* gcc.dg/c11-complex-1.c: Use dg-add-options ieee.
[official-gcc.git] / gcc / tree-complex.c
blob130674e673f56125baba1b7131fa86e2c6cfee83
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "gimple.h"
27 #include "gimplify.h"
28 #include "gimple-iterator.h"
29 #include "gimplify-me.h"
30 #include "gimple-ssa.h"
31 #include "tree-cfg.h"
32 #include "tree-phinodes.h"
33 #include "ssa-iterators.h"
34 #include "tree-ssanames.h"
35 #include "tree-dfa.h"
36 #include "tree-ssa.h"
37 #include "tree-iterator.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
44 /* For each complex ssa name, a lattice value. We're interested in finding
45 out whether a complex number is degenerate in some way, having only real
46 or only complex parts. */
48 enum
50 UNINITIALIZED = 0,
51 ONLY_REAL = 1,
52 ONLY_IMAG = 2,
53 VARYING = 3
56 /* The type complex_lattice_t holds combinations of the above
57 constants. */
58 typedef int complex_lattice_t;
60 #define PAIR(a, b) ((a) << 2 | (b))
63 static vec<complex_lattice_t> complex_lattice_values;
65 /* For each complex variable, a pair of variables for the components exists in
66 the hashtable. */
67 static int_tree_htab_type complex_variable_components;
69 /* For each complex SSA_NAME, a pair of ssa names for the components. */
70 static vec<tree> complex_ssa_name_components;
72 /* Lookup UID in the complex_variable_components hashtable and return the
73 associated tree. */
74 static tree
75 cvc_lookup (unsigned int uid)
77 struct int_tree_map *h, in;
78 in.uid = uid;
79 h = complex_variable_components.find_with_hash (&in, uid);
80 return h ? h->to : NULL;
83 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
85 static void
86 cvc_insert (unsigned int uid, tree to)
88 struct int_tree_map *h;
89 int_tree_map **loc;
91 h = XNEW (struct int_tree_map);
92 h->uid = uid;
93 h->to = to;
94 loc = complex_variable_components.find_slot_with_hash (h, uid, INSERT);
95 *loc = h;
98 /* Return true if T is not a zero constant. In the case of real values,
99 we're only interested in +0.0. */
101 static int
102 some_nonzerop (tree t)
104 int zerop = false;
106 /* Operations with real or imaginary part of a complex number zero
107 cannot be treated the same as operations with a real or imaginary
108 operand if we care about the signs of zeros in the result. */
109 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
110 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
111 else if (TREE_CODE (t) == FIXED_CST)
112 zerop = fixed_zerop (t);
113 else if (TREE_CODE (t) == INTEGER_CST)
114 zerop = integer_zerop (t);
116 return !zerop;
120 /* Compute a lattice value from the components of a complex type REAL
121 and IMAG. */
123 static complex_lattice_t
124 find_lattice_value_parts (tree real, tree imag)
126 int r, i;
127 complex_lattice_t ret;
129 r = some_nonzerop (real);
130 i = some_nonzerop (imag);
131 ret = r * ONLY_REAL + i * ONLY_IMAG;
133 /* ??? On occasion we could do better than mapping 0+0i to real, but we
134 certainly don't want to leave it UNINITIALIZED, which eventually gets
135 mapped to VARYING. */
136 if (ret == UNINITIALIZED)
137 ret = ONLY_REAL;
139 return ret;
143 /* Compute a lattice value from gimple_val T. */
145 static complex_lattice_t
146 find_lattice_value (tree t)
148 tree real, imag;
150 switch (TREE_CODE (t))
152 case SSA_NAME:
153 return complex_lattice_values[SSA_NAME_VERSION (t)];
155 case COMPLEX_CST:
156 real = TREE_REALPART (t);
157 imag = TREE_IMAGPART (t);
158 break;
160 default:
161 gcc_unreachable ();
164 return find_lattice_value_parts (real, imag);
167 /* Determine if LHS is something for which we're interested in seeing
168 simulation results. */
170 static bool
171 is_complex_reg (tree lhs)
173 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
176 /* Mark the incoming parameters to the function as VARYING. */
178 static void
179 init_parameter_lattice_values (void)
181 tree parm, ssa_name;
183 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
184 if (is_complex_reg (parm)
185 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
186 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
189 /* Initialize simulation state for each statement. Return false if we
190 found no statements we want to simulate, and thus there's nothing
191 for the entire pass to do. */
193 static bool
194 init_dont_simulate_again (void)
196 basic_block bb;
197 gimple_stmt_iterator gsi;
198 gimple phi;
199 bool saw_a_complex_op = false;
201 FOR_EACH_BB (bb)
203 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
205 phi = gsi_stmt (gsi);
206 prop_set_simulate_again (phi,
207 is_complex_reg (gimple_phi_result (phi)));
210 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
212 gimple stmt;
213 tree op0, op1;
214 bool sim_again_p;
216 stmt = gsi_stmt (gsi);
217 op0 = op1 = NULL_TREE;
219 /* Most control-altering statements must be initially
220 simulated, else we won't cover the entire cfg. */
221 sim_again_p = stmt_ends_bb_p (stmt);
223 switch (gimple_code (stmt))
225 case GIMPLE_CALL:
226 if (gimple_call_lhs (stmt))
227 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
228 break;
230 case GIMPLE_ASSIGN:
231 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
232 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
233 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
234 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
235 else
236 op0 = gimple_assign_rhs1 (stmt);
237 if (gimple_num_ops (stmt) > 2)
238 op1 = gimple_assign_rhs2 (stmt);
239 break;
241 case GIMPLE_COND:
242 op0 = gimple_cond_lhs (stmt);
243 op1 = gimple_cond_rhs (stmt);
244 break;
246 default:
247 break;
250 if (op0 || op1)
251 switch (gimple_expr_code (stmt))
253 case EQ_EXPR:
254 case NE_EXPR:
255 case PLUS_EXPR:
256 case MINUS_EXPR:
257 case MULT_EXPR:
258 case TRUNC_DIV_EXPR:
259 case CEIL_DIV_EXPR:
260 case FLOOR_DIV_EXPR:
261 case ROUND_DIV_EXPR:
262 case RDIV_EXPR:
263 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
264 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
265 saw_a_complex_op = true;
266 break;
268 case NEGATE_EXPR:
269 case CONJ_EXPR:
270 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
271 saw_a_complex_op = true;
272 break;
274 case REALPART_EXPR:
275 case IMAGPART_EXPR:
276 /* The total store transformation performed during
277 gimplification creates such uninitialized loads
278 and we need to lower the statement to be able
279 to fix things up. */
280 if (TREE_CODE (op0) == SSA_NAME
281 && ssa_undefined_value_p (op0))
282 saw_a_complex_op = true;
283 break;
285 default:
286 break;
289 prop_set_simulate_again (stmt, sim_again_p);
293 return saw_a_complex_op;
297 /* Evaluate statement STMT against the complex lattice defined above. */
299 static enum ssa_prop_result
300 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
301 tree *result_p)
303 complex_lattice_t new_l, old_l, op1_l, op2_l;
304 unsigned int ver;
305 tree lhs;
307 lhs = gimple_get_lhs (stmt);
308 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
309 if (!lhs)
310 return SSA_PROP_VARYING;
312 /* These conditions should be satisfied due to the initial filter
313 set up in init_dont_simulate_again. */
314 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
315 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
317 *result_p = lhs;
318 ver = SSA_NAME_VERSION (lhs);
319 old_l = complex_lattice_values[ver];
321 switch (gimple_expr_code (stmt))
323 case SSA_NAME:
324 case COMPLEX_CST:
325 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
326 break;
328 case COMPLEX_EXPR:
329 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
330 gimple_assign_rhs2 (stmt));
331 break;
333 case PLUS_EXPR:
334 case MINUS_EXPR:
335 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
336 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
338 /* We've set up the lattice values such that IOR neatly
339 models addition. */
340 new_l = op1_l | op2_l;
341 break;
343 case MULT_EXPR:
344 case RDIV_EXPR:
345 case TRUNC_DIV_EXPR:
346 case CEIL_DIV_EXPR:
347 case FLOOR_DIV_EXPR:
348 case ROUND_DIV_EXPR:
349 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
350 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
352 /* Obviously, if either varies, so does the result. */
353 if (op1_l == VARYING || op2_l == VARYING)
354 new_l = VARYING;
355 /* Don't prematurely promote variables if we've not yet seen
356 their inputs. */
357 else if (op1_l == UNINITIALIZED)
358 new_l = op2_l;
359 else if (op2_l == UNINITIALIZED)
360 new_l = op1_l;
361 else
363 /* At this point both numbers have only one component. If the
364 numbers are of opposite kind, the result is imaginary,
365 otherwise the result is real. The add/subtract translates
366 the real/imag from/to 0/1; the ^ performs the comparison. */
367 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
369 /* Don't allow the lattice value to flip-flop indefinitely. */
370 new_l |= old_l;
372 break;
374 case NEGATE_EXPR:
375 case CONJ_EXPR:
376 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
377 break;
379 default:
380 new_l = VARYING;
381 break;
384 /* If nothing changed this round, let the propagator know. */
385 if (new_l == old_l)
386 return SSA_PROP_NOT_INTERESTING;
388 complex_lattice_values[ver] = new_l;
389 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
392 /* Evaluate a PHI node against the complex lattice defined above. */
394 static enum ssa_prop_result
395 complex_visit_phi (gimple phi)
397 complex_lattice_t new_l, old_l;
398 unsigned int ver;
399 tree lhs;
400 int i;
402 lhs = gimple_phi_result (phi);
404 /* This condition should be satisfied due to the initial filter
405 set up in init_dont_simulate_again. */
406 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
408 /* We've set up the lattice values such that IOR neatly models PHI meet. */
409 new_l = UNINITIALIZED;
410 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
411 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
413 ver = SSA_NAME_VERSION (lhs);
414 old_l = complex_lattice_values[ver];
416 if (new_l == old_l)
417 return SSA_PROP_NOT_INTERESTING;
419 complex_lattice_values[ver] = new_l;
420 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
423 /* Create one backing variable for a complex component of ORIG. */
425 static tree
426 create_one_component_var (tree type, tree orig, const char *prefix,
427 const char *suffix, enum tree_code code)
429 tree r = create_tmp_var (type, prefix);
431 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
432 DECL_ARTIFICIAL (r) = 1;
434 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
436 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
438 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
440 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
441 DECL_HAS_DEBUG_EXPR_P (r) = 1;
442 DECL_IGNORED_P (r) = 0;
443 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
445 else
447 DECL_IGNORED_P (r) = 1;
448 TREE_NO_WARNING (r) = 1;
451 return r;
454 /* Retrieve a value for a complex component of VAR. */
456 static tree
457 get_component_var (tree var, bool imag_p)
459 size_t decl_index = DECL_UID (var) * 2 + imag_p;
460 tree ret = cvc_lookup (decl_index);
462 if (ret == NULL)
464 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
465 imag_p ? "CI" : "CR",
466 imag_p ? "$imag" : "$real",
467 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
468 cvc_insert (decl_index, ret);
471 return ret;
474 /* Retrieve a value for a complex component of SSA_NAME. */
476 static tree
477 get_component_ssa_name (tree ssa_name, bool imag_p)
479 complex_lattice_t lattice = find_lattice_value (ssa_name);
480 size_t ssa_name_index;
481 tree ret;
483 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
485 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
486 if (SCALAR_FLOAT_TYPE_P (inner_type))
487 return build_real (inner_type, dconst0);
488 else
489 return build_int_cst (inner_type, 0);
492 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
493 ret = complex_ssa_name_components[ssa_name_index];
494 if (ret == NULL)
496 if (SSA_NAME_VAR (ssa_name))
497 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
498 else
499 ret = TREE_TYPE (TREE_TYPE (ssa_name));
500 ret = make_ssa_name (ret, NULL);
502 /* Copy some properties from the original. In particular, whether it
503 is used in an abnormal phi, and whether it's uninitialized. */
504 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
505 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
506 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
507 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
509 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
510 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
513 complex_ssa_name_components[ssa_name_index] = ret;
516 return ret;
519 /* Set a value for a complex component of SSA_NAME, return a
520 gimple_seq of stuff that needs doing. */
522 static gimple_seq
523 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
525 complex_lattice_t lattice = find_lattice_value (ssa_name);
526 size_t ssa_name_index;
527 tree comp;
528 gimple last;
529 gimple_seq list;
531 /* We know the value must be zero, else there's a bug in our lattice
532 analysis. But the value may well be a variable known to contain
533 zero. We should be safe ignoring it. */
534 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
535 return NULL;
537 /* If we've already assigned an SSA_NAME to this component, then this
538 means that our walk of the basic blocks found a use before the set.
539 This is fine. Now we should create an initialization for the value
540 we created earlier. */
541 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
542 comp = complex_ssa_name_components[ssa_name_index];
543 if (comp)
546 /* If we've nothing assigned, and the value we're given is already stable,
547 then install that as the value for this SSA_NAME. This preemptively
548 copy-propagates the value, which avoids unnecessary memory allocation. */
549 else if (is_gimple_min_invariant (value)
550 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
552 complex_ssa_name_components[ssa_name_index] = value;
553 return NULL;
555 else if (TREE_CODE (value) == SSA_NAME
556 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
558 /* Replace an anonymous base value with the variable from cvc_lookup.
559 This should result in better debug info. */
560 if (SSA_NAME_VAR (ssa_name)
561 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
562 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
564 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
565 replace_ssa_name_symbol (value, comp);
568 complex_ssa_name_components[ssa_name_index] = value;
569 return NULL;
572 /* Finally, we need to stabilize the result by installing the value into
573 a new ssa name. */
574 else
575 comp = get_component_ssa_name (ssa_name, imag_p);
577 /* Do all the work to assign VALUE to COMP. */
578 list = NULL;
579 value = force_gimple_operand (value, &list, false, NULL);
580 last = gimple_build_assign (comp, value);
581 gimple_seq_add_stmt (&list, last);
582 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
584 return list;
587 /* Extract the real or imaginary part of a complex variable or constant.
588 Make sure that it's a proper gimple_val and gimplify it if not.
589 Emit any new code before gsi. */
591 static tree
592 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
593 bool gimple_p)
595 switch (TREE_CODE (t))
597 case COMPLEX_CST:
598 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
600 case COMPLEX_EXPR:
601 gcc_unreachable ();
603 case VAR_DECL:
604 case RESULT_DECL:
605 case PARM_DECL:
606 case COMPONENT_REF:
607 case ARRAY_REF:
608 case VIEW_CONVERT_EXPR:
609 case MEM_REF:
611 tree inner_type = TREE_TYPE (TREE_TYPE (t));
613 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
614 inner_type, unshare_expr (t));
616 if (gimple_p)
617 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
618 GSI_SAME_STMT);
620 return t;
623 case SSA_NAME:
624 return get_component_ssa_name (t, imagpart_p);
626 default:
627 gcc_unreachable ();
631 /* Update the complex components of the ssa name on the lhs of STMT. */
633 static void
634 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
635 tree i)
637 tree lhs;
638 gimple_seq list;
640 lhs = gimple_get_lhs (stmt);
642 list = set_component_ssa_name (lhs, false, r);
643 if (list)
644 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
646 list = set_component_ssa_name (lhs, true, i);
647 if (list)
648 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
651 static void
652 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
654 gimple_seq list;
656 list = set_component_ssa_name (lhs, false, r);
657 if (list)
658 gsi_insert_seq_on_edge (e, list);
660 list = set_component_ssa_name (lhs, true, i);
661 if (list)
662 gsi_insert_seq_on_edge (e, list);
666 /* Update an assignment to a complex variable in place. */
668 static void
669 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
671 gimple stmt;
673 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
674 stmt = gsi_stmt (*gsi);
675 update_stmt (stmt);
676 if (maybe_clean_eh_stmt (stmt))
677 gimple_purge_dead_eh_edges (gimple_bb (stmt));
679 if (gimple_in_ssa_p (cfun))
680 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
684 /* Generate code at the entry point of the function to initialize the
685 component variables for a complex parameter. */
687 static void
688 update_parameter_components (void)
690 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
691 tree parm;
693 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
695 tree type = TREE_TYPE (parm);
696 tree ssa_name, r, i;
698 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
699 continue;
701 type = TREE_TYPE (type);
702 ssa_name = ssa_default_def (cfun, parm);
703 if (!ssa_name)
704 continue;
706 r = build1 (REALPART_EXPR, type, ssa_name);
707 i = build1 (IMAGPART_EXPR, type, ssa_name);
708 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
712 /* Generate code to set the component variables of a complex variable
713 to match the PHI statements in block BB. */
715 static void
716 update_phi_components (basic_block bb)
718 gimple_stmt_iterator gsi;
720 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
722 gimple phi = gsi_stmt (gsi);
724 if (is_complex_reg (gimple_phi_result (phi)))
726 tree lr, li;
727 gimple pr = NULL, pi = NULL;
728 unsigned int i, n;
730 lr = get_component_ssa_name (gimple_phi_result (phi), false);
731 if (TREE_CODE (lr) == SSA_NAME)
732 pr = create_phi_node (lr, bb);
734 li = get_component_ssa_name (gimple_phi_result (phi), true);
735 if (TREE_CODE (li) == SSA_NAME)
736 pi = create_phi_node (li, bb);
738 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
740 tree comp, arg = gimple_phi_arg_def (phi, i);
741 if (pr)
743 comp = extract_component (NULL, arg, false, false);
744 SET_PHI_ARG_DEF (pr, i, comp);
746 if (pi)
748 comp = extract_component (NULL, arg, true, false);
749 SET_PHI_ARG_DEF (pi, i, comp);
756 /* Expand a complex move to scalars. */
758 static void
759 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
761 tree inner_type = TREE_TYPE (type);
762 tree r, i, lhs, rhs;
763 gimple stmt = gsi_stmt (*gsi);
765 if (is_gimple_assign (stmt))
767 lhs = gimple_assign_lhs (stmt);
768 if (gimple_num_ops (stmt) == 2)
769 rhs = gimple_assign_rhs1 (stmt);
770 else
771 rhs = NULL_TREE;
773 else if (is_gimple_call (stmt))
775 lhs = gimple_call_lhs (stmt);
776 rhs = NULL_TREE;
778 else
779 gcc_unreachable ();
781 if (TREE_CODE (lhs) == SSA_NAME)
783 if (is_ctrl_altering_stmt (stmt))
785 edge e;
787 /* The value is not assigned on the exception edges, so we need not
788 concern ourselves there. We do need to update on the fallthru
789 edge. Find it. */
790 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
791 if (!e)
792 gcc_unreachable ();
794 r = build1 (REALPART_EXPR, inner_type, lhs);
795 i = build1 (IMAGPART_EXPR, inner_type, lhs);
796 update_complex_components_on_edge (e, lhs, r, i);
798 else if (is_gimple_call (stmt)
799 || gimple_has_side_effects (stmt)
800 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
802 r = build1 (REALPART_EXPR, inner_type, lhs);
803 i = build1 (IMAGPART_EXPR, inner_type, lhs);
804 update_complex_components (gsi, stmt, r, i);
806 else
808 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
810 r = extract_component (gsi, rhs, 0, true);
811 i = extract_component (gsi, rhs, 1, true);
813 else
815 r = gimple_assign_rhs1 (stmt);
816 i = gimple_assign_rhs2 (stmt);
818 update_complex_assignment (gsi, r, i);
821 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
823 tree x;
824 gimple t;
826 r = extract_component (gsi, rhs, 0, false);
827 i = extract_component (gsi, rhs, 1, false);
829 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
830 t = gimple_build_assign (x, r);
831 gsi_insert_before (gsi, t, GSI_SAME_STMT);
833 if (stmt == gsi_stmt (*gsi))
835 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
836 gimple_assign_set_lhs (stmt, x);
837 gimple_assign_set_rhs1 (stmt, i);
839 else
841 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
842 t = gimple_build_assign (x, i);
843 gsi_insert_before (gsi, t, GSI_SAME_STMT);
845 stmt = gsi_stmt (*gsi);
846 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
847 gimple_return_set_retval (stmt, lhs);
850 update_stmt (stmt);
854 /* Expand complex addition to scalars:
855 a + b = (ar + br) + i(ai + bi)
856 a - b = (ar - br) + i(ai + bi)
859 static void
860 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
861 tree ar, tree ai, tree br, tree bi,
862 enum tree_code code,
863 complex_lattice_t al, complex_lattice_t bl)
865 tree rr, ri;
867 switch (PAIR (al, bl))
869 case PAIR (ONLY_REAL, ONLY_REAL):
870 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
871 ri = ai;
872 break;
874 case PAIR (ONLY_REAL, ONLY_IMAG):
875 rr = ar;
876 if (code == MINUS_EXPR)
877 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
878 else
879 ri = bi;
880 break;
882 case PAIR (ONLY_IMAG, ONLY_REAL):
883 if (code == MINUS_EXPR)
884 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
885 else
886 rr = br;
887 ri = ai;
888 break;
890 case PAIR (ONLY_IMAG, ONLY_IMAG):
891 rr = ar;
892 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
893 break;
895 case PAIR (VARYING, ONLY_REAL):
896 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
897 ri = ai;
898 break;
900 case PAIR (VARYING, ONLY_IMAG):
901 rr = ar;
902 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
903 break;
905 case PAIR (ONLY_REAL, VARYING):
906 if (code == MINUS_EXPR)
907 goto general;
908 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
909 ri = bi;
910 break;
912 case PAIR (ONLY_IMAG, VARYING):
913 if (code == MINUS_EXPR)
914 goto general;
915 rr = br;
916 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
917 break;
919 case PAIR (VARYING, VARYING):
920 general:
921 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
922 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
923 break;
925 default:
926 gcc_unreachable ();
929 update_complex_assignment (gsi, rr, ri);
932 /* Expand a complex multiplication or division to a libcall to the c99
933 compliant routines. */
935 static void
936 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
937 tree br, tree bi, enum tree_code code)
939 enum machine_mode mode;
940 enum built_in_function bcode;
941 tree fn, type, lhs;
942 gimple old_stmt, stmt;
944 old_stmt = gsi_stmt (*gsi);
945 lhs = gimple_assign_lhs (old_stmt);
946 type = TREE_TYPE (lhs);
948 mode = TYPE_MODE (type);
949 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
951 if (code == MULT_EXPR)
952 bcode = ((enum built_in_function)
953 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
954 else if (code == RDIV_EXPR)
955 bcode = ((enum built_in_function)
956 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
957 else
958 gcc_unreachable ();
959 fn = builtin_decl_explicit (bcode);
961 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
962 gimple_call_set_lhs (stmt, lhs);
963 update_stmt (stmt);
964 gsi_replace (gsi, stmt, false);
966 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
967 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
969 if (gimple_in_ssa_p (cfun))
971 type = TREE_TYPE (type);
972 update_complex_components (gsi, stmt,
973 build1 (REALPART_EXPR, type, lhs),
974 build1 (IMAGPART_EXPR, type, lhs));
975 SSA_NAME_DEF_STMT (lhs) = stmt;
979 /* Expand complex multiplication to scalars:
980 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
983 static void
984 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
985 tree ar, tree ai, tree br, tree bi,
986 complex_lattice_t al, complex_lattice_t bl)
988 tree rr, ri;
990 if (al < bl)
992 complex_lattice_t tl;
993 rr = ar, ar = br, br = rr;
994 ri = ai, ai = bi, bi = ri;
995 tl = al, al = bl, bl = tl;
998 switch (PAIR (al, bl))
1000 case PAIR (ONLY_REAL, ONLY_REAL):
1001 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1002 ri = ai;
1003 break;
1005 case PAIR (ONLY_IMAG, ONLY_REAL):
1006 rr = ar;
1007 if (TREE_CODE (ai) == REAL_CST
1008 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1009 ri = br;
1010 else
1011 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1012 break;
1014 case PAIR (ONLY_IMAG, ONLY_IMAG):
1015 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1016 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1017 ri = ar;
1018 break;
1020 case PAIR (VARYING, ONLY_REAL):
1021 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1022 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1023 break;
1025 case PAIR (VARYING, ONLY_IMAG):
1026 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1027 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1028 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1029 break;
1031 case PAIR (VARYING, VARYING):
1032 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1034 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1035 return;
1037 else
1039 tree t1, t2, t3, t4;
1041 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1042 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1043 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1045 /* Avoid expanding redundant multiplication for the common
1046 case of squaring a complex number. */
1047 if (ar == br && ai == bi)
1048 t4 = t3;
1049 else
1050 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1052 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1053 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1055 break;
1057 default:
1058 gcc_unreachable ();
1061 update_complex_assignment (gsi, rr, ri);
1064 /* Keep this algorithm in sync with fold-const.c:const_binop().
1066 Expand complex division to scalars, straightforward algorithm.
1067 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1068 t = br*br + bi*bi
1071 static void
1072 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1073 tree ar, tree ai, tree br, tree bi,
1074 enum tree_code code)
1076 tree rr, ri, div, t1, t2, t3;
1078 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1079 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1080 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1082 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1083 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1084 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1085 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1087 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1088 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1089 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1090 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1092 update_complex_assignment (gsi, rr, ri);
1095 /* Keep this algorithm in sync with fold-const.c:const_binop().
1097 Expand complex division to scalars, modified algorithm to minimize
1098 overflow with wide input ranges. */
1100 static void
1101 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1102 tree ar, tree ai, tree br, tree bi,
1103 enum tree_code code)
1105 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1106 basic_block bb_cond, bb_true, bb_false, bb_join;
1107 gimple stmt;
1109 /* Examine |br| < |bi|, and branch. */
1110 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1111 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1112 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1113 LT_EXPR, boolean_type_node, t1, t2);
1114 STRIP_NOPS (compare);
1116 bb_cond = bb_true = bb_false = bb_join = NULL;
1117 rr = ri = tr = ti = NULL;
1118 if (TREE_CODE (compare) != INTEGER_CST)
1120 edge e;
1121 gimple stmt;
1122 tree cond, tmp;
1124 tmp = create_tmp_var (boolean_type_node, NULL);
1125 stmt = gimple_build_assign (tmp, compare);
1126 if (gimple_in_ssa_p (cfun))
1128 tmp = make_ssa_name (tmp, stmt);
1129 gimple_assign_set_lhs (stmt, tmp);
1132 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1134 cond = fold_build2_loc (gimple_location (stmt),
1135 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1136 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1137 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1139 /* Split the original block, and create the TRUE and FALSE blocks. */
1140 e = split_block (gsi_bb (*gsi), stmt);
1141 bb_cond = e->src;
1142 bb_join = e->dest;
1143 bb_true = create_empty_bb (bb_cond);
1144 bb_false = create_empty_bb (bb_true);
1146 /* Wire the blocks together. */
1147 e->flags = EDGE_TRUE_VALUE;
1148 redirect_edge_succ (e, bb_true);
1149 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1150 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1151 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1152 if (current_loops)
1154 add_bb_to_loop (bb_true, bb_cond->loop_father);
1155 add_bb_to_loop (bb_false, bb_cond->loop_father);
1158 /* Update dominance info. Note that bb_join's data was
1159 updated by split_block. */
1160 if (dom_info_available_p (CDI_DOMINATORS))
1162 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1163 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1166 rr = create_tmp_reg (inner_type, NULL);
1167 ri = create_tmp_reg (inner_type, NULL);
1170 /* In the TRUE branch, we compute
1171 ratio = br/bi;
1172 div = (br * ratio) + bi;
1173 tr = (ar * ratio) + ai;
1174 ti = (ai * ratio) - ar;
1175 tr = tr / div;
1176 ti = ti / div; */
1177 if (bb_true || integer_nonzerop (compare))
1179 if (bb_true)
1181 *gsi = gsi_last_bb (bb_true);
1182 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1185 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1187 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1188 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1190 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1191 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1193 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1194 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1196 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1197 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1199 if (bb_true)
1201 stmt = gimple_build_assign (rr, tr);
1202 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1203 stmt = gimple_build_assign (ri, ti);
1204 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1205 gsi_remove (gsi, true);
1209 /* In the FALSE branch, we compute
1210 ratio = d/c;
1211 divisor = (d * ratio) + c;
1212 tr = (b * ratio) + a;
1213 ti = b - (a * ratio);
1214 tr = tr / div;
1215 ti = ti / div; */
1216 if (bb_false || integer_zerop (compare))
1218 if (bb_false)
1220 *gsi = gsi_last_bb (bb_false);
1221 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1224 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1226 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1227 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1229 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1230 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1232 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1233 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1235 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1236 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1238 if (bb_false)
1240 stmt = gimple_build_assign (rr, tr);
1241 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1242 stmt = gimple_build_assign (ri, ti);
1243 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1244 gsi_remove (gsi, true);
1248 if (bb_join)
1249 *gsi = gsi_start_bb (bb_join);
1250 else
1251 rr = tr, ri = ti;
1253 update_complex_assignment (gsi, rr, ri);
1256 /* Expand complex division to scalars. */
1258 static void
1259 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1260 tree ar, tree ai, tree br, tree bi,
1261 enum tree_code code,
1262 complex_lattice_t al, complex_lattice_t bl)
1264 tree rr, ri;
1266 switch (PAIR (al, bl))
1268 case PAIR (ONLY_REAL, ONLY_REAL):
1269 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1270 ri = ai;
1271 break;
1273 case PAIR (ONLY_REAL, ONLY_IMAG):
1274 rr = ai;
1275 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1276 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1277 break;
1279 case PAIR (ONLY_IMAG, ONLY_REAL):
1280 rr = ar;
1281 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1282 break;
1284 case PAIR (ONLY_IMAG, ONLY_IMAG):
1285 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1286 ri = ar;
1287 break;
1289 case PAIR (VARYING, ONLY_REAL):
1290 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1291 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1292 break;
1294 case PAIR (VARYING, ONLY_IMAG):
1295 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1296 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1297 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1299 case PAIR (ONLY_REAL, VARYING):
1300 case PAIR (ONLY_IMAG, VARYING):
1301 case PAIR (VARYING, VARYING):
1302 switch (flag_complex_method)
1304 case 0:
1305 /* straightforward implementation of complex divide acceptable. */
1306 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1307 break;
1309 case 2:
1310 if (SCALAR_FLOAT_TYPE_P (inner_type))
1312 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1313 break;
1315 /* FALLTHRU */
1317 case 1:
1318 /* wide ranges of inputs must work for complex divide. */
1319 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1320 break;
1322 default:
1323 gcc_unreachable ();
1325 return;
1327 default:
1328 gcc_unreachable ();
1331 update_complex_assignment (gsi, rr, ri);
1334 /* Expand complex negation to scalars:
1335 -a = (-ar) + i(-ai)
1338 static void
1339 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1340 tree ar, tree ai)
1342 tree rr, ri;
1344 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1345 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1347 update_complex_assignment (gsi, rr, ri);
1350 /* Expand complex conjugate to scalars:
1351 ~a = (ar) + i(-ai)
1354 static void
1355 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1356 tree ar, tree ai)
1358 tree ri;
1360 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1362 update_complex_assignment (gsi, ar, ri);
1365 /* Expand complex comparison (EQ or NE only). */
1367 static void
1368 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1369 tree br, tree bi, enum tree_code code)
1371 tree cr, ci, cc, type;
1372 gimple stmt;
1374 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1375 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1376 cc = gimplify_build2 (gsi,
1377 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1378 boolean_type_node, cr, ci);
1380 stmt = gsi_stmt (*gsi);
1382 switch (gimple_code (stmt))
1384 case GIMPLE_RETURN:
1385 type = TREE_TYPE (gimple_return_retval (stmt));
1386 gimple_return_set_retval (stmt, fold_convert (type, cc));
1387 break;
1389 case GIMPLE_ASSIGN:
1390 type = TREE_TYPE (gimple_assign_lhs (stmt));
1391 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1392 stmt = gsi_stmt (*gsi);
1393 break;
1395 case GIMPLE_COND:
1396 gimple_cond_set_code (stmt, EQ_EXPR);
1397 gimple_cond_set_lhs (stmt, cc);
1398 gimple_cond_set_rhs (stmt, boolean_true_node);
1399 break;
1401 default:
1402 gcc_unreachable ();
1405 update_stmt (stmt);
1408 /* Expand inline asm that sets some complex SSA_NAMEs. */
1410 static void
1411 expand_complex_asm (gimple_stmt_iterator *gsi)
1413 gimple stmt = gsi_stmt (*gsi);
1414 unsigned int i;
1416 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1418 tree link = gimple_asm_output_op (stmt, i);
1419 tree op = TREE_VALUE (link);
1420 if (TREE_CODE (op) == SSA_NAME
1421 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1423 tree type = TREE_TYPE (op);
1424 tree inner_type = TREE_TYPE (type);
1425 tree r = build1 (REALPART_EXPR, inner_type, op);
1426 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1427 gimple_seq list = set_component_ssa_name (op, false, r);
1429 if (list)
1430 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1432 list = set_component_ssa_name (op, true, i);
1433 if (list)
1434 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1439 /* Process one statement. If we identify a complex operation, expand it. */
1441 static void
1442 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1444 gimple stmt = gsi_stmt (*gsi);
1445 tree type, inner_type, lhs;
1446 tree ac, ar, ai, bc, br, bi;
1447 complex_lattice_t al, bl;
1448 enum tree_code code;
1450 if (gimple_code (stmt) == GIMPLE_ASM)
1452 expand_complex_asm (gsi);
1453 return;
1456 lhs = gimple_get_lhs (stmt);
1457 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1458 return;
1460 type = TREE_TYPE (gimple_op (stmt, 0));
1461 code = gimple_expr_code (stmt);
1463 /* Initial filter for operations we handle. */
1464 switch (code)
1466 case PLUS_EXPR:
1467 case MINUS_EXPR:
1468 case MULT_EXPR:
1469 case TRUNC_DIV_EXPR:
1470 case CEIL_DIV_EXPR:
1471 case FLOOR_DIV_EXPR:
1472 case ROUND_DIV_EXPR:
1473 case RDIV_EXPR:
1474 case NEGATE_EXPR:
1475 case CONJ_EXPR:
1476 if (TREE_CODE (type) != COMPLEX_TYPE)
1477 return;
1478 inner_type = TREE_TYPE (type);
1479 break;
1481 case EQ_EXPR:
1482 case NE_EXPR:
1483 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1484 subcode, so we need to access the operands using gimple_op. */
1485 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1486 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1487 return;
1488 break;
1490 default:
1492 tree rhs;
1494 /* GIMPLE_COND may also fallthru here, but we do not need to
1495 do anything with it. */
1496 if (gimple_code (stmt) == GIMPLE_COND)
1497 return;
1499 if (TREE_CODE (type) == COMPLEX_TYPE)
1500 expand_complex_move (gsi, type);
1501 else if (is_gimple_assign (stmt)
1502 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1503 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1504 && TREE_CODE (lhs) == SSA_NAME)
1506 rhs = gimple_assign_rhs1 (stmt);
1507 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1508 gimple_assign_rhs_code (stmt)
1509 == IMAGPART_EXPR,
1510 false);
1511 gimple_assign_set_rhs_from_tree (gsi, rhs);
1512 stmt = gsi_stmt (*gsi);
1513 update_stmt (stmt);
1516 return;
1519 /* Extract the components of the two complex values. Make sure and
1520 handle the common case of the same value used twice specially. */
1521 if (is_gimple_assign (stmt))
1523 ac = gimple_assign_rhs1 (stmt);
1524 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1526 /* GIMPLE_CALL can not get here. */
1527 else
1529 ac = gimple_cond_lhs (stmt);
1530 bc = gimple_cond_rhs (stmt);
1533 ar = extract_component (gsi, ac, false, true);
1534 ai = extract_component (gsi, ac, true, true);
1536 if (ac == bc)
1537 br = ar, bi = ai;
1538 else if (bc)
1540 br = extract_component (gsi, bc, 0, true);
1541 bi = extract_component (gsi, bc, 1, true);
1543 else
1544 br = bi = NULL_TREE;
1546 if (gimple_in_ssa_p (cfun))
1548 al = find_lattice_value (ac);
1549 if (al == UNINITIALIZED)
1550 al = VARYING;
1552 if (TREE_CODE_CLASS (code) == tcc_unary)
1553 bl = UNINITIALIZED;
1554 else if (ac == bc)
1555 bl = al;
1556 else
1558 bl = find_lattice_value (bc);
1559 if (bl == UNINITIALIZED)
1560 bl = VARYING;
1563 else
1564 al = bl = VARYING;
1566 switch (code)
1568 case PLUS_EXPR:
1569 case MINUS_EXPR:
1570 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1571 break;
1573 case MULT_EXPR:
1574 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1575 break;
1577 case TRUNC_DIV_EXPR:
1578 case CEIL_DIV_EXPR:
1579 case FLOOR_DIV_EXPR:
1580 case ROUND_DIV_EXPR:
1581 case RDIV_EXPR:
1582 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1583 break;
1585 case NEGATE_EXPR:
1586 expand_complex_negation (gsi, inner_type, ar, ai);
1587 break;
1589 case CONJ_EXPR:
1590 expand_complex_conjugate (gsi, inner_type, ar, ai);
1591 break;
1593 case EQ_EXPR:
1594 case NE_EXPR:
1595 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1596 break;
1598 default:
1599 gcc_unreachable ();
1604 /* Entry point for complex operation lowering during optimization. */
1606 static unsigned int
1607 tree_lower_complex (void)
1609 int old_last_basic_block;
1610 gimple_stmt_iterator gsi;
1611 basic_block bb;
1613 if (!init_dont_simulate_again ())
1614 return 0;
1616 complex_lattice_values.create (num_ssa_names);
1617 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1619 init_parameter_lattice_values ();
1620 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1622 complex_variable_components.create (10);
1624 complex_ssa_name_components.create (2 * num_ssa_names);
1625 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1627 update_parameter_components ();
1629 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1630 old_last_basic_block = last_basic_block;
1631 FOR_EACH_BB (bb)
1633 if (bb->index >= old_last_basic_block)
1634 continue;
1636 update_phi_components (bb);
1637 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1638 expand_complex_operations_1 (&gsi);
1641 gsi_commit_edge_inserts ();
1643 complex_variable_components.dispose ();
1644 complex_ssa_name_components.release ();
1645 complex_lattice_values.release ();
1646 return 0;
1649 namespace {
1651 const pass_data pass_data_lower_complex =
1653 GIMPLE_PASS, /* type */
1654 "cplxlower", /* name */
1655 OPTGROUP_NONE, /* optinfo_flags */
1656 false, /* has_gate */
1657 true, /* has_execute */
1658 TV_NONE, /* tv_id */
1659 PROP_ssa, /* properties_required */
1660 PROP_gimple_lcx, /* properties_provided */
1661 0, /* properties_destroyed */
1662 0, /* todo_flags_start */
1663 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
1666 class pass_lower_complex : public gimple_opt_pass
1668 public:
1669 pass_lower_complex (gcc::context *ctxt)
1670 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1673 /* opt_pass methods: */
1674 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1675 unsigned int execute () { return tree_lower_complex (); }
1677 }; // class pass_lower_complex
1679 } // anon namespace
1681 gimple_opt_pass *
1682 make_pass_lower_complex (gcc::context *ctxt)
1684 return new pass_lower_complex (ctxt);
1688 static bool
1689 gate_no_optimization (void)
1691 /* With errors, normal optimization passes are not run. If we don't
1692 lower complex operations at all, rtl expansion will abort. */
1693 return !(cfun->curr_properties & PROP_gimple_lcx);
1696 namespace {
1698 const pass_data pass_data_lower_complex_O0 =
1700 GIMPLE_PASS, /* type */
1701 "cplxlower0", /* name */
1702 OPTGROUP_NONE, /* optinfo_flags */
1703 true, /* has_gate */
1704 true, /* has_execute */
1705 TV_NONE, /* tv_id */
1706 PROP_cfg, /* properties_required */
1707 PROP_gimple_lcx, /* properties_provided */
1708 0, /* properties_destroyed */
1709 0, /* todo_flags_start */
1710 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
1713 class pass_lower_complex_O0 : public gimple_opt_pass
1715 public:
1716 pass_lower_complex_O0 (gcc::context *ctxt)
1717 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1720 /* opt_pass methods: */
1721 bool gate () { return gate_no_optimization (); }
1722 unsigned int execute () { return tree_lower_complex (); }
1724 }; // class pass_lower_complex_O0
1726 } // anon namespace
1728 gimple_opt_pass *
1729 make_pass_lower_complex_O0 (gcc::context *ctxt)
1731 return new pass_lower_complex_O0 (ctxt);