assign_filter_values ();
3707 FOR_EACH_BB (bb)
3709 gimple last = last_stmt (bb);
3710 if (last == NULL)
3711 continue;
3712 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3714 redirected |= lower_eh_dispatch (bb, last);
3715 flags |= TODO_update_ssa_only_virtuals;
3717 else if (gimple_code (last) == GIMPLE_RESX)
3719 if (stmt_can_throw_external (last))
3720 optimize_clobbers (bb);
3721 else
3722 flags |= sink_clobbers (bb);
3726 if (redirected)
3727 delete_unreachable_blocks ();
3728 return flags;
3731 static bool
3732 gate_lower_eh_dispatch (void)
3734 return cfun->eh->region_tree != NULL;
3737 namespace {
3739 const pass_data pass_data_lower_eh_dispatch =
3741 GIMPLE_PASS, /* type */
3742 "ehdisp", /* name */
3743 OPTGROUP_NONE, /* optinfo_flags */
3744 true, /* has_gate */
3745 true, /* has_execute */
3746 TV_TREE_EH, /* tv_id */
3747 PROP_gimple_lcf, /* properties_required */
3748 0, /* properties_provided */
3749 0, /* properties_destroyed */
3750 0, /* todo_flags_start */
3751 TODO_verify_flow, /* todo_flags_finish */
3754 class pass_lower_eh_dispatch : public gimple_opt_pass
3756 public:
3757 pass_lower_eh_dispatch (gcc::context *ctxt)
3758 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3761 /* opt_pass methods: */
3762 bool gate () { return gate_lower_eh_dispatch (); }
3763 unsigned int execute () { return execute_lower_eh_dispatch (); }
3765 }; // class pass_lower_eh_dispatch
3767 } // anon namespace
3769 gimple_opt_pass *
3770 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3772 return new pass_lower_eh_dispatch (ctxt);
3775 /* Walk statements, see what regions and, optionally, landing pads
3776 are really referenced.
3778 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3779 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3781 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3782 regions are marked.
3784 The caller is responsible for freeing the returned sbitmaps. */
3786 static void
3787 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3789 sbitmap r_reachable, lp_reachable;
3790 basic_block bb;
3791 bool mark_landing_pads = (lp_reachablep != NULL);
3792 gcc_checking_assert (r_reachablep != NULL);
3794 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3795 bitmap_clear (r_reachable);
3796 *r_reachablep = r_reachable;
3798 if (mark_landing_pads)
3800 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3801 bitmap_clear (lp_reachable);
3802 *lp_reachablep = lp_reachable;
3804 else
3805 lp_reachable = NULL;
3807 FOR_EACH_BB (bb)
3809 gimple_stmt_iterator gsi;
3811 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3813 gimple stmt = gsi_stmt (gsi);
3815 if (mark_landing_pads)
3817 int lp_nr = lookup_stmt_eh_lp (stmt);
3819 /* Negative LP numbers are MUST_NOT_THROW regions which
3820 are not considered BB enders. */
3821 if (lp_nr < 0)
3822 bitmap_set_bit (r_reachable, -lp_nr);
3824 /* Positive LP numbers are real landing pads, and BB enders. */
3825 else if (lp_nr > 0)
3827 gcc_assert (gsi_one_before_end_p (gsi));
3828 eh_region region = get_eh_region_from_lp_number (lp_nr);
3829 bitmap_set_bit (r_reachable, region->index);
3830 bitmap_set_bit (lp_reachable, lp_nr);
3834 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3835 switch (gimple_code (stmt))
3837 case GIMPLE_RESX:
3838 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3839 break;
3840 case GIMPLE_EH_DISPATCH:
3841 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3842 break;
3843 default:
3844 break;
3850 /* Remove unreachable handlers and unreachable landing pads. */
3852 static void
3853 remove_unreachable_handlers (void)
3855 sbitmap r_reachable, lp_reachable;
3856 eh_region region;
3857 eh_landing_pad lp;
3858 unsigned i;
3860 mark_reachable_handlers (&r_reachable, &lp_reachable);
3862 if (dump_file)
3864 fprintf (dump_file, "Before removal of unreachable regions:\n");
3865 dump_eh_tree (dump_file, cfun);
3866 fprintf (dump_file, "Reachable regions: ");
3867 dump_bitmap_file (dump_file, r_reachable);
3868 fprintf (dump_file, "Reachable landing pads: ");
3869 dump_bitmap_file (dump_file, lp_reachable);
3872 if (dump_file)
3874 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3875 if (region && !bitmap_bit_p (r_reachable, region->index))
3876 fprintf (dump_file,
3877 "Removing unreachable region %d\n",
3878 region->index);
3881 remove_unreachable_eh_regions (r_reachable);
3883 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3884 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3886 if (dump_file)
3887 fprintf (dump_file,
3888 "Removing unreachable landing pad %d\n",
3889 lp->index);
3890 remove_eh_landing_pad (lp);
3893 if (dump_file)
3895 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3896 dump_eh_tree (dump_file, cfun);
3897 fprintf (dump_file, "\n\n");
3900 sbitmap_free (r_reachable);
3901 sbitmap_free (lp_reachable);
3903 #ifdef ENABLE_CHECKING
3904 verify_eh_tree (cfun);
3905 #endif
3908 /* Remove unreachable handlers if any landing pads have been removed after
3909 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3911 void
3912 maybe_remove_unreachable_handlers (void)
3914 eh_landing_pad lp;
3915 unsigned i;
3917 if (cfun->eh == NULL)
3918 return;
3920 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3921 if (lp && lp->post_landing_pad)
3923 if (label_to_block (lp->post_landing_pad) == NULL)
3925 remove_unreachable_handlers ();
3926 return;
3931 /* Remove regions that do not have landing pads. This assumes
3932 that remove_unreachable_handlers has already been run, and
3933 that we've just manipulated the landing pads since then.
3935 Preserve regions with landing pads and regions that prevent
3936 exceptions from propagating further, even if these regions
3937 are not reachable. */
3939 static void
3940 remove_unreachable_handlers_no_lp (void)
3942 eh_region region;
3943 sbitmap r_reachable;
3944 unsigned i;
3946 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3948 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3950 if (! region)
3951 continue;
3953 if (region->landing_pads != NULL
3954 || region->type == ERT_MUST_NOT_THROW)
3955 bitmap_set_bit (r_reachable, region->index);
3957 if (dump_file
3958 && !bitmap_bit_p (r_reachable, region->index))
3959 fprintf (dump_file,
3960 "Removing unreachable region %d\n",
3961 region->index);
3964 remove_unreachable_eh_regions (r_reachable);
3966 sbitmap_free (r_reachable);
3969 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3970 optimisticaly split all sorts of edges, including EH edges. The
3971 optimization passes in between may not have needed them; if not,
3972 we should undo the split.
3974 Recognize this case by having one EH edge incoming to the BB and
3975 one normal edge outgoing; BB should be empty apart from the
3976 post_landing_pad label.
3978 Note that this is slightly different from the empty handler case
3979 handled by cleanup_empty_eh, in that the actual handler may yet
3980 have actual code but the landing pad has been separated from the
3981 handler. As such, cleanup_empty_eh relies on this transformation
3982 having been done first. */
3984 static bool
3985 unsplit_eh (eh_landing_pad lp)
3987 basic_block bb = label_to_block (lp->post_landing_pad);
3988 gimple_stmt_iterator gsi;
3989 edge e_in, e_out;
3991 /* Quickly check the edge counts on BB for singularity. */
3992 if (!single_pred_p (bb) || !single_succ_p (bb))
3993 return false;
3994 e_in = single_pred_edge (bb);
3995 e_out = single_succ_edge (bb);
3997 /* Input edge must be EH and output edge must be normal. */
3998 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3999 return false;
4001 /* The block must be empty except for the labels and debug insns. */
4002 gsi = gsi_after_labels (bb);
4003 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4004 gsi_next_nondebug (&gsi);
4005 if (!gsi_end_p (gsi))
4006 return false;
4008 /* The destination block must not already have a landing pad
4009 for a different region. */
4010 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4012 gimple stmt = gsi_stmt (gsi);
4013 tree lab;
4014 int lp_nr;
4016 if (gimple_code (stmt) != GIMPLE_LABEL)
4017 break;
4018 lab = gimple_label_label (stmt);
4019 lp_nr = EH_LANDING_PAD_NR (lab);
4020 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4021 return false;
4024 /* The new destination block must not already be a destination of
4025 the source block, lest we merge fallthru and eh edges and get
4026 all sorts of confused. */
4027 if (find_edge (e_in->src, e_out->dest))
4028 return false;
4030 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4031 thought this should have been cleaned up by a phicprop pass, but
4032 that doesn't appear to handle virtuals. Propagate by hand. */
4033 if (!gimple_seq_empty_p (phi_nodes (bb)))
4035 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
4037 gimple use_stmt, phi = gsi_stmt (gsi);
4038 tree lhs = gimple_phi_result (phi);
4039 tree rhs = gimple_phi_arg_def (phi, 0);
4040 use_operand_p use_p;
4041 imm_use_iterator iter;
4043 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4045 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4046 SET_USE (use_p, rhs);
4049 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4050 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4052 remove_phi_node (&gsi, true);
4056 if (dump_file && (dump_flags & TDF_DETAILS))
4057 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4058 lp->index, e_out->dest->index);
4060 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4061 a successor edge, humor it. But do the real CFG change with the
4062 predecessor of E_OUT in order to preserve the ordering of arguments
4063 to the PHI nodes in E_OUT->DEST. */
4064 redirect_eh_edge_1 (e_in, e_out->dest, false);
4065 redirect_edge_pred (e_out, e_in->src);
4066 e_out->flags = e_in->flags;
4067 e_out->probability = e_in->probability;
4068 e_out->count = e_in->count;
4069 remove_edge (e_in);
4071 return true;
4074 /* Examine each landing pad block and see if it matches unsplit_eh. */
4076 static bool
4077 unsplit_all_eh (void)
4079 bool changed = false;
4080 eh_landing_pad lp;
4081 int i;
4083 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4084 if (lp)
4085 changed |= unsplit_eh (lp);
4087 return changed;
4090 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4091 to OLD_BB to NEW_BB; return true on success, false on failure.
4093 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4094 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4095 Virtual PHIs may be deleted and marked for renaming. */
4097 static bool
4098 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4099 edge old_bb_out, bool change_region)
4101 gimple_stmt_iterator ngsi, ogsi;
4102 edge_iterator ei;
4103 edge e;
4104 bitmap ophi_handled;
4106 /* The destination block must not be a regular successor for any
4107 of the preds of the landing pad. Thus, avoid turning
4108 <..>
4109 | \ EH
4110 | <..>
4112 <..>
4113 into
4114 <..>
4115 | | EH
4116 <..>
4117 which CFG verification would choke on. See PR45172 and PR51089. */
4118 FOR_EACH_EDGE (e, ei, old_bb->preds)
4119 if (find_edge (e->src, new_bb))
4120 return false;
4122 FOR_EACH_EDGE (e, ei, old_bb->preds)
4123 redirect_edge_var_map_clear (e);
4125 ophi_handled = BITMAP_ALLOC (NULL);
4127 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4128 for the edges we're going to move. */
4129 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4131 gimple ophi, nphi = gsi_stmt (ngsi);
4132 tree nresult, nop;
4134 nresult = gimple_phi_result (nphi);
4135 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4137 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4138 the source ssa_name. */
4139 ophi = NULL;
4140 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4142 ophi = gsi_stmt (ogsi);
4143 if (gimple_phi_result (ophi) == nop)
4144 break;
4145 ophi = NULL;
4148 /* If we did find the corresponding PHI, copy those inputs. */
4149 if (ophi)
4151 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4152 if (!has_single_use (nop))
4154 imm_use_iterator imm_iter;
4155 use_operand_p use_p;
4157 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4159 if (!gimple_debug_bind_p (USE_STMT (use_p))
4160 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4161 || gimple_bb (USE_STMT (use_p)) != new_bb))
4162 goto fail;
4165 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4166 FOR_EACH_EDGE (e, ei, old_bb->preds)
4168 location_t oloc;
4169 tree oop;
4171 if ((e->flags & EDGE_EH) == 0)
4172 continue;
4173 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4174 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4175 redirect_edge_var_map_add (e, nresult, oop, oloc);
4178 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4179 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4180 variable is unchanged from input to the block and we can simply
4181 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4182 else
4184 location_t nloc
4185 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4186 FOR_EACH_EDGE (e, ei, old_bb->preds)
4187 redirect_edge_var_map_add (e, nresult, nop, nloc);
4191 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4192 we don't know what values from the other edges into NEW_BB to use. */
4193 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4195 gimple ophi = gsi_stmt (ogsi);
4196 tree oresult = gimple_phi_result (ophi);
4197 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4198 goto fail;
4201 /* Finally, move the edges and update the PHIs. */
4202 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4203 if (e->flags & EDGE_EH)
4205 /* ??? CFG manipluation routines do not try to update loop
4206 form on edge redirection. Do so manually here for now. */
4207 /* If we redirect a loop entry or latch edge that will either create
4208 a multiple entry loop or rotate the loop. If the loops merge
4209 we may have created a loop with multiple latches.
4210 All of this isn't easily fixed thus cancel the affected loop
4211 and mark the other loop as possibly having multiple latches. */
4212 if (current_loops
4213 && e->dest == e->dest->loop_father->header)
4215 e->dest->loop_father->header = NULL;
4216 e->dest->loop_father->latch = NULL;
4217 new_bb->loop_father->latch = NULL;
4218 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4220 redirect_eh_edge_1 (e, new_bb, change_region);
4221 redirect_edge_succ (e, new_bb);
4222 flush_pending_stmts (e);
4224 else
4225 ei_next (&ei);
4227 BITMAP_FREE (ophi_handled);
4228 return true;
4230 fail:
4231 FOR_EACH_EDGE (e, ei, old_bb->preds)
4232 redirect_edge_var_map_clear (e);
4233 BITMAP_FREE (ophi_handled);
4234 return false;
4237 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4238 old region to NEW_REGION at BB. */
4240 static void
4241 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4242 eh_landing_pad lp, eh_region new_region)
4244 gimple_stmt_iterator gsi;
4245 eh_landing_pad *pp;
4247 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4248 continue;
4249 *pp = lp->next_lp;
4251 lp->region = new_region;
4252 lp->next_lp = new_region->landing_pads;
4253 new_region->landing_pads = lp;
4255 /* Delete the RESX that was matched within the empty handler block. */
4256 gsi = gsi_last_bb (bb);
4257 unlink_stmt_vdef (gsi_stmt (gsi));
4258 gsi_remove (&gsi, true);
4260 /* Clean up E_OUT for the fallthru. */
4261 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4262 e_out->probability = REG_BR_PROB_BASE;
4265 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4266 unsplitting than unsplit_eh was prepared to handle, e.g. when
4267 multiple incoming edges and phis are involved. */
4269 static bool
4270 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4272 gimple_stmt_iterator gsi;
4273 tree lab;
4275 /* We really ought not have totally lost everything following
4276 a landing pad label. Given that BB is empty, there had better
4277 be a successor. */
4278 gcc_assert (e_out != NULL);
4280 /* The destination block must not already have a landing pad
4281 for a different region. */
4282 lab = NULL;
4283 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4285 gimple stmt = gsi_stmt (gsi);
4286 int lp_nr;
4288 if (gimple_code (stmt) != GIMPLE_LABEL)
4289 break;
4290 lab = gimple_label_label (stmt);
4291 lp_nr = EH_LANDING_PAD_NR (lab);
4292 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4293 return false;
4296 /* Attempt to move the PHIs into the successor block. */
4297 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4299 if (dump_file && (dump_flags & TDF_DETAILS))
4300 fprintf (dump_file,
4301 "Unsplit EH landing pad %d to block %i "
4302 "(via cleanup_empty_eh).\n",
4303 lp->index, e_out->dest->index);
4304 return true;
4307 return false;
4310 /* Return true if edge E_FIRST is part of an empty infinite loop
4311 or leads to such a loop through a series of single successor
4312 empty bbs. */
4314 static bool
4315 infinite_empty_loop_p (edge e_first)
4317 bool inf_loop = false;
4318 edge e;
4320 if (e_first->dest == e_first->src)
4321 return true;
4323 e_first->src->aux = (void *) 1;
4324 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4326 gimple_stmt_iterator gsi;
4327 if (e->dest->aux)
4329 inf_loop = true;
4330 break;
4332 e->dest->aux = (void *) 1;
4333 gsi = gsi_after_labels (e->dest);
4334 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4335 gsi_next_nondebug (&gsi);
4336 if (!gsi_end_p (gsi))
4337 break;
4339 e_first->src->aux = NULL;
4340 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4341 e->dest->aux = NULL;
4343 return inf_loop;
4346 /* Examine the block associated with LP to determine if it's an empty
4347 handler for its EH region. If so, attempt to redirect EH edges to
4348 an outer region. Return true the CFG was updated in any way. This
4349 is similar to jump forwarding, just across EH edges. */
4351 static bool
4352 cleanup_empty_eh (eh_landing_pad lp)
4354 basic_block bb = label_to_block (lp->post_landing_pad);
4355 gimple_stmt_iterator gsi;
4356 gimple resx;
4357 eh_region new_region;
4358 edge_iterator ei;
4359 edge e, e_out;
4360 bool has_non_eh_pred;
4361 bool ret = false;
4362 int new_lp_nr;
4364 /* There can be zero or one edges out of BB. This is the quickest test. */
4365 switch (EDGE_COUNT (bb->succs))
4367 case 0:
4368 e_out = NULL;
4369 break;
4370 case 1:
4371 e_out = single_succ_edge (bb);
4372 break;
4373 default:
4374 return false;
4377 resx = last_stmt (bb);
4378 if (resx && is_gimple_resx (resx))
4380 if (stmt_can_throw_external (resx))
4381 optimize_clobbers (bb);
4382 else if (sink_clobbers (bb))
4383 ret = true;
4386 gsi = gsi_after_labels (bb);
4388 /* Make sure to skip debug statements. */
4389 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4390 gsi_next_nondebug (&gsi);
4392 /* If the block is totally empty, look for more unsplitting cases. */
4393 if (gsi_end_p (gsi))
4395 /* For the degenerate case of an infinite loop bail out. */
4396 if (infinite_empty_loop_p (e_out))
4397 return ret;
4399 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4402 /* The block should consist only of a single RESX statement, modulo a
4403 preceding call to __builtin_stack_restore if there is no outgoing
4404 edge, since the call can be eliminated in this case. */
4405 resx = gsi_stmt (gsi);
4406 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4408 gsi_next (&gsi);
4409 resx = gsi_stmt (gsi);
4411 if (!is_gimple_resx (resx))
4412 return ret;
4413 gcc_assert (gsi_one_before_end_p (gsi));
4415 /* Determine if there are non-EH edges, or resx edges into the handler. */
4416 has_non_eh_pred = false;
4417 FOR_EACH_EDGE (e, ei, bb->preds)
4418 if (!(e->flags & EDGE_EH))
4419 has_non_eh_pred = true;
4421 /* Find the handler that's outer of the empty handler by looking at
4422 where the RESX instruction was vectored. */
4423 new_lp_nr = lookup_stmt_eh_lp (resx);
4424 new_region = get_eh_region_from_lp_number (new_lp_nr);
4426 /* If there's no destination region within the current function,
4427 redirection is trivial via removing the throwing statements from
4428 the EH region, removing the EH edges, and allowing the block
4429 to go unreachable. */
4430 if (new_region == NULL)
4432 gcc_assert (e_out == NULL);
4433 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4434 if (e->flags & EDGE_EH)
4436 gimple stmt = last_stmt (e->src);
4437 remove_stmt_from_eh_lp (stmt);
4438 remove_edge (e);
4440 else
4441 ei_next (&ei);
4442 goto succeed;
4445 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4446 to handle the abort and allow the blocks to go unreachable. */
4447 if (new_region->type == ERT_MUST_NOT_THROW)
4449 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4450 if (e->flags & EDGE_EH)
4452 gimple stmt = last_stmt (e->src);
4453 remove_stmt_from_eh_lp (stmt);
4454 add_stmt_to_eh_lp (stmt, new_lp_nr);
4455 remove_edge (e);
4457 else
4458 ei_next (&ei);
4459 goto succeed;
4462 /* Try to redirect the EH edges and merge the PHIs into the destination
4463 landing pad block. If the merge succeeds, we'll already have redirected
4464 all the EH edges. The handler itself will go unreachable if there were
4465 no normal edges. */
4466 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4467 goto succeed;
4469 /* Finally, if all input edges are EH edges, then we can (potentially)
4470 reduce the number of transfers from the runtime by moving the landing
4471 pad from the original region to the new region. This is a win when
4472 we remove the last CLEANUP region along a particular exception
4473 propagation path. Since nothing changes except for the region with
4474 which the landing pad is associated, the PHI nodes do not need to be
4475 adjusted at all. */
4476 if (!has_non_eh_pred)
4478 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4479 if (dump_file && (dump_flags & TDF_DETAILS))
4480 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4481 lp->index, new_region->index);
4483 /* ??? The CFG didn't change, but we may have rendered the
4484 old EH region unreachable. Trigger a cleanup there. */
4485 return true;
4488 return ret;
4490 succeed:
4491 if (dump_file && (dump_flags & TDF_DETAILS))
4492 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4493 remove_eh_landing_pad (lp);
4494 return true;
4497 /* Do a post-order traversal of the EH region tree. Examine each
4498 post_landing_pad block and see if we can eliminate it as empty. */
4500 static bool
4501 cleanup_all_empty_eh (void)
4503 bool changed = false;
4504 eh_landing_pad lp;
4505 int i;
4507 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4508 if (lp)
4509 changed |= cleanup_empty_eh (lp);
4511 return changed;
4514 /* Perform cleanups and lowering of exception handling
4515 1) cleanups regions with handlers doing nothing are optimized out
4516 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4517 3) Info about regions that are containing instructions, and regions
4518 reachable via local EH edges is collected
4519 4) Eh tree is pruned for regions no longer necessary.
4521 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4522 Unify those that have the same failure decl and locus.
4525 static unsigned int
4526 execute_cleanup_eh_1 (void)
4528 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4529 looking up unreachable landing pads. */
4530 remove_unreachable_handlers ();
4532 /* Watch out for the region tree vanishing due to all unreachable. */
4533 if (cfun->eh->region_tree && optimize)
4535 bool changed = false;
4537 changed |= unsplit_all_eh ();
4538 changed |= cleanup_all_empty_eh ();
4540 if (changed)
4542 free_dominance_info (CDI_DOMINATORS);
4543 free_dominance_info (CDI_POST_DOMINATORS);
4545 /* We delayed all basic block deletion, as we may have performed
4546 cleanups on EH edges while non-EH edges were still present. */
4547 delete_unreachable_blocks ();
4549 /* We manipulated the landing pads. Remove any region that no
4550 longer has a landing pad. */
4551 remove_unreachable_handlers_no_lp ();
4553 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4557 return 0;
4560 static unsigned int
4561 execute_cleanup_eh (void)
4563 int ret = execute_cleanup_eh_1 ();
4565 /* If the function no longer needs an EH personality routine
4566 clear it. This exposes cross-language inlining opportunities
4567 and avoids references to a never defined personality routine. */
4568 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4569 && function_needs_eh_personality (cfun) != eh_personality_lang)
4570 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4572 return ret;
4575 static bool
4576 gate_cleanup_eh (void)
4578 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4581 namespace {
4583 const pass_data pass_data_cleanup_eh =
4585 GIMPLE_PASS, /* type */
4586 "ehcleanup", /* name */
4587 OPTGROUP_NONE, /* optinfo_flags */
4588 true, /* has_gate */
4589 true, /* has_execute */
4590 TV_TREE_EH, /* tv_id */
4591 PROP_gimple_lcf, /* properties_required */
4592 0, /* properties_provided */
4593 0, /* properties_destroyed */
4594 0, /* todo_flags_start */
4595 TODO_verify_ssa, /* todo_flags_finish */
4598 class pass_cleanup_eh : public gimple_opt_pass
4600 public:
4601 pass_cleanup_eh (gcc::context *ctxt)
4602 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4605 /* opt_pass methods: */
4606 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4607 bool gate () { return gate_cleanup_eh (); }
4608 unsigned int execute () { return execute_cleanup_eh (); }
4610 }; // class pass_cleanup_eh
4612 } // anon namespace
4614 gimple_opt_pass *
4615 make_pass_cleanup_eh (gcc::context *ctxt)
4617 return new pass_cleanup_eh (ctxt);
4620 /* Verify that BB containing STMT as the last statement, has precisely the
4621 edge that make_eh_edges would create. */
4623 DEBUG_FUNCTION bool
4624 verify_eh_edges (gimple stmt)
4626 basic_block bb = gimple_bb (stmt);
4627 eh_landing_pad lp = NULL;
4628 int lp_nr;
4629 edge_iterator ei;
4630 edge e, eh_edge;
4632 lp_nr = lookup_stmt_eh_lp (stmt);
4633 if (lp_nr > 0)
4634 lp = get_eh_landing_pad_from_number (lp_nr);
4636 eh_edge = NULL;
4637 FOR_EACH_EDGE (e, ei, bb->succs)
4639 if (e->flags & EDGE_EH)
4641 if (eh_edge)
4643 error ("BB %i has multiple EH edges", bb->index);
4644 return true;
4646 else
4647 eh_edge = e;
4651 if (lp == NULL)
4653 if (eh_edge)
4655 error ("BB %i can not throw but has an EH edge", bb->index);
4656 return true;
4658 return false;
4661 if (!stmt_could_throw_p (stmt))
4663 error ("BB %i last statement has incorrectly set lp", bb->index);
4664 return true;
4667 if (eh_edge == NULL)
4669 error ("BB %i is missing an EH edge", bb->index);
4670 return true;
4673 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4675 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4676 return true;
4679 return false;
4682 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4684 DEBUG_FUNCTION bool
4685 verify_eh_dispatch_edge (gimple stmt)
4687 eh_region r;
4688 eh_catch c;
4689 basic_block src, dst;
4690 bool want_fallthru = true;
4691 edge_iterator ei;
4692 edge e, fall_edge;
4694 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4695 src = gimple_bb (stmt);
4697 FOR_EACH_EDGE (e, ei, src->succs)
4698 gcc_assert (e->aux == NULL);
4700 switch (r->type)
4702 case ERT_TRY:
4703 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4705 dst = label_to_block (c->label);
4706 e = find_edge (src, dst);
4707 if (e == NULL)
4709 error ("BB %i is missing an edge", src->index);
4710 return true;
4712 e->aux = (void *)e;
4714 /* A catch-all handler doesn't have a fallthru. */
4715 if (c->type_list == NULL)
4717 want_fallthru = false;
4718 break;
4721 break;
4723 case ERT_ALLOWED_EXCEPTIONS:
4724 dst = label_to_block (r->u.allowed.label);
4725 e = find_edge (src, dst);
4726 if (e == NULL)
4728 error ("BB %i is missing an edge", src->index);
4729 return true;
4731 e->aux = (void *)e;
4732 break;
4734 default:
4735 gcc_unreachable ();
4738 fall_edge = NULL;
4739 FOR_EACH_EDGE (e, ei, src->succs)
4741 if (e->flags & EDGE_FALLTHRU)
4743 if (fall_edge != NULL)
4745 error ("BB %i too many fallthru edges", src->index);
4746 return true;
4748 fall_edge = e;
4750 else if (e->aux)
4751 e->aux = NULL;
4752 else
4754 error ("BB %i has incorrect edge", src->index);
4755 return true;
4758 if ((fall_edge != NULL) ^ want_fallthru)
4760 error ("BB %i has incorrect fallthru edge", src->index);
4761 return true;
4764 return false;