1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
51 #include "basic-block.h"
54 #include "langhooks.h"
60 struct target_rtl default_target_rtl
;
62 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
65 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
67 /* Commonly used modes. */
69 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
70 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
71 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
72 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
74 /* Datastructures maintained for currently processed function in RTL form. */
76 struct rtl_data x_rtl
;
78 /* Indexed by pseudo register number, gives the rtx for that pseudo.
79 Allocated in parallel with regno_pointer_align.
80 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
81 with length attribute nested in top level structures. */
85 /* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
88 static GTY(()) int label_num
= 1;
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
93 is set only for MODE_INT and MODE_VECTOR_INT modes. */
95 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
99 REAL_VALUE_TYPE dconst0
;
100 REAL_VALUE_TYPE dconst1
;
101 REAL_VALUE_TYPE dconst2
;
102 REAL_VALUE_TYPE dconstm1
;
103 REAL_VALUE_TYPE dconsthalf
;
105 /* Record fixed-point constant 0 and 1. */
106 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
107 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
109 /* We make one copy of (const_int C) where C is in
110 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
111 to save space during the compilation and simplify comparisons of
114 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
116 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx simple_return_rtx
;
122 /* A hash table storing CONST_INTs whose absolute value is greater
123 than MAX_SAVED_CONST_INT. */
125 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
126 htab_t const_int_htab
;
128 /* A hash table storing memory attribute structures. */
129 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
130 htab_t mem_attrs_htab
;
132 /* A hash table storing register attribute structures. */
133 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
134 htab_t reg_attrs_htab
;
136 /* A hash table storing all CONST_DOUBLEs. */
137 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
138 htab_t const_double_htab
;
140 /* A hash table storing all CONST_FIXEDs. */
141 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
142 htab_t const_fixed_htab
;
144 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
145 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
146 #define first_label_num (crtl->emit.x_first_label_num)
148 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
149 static void set_used_decls (tree
);
150 static void mark_label_nuses (rtx
);
151 static hashval_t
const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t
const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx
lookup_const_double (rtx
);
156 static hashval_t
const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx
lookup_const_fixed (rtx
);
159 static hashval_t
mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t
reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs
*get_reg_attrs (tree
, int);
164 static rtx
gen_const_vector (enum machine_mode
, int);
165 static void copy_rtx_if_shared_1 (rtx
*orig
);
167 /* Probability of the conditional branch currently proceeded by try_split.
168 Set to -1 otherwise. */
169 int split_branch_probability
= -1;
171 /* Returns a hash code for X (which is a really a CONST_INT). */
174 const_int_htab_hash (const void *x
)
176 return (hashval_t
) INTVAL ((const_rtx
) x
);
179 /* Returns nonzero if the value represented by X (which is really a
180 CONST_INT) is the same as that given by Y (which is really a
184 const_int_htab_eq (const void *x
, const void *y
)
186 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
189 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 const_double_htab_hash (const void *x
)
193 const_rtx
const value
= (const_rtx
) x
;
196 if (GET_MODE (value
) == VOIDmode
)
197 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
200 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
201 /* MODE is used in the comparison, so it should be in the hash. */
202 h
^= GET_MODE (value
);
207 /* Returns nonzero if the value represented by X (really a ...)
208 is the same as that represented by Y (really a ...) */
210 const_double_htab_eq (const void *x
, const void *y
)
212 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
214 if (GET_MODE (a
) != GET_MODE (b
))
216 if (GET_MODE (a
) == VOIDmode
)
217 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
218 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
220 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
221 CONST_DOUBLE_REAL_VALUE (b
));
224 /* Returns a hash code for X (which is really a CONST_FIXED). */
227 const_fixed_htab_hash (const void *x
)
229 const_rtx
const value
= (const_rtx
) x
;
232 h
= fixed_hash (CONST_FIXED_VALUE (value
));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h
^= GET_MODE (value
);
238 /* Returns nonzero if the value represented by X (really a ...)
239 is the same as that represented by Y (really a ...). */
242 const_fixed_htab_eq (const void *x
, const void *y
)
244 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
246 if (GET_MODE (a
) != GET_MODE (b
))
248 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
251 /* Returns a hash code for X (which is a really a mem_attrs *). */
254 mem_attrs_htab_hash (const void *x
)
256 const mem_attrs
*const p
= (const mem_attrs
*) x
;
258 return (p
->alias
^ (p
->align
* 1000)
259 ^ (p
->addrspace
* 4000)
260 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
261 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
262 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
265 /* Return true if the given memory attributes are equal. */
268 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
270 return (p
->alias
== q
->alias
271 && p
->offset_known_p
== q
->offset_known_p
272 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
273 && p
->size_known_p
== q
->size_known_p
274 && (!p
->size_known_p
|| p
->size
== q
->size
)
275 && p
->align
== q
->align
276 && p
->addrspace
== q
->addrspace
277 && (p
->expr
== q
->expr
278 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
279 && operand_equal_p (p
->expr
, q
->expr
, 0))));
282 /* Returns nonzero if the value represented by X (which is really a
283 mem_attrs *) is the same as that given by Y (which is also really a
287 mem_attrs_htab_eq (const void *x
, const void *y
)
289 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
292 /* Set MEM's memory attributes so that they are the same as ATTRS. */
295 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
299 /* If everything is the default, we can just clear the attributes. */
300 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
306 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
309 *slot
= ggc_alloc_mem_attrs ();
310 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
313 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
316 /* Returns a hash code for X (which is a really a reg_attrs *). */
319 reg_attrs_htab_hash (const void *x
)
321 const reg_attrs
*const p
= (const reg_attrs
*) x
;
323 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
326 /* Returns nonzero if the value represented by X (which is really a
327 reg_attrs *) is the same as that given by Y (which is also really a
331 reg_attrs_htab_eq (const void *x
, const void *y
)
333 const reg_attrs
*const p
= (const reg_attrs
*) x
;
334 const reg_attrs
*const q
= (const reg_attrs
*) y
;
336 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339 one identical to it is not already in the table. We are doing this for
343 get_reg_attrs (tree decl
, int offset
)
348 /* If everything is the default, we can just return zero. */
349 if (decl
== 0 && offset
== 0)
353 attrs
.offset
= offset
;
355 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
358 *slot
= ggc_alloc_reg_attrs ();
359 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
362 return (reg_attrs
*) *slot
;
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
368 and to block register equivalences to be seen across this insn. */
373 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
374 MEM_VOLATILE_P (x
) = true;
380 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
381 don't attempt to share with the various global pieces of rtl (such as
382 frame_pointer_rtx). */
385 gen_raw_REG (enum machine_mode mode
, int regno
)
387 rtx x
= gen_rtx_raw_REG (mode
, regno
);
388 ORIGINAL_REGNO (x
) = regno
;
392 /* There are some RTL codes that require special attention; the generation
393 functions do the raw handling. If you add to this list, modify
394 special_rtx in gengenrtl.c as well. */
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
401 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
402 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
406 return const_true_rtx
;
409 /* Look up the CONST_INT in the hash table. */
410 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
411 (hashval_t
) arg
, INSERT
);
413 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
419 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
421 return GEN_INT (trunc_int_for_mode (c
, mode
));
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425 REAL_VALUE_TYPEs. Also, their length is known only at run time,
426 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429 hash table. If so, return its counterpart; otherwise add it
430 to the hash table and return it. */
432 lookup_const_double (rtx real
)
434 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442 VALUE in mode MODE. */
444 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
446 rtx real
= rtx_alloc (CONST_DOUBLE
);
447 PUT_MODE (real
, mode
);
451 return lookup_const_double (real
);
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455 hash table. If so, return its counterpart; otherwise add it
456 to the hash table and return it. */
459 lookup_const_fixed (rtx fixed
)
461 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469 VALUE in mode MODE. */
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
474 rtx fixed
= rtx_alloc (CONST_FIXED
);
475 PUT_MODE (fixed
, mode
);
479 return lookup_const_fixed (fixed
);
482 /* Constructs double_int from rtx CST. */
485 rtx_to_double_int (const_rtx cst
)
489 if (CONST_INT_P (cst
))
490 r
= double_int::from_shwi (INTVAL (cst
));
491 else if (CONST_DOUBLE_AS_INT_P (cst
))
493 r
.low
= CONST_DOUBLE_LOW (cst
);
494 r
.high
= CONST_DOUBLE_HIGH (cst
);
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
507 immed_double_int_const (double_int i
, enum machine_mode mode
)
509 return immed_double_const (i
.low
, i
.high
, mode
);
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513 of ints: I0 is the low-order word and I1 is the high-order word.
514 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
515 implied upper bits are copies of the high bit of i1. The value
516 itself is neither signed nor unsigned. Do not use this routine for
517 non-integer modes; convert to REAL_VALUE_TYPE and use
518 CONST_DOUBLE_FROM_REAL_VALUE. */
521 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
526 /* There are the following cases (note that there are no modes with
527 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
529 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
531 2) If the value of the integer fits into HOST_WIDE_INT anyway
532 (i.e., i1 consists only from copies of the sign bit, and sign
533 of i0 and i1 are the same), then we return a CONST_INT for i0.
534 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
535 if (mode
!= VOIDmode
)
537 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
538 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
539 /* We can get a 0 for an error mark. */
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
541 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
543 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
544 return gen_int_mode (i0
, mode
);
547 /* If this integer fits in one word, return a CONST_INT. */
548 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
551 /* We use VOIDmode for integers. */
552 value
= rtx_alloc (CONST_DOUBLE
);
553 PUT_MODE (value
, VOIDmode
);
555 CONST_DOUBLE_LOW (value
) = i0
;
556 CONST_DOUBLE_HIGH (value
) = i1
;
558 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
559 XWINT (value
, i
) = 0;
561 return lookup_const_double (value
);
565 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
567 /* In case the MD file explicitly references the frame pointer, have
568 all such references point to the same frame pointer. This is
569 used during frame pointer elimination to distinguish the explicit
570 references to these registers from pseudos that happened to be
573 If we have eliminated the frame pointer or arg pointer, we will
574 be using it as a normal register, for example as a spill
575 register. In such cases, we might be accessing it in a mode that
576 is not Pmode and therefore cannot use the pre-allocated rtx.
578 Also don't do this when we are making new REGs in reload, since
579 we don't want to get confused with the real pointers. */
581 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
583 if (regno
== FRAME_POINTER_REGNUM
584 && (!reload_completed
|| frame_pointer_needed
))
585 return frame_pointer_rtx
;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587 if (regno
== HARD_FRAME_POINTER_REGNUM
588 && (!reload_completed
|| frame_pointer_needed
))
589 return hard_frame_pointer_rtx
;
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592 if (regno
== ARG_POINTER_REGNUM
)
593 return arg_pointer_rtx
;
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
597 return return_address_pointer_rtx
;
599 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
600 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
601 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
602 return pic_offset_table_rtx
;
603 if (regno
== STACK_POINTER_REGNUM
)
604 return stack_pointer_rtx
;
608 /* If the per-function register table has been set up, try to re-use
609 an existing entry in that table to avoid useless generation of RTL.
611 This code is disabled for now until we can fix the various backends
612 which depend on having non-shared hard registers in some cases. Long
613 term we want to re-enable this code as it can significantly cut down
614 on the amount of useless RTL that gets generated.
616 We'll also need to fix some code that runs after reload that wants to
617 set ORIGINAL_REGNO. */
622 && regno
< FIRST_PSEUDO_REGISTER
623 && reg_raw_mode
[regno
] == mode
)
624 return regno_reg_rtx
[regno
];
627 return gen_raw_REG (mode
, regno
);
631 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
633 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
635 /* This field is not cleared by the mere allocation of the rtx, so
642 /* Generate a memory referring to non-trapping constant memory. */
645 gen_const_mem (enum machine_mode mode
, rtx addr
)
647 rtx mem
= gen_rtx_MEM (mode
, addr
);
648 MEM_READONLY_P (mem
) = 1;
649 MEM_NOTRAP_P (mem
) = 1;
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
657 gen_frame_mem (enum machine_mode mode
, rtx addr
)
659 rtx mem
= gen_rtx_MEM (mode
, addr
);
660 MEM_NOTRAP_P (mem
) = 1;
661 set_mem_alias_set (mem
, get_frame_alias_set ());
665 /* Generate a MEM referring to a temporary use of the stack, not part
666 of the fixed stack frame. For example, something which is pushed
667 by a target splitter. */
669 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
671 rtx mem
= gen_rtx_MEM (mode
, addr
);
672 MEM_NOTRAP_P (mem
) = 1;
673 if (!cfun
->calls_alloca
)
674 set_mem_alias_set (mem
, get_frame_alias_set ());
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
679 this construct would be valid, and false otherwise. */
682 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
683 const_rtx reg
, unsigned int offset
)
685 unsigned int isize
= GET_MODE_SIZE (imode
);
686 unsigned int osize
= GET_MODE_SIZE (omode
);
688 /* All subregs must be aligned. */
689 if (offset
% osize
!= 0)
692 /* The subreg offset cannot be outside the inner object. */
696 /* ??? This should not be here. Temporarily continue to allow word_mode
697 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
698 Generally, backends are doing something sketchy but it'll take time to
700 if (omode
== word_mode
)
702 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
703 is the culprit here, and not the backends. */
704 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
706 /* Allow component subregs of complex and vector. Though given the below
707 extraction rules, it's not always clear what that means. */
708 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
709 && GET_MODE_INNER (imode
) == omode
)
711 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
713 represent this. It's questionable if this ought to be represented at
714 all -- why can't this all be hidden in post-reload splitters that make
715 arbitrarily mode changes to the registers themselves. */
716 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
718 /* Subregs involving floating point modes are not allowed to
719 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
720 (subreg:SI (reg:DF) 0) isn't. */
721 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
723 if (! (isize
== osize
724 /* LRA can use subreg to store a floating point value in
725 an integer mode. Although the floating point and the
726 integer modes need the same number of hard registers,
727 the size of floating point mode can be less than the
728 integer mode. LRA also uses subregs for a register
729 should be used in different mode in on insn. */
734 /* Paradoxical subregs must have offset zero. */
738 /* This is a normal subreg. Verify that the offset is representable. */
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
744 unsigned int regno
= REGNO (reg
);
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
748 && GET_MODE_INNER (imode
) == omode
)
750 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
754 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize
< UNITS_PER_WORD
764 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
766 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
767 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
768 if (offset
% UNITS_PER_WORD
!= low_off
)
775 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
777 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
778 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
787 enum machine_mode inmode
;
789 inmode
= GET_MODE (reg
);
790 if (inmode
== VOIDmode
)
792 return gen_rtx_SUBREG (mode
, reg
,
793 subreg_lowpart_offset (mode
, inmode
));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
800 gen_rtvec (int n
, ...)
808 /* Don't allocate an empty rtvec... */
815 rt_val
= rtvec_alloc (n
);
817 for (i
= 0; i
< n
; i
++)
818 rt_val
->elem
[i
] = va_arg (p
, rtx
);
825 gen_rtvec_v (int n
, rtx
*argp
)
830 /* Don't allocate an empty rtvec... */
834 rt_val
= rtvec_alloc (n
);
836 for (i
= 0; i
< n
; i
++)
837 rt_val
->elem
[i
] = *argp
++;
842 /* Return the number of bytes between the start of an OUTER_MODE
843 in-memory value and the start of an INNER_MODE in-memory value,
844 given that the former is a lowpart of the latter. It may be a
845 paradoxical lowpart, in which case the offset will be negative
846 on big-endian targets. */
849 byte_lowpart_offset (enum machine_mode outer_mode
,
850 enum machine_mode inner_mode
)
852 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
853 return subreg_lowpart_offset (outer_mode
, inner_mode
);
855 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
858 /* Generate a REG rtx for a new pseudo register of mode MODE.
859 This pseudo is assigned the next sequential register number. */
862 gen_reg_rtx (enum machine_mode mode
)
865 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
867 gcc_assert (can_create_pseudo_p ());
869 /* If a virtual register with bigger mode alignment is generated,
870 increase stack alignment estimation because it might be spilled
872 if (SUPPORTS_STACK_ALIGNMENT
873 && crtl
->stack_alignment_estimated
< align
874 && !crtl
->stack_realign_processed
)
876 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
877 if (crtl
->stack_alignment_estimated
< min_align
)
878 crtl
->stack_alignment_estimated
= min_align
;
881 if (generating_concat_p
882 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
883 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
885 /* For complex modes, don't make a single pseudo.
886 Instead, make a CONCAT of two pseudos.
887 This allows noncontiguous allocation of the real and imaginary parts,
888 which makes much better code. Besides, allocating DCmode
889 pseudos overstrains reload on some machines like the 386. */
890 rtx realpart
, imagpart
;
891 enum machine_mode partmode
= GET_MODE_INNER (mode
);
893 realpart
= gen_reg_rtx (partmode
);
894 imagpart
= gen_reg_rtx (partmode
);
895 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
898 /* Make sure regno_pointer_align, and regno_reg_rtx are large
899 enough to have an element for this pseudo reg number. */
901 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
903 int old_size
= crtl
->emit
.regno_pointer_align_length
;
907 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
908 memset (tmp
+ old_size
, 0, old_size
);
909 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
911 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
912 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
913 regno_reg_rtx
= new1
;
915 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
918 val
= gen_raw_REG (mode
, reg_rtx_no
);
919 regno_reg_rtx
[reg_rtx_no
++] = val
;
923 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
926 reg_is_parm_p (rtx reg
)
930 gcc_assert (REG_P (reg
));
931 decl
= REG_EXPR (reg
);
932 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
935 /* Update NEW with the same attributes as REG, but with OFFSET added
936 to the REG_OFFSET. */
939 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
941 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
942 REG_OFFSET (reg
) + offset
);
945 /* Generate a register with same attributes as REG, but with OFFSET
946 added to the REG_OFFSET. */
949 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
952 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
954 update_reg_offset (new_rtx
, reg
, offset
);
958 /* Generate a new pseudo-register with the same attributes as REG, but
959 with OFFSET added to the REG_OFFSET. */
962 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
964 rtx new_rtx
= gen_reg_rtx (mode
);
966 update_reg_offset (new_rtx
, reg
, offset
);
970 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
971 new register is a (possibly paradoxical) lowpart of the old one. */
974 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
976 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
977 PUT_MODE (reg
, mode
);
980 /* Copy REG's attributes from X, if X has any attributes. If REG and X
981 have different modes, REG is a (possibly paradoxical) lowpart of X. */
984 set_reg_attrs_from_value (rtx reg
, rtx x
)
987 bool can_be_reg_pointer
= true;
989 /* Don't call mark_reg_pointer for incompatible pointer sign
991 while (GET_CODE (x
) == SIGN_EXTEND
992 || GET_CODE (x
) == ZERO_EXTEND
993 || GET_CODE (x
) == TRUNCATE
994 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
996 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
997 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
998 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
999 can_be_reg_pointer
= false;
1004 /* Hard registers can be reused for multiple purposes within the same
1005 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1006 on them is wrong. */
1007 if (HARD_REGISTER_P (reg
))
1010 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1013 if (MEM_OFFSET_KNOWN_P (x
))
1014 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1015 MEM_OFFSET (x
) + offset
);
1016 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1017 mark_reg_pointer (reg
, 0);
1022 update_reg_offset (reg
, x
, offset
);
1023 if (can_be_reg_pointer
&& REG_POINTER (x
))
1024 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1028 /* Generate a REG rtx for a new pseudo register, copying the mode
1029 and attributes from X. */
1032 gen_reg_rtx_and_attrs (rtx x
)
1034 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1035 set_reg_attrs_from_value (reg
, x
);
1039 /* Set the register attributes for registers contained in PARM_RTX.
1040 Use needed values from memory attributes of MEM. */
1043 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1045 if (REG_P (parm_rtx
))
1046 set_reg_attrs_from_value (parm_rtx
, mem
);
1047 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1049 /* Check for a NULL entry in the first slot, used to indicate that the
1050 parameter goes both on the stack and in registers. */
1051 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1052 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1054 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1055 if (REG_P (XEXP (x
, 0)))
1056 REG_ATTRS (XEXP (x
, 0))
1057 = get_reg_attrs (MEM_EXPR (mem
),
1058 INTVAL (XEXP (x
, 1)));
1063 /* Set the REG_ATTRS for registers in value X, given that X represents
1067 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1069 if (GET_CODE (x
) == SUBREG
)
1071 gcc_assert (subreg_lowpart_p (x
));
1076 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1078 if (GET_CODE (x
) == CONCAT
)
1080 if (REG_P (XEXP (x
, 0)))
1081 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1082 if (REG_P (XEXP (x
, 1)))
1083 REG_ATTRS (XEXP (x
, 1))
1084 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1086 if (GET_CODE (x
) == PARALLEL
)
1090 /* Check for a NULL entry, used to indicate that the parameter goes
1091 both on the stack and in registers. */
1092 if (XEXP (XVECEXP (x
, 0, 0), 0))
1097 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1099 rtx y
= XVECEXP (x
, 0, i
);
1100 if (REG_P (XEXP (y
, 0)))
1101 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1106 /* Assign the RTX X to declaration T. */
1109 set_decl_rtl (tree t
, rtx x
)
1111 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1113 set_reg_attrs_for_decl_rtl (t
, x
);
1116 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1117 if the ABI requires the parameter to be passed by reference. */
1120 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1122 DECL_INCOMING_RTL (t
) = x
;
1123 if (x
&& !by_reference_p
)
1124 set_reg_attrs_for_decl_rtl (t
, x
);
1127 /* Identify REG (which may be a CONCAT) as a user register. */
1130 mark_user_reg (rtx reg
)
1132 if (GET_CODE (reg
) == CONCAT
)
1134 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1135 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1139 gcc_assert (REG_P (reg
));
1140 REG_USERVAR_P (reg
) = 1;
1144 /* Identify REG as a probable pointer register and show its alignment
1145 as ALIGN, if nonzero. */
1148 mark_reg_pointer (rtx reg
, int align
)
1150 if (! REG_POINTER (reg
))
1152 REG_POINTER (reg
) = 1;
1155 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1157 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1158 /* We can no-longer be sure just how aligned this pointer is. */
1159 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1162 /* Return 1 plus largest pseudo reg number used in the current function. */
1170 /* Return 1 + the largest label number used so far in the current function. */
1173 max_label_num (void)
1178 /* Return first label number used in this function (if any were used). */
1181 get_first_label_num (void)
1183 return first_label_num
;
1186 /* If the rtx for label was created during the expansion of a nested
1187 function, then first_label_num won't include this label number.
1188 Fix this now so that array indices work later. */
1191 maybe_set_first_label_num (rtx x
)
1193 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1194 first_label_num
= CODE_LABEL_NUMBER (x
);
1197 /* Return a value representing some low-order bits of X, where the number
1198 of low-order bits is given by MODE. Note that no conversion is done
1199 between floating-point and fixed-point values, rather, the bit
1200 representation is returned.
1202 This function handles the cases in common between gen_lowpart, below,
1203 and two variants in cse.c and combine.c. These are the cases that can
1204 be safely handled at all points in the compilation.
1206 If this is not a case we can handle, return 0. */
1209 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1211 int msize
= GET_MODE_SIZE (mode
);
1214 enum machine_mode innermode
;
1216 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1217 so we have to make one up. Yuk. */
1218 innermode
= GET_MODE (x
);
1220 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1221 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1222 else if (innermode
== VOIDmode
)
1223 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1225 xsize
= GET_MODE_SIZE (innermode
);
1227 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1229 if (innermode
== mode
)
1232 /* MODE must occupy no more words than the mode of X. */
1233 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1234 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1237 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1238 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1241 offset
= subreg_lowpart_offset (mode
, innermode
);
1243 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1244 && (GET_MODE_CLASS (mode
) == MODE_INT
1245 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1247 /* If we are getting the low-order part of something that has been
1248 sign- or zero-extended, we can either just use the object being
1249 extended or make a narrower extension. If we want an even smaller
1250 piece than the size of the object being extended, call ourselves
1253 This case is used mostly by combine and cse. */
1255 if (GET_MODE (XEXP (x
, 0)) == mode
)
1257 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1258 return gen_lowpart_common (mode
, XEXP (x
, 0));
1259 else if (msize
< xsize
)
1260 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1262 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1263 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1264 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1265 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1267 /* Otherwise, we can't do this. */
1272 gen_highpart (enum machine_mode mode
, rtx x
)
1274 unsigned int msize
= GET_MODE_SIZE (mode
);
1277 /* This case loses if X is a subreg. To catch bugs early,
1278 complain if an invalid MODE is used even in other cases. */
1279 gcc_assert (msize
<= UNITS_PER_WORD
1280 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1282 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1283 subreg_highpart_offset (mode
, GET_MODE (x
)));
1284 gcc_assert (result
);
1286 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1287 the target if we have a MEM. gen_highpart must return a valid operand,
1288 emitting code if necessary to do so. */
1291 result
= validize_mem (result
);
1292 gcc_assert (result
);
1298 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1299 be VOIDmode constant. */
1301 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1303 if (GET_MODE (exp
) != VOIDmode
)
1305 gcc_assert (GET_MODE (exp
) == innermode
);
1306 return gen_highpart (outermode
, exp
);
1308 return simplify_gen_subreg (outermode
, exp
, innermode
,
1309 subreg_highpart_offset (outermode
, innermode
));
1312 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1315 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1317 unsigned int offset
= 0;
1318 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1322 if (WORDS_BIG_ENDIAN
)
1323 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1324 if (BYTES_BIG_ENDIAN
)
1325 offset
+= difference
% UNITS_PER_WORD
;
1331 /* Return offset in bytes to get OUTERMODE high part
1332 of the value in mode INNERMODE stored in memory in target format. */
1334 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1336 unsigned int offset
= 0;
1337 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1339 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1343 if (! WORDS_BIG_ENDIAN
)
1344 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1345 if (! BYTES_BIG_ENDIAN
)
1346 offset
+= difference
% UNITS_PER_WORD
;
1352 /* Return 1 iff X, assumed to be a SUBREG,
1353 refers to the least significant part of its containing reg.
1354 If X is not a SUBREG, always return 1 (it is its own low part!). */
1357 subreg_lowpart_p (const_rtx x
)
1359 if (GET_CODE (x
) != SUBREG
)
1361 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1364 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1365 == SUBREG_BYTE (x
));
1368 /* Return true if X is a paradoxical subreg, false otherwise. */
1370 paradoxical_subreg_p (const_rtx x
)
1372 if (GET_CODE (x
) != SUBREG
)
1374 return (GET_MODE_PRECISION (GET_MODE (x
))
1375 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1378 /* Return subword OFFSET of operand OP.
1379 The word number, OFFSET, is interpreted as the word number starting
1380 at the low-order address. OFFSET 0 is the low-order word if not
1381 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1383 If we cannot extract the required word, we return zero. Otherwise,
1384 an rtx corresponding to the requested word will be returned.
1386 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1387 reload has completed, a valid address will always be returned. After
1388 reload, if a valid address cannot be returned, we return zero.
1390 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1391 it is the responsibility of the caller.
1393 MODE is the mode of OP in case it is a CONST_INT.
1395 ??? This is still rather broken for some cases. The problem for the
1396 moment is that all callers of this thing provide no 'goal mode' to
1397 tell us to work with. This exists because all callers were written
1398 in a word based SUBREG world.
1399 Now use of this function can be deprecated by simplify_subreg in most
1404 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1406 if (mode
== VOIDmode
)
1407 mode
= GET_MODE (op
);
1409 gcc_assert (mode
!= VOIDmode
);
1411 /* If OP is narrower than a word, fail. */
1413 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1416 /* If we want a word outside OP, return zero. */
1418 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1421 /* Form a new MEM at the requested address. */
1424 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1426 if (! validate_address
)
1429 else if (reload_completed
)
1431 if (! strict_memory_address_addr_space_p (word_mode
,
1433 MEM_ADDR_SPACE (op
)))
1437 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1440 /* Rest can be handled by simplify_subreg. */
1441 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1444 /* Similar to `operand_subword', but never return 0. If we can't
1445 extract the required subword, put OP into a register and try again.
1446 The second attempt must succeed. We always validate the address in
1449 MODE is the mode of OP, in case it is CONST_INT. */
1452 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1454 rtx result
= operand_subword (op
, offset
, 1, mode
);
1459 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1461 /* If this is a register which can not be accessed by words, copy it
1462 to a pseudo register. */
1464 op
= copy_to_reg (op
);
1466 op
= force_reg (mode
, op
);
1469 result
= operand_subword (op
, offset
, 1, mode
);
1470 gcc_assert (result
);
1475 /* Returns 1 if both MEM_EXPR can be considered equal
1479 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1484 if (! expr1
|| ! expr2
)
1487 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1490 return operand_equal_p (expr1
, expr2
, 0);
1493 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1494 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1498 get_mem_align_offset (rtx mem
, unsigned int align
)
1501 unsigned HOST_WIDE_INT offset
;
1503 /* This function can't use
1504 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1505 || (MAX (MEM_ALIGN (mem),
1506 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1510 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1512 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1513 for <variable>. get_inner_reference doesn't handle it and
1514 even if it did, the alignment in that case needs to be determined
1515 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1516 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1517 isn't sufficiently aligned, the object it is in might be. */
1518 gcc_assert (MEM_P (mem
));
1519 expr
= MEM_EXPR (mem
);
1520 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1523 offset
= MEM_OFFSET (mem
);
1526 if (DECL_ALIGN (expr
) < align
)
1529 else if (INDIRECT_REF_P (expr
))
1531 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1534 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1538 tree inner
= TREE_OPERAND (expr
, 0);
1539 tree field
= TREE_OPERAND (expr
, 1);
1540 tree byte_offset
= component_ref_field_offset (expr
);
1541 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1544 || !tree_fits_uhwi_p (byte_offset
)
1545 || !tree_fits_uhwi_p (bit_offset
))
1548 offset
+= tree_to_uhwi (byte_offset
);
1549 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1551 if (inner
== NULL_TREE
)
1553 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1554 < (unsigned int) align
)
1558 else if (DECL_P (inner
))
1560 if (DECL_ALIGN (inner
) < align
)
1564 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1572 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1575 /* Given REF (a MEM) and T, either the type of X or the expression
1576 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1577 if we are making a new object of this type. BITPOS is nonzero if
1578 there is an offset outstanding on T that will be applied later. */
1581 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1582 HOST_WIDE_INT bitpos
)
1584 HOST_WIDE_INT apply_bitpos
= 0;
1586 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1589 /* It can happen that type_for_mode was given a mode for which there
1590 is no language-level type. In which case it returns NULL, which
1595 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1596 if (type
== error_mark_node
)
1599 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1600 wrong answer, as it assumes that DECL_RTL already has the right alias
1601 info. Callers should not set DECL_RTL until after the call to
1602 set_mem_attributes. */
1603 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1605 memset (&attrs
, 0, sizeof (attrs
));
1607 /* Get the alias set from the expression or type (perhaps using a
1608 front-end routine) and use it. */
1609 attrs
.alias
= get_alias_set (t
);
1611 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1612 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1614 /* Default values from pre-existing memory attributes if present. */
1615 refattrs
= MEM_ATTRS (ref
);
1618 /* ??? Can this ever happen? Calling this routine on a MEM that
1619 already carries memory attributes should probably be invalid. */
1620 attrs
.expr
= refattrs
->expr
;
1621 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1622 attrs
.offset
= refattrs
->offset
;
1623 attrs
.size_known_p
= refattrs
->size_known_p
;
1624 attrs
.size
= refattrs
->size
;
1625 attrs
.align
= refattrs
->align
;
1628 /* Otherwise, default values from the mode of the MEM reference. */
1631 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1632 gcc_assert (!defattrs
->expr
);
1633 gcc_assert (!defattrs
->offset_known_p
);
1635 /* Respect mode size. */
1636 attrs
.size_known_p
= defattrs
->size_known_p
;
1637 attrs
.size
= defattrs
->size
;
1638 /* ??? Is this really necessary? We probably should always get
1639 the size from the type below. */
1641 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1642 if T is an object, always compute the object alignment below. */
1644 attrs
.align
= defattrs
->align
;
1646 attrs
.align
= BITS_PER_UNIT
;
1647 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1648 e.g. if the type carries an alignment attribute. Should we be
1649 able to simply always use TYPE_ALIGN? */
1652 /* We can set the alignment from the type if we are making an object,
1653 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1654 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1655 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1657 /* If the size is known, we can set that. */
1658 tree new_size
= TYPE_SIZE_UNIT (type
);
1660 /* The address-space is that of the type. */
1661 as
= TYPE_ADDR_SPACE (type
);
1663 /* If T is not a type, we may be able to deduce some more information about
1669 if (TREE_THIS_VOLATILE (t
))
1670 MEM_VOLATILE_P (ref
) = 1;
1672 /* Now remove any conversions: they don't change what the underlying
1673 object is. Likewise for SAVE_EXPR. */
1674 while (CONVERT_EXPR_P (t
)
1675 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1676 || TREE_CODE (t
) == SAVE_EXPR
)
1677 t
= TREE_OPERAND (t
, 0);
1679 /* Note whether this expression can trap. */
1680 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1682 base
= get_base_address (t
);
1686 && TREE_READONLY (base
)
1687 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1688 && !TREE_THIS_VOLATILE (base
))
1689 MEM_READONLY_P (ref
) = 1;
1691 /* Mark static const strings readonly as well. */
1692 if (TREE_CODE (base
) == STRING_CST
1693 && TREE_READONLY (base
)
1694 && TREE_STATIC (base
))
1695 MEM_READONLY_P (ref
) = 1;
1697 /* Address-space information is on the base object. */
1698 if (TREE_CODE (base
) == MEM_REF
1699 || TREE_CODE (base
) == TARGET_MEM_REF
)
1700 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1703 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1706 /* If this expression uses it's parent's alias set, mark it such
1707 that we won't change it. */
1708 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1709 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1711 /* If this is a decl, set the attributes of the MEM from it. */
1715 attrs
.offset_known_p
= true;
1717 apply_bitpos
= bitpos
;
1718 new_size
= DECL_SIZE_UNIT (t
);
1721 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1722 else if (CONSTANT_CLASS_P (t
))
1725 /* If this is a field reference, record it. */
1726 else if (TREE_CODE (t
) == COMPONENT_REF
)
1729 attrs
.offset_known_p
= true;
1731 apply_bitpos
= bitpos
;
1732 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1733 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1736 /* If this is an array reference, look for an outer field reference. */
1737 else if (TREE_CODE (t
) == ARRAY_REF
)
1739 tree off_tree
= size_zero_node
;
1740 /* We can't modify t, because we use it at the end of the
1746 tree index
= TREE_OPERAND (t2
, 1);
1747 tree low_bound
= array_ref_low_bound (t2
);
1748 tree unit_size
= array_ref_element_size (t2
);
1750 /* We assume all arrays have sizes that are a multiple of a byte.
1751 First subtract the lower bound, if any, in the type of the
1752 index, then convert to sizetype and multiply by the size of
1753 the array element. */
1754 if (! integer_zerop (low_bound
))
1755 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1758 off_tree
= size_binop (PLUS_EXPR
,
1759 size_binop (MULT_EXPR
,
1760 fold_convert (sizetype
,
1764 t2
= TREE_OPERAND (t2
, 0);
1766 while (TREE_CODE (t2
) == ARRAY_REF
);
1769 || TREE_CODE (t2
) == COMPONENT_REF
)
1772 attrs
.offset_known_p
= false;
1773 if (tree_fits_uhwi_p (off_tree
))
1775 attrs
.offset_known_p
= true;
1776 attrs
.offset
= tree_to_uhwi (off_tree
);
1777 apply_bitpos
= bitpos
;
1780 /* Else do not record a MEM_EXPR. */
1783 /* If this is an indirect reference, record it. */
1784 else if (TREE_CODE (t
) == MEM_REF
1785 || TREE_CODE (t
) == TARGET_MEM_REF
)
1788 attrs
.offset_known_p
= true;
1790 apply_bitpos
= bitpos
;
1793 /* Compute the alignment. */
1794 unsigned int obj_align
;
1795 unsigned HOST_WIDE_INT obj_bitpos
;
1796 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1797 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1798 if (obj_bitpos
!= 0)
1799 obj_align
= (obj_bitpos
& -obj_bitpos
);
1800 attrs
.align
= MAX (attrs
.align
, obj_align
);
1803 if (tree_fits_uhwi_p (new_size
))
1805 attrs
.size_known_p
= true;
1806 attrs
.size
= tree_to_uhwi (new_size
);
1809 /* If we modified OFFSET based on T, then subtract the outstanding
1810 bit position offset. Similarly, increase the size of the accessed
1811 object to contain the negative offset. */
1814 gcc_assert (attrs
.offset_known_p
);
1815 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1816 if (attrs
.size_known_p
)
1817 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1820 /* Now set the attributes we computed above. */
1821 attrs
.addrspace
= as
;
1822 set_mem_attrs (ref
, &attrs
);
1826 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1828 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1831 /* Set the alias set of MEM to SET. */
1834 set_mem_alias_set (rtx mem
, alias_set_type set
)
1836 struct mem_attrs attrs
;
1838 /* If the new and old alias sets don't conflict, something is wrong. */
1839 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1840 attrs
= *get_mem_attrs (mem
);
1842 set_mem_attrs (mem
, &attrs
);
1845 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1848 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1850 struct mem_attrs attrs
;
1852 attrs
= *get_mem_attrs (mem
);
1853 attrs
.addrspace
= addrspace
;
1854 set_mem_attrs (mem
, &attrs
);
1857 /* Set the alignment of MEM to ALIGN bits. */
1860 set_mem_align (rtx mem
, unsigned int align
)
1862 struct mem_attrs attrs
;
1864 attrs
= *get_mem_attrs (mem
);
1865 attrs
.align
= align
;
1866 set_mem_attrs (mem
, &attrs
);
1869 /* Set the expr for MEM to EXPR. */
1872 set_mem_expr (rtx mem
, tree expr
)
1874 struct mem_attrs attrs
;
1876 attrs
= *get_mem_attrs (mem
);
1878 set_mem_attrs (mem
, &attrs
);
1881 /* Set the offset of MEM to OFFSET. */
1884 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1886 struct mem_attrs attrs
;
1888 attrs
= *get_mem_attrs (mem
);
1889 attrs
.offset_known_p
= true;
1890 attrs
.offset
= offset
;
1891 set_mem_attrs (mem
, &attrs
);
1894 /* Clear the offset of MEM. */
1897 clear_mem_offset (rtx mem
)
1899 struct mem_attrs attrs
;
1901 attrs
= *get_mem_attrs (mem
);
1902 attrs
.offset_known_p
= false;
1903 set_mem_attrs (mem
, &attrs
);
1906 /* Set the size of MEM to SIZE. */
1909 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1911 struct mem_attrs attrs
;
1913 attrs
= *get_mem_attrs (mem
);
1914 attrs
.size_known_p
= true;
1916 set_mem_attrs (mem
, &attrs
);
1919 /* Clear the size of MEM. */
1922 clear_mem_size (rtx mem
)
1924 struct mem_attrs attrs
;
1926 attrs
= *get_mem_attrs (mem
);
1927 attrs
.size_known_p
= false;
1928 set_mem_attrs (mem
, &attrs
);
1931 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1932 and its address changed to ADDR. (VOIDmode means don't change the mode.
1933 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1934 returned memory location is required to be valid. The memory
1935 attributes are not changed. */
1938 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1943 gcc_assert (MEM_P (memref
));
1944 as
= MEM_ADDR_SPACE (memref
);
1945 if (mode
== VOIDmode
)
1946 mode
= GET_MODE (memref
);
1948 addr
= XEXP (memref
, 0);
1949 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1950 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1955 if (reload_in_progress
|| reload_completed
)
1956 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1958 addr
= memory_address_addr_space (mode
, addr
, as
);
1961 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1964 new_rtx
= gen_rtx_MEM (mode
, addr
);
1965 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1969 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1970 way we are changing MEMREF, so we only preserve the alias set. */
1973 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1975 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
1976 enum machine_mode mmode
= GET_MODE (new_rtx
);
1977 struct mem_attrs attrs
, *defattrs
;
1979 attrs
= *get_mem_attrs (memref
);
1980 defattrs
= mode_mem_attrs
[(int) mmode
];
1981 attrs
.expr
= NULL_TREE
;
1982 attrs
.offset_known_p
= false;
1983 attrs
.size_known_p
= defattrs
->size_known_p
;
1984 attrs
.size
= defattrs
->size
;
1985 attrs
.align
= defattrs
->align
;
1987 /* If there are no changes, just return the original memory reference. */
1988 if (new_rtx
== memref
)
1990 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
1993 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1994 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1997 set_mem_attrs (new_rtx
, &attrs
);
2001 /* Return a memory reference like MEMREF, but with its mode changed
2002 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2003 nonzero, the memory address is forced to be valid.
2004 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2005 and the caller is responsible for adjusting MEMREF base register.
2006 If ADJUST_OBJECT is zero, the underlying object associated with the
2007 memory reference is left unchanged and the caller is responsible for
2008 dealing with it. Otherwise, if the new memory reference is outside
2009 the underlying object, even partially, then the object is dropped.
2010 SIZE, if nonzero, is the size of an access in cases where MODE
2011 has no inherent size. */
2014 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2015 int validate
, int adjust_address
, int adjust_object
,
2018 rtx addr
= XEXP (memref
, 0);
2020 enum machine_mode address_mode
;
2022 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2023 unsigned HOST_WIDE_INT max_align
;
2024 #ifdef POINTERS_EXTEND_UNSIGNED
2025 enum machine_mode pointer_mode
2026 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2029 /* VOIDmode means no mode change for change_address_1. */
2030 if (mode
== VOIDmode
)
2031 mode
= GET_MODE (memref
);
2033 /* Take the size of non-BLKmode accesses from the mode. */
2034 defattrs
= mode_mem_attrs
[(int) mode
];
2035 if (defattrs
->size_known_p
)
2036 size
= defattrs
->size
;
2038 /* If there are no changes, just return the original memory reference. */
2039 if (mode
== GET_MODE (memref
) && !offset
2040 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2041 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2045 /* ??? Prefer to create garbage instead of creating shared rtl.
2046 This may happen even if offset is nonzero -- consider
2047 (plus (plus reg reg) const_int) -- so do this always. */
2048 addr
= copy_rtx (addr
);
2050 /* Convert a possibly large offset to a signed value within the
2051 range of the target address space. */
2052 address_mode
= get_address_mode (memref
);
2053 pbits
= GET_MODE_BITSIZE (address_mode
);
2054 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2056 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2057 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2063 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2064 object, we can merge it into the LO_SUM. */
2065 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2067 && (unsigned HOST_WIDE_INT
) offset
2068 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2069 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2070 plus_constant (address_mode
,
2071 XEXP (addr
, 1), offset
));
2072 #ifdef POINTERS_EXTEND_UNSIGNED
2073 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2074 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2075 the fact that pointers are not allowed to overflow. */
2076 else if (POINTERS_EXTEND_UNSIGNED
> 0
2077 && GET_CODE (addr
) == ZERO_EXTEND
2078 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2079 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2080 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2081 plus_constant (pointer_mode
,
2082 XEXP (addr
, 0), offset
));
2085 addr
= plus_constant (address_mode
, addr
, offset
);
2088 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2090 /* If the address is a REG, change_address_1 rightfully returns memref,
2091 but this would destroy memref's MEM_ATTRS. */
2092 if (new_rtx
== memref
&& offset
!= 0)
2093 new_rtx
= copy_rtx (new_rtx
);
2095 /* Conservatively drop the object if we don't know where we start from. */
2096 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2098 attrs
.expr
= NULL_TREE
;
2102 /* Compute the new values of the memory attributes due to this adjustment.
2103 We add the offsets and update the alignment. */
2104 if (attrs
.offset_known_p
)
2106 attrs
.offset
+= offset
;
2108 /* Drop the object if the new left end is not within its bounds. */
2109 if (adjust_object
&& attrs
.offset
< 0)
2111 attrs
.expr
= NULL_TREE
;
2116 /* Compute the new alignment by taking the MIN of the alignment and the
2117 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2121 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2122 attrs
.align
= MIN (attrs
.align
, max_align
);
2127 /* Drop the object if the new right end is not within its bounds. */
2128 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2130 attrs
.expr
= NULL_TREE
;
2133 attrs
.size_known_p
= true;
2136 else if (attrs
.size_known_p
)
2138 gcc_assert (!adjust_object
);
2139 attrs
.size
-= offset
;
2140 /* ??? The store_by_pieces machinery generates negative sizes,
2141 so don't assert for that here. */
2144 set_mem_attrs (new_rtx
, &attrs
);
2149 /* Return a memory reference like MEMREF, but with its mode changed
2150 to MODE and its address changed to ADDR, which is assumed to be
2151 MEMREF offset by OFFSET bytes. If VALIDATE is
2152 nonzero, the memory address is forced to be valid. */
2155 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2156 HOST_WIDE_INT offset
, int validate
)
2158 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2159 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2162 /* Return a memory reference like MEMREF, but whose address is changed by
2163 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2164 known to be in OFFSET (possibly 1). */
2167 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2169 rtx new_rtx
, addr
= XEXP (memref
, 0);
2170 enum machine_mode address_mode
;
2171 struct mem_attrs attrs
, *defattrs
;
2173 attrs
= *get_mem_attrs (memref
);
2174 address_mode
= get_address_mode (memref
);
2175 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2177 /* At this point we don't know _why_ the address is invalid. It
2178 could have secondary memory references, multiplies or anything.
2180 However, if we did go and rearrange things, we can wind up not
2181 being able to recognize the magic around pic_offset_table_rtx.
2182 This stuff is fragile, and is yet another example of why it is
2183 bad to expose PIC machinery too early. */
2184 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2186 && GET_CODE (addr
) == PLUS
2187 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2189 addr
= force_reg (GET_MODE (addr
), addr
);
2190 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2193 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2194 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2196 /* If there are no changes, just return the original memory reference. */
2197 if (new_rtx
== memref
)
2200 /* Update the alignment to reflect the offset. Reset the offset, which
2202 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2203 attrs
.offset_known_p
= false;
2204 attrs
.size_known_p
= defattrs
->size_known_p
;
2205 attrs
.size
= defattrs
->size
;
2206 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2207 set_mem_attrs (new_rtx
, &attrs
);
2211 /* Return a memory reference like MEMREF, but with its address changed to
2212 ADDR. The caller is asserting that the actual piece of memory pointed
2213 to is the same, just the form of the address is being changed, such as
2214 by putting something into a register. */
2217 replace_equiv_address (rtx memref
, rtx addr
)
2219 /* change_address_1 copies the memory attribute structure without change
2220 and that's exactly what we want here. */
2221 update_temp_slot_address (XEXP (memref
, 0), addr
);
2222 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2225 /* Likewise, but the reference is not required to be valid. */
2228 replace_equiv_address_nv (rtx memref
, rtx addr
)
2230 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2233 /* Return a memory reference like MEMREF, but with its mode widened to
2234 MODE and offset by OFFSET. This would be used by targets that e.g.
2235 cannot issue QImode memory operations and have to use SImode memory
2236 operations plus masking logic. */
2239 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2241 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2242 struct mem_attrs attrs
;
2243 unsigned int size
= GET_MODE_SIZE (mode
);
2245 /* If there are no changes, just return the original memory reference. */
2246 if (new_rtx
== memref
)
2249 attrs
= *get_mem_attrs (new_rtx
);
2251 /* If we don't know what offset we were at within the expression, then
2252 we can't know if we've overstepped the bounds. */
2253 if (! attrs
.offset_known_p
)
2254 attrs
.expr
= NULL_TREE
;
2258 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2260 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2261 tree offset
= component_ref_field_offset (attrs
.expr
);
2263 if (! DECL_SIZE_UNIT (field
))
2265 attrs
.expr
= NULL_TREE
;
2269 /* Is the field at least as large as the access? If so, ok,
2270 otherwise strip back to the containing structure. */
2271 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2272 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2273 && attrs
.offset
>= 0)
2276 if (! tree_fits_uhwi_p (offset
))
2278 attrs
.expr
= NULL_TREE
;
2282 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2283 attrs
.offset
+= tree_to_uhwi (offset
);
2284 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2287 /* Similarly for the decl. */
2288 else if (DECL_P (attrs
.expr
)
2289 && DECL_SIZE_UNIT (attrs
.expr
)
2290 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2291 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2292 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2296 /* The widened memory access overflows the expression, which means
2297 that it could alias another expression. Zap it. */
2298 attrs
.expr
= NULL_TREE
;
2304 attrs
.offset_known_p
= false;
2306 /* The widened memory may alias other stuff, so zap the alias set. */
2307 /* ??? Maybe use get_alias_set on any remaining expression. */
2309 attrs
.size_known_p
= true;
2311 set_mem_attrs (new_rtx
, &attrs
);
2315 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2316 static GTY(()) tree spill_slot_decl
;
2319 get_spill_slot_decl (bool force_build_p
)
2321 tree d
= spill_slot_decl
;
2323 struct mem_attrs attrs
;
2325 if (d
|| !force_build_p
)
2328 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2329 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2330 DECL_ARTIFICIAL (d
) = 1;
2331 DECL_IGNORED_P (d
) = 1;
2333 spill_slot_decl
= d
;
2335 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2336 MEM_NOTRAP_P (rd
) = 1;
2337 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2338 attrs
.alias
= new_alias_set ();
2340 set_mem_attrs (rd
, &attrs
);
2341 SET_DECL_RTL (d
, rd
);
2346 /* Given MEM, a result from assign_stack_local, fill in the memory
2347 attributes as appropriate for a register allocator spill slot.
2348 These slots are not aliasable by other memory. We arrange for
2349 them all to use a single MEM_EXPR, so that the aliasing code can
2350 work properly in the case of shared spill slots. */
2353 set_mem_attrs_for_spill (rtx mem
)
2355 struct mem_attrs attrs
;
2358 attrs
= *get_mem_attrs (mem
);
2359 attrs
.expr
= get_spill_slot_decl (true);
2360 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2361 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2363 /* We expect the incoming memory to be of the form:
2364 (mem:MODE (plus (reg sfp) (const_int offset)))
2365 with perhaps the plus missing for offset = 0. */
2366 addr
= XEXP (mem
, 0);
2367 attrs
.offset_known_p
= true;
2369 if (GET_CODE (addr
) == PLUS
2370 && CONST_INT_P (XEXP (addr
, 1)))
2371 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2373 set_mem_attrs (mem
, &attrs
);
2374 MEM_NOTRAP_P (mem
) = 1;
2377 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2380 gen_label_rtx (void)
2382 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2383 NULL
, label_num
++, NULL
);
2386 /* For procedure integration. */
2388 /* Install new pointers to the first and last insns in the chain.
2389 Also, set cur_insn_uid to one higher than the last in use.
2390 Used for an inline-procedure after copying the insn chain. */
2393 set_new_first_and_last_insn (rtx first
, rtx last
)
2397 set_first_insn (first
);
2398 set_last_insn (last
);
2401 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2403 int debug_count
= 0;
2405 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2406 cur_debug_insn_uid
= 0;
2408 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2409 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2410 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2413 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2414 if (DEBUG_INSN_P (insn
))
2419 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2421 cur_debug_insn_uid
++;
2424 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2425 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2430 /* Go through all the RTL insn bodies and copy any invalid shared
2431 structure. This routine should only be called once. */
2434 unshare_all_rtl_1 (rtx insn
)
2436 /* Unshare just about everything else. */
2437 unshare_all_rtl_in_chain (insn
);
2439 /* Make sure the addresses of stack slots found outside the insn chain
2440 (such as, in DECL_RTL of a variable) are not shared
2441 with the insn chain.
2443 This special care is necessary when the stack slot MEM does not
2444 actually appear in the insn chain. If it does appear, its address
2445 is unshared from all else at that point. */
2446 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2449 /* Go through all the RTL insn bodies and copy any invalid shared
2450 structure, again. This is a fairly expensive thing to do so it
2451 should be done sparingly. */
2454 unshare_all_rtl_again (rtx insn
)
2459 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2462 reset_used_flags (PATTERN (p
));
2463 reset_used_flags (REG_NOTES (p
));
2465 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2468 /* Make sure that virtual stack slots are not shared. */
2469 set_used_decls (DECL_INITIAL (cfun
->decl
));
2471 /* Make sure that virtual parameters are not shared. */
2472 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2473 set_used_flags (DECL_RTL (decl
));
2475 reset_used_flags (stack_slot_list
);
2477 unshare_all_rtl_1 (insn
);
2481 unshare_all_rtl (void)
2483 unshare_all_rtl_1 (get_insns ());
2488 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2489 Recursively does the same for subexpressions. */
2492 verify_rtx_sharing (rtx orig
, rtx insn
)
2497 const char *format_ptr
;
2502 code
= GET_CODE (x
);
2504 /* These types may be freely shared. */
2520 /* SCRATCH must be shared because they represent distinct values. */
2523 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2524 clobbers or clobbers of hard registers that originated as pseudos.
2525 This is needed to allow safe register renaming. */
2526 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2527 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2532 if (shared_const_p (orig
))
2537 /* A MEM is allowed to be shared if its address is constant. */
2538 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2539 || reload_completed
|| reload_in_progress
)
2548 /* This rtx may not be shared. If it has already been seen,
2549 replace it with a copy of itself. */
2550 #ifdef ENABLE_CHECKING
2551 if (RTX_FLAG (x
, used
))
2553 error ("invalid rtl sharing found in the insn");
2555 error ("shared rtx");
2557 internal_error ("internal consistency failure");
2560 gcc_assert (!RTX_FLAG (x
, used
));
2562 RTX_FLAG (x
, used
) = 1;
2564 /* Now scan the subexpressions recursively. */
2566 format_ptr
= GET_RTX_FORMAT (code
);
2568 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2570 switch (*format_ptr
++)
2573 verify_rtx_sharing (XEXP (x
, i
), insn
);
2577 if (XVEC (x
, i
) != NULL
)
2580 int len
= XVECLEN (x
, i
);
2582 for (j
= 0; j
< len
; j
++)
2584 /* We allow sharing of ASM_OPERANDS inside single
2586 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2587 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2589 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2591 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2600 /* Reset used-flags for INSN. */
2603 reset_insn_used_flags (rtx insn
)
2605 gcc_assert (INSN_P (insn
));
2606 reset_used_flags (PATTERN (insn
));
2607 reset_used_flags (REG_NOTES (insn
));
2609 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2612 /* Go through all the RTL insn bodies and clear all the USED bits. */
2615 reset_all_used_flags (void)
2619 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2622 rtx pat
= PATTERN (p
);
2623 if (GET_CODE (pat
) != SEQUENCE
)
2624 reset_insn_used_flags (p
);
2627 gcc_assert (REG_NOTES (p
) == NULL
);
2628 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2629 reset_insn_used_flags (XVECEXP (pat
, 0, i
));
2634 /* Verify sharing in INSN. */
2637 verify_insn_sharing (rtx insn
)
2639 gcc_assert (INSN_P (insn
));
2640 reset_used_flags (PATTERN (insn
));
2641 reset_used_flags (REG_NOTES (insn
));
2643 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2646 /* Go through all the RTL insn bodies and check that there is no unexpected
2647 sharing in between the subexpressions. */
2650 verify_rtl_sharing (void)
2654 timevar_push (TV_VERIFY_RTL_SHARING
);
2656 reset_all_used_flags ();
2658 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2661 rtx pat
= PATTERN (p
);
2662 if (GET_CODE (pat
) != SEQUENCE
)
2663 verify_insn_sharing (p
);
2665 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2666 verify_insn_sharing (XVECEXP (pat
, 0, i
));
2669 reset_all_used_flags ();
2671 timevar_pop (TV_VERIFY_RTL_SHARING
);
2674 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2675 Assumes the mark bits are cleared at entry. */
2678 unshare_all_rtl_in_chain (rtx insn
)
2680 for (; insn
; insn
= NEXT_INSN (insn
))
2683 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2684 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2686 CALL_INSN_FUNCTION_USAGE (insn
)
2687 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2691 /* Go through all virtual stack slots of a function and mark them as
2692 shared. We never replace the DECL_RTLs themselves with a copy,
2693 but expressions mentioned into a DECL_RTL cannot be shared with
2694 expressions in the instruction stream.
2696 Note that reload may convert pseudo registers into memories in-place.
2697 Pseudo registers are always shared, but MEMs never are. Thus if we
2698 reset the used flags on MEMs in the instruction stream, we must set
2699 them again on MEMs that appear in DECL_RTLs. */
2702 set_used_decls (tree blk
)
2707 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2708 if (DECL_RTL_SET_P (t
))
2709 set_used_flags (DECL_RTL (t
));
2711 /* Now process sub-blocks. */
2712 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2716 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2717 Recursively does the same for subexpressions. Uses
2718 copy_rtx_if_shared_1 to reduce stack space. */
2721 copy_rtx_if_shared (rtx orig
)
2723 copy_rtx_if_shared_1 (&orig
);
2727 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2728 use. Recursively does the same for subexpressions. */
2731 copy_rtx_if_shared_1 (rtx
*orig1
)
2737 const char *format_ptr
;
2741 /* Repeat is used to turn tail-recursion into iteration. */
2748 code
= GET_CODE (x
);
2750 /* These types may be freely shared. */
2766 /* SCRATCH must be shared because they represent distinct values. */
2769 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2770 clobbers or clobbers of hard registers that originated as pseudos.
2771 This is needed to allow safe register renaming. */
2772 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2773 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2778 if (shared_const_p (x
))
2788 /* The chain of insns is not being copied. */
2795 /* This rtx may not be shared. If it has already been seen,
2796 replace it with a copy of itself. */
2798 if (RTX_FLAG (x
, used
))
2800 x
= shallow_copy_rtx (x
);
2803 RTX_FLAG (x
, used
) = 1;
2805 /* Now scan the subexpressions recursively.
2806 We can store any replaced subexpressions directly into X
2807 since we know X is not shared! Any vectors in X
2808 must be copied if X was copied. */
2810 format_ptr
= GET_RTX_FORMAT (code
);
2811 length
= GET_RTX_LENGTH (code
);
2814 for (i
= 0; i
< length
; i
++)
2816 switch (*format_ptr
++)
2820 copy_rtx_if_shared_1 (last_ptr
);
2821 last_ptr
= &XEXP (x
, i
);
2825 if (XVEC (x
, i
) != NULL
)
2828 int len
= XVECLEN (x
, i
);
2830 /* Copy the vector iff I copied the rtx and the length
2832 if (copied
&& len
> 0)
2833 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2835 /* Call recursively on all inside the vector. */
2836 for (j
= 0; j
< len
; j
++)
2839 copy_rtx_if_shared_1 (last_ptr
);
2840 last_ptr
= &XVECEXP (x
, i
, j
);
2855 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2858 mark_used_flags (rtx x
, int flag
)
2862 const char *format_ptr
;
2865 /* Repeat is used to turn tail-recursion into iteration. */
2870 code
= GET_CODE (x
);
2872 /* These types may be freely shared so we needn't do any resetting
2896 /* The chain of insns is not being copied. */
2903 RTX_FLAG (x
, used
) = flag
;
2905 format_ptr
= GET_RTX_FORMAT (code
);
2906 length
= GET_RTX_LENGTH (code
);
2908 for (i
= 0; i
< length
; i
++)
2910 switch (*format_ptr
++)
2918 mark_used_flags (XEXP (x
, i
), flag
);
2922 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2923 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2929 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2930 to look for shared sub-parts. */
2933 reset_used_flags (rtx x
)
2935 mark_used_flags (x
, 0);
2938 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2939 to look for shared sub-parts. */
2942 set_used_flags (rtx x
)
2944 mark_used_flags (x
, 1);
2947 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2948 Return X or the rtx for the pseudo reg the value of X was copied into.
2949 OTHER must be valid as a SET_DEST. */
2952 make_safe_from (rtx x
, rtx other
)
2955 switch (GET_CODE (other
))
2958 other
= SUBREG_REG (other
);
2960 case STRICT_LOW_PART
:
2963 other
= XEXP (other
, 0);
2972 && GET_CODE (x
) != SUBREG
)
2974 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2975 || reg_mentioned_p (other
, x
))))
2977 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2978 emit_move_insn (temp
, x
);
2984 /* Emission of insns (adding them to the doubly-linked list). */
2986 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2989 get_last_insn_anywhere (void)
2991 struct sequence_stack
*stack
;
2992 if (get_last_insn ())
2993 return get_last_insn ();
2994 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2995 if (stack
->last
!= 0)
3000 /* Return the first nonnote insn emitted in current sequence or current
3001 function. This routine looks inside SEQUENCEs. */
3004 get_first_nonnote_insn (void)
3006 rtx insn
= get_insns ();
3011 for (insn
= next_insn (insn
);
3012 insn
&& NOTE_P (insn
);
3013 insn
= next_insn (insn
))
3017 if (NONJUMP_INSN_P (insn
)
3018 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3019 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3026 /* Return the last nonnote insn emitted in current sequence or current
3027 function. This routine looks inside SEQUENCEs. */
3030 get_last_nonnote_insn (void)
3032 rtx insn
= get_last_insn ();
3037 for (insn
= previous_insn (insn
);
3038 insn
&& NOTE_P (insn
);
3039 insn
= previous_insn (insn
))
3043 if (NONJUMP_INSN_P (insn
)
3044 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3045 insn
= XVECEXP (PATTERN (insn
), 0,
3046 XVECLEN (PATTERN (insn
), 0) - 1);
3053 /* Return the number of actual (non-debug) insns emitted in this
3057 get_max_insn_count (void)
3059 int n
= cur_insn_uid
;
3061 /* The table size must be stable across -g, to avoid codegen
3062 differences due to debug insns, and not be affected by
3063 -fmin-insn-uid, to avoid excessive table size and to simplify
3064 debugging of -fcompare-debug failures. */
3065 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3066 n
-= cur_debug_insn_uid
;
3068 n
-= MIN_NONDEBUG_INSN_UID
;
3074 /* Return the next insn. If it is a SEQUENCE, return the first insn
3078 next_insn (rtx insn
)
3082 insn
= NEXT_INSN (insn
);
3083 if (insn
&& NONJUMP_INSN_P (insn
)
3084 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3085 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3091 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3095 previous_insn (rtx insn
)
3099 insn
= PREV_INSN (insn
);
3100 if (insn
&& NONJUMP_INSN_P (insn
)
3101 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3102 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3108 /* Return the next insn after INSN that is not a NOTE. This routine does not
3109 look inside SEQUENCEs. */
3112 next_nonnote_insn (rtx insn
)
3116 insn
= NEXT_INSN (insn
);
3117 if (insn
== 0 || !NOTE_P (insn
))
3124 /* Return the next insn after INSN that is not a NOTE, but stop the
3125 search before we enter another basic block. This routine does not
3126 look inside SEQUENCEs. */
3129 next_nonnote_insn_bb (rtx insn
)
3133 insn
= NEXT_INSN (insn
);
3134 if (insn
== 0 || !NOTE_P (insn
))
3136 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3143 /* Return the previous insn before INSN that is not a NOTE. This routine does
3144 not look inside SEQUENCEs. */
3147 prev_nonnote_insn (rtx insn
)
3151 insn
= PREV_INSN (insn
);
3152 if (insn
== 0 || !NOTE_P (insn
))
3159 /* Return the previous insn before INSN that is not a NOTE, but stop
3160 the search before we enter another basic block. This routine does
3161 not look inside SEQUENCEs. */
3164 prev_nonnote_insn_bb (rtx insn
)
3168 insn
= PREV_INSN (insn
);
3169 if (insn
== 0 || !NOTE_P (insn
))
3171 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3178 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3179 routine does not look inside SEQUENCEs. */
3182 next_nondebug_insn (rtx insn
)
3186 insn
= NEXT_INSN (insn
);
3187 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3194 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3195 This routine does not look inside SEQUENCEs. */
3198 prev_nondebug_insn (rtx insn
)
3202 insn
= PREV_INSN (insn
);
3203 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3210 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3211 This routine does not look inside SEQUENCEs. */
3214 next_nonnote_nondebug_insn (rtx insn
)
3218 insn
= NEXT_INSN (insn
);
3219 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3226 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3227 This routine does not look inside SEQUENCEs. */
3230 prev_nonnote_nondebug_insn (rtx insn
)
3234 insn
= PREV_INSN (insn
);
3235 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3242 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3243 or 0, if there is none. This routine does not look inside
3247 next_real_insn (rtx insn
)
3251 insn
= NEXT_INSN (insn
);
3252 if (insn
== 0 || INSN_P (insn
))
3259 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3260 or 0, if there is none. This routine does not look inside
3264 prev_real_insn (rtx insn
)
3268 insn
= PREV_INSN (insn
);
3269 if (insn
== 0 || INSN_P (insn
))
3276 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3277 This routine does not look inside SEQUENCEs. */
3280 last_call_insn (void)
3284 for (insn
= get_last_insn ();
3285 insn
&& !CALL_P (insn
);
3286 insn
= PREV_INSN (insn
))
3292 /* Find the next insn after INSN that really does something. This routine
3293 does not look inside SEQUENCEs. After reload this also skips over
3294 standalone USE and CLOBBER insn. */
3297 active_insn_p (const_rtx insn
)
3299 return (CALL_P (insn
) || JUMP_P (insn
)
3300 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3301 || (NONJUMP_INSN_P (insn
)
3302 && (! reload_completed
3303 || (GET_CODE (PATTERN (insn
)) != USE
3304 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3308 next_active_insn (rtx insn
)
3312 insn
= NEXT_INSN (insn
);
3313 if (insn
== 0 || active_insn_p (insn
))
3320 /* Find the last insn before INSN that really does something. This routine
3321 does not look inside SEQUENCEs. After reload this also skips over
3322 standalone USE and CLOBBER insn. */
3325 prev_active_insn (rtx insn
)
3329 insn
= PREV_INSN (insn
);
3330 if (insn
== 0 || active_insn_p (insn
))
3338 /* Return the next insn that uses CC0 after INSN, which is assumed to
3339 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3340 applied to the result of this function should yield INSN).
3342 Normally, this is simply the next insn. However, if a REG_CC_USER note
3343 is present, it contains the insn that uses CC0.
3345 Return 0 if we can't find the insn. */
3348 next_cc0_user (rtx insn
)
3350 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3353 return XEXP (note
, 0);
3355 insn
= next_nonnote_insn (insn
);
3356 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3357 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3359 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3365 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3366 note, it is the previous insn. */
3369 prev_cc0_setter (rtx insn
)
3371 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3374 return XEXP (note
, 0);
3376 insn
= prev_nonnote_insn (insn
);
3377 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3384 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3387 find_auto_inc (rtx
*xp
, void *data
)
3390 rtx reg
= (rtx
) data
;
3392 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3395 switch (GET_CODE (x
))
3403 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3414 /* Increment the label uses for all labels present in rtx. */
3417 mark_label_nuses (rtx x
)
3423 code
= GET_CODE (x
);
3424 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3425 LABEL_NUSES (XEXP (x
, 0))++;
3427 fmt
= GET_RTX_FORMAT (code
);
3428 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3431 mark_label_nuses (XEXP (x
, i
));
3432 else if (fmt
[i
] == 'E')
3433 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3434 mark_label_nuses (XVECEXP (x
, i
, j
));
3439 /* Try splitting insns that can be split for better scheduling.
3440 PAT is the pattern which might split.
3441 TRIAL is the insn providing PAT.
3442 LAST is nonzero if we should return the last insn of the sequence produced.
3444 If this routine succeeds in splitting, it returns the first or last
3445 replacement insn depending on the value of LAST. Otherwise, it
3446 returns TRIAL. If the insn to be returned can be split, it will be. */
3449 try_split (rtx pat
, rtx trial
, int last
)
3451 rtx before
= PREV_INSN (trial
);
3452 rtx after
= NEXT_INSN (trial
);
3453 int has_barrier
= 0;
3456 rtx insn_last
, insn
;
3459 /* We're not good at redistributing frame information. */
3460 if (RTX_FRAME_RELATED_P (trial
))
3463 if (any_condjump_p (trial
)
3464 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3465 split_branch_probability
= XINT (note
, 0);
3466 probability
= split_branch_probability
;
3468 seq
= split_insns (pat
, trial
);
3470 split_branch_probability
= -1;
3472 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3473 We may need to handle this specially. */
3474 if (after
&& BARRIER_P (after
))
3477 after
= NEXT_INSN (after
);
3483 /* Avoid infinite loop if any insn of the result matches
3484 the original pattern. */
3488 if (INSN_P (insn_last
)
3489 && rtx_equal_p (PATTERN (insn_last
), pat
))
3491 if (!NEXT_INSN (insn_last
))
3493 insn_last
= NEXT_INSN (insn_last
);
3496 /* We will be adding the new sequence to the function. The splitters
3497 may have introduced invalid RTL sharing, so unshare the sequence now. */
3498 unshare_all_rtl_in_chain (seq
);
3501 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3505 mark_jump_label (PATTERN (insn
), insn
, 0);
3507 if (probability
!= -1
3508 && any_condjump_p (insn
)
3509 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3511 /* We can preserve the REG_BR_PROB notes only if exactly
3512 one jump is created, otherwise the machine description
3513 is responsible for this step using
3514 split_branch_probability variable. */
3515 gcc_assert (njumps
== 1);
3516 add_int_reg_note (insn
, REG_BR_PROB
, probability
);
3521 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3522 in SEQ and copy any additional information across. */
3525 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3530 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3531 target may have explicitly specified. */
3532 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3535 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3537 /* If the old call was a sibling call, the new one must
3539 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3541 /* If the new call is the last instruction in the sequence,
3542 it will effectively replace the old call in-situ. Otherwise
3543 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3544 so that it comes immediately after the new call. */
3545 if (NEXT_INSN (insn
))
3546 for (next
= NEXT_INSN (trial
);
3547 next
&& NOTE_P (next
);
3548 next
= NEXT_INSN (next
))
3549 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3552 add_insn_after (next
, insn
, NULL
);
3558 /* Copy notes, particularly those related to the CFG. */
3559 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3561 switch (REG_NOTE_KIND (note
))
3564 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3570 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3573 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3577 case REG_NON_LOCAL_GOTO
:
3578 case REG_CROSSING_JUMP
:
3579 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3582 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3588 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3590 rtx reg
= XEXP (note
, 0);
3591 if (!FIND_REG_INC_NOTE (insn
, reg
)
3592 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3593 add_reg_note (insn
, REG_INC
, reg
);
3599 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3607 /* If there are LABELS inside the split insns increment the
3608 usage count so we don't delete the label. */
3612 while (insn
!= NULL_RTX
)
3614 /* JUMP_P insns have already been "marked" above. */
3615 if (NONJUMP_INSN_P (insn
))
3616 mark_label_nuses (PATTERN (insn
));
3618 insn
= PREV_INSN (insn
);
3622 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3624 delete_insn (trial
);
3626 emit_barrier_after (tem
);
3628 /* Recursively call try_split for each new insn created; by the
3629 time control returns here that insn will be fully split, so
3630 set LAST and continue from the insn after the one returned.
3631 We can't use next_active_insn here since AFTER may be a note.
3632 Ignore deleted insns, which can be occur if not optimizing. */
3633 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3634 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3635 tem
= try_split (PATTERN (tem
), tem
, 1);
3637 /* Return either the first or the last insn, depending on which was
3640 ? (after
? PREV_INSN (after
) : get_last_insn ())
3641 : NEXT_INSN (before
);
3644 /* Make and return an INSN rtx, initializing all its slots.
3645 Store PATTERN in the pattern slots. */
3648 make_insn_raw (rtx pattern
)
3652 insn
= rtx_alloc (INSN
);
3654 INSN_UID (insn
) = cur_insn_uid
++;
3655 PATTERN (insn
) = pattern
;
3656 INSN_CODE (insn
) = -1;
3657 REG_NOTES (insn
) = NULL
;
3658 INSN_LOCATION (insn
) = curr_insn_location ();
3659 BLOCK_FOR_INSN (insn
) = NULL
;
3661 #ifdef ENABLE_RTL_CHECKING
3664 && (returnjump_p (insn
)
3665 || (GET_CODE (insn
) == SET
3666 && SET_DEST (insn
) == pc_rtx
)))
3668 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3676 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3679 make_debug_insn_raw (rtx pattern
)
3683 insn
= rtx_alloc (DEBUG_INSN
);
3684 INSN_UID (insn
) = cur_debug_insn_uid
++;
3685 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3686 INSN_UID (insn
) = cur_insn_uid
++;
3688 PATTERN (insn
) = pattern
;
3689 INSN_CODE (insn
) = -1;
3690 REG_NOTES (insn
) = NULL
;
3691 INSN_LOCATION (insn
) = curr_insn_location ();
3692 BLOCK_FOR_INSN (insn
) = NULL
;
3697 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3700 make_jump_insn_raw (rtx pattern
)
3704 insn
= rtx_alloc (JUMP_INSN
);
3705 INSN_UID (insn
) = cur_insn_uid
++;
3707 PATTERN (insn
) = pattern
;
3708 INSN_CODE (insn
) = -1;
3709 REG_NOTES (insn
) = NULL
;
3710 JUMP_LABEL (insn
) = NULL
;
3711 INSN_LOCATION (insn
) = curr_insn_location ();
3712 BLOCK_FOR_INSN (insn
) = NULL
;
3717 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3720 make_call_insn_raw (rtx pattern
)
3724 insn
= rtx_alloc (CALL_INSN
);
3725 INSN_UID (insn
) = cur_insn_uid
++;
3727 PATTERN (insn
) = pattern
;
3728 INSN_CODE (insn
) = -1;
3729 REG_NOTES (insn
) = NULL
;
3730 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3731 INSN_LOCATION (insn
) = curr_insn_location ();
3732 BLOCK_FOR_INSN (insn
) = NULL
;
3737 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3740 make_note_raw (enum insn_note subtype
)
3742 /* Some notes are never created this way at all. These notes are
3743 only created by patching out insns. */
3744 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3745 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3747 rtx note
= rtx_alloc (NOTE
);
3748 INSN_UID (note
) = cur_insn_uid
++;
3749 NOTE_KIND (note
) = subtype
;
3750 BLOCK_FOR_INSN (note
) = NULL
;
3751 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3755 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3756 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3757 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3760 link_insn_into_chain (rtx insn
, rtx prev
, rtx next
)
3762 PREV_INSN (insn
) = prev
;
3763 NEXT_INSN (insn
) = next
;
3766 NEXT_INSN (prev
) = insn
;
3767 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3769 rtx sequence
= PATTERN (prev
);
3770 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3775 PREV_INSN (next
) = insn
;
3776 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3777 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3780 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3782 rtx sequence
= PATTERN (insn
);
3783 PREV_INSN (XVECEXP (sequence
, 0, 0)) = prev
;
3784 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3788 /* Add INSN to the end of the doubly-linked list.
3789 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3794 rtx prev
= get_last_insn ();
3795 link_insn_into_chain (insn
, prev
, NULL
);
3796 if (NULL
== get_insns ())
3797 set_first_insn (insn
);
3798 set_last_insn (insn
);
3801 /* Add INSN into the doubly-linked list after insn AFTER. */
3804 add_insn_after_nobb (rtx insn
, rtx after
)
3806 rtx next
= NEXT_INSN (after
);
3808 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3810 link_insn_into_chain (insn
, after
, next
);
3814 if (get_last_insn () == after
)
3815 set_last_insn (insn
);
3818 struct sequence_stack
*stack
= seq_stack
;
3819 /* Scan all pending sequences too. */
3820 for (; stack
; stack
= stack
->next
)
3821 if (after
== stack
->last
)
3830 /* Add INSN into the doubly-linked list before insn BEFORE. */
3833 add_insn_before_nobb (rtx insn
, rtx before
)
3835 rtx prev
= PREV_INSN (before
);
3837 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3839 link_insn_into_chain (insn
, prev
, before
);
3843 if (get_insns () == before
)
3844 set_first_insn (insn
);
3847 struct sequence_stack
*stack
= seq_stack
;
3848 /* Scan all pending sequences too. */
3849 for (; stack
; stack
= stack
->next
)
3850 if (before
== stack
->first
)
3852 stack
->first
= insn
;
3861 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3862 If BB is NULL, an attempt is made to infer the bb from before.
3864 This and the next function should be the only functions called
3865 to insert an insn once delay slots have been filled since only
3866 they know how to update a SEQUENCE. */
3869 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3871 add_insn_after_nobb (insn
, after
);
3872 if (!BARRIER_P (after
)
3873 && !BARRIER_P (insn
)
3874 && (bb
= BLOCK_FOR_INSN (after
)))
3876 set_block_for_insn (insn
, bb
);
3878 df_insn_rescan (insn
);
3879 /* Should not happen as first in the BB is always
3880 either NOTE or LABEL. */
3881 if (BB_END (bb
) == after
3882 /* Avoid clobbering of structure when creating new BB. */
3883 && !BARRIER_P (insn
)
3884 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3889 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
3890 If BB is NULL, an attempt is made to infer the bb from before.
3892 This and the previous function should be the only functions called
3893 to insert an insn once delay slots have been filled since only
3894 they know how to update a SEQUENCE. */
3897 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3899 add_insn_before_nobb (insn
, before
);
3902 && !BARRIER_P (before
)
3903 && !BARRIER_P (insn
))
3904 bb
= BLOCK_FOR_INSN (before
);
3908 set_block_for_insn (insn
, bb
);
3910 df_insn_rescan (insn
);
3911 /* Should not happen as first in the BB is always either NOTE or
3913 gcc_assert (BB_HEAD (bb
) != insn
3914 /* Avoid clobbering of structure when creating new BB. */
3916 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3920 /* Replace insn with an deleted instruction note. */
3923 set_insn_deleted (rtx insn
)
3926 df_insn_delete (insn
);
3927 PUT_CODE (insn
, NOTE
);
3928 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3932 /* Unlink INSN from the insn chain.
3934 This function knows how to handle sequences.
3936 This function does not invalidate data flow information associated with
3937 INSN (i.e. does not call df_insn_delete). That makes this function
3938 usable for only disconnecting an insn from the chain, and re-emit it
3941 To later insert INSN elsewhere in the insn chain via add_insn and
3942 similar functions, PREV_INSN and NEXT_INSN must be nullified by
3943 the caller. Nullifying them here breaks many insn chain walks.
3945 To really delete an insn and related DF information, use delete_insn. */
3948 remove_insn (rtx insn
)
3950 rtx next
= NEXT_INSN (insn
);
3951 rtx prev
= PREV_INSN (insn
);
3956 NEXT_INSN (prev
) = next
;
3957 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3959 rtx sequence
= PATTERN (prev
);
3960 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3963 else if (get_insns () == insn
)
3966 PREV_INSN (next
) = NULL
;
3967 set_first_insn (next
);
3971 struct sequence_stack
*stack
= seq_stack
;
3972 /* Scan all pending sequences too. */
3973 for (; stack
; stack
= stack
->next
)
3974 if (insn
== stack
->first
)
3976 stack
->first
= next
;
3985 PREV_INSN (next
) = prev
;
3986 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3987 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3989 else if (get_last_insn () == insn
)
3990 set_last_insn (prev
);
3993 struct sequence_stack
*stack
= seq_stack
;
3994 /* Scan all pending sequences too. */
3995 for (; stack
; stack
= stack
->next
)
3996 if (insn
== stack
->last
)
4005 /* Fix up basic block boundaries, if necessary. */
4006 if (!BARRIER_P (insn
)
4007 && (bb
= BLOCK_FOR_INSN (insn
)))
4009 if (BB_HEAD (bb
) == insn
)
4011 /* Never ever delete the basic block note without deleting whole
4013 gcc_assert (!NOTE_P (insn
));
4014 BB_HEAD (bb
) = next
;
4016 if (BB_END (bb
) == insn
)
4021 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4024 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4026 gcc_assert (call_insn
&& CALL_P (call_insn
));
4028 /* Put the register usage information on the CALL. If there is already
4029 some usage information, put ours at the end. */
4030 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4034 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4035 link
= XEXP (link
, 1))
4038 XEXP (link
, 1) = call_fusage
;
4041 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4044 /* Delete all insns made since FROM.
4045 FROM becomes the new last instruction. */
4048 delete_insns_since (rtx from
)
4053 NEXT_INSN (from
) = 0;
4054 set_last_insn (from
);
4057 /* This function is deprecated, please use sequences instead.
4059 Move a consecutive bunch of insns to a different place in the chain.
4060 The insns to be moved are those between FROM and TO.
4061 They are moved to a new position after the insn AFTER.
4062 AFTER must not be FROM or TO or any insn in between.
4064 This function does not know about SEQUENCEs and hence should not be
4065 called after delay-slot filling has been done. */
4068 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4070 #ifdef ENABLE_CHECKING
4072 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4073 gcc_assert (after
!= x
);
4074 gcc_assert (after
!= to
);
4077 /* Splice this bunch out of where it is now. */
4078 if (PREV_INSN (from
))
4079 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4081 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4082 if (get_last_insn () == to
)
4083 set_last_insn (PREV_INSN (from
));
4084 if (get_insns () == from
)
4085 set_first_insn (NEXT_INSN (to
));
4087 /* Make the new neighbors point to it and it to them. */
4088 if (NEXT_INSN (after
))
4089 PREV_INSN (NEXT_INSN (after
)) = to
;
4091 NEXT_INSN (to
) = NEXT_INSN (after
);
4092 PREV_INSN (from
) = after
;
4093 NEXT_INSN (after
) = from
;
4094 if (after
== get_last_insn ())
4098 /* Same as function above, but take care to update BB boundaries. */
4100 reorder_insns (rtx from
, rtx to
, rtx after
)
4102 rtx prev
= PREV_INSN (from
);
4103 basic_block bb
, bb2
;
4105 reorder_insns_nobb (from
, to
, after
);
4107 if (!BARRIER_P (after
)
4108 && (bb
= BLOCK_FOR_INSN (after
)))
4111 df_set_bb_dirty (bb
);
4113 if (!BARRIER_P (from
)
4114 && (bb2
= BLOCK_FOR_INSN (from
)))
4116 if (BB_END (bb2
) == to
)
4117 BB_END (bb2
) = prev
;
4118 df_set_bb_dirty (bb2
);
4121 if (BB_END (bb
) == after
)
4124 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4126 df_insn_change_bb (x
, bb
);
4131 /* Emit insn(s) of given code and pattern
4132 at a specified place within the doubly-linked list.
4134 All of the emit_foo global entry points accept an object
4135 X which is either an insn list or a PATTERN of a single
4138 There are thus a few canonical ways to generate code and
4139 emit it at a specific place in the instruction stream. For
4140 example, consider the instruction named SPOT and the fact that
4141 we would like to emit some instructions before SPOT. We might
4145 ... emit the new instructions ...
4146 insns_head = get_insns ();
4149 emit_insn_before (insns_head, SPOT);
4151 It used to be common to generate SEQUENCE rtl instead, but that
4152 is a relic of the past which no longer occurs. The reason is that
4153 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4154 generated would almost certainly die right after it was created. */
4157 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4158 rtx (*make_raw
) (rtx
))
4162 gcc_assert (before
);
4167 switch (GET_CODE (x
))
4179 rtx next
= NEXT_INSN (insn
);
4180 add_insn_before (insn
, before
, bb
);
4186 #ifdef ENABLE_RTL_CHECKING
4193 last
= (*make_raw
) (x
);
4194 add_insn_before (last
, before
, bb
);
4201 /* Make X be output before the instruction BEFORE. */
4204 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4206 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4209 /* Make an instruction with body X and code JUMP_INSN
4210 and output it before the instruction BEFORE. */
4213 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4215 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4216 make_jump_insn_raw
);
4219 /* Make an instruction with body X and code CALL_INSN
4220 and output it before the instruction BEFORE. */
4223 emit_call_insn_before_noloc (rtx x
, rtx before
)
4225 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4226 make_call_insn_raw
);
4229 /* Make an instruction with body X and code DEBUG_INSN
4230 and output it before the instruction BEFORE. */
4233 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4235 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4236 make_debug_insn_raw
);
4239 /* Make an insn of code BARRIER
4240 and output it before the insn BEFORE. */
4243 emit_barrier_before (rtx before
)
4245 rtx insn
= rtx_alloc (BARRIER
);
4247 INSN_UID (insn
) = cur_insn_uid
++;
4249 add_insn_before (insn
, before
, NULL
);
4253 /* Emit the label LABEL before the insn BEFORE. */
4256 emit_label_before (rtx label
, rtx before
)
4258 gcc_checking_assert (INSN_UID (label
) == 0);
4259 INSN_UID (label
) = cur_insn_uid
++;
4260 add_insn_before (label
, before
, NULL
);
4264 /* Helper for emit_insn_after, handles lists of instructions
4268 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4272 if (!bb
&& !BARRIER_P (after
))
4273 bb
= BLOCK_FOR_INSN (after
);
4277 df_set_bb_dirty (bb
);
4278 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4279 if (!BARRIER_P (last
))
4281 set_block_for_insn (last
, bb
);
4282 df_insn_rescan (last
);
4284 if (!BARRIER_P (last
))
4286 set_block_for_insn (last
, bb
);
4287 df_insn_rescan (last
);
4289 if (BB_END (bb
) == after
)
4293 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4296 after_after
= NEXT_INSN (after
);
4298 NEXT_INSN (after
) = first
;
4299 PREV_INSN (first
) = after
;
4300 NEXT_INSN (last
) = after_after
;
4302 PREV_INSN (after_after
) = last
;
4304 if (after
== get_last_insn ())
4305 set_last_insn (last
);
4311 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4312 rtx (*make_raw
)(rtx
))
4321 switch (GET_CODE (x
))
4330 last
= emit_insn_after_1 (x
, after
, bb
);
4333 #ifdef ENABLE_RTL_CHECKING
4340 last
= (*make_raw
) (x
);
4341 add_insn_after (last
, after
, bb
);
4348 /* Make X be output after the insn AFTER and set the BB of insn. If
4349 BB is NULL, an attempt is made to infer the BB from AFTER. */
4352 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4354 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4358 /* Make an insn of code JUMP_INSN with body X
4359 and output it after the insn AFTER. */
4362 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4364 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4367 /* Make an instruction with body X and code CALL_INSN
4368 and output it after the instruction AFTER. */
4371 emit_call_insn_after_noloc (rtx x
, rtx after
)
4373 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4376 /* Make an instruction with body X and code CALL_INSN
4377 and output it after the instruction AFTER. */
4380 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4382 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4385 /* Make an insn of code BARRIER
4386 and output it after the insn AFTER. */
4389 emit_barrier_after (rtx after
)
4391 rtx insn
= rtx_alloc (BARRIER
);
4393 INSN_UID (insn
) = cur_insn_uid
++;
4395 add_insn_after (insn
, after
, NULL
);
4399 /* Emit the label LABEL after the insn AFTER. */
4402 emit_label_after (rtx label
, rtx after
)
4404 gcc_checking_assert (INSN_UID (label
) == 0);
4405 INSN_UID (label
) = cur_insn_uid
++;
4406 add_insn_after (label
, after
, NULL
);
4410 /* Notes require a bit of special handling: Some notes need to have their
4411 BLOCK_FOR_INSN set, others should never have it set, and some should
4412 have it set or clear depending on the context. */
4414 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4415 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4416 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4419 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4423 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4424 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4427 /* Notes for var tracking and EH region markers can appear between or
4428 inside basic blocks. If the caller is emitting on the basic block
4429 boundary, do not set BLOCK_FOR_INSN on the new note. */
4430 case NOTE_INSN_VAR_LOCATION
:
4431 case NOTE_INSN_CALL_ARG_LOCATION
:
4432 case NOTE_INSN_EH_REGION_BEG
:
4433 case NOTE_INSN_EH_REGION_END
:
4434 return on_bb_boundary_p
;
4436 /* Otherwise, BLOCK_FOR_INSN must be set. */
4442 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4445 emit_note_after (enum insn_note subtype
, rtx after
)
4447 rtx note
= make_note_raw (subtype
);
4448 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4449 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4451 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4452 add_insn_after_nobb (note
, after
);
4454 add_insn_after (note
, after
, bb
);
4458 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4461 emit_note_before (enum insn_note subtype
, rtx before
)
4463 rtx note
= make_note_raw (subtype
);
4464 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4465 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4467 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4468 add_insn_before_nobb (note
, before
);
4470 add_insn_before (note
, before
, bb
);
4474 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4475 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4478 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4479 rtx (*make_raw
) (rtx
))
4481 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4483 if (pattern
== NULL_RTX
|| !loc
)
4486 after
= NEXT_INSN (after
);
4489 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4490 INSN_LOCATION (after
) = loc
;
4493 after
= NEXT_INSN (after
);
4498 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4499 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4503 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4504 rtx (*make_raw
) (rtx
))
4508 if (skip_debug_insns
)
4509 while (DEBUG_INSN_P (prev
))
4510 prev
= PREV_INSN (prev
);
4513 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4516 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4519 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4521 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4523 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4526 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4528 emit_insn_after (rtx pattern
, rtx after
)
4530 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4533 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4535 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4537 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4540 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4542 emit_jump_insn_after (rtx pattern
, rtx after
)
4544 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4547 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4549 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4551 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4554 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4556 emit_call_insn_after (rtx pattern
, rtx after
)
4558 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4561 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4563 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4565 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4568 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4570 emit_debug_insn_after (rtx pattern
, rtx after
)
4572 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4575 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4576 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4577 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4581 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4582 rtx (*make_raw
) (rtx
))
4584 rtx first
= PREV_INSN (before
);
4585 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4586 insnp
? before
: NULL_RTX
,
4589 if (pattern
== NULL_RTX
|| !loc
)
4593 first
= get_insns ();
4595 first
= NEXT_INSN (first
);
4598 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4599 INSN_LOCATION (first
) = loc
;
4602 first
= NEXT_INSN (first
);
4607 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4608 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4609 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4610 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4613 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4614 bool insnp
, rtx (*make_raw
) (rtx
))
4618 if (skip_debug_insns
)
4619 while (DEBUG_INSN_P (next
))
4620 next
= PREV_INSN (next
);
4623 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4626 return emit_pattern_before_noloc (pattern
, before
,
4627 insnp
? before
: NULL_RTX
,
4631 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4633 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4635 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4639 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4641 emit_insn_before (rtx pattern
, rtx before
)
4643 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4646 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4648 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4650 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4651 make_jump_insn_raw
);
4654 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4656 emit_jump_insn_before (rtx pattern
, rtx before
)
4658 return emit_pattern_before (pattern
, before
, true, false,
4659 make_jump_insn_raw
);
4662 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4664 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4666 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4667 make_call_insn_raw
);
4670 /* Like emit_call_insn_before_noloc,
4671 but set insn_location according to BEFORE. */
4673 emit_call_insn_before (rtx pattern
, rtx before
)
4675 return emit_pattern_before (pattern
, before
, true, false,
4676 make_call_insn_raw
);
4679 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4681 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4683 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4684 make_debug_insn_raw
);
4687 /* Like emit_debug_insn_before_noloc,
4688 but set insn_location according to BEFORE. */
4690 emit_debug_insn_before (rtx pattern
, rtx before
)
4692 return emit_pattern_before (pattern
, before
, false, false,
4693 make_debug_insn_raw
);
4696 /* Take X and emit it at the end of the doubly-linked
4699 Returns the last insn emitted. */
4704 rtx last
= get_last_insn ();
4710 switch (GET_CODE (x
))
4722 rtx next
= NEXT_INSN (insn
);
4729 #ifdef ENABLE_RTL_CHECKING
4730 case JUMP_TABLE_DATA
:
4737 last
= make_insn_raw (x
);
4745 /* Make an insn of code DEBUG_INSN with pattern X
4746 and add it to the end of the doubly-linked list. */
4749 emit_debug_insn (rtx x
)
4751 rtx last
= get_last_insn ();
4757 switch (GET_CODE (x
))
4769 rtx next
= NEXT_INSN (insn
);
4776 #ifdef ENABLE_RTL_CHECKING
4777 case JUMP_TABLE_DATA
:
4784 last
= make_debug_insn_raw (x
);
4792 /* Make an insn of code JUMP_INSN with pattern X
4793 and add it to the end of the doubly-linked list. */
4796 emit_jump_insn (rtx x
)
4798 rtx last
= NULL_RTX
, insn
;
4800 switch (GET_CODE (x
))
4812 rtx next
= NEXT_INSN (insn
);
4819 #ifdef ENABLE_RTL_CHECKING
4820 case JUMP_TABLE_DATA
:
4827 last
= make_jump_insn_raw (x
);
4835 /* Make an insn of code CALL_INSN with pattern X
4836 and add it to the end of the doubly-linked list. */
4839 emit_call_insn (rtx x
)
4843 switch (GET_CODE (x
))
4852 insn
= emit_insn (x
);
4855 #ifdef ENABLE_RTL_CHECKING
4857 case JUMP_TABLE_DATA
:
4863 insn
= make_call_insn_raw (x
);
4871 /* Add the label LABEL to the end of the doubly-linked list. */
4874 emit_label (rtx label
)
4876 gcc_checking_assert (INSN_UID (label
) == 0);
4877 INSN_UID (label
) = cur_insn_uid
++;
4882 /* Make an insn of code JUMP_TABLE_DATA
4883 and add it to the end of the doubly-linked list. */
4886 emit_jump_table_data (rtx table
)
4888 rtx jump_table_data
= rtx_alloc (JUMP_TABLE_DATA
);
4889 INSN_UID (jump_table_data
) = cur_insn_uid
++;
4890 PATTERN (jump_table_data
) = table
;
4891 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
4892 add_insn (jump_table_data
);
4893 return jump_table_data
;
4896 /* Make an insn of code BARRIER
4897 and add it to the end of the doubly-linked list. */
4902 rtx barrier
= rtx_alloc (BARRIER
);
4903 INSN_UID (barrier
) = cur_insn_uid
++;
4908 /* Emit a copy of note ORIG. */
4911 emit_note_copy (rtx orig
)
4913 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
4914 rtx note
= make_note_raw (kind
);
4915 NOTE_DATA (note
) = NOTE_DATA (orig
);
4920 /* Make an insn of code NOTE or type NOTE_NO
4921 and add it to the end of the doubly-linked list. */
4924 emit_note (enum insn_note kind
)
4926 rtx note
= make_note_raw (kind
);
4931 /* Emit a clobber of lvalue X. */
4934 emit_clobber (rtx x
)
4936 /* CONCATs should not appear in the insn stream. */
4937 if (GET_CODE (x
) == CONCAT
)
4939 emit_clobber (XEXP (x
, 0));
4940 return emit_clobber (XEXP (x
, 1));
4942 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4945 /* Return a sequence of insns to clobber lvalue X. */
4959 /* Emit a use of rvalue X. */
4964 /* CONCATs should not appear in the insn stream. */
4965 if (GET_CODE (x
) == CONCAT
)
4967 emit_use (XEXP (x
, 0));
4968 return emit_use (XEXP (x
, 1));
4970 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4973 /* Return a sequence of insns to use rvalue X. */
4987 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4988 note of this type already exists, remove it first. */
4991 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4993 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4999 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5000 has multiple sets (some callers assume single_set
5001 means the insn only has one set, when in fact it
5002 means the insn only has one * useful * set). */
5003 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
5009 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5010 It serves no useful purpose and breaks eliminate_regs. */
5011 if (GET_CODE (datum
) == ASM_OPERANDS
)
5016 XEXP (note
, 0) = datum
;
5017 df_notes_rescan (insn
);
5025 XEXP (note
, 0) = datum
;
5031 add_reg_note (insn
, kind
, datum
);
5037 df_notes_rescan (insn
);
5043 return REG_NOTES (insn
);
5046 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5048 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5050 rtx set
= single_set (insn
);
5052 if (set
&& SET_DEST (set
) == dst
)
5053 return set_unique_reg_note (insn
, kind
, datum
);
5057 /* Return an indication of which type of insn should have X as a body.
5058 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5060 static enum rtx_code
5061 classify_insn (rtx x
)
5065 if (GET_CODE (x
) == CALL
)
5067 if (ANY_RETURN_P (x
))
5069 if (GET_CODE (x
) == SET
)
5071 if (SET_DEST (x
) == pc_rtx
)
5073 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5078 if (GET_CODE (x
) == PARALLEL
)
5081 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5082 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5084 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5085 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5087 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5088 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5094 /* Emit the rtl pattern X as an appropriate kind of insn.
5095 If X is a label, it is simply added into the insn chain. */
5100 enum rtx_code code
= classify_insn (x
);
5105 return emit_label (x
);
5107 return emit_insn (x
);
5110 rtx insn
= emit_jump_insn (x
);
5111 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5112 return emit_barrier ();
5116 return emit_call_insn (x
);
5118 return emit_debug_insn (x
);
5124 /* Space for free sequence stack entries. */
5125 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5127 /* Begin emitting insns to a sequence. If this sequence will contain
5128 something that might cause the compiler to pop arguments to function
5129 calls (because those pops have previously been deferred; see
5130 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5131 before calling this function. That will ensure that the deferred
5132 pops are not accidentally emitted in the middle of this sequence. */
5135 start_sequence (void)
5137 struct sequence_stack
*tem
;
5139 if (free_sequence_stack
!= NULL
)
5141 tem
= free_sequence_stack
;
5142 free_sequence_stack
= tem
->next
;
5145 tem
= ggc_alloc_sequence_stack ();
5147 tem
->next
= seq_stack
;
5148 tem
->first
= get_insns ();
5149 tem
->last
= get_last_insn ();
5157 /* Set up the insn chain starting with FIRST as the current sequence,
5158 saving the previously current one. See the documentation for
5159 start_sequence for more information about how to use this function. */
5162 push_to_sequence (rtx first
)
5168 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5171 set_first_insn (first
);
5172 set_last_insn (last
);
5175 /* Like push_to_sequence, but take the last insn as an argument to avoid
5176 looping through the list. */
5179 push_to_sequence2 (rtx first
, rtx last
)
5183 set_first_insn (first
);
5184 set_last_insn (last
);
5187 /* Set up the outer-level insn chain
5188 as the current sequence, saving the previously current one. */
5191 push_topmost_sequence (void)
5193 struct sequence_stack
*stack
, *top
= NULL
;
5197 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5200 set_first_insn (top
->first
);
5201 set_last_insn (top
->last
);
5204 /* After emitting to the outer-level insn chain, update the outer-level
5205 insn chain, and restore the previous saved state. */
5208 pop_topmost_sequence (void)
5210 struct sequence_stack
*stack
, *top
= NULL
;
5212 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5215 top
->first
= get_insns ();
5216 top
->last
= get_last_insn ();
5221 /* After emitting to a sequence, restore previous saved state.
5223 To get the contents of the sequence just made, you must call
5224 `get_insns' *before* calling here.
5226 If the compiler might have deferred popping arguments while
5227 generating this sequence, and this sequence will not be immediately
5228 inserted into the instruction stream, use do_pending_stack_adjust
5229 before calling get_insns. That will ensure that the deferred
5230 pops are inserted into this sequence, and not into some random
5231 location in the instruction stream. See INHIBIT_DEFER_POP for more
5232 information about deferred popping of arguments. */
5237 struct sequence_stack
*tem
= seq_stack
;
5239 set_first_insn (tem
->first
);
5240 set_last_insn (tem
->last
);
5241 seq_stack
= tem
->next
;
5243 memset (tem
, 0, sizeof (*tem
));
5244 tem
->next
= free_sequence_stack
;
5245 free_sequence_stack
= tem
;
5248 /* Return 1 if currently emitting into a sequence. */
5251 in_sequence_p (void)
5253 return seq_stack
!= 0;
5256 /* Put the various virtual registers into REGNO_REG_RTX. */
5259 init_virtual_regs (void)
5261 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5262 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5263 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5264 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5265 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5266 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5267 = virtual_preferred_stack_boundary_rtx
;
5271 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5272 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5273 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5274 static int copy_insn_n_scratches
;
5276 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5277 copied an ASM_OPERANDS.
5278 In that case, it is the original input-operand vector. */
5279 static rtvec orig_asm_operands_vector
;
5281 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5282 copied an ASM_OPERANDS.
5283 In that case, it is the copied input-operand vector. */
5284 static rtvec copy_asm_operands_vector
;
5286 /* Likewise for the constraints vector. */
5287 static rtvec orig_asm_constraints_vector
;
5288 static rtvec copy_asm_constraints_vector
;
5290 /* Recursively create a new copy of an rtx for copy_insn.
5291 This function differs from copy_rtx in that it handles SCRATCHes and
5292 ASM_OPERANDs properly.
5293 Normally, this function is not used directly; use copy_insn as front end.
5294 However, you could first copy an insn pattern with copy_insn and then use
5295 this function afterwards to properly copy any REG_NOTEs containing
5299 copy_insn_1 (rtx orig
)
5304 const char *format_ptr
;
5309 code
= GET_CODE (orig
);
5324 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5325 clobbers or clobbers of hard registers that originated as pseudos.
5326 This is needed to allow safe register renaming. */
5327 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5328 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5333 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5334 if (copy_insn_scratch_in
[i
] == orig
)
5335 return copy_insn_scratch_out
[i
];
5339 if (shared_const_p (orig
))
5343 /* A MEM with a constant address is not sharable. The problem is that
5344 the constant address may need to be reloaded. If the mem is shared,
5345 then reloading one copy of this mem will cause all copies to appear
5346 to have been reloaded. */
5352 /* Copy the various flags, fields, and other information. We assume
5353 that all fields need copying, and then clear the fields that should
5354 not be copied. That is the sensible default behavior, and forces
5355 us to explicitly document why we are *not* copying a flag. */
5356 copy
= shallow_copy_rtx (orig
);
5358 /* We do not copy the USED flag, which is used as a mark bit during
5359 walks over the RTL. */
5360 RTX_FLAG (copy
, used
) = 0;
5362 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5365 RTX_FLAG (copy
, jump
) = 0;
5366 RTX_FLAG (copy
, call
) = 0;
5367 RTX_FLAG (copy
, frame_related
) = 0;
5370 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5372 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5373 switch (*format_ptr
++)
5376 if (XEXP (orig
, i
) != NULL
)
5377 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5382 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5383 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5384 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5385 XVEC (copy
, i
) = copy_asm_operands_vector
;
5386 else if (XVEC (orig
, i
) != NULL
)
5388 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5389 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5390 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5401 /* These are left unchanged. */
5408 if (code
== SCRATCH
)
5410 i
= copy_insn_n_scratches
++;
5411 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5412 copy_insn_scratch_in
[i
] = orig
;
5413 copy_insn_scratch_out
[i
] = copy
;
5415 else if (code
== ASM_OPERANDS
)
5417 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5418 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5419 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5420 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5426 /* Create a new copy of an rtx.
5427 This function differs from copy_rtx in that it handles SCRATCHes and
5428 ASM_OPERANDs properly.
5429 INSN doesn't really have to be a full INSN; it could be just the
5432 copy_insn (rtx insn
)
5434 copy_insn_n_scratches
= 0;
5435 orig_asm_operands_vector
= 0;
5436 orig_asm_constraints_vector
= 0;
5437 copy_asm_operands_vector
= 0;
5438 copy_asm_constraints_vector
= 0;
5439 return copy_insn_1 (insn
);
5442 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5443 on that assumption that INSN itself remains in its original place. */
5446 copy_delay_slot_insn (rtx insn
)
5448 /* Copy INSN with its rtx_code, all its notes, location etc. */
5449 insn
= copy_rtx (insn
);
5450 INSN_UID (insn
) = cur_insn_uid
++;
5454 /* Initialize data structures and variables in this file
5455 before generating rtl for each function. */
5460 set_first_insn (NULL
);
5461 set_last_insn (NULL
);
5462 if (MIN_NONDEBUG_INSN_UID
)
5463 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5466 cur_debug_insn_uid
= 1;
5467 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5468 first_label_num
= label_num
;
5471 /* Init the tables that describe all the pseudo regs. */
5473 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5475 crtl
->emit
.regno_pointer_align
5476 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5478 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5480 /* Put copies of all the hard registers into regno_reg_rtx. */
5481 memcpy (regno_reg_rtx
,
5482 initial_regno_reg_rtx
,
5483 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5485 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5486 init_virtual_regs ();
5488 /* Indicate that the virtual registers and stack locations are
5490 REG_POINTER (stack_pointer_rtx
) = 1;
5491 REG_POINTER (frame_pointer_rtx
) = 1;
5492 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5493 REG_POINTER (arg_pointer_rtx
) = 1;
5495 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5496 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5497 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5498 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5499 REG_POINTER (virtual_cfa_rtx
) = 1;
5501 #ifdef STACK_BOUNDARY
5502 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5503 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5504 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5505 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5507 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5508 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5509 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5510 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5511 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5514 #ifdef INIT_EXPANDERS
5519 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5522 gen_const_vector (enum machine_mode mode
, int constant
)
5527 enum machine_mode inner
;
5529 units
= GET_MODE_NUNITS (mode
);
5530 inner
= GET_MODE_INNER (mode
);
5532 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5534 v
= rtvec_alloc (units
);
5536 /* We need to call this function after we set the scalar const_tiny_rtx
5538 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5540 for (i
= 0; i
< units
; ++i
)
5541 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5543 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5547 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5548 all elements are zero, and the one vector when all elements are one. */
5550 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5552 enum machine_mode inner
= GET_MODE_INNER (mode
);
5553 int nunits
= GET_MODE_NUNITS (mode
);
5557 /* Check to see if all of the elements have the same value. */
5558 x
= RTVEC_ELT (v
, nunits
- 1);
5559 for (i
= nunits
- 2; i
>= 0; i
--)
5560 if (RTVEC_ELT (v
, i
) != x
)
5563 /* If the values are all the same, check to see if we can use one of the
5564 standard constant vectors. */
5567 if (x
== CONST0_RTX (inner
))
5568 return CONST0_RTX (mode
);
5569 else if (x
== CONST1_RTX (inner
))
5570 return CONST1_RTX (mode
);
5571 else if (x
== CONSTM1_RTX (inner
))
5572 return CONSTM1_RTX (mode
);
5575 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5578 /* Initialise global register information required by all functions. */
5581 init_emit_regs (void)
5584 enum machine_mode mode
;
5587 /* Reset register attributes */
5588 htab_empty (reg_attrs_htab
);
5590 /* We need reg_raw_mode, so initialize the modes now. */
5591 init_reg_modes_target ();
5593 /* Assign register numbers to the globally defined register rtx. */
5594 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5595 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5596 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5597 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5598 virtual_incoming_args_rtx
=
5599 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5600 virtual_stack_vars_rtx
=
5601 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5602 virtual_stack_dynamic_rtx
=
5603 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5604 virtual_outgoing_args_rtx
=
5605 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5606 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5607 virtual_preferred_stack_boundary_rtx
=
5608 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5610 /* Initialize RTL for commonly used hard registers. These are
5611 copied into regno_reg_rtx as we begin to compile each function. */
5612 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5613 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5615 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5616 return_address_pointer_rtx
5617 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5620 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5621 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5623 pic_offset_table_rtx
= NULL_RTX
;
5625 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5627 mode
= (enum machine_mode
) i
;
5628 attrs
= ggc_alloc_cleared_mem_attrs ();
5629 attrs
->align
= BITS_PER_UNIT
;
5630 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5631 if (mode
!= BLKmode
)
5633 attrs
->size_known_p
= true;
5634 attrs
->size
= GET_MODE_SIZE (mode
);
5635 if (STRICT_ALIGNMENT
)
5636 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5638 mode_mem_attrs
[i
] = attrs
;
5642 /* Create some permanent unique rtl objects shared between all functions. */
5645 init_emit_once (void)
5648 enum machine_mode mode
;
5649 enum machine_mode double_mode
;
5651 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5653 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5654 const_int_htab_eq
, NULL
);
5656 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5657 const_double_htab_eq
, NULL
);
5659 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5660 const_fixed_htab_eq
, NULL
);
5662 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5663 mem_attrs_htab_eq
, NULL
);
5664 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5665 reg_attrs_htab_eq
, NULL
);
5667 /* Compute the word and byte modes. */
5669 byte_mode
= VOIDmode
;
5670 word_mode
= VOIDmode
;
5671 double_mode
= VOIDmode
;
5673 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5675 mode
= GET_MODE_WIDER_MODE (mode
))
5677 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5678 && byte_mode
== VOIDmode
)
5681 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5682 && word_mode
== VOIDmode
)
5686 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5688 mode
= GET_MODE_WIDER_MODE (mode
))
5690 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5691 && double_mode
== VOIDmode
)
5695 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5697 #ifdef INIT_EXPANDERS
5698 /* This is to initialize {init|mark|free}_machine_status before the first
5699 call to push_function_context_to. This is needed by the Chill front
5700 end which calls push_function_context_to before the first call to
5701 init_function_start. */
5705 /* Create the unique rtx's for certain rtx codes and operand values. */
5707 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5708 tries to use these variables. */
5709 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5710 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5711 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5713 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5714 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5715 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5717 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5719 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5720 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5721 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5726 dconsthalf
= dconst1
;
5727 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5729 for (i
= 0; i
< 3; i
++)
5731 const REAL_VALUE_TYPE
*const r
=
5732 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5734 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5736 mode
= GET_MODE_WIDER_MODE (mode
))
5737 const_tiny_rtx
[i
][(int) mode
] =
5738 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5740 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5742 mode
= GET_MODE_WIDER_MODE (mode
))
5743 const_tiny_rtx
[i
][(int) mode
] =
5744 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5746 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5748 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5750 mode
= GET_MODE_WIDER_MODE (mode
))
5751 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5753 for (mode
= MIN_MODE_PARTIAL_INT
;
5754 mode
<= MAX_MODE_PARTIAL_INT
;
5755 mode
= (enum machine_mode
)((int)(mode
) + 1))
5756 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5759 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5761 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5763 mode
= GET_MODE_WIDER_MODE (mode
))
5764 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5766 for (mode
= MIN_MODE_PARTIAL_INT
;
5767 mode
<= MAX_MODE_PARTIAL_INT
;
5768 mode
= (enum machine_mode
)((int)(mode
) + 1))
5769 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5771 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5773 mode
= GET_MODE_WIDER_MODE (mode
))
5775 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5776 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5779 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5781 mode
= GET_MODE_WIDER_MODE (mode
))
5783 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5784 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5787 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5789 mode
= GET_MODE_WIDER_MODE (mode
))
5791 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5792 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5793 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5796 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5798 mode
= GET_MODE_WIDER_MODE (mode
))
5800 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5801 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5804 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5806 mode
= GET_MODE_WIDER_MODE (mode
))
5808 FCONST0 (mode
).data
.high
= 0;
5809 FCONST0 (mode
).data
.low
= 0;
5810 FCONST0 (mode
).mode
= mode
;
5811 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5812 FCONST0 (mode
), mode
);
5815 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5817 mode
= GET_MODE_WIDER_MODE (mode
))
5819 FCONST0 (mode
).data
.high
= 0;
5820 FCONST0 (mode
).data
.low
= 0;
5821 FCONST0 (mode
).mode
= mode
;
5822 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5823 FCONST0 (mode
), mode
);
5826 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5828 mode
= GET_MODE_WIDER_MODE (mode
))
5830 FCONST0 (mode
).data
.high
= 0;
5831 FCONST0 (mode
).data
.low
= 0;
5832 FCONST0 (mode
).mode
= mode
;
5833 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5834 FCONST0 (mode
), mode
);
5836 /* We store the value 1. */
5837 FCONST1 (mode
).data
.high
= 0;
5838 FCONST1 (mode
).data
.low
= 0;
5839 FCONST1 (mode
).mode
= mode
;
5841 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5842 HOST_BITS_PER_DOUBLE_INT
,
5843 SIGNED_FIXED_POINT_MODE_P (mode
));
5844 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5845 FCONST1 (mode
), mode
);
5848 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5850 mode
= GET_MODE_WIDER_MODE (mode
))
5852 FCONST0 (mode
).data
.high
= 0;
5853 FCONST0 (mode
).data
.low
= 0;
5854 FCONST0 (mode
).mode
= mode
;
5855 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5856 FCONST0 (mode
), mode
);
5858 /* We store the value 1. */
5859 FCONST1 (mode
).data
.high
= 0;
5860 FCONST1 (mode
).data
.low
= 0;
5861 FCONST1 (mode
).mode
= mode
;
5863 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5864 HOST_BITS_PER_DOUBLE_INT
,
5865 SIGNED_FIXED_POINT_MODE_P (mode
));
5866 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5867 FCONST1 (mode
), mode
);
5870 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5872 mode
= GET_MODE_WIDER_MODE (mode
))
5874 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5877 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5879 mode
= GET_MODE_WIDER_MODE (mode
))
5881 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5884 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5886 mode
= GET_MODE_WIDER_MODE (mode
))
5888 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5889 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5892 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5894 mode
= GET_MODE_WIDER_MODE (mode
))
5896 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5897 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5900 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5901 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5902 const_tiny_rtx
[0][i
] = const0_rtx
;
5904 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5905 if (STORE_FLAG_VALUE
== 1)
5906 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5908 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5909 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5910 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5911 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5914 /* Produce exact duplicate of insn INSN after AFTER.
5915 Care updating of libcall regions if present. */
5918 emit_copy_of_insn_after (rtx insn
, rtx after
)
5922 switch (GET_CODE (insn
))
5925 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5929 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5933 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5937 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5938 if (CALL_INSN_FUNCTION_USAGE (insn
))
5939 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5940 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5941 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5942 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5943 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5944 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5945 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5952 /* Update LABEL_NUSES. */
5953 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5955 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5957 /* If the old insn is frame related, then so is the new one. This is
5958 primarily needed for IA-64 unwind info which marks epilogue insns,
5959 which may be duplicated by the basic block reordering code. */
5960 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5962 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5963 will make them. REG_LABEL_TARGETs are created there too, but are
5964 supposed to be sticky, so we copy them. */
5965 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5966 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5968 if (GET_CODE (link
) == EXPR_LIST
)
5969 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5970 copy_insn_1 (XEXP (link
, 0)));
5972 add_shallow_copy_of_reg_note (new_rtx
, link
);
5975 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5979 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5981 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5983 if (hard_reg_clobbers
[mode
][regno
])
5984 return hard_reg_clobbers
[mode
][regno
];
5986 return (hard_reg_clobbers
[mode
][regno
] =
5987 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5990 location_t prologue_location
;
5991 location_t epilogue_location
;
5993 /* Hold current location information and last location information, so the
5994 datastructures are built lazily only when some instructions in given
5995 place are needed. */
5996 static location_t curr_location
;
5998 /* Allocate insn location datastructure. */
6000 insn_locations_init (void)
6002 prologue_location
= epilogue_location
= 0;
6003 curr_location
= UNKNOWN_LOCATION
;
6006 /* At the end of emit stage, clear current location. */
6008 insn_locations_finalize (void)
6010 epilogue_location
= curr_location
;
6011 curr_location
= UNKNOWN_LOCATION
;
6014 /* Set current location. */
6016 set_curr_insn_location (location_t location
)
6018 curr_location
= location
;
6021 /* Get current location. */
6023 curr_insn_location (void)
6025 return curr_location
;
6028 /* Return lexical scope block insn belongs to. */
6030 insn_scope (const_rtx insn
)
6032 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6035 /* Return line number of the statement that produced this insn. */
6037 insn_line (const_rtx insn
)
6039 return LOCATION_LINE (INSN_LOCATION (insn
));
6042 /* Return source file of the statement that produced this insn. */
6044 insn_file (const_rtx insn
)
6046 return LOCATION_FILE (INSN_LOCATION (insn
));
6049 /* Return true if memory model MODEL requires a pre-operation (release-style)
6050 barrier or a post-operation (acquire-style) barrier. While not universal,
6051 this function matches behavior of several targets. */
6054 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6056 switch (model
& MEMMODEL_MASK
)
6058 case MEMMODEL_RELAXED
:
6059 case MEMMODEL_CONSUME
:
6061 case MEMMODEL_RELEASE
:
6063 case MEMMODEL_ACQUIRE
:
6065 case MEMMODEL_ACQ_REL
:
6066 case MEMMODEL_SEQ_CST
:
6073 #include "gt-emit-rtl.h"