* java/lang/natSystem.cc (SystemClass): New define.
[official-gcc.git] / gcc / fold-const.c
blob9b003c2ec220ef2f4ccb254baa3d4dc626f99328
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /*@@ This file should be rewritten to use an arbitrary precision
22 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
23 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
24 @@ The routines that translate from the ap rep should
25 @@ warn if precision et. al. is lost.
26 @@ This would also make life easier when this technology is used
27 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
45 #include "config.h"
46 #include "system.h"
47 #include <setjmp.h>
48 #include "flags.h"
49 #include "tree.h"
50 #include "rtl.h"
51 #include "toplev.h"
53 static void encode PROTO((HOST_WIDE_INT *,
54 HOST_WIDE_INT, HOST_WIDE_INT));
55 static void decode PROTO((HOST_WIDE_INT *,
56 HOST_WIDE_INT *, HOST_WIDE_INT *));
57 int div_and_round_double PROTO((enum tree_code, int, HOST_WIDE_INT,
58 HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, HOST_WIDE_INT *,
60 HOST_WIDE_INT *, HOST_WIDE_INT *,
61 HOST_WIDE_INT *));
62 static int split_tree PROTO((tree, enum tree_code, tree *,
63 tree *, int *));
64 static tree int_const_binop PROTO((enum tree_code, tree, tree, int, int));
65 static tree const_binop PROTO((enum tree_code, tree, tree, int));
66 static tree fold_convert PROTO((tree, tree));
67 static enum tree_code invert_tree_comparison PROTO((enum tree_code));
68 static enum tree_code swap_tree_comparison PROTO((enum tree_code));
69 static int truth_value_p PROTO((enum tree_code));
70 static int operand_equal_for_comparison_p PROTO((tree, tree, tree));
71 static int twoval_comparison_p PROTO((tree, tree *, tree *, int *));
72 static tree eval_subst PROTO((tree, tree, tree, tree, tree));
73 static tree omit_one_operand PROTO((tree, tree, tree));
74 static tree pedantic_omit_one_operand PROTO((tree, tree, tree));
75 static tree distribute_bit_expr PROTO((enum tree_code, tree, tree, tree));
76 static tree make_bit_field_ref PROTO((tree, tree, int, int, int));
77 static tree optimize_bit_field_compare PROTO((enum tree_code, tree,
78 tree, tree));
79 static tree decode_field_reference PROTO((tree, int *, int *,
80 enum machine_mode *, int *,
81 int *, tree *, tree *));
82 static int all_ones_mask_p PROTO((tree, int));
83 static int simple_operand_p PROTO((tree));
84 static tree range_binop PROTO((enum tree_code, tree, tree, int,
85 tree, int));
86 static tree make_range PROTO((tree, int *, tree *, tree *));
87 static tree build_range_check PROTO((tree, tree, int, tree, tree));
88 static int merge_ranges PROTO((int *, tree *, tree *, int, tree, tree,
89 int, tree, tree));
90 static tree fold_range_test PROTO((tree));
91 static tree unextend PROTO((tree, int, int, tree));
92 static tree fold_truthop PROTO((enum tree_code, tree, tree, tree));
93 static tree strip_compound_expr PROTO((tree, tree));
94 static int multiple_of_p PROTO((tree, tree, tree));
95 static tree constant_boolean_node PROTO((int, tree));
96 static int count_cond PROTO((tree, int));
97 static void const_binop_1 PROTO((PTR));
98 static void fold_convert_1 PROTO((PTR));
100 #ifndef BRANCH_COST
101 #define BRANCH_COST 1
102 #endif
104 /* Suppose A1 + B1 = SUM1, using 2's complement arithmetic ignoring overflow.
105 Suppose A, B and SUM have the same respective signs as A1, B1, and SUM1.
106 Then this yields nonzero if overflow occurred during the addition.
107 Overflow occurs if A and B have the same sign, but A and SUM differ in sign.
108 Use `^' to test whether signs differ, and `< 0' to isolate the sign. */
109 #define overflow_sum_sign(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
111 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
112 We do that by representing the two-word integer in 4 words, with only
113 HOST_BITS_PER_WIDE_INT/2 bits stored in each word, as a positive number. */
115 #define LOWPART(x) \
116 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT/2)) - 1))
117 #define HIGHPART(x) \
118 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT/2)
119 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT/2)
121 /* Unpack a two-word integer into 4 words.
122 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
123 WORDS points to the array of HOST_WIDE_INTs. */
125 static void
126 encode (words, low, hi)
127 HOST_WIDE_INT *words;
128 HOST_WIDE_INT low, hi;
130 words[0] = LOWPART (low);
131 words[1] = HIGHPART (low);
132 words[2] = LOWPART (hi);
133 words[3] = HIGHPART (hi);
136 /* Pack an array of 4 words into a two-word integer.
137 WORDS points to the array of words.
138 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
140 static void
141 decode (words, low, hi)
142 HOST_WIDE_INT *words;
143 HOST_WIDE_INT *low, *hi;
145 *low = words[0] | words[1] * BASE;
146 *hi = words[2] | words[3] * BASE;
149 /* Make the integer constant T valid for its type
150 by setting to 0 or 1 all the bits in the constant
151 that don't belong in the type.
152 Yield 1 if a signed overflow occurs, 0 otherwise.
153 If OVERFLOW is nonzero, a signed overflow has already occurred
154 in calculating T, so propagate it.
156 Make the real constant T valid for its type by calling CHECK_FLOAT_VALUE,
157 if it exists. */
160 force_fit_type (t, overflow)
161 tree t;
162 int overflow;
164 HOST_WIDE_INT low, high;
165 register int prec;
167 if (TREE_CODE (t) == REAL_CST)
169 #ifdef CHECK_FLOAT_VALUE
170 CHECK_FLOAT_VALUE (TYPE_MODE (TREE_TYPE (t)), TREE_REAL_CST (t),
171 overflow);
172 #endif
173 return overflow;
176 else if (TREE_CODE (t) != INTEGER_CST)
177 return overflow;
179 low = TREE_INT_CST_LOW (t);
180 high = TREE_INT_CST_HIGH (t);
182 if (POINTER_TYPE_P (TREE_TYPE (t)))
183 prec = POINTER_SIZE;
184 else
185 prec = TYPE_PRECISION (TREE_TYPE (t));
187 /* First clear all bits that are beyond the type's precision. */
189 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
191 else if (prec > HOST_BITS_PER_WIDE_INT)
193 TREE_INT_CST_HIGH (t)
194 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
196 else
198 TREE_INT_CST_HIGH (t) = 0;
199 if (prec < HOST_BITS_PER_WIDE_INT)
200 TREE_INT_CST_LOW (t) &= ~((HOST_WIDE_INT) (-1) << prec);
203 /* Unsigned types do not suffer sign extension or overflow. */
204 if (TREE_UNSIGNED (TREE_TYPE (t)))
205 return overflow;
207 /* If the value's sign bit is set, extend the sign. */
208 if (prec != 2 * HOST_BITS_PER_WIDE_INT
209 && (prec > HOST_BITS_PER_WIDE_INT
210 ? (TREE_INT_CST_HIGH (t)
211 & ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
212 : TREE_INT_CST_LOW (t) & ((HOST_WIDE_INT) 1 << (prec - 1))))
214 /* Value is negative:
215 set to 1 all the bits that are outside this type's precision. */
216 if (prec > HOST_BITS_PER_WIDE_INT)
218 TREE_INT_CST_HIGH (t)
219 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
221 else
223 TREE_INT_CST_HIGH (t) = -1;
224 if (prec < HOST_BITS_PER_WIDE_INT)
225 TREE_INT_CST_LOW (t) |= ((HOST_WIDE_INT) (-1) << prec);
229 /* Yield nonzero if signed overflow occurred. */
230 return
231 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
232 != 0);
235 /* Add two doubleword integers with doubleword result.
236 Each argument is given as two `HOST_WIDE_INT' pieces.
237 One argument is L1 and H1; the other, L2 and H2.
238 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
241 add_double (l1, h1, l2, h2, lv, hv)
242 HOST_WIDE_INT l1, h1, l2, h2;
243 HOST_WIDE_INT *lv, *hv;
245 HOST_WIDE_INT l, h;
247 l = l1 + l2;
248 h = h1 + h2 + ((unsigned HOST_WIDE_INT) l < l1);
250 *lv = l;
251 *hv = h;
252 return overflow_sum_sign (h1, h2, h);
255 /* Negate a doubleword integer with doubleword result.
256 Return nonzero if the operation overflows, assuming it's signed.
257 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
258 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
261 neg_double (l1, h1, lv, hv)
262 HOST_WIDE_INT l1, h1;
263 HOST_WIDE_INT *lv, *hv;
265 if (l1 == 0)
267 *lv = 0;
268 *hv = - h1;
269 return (*hv & h1) < 0;
271 else
273 *lv = - l1;
274 *hv = ~ h1;
275 return 0;
279 /* Multiply two doubleword integers with doubleword result.
280 Return nonzero if the operation overflows, assuming it's signed.
281 Each argument is given as two `HOST_WIDE_INT' pieces.
282 One argument is L1 and H1; the other, L2 and H2.
283 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
286 mul_double (l1, h1, l2, h2, lv, hv)
287 HOST_WIDE_INT l1, h1, l2, h2;
288 HOST_WIDE_INT *lv, *hv;
290 HOST_WIDE_INT arg1[4];
291 HOST_WIDE_INT arg2[4];
292 HOST_WIDE_INT prod[4 * 2];
293 register unsigned HOST_WIDE_INT carry;
294 register int i, j, k;
295 HOST_WIDE_INT toplow, tophigh, neglow, neghigh;
297 encode (arg1, l1, h1);
298 encode (arg2, l2, h2);
300 bzero ((char *) prod, sizeof prod);
302 for (i = 0; i < 4; i++)
304 carry = 0;
305 for (j = 0; j < 4; j++)
307 k = i + j;
308 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
309 carry += arg1[i] * arg2[j];
310 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
311 carry += prod[k];
312 prod[k] = LOWPART (carry);
313 carry = HIGHPART (carry);
315 prod[i + 4] = carry;
318 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
320 /* Check for overflow by calculating the top half of the answer in full;
321 it should agree with the low half's sign bit. */
322 decode (prod+4, &toplow, &tophigh);
323 if (h1 < 0)
325 neg_double (l2, h2, &neglow, &neghigh);
326 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
328 if (h2 < 0)
330 neg_double (l1, h1, &neglow, &neghigh);
331 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
333 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
336 /* Shift the doubleword integer in L1, H1 left by COUNT places
337 keeping only PREC bits of result.
338 Shift right if COUNT is negative.
339 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
340 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
342 void
343 lshift_double (l1, h1, count, prec, lv, hv, arith)
344 HOST_WIDE_INT l1, h1, count;
345 int prec;
346 HOST_WIDE_INT *lv, *hv;
347 int arith;
349 if (count < 0)
351 rshift_double (l1, h1, - count, prec, lv, hv, arith);
352 return;
355 #ifdef SHIFT_COUNT_TRUNCATED
356 if (SHIFT_COUNT_TRUNCATED)
357 count %= prec;
358 #endif
360 if (count >= HOST_BITS_PER_WIDE_INT)
362 *hv = (unsigned HOST_WIDE_INT) l1 << (count - HOST_BITS_PER_WIDE_INT);
363 *lv = 0;
365 else
367 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
368 | ((unsigned HOST_WIDE_INT) l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
369 *lv = (unsigned HOST_WIDE_INT) l1 << count;
373 /* Shift the doubleword integer in L1, H1 right by COUNT places
374 keeping only PREC bits of result. COUNT must be positive.
375 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
376 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
378 void
379 rshift_double (l1, h1, count, prec, lv, hv, arith)
380 HOST_WIDE_INT l1, h1, count;
381 int prec ATTRIBUTE_UNUSED;
382 HOST_WIDE_INT *lv, *hv;
383 int arith;
385 unsigned HOST_WIDE_INT signmask;
386 signmask = (arith
387 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
388 : 0);
390 #ifdef SHIFT_COUNT_TRUNCATED
391 if (SHIFT_COUNT_TRUNCATED)
392 count %= prec;
393 #endif
395 if (count >= HOST_BITS_PER_WIDE_INT)
397 *hv = signmask;
398 *lv = ((signmask << (2 * HOST_BITS_PER_WIDE_INT - count - 1) << 1)
399 | ((unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT)));
401 else
403 *lv = (((unsigned HOST_WIDE_INT) l1 >> count)
404 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
405 *hv = ((signmask << (HOST_BITS_PER_WIDE_INT - count))
406 | ((unsigned HOST_WIDE_INT) h1 >> count));
410 /* Rotate the doubleword integer in L1, H1 left by COUNT places
411 keeping only PREC bits of result.
412 Rotate right if COUNT is negative.
413 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
415 void
416 lrotate_double (l1, h1, count, prec, lv, hv)
417 HOST_WIDE_INT l1, h1, count;
418 int prec;
419 HOST_WIDE_INT *lv, *hv;
421 HOST_WIDE_INT s1l, s1h, s2l, s2h;
423 count %= prec;
424 if (count < 0)
425 count += prec;
427 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
428 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
429 *lv = s1l | s2l;
430 *hv = s1h | s2h;
433 /* Rotate the doubleword integer in L1, H1 left by COUNT places
434 keeping only PREC bits of result. COUNT must be positive.
435 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
437 void
438 rrotate_double (l1, h1, count, prec, lv, hv)
439 HOST_WIDE_INT l1, h1, count;
440 int prec;
441 HOST_WIDE_INT *lv, *hv;
443 HOST_WIDE_INT s1l, s1h, s2l, s2h;
445 count %= prec;
446 if (count < 0)
447 count += prec;
449 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
450 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
451 *lv = s1l | s2l;
452 *hv = s1h | s2h;
455 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
456 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
457 CODE is a tree code for a kind of division, one of
458 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
459 or EXACT_DIV_EXPR
460 It controls how the quotient is rounded to a integer.
461 Return nonzero if the operation overflows.
462 UNS nonzero says do unsigned division. */
465 div_and_round_double (code, uns,
466 lnum_orig, hnum_orig, lden_orig, hden_orig,
467 lquo, hquo, lrem, hrem)
468 enum tree_code code;
469 int uns;
470 HOST_WIDE_INT lnum_orig, hnum_orig; /* num == numerator == dividend */
471 HOST_WIDE_INT lden_orig, hden_orig; /* den == denominator == divisor */
472 HOST_WIDE_INT *lquo, *hquo, *lrem, *hrem;
474 int quo_neg = 0;
475 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
476 HOST_WIDE_INT den[4], quo[4];
477 register int i, j;
478 unsigned HOST_WIDE_INT work;
479 register unsigned HOST_WIDE_INT carry = 0;
480 HOST_WIDE_INT lnum = lnum_orig;
481 HOST_WIDE_INT hnum = hnum_orig;
482 HOST_WIDE_INT lden = lden_orig;
483 HOST_WIDE_INT hden = hden_orig;
484 int overflow = 0;
486 if ((hden == 0) && (lden == 0))
487 overflow = 1, lden = 1;
489 /* calculate quotient sign and convert operands to unsigned. */
490 if (!uns)
492 if (hnum < 0)
494 quo_neg = ~ quo_neg;
495 /* (minimum integer) / (-1) is the only overflow case. */
496 if (neg_double (lnum, hnum, &lnum, &hnum) && (lden & hden) == -1)
497 overflow = 1;
499 if (hden < 0)
501 quo_neg = ~ quo_neg;
502 neg_double (lden, hden, &lden, &hden);
506 if (hnum == 0 && hden == 0)
507 { /* single precision */
508 *hquo = *hrem = 0;
509 /* This unsigned division rounds toward zero. */
510 *lquo = lnum / (unsigned HOST_WIDE_INT) lden;
511 goto finish_up;
514 if (hnum == 0)
515 { /* trivial case: dividend < divisor */
516 /* hden != 0 already checked. */
517 *hquo = *lquo = 0;
518 *hrem = hnum;
519 *lrem = lnum;
520 goto finish_up;
523 bzero ((char *) quo, sizeof quo);
525 bzero ((char *) num, sizeof num); /* to zero 9th element */
526 bzero ((char *) den, sizeof den);
528 encode (num, lnum, hnum);
529 encode (den, lden, hden);
531 /* Special code for when the divisor < BASE. */
532 if (hden == 0 && lden < (HOST_WIDE_INT) BASE)
534 /* hnum != 0 already checked. */
535 for (i = 4 - 1; i >= 0; i--)
537 work = num[i] + carry * BASE;
538 quo[i] = work / (unsigned HOST_WIDE_INT) lden;
539 carry = work % (unsigned HOST_WIDE_INT) lden;
542 else
544 /* Full double precision division,
545 with thanks to Don Knuth's "Seminumerical Algorithms". */
546 int num_hi_sig, den_hi_sig;
547 unsigned HOST_WIDE_INT quo_est, scale;
549 /* Find the highest non-zero divisor digit. */
550 for (i = 4 - 1; ; i--)
551 if (den[i] != 0) {
552 den_hi_sig = i;
553 break;
556 /* Insure that the first digit of the divisor is at least BASE/2.
557 This is required by the quotient digit estimation algorithm. */
559 scale = BASE / (den[den_hi_sig] + 1);
560 if (scale > 1) { /* scale divisor and dividend */
561 carry = 0;
562 for (i = 0; i <= 4 - 1; i++) {
563 work = (num[i] * scale) + carry;
564 num[i] = LOWPART (work);
565 carry = HIGHPART (work);
566 } num[4] = carry;
567 carry = 0;
568 for (i = 0; i <= 4 - 1; i++) {
569 work = (den[i] * scale) + carry;
570 den[i] = LOWPART (work);
571 carry = HIGHPART (work);
572 if (den[i] != 0) den_hi_sig = i;
576 num_hi_sig = 4;
578 /* Main loop */
579 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) {
580 /* guess the next quotient digit, quo_est, by dividing the first
581 two remaining dividend digits by the high order quotient digit.
582 quo_est is never low and is at most 2 high. */
583 unsigned HOST_WIDE_INT tmp;
585 num_hi_sig = i + den_hi_sig + 1;
586 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
587 if (num[num_hi_sig] != den[den_hi_sig])
588 quo_est = work / den[den_hi_sig];
589 else
590 quo_est = BASE - 1;
592 /* refine quo_est so it's usually correct, and at most one high. */
593 tmp = work - quo_est * den[den_hi_sig];
594 if (tmp < BASE
595 && den[den_hi_sig - 1] * quo_est > (tmp * BASE + num[num_hi_sig - 2]))
596 quo_est--;
598 /* Try QUO_EST as the quotient digit, by multiplying the
599 divisor by QUO_EST and subtracting from the remaining dividend.
600 Keep in mind that QUO_EST is the I - 1st digit. */
602 carry = 0;
603 for (j = 0; j <= den_hi_sig; j++)
605 work = quo_est * den[j] + carry;
606 carry = HIGHPART (work);
607 work = num[i + j] - LOWPART (work);
608 num[i + j] = LOWPART (work);
609 carry += HIGHPART (work) != 0;
612 /* if quo_est was high by one, then num[i] went negative and
613 we need to correct things. */
615 if (num[num_hi_sig] < carry)
617 quo_est--;
618 carry = 0; /* add divisor back in */
619 for (j = 0; j <= den_hi_sig; j++)
621 work = num[i + j] + den[j] + carry;
622 carry = HIGHPART (work);
623 num[i + j] = LOWPART (work);
625 num [num_hi_sig] += carry;
628 /* store the quotient digit. */
629 quo[i] = quo_est;
633 decode (quo, lquo, hquo);
635 finish_up:
636 /* if result is negative, make it so. */
637 if (quo_neg)
638 neg_double (*lquo, *hquo, lquo, hquo);
640 /* compute trial remainder: rem = num - (quo * den) */
641 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
642 neg_double (*lrem, *hrem, lrem, hrem);
643 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
645 switch (code)
647 case TRUNC_DIV_EXPR:
648 case TRUNC_MOD_EXPR: /* round toward zero */
649 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
650 return overflow;
652 case FLOOR_DIV_EXPR:
653 case FLOOR_MOD_EXPR: /* round toward negative infinity */
654 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
656 /* quo = quo - 1; */
657 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
658 lquo, hquo);
660 else return overflow;
661 break;
663 case CEIL_DIV_EXPR:
664 case CEIL_MOD_EXPR: /* round toward positive infinity */
665 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
667 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
668 lquo, hquo);
670 else return overflow;
671 break;
673 case ROUND_DIV_EXPR:
674 case ROUND_MOD_EXPR: /* round to closest integer */
676 HOST_WIDE_INT labs_rem = *lrem, habs_rem = *hrem;
677 HOST_WIDE_INT labs_den = lden, habs_den = hden, ltwice, htwice;
679 /* get absolute values */
680 if (*hrem < 0) neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
681 if (hden < 0) neg_double (lden, hden, &labs_den, &habs_den);
683 /* if (2 * abs (lrem) >= abs (lden)) */
684 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
685 labs_rem, habs_rem, &ltwice, &htwice);
686 if (((unsigned HOST_WIDE_INT) habs_den
687 < (unsigned HOST_WIDE_INT) htwice)
688 || (((unsigned HOST_WIDE_INT) habs_den
689 == (unsigned HOST_WIDE_INT) htwice)
690 && ((HOST_WIDE_INT unsigned) labs_den
691 < (unsigned HOST_WIDE_INT) ltwice)))
693 if (*hquo < 0)
694 /* quo = quo - 1; */
695 add_double (*lquo, *hquo,
696 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
697 else
698 /* quo = quo + 1; */
699 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
700 lquo, hquo);
702 else return overflow;
704 break;
706 default:
707 abort ();
710 /* compute true remainder: rem = num - (quo * den) */
711 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
712 neg_double (*lrem, *hrem, lrem, hrem);
713 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
714 return overflow;
717 #ifndef REAL_ARITHMETIC
718 /* Effectively truncate a real value to represent the nearest possible value
719 in a narrower mode. The result is actually represented in the same data
720 type as the argument, but its value is usually different.
722 A trap may occur during the FP operations and it is the responsibility
723 of the calling function to have a handler established. */
725 REAL_VALUE_TYPE
726 real_value_truncate (mode, arg)
727 enum machine_mode mode;
728 REAL_VALUE_TYPE arg;
730 return REAL_VALUE_TRUNCATE (mode, arg);
733 #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
735 /* Check for infinity in an IEEE double precision number. */
738 target_isinf (x)
739 REAL_VALUE_TYPE x;
741 /* The IEEE 64-bit double format. */
742 union {
743 REAL_VALUE_TYPE d;
744 struct {
745 unsigned sign : 1;
746 unsigned exponent : 11;
747 unsigned mantissa1 : 20;
748 unsigned mantissa2;
749 } little_endian;
750 struct {
751 unsigned mantissa2;
752 unsigned mantissa1 : 20;
753 unsigned exponent : 11;
754 unsigned sign : 1;
755 } big_endian;
756 } u;
758 u.d = dconstm1;
759 if (u.big_endian.sign == 1)
761 u.d = x;
762 return (u.big_endian.exponent == 2047
763 && u.big_endian.mantissa1 == 0
764 && u.big_endian.mantissa2 == 0);
766 else
768 u.d = x;
769 return (u.little_endian.exponent == 2047
770 && u.little_endian.mantissa1 == 0
771 && u.little_endian.mantissa2 == 0);
775 /* Check whether an IEEE double precision number is a NaN. */
778 target_isnan (x)
779 REAL_VALUE_TYPE x;
781 /* The IEEE 64-bit double format. */
782 union {
783 REAL_VALUE_TYPE d;
784 struct {
785 unsigned sign : 1;
786 unsigned exponent : 11;
787 unsigned mantissa1 : 20;
788 unsigned mantissa2;
789 } little_endian;
790 struct {
791 unsigned mantissa2;
792 unsigned mantissa1 : 20;
793 unsigned exponent : 11;
794 unsigned sign : 1;
795 } big_endian;
796 } u;
798 u.d = dconstm1;
799 if (u.big_endian.sign == 1)
801 u.d = x;
802 return (u.big_endian.exponent == 2047
803 && (u.big_endian.mantissa1 != 0
804 || u.big_endian.mantissa2 != 0));
806 else
808 u.d = x;
809 return (u.little_endian.exponent == 2047
810 && (u.little_endian.mantissa1 != 0
811 || u.little_endian.mantissa2 != 0));
815 /* Check for a negative IEEE double precision number. */
818 target_negative (x)
819 REAL_VALUE_TYPE x;
821 /* The IEEE 64-bit double format. */
822 union {
823 REAL_VALUE_TYPE d;
824 struct {
825 unsigned sign : 1;
826 unsigned exponent : 11;
827 unsigned mantissa1 : 20;
828 unsigned mantissa2;
829 } little_endian;
830 struct {
831 unsigned mantissa2;
832 unsigned mantissa1 : 20;
833 unsigned exponent : 11;
834 unsigned sign : 1;
835 } big_endian;
836 } u;
838 u.d = dconstm1;
839 if (u.big_endian.sign == 1)
841 u.d = x;
842 return u.big_endian.sign;
844 else
846 u.d = x;
847 return u.little_endian.sign;
850 #else /* Target not IEEE */
852 /* Let's assume other float formats don't have infinity.
853 (This can be overridden by redefining REAL_VALUE_ISINF.) */
855 target_isinf (x)
856 REAL_VALUE_TYPE x;
858 return 0;
861 /* Let's assume other float formats don't have NaNs.
862 (This can be overridden by redefining REAL_VALUE_ISNAN.) */
864 target_isnan (x)
865 REAL_VALUE_TYPE x;
867 return 0;
870 /* Let's assume other float formats don't have minus zero.
871 (This can be overridden by redefining REAL_VALUE_NEGATIVE.) */
873 target_negative (x)
874 REAL_VALUE_TYPE x;
876 return x < 0;
878 #endif /* Target not IEEE */
880 /* Try to change R into its exact multiplicative inverse in machine mode
881 MODE. Return nonzero function value if successful. */
884 exact_real_inverse (mode, r)
885 enum machine_mode mode;
886 REAL_VALUE_TYPE *r;
888 jmp_buf float_error;
889 union
891 double d;
892 unsigned short i[4];
893 }x, t, y;
894 int i;
896 /* Usually disable if bounds checks are not reliable. */
897 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT) && !flag_pretend_float)
898 return 0;
900 /* Set array index to the less significant bits in the unions, depending
901 on the endian-ness of the host doubles.
902 Disable if insufficient information on the data structure. */
903 #if HOST_FLOAT_FORMAT == UNKNOWN_FLOAT_FORMAT
904 return 0;
905 #else
906 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
907 #define K 2
908 #else
909 #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
910 #define K 2
911 #else
912 #define K (2 * HOST_FLOAT_WORDS_BIG_ENDIAN)
913 #endif
914 #endif
915 #endif
917 if (setjmp (float_error))
919 /* Don't do the optimization if there was an arithmetic error. */
920 fail:
921 set_float_handler (NULL_PTR);
922 return 0;
924 set_float_handler (float_error);
926 /* Domain check the argument. */
927 x.d = *r;
928 if (x.d == 0.0)
929 goto fail;
931 #ifdef REAL_INFINITY
932 if (REAL_VALUE_ISINF (x.d) || REAL_VALUE_ISNAN (x.d))
933 goto fail;
934 #endif
936 /* Compute the reciprocal and check for numerical exactness.
937 It is unnecessary to check all the significand bits to determine
938 whether X is a power of 2. If X is not, then it is impossible for
939 the bottom half significand of both X and 1/X to be all zero bits.
940 Hence we ignore the data structure of the top half and examine only
941 the low order bits of the two significands. */
942 t.d = 1.0 / x.d;
943 if (x.i[K] != 0 || x.i[K + 1] != 0 || t.i[K] != 0 || t.i[K + 1] != 0)
944 goto fail;
946 /* Truncate to the required mode and range-check the result. */
947 y.d = REAL_VALUE_TRUNCATE (mode, t.d);
948 #ifdef CHECK_FLOAT_VALUE
949 i = 0;
950 if (CHECK_FLOAT_VALUE (mode, y.d, i))
951 goto fail;
952 #endif
954 /* Fail if truncation changed the value. */
955 if (y.d != t.d || y.d == 0.0)
956 goto fail;
958 #ifdef REAL_INFINITY
959 if (REAL_VALUE_ISINF (y.d) || REAL_VALUE_ISNAN (y.d))
960 goto fail;
961 #endif
963 /* Output the reciprocal and return success flag. */
964 set_float_handler (NULL_PTR);
965 *r = y.d;
966 return 1;
970 /* Convert C9X hexadecimal floating point string constant S. Return
971 real value type in mode MODE. This function uses the host computer's
972 fp arithmetic when there is no REAL_ARITHMETIC. */
974 REAL_VALUE_TYPE
975 real_hex_to_f (s, mode)
976 char *s;
977 enum machine_mode mode;
979 REAL_VALUE_TYPE ip;
980 char *p = s;
981 unsigned HOST_WIDE_INT low, high;
982 int frexpon, expon, shcount, nrmcount, k;
983 int sign, expsign, decpt, isfloat, isldouble, gotp, lost;
984 char c;
986 isldouble = 0;
987 isfloat = 0;
988 frexpon = 0;
989 expon = 0;
990 expsign = 1;
991 ip = 0.0;
993 while (*p == ' ' || *p == '\t')
994 ++p;
996 /* Sign, if any, comes first. */
997 sign = 1;
998 if (*p == '-')
1000 sign = -1;
1001 ++p;
1004 /* The string is supposed to start with 0x or 0X . */
1005 if (*p == '0')
1007 ++p;
1008 if (*p == 'x' || *p == 'X')
1009 ++p;
1010 else
1011 abort ();
1013 else
1014 abort ();
1016 while (*p == '0')
1017 ++p;
1019 high = 0;
1020 low = 0;
1021 lost = 0; /* Nonzero low order bits shifted out and discarded. */
1022 frexpon = 0; /* Bits after the decimal point. */
1023 expon = 0; /* Value of exponent. */
1024 decpt = 0; /* How many decimal points. */
1025 gotp = 0; /* How many P's. */
1026 shcount = 0;
1027 while ((c = *p) != '\0')
1029 if ((c >= '0' && c <= '9') || (c >= 'A' && c <= 'F')
1030 || (c >= 'a' && c <= 'f'))
1032 k = c & 0x7f;
1033 if (k >= 'a')
1034 k = k - 'a' + 10;
1035 else if (k >= 'A')
1036 k = k - 'A' + 10;
1037 else
1038 k = k - '0';
1040 if ((high & 0xf0000000) == 0)
1042 high = (high << 4) + ((low >> 28) & 15);
1043 low = (low << 4) + k;
1044 shcount += 4;
1045 if (decpt)
1046 frexpon += 4;
1048 else
1050 /* Record nonzero lost bits. */
1051 lost |= k;
1052 if (!decpt)
1053 frexpon -= 4;
1055 ++p;
1057 else if ( c == '.')
1059 ++decpt;
1060 ++p;
1062 else if (c == 'p' || c == 'P')
1064 ++gotp;
1065 ++p;
1066 /* Sign of exponent. */
1067 if (*p == '-')
1069 expsign = -1;
1070 ++p;
1072 /* Value of exponent.
1073 The exponent field is a decimal integer. */
1074 while (isdigit(*p))
1076 k = (*p++ & 0x7f) - '0';
1077 expon = 10 * expon + k;
1079 expon *= expsign;
1080 /* F suffix is ambiguous in the significand part
1081 so it must appear after the decimal exponent field. */
1082 if (*p == 'f' || *p == 'F')
1084 isfloat = 1;
1085 ++p;
1086 break;
1089 else if (c == 'l' || c == 'L')
1091 isldouble = 1;
1092 ++p;
1093 break;
1095 else
1096 break;
1098 /* Abort if last character read was not legitimate. */
1099 c = *p;
1100 if ((c != '\0' && c != ' ' && c != '\n' && c != '\r') || (decpt > 1))
1101 abort ();
1102 /* There must be either one decimal point or one p. */
1103 if (decpt == 0 && gotp == 0)
1104 abort ();
1105 shcount -= 4;
1106 if ((high == 0) && (low == 0))
1108 return dconst0;
1111 /* Normalize. */
1112 nrmcount = 0;
1113 if (high == 0)
1115 high = low;
1116 low = 0;
1117 nrmcount += 32;
1119 /* Leave a high guard bit for carry-out. */
1120 if ((high & 0x80000000) != 0)
1122 lost |= low & 1;
1123 low = (low >> 1) | (high << 31);
1124 high = high >> 1;
1125 nrmcount -= 1;
1127 if ((high & 0xffff8000) == 0)
1129 high = (high << 16) + ((low >> 16) & 0xffff);
1130 low = low << 16;
1131 nrmcount += 16;
1133 while ((high & 0xc0000000) == 0)
1135 high = (high << 1) + ((low >> 31) & 1);
1136 low = low << 1;
1137 nrmcount += 1;
1139 if (isfloat || GET_MODE_SIZE(mode) == UNITS_PER_WORD)
1141 /* Keep 24 bits precision, bits 0x7fffff80.
1142 Rounding bit is 0x40. */
1143 lost = lost | low | (high & 0x3f);
1144 low = 0;
1145 if (high & 0x40)
1147 if ((high & 0x80) || lost)
1148 high += 0x40;
1150 high &= 0xffffff80;
1152 else
1154 /* We need real.c to do long double formats, so here default
1155 to double precision. */
1156 #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
1157 /* IEEE double.
1158 Keep 53 bits precision, bits 0x7fffffff fffffc00.
1159 Rounding bit is low word 0x200. */
1160 lost = lost | (low & 0x1ff);
1161 if (low & 0x200)
1163 if ((low & 0x400) || lost)
1165 low = (low + 0x200) & 0xfffffc00;
1166 if (low == 0)
1167 high += 1;
1170 low &= 0xfffffc00;
1171 #else
1172 /* Assume it's a VAX with 56-bit significand,
1173 bits 0x7fffffff ffffff80. */
1174 lost = lost | (low & 0x7f);
1175 if (low & 0x40)
1177 if ((low & 0x80) || lost)
1179 low = (low + 0x40) & 0xffffff80;
1180 if (low == 0)
1181 high += 1;
1184 low &= 0xffffff80;
1185 #endif
1187 ip = (double) high;
1188 ip = REAL_VALUE_LDEXP (ip, 32) + (double) low;
1189 /* Apply shifts and exponent value as power of 2. */
1190 ip = REAL_VALUE_LDEXP (ip, expon - (nrmcount + frexpon));
1192 if (sign < 0)
1193 ip = -ip;
1194 return ip;
1197 #endif /* no REAL_ARITHMETIC */
1199 /* Split a tree IN into a constant and a variable part
1200 that could be combined with CODE to make IN.
1201 CODE must be a commutative arithmetic operation.
1202 Store the constant part into *CONP and the variable in &VARP.
1203 Return 1 if this was done; zero means the tree IN did not decompose
1204 this way.
1206 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.
1207 Therefore, we must tell the caller whether the variable part
1208 was subtracted. We do this by storing 1 or -1 into *VARSIGNP.
1209 The value stored is the coefficient for the variable term.
1210 The constant term we return should always be added;
1211 we negate it if necessary. */
1213 static int
1214 split_tree (in, code, varp, conp, varsignp)
1215 tree in;
1216 enum tree_code code;
1217 tree *varp, *conp;
1218 int *varsignp;
1220 register tree outtype = TREE_TYPE (in);
1221 *varp = 0;
1222 *conp = 0;
1224 /* Strip any conversions that don't change the machine mode. */
1225 while ((TREE_CODE (in) == NOP_EXPR
1226 || TREE_CODE (in) == CONVERT_EXPR)
1227 && (TYPE_MODE (TREE_TYPE (in))
1228 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (in, 0)))))
1229 in = TREE_OPERAND (in, 0);
1231 if (TREE_CODE (in) == code
1232 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1233 /* We can associate addition and subtraction together
1234 (even though the C standard doesn't say so)
1235 for integers because the value is not affected.
1236 For reals, the value might be affected, so we can't. */
1237 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1238 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1240 enum tree_code code = TREE_CODE (TREE_OPERAND (in, 0));
1241 if (code == INTEGER_CST)
1243 *conp = TREE_OPERAND (in, 0);
1244 *varp = TREE_OPERAND (in, 1);
1245 if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
1246 && TREE_TYPE (*varp) != outtype)
1247 *varp = convert (outtype, *varp);
1248 *varsignp = (TREE_CODE (in) == MINUS_EXPR) ? -1 : 1;
1249 return 1;
1251 if (TREE_CONSTANT (TREE_OPERAND (in, 1)))
1253 *conp = TREE_OPERAND (in, 1);
1254 *varp = TREE_OPERAND (in, 0);
1255 *varsignp = 1;
1256 if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
1257 && TREE_TYPE (*varp) != outtype)
1258 *varp = convert (outtype, *varp);
1259 if (TREE_CODE (in) == MINUS_EXPR)
1261 /* If operation is subtraction and constant is second,
1262 must negate it to get an additive constant.
1263 And this cannot be done unless it is a manifest constant.
1264 It could also be the address of a static variable.
1265 We cannot negate that, so give up. */
1266 if (TREE_CODE (*conp) == INTEGER_CST)
1267 /* Subtracting from integer_zero_node loses for long long. */
1268 *conp = fold (build1 (NEGATE_EXPR, TREE_TYPE (*conp), *conp));
1269 else
1270 return 0;
1272 return 1;
1274 if (TREE_CONSTANT (TREE_OPERAND (in, 0)))
1276 *conp = TREE_OPERAND (in, 0);
1277 *varp = TREE_OPERAND (in, 1);
1278 if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
1279 && TREE_TYPE (*varp) != outtype)
1280 *varp = convert (outtype, *varp);
1281 *varsignp = (TREE_CODE (in) == MINUS_EXPR) ? -1 : 1;
1282 return 1;
1285 return 0;
1288 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1289 to produce a new constant.
1291 If NOTRUNC is nonzero, do not truncate the result to fit the data type.
1292 If FORSIZE is nonzero, compute overflow for unsigned types. */
1294 static tree
1295 int_const_binop (code, arg1, arg2, notrunc, forsize)
1296 enum tree_code code;
1297 register tree arg1, arg2;
1298 int notrunc, forsize;
1300 HOST_WIDE_INT int1l, int1h, int2l, int2h;
1301 HOST_WIDE_INT low, hi;
1302 HOST_WIDE_INT garbagel, garbageh;
1303 register tree t;
1304 int uns = TREE_UNSIGNED (TREE_TYPE (arg1));
1305 int overflow = 0;
1306 int no_overflow = 0;
1308 int1l = TREE_INT_CST_LOW (arg1);
1309 int1h = TREE_INT_CST_HIGH (arg1);
1310 int2l = TREE_INT_CST_LOW (arg2);
1311 int2h = TREE_INT_CST_HIGH (arg2);
1313 switch (code)
1315 case BIT_IOR_EXPR:
1316 low = int1l | int2l, hi = int1h | int2h;
1317 break;
1319 case BIT_XOR_EXPR:
1320 low = int1l ^ int2l, hi = int1h ^ int2h;
1321 break;
1323 case BIT_AND_EXPR:
1324 low = int1l & int2l, hi = int1h & int2h;
1325 break;
1327 case BIT_ANDTC_EXPR:
1328 low = int1l & ~int2l, hi = int1h & ~int2h;
1329 break;
1331 case RSHIFT_EXPR:
1332 int2l = - int2l;
1333 case LSHIFT_EXPR:
1334 /* It's unclear from the C standard whether shifts can overflow.
1335 The following code ignores overflow; perhaps a C standard
1336 interpretation ruling is needed. */
1337 lshift_double (int1l, int1h, int2l,
1338 TYPE_PRECISION (TREE_TYPE (arg1)),
1339 &low, &hi,
1340 !uns);
1341 no_overflow = 1;
1342 break;
1344 case RROTATE_EXPR:
1345 int2l = - int2l;
1346 case LROTATE_EXPR:
1347 lrotate_double (int1l, int1h, int2l,
1348 TYPE_PRECISION (TREE_TYPE (arg1)),
1349 &low, &hi);
1350 break;
1352 case PLUS_EXPR:
1353 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1354 break;
1356 case MINUS_EXPR:
1357 neg_double (int2l, int2h, &low, &hi);
1358 add_double (int1l, int1h, low, hi, &low, &hi);
1359 overflow = overflow_sum_sign (hi, int2h, int1h);
1360 break;
1362 case MULT_EXPR:
1363 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1364 break;
1366 case TRUNC_DIV_EXPR:
1367 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1368 case EXACT_DIV_EXPR:
1369 /* This is a shortcut for a common special case. */
1370 if (int2h == 0 && int2l > 0
1371 && ! TREE_CONSTANT_OVERFLOW (arg1)
1372 && ! TREE_CONSTANT_OVERFLOW (arg2)
1373 && int1h == 0 && int1l >= 0)
1375 if (code == CEIL_DIV_EXPR)
1376 int1l += int2l - 1;
1377 low = int1l / int2l, hi = 0;
1378 break;
1381 /* ... fall through ... */
1383 case ROUND_DIV_EXPR:
1384 if (int2h == 0 && int2l == 1)
1386 low = int1l, hi = int1h;
1387 break;
1389 if (int1l == int2l && int1h == int2h
1390 && ! (int1l == 0 && int1h == 0))
1392 low = 1, hi = 0;
1393 break;
1395 overflow = div_and_round_double (code, uns,
1396 int1l, int1h, int2l, int2h,
1397 &low, &hi, &garbagel, &garbageh);
1398 break;
1400 case TRUNC_MOD_EXPR:
1401 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1402 /* This is a shortcut for a common special case. */
1403 if (int2h == 0 && int2l > 0
1404 && ! TREE_CONSTANT_OVERFLOW (arg1)
1405 && ! TREE_CONSTANT_OVERFLOW (arg2)
1406 && int1h == 0 && int1l >= 0)
1408 if (code == CEIL_MOD_EXPR)
1409 int1l += int2l - 1;
1410 low = int1l % int2l, hi = 0;
1411 break;
1414 /* ... fall through ... */
1416 case ROUND_MOD_EXPR:
1417 overflow = div_and_round_double (code, uns,
1418 int1l, int1h, int2l, int2h,
1419 &garbagel, &garbageh, &low, &hi);
1420 break;
1422 case MIN_EXPR:
1423 case MAX_EXPR:
1424 if (uns)
1426 low = (((unsigned HOST_WIDE_INT) int1h
1427 < (unsigned HOST_WIDE_INT) int2h)
1428 || (((unsigned HOST_WIDE_INT) int1h
1429 == (unsigned HOST_WIDE_INT) int2h)
1430 && ((unsigned HOST_WIDE_INT) int1l
1431 < (unsigned HOST_WIDE_INT) int2l)));
1433 else
1435 low = ((int1h < int2h)
1436 || ((int1h == int2h)
1437 && ((unsigned HOST_WIDE_INT) int1l
1438 < (unsigned HOST_WIDE_INT) int2l)));
1440 if (low == (code == MIN_EXPR))
1441 low = int1l, hi = int1h;
1442 else
1443 low = int2l, hi = int2h;
1444 break;
1446 default:
1447 abort ();
1450 if (TREE_TYPE (arg1) == sizetype && hi == 0
1451 && low >= 0
1452 && (TYPE_MAX_VALUE (sizetype) == NULL
1453 || low <= TREE_INT_CST_LOW (TYPE_MAX_VALUE (sizetype)))
1454 && ! overflow
1455 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1456 t = size_int (low);
1457 else
1459 t = build_int_2 (low, hi);
1460 TREE_TYPE (t) = TREE_TYPE (arg1);
1463 TREE_OVERFLOW (t)
1464 = ((notrunc ? (!uns || forsize) && overflow
1465 : force_fit_type (t, (!uns || forsize) && overflow) && ! no_overflow)
1466 | TREE_OVERFLOW (arg1)
1467 | TREE_OVERFLOW (arg2));
1468 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1469 So check if force_fit_type truncated the value. */
1470 if (forsize
1471 && ! TREE_OVERFLOW (t)
1472 && (TREE_INT_CST_HIGH (t) != hi
1473 || TREE_INT_CST_LOW (t) != low))
1474 TREE_OVERFLOW (t) = 1;
1475 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1476 | TREE_CONSTANT_OVERFLOW (arg1)
1477 | TREE_CONSTANT_OVERFLOW (arg2));
1478 return t;
1481 struct cb_args
1483 /* Input */
1484 tree arg1;
1485 REAL_VALUE_TYPE d1, d2;
1486 enum tree_code code;
1487 /* Output */
1488 tree t;
1491 static void
1492 const_binop_1 (data)
1493 PTR data;
1495 struct cb_args * args = (struct cb_args *) data;
1496 REAL_VALUE_TYPE value;
1498 #ifdef REAL_ARITHMETIC
1499 REAL_ARITHMETIC (value, args->code, args->d1, args->d2);
1500 #else
1501 switch (args->code)
1503 case PLUS_EXPR:
1504 value = args->d1 + args->d2;
1505 break;
1507 case MINUS_EXPR:
1508 value = args->d1 - args->d2;
1509 break;
1511 case MULT_EXPR:
1512 value = args->d1 * args->d2;
1513 break;
1515 case RDIV_EXPR:
1516 #ifndef REAL_INFINITY
1517 if (args->d2 == 0)
1518 abort ();
1519 #endif
1521 value = args->d1 / args->d2;
1522 break;
1524 case MIN_EXPR:
1525 value = MIN (args->d1, args->d2);
1526 break;
1528 case MAX_EXPR:
1529 value = MAX (args->d1, args->d2);
1530 break;
1532 default:
1533 abort ();
1535 #endif /* no REAL_ARITHMETIC */
1536 args->t =
1537 build_real (TREE_TYPE (args->arg1),
1538 real_value_truncate (TYPE_MODE (TREE_TYPE (args->arg1)),
1539 value));
1542 /* Combine two constants ARG1 and ARG2 under operation CODE
1543 to produce a new constant.
1544 We assume ARG1 and ARG2 have the same data type,
1545 or at least are the same kind of constant and the same machine mode.
1547 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1549 static tree
1550 const_binop (code, arg1, arg2, notrunc)
1551 enum tree_code code;
1552 register tree arg1, arg2;
1553 int notrunc;
1555 STRIP_NOPS (arg1); STRIP_NOPS (arg2);
1557 if (TREE_CODE (arg1) == INTEGER_CST)
1558 return int_const_binop (code, arg1, arg2, notrunc, 0);
1560 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1561 if (TREE_CODE (arg1) == REAL_CST)
1563 REAL_VALUE_TYPE d1;
1564 REAL_VALUE_TYPE d2;
1565 int overflow = 0;
1566 tree t;
1567 struct cb_args args;
1569 d1 = TREE_REAL_CST (arg1);
1570 d2 = TREE_REAL_CST (arg2);
1572 /* If either operand is a NaN, just return it. Otherwise, set up
1573 for floating-point trap; we return an overflow. */
1574 if (REAL_VALUE_ISNAN (d1))
1575 return arg1;
1576 else if (REAL_VALUE_ISNAN (d2))
1577 return arg2;
1579 /* Setup input for const_binop_1() */
1580 args.arg1 = arg1;
1581 args.d1 = d1;
1582 args.d2 = d2;
1583 args.code = code;
1585 if (do_float_handler (const_binop_1, (PTR) &args))
1587 /* Receive output from const_binop_1() */
1588 t = args.t;
1590 else
1592 /* We got an exception from const_binop_1() */
1593 t = copy_node (arg1);
1594 overflow = 1;
1597 TREE_OVERFLOW (t)
1598 = (force_fit_type (t, overflow)
1599 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1600 TREE_CONSTANT_OVERFLOW (t)
1601 = TREE_OVERFLOW (t)
1602 | TREE_CONSTANT_OVERFLOW (arg1)
1603 | TREE_CONSTANT_OVERFLOW (arg2);
1604 return t;
1606 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1607 if (TREE_CODE (arg1) == COMPLEX_CST)
1609 register tree type = TREE_TYPE (arg1);
1610 register tree r1 = TREE_REALPART (arg1);
1611 register tree i1 = TREE_IMAGPART (arg1);
1612 register tree r2 = TREE_REALPART (arg2);
1613 register tree i2 = TREE_IMAGPART (arg2);
1614 register tree t;
1616 switch (code)
1618 case PLUS_EXPR:
1619 t = build_complex (type,
1620 const_binop (PLUS_EXPR, r1, r2, notrunc),
1621 const_binop (PLUS_EXPR, i1, i2, notrunc));
1622 break;
1624 case MINUS_EXPR:
1625 t = build_complex (type,
1626 const_binop (MINUS_EXPR, r1, r2, notrunc),
1627 const_binop (MINUS_EXPR, i1, i2, notrunc));
1628 break;
1630 case MULT_EXPR:
1631 t = build_complex (type,
1632 const_binop (MINUS_EXPR,
1633 const_binop (MULT_EXPR,
1634 r1, r2, notrunc),
1635 const_binop (MULT_EXPR,
1636 i1, i2, notrunc),
1637 notrunc),
1638 const_binop (PLUS_EXPR,
1639 const_binop (MULT_EXPR,
1640 r1, i2, notrunc),
1641 const_binop (MULT_EXPR,
1642 i1, r2, notrunc),
1643 notrunc));
1644 break;
1646 case RDIV_EXPR:
1648 register tree magsquared
1649 = const_binop (PLUS_EXPR,
1650 const_binop (MULT_EXPR, r2, r2, notrunc),
1651 const_binop (MULT_EXPR, i2, i2, notrunc),
1652 notrunc);
1654 t = build_complex (type,
1655 const_binop
1656 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1657 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1658 const_binop (PLUS_EXPR,
1659 const_binop (MULT_EXPR, r1, r2,
1660 notrunc),
1661 const_binop (MULT_EXPR, i1, i2,
1662 notrunc),
1663 notrunc),
1664 magsquared, notrunc),
1665 const_binop
1666 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1667 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1668 const_binop (MINUS_EXPR,
1669 const_binop (MULT_EXPR, i1, r2,
1670 notrunc),
1671 const_binop (MULT_EXPR, r1, i2,
1672 notrunc),
1673 notrunc),
1674 magsquared, notrunc));
1676 break;
1678 default:
1679 abort ();
1681 return t;
1683 return 0;
1686 /* Return an INTEGER_CST with value V . The type is determined by bit_p:
1687 if it is zero, the type is taken from sizetype; if it is one, the type
1688 is taken from bitsizetype. */
1690 tree
1691 size_int_wide (number, high, bit_p)
1692 unsigned HOST_WIDE_INT number, high;
1693 int bit_p;
1695 register tree t;
1696 /* Type-size nodes already made for small sizes. */
1697 static tree size_table[2*HOST_BITS_PER_WIDE_INT + 1][2];
1699 if (number < 2*HOST_BITS_PER_WIDE_INT + 1 && ! high
1700 && size_table[number][bit_p] != 0)
1701 return size_table[number][bit_p];
1702 if (number < 2*HOST_BITS_PER_WIDE_INT + 1 && ! high)
1704 push_obstacks_nochange ();
1705 /* Make this a permanent node. */
1706 end_temporary_allocation ();
1707 t = build_int_2 (number, 0);
1708 TREE_TYPE (t) = bit_p ? bitsizetype : sizetype;
1709 size_table[number][bit_p] = t;
1710 pop_obstacks ();
1712 else
1714 t = build_int_2 (number, high);
1715 TREE_TYPE (t) = bit_p ? bitsizetype : sizetype;
1716 TREE_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (t) = force_fit_type (t, 0);
1718 return t;
1721 /* Combine operands OP1 and OP2 with arithmetic operation CODE.
1722 CODE is a tree code. Data type is taken from `sizetype',
1723 If the operands are constant, so is the result. */
1725 tree
1726 size_binop (code, arg0, arg1)
1727 enum tree_code code;
1728 tree arg0, arg1;
1730 /* Handle the special case of two integer constants faster. */
1731 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1733 /* And some specific cases even faster than that. */
1734 if (code == PLUS_EXPR && integer_zerop (arg0))
1735 return arg1;
1736 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1737 && integer_zerop (arg1))
1738 return arg0;
1739 else if (code == MULT_EXPR && integer_onep (arg0))
1740 return arg1;
1742 /* Handle general case of two integer constants. */
1743 return int_const_binop (code, arg0, arg1, 0, 1);
1746 if (arg0 == error_mark_node || arg1 == error_mark_node)
1747 return error_mark_node;
1749 return fold (build (code, sizetype, arg0, arg1));
1752 /* Combine operands OP1 and OP2 with arithmetic operation CODE.
1753 CODE is a tree code. Data type is taken from `ssizetype',
1754 If the operands are constant, so is the result. */
1756 tree
1757 ssize_binop (code, arg0, arg1)
1758 enum tree_code code;
1759 tree arg0, arg1;
1761 /* Handle the special case of two integer constants faster. */
1762 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1764 /* And some specific cases even faster than that. */
1765 if (code == PLUS_EXPR && integer_zerop (arg0))
1766 return arg1;
1767 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1768 && integer_zerop (arg1))
1769 return arg0;
1770 else if (code == MULT_EXPR && integer_onep (arg0))
1771 return arg1;
1773 /* Handle general case of two integer constants. We convert
1774 arg0 to ssizetype because int_const_binop uses its type for the
1775 return value. */
1776 arg0 = convert (ssizetype, arg0);
1777 return int_const_binop (code, arg0, arg1, 0, 0);
1780 if (arg0 == error_mark_node || arg1 == error_mark_node)
1781 return error_mark_node;
1783 return fold (build (code, ssizetype, arg0, arg1));
1786 struct fc_args
1788 /* Input */
1789 tree arg1, type;
1790 /* Output */
1791 tree t;
1794 static void
1795 fold_convert_1 (data)
1796 PTR data;
1798 struct fc_args * args = (struct fc_args *) data;
1800 args->t = build_real (args->type,
1801 real_value_truncate (TYPE_MODE (args->type),
1802 TREE_REAL_CST (args->arg1)));
1805 /* Given T, a tree representing type conversion of ARG1, a constant,
1806 return a constant tree representing the result of conversion. */
1808 static tree
1809 fold_convert (t, arg1)
1810 register tree t;
1811 register tree arg1;
1813 register tree type = TREE_TYPE (t);
1814 int overflow = 0;
1816 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1818 if (TREE_CODE (arg1) == INTEGER_CST)
1820 /* If we would build a constant wider than GCC supports,
1821 leave the conversion unfolded. */
1822 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1823 return t;
1825 /* Given an integer constant, make new constant with new type,
1826 appropriately sign-extended or truncated. */
1827 t = build_int_2 (TREE_INT_CST_LOW (arg1),
1828 TREE_INT_CST_HIGH (arg1));
1829 TREE_TYPE (t) = type;
1830 /* Indicate an overflow if (1) ARG1 already overflowed,
1831 or (2) force_fit_type indicates an overflow.
1832 Tell force_fit_type that an overflow has already occurred
1833 if ARG1 is a too-large unsigned value and T is signed.
1834 But don't indicate an overflow if converting a pointer. */
1835 TREE_OVERFLOW (t)
1836 = ((force_fit_type (t,
1837 (TREE_INT_CST_HIGH (arg1) < 0
1838 && (TREE_UNSIGNED (type)
1839 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
1840 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
1841 || TREE_OVERFLOW (arg1));
1842 TREE_CONSTANT_OVERFLOW (t)
1843 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1845 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1846 else if (TREE_CODE (arg1) == REAL_CST)
1848 /* Don't initialize these, use assignments.
1849 Initialized local aggregates don't work on old compilers. */
1850 REAL_VALUE_TYPE x;
1851 REAL_VALUE_TYPE l;
1852 REAL_VALUE_TYPE u;
1853 tree type1 = TREE_TYPE (arg1);
1854 int no_upper_bound;
1856 x = TREE_REAL_CST (arg1);
1857 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
1859 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
1860 if (!no_upper_bound)
1861 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
1863 /* See if X will be in range after truncation towards 0.
1864 To compensate for truncation, move the bounds away from 0,
1865 but reject if X exactly equals the adjusted bounds. */
1866 #ifdef REAL_ARITHMETIC
1867 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
1868 if (!no_upper_bound)
1869 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
1870 #else
1871 l--;
1872 if (!no_upper_bound)
1873 u++;
1874 #endif
1875 /* If X is a NaN, use zero instead and show we have an overflow.
1876 Otherwise, range check. */
1877 if (REAL_VALUE_ISNAN (x))
1878 overflow = 1, x = dconst0;
1879 else if (! (REAL_VALUES_LESS (l, x)
1880 && !no_upper_bound
1881 && REAL_VALUES_LESS (x, u)))
1882 overflow = 1;
1884 #ifndef REAL_ARITHMETIC
1886 HOST_WIDE_INT low, high;
1887 HOST_WIDE_INT half_word
1888 = (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2);
1890 if (x < 0)
1891 x = -x;
1893 high = (HOST_WIDE_INT) (x / half_word / half_word);
1894 x -= (REAL_VALUE_TYPE) high * half_word * half_word;
1895 if (x >= (REAL_VALUE_TYPE) half_word * half_word / 2)
1897 low = x - (REAL_VALUE_TYPE) half_word * half_word / 2;
1898 low |= (HOST_WIDE_INT) -1 << (HOST_BITS_PER_WIDE_INT - 1);
1900 else
1901 low = (HOST_WIDE_INT) x;
1902 if (TREE_REAL_CST (arg1) < 0)
1903 neg_double (low, high, &low, &high);
1904 t = build_int_2 (low, high);
1906 #else
1908 HOST_WIDE_INT low, high;
1909 REAL_VALUE_TO_INT (&low, &high, x);
1910 t = build_int_2 (low, high);
1912 #endif
1913 TREE_TYPE (t) = type;
1914 TREE_OVERFLOW (t)
1915 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1916 TREE_CONSTANT_OVERFLOW (t)
1917 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1919 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1920 TREE_TYPE (t) = type;
1922 else if (TREE_CODE (type) == REAL_TYPE)
1924 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1925 if (TREE_CODE (arg1) == INTEGER_CST)
1926 return build_real_from_int_cst (type, arg1);
1927 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1928 if (TREE_CODE (arg1) == REAL_CST)
1930 struct fc_args args;
1932 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1934 t = arg1;
1935 TREE_TYPE (arg1) = type;
1936 return t;
1939 /* Setup input for fold_convert_1() */
1940 args.arg1 = arg1;
1941 args.type = type;
1943 if (do_float_handler (fold_convert_1, (PTR) &args))
1945 /* Receive output from fold_convert_1() */
1946 t = args.t;
1948 else
1950 /* We got an exception from fold_convert_1() */
1951 overflow = 1;
1952 t = copy_node (arg1);
1955 TREE_OVERFLOW (t)
1956 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1957 TREE_CONSTANT_OVERFLOW (t)
1958 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1959 return t;
1962 TREE_CONSTANT (t) = 1;
1963 return t;
1966 /* Return an expr equal to X but certainly not valid as an lvalue. */
1968 tree
1969 non_lvalue (x)
1970 tree x;
1972 tree result;
1974 /* These things are certainly not lvalues. */
1975 if (TREE_CODE (x) == NON_LVALUE_EXPR
1976 || TREE_CODE (x) == INTEGER_CST
1977 || TREE_CODE (x) == REAL_CST
1978 || TREE_CODE (x) == STRING_CST
1979 || TREE_CODE (x) == ADDR_EXPR)
1980 return x;
1982 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
1983 TREE_CONSTANT (result) = TREE_CONSTANT (x);
1984 return result;
1987 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1988 Zero means allow extended lvalues. */
1990 int pedantic_lvalues;
1992 /* When pedantic, return an expr equal to X but certainly not valid as a
1993 pedantic lvalue. Otherwise, return X. */
1995 tree
1996 pedantic_non_lvalue (x)
1997 tree x;
1999 if (pedantic_lvalues)
2000 return non_lvalue (x);
2001 else
2002 return x;
2005 /* Given a tree comparison code, return the code that is the logical inverse
2006 of the given code. It is not safe to do this for floating-point
2007 comparisons, except for NE_EXPR and EQ_EXPR. */
2009 static enum tree_code
2010 invert_tree_comparison (code)
2011 enum tree_code code;
2013 switch (code)
2015 case EQ_EXPR:
2016 return NE_EXPR;
2017 case NE_EXPR:
2018 return EQ_EXPR;
2019 case GT_EXPR:
2020 return LE_EXPR;
2021 case GE_EXPR:
2022 return LT_EXPR;
2023 case LT_EXPR:
2024 return GE_EXPR;
2025 case LE_EXPR:
2026 return GT_EXPR;
2027 default:
2028 abort ();
2032 /* Similar, but return the comparison that results if the operands are
2033 swapped. This is safe for floating-point. */
2035 static enum tree_code
2036 swap_tree_comparison (code)
2037 enum tree_code code;
2039 switch (code)
2041 case EQ_EXPR:
2042 case NE_EXPR:
2043 return code;
2044 case GT_EXPR:
2045 return LT_EXPR;
2046 case GE_EXPR:
2047 return LE_EXPR;
2048 case LT_EXPR:
2049 return GT_EXPR;
2050 case LE_EXPR:
2051 return GE_EXPR;
2052 default:
2053 abort ();
2057 /* Return nonzero if CODE is a tree code that represents a truth value. */
2059 static int
2060 truth_value_p (code)
2061 enum tree_code code;
2063 return (TREE_CODE_CLASS (code) == '<'
2064 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2065 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2066 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2069 /* Return nonzero if two operands are necessarily equal.
2070 If ONLY_CONST is non-zero, only return non-zero for constants.
2071 This function tests whether the operands are indistinguishable;
2072 it does not test whether they are equal using C's == operation.
2073 The distinction is important for IEEE floating point, because
2074 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2075 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
2078 operand_equal_p (arg0, arg1, only_const)
2079 tree arg0, arg1;
2080 int only_const;
2082 /* If both types don't have the same signedness, then we can't consider
2083 them equal. We must check this before the STRIP_NOPS calls
2084 because they may change the signedness of the arguments. */
2085 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
2086 return 0;
2088 STRIP_NOPS (arg0);
2089 STRIP_NOPS (arg1);
2091 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2092 /* This is needed for conversions and for COMPONENT_REF.
2093 Might as well play it safe and always test this. */
2094 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2095 return 0;
2097 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2098 We don't care about side effects in that case because the SAVE_EXPR
2099 takes care of that for us. In all other cases, two expressions are
2100 equal if they have no side effects. If we have two identical
2101 expressions with side effects that should be treated the same due
2102 to the only side effects being identical SAVE_EXPR's, that will
2103 be detected in the recursive calls below. */
2104 if (arg0 == arg1 && ! only_const
2105 && (TREE_CODE (arg0) == SAVE_EXPR
2106 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2107 return 1;
2109 /* Next handle constant cases, those for which we can return 1 even
2110 if ONLY_CONST is set. */
2111 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2112 switch (TREE_CODE (arg0))
2114 case INTEGER_CST:
2115 return (! TREE_CONSTANT_OVERFLOW (arg0)
2116 && ! TREE_CONSTANT_OVERFLOW (arg1)
2117 && TREE_INT_CST_LOW (arg0) == TREE_INT_CST_LOW (arg1)
2118 && TREE_INT_CST_HIGH (arg0) == TREE_INT_CST_HIGH (arg1));
2120 case REAL_CST:
2121 return (! TREE_CONSTANT_OVERFLOW (arg0)
2122 && ! TREE_CONSTANT_OVERFLOW (arg1)
2123 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2124 TREE_REAL_CST (arg1)));
2126 case COMPLEX_CST:
2127 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2128 only_const)
2129 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2130 only_const));
2132 case STRING_CST:
2133 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2134 && ! strncmp (TREE_STRING_POINTER (arg0),
2135 TREE_STRING_POINTER (arg1),
2136 TREE_STRING_LENGTH (arg0)));
2138 case ADDR_EXPR:
2139 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2141 default:
2142 break;
2145 if (only_const)
2146 return 0;
2148 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2150 case '1':
2151 /* Two conversions are equal only if signedness and modes match. */
2152 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
2153 && (TREE_UNSIGNED (TREE_TYPE (arg0))
2154 != TREE_UNSIGNED (TREE_TYPE (arg1))))
2155 return 0;
2157 return operand_equal_p (TREE_OPERAND (arg0, 0),
2158 TREE_OPERAND (arg1, 0), 0);
2160 case '<':
2161 case '2':
2162 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
2163 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
2165 return 1;
2167 /* For commutative ops, allow the other order. */
2168 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
2169 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
2170 || TREE_CODE (arg0) == BIT_IOR_EXPR
2171 || TREE_CODE (arg0) == BIT_XOR_EXPR
2172 || TREE_CODE (arg0) == BIT_AND_EXPR
2173 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
2174 && operand_equal_p (TREE_OPERAND (arg0, 0),
2175 TREE_OPERAND (arg1, 1), 0)
2176 && operand_equal_p (TREE_OPERAND (arg0, 1),
2177 TREE_OPERAND (arg1, 0), 0));
2179 case 'r':
2180 switch (TREE_CODE (arg0))
2182 case INDIRECT_REF:
2183 return operand_equal_p (TREE_OPERAND (arg0, 0),
2184 TREE_OPERAND (arg1, 0), 0);
2186 case COMPONENT_REF:
2187 case ARRAY_REF:
2188 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2189 TREE_OPERAND (arg1, 0), 0)
2190 && operand_equal_p (TREE_OPERAND (arg0, 1),
2191 TREE_OPERAND (arg1, 1), 0));
2193 case BIT_FIELD_REF:
2194 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2195 TREE_OPERAND (arg1, 0), 0)
2196 && operand_equal_p (TREE_OPERAND (arg0, 1),
2197 TREE_OPERAND (arg1, 1), 0)
2198 && operand_equal_p (TREE_OPERAND (arg0, 2),
2199 TREE_OPERAND (arg1, 2), 0));
2200 default:
2201 return 0;
2204 case 'e':
2205 if (TREE_CODE (arg0) == RTL_EXPR)
2206 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
2207 return 0;
2209 default:
2210 return 0;
2214 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2215 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2217 When in doubt, return 0. */
2219 static int
2220 operand_equal_for_comparison_p (arg0, arg1, other)
2221 tree arg0, arg1;
2222 tree other;
2224 int unsignedp1, unsignedpo;
2225 tree primarg0, primarg1, primother;
2226 unsigned correct_width;
2228 if (operand_equal_p (arg0, arg1, 0))
2229 return 1;
2231 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2232 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2233 return 0;
2235 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2236 and see if the inner values are the same. This removes any
2237 signedness comparison, which doesn't matter here. */
2238 primarg0 = arg0, primarg1 = arg1;
2239 STRIP_NOPS (primarg0); STRIP_NOPS (primarg1);
2240 if (operand_equal_p (primarg0, primarg1, 0))
2241 return 1;
2243 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2244 actual comparison operand, ARG0.
2246 First throw away any conversions to wider types
2247 already present in the operands. */
2249 primarg1 = get_narrower (arg1, &unsignedp1);
2250 primother = get_narrower (other, &unsignedpo);
2252 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2253 if (unsignedp1 == unsignedpo
2254 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2255 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2257 tree type = TREE_TYPE (arg0);
2259 /* Make sure shorter operand is extended the right way
2260 to match the longer operand. */
2261 primarg1 = convert (signed_or_unsigned_type (unsignedp1,
2262 TREE_TYPE (primarg1)),
2263 primarg1);
2265 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2266 return 1;
2269 return 0;
2272 /* See if ARG is an expression that is either a comparison or is performing
2273 arithmetic on comparisons. The comparisons must only be comparing
2274 two different values, which will be stored in *CVAL1 and *CVAL2; if
2275 they are non-zero it means that some operands have already been found.
2276 No variables may be used anywhere else in the expression except in the
2277 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2278 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2280 If this is true, return 1. Otherwise, return zero. */
2282 static int
2283 twoval_comparison_p (arg, cval1, cval2, save_p)
2284 tree arg;
2285 tree *cval1, *cval2;
2286 int *save_p;
2288 enum tree_code code = TREE_CODE (arg);
2289 char class = TREE_CODE_CLASS (code);
2291 /* We can handle some of the 'e' cases here. */
2292 if (class == 'e' && code == TRUTH_NOT_EXPR)
2293 class = '1';
2294 else if (class == 'e'
2295 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2296 || code == COMPOUND_EXPR))
2297 class = '2';
2299 /* ??? Disable this since the SAVE_EXPR might already be in use outside
2300 the expression. There may be no way to make this work, but it needs
2301 to be looked at again for 2.6. */
2302 #if 0
2303 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0)
2305 /* If we've already found a CVAL1 or CVAL2, this expression is
2306 two complex to handle. */
2307 if (*cval1 || *cval2)
2308 return 0;
2310 class = '1';
2311 *save_p = 1;
2313 #endif
2315 switch (class)
2317 case '1':
2318 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2320 case '2':
2321 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2322 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2323 cval1, cval2, save_p));
2325 case 'c':
2326 return 1;
2328 case 'e':
2329 if (code == COND_EXPR)
2330 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2331 cval1, cval2, save_p)
2332 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2333 cval1, cval2, save_p)
2334 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2335 cval1, cval2, save_p));
2336 return 0;
2338 case '<':
2339 /* First see if we can handle the first operand, then the second. For
2340 the second operand, we know *CVAL1 can't be zero. It must be that
2341 one side of the comparison is each of the values; test for the
2342 case where this isn't true by failing if the two operands
2343 are the same. */
2345 if (operand_equal_p (TREE_OPERAND (arg, 0),
2346 TREE_OPERAND (arg, 1), 0))
2347 return 0;
2349 if (*cval1 == 0)
2350 *cval1 = TREE_OPERAND (arg, 0);
2351 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2353 else if (*cval2 == 0)
2354 *cval2 = TREE_OPERAND (arg, 0);
2355 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2357 else
2358 return 0;
2360 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2362 else if (*cval2 == 0)
2363 *cval2 = TREE_OPERAND (arg, 1);
2364 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2366 else
2367 return 0;
2369 return 1;
2371 default:
2372 return 0;
2376 /* ARG is a tree that is known to contain just arithmetic operations and
2377 comparisons. Evaluate the operations in the tree substituting NEW0 for
2378 any occurrence of OLD0 as an operand of a comparison and likewise for
2379 NEW1 and OLD1. */
2381 static tree
2382 eval_subst (arg, old0, new0, old1, new1)
2383 tree arg;
2384 tree old0, new0, old1, new1;
2386 tree type = TREE_TYPE (arg);
2387 enum tree_code code = TREE_CODE (arg);
2388 char class = TREE_CODE_CLASS (code);
2390 /* We can handle some of the 'e' cases here. */
2391 if (class == 'e' && code == TRUTH_NOT_EXPR)
2392 class = '1';
2393 else if (class == 'e'
2394 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2395 class = '2';
2397 switch (class)
2399 case '1':
2400 return fold (build1 (code, type,
2401 eval_subst (TREE_OPERAND (arg, 0),
2402 old0, new0, old1, new1)));
2404 case '2':
2405 return fold (build (code, type,
2406 eval_subst (TREE_OPERAND (arg, 0),
2407 old0, new0, old1, new1),
2408 eval_subst (TREE_OPERAND (arg, 1),
2409 old0, new0, old1, new1)));
2411 case 'e':
2412 switch (code)
2414 case SAVE_EXPR:
2415 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2417 case COMPOUND_EXPR:
2418 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2420 case COND_EXPR:
2421 return fold (build (code, type,
2422 eval_subst (TREE_OPERAND (arg, 0),
2423 old0, new0, old1, new1),
2424 eval_subst (TREE_OPERAND (arg, 1),
2425 old0, new0, old1, new1),
2426 eval_subst (TREE_OPERAND (arg, 2),
2427 old0, new0, old1, new1)));
2428 default:
2429 break;
2431 /* fall through - ??? */
2433 case '<':
2435 tree arg0 = TREE_OPERAND (arg, 0);
2436 tree arg1 = TREE_OPERAND (arg, 1);
2438 /* We need to check both for exact equality and tree equality. The
2439 former will be true if the operand has a side-effect. In that
2440 case, we know the operand occurred exactly once. */
2442 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2443 arg0 = new0;
2444 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2445 arg0 = new1;
2447 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2448 arg1 = new0;
2449 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2450 arg1 = new1;
2452 return fold (build (code, type, arg0, arg1));
2455 default:
2456 return arg;
2460 /* Return a tree for the case when the result of an expression is RESULT
2461 converted to TYPE and OMITTED was previously an operand of the expression
2462 but is now not needed (e.g., we folded OMITTED * 0).
2464 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2465 the conversion of RESULT to TYPE. */
2467 static tree
2468 omit_one_operand (type, result, omitted)
2469 tree type, result, omitted;
2471 tree t = convert (type, result);
2473 if (TREE_SIDE_EFFECTS (omitted))
2474 return build (COMPOUND_EXPR, type, omitted, t);
2476 return non_lvalue (t);
2479 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2481 static tree
2482 pedantic_omit_one_operand (type, result, omitted)
2483 tree type, result, omitted;
2485 tree t = convert (type, result);
2487 if (TREE_SIDE_EFFECTS (omitted))
2488 return build (COMPOUND_EXPR, type, omitted, t);
2490 return pedantic_non_lvalue (t);
2495 /* Return a simplified tree node for the truth-negation of ARG. This
2496 never alters ARG itself. We assume that ARG is an operation that
2497 returns a truth value (0 or 1). */
2499 tree
2500 invert_truthvalue (arg)
2501 tree arg;
2503 tree type = TREE_TYPE (arg);
2504 enum tree_code code = TREE_CODE (arg);
2506 if (code == ERROR_MARK)
2507 return arg;
2509 /* If this is a comparison, we can simply invert it, except for
2510 floating-point non-equality comparisons, in which case we just
2511 enclose a TRUTH_NOT_EXPR around what we have. */
2513 if (TREE_CODE_CLASS (code) == '<')
2515 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2516 && !flag_fast_math && code != NE_EXPR && code != EQ_EXPR)
2517 return build1 (TRUTH_NOT_EXPR, type, arg);
2518 else
2519 return build (invert_tree_comparison (code), type,
2520 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2523 switch (code)
2525 case INTEGER_CST:
2526 return convert (type, build_int_2 (TREE_INT_CST_LOW (arg) == 0
2527 && TREE_INT_CST_HIGH (arg) == 0, 0));
2529 case TRUTH_AND_EXPR:
2530 return build (TRUTH_OR_EXPR, type,
2531 invert_truthvalue (TREE_OPERAND (arg, 0)),
2532 invert_truthvalue (TREE_OPERAND (arg, 1)));
2534 case TRUTH_OR_EXPR:
2535 return build (TRUTH_AND_EXPR, type,
2536 invert_truthvalue (TREE_OPERAND (arg, 0)),
2537 invert_truthvalue (TREE_OPERAND (arg, 1)));
2539 case TRUTH_XOR_EXPR:
2540 /* Here we can invert either operand. We invert the first operand
2541 unless the second operand is a TRUTH_NOT_EXPR in which case our
2542 result is the XOR of the first operand with the inside of the
2543 negation of the second operand. */
2545 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2546 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2547 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2548 else
2549 return build (TRUTH_XOR_EXPR, type,
2550 invert_truthvalue (TREE_OPERAND (arg, 0)),
2551 TREE_OPERAND (arg, 1));
2553 case TRUTH_ANDIF_EXPR:
2554 return build (TRUTH_ORIF_EXPR, type,
2555 invert_truthvalue (TREE_OPERAND (arg, 0)),
2556 invert_truthvalue (TREE_OPERAND (arg, 1)));
2558 case TRUTH_ORIF_EXPR:
2559 return build (TRUTH_ANDIF_EXPR, type,
2560 invert_truthvalue (TREE_OPERAND (arg, 0)),
2561 invert_truthvalue (TREE_OPERAND (arg, 1)));
2563 case TRUTH_NOT_EXPR:
2564 return TREE_OPERAND (arg, 0);
2566 case COND_EXPR:
2567 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2568 invert_truthvalue (TREE_OPERAND (arg, 1)),
2569 invert_truthvalue (TREE_OPERAND (arg, 2)));
2571 case COMPOUND_EXPR:
2572 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2573 invert_truthvalue (TREE_OPERAND (arg, 1)));
2575 case NON_LVALUE_EXPR:
2576 return invert_truthvalue (TREE_OPERAND (arg, 0));
2578 case NOP_EXPR:
2579 case CONVERT_EXPR:
2580 case FLOAT_EXPR:
2581 return build1 (TREE_CODE (arg), type,
2582 invert_truthvalue (TREE_OPERAND (arg, 0)));
2584 case BIT_AND_EXPR:
2585 if (!integer_onep (TREE_OPERAND (arg, 1)))
2586 break;
2587 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2589 case SAVE_EXPR:
2590 return build1 (TRUTH_NOT_EXPR, type, arg);
2592 case CLEANUP_POINT_EXPR:
2593 return build1 (CLEANUP_POINT_EXPR, type,
2594 invert_truthvalue (TREE_OPERAND (arg, 0)));
2596 default:
2597 break;
2599 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2600 abort ();
2601 return build1 (TRUTH_NOT_EXPR, type, arg);
2604 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2605 operands are another bit-wise operation with a common input. If so,
2606 distribute the bit operations to save an operation and possibly two if
2607 constants are involved. For example, convert
2608 (A | B) & (A | C) into A | (B & C)
2609 Further simplification will occur if B and C are constants.
2611 If this optimization cannot be done, 0 will be returned. */
2613 static tree
2614 distribute_bit_expr (code, type, arg0, arg1)
2615 enum tree_code code;
2616 tree type;
2617 tree arg0, arg1;
2619 tree common;
2620 tree left, right;
2622 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2623 || TREE_CODE (arg0) == code
2624 || (TREE_CODE (arg0) != BIT_AND_EXPR
2625 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2626 return 0;
2628 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2630 common = TREE_OPERAND (arg0, 0);
2631 left = TREE_OPERAND (arg0, 1);
2632 right = TREE_OPERAND (arg1, 1);
2634 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2636 common = TREE_OPERAND (arg0, 0);
2637 left = TREE_OPERAND (arg0, 1);
2638 right = TREE_OPERAND (arg1, 0);
2640 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2642 common = TREE_OPERAND (arg0, 1);
2643 left = TREE_OPERAND (arg0, 0);
2644 right = TREE_OPERAND (arg1, 1);
2646 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2648 common = TREE_OPERAND (arg0, 1);
2649 left = TREE_OPERAND (arg0, 0);
2650 right = TREE_OPERAND (arg1, 0);
2652 else
2653 return 0;
2655 return fold (build (TREE_CODE (arg0), type, common,
2656 fold (build (code, type, left, right))));
2659 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2660 starting at BITPOS. The field is unsigned if UNSIGNEDP is non-zero. */
2662 static tree
2663 make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
2664 tree inner;
2665 tree type;
2666 int bitsize, bitpos;
2667 int unsignedp;
2669 tree result = build (BIT_FIELD_REF, type, inner,
2670 size_int (bitsize), bitsize_int (bitpos, 0L));
2672 TREE_UNSIGNED (result) = unsignedp;
2674 return result;
2677 /* Optimize a bit-field compare.
2679 There are two cases: First is a compare against a constant and the
2680 second is a comparison of two items where the fields are at the same
2681 bit position relative to the start of a chunk (byte, halfword, word)
2682 large enough to contain it. In these cases we can avoid the shift
2683 implicit in bitfield extractions.
2685 For constants, we emit a compare of the shifted constant with the
2686 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2687 compared. For two fields at the same position, we do the ANDs with the
2688 similar mask and compare the result of the ANDs.
2690 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2691 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2692 are the left and right operands of the comparison, respectively.
2694 If the optimization described above can be done, we return the resulting
2695 tree. Otherwise we return zero. */
2697 static tree
2698 optimize_bit_field_compare (code, compare_type, lhs, rhs)
2699 enum tree_code code;
2700 tree compare_type;
2701 tree lhs, rhs;
2703 int lbitpos, lbitsize, rbitpos, rbitsize;
2704 int lnbitpos, lnbitsize, rnbitpos = 0, rnbitsize = 0;
2705 tree type = TREE_TYPE (lhs);
2706 tree signed_type, unsigned_type;
2707 int const_p = TREE_CODE (rhs) == INTEGER_CST;
2708 enum machine_mode lmode, rmode, lnmode, rnmode = VOIDmode;
2709 int lunsignedp, runsignedp;
2710 int lvolatilep = 0, rvolatilep = 0;
2711 int alignment;
2712 tree linner, rinner = NULL_TREE;
2713 tree mask;
2714 tree offset;
2716 /* Get all the information about the extractions being done. If the bit size
2717 if the same as the size of the underlying object, we aren't doing an
2718 extraction at all and so can do nothing. */
2719 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
2720 &lunsignedp, &lvolatilep, &alignment);
2721 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
2722 || offset != 0)
2723 return 0;
2725 if (!const_p)
2727 /* If this is not a constant, we can only do something if bit positions,
2728 sizes, and signedness are the same. */
2729 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
2730 &runsignedp, &rvolatilep, &alignment);
2732 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
2733 || lunsignedp != runsignedp || offset != 0)
2734 return 0;
2737 /* See if we can find a mode to refer to this field. We should be able to,
2738 but fail if we can't. */
2739 lnmode = get_best_mode (lbitsize, lbitpos,
2740 TYPE_ALIGN (TREE_TYPE (linner)), word_mode,
2741 lvolatilep);
2742 if (lnmode == VOIDmode)
2743 return 0;
2745 /* Set signed and unsigned types of the precision of this mode for the
2746 shifts below. */
2747 signed_type = type_for_mode (lnmode, 0);
2748 unsigned_type = type_for_mode (lnmode, 1);
2750 if (! const_p)
2752 rnmode = get_best_mode (rbitsize, rbitpos,
2753 TYPE_ALIGN (TREE_TYPE (rinner)), word_mode,
2754 rvolatilep);
2755 if (rnmode == VOIDmode)
2756 return 0;
2759 /* Compute the bit position and size for the new reference and our offset
2760 within it. If the new reference is the same size as the original, we
2761 won't optimize anything, so return zero. */
2762 lnbitsize = GET_MODE_BITSIZE (lnmode);
2763 lnbitpos = lbitpos & ~ (lnbitsize - 1);
2764 lbitpos -= lnbitpos;
2765 if (lnbitsize == lbitsize)
2766 return 0;
2768 if (! const_p)
2770 rnbitsize = GET_MODE_BITSIZE (rnmode);
2771 rnbitpos = rbitpos & ~ (rnbitsize - 1);
2772 rbitpos -= rnbitpos;
2773 if (rnbitsize == rbitsize)
2774 return 0;
2777 if (BYTES_BIG_ENDIAN)
2778 lbitpos = lnbitsize - lbitsize - lbitpos;
2780 /* Make the mask to be used against the extracted field. */
2781 mask = build_int_2 (~0, ~0);
2782 TREE_TYPE (mask) = unsigned_type;
2783 force_fit_type (mask, 0);
2784 mask = convert (unsigned_type, mask);
2785 mask = const_binop (LSHIFT_EXPR, mask, size_int (lnbitsize - lbitsize), 0);
2786 mask = const_binop (RSHIFT_EXPR, mask,
2787 size_int (lnbitsize - lbitsize - lbitpos), 0);
2789 if (! const_p)
2790 /* If not comparing with constant, just rework the comparison
2791 and return. */
2792 return build (code, compare_type,
2793 build (BIT_AND_EXPR, unsigned_type,
2794 make_bit_field_ref (linner, unsigned_type,
2795 lnbitsize, lnbitpos, 1),
2796 mask),
2797 build (BIT_AND_EXPR, unsigned_type,
2798 make_bit_field_ref (rinner, unsigned_type,
2799 rnbitsize, rnbitpos, 1),
2800 mask));
2802 /* Otherwise, we are handling the constant case. See if the constant is too
2803 big for the field. Warn and return a tree of for 0 (false) if so. We do
2804 this not only for its own sake, but to avoid having to test for this
2805 error case below. If we didn't, we might generate wrong code.
2807 For unsigned fields, the constant shifted right by the field length should
2808 be all zero. For signed fields, the high-order bits should agree with
2809 the sign bit. */
2811 if (lunsignedp)
2813 if (! integer_zerop (const_binop (RSHIFT_EXPR,
2814 convert (unsigned_type, rhs),
2815 size_int (lbitsize), 0)))
2817 warning ("comparison is always %d due to width of bitfield",
2818 code == NE_EXPR);
2819 return convert (compare_type,
2820 (code == NE_EXPR
2821 ? integer_one_node : integer_zero_node));
2824 else
2826 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
2827 size_int (lbitsize - 1), 0);
2828 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
2830 warning ("comparison is always %d due to width of bitfield",
2831 code == NE_EXPR);
2832 return convert (compare_type,
2833 (code == NE_EXPR
2834 ? integer_one_node : integer_zero_node));
2838 /* Single-bit compares should always be against zero. */
2839 if (lbitsize == 1 && ! integer_zerop (rhs))
2841 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
2842 rhs = convert (type, integer_zero_node);
2845 /* Make a new bitfield reference, shift the constant over the
2846 appropriate number of bits and mask it with the computed mask
2847 (in case this was a signed field). If we changed it, make a new one. */
2848 lhs = make_bit_field_ref (linner, unsigned_type, lnbitsize, lnbitpos, 1);
2849 if (lvolatilep)
2851 TREE_SIDE_EFFECTS (lhs) = 1;
2852 TREE_THIS_VOLATILE (lhs) = 1;
2855 rhs = fold (const_binop (BIT_AND_EXPR,
2856 const_binop (LSHIFT_EXPR,
2857 convert (unsigned_type, rhs),
2858 size_int (lbitpos), 0),
2859 mask, 0));
2861 return build (code, compare_type,
2862 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
2863 rhs);
2866 /* Subroutine for fold_truthop: decode a field reference.
2868 If EXP is a comparison reference, we return the innermost reference.
2870 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2871 set to the starting bit number.
2873 If the innermost field can be completely contained in a mode-sized
2874 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2876 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2877 otherwise it is not changed.
2879 *PUNSIGNEDP is set to the signedness of the field.
2881 *PMASK is set to the mask used. This is either contained in a
2882 BIT_AND_EXPR or derived from the width of the field.
2884 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
2886 Return 0 if this is not a component reference or is one that we can't
2887 do anything with. */
2889 static tree
2890 decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
2891 pvolatilep, pmask, pand_mask)
2892 tree exp;
2893 int *pbitsize, *pbitpos;
2894 enum machine_mode *pmode;
2895 int *punsignedp, *pvolatilep;
2896 tree *pmask;
2897 tree *pand_mask;
2899 tree and_mask = 0;
2900 tree mask, inner, offset;
2901 tree unsigned_type;
2902 int precision;
2903 int alignment;
2905 /* All the optimizations using this function assume integer fields.
2906 There are problems with FP fields since the type_for_size call
2907 below can fail for, e.g., XFmode. */
2908 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
2909 return 0;
2911 STRIP_NOPS (exp);
2913 if (TREE_CODE (exp) == BIT_AND_EXPR)
2915 and_mask = TREE_OPERAND (exp, 1);
2916 exp = TREE_OPERAND (exp, 0);
2917 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
2918 if (TREE_CODE (and_mask) != INTEGER_CST)
2919 return 0;
2923 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
2924 punsignedp, pvolatilep, &alignment);
2925 if ((inner == exp && and_mask == 0)
2926 || *pbitsize < 0 || offset != 0)
2927 return 0;
2929 /* Compute the mask to access the bitfield. */
2930 unsigned_type = type_for_size (*pbitsize, 1);
2931 precision = TYPE_PRECISION (unsigned_type);
2933 mask = build_int_2 (~0, ~0);
2934 TREE_TYPE (mask) = unsigned_type;
2935 force_fit_type (mask, 0);
2936 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2937 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2939 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2940 if (and_mask != 0)
2941 mask = fold (build (BIT_AND_EXPR, unsigned_type,
2942 convert (unsigned_type, and_mask), mask));
2944 *pmask = mask;
2945 *pand_mask = and_mask;
2946 return inner;
2949 /* Return non-zero if MASK represents a mask of SIZE ones in the low-order
2950 bit positions. */
2952 static int
2953 all_ones_mask_p (mask, size)
2954 tree mask;
2955 int size;
2957 tree type = TREE_TYPE (mask);
2958 int precision = TYPE_PRECISION (type);
2959 tree tmask;
2961 tmask = build_int_2 (~0, ~0);
2962 TREE_TYPE (tmask) = signed_type (type);
2963 force_fit_type (tmask, 0);
2964 return
2965 tree_int_cst_equal (mask,
2966 const_binop (RSHIFT_EXPR,
2967 const_binop (LSHIFT_EXPR, tmask,
2968 size_int (precision - size),
2970 size_int (precision - size), 0));
2973 /* Subroutine for fold_truthop: determine if an operand is simple enough
2974 to be evaluated unconditionally. */
2976 static int
2977 simple_operand_p (exp)
2978 tree exp;
2980 /* Strip any conversions that don't change the machine mode. */
2981 while ((TREE_CODE (exp) == NOP_EXPR
2982 || TREE_CODE (exp) == CONVERT_EXPR)
2983 && (TYPE_MODE (TREE_TYPE (exp))
2984 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
2985 exp = TREE_OPERAND (exp, 0);
2987 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
2988 || (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
2989 && ! TREE_ADDRESSABLE (exp)
2990 && ! TREE_THIS_VOLATILE (exp)
2991 && ! DECL_NONLOCAL (exp)
2992 /* Don't regard global variables as simple. They may be
2993 allocated in ways unknown to the compiler (shared memory,
2994 #pragma weak, etc). */
2995 && ! TREE_PUBLIC (exp)
2996 && ! DECL_EXTERNAL (exp)
2997 /* Loading a static variable is unduly expensive, but global
2998 registers aren't expensive. */
2999 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3002 /* The following functions are subroutines to fold_range_test and allow it to
3003 try to change a logical combination of comparisons into a range test.
3005 For example, both
3006 X == 2 && X == 3 && X == 4 && X == 5
3008 X >= 2 && X <= 5
3009 are converted to
3010 (unsigned) (X - 2) <= 3
3012 We describe each set of comparisons as being either inside or outside
3013 a range, using a variable named like IN_P, and then describe the
3014 range with a lower and upper bound. If one of the bounds is omitted,
3015 it represents either the highest or lowest value of the type.
3017 In the comments below, we represent a range by two numbers in brackets
3018 preceded by a "+" to designate being inside that range, or a "-" to
3019 designate being outside that range, so the condition can be inverted by
3020 flipping the prefix. An omitted bound is represented by a "-". For
3021 example, "- [-, 10]" means being outside the range starting at the lowest
3022 possible value and ending at 10, in other words, being greater than 10.
3023 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3024 always false.
3026 We set up things so that the missing bounds are handled in a consistent
3027 manner so neither a missing bound nor "true" and "false" need to be
3028 handled using a special case. */
3030 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3031 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3032 and UPPER1_P are nonzero if the respective argument is an upper bound
3033 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3034 must be specified for a comparison. ARG1 will be converted to ARG0's
3035 type if both are specified. */
3037 static tree
3038 range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
3039 enum tree_code code;
3040 tree type;
3041 tree arg0, arg1;
3042 int upper0_p, upper1_p;
3044 tree tem;
3045 int result;
3046 int sgn0, sgn1;
3048 /* If neither arg represents infinity, do the normal operation.
3049 Else, if not a comparison, return infinity. Else handle the special
3050 comparison rules. Note that most of the cases below won't occur, but
3051 are handled for consistency. */
3053 if (arg0 != 0 && arg1 != 0)
3055 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
3056 arg0, convert (TREE_TYPE (arg0), arg1)));
3057 STRIP_NOPS (tem);
3058 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3061 if (TREE_CODE_CLASS (code) != '<')
3062 return 0;
3064 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3065 for neither. In real maths, we cannot assume open ended ranges are
3066 the same. But, this is computer arithmetic, where numbers are finite.
3067 We can therefore make the transformation of any unbounded range with
3068 the value Z, Z being greater than any representable number. This permits
3069 us to treat unbounded ranges as equal. */
3070 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3071 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3072 switch (code)
3074 case EQ_EXPR:
3075 result = sgn0 == sgn1;
3076 break;
3077 case NE_EXPR:
3078 result = sgn0 != sgn1;
3079 break;
3080 case LT_EXPR:
3081 result = sgn0 < sgn1;
3082 break;
3083 case LE_EXPR:
3084 result = sgn0 <= sgn1;
3085 break;
3086 case GT_EXPR:
3087 result = sgn0 > sgn1;
3088 break;
3089 case GE_EXPR:
3090 result = sgn0 >= sgn1;
3091 break;
3092 default:
3093 abort ();
3096 return convert (type, result ? integer_one_node : integer_zero_node);
3099 /* Given EXP, a logical expression, set the range it is testing into
3100 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3101 actually being tested. *PLOW and *PHIGH will have be made the same type
3102 as the returned expression. If EXP is not a comparison, we will most
3103 likely not be returning a useful value and range. */
3105 static tree
3106 make_range (exp, pin_p, plow, phigh)
3107 tree exp;
3108 int *pin_p;
3109 tree *plow, *phigh;
3111 enum tree_code code;
3112 tree arg0, arg1, type = NULL_TREE;
3113 tree orig_type = NULL_TREE;
3114 int in_p, n_in_p;
3115 tree low, high, n_low, n_high;
3117 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3118 and see if we can refine the range. Some of the cases below may not
3119 happen, but it doesn't seem worth worrying about this. We "continue"
3120 the outer loop when we've changed something; otherwise we "break"
3121 the switch, which will "break" the while. */
3123 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
3125 while (1)
3127 code = TREE_CODE (exp);
3129 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3131 arg0 = TREE_OPERAND (exp, 0);
3132 if (TREE_CODE_CLASS (code) == '<'
3133 || TREE_CODE_CLASS (code) == '1'
3134 || TREE_CODE_CLASS (code) == '2')
3135 type = TREE_TYPE (arg0);
3136 if (TREE_CODE_CLASS (code) == '2'
3137 || TREE_CODE_CLASS (code) == '<'
3138 || (TREE_CODE_CLASS (code) == 'e'
3139 && tree_code_length[(int) code] > 1))
3140 arg1 = TREE_OPERAND (exp, 1);
3143 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
3144 lose a cast by accident. */
3145 if (type != NULL_TREE && orig_type == NULL_TREE)
3146 orig_type = type;
3148 switch (code)
3150 case TRUTH_NOT_EXPR:
3151 in_p = ! in_p, exp = arg0;
3152 continue;
3154 case EQ_EXPR: case NE_EXPR:
3155 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3156 /* We can only do something if the range is testing for zero
3157 and if the second operand is an integer constant. Note that
3158 saying something is "in" the range we make is done by
3159 complementing IN_P since it will set in the initial case of
3160 being not equal to zero; "out" is leaving it alone. */
3161 if (low == 0 || high == 0
3162 || ! integer_zerop (low) || ! integer_zerop (high)
3163 || TREE_CODE (arg1) != INTEGER_CST)
3164 break;
3166 switch (code)
3168 case NE_EXPR: /* - [c, c] */
3169 low = high = arg1;
3170 break;
3171 case EQ_EXPR: /* + [c, c] */
3172 in_p = ! in_p, low = high = arg1;
3173 break;
3174 case GT_EXPR: /* - [-, c] */
3175 low = 0, high = arg1;
3176 break;
3177 case GE_EXPR: /* + [c, -] */
3178 in_p = ! in_p, low = arg1, high = 0;
3179 break;
3180 case LT_EXPR: /* - [c, -] */
3181 low = arg1, high = 0;
3182 break;
3183 case LE_EXPR: /* + [-, c] */
3184 in_p = ! in_p, low = 0, high = arg1;
3185 break;
3186 default:
3187 abort ();
3190 exp = arg0;
3192 /* If this is an unsigned comparison, we also know that EXP is
3193 greater than or equal to zero. We base the range tests we make
3194 on that fact, so we record it here so we can parse existing
3195 range tests. */
3196 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
3198 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
3199 1, convert (type, integer_zero_node),
3200 NULL_TREE))
3201 break;
3203 in_p = n_in_p, low = n_low, high = n_high;
3205 /* If the high bound is missing, reverse the range so it
3206 goes from zero to the low bound minus 1. */
3207 if (high == 0)
3209 in_p = ! in_p;
3210 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3211 integer_one_node, 0);
3212 low = convert (type, integer_zero_node);
3215 continue;
3217 case NEGATE_EXPR:
3218 /* (-x) IN [a,b] -> x in [-b, -a] */
3219 n_low = range_binop (MINUS_EXPR, type,
3220 convert (type, integer_zero_node), 0, high, 1);
3221 n_high = range_binop (MINUS_EXPR, type,
3222 convert (type, integer_zero_node), 0, low, 0);
3223 low = n_low, high = n_high;
3224 exp = arg0;
3225 continue;
3227 case BIT_NOT_EXPR:
3228 /* ~ X -> -X - 1 */
3229 exp = build (MINUS_EXPR, type, build1 (NEGATE_EXPR, type, arg0),
3230 convert (type, integer_one_node));
3231 continue;
3233 case PLUS_EXPR: case MINUS_EXPR:
3234 if (TREE_CODE (arg1) != INTEGER_CST)
3235 break;
3237 /* If EXP is signed, any overflow in the computation is undefined,
3238 so we don't worry about it so long as our computations on
3239 the bounds don't overflow. For unsigned, overflow is defined
3240 and this is exactly the right thing. */
3241 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3242 type, low, 0, arg1, 0);
3243 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3244 type, high, 1, arg1, 0);
3245 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3246 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3247 break;
3249 /* Check for an unsigned range which has wrapped around the maximum
3250 value thus making n_high < n_low, and normalize it. */
3251 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3253 low = range_binop (PLUS_EXPR, type, n_high, 0,
3254 integer_one_node, 0);
3255 high = range_binop (MINUS_EXPR, type, n_low, 0,
3256 integer_one_node, 0);
3257 in_p = ! in_p;
3259 else
3260 low = n_low, high = n_high;
3262 exp = arg0;
3263 continue;
3265 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3266 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3267 break;
3269 if (! INTEGRAL_TYPE_P (type)
3270 || (low != 0 && ! int_fits_type_p (low, type))
3271 || (high != 0 && ! int_fits_type_p (high, type)))
3272 break;
3274 n_low = low, n_high = high;
3276 if (n_low != 0)
3277 n_low = convert (type, n_low);
3279 if (n_high != 0)
3280 n_high = convert (type, n_high);
3282 /* If we're converting from an unsigned to a signed type,
3283 we will be doing the comparison as unsigned. The tests above
3284 have already verified that LOW and HIGH are both positive.
3286 So we have to make sure that the original unsigned value will
3287 be interpreted as positive. */
3288 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3290 tree equiv_type = type_for_mode (TYPE_MODE (type), 1);
3291 tree high_positive;
3293 /* A range without an upper bound is, naturally, unbounded.
3294 Since convert would have cropped a very large value, use
3295 the max value for the destination type. */
3297 high_positive = TYPE_MAX_VALUE (equiv_type);
3298 if (!high_positive)
3300 high_positive = TYPE_MAX_VALUE (type);
3301 if (!high_positive)
3302 abort();
3304 high_positive = fold (build (RSHIFT_EXPR, type,
3305 convert (type, high_positive),
3306 convert (type, integer_one_node)));
3308 /* If the low bound is specified, "and" the range with the
3309 range for which the original unsigned value will be
3310 positive. */
3311 if (low != 0)
3313 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3314 1, n_low, n_high,
3315 1, convert (type, integer_zero_node),
3316 high_positive))
3317 break;
3319 in_p = (n_in_p == in_p);
3321 else
3323 /* Otherwise, "or" the range with the range of the input
3324 that will be interpreted as negative. */
3325 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3326 0, n_low, n_high,
3327 1, convert (type, integer_zero_node),
3328 high_positive))
3329 break;
3331 in_p = (in_p != n_in_p);
3335 exp = arg0;
3336 low = n_low, high = n_high;
3337 continue;
3339 default:
3340 break;
3343 break;
3346 /* If EXP is a constant, we can evaluate whether this is true or false. */
3347 if (TREE_CODE (exp) == INTEGER_CST)
3349 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3350 exp, 0, low, 0))
3351 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3352 exp, 1, high, 1)));
3353 low = high = 0;
3354 exp = 0;
3357 *pin_p = in_p, *plow = low, *phigh = high;
3358 return exp;
3361 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3362 type, TYPE, return an expression to test if EXP is in (or out of, depending
3363 on IN_P) the range. */
3365 static tree
3366 build_range_check (type, exp, in_p, low, high)
3367 tree type;
3368 tree exp;
3369 int in_p;
3370 tree low, high;
3372 tree etype = TREE_TYPE (exp);
3373 tree utype, value;
3375 if (! in_p
3376 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3377 return invert_truthvalue (value);
3379 else if (low == 0 && high == 0)
3380 return convert (type, integer_one_node);
3382 else if (low == 0)
3383 return fold (build (LE_EXPR, type, exp, high));
3385 else if (high == 0)
3386 return fold (build (GE_EXPR, type, exp, low));
3388 else if (operand_equal_p (low, high, 0))
3389 return fold (build (EQ_EXPR, type, exp, low));
3391 else if (TREE_UNSIGNED (etype) && integer_zerop (low))
3392 return build_range_check (type, exp, 1, 0, high);
3394 else if (integer_zerop (low))
3396 utype = unsigned_type (etype);
3397 return build_range_check (type, convert (utype, exp), 1, 0,
3398 convert (utype, high));
3401 else if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3402 && ! TREE_OVERFLOW (value))
3403 return build_range_check (type,
3404 fold (build (MINUS_EXPR, etype, exp, low)),
3405 1, convert (etype, integer_zero_node), value);
3406 else
3407 return 0;
3410 /* Given two ranges, see if we can merge them into one. Return 1 if we
3411 can, 0 if we can't. Set the output range into the specified parameters. */
3413 static int
3414 merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
3415 int *pin_p;
3416 tree *plow, *phigh;
3417 int in0_p, in1_p;
3418 tree low0, high0, low1, high1;
3420 int no_overlap;
3421 int subset;
3422 int temp;
3423 tree tem;
3424 int in_p;
3425 tree low, high;
3426 int lowequal = ((low0 == 0 && low1 == 0)
3427 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3428 low0, 0, low1, 0)));
3429 int highequal = ((high0 == 0 && high1 == 0)
3430 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3431 high0, 1, high1, 1)));
3433 /* Make range 0 be the range that starts first, or ends last if they
3434 start at the same value. Swap them if it isn't. */
3435 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3436 low0, 0, low1, 0))
3437 || (lowequal
3438 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3439 high1, 1, high0, 1))))
3441 temp = in0_p, in0_p = in1_p, in1_p = temp;
3442 tem = low0, low0 = low1, low1 = tem;
3443 tem = high0, high0 = high1, high1 = tem;
3446 /* Now flag two cases, whether the ranges are disjoint or whether the
3447 second range is totally subsumed in the first. Note that the tests
3448 below are simplified by the ones above. */
3449 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3450 high0, 1, low1, 0));
3451 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3452 high1, 1, high0, 1));
3454 /* We now have four cases, depending on whether we are including or
3455 excluding the two ranges. */
3456 if (in0_p && in1_p)
3458 /* If they don't overlap, the result is false. If the second range
3459 is a subset it is the result. Otherwise, the range is from the start
3460 of the second to the end of the first. */
3461 if (no_overlap)
3462 in_p = 0, low = high = 0;
3463 else if (subset)
3464 in_p = 1, low = low1, high = high1;
3465 else
3466 in_p = 1, low = low1, high = high0;
3469 else if (in0_p && ! in1_p)
3471 /* If they don't overlap, the result is the first range. If they are
3472 equal, the result is false. If the second range is a subset of the
3473 first, and the ranges begin at the same place, we go from just after
3474 the end of the first range to the end of the second. If the second
3475 range is not a subset of the first, or if it is a subset and both
3476 ranges end at the same place, the range starts at the start of the
3477 first range and ends just before the second range.
3478 Otherwise, we can't describe this as a single range. */
3479 if (no_overlap)
3480 in_p = 1, low = low0, high = high0;
3481 else if (lowequal && highequal)
3482 in_p = 0, low = high = 0;
3483 else if (subset && lowequal)
3485 in_p = 1, high = high0;
3486 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3487 integer_one_node, 0);
3489 else if (! subset || highequal)
3491 in_p = 1, low = low0;
3492 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3493 integer_one_node, 0);
3495 else
3496 return 0;
3499 else if (! in0_p && in1_p)
3501 /* If they don't overlap, the result is the second range. If the second
3502 is a subset of the first, the result is false. Otherwise,
3503 the range starts just after the first range and ends at the
3504 end of the second. */
3505 if (no_overlap)
3506 in_p = 1, low = low1, high = high1;
3507 else if (subset)
3508 in_p = 0, low = high = 0;
3509 else
3511 in_p = 1, high = high1;
3512 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3513 integer_one_node, 0);
3517 else
3519 /* The case where we are excluding both ranges. Here the complex case
3520 is if they don't overlap. In that case, the only time we have a
3521 range is if they are adjacent. If the second is a subset of the
3522 first, the result is the first. Otherwise, the range to exclude
3523 starts at the beginning of the first range and ends at the end of the
3524 second. */
3525 if (no_overlap)
3527 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3528 range_binop (PLUS_EXPR, NULL_TREE,
3529 high0, 1,
3530 integer_one_node, 1),
3531 1, low1, 0)))
3532 in_p = 0, low = low0, high = high1;
3533 else
3534 return 0;
3536 else if (subset)
3537 in_p = 0, low = low0, high = high0;
3538 else
3539 in_p = 0, low = low0, high = high1;
3542 *pin_p = in_p, *plow = low, *phigh = high;
3543 return 1;
3546 /* EXP is some logical combination of boolean tests. See if we can
3547 merge it into some range test. Return the new tree if so. */
3549 static tree
3550 fold_range_test (exp)
3551 tree exp;
3553 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3554 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3555 int in0_p, in1_p, in_p;
3556 tree low0, low1, low, high0, high1, high;
3557 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3558 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3559 tree tem;
3561 /* If this is an OR operation, invert both sides; we will invert
3562 again at the end. */
3563 if (or_op)
3564 in0_p = ! in0_p, in1_p = ! in1_p;
3566 /* If both expressions are the same, if we can merge the ranges, and we
3567 can build the range test, return it or it inverted. If one of the
3568 ranges is always true or always false, consider it to be the same
3569 expression as the other. */
3570 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3571 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3572 in1_p, low1, high1)
3573 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3574 lhs != 0 ? lhs
3575 : rhs != 0 ? rhs : integer_zero_node,
3576 in_p, low, high))))
3577 return or_op ? invert_truthvalue (tem) : tem;
3579 /* On machines where the branch cost is expensive, if this is a
3580 short-circuited branch and the underlying object on both sides
3581 is the same, make a non-short-circuit operation. */
3582 else if (BRANCH_COST >= 2
3583 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3584 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3585 && operand_equal_p (lhs, rhs, 0))
3587 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3588 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3589 which cases we can't do this. */
3590 if (simple_operand_p (lhs))
3591 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3592 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3593 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3594 TREE_OPERAND (exp, 1));
3596 else if (current_function_decl != 0
3597 && ! contains_placeholder_p (lhs))
3599 tree common = save_expr (lhs);
3601 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3602 or_op ? ! in0_p : in0_p,
3603 low0, high0))
3604 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3605 or_op ? ! in1_p : in1_p,
3606 low1, high1))))
3607 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3608 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3609 TREE_TYPE (exp), lhs, rhs);
3613 return 0;
3616 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3617 bit value. Arrange things so the extra bits will be set to zero if and
3618 only if C is signed-extended to its full width. If MASK is nonzero,
3619 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3621 static tree
3622 unextend (c, p, unsignedp, mask)
3623 tree c;
3624 int p;
3625 int unsignedp;
3626 tree mask;
3628 tree type = TREE_TYPE (c);
3629 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3630 tree temp;
3632 if (p == modesize || unsignedp)
3633 return c;
3635 /* We work by getting just the sign bit into the low-order bit, then
3636 into the high-order bit, then sign-extend. We then XOR that value
3637 with C. */
3638 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3639 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3641 /* We must use a signed type in order to get an arithmetic right shift.
3642 However, we must also avoid introducing accidental overflows, so that
3643 a subsequent call to integer_zerop will work. Hence we must
3644 do the type conversion here. At this point, the constant is either
3645 zero or one, and the conversion to a signed type can never overflow.
3646 We could get an overflow if this conversion is done anywhere else. */
3647 if (TREE_UNSIGNED (type))
3648 temp = convert (signed_type (type), temp);
3650 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3651 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3652 if (mask != 0)
3653 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3654 /* If necessary, convert the type back to match the type of C. */
3655 if (TREE_UNSIGNED (type))
3656 temp = convert (type, temp);
3658 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3661 /* Find ways of folding logical expressions of LHS and RHS:
3662 Try to merge two comparisons to the same innermost item.
3663 Look for range tests like "ch >= '0' && ch <= '9'".
3664 Look for combinations of simple terms on machines with expensive branches
3665 and evaluate the RHS unconditionally.
3667 For example, if we have p->a == 2 && p->b == 4 and we can make an
3668 object large enough to span both A and B, we can do this with a comparison
3669 against the object ANDed with the a mask.
3671 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3672 operations to do this with one comparison.
3674 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3675 function and the one above.
3677 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3678 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3680 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3681 two operands.
3683 We return the simplified tree or 0 if no optimization is possible. */
3685 static tree
3686 fold_truthop (code, truth_type, lhs, rhs)
3687 enum tree_code code;
3688 tree truth_type, lhs, rhs;
3690 /* If this is the "or" of two comparisons, we can do something if we
3691 the comparisons are NE_EXPR. If this is the "and", we can do something
3692 if the comparisons are EQ_EXPR. I.e.,
3693 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3695 WANTED_CODE is this operation code. For single bit fields, we can
3696 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3697 comparison for one-bit fields. */
3699 enum tree_code wanted_code;
3700 enum tree_code lcode, rcode;
3701 tree ll_arg, lr_arg, rl_arg, rr_arg;
3702 tree ll_inner, lr_inner, rl_inner, rr_inner;
3703 int ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
3704 int rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
3705 int xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
3706 int lnbitsize, lnbitpos, rnbitsize, rnbitpos;
3707 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
3708 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
3709 enum machine_mode lnmode, rnmode;
3710 tree ll_mask, lr_mask, rl_mask, rr_mask;
3711 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
3712 tree l_const, r_const;
3713 tree lntype, rntype, result;
3714 int first_bit, end_bit;
3715 int volatilep;
3717 /* Start by getting the comparison codes. Fail if anything is volatile.
3718 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3719 it were surrounded with a NE_EXPR. */
3721 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
3722 return 0;
3724 lcode = TREE_CODE (lhs);
3725 rcode = TREE_CODE (rhs);
3727 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
3728 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
3730 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
3731 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
3733 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
3734 return 0;
3736 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
3737 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
3739 ll_arg = TREE_OPERAND (lhs, 0);
3740 lr_arg = TREE_OPERAND (lhs, 1);
3741 rl_arg = TREE_OPERAND (rhs, 0);
3742 rr_arg = TREE_OPERAND (rhs, 1);
3744 /* If the RHS can be evaluated unconditionally and its operands are
3745 simple, it wins to evaluate the RHS unconditionally on machines
3746 with expensive branches. In this case, this isn't a comparison
3747 that can be merged. */
3749 /* @@ I'm not sure it wins on the m88110 to do this if the comparisons
3750 are with zero (tmw). */
3752 if (BRANCH_COST >= 2
3753 && INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3754 && simple_operand_p (rl_arg)
3755 && simple_operand_p (rr_arg))
3756 return build (code, truth_type, lhs, rhs);
3758 /* See if the comparisons can be merged. Then get all the parameters for
3759 each side. */
3761 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
3762 || (rcode != EQ_EXPR && rcode != NE_EXPR))
3763 return 0;
3765 volatilep = 0;
3766 ll_inner = decode_field_reference (ll_arg,
3767 &ll_bitsize, &ll_bitpos, &ll_mode,
3768 &ll_unsignedp, &volatilep, &ll_mask,
3769 &ll_and_mask);
3770 lr_inner = decode_field_reference (lr_arg,
3771 &lr_bitsize, &lr_bitpos, &lr_mode,
3772 &lr_unsignedp, &volatilep, &lr_mask,
3773 &lr_and_mask);
3774 rl_inner = decode_field_reference (rl_arg,
3775 &rl_bitsize, &rl_bitpos, &rl_mode,
3776 &rl_unsignedp, &volatilep, &rl_mask,
3777 &rl_and_mask);
3778 rr_inner = decode_field_reference (rr_arg,
3779 &rr_bitsize, &rr_bitpos, &rr_mode,
3780 &rr_unsignedp, &volatilep, &rr_mask,
3781 &rr_and_mask);
3783 /* It must be true that the inner operation on the lhs of each
3784 comparison must be the same if we are to be able to do anything.
3785 Then see if we have constants. If not, the same must be true for
3786 the rhs's. */
3787 if (volatilep || ll_inner == 0 || rl_inner == 0
3788 || ! operand_equal_p (ll_inner, rl_inner, 0))
3789 return 0;
3791 if (TREE_CODE (lr_arg) == INTEGER_CST
3792 && TREE_CODE (rr_arg) == INTEGER_CST)
3793 l_const = lr_arg, r_const = rr_arg;
3794 else if (lr_inner == 0 || rr_inner == 0
3795 || ! operand_equal_p (lr_inner, rr_inner, 0))
3796 return 0;
3797 else
3798 l_const = r_const = 0;
3800 /* If either comparison code is not correct for our logical operation,
3801 fail. However, we can convert a one-bit comparison against zero into
3802 the opposite comparison against that bit being set in the field. */
3804 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
3805 if (lcode != wanted_code)
3807 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
3809 if (ll_unsignedp || tree_log2 (ll_mask) + 1 < ll_bitsize)
3810 l_const = ll_mask;
3811 else
3812 /* Since ll_arg is a single bit bit mask, we can sign extend
3813 it appropriately with a NEGATE_EXPR.
3814 l_const is made a signed value here, but since for l_const != NULL
3815 lr_unsignedp is not used, we don't need to clear the latter. */
3816 l_const = fold (build1 (NEGATE_EXPR, TREE_TYPE (ll_arg),
3817 convert (TREE_TYPE (ll_arg), ll_mask)));
3819 else
3820 return 0;
3823 if (rcode != wanted_code)
3825 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
3827 if (rl_unsignedp || tree_log2 (rl_mask) + 1 < rl_bitsize)
3828 r_const = rl_mask;
3829 else
3830 /* This is analogous to the code for l_const above. */
3831 r_const = fold (build1 (NEGATE_EXPR, TREE_TYPE (rl_arg),
3832 convert (TREE_TYPE (rl_arg), rl_mask)));
3834 else
3835 return 0;
3838 /* See if we can find a mode that contains both fields being compared on
3839 the left. If we can't, fail. Otherwise, update all constants and masks
3840 to be relative to a field of that size. */
3841 first_bit = MIN (ll_bitpos, rl_bitpos);
3842 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
3843 lnmode = get_best_mode (end_bit - first_bit, first_bit,
3844 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
3845 volatilep);
3846 if (lnmode == VOIDmode)
3847 return 0;
3849 lnbitsize = GET_MODE_BITSIZE (lnmode);
3850 lnbitpos = first_bit & ~ (lnbitsize - 1);
3851 lntype = type_for_size (lnbitsize, 1);
3852 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
3854 if (BYTES_BIG_ENDIAN)
3856 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
3857 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
3860 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
3861 size_int (xll_bitpos), 0);
3862 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
3863 size_int (xrl_bitpos), 0);
3865 if (l_const)
3867 l_const = convert (lntype, l_const);
3868 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
3869 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
3870 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
3871 fold (build1 (BIT_NOT_EXPR,
3872 lntype, ll_mask)),
3873 0)))
3875 warning ("comparison is always %d", wanted_code == NE_EXPR);
3877 return convert (truth_type,
3878 wanted_code == NE_EXPR
3879 ? integer_one_node : integer_zero_node);
3882 if (r_const)
3884 r_const = convert (lntype, r_const);
3885 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
3886 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
3887 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
3888 fold (build1 (BIT_NOT_EXPR,
3889 lntype, rl_mask)),
3890 0)))
3892 warning ("comparison is always %d", wanted_code == NE_EXPR);
3894 return convert (truth_type,
3895 wanted_code == NE_EXPR
3896 ? integer_one_node : integer_zero_node);
3900 /* If the right sides are not constant, do the same for it. Also,
3901 disallow this optimization if a size or signedness mismatch occurs
3902 between the left and right sides. */
3903 if (l_const == 0)
3905 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
3906 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
3907 /* Make sure the two fields on the right
3908 correspond to the left without being swapped. */
3909 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
3910 return 0;
3912 first_bit = MIN (lr_bitpos, rr_bitpos);
3913 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
3914 rnmode = get_best_mode (end_bit - first_bit, first_bit,
3915 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
3916 volatilep);
3917 if (rnmode == VOIDmode)
3918 return 0;
3920 rnbitsize = GET_MODE_BITSIZE (rnmode);
3921 rnbitpos = first_bit & ~ (rnbitsize - 1);
3922 rntype = type_for_size (rnbitsize, 1);
3923 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
3925 if (BYTES_BIG_ENDIAN)
3927 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
3928 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
3931 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
3932 size_int (xlr_bitpos), 0);
3933 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
3934 size_int (xrr_bitpos), 0);
3936 /* Make a mask that corresponds to both fields being compared.
3937 Do this for both items being compared. If the operands are the
3938 same size and the bits being compared are in the same position
3939 then we can do this by masking both and comparing the masked
3940 results. */
3941 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3942 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
3943 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
3945 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3946 ll_unsignedp || rl_unsignedp);
3947 if (! all_ones_mask_p (ll_mask, lnbitsize))
3948 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
3950 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
3951 lr_unsignedp || rr_unsignedp);
3952 if (! all_ones_mask_p (lr_mask, rnbitsize))
3953 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
3955 return build (wanted_code, truth_type, lhs, rhs);
3958 /* There is still another way we can do something: If both pairs of
3959 fields being compared are adjacent, we may be able to make a wider
3960 field containing them both.
3962 Note that we still must mask the lhs/rhs expressions. Furthermore,
3963 the mask must be shifted to account for the shift done by
3964 make_bit_field_ref. */
3965 if ((ll_bitsize + ll_bitpos == rl_bitpos
3966 && lr_bitsize + lr_bitpos == rr_bitpos)
3967 || (ll_bitpos == rl_bitpos + rl_bitsize
3968 && lr_bitpos == rr_bitpos + rr_bitsize))
3970 tree type;
3972 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
3973 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
3974 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
3975 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
3977 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
3978 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
3979 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
3980 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
3982 /* Convert to the smaller type before masking out unwanted bits. */
3983 type = lntype;
3984 if (lntype != rntype)
3986 if (lnbitsize > rnbitsize)
3988 lhs = convert (rntype, lhs);
3989 ll_mask = convert (rntype, ll_mask);
3990 type = rntype;
3992 else if (lnbitsize < rnbitsize)
3994 rhs = convert (lntype, rhs);
3995 lr_mask = convert (lntype, lr_mask);
3996 type = lntype;
4000 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
4001 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
4003 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
4004 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
4006 return build (wanted_code, truth_type, lhs, rhs);
4009 return 0;
4012 /* Handle the case of comparisons with constants. If there is something in
4013 common between the masks, those bits of the constants must be the same.
4014 If not, the condition is always false. Test for this to avoid generating
4015 incorrect code below. */
4016 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
4017 if (! integer_zerop (result)
4018 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
4019 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
4021 if (wanted_code == NE_EXPR)
4023 warning ("`or' of unmatched not-equal tests is always 1");
4024 return convert (truth_type, integer_one_node);
4026 else
4028 warning ("`and' of mutually exclusive equal-tests is always 0");
4029 return convert (truth_type, integer_zero_node);
4033 /* Construct the expression we will return. First get the component
4034 reference we will make. Unless the mask is all ones the width of
4035 that field, perform the mask operation. Then compare with the
4036 merged constant. */
4037 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4038 ll_unsignedp || rl_unsignedp);
4040 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4041 if (! all_ones_mask_p (ll_mask, lnbitsize))
4042 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
4044 return build (wanted_code, truth_type, result,
4045 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
4048 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4049 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4050 that we may sometimes modify the tree. */
4052 static tree
4053 strip_compound_expr (t, s)
4054 tree t;
4055 tree s;
4057 enum tree_code code = TREE_CODE (t);
4059 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4060 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4061 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4062 return TREE_OPERAND (t, 1);
4064 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4065 don't bother handling any other types. */
4066 else if (code == COND_EXPR)
4068 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4069 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4070 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4072 else if (TREE_CODE_CLASS (code) == '1')
4073 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4074 else if (TREE_CODE_CLASS (code) == '<'
4075 || TREE_CODE_CLASS (code) == '2')
4077 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4078 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4081 return t;
4084 /* Return a node which has the indicated constant VALUE (either 0 or
4085 1), and is of the indicated TYPE. */
4087 static tree
4088 constant_boolean_node (value, type)
4089 int value;
4090 tree type;
4092 if (type == integer_type_node)
4093 return value ? integer_one_node : integer_zero_node;
4094 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4095 return truthvalue_conversion (value ? integer_one_node :
4096 integer_zero_node);
4097 else
4099 tree t = build_int_2 (value, 0);
4100 TREE_TYPE (t) = type;
4101 return t;
4105 /* Utility function for the following routine, to see how complex a nesting of
4106 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4107 we don't care (to avoid spending too much time on complex expressions.). */
4109 static int
4110 count_cond (expr, lim)
4111 tree expr;
4112 int lim;
4114 int true, false;
4116 if (TREE_CODE (expr) != COND_EXPR)
4117 return 0;
4118 else if (lim <= 0)
4119 return 0;
4121 true = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4122 false = count_cond (TREE_OPERAND (expr, 2), lim - 1 - true);
4123 return MIN (lim, 1 + true + false);
4126 /* Perform constant folding and related simplification of EXPR.
4127 The related simplifications include x*1 => x, x*0 => 0, etc.,
4128 and application of the associative law.
4129 NOP_EXPR conversions may be removed freely (as long as we
4130 are careful not to change the C type of the overall expression)
4131 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
4132 but we can constant-fold them if they have constant operands. */
4134 tree
4135 fold (expr)
4136 tree expr;
4138 register tree t = expr;
4139 tree t1 = NULL_TREE;
4140 tree tem;
4141 tree type = TREE_TYPE (expr);
4142 register tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4143 register enum tree_code code = TREE_CODE (t);
4144 register int kind;
4145 int invert;
4147 /* WINS will be nonzero when the switch is done
4148 if all operands are constant. */
4150 int wins = 1;
4152 /* Don't try to process an RTL_EXPR since its operands aren't trees.
4153 Likewise for a SAVE_EXPR that's already been evaluated. */
4154 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t)) != 0)
4155 return t;
4157 /* Return right away if already constant. */
4158 if (TREE_CONSTANT (t))
4160 if (code == CONST_DECL)
4161 return DECL_INITIAL (t);
4162 return t;
4165 #ifdef MAX_INTEGER_COMPUTATION_MODE
4166 check_max_integer_computation_mode (expr);
4167 #endif
4169 kind = TREE_CODE_CLASS (code);
4170 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
4172 tree subop;
4174 /* Special case for conversion ops that can have fixed point args. */
4175 arg0 = TREE_OPERAND (t, 0);
4177 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
4178 if (arg0 != 0)
4179 STRIP_TYPE_NOPS (arg0);
4181 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
4182 subop = TREE_REALPART (arg0);
4183 else
4184 subop = arg0;
4186 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
4187 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4188 && TREE_CODE (subop) != REAL_CST
4189 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4191 /* Note that TREE_CONSTANT isn't enough:
4192 static var addresses are constant but we can't
4193 do arithmetic on them. */
4194 wins = 0;
4196 else if (kind == 'e' || kind == '<'
4197 || kind == '1' || kind == '2' || kind == 'r')
4199 register int len = tree_code_length[(int) code];
4200 register int i;
4201 for (i = 0; i < len; i++)
4203 tree op = TREE_OPERAND (t, i);
4204 tree subop;
4206 if (op == 0)
4207 continue; /* Valid for CALL_EXPR, at least. */
4209 if (kind == '<' || code == RSHIFT_EXPR)
4211 /* Signedness matters here. Perhaps we can refine this
4212 later. */
4213 STRIP_TYPE_NOPS (op);
4215 else
4217 /* Strip any conversions that don't change the mode. */
4218 STRIP_NOPS (op);
4221 if (TREE_CODE (op) == COMPLEX_CST)
4222 subop = TREE_REALPART (op);
4223 else
4224 subop = op;
4226 if (TREE_CODE (subop) != INTEGER_CST
4227 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4228 && TREE_CODE (subop) != REAL_CST
4229 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4231 /* Note that TREE_CONSTANT isn't enough:
4232 static var addresses are constant but we can't
4233 do arithmetic on them. */
4234 wins = 0;
4236 if (i == 0)
4237 arg0 = op;
4238 else if (i == 1)
4239 arg1 = op;
4243 /* If this is a commutative operation, and ARG0 is a constant, move it
4244 to ARG1 to reduce the number of tests below. */
4245 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
4246 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
4247 || code == BIT_AND_EXPR)
4248 && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
4250 tem = arg0; arg0 = arg1; arg1 = tem;
4252 tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
4253 TREE_OPERAND (t, 1) = tem;
4256 /* Now WINS is set as described above,
4257 ARG0 is the first operand of EXPR,
4258 and ARG1 is the second operand (if it has more than one operand).
4260 First check for cases where an arithmetic operation is applied to a
4261 compound, conditional, or comparison operation. Push the arithmetic
4262 operation inside the compound or conditional to see if any folding
4263 can then be done. Convert comparison to conditional for this purpose.
4264 The also optimizes non-constant cases that used to be done in
4265 expand_expr.
4267 Before we do that, see if this is a BIT_AND_EXPR or a BIT_OR_EXPR,
4268 one of the operands is a comparison and the other is a comparison, a
4269 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
4270 code below would make the expression more complex. Change it to a
4271 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
4272 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
4274 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
4275 || code == EQ_EXPR || code == NE_EXPR)
4276 && ((truth_value_p (TREE_CODE (arg0))
4277 && (truth_value_p (TREE_CODE (arg1))
4278 || (TREE_CODE (arg1) == BIT_AND_EXPR
4279 && integer_onep (TREE_OPERAND (arg1, 1)))))
4280 || (truth_value_p (TREE_CODE (arg1))
4281 && (truth_value_p (TREE_CODE (arg0))
4282 || (TREE_CODE (arg0) == BIT_AND_EXPR
4283 && integer_onep (TREE_OPERAND (arg0, 1)))))))
4285 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
4286 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
4287 : TRUTH_XOR_EXPR,
4288 type, arg0, arg1));
4290 if (code == EQ_EXPR)
4291 t = invert_truthvalue (t);
4293 return t;
4296 if (TREE_CODE_CLASS (code) == '1')
4298 if (TREE_CODE (arg0) == COMPOUND_EXPR)
4299 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4300 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
4301 else if (TREE_CODE (arg0) == COND_EXPR)
4303 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
4304 fold (build1 (code, type, TREE_OPERAND (arg0, 1))),
4305 fold (build1 (code, type, TREE_OPERAND (arg0, 2)))));
4307 /* If this was a conversion, and all we did was to move into
4308 inside the COND_EXPR, bring it back out. But leave it if
4309 it is a conversion from integer to integer and the
4310 result precision is no wider than a word since such a
4311 conversion is cheap and may be optimized away by combine,
4312 while it couldn't if it were outside the COND_EXPR. Then return
4313 so we don't get into an infinite recursion loop taking the
4314 conversion out and then back in. */
4316 if ((code == NOP_EXPR || code == CONVERT_EXPR
4317 || code == NON_LVALUE_EXPR)
4318 && TREE_CODE (t) == COND_EXPR
4319 && TREE_CODE (TREE_OPERAND (t, 1)) == code
4320 && TREE_CODE (TREE_OPERAND (t, 2)) == code
4321 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
4322 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
4323 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
4324 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0)))
4325 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
4326 t = build1 (code, type,
4327 build (COND_EXPR,
4328 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0)),
4329 TREE_OPERAND (t, 0),
4330 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
4331 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
4332 return t;
4334 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
4335 return fold (build (COND_EXPR, type, arg0,
4336 fold (build1 (code, type, integer_one_node)),
4337 fold (build1 (code, type, integer_zero_node))));
4339 else if (TREE_CODE_CLASS (code) == '2'
4340 || TREE_CODE_CLASS (code) == '<')
4342 if (TREE_CODE (arg1) == COMPOUND_EXPR)
4343 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
4344 fold (build (code, type,
4345 arg0, TREE_OPERAND (arg1, 1))));
4346 else if ((TREE_CODE (arg1) == COND_EXPR
4347 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
4348 && TREE_CODE_CLASS (code) != '<'))
4349 && (TREE_CODE (arg0) != COND_EXPR
4350 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
4351 && (! TREE_SIDE_EFFECTS (arg0)
4352 || (current_function_decl != 0
4353 && ! contains_placeholder_p (arg0))))
4355 tree test, true_value, false_value;
4356 tree lhs = 0, rhs = 0;
4358 if (TREE_CODE (arg1) == COND_EXPR)
4360 test = TREE_OPERAND (arg1, 0);
4361 true_value = TREE_OPERAND (arg1, 1);
4362 false_value = TREE_OPERAND (arg1, 2);
4364 else
4366 tree testtype = TREE_TYPE (arg1);
4367 test = arg1;
4368 true_value = convert (testtype, integer_one_node);
4369 false_value = convert (testtype, integer_zero_node);
4372 /* If ARG0 is complex we want to make sure we only evaluate
4373 it once. Though this is only required if it is volatile, it
4374 might be more efficient even if it is not. However, if we
4375 succeed in folding one part to a constant, we do not need
4376 to make this SAVE_EXPR. Since we do this optimization
4377 primarily to see if we do end up with constant and this
4378 SAVE_EXPR interferes with later optimizations, suppressing
4379 it when we can is important.
4381 If we are not in a function, we can't make a SAVE_EXPR, so don't
4382 try to do so. Don't try to see if the result is a constant
4383 if an arm is a COND_EXPR since we get exponential behavior
4384 in that case. */
4386 if (TREE_CODE (arg0) != SAVE_EXPR && ! TREE_CONSTANT (arg0)
4387 && current_function_decl != 0
4388 && ((TREE_CODE (arg0) != VAR_DECL
4389 && TREE_CODE (arg0) != PARM_DECL)
4390 || TREE_SIDE_EFFECTS (arg0)))
4392 if (TREE_CODE (true_value) != COND_EXPR)
4393 lhs = fold (build (code, type, arg0, true_value));
4395 if (TREE_CODE (false_value) != COND_EXPR)
4396 rhs = fold (build (code, type, arg0, false_value));
4398 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4399 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4400 arg0 = save_expr (arg0), lhs = rhs = 0;
4403 if (lhs == 0)
4404 lhs = fold (build (code, type, arg0, true_value));
4405 if (rhs == 0)
4406 rhs = fold (build (code, type, arg0, false_value));
4408 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4410 if (TREE_CODE (arg0) == SAVE_EXPR)
4411 return build (COMPOUND_EXPR, type,
4412 convert (void_type_node, arg0),
4413 strip_compound_expr (test, arg0));
4414 else
4415 return convert (type, test);
4418 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
4419 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4420 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
4421 else if ((TREE_CODE (arg0) == COND_EXPR
4422 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
4423 && TREE_CODE_CLASS (code) != '<'))
4424 && (TREE_CODE (arg1) != COND_EXPR
4425 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
4426 && (! TREE_SIDE_EFFECTS (arg1)
4427 || (current_function_decl != 0
4428 && ! contains_placeholder_p (arg1))))
4430 tree test, true_value, false_value;
4431 tree lhs = 0, rhs = 0;
4433 if (TREE_CODE (arg0) == COND_EXPR)
4435 test = TREE_OPERAND (arg0, 0);
4436 true_value = TREE_OPERAND (arg0, 1);
4437 false_value = TREE_OPERAND (arg0, 2);
4439 else
4441 tree testtype = TREE_TYPE (arg0);
4442 test = arg0;
4443 true_value = convert (testtype, integer_one_node);
4444 false_value = convert (testtype, integer_zero_node);
4447 if (TREE_CODE (arg1) != SAVE_EXPR && ! TREE_CONSTANT (arg0)
4448 && current_function_decl != 0
4449 && ((TREE_CODE (arg1) != VAR_DECL
4450 && TREE_CODE (arg1) != PARM_DECL)
4451 || TREE_SIDE_EFFECTS (arg1)))
4453 if (TREE_CODE (true_value) != COND_EXPR)
4454 lhs = fold (build (code, type, true_value, arg1));
4456 if (TREE_CODE (false_value) != COND_EXPR)
4457 rhs = fold (build (code, type, false_value, arg1));
4459 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4460 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4461 arg1 = save_expr (arg1), lhs = rhs = 0;
4464 if (lhs == 0)
4465 lhs = fold (build (code, type, true_value, arg1));
4467 if (rhs == 0)
4468 rhs = fold (build (code, type, false_value, arg1));
4470 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4471 if (TREE_CODE (arg1) == SAVE_EXPR)
4472 return build (COMPOUND_EXPR, type,
4473 convert (void_type_node, arg1),
4474 strip_compound_expr (test, arg1));
4475 else
4476 return convert (type, test);
4479 else if (TREE_CODE_CLASS (code) == '<'
4480 && TREE_CODE (arg0) == COMPOUND_EXPR)
4481 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4482 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
4483 else if (TREE_CODE_CLASS (code) == '<'
4484 && TREE_CODE (arg1) == COMPOUND_EXPR)
4485 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
4486 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
4488 switch (code)
4490 case INTEGER_CST:
4491 case REAL_CST:
4492 case STRING_CST:
4493 case COMPLEX_CST:
4494 case CONSTRUCTOR:
4495 return t;
4497 case CONST_DECL:
4498 return fold (DECL_INITIAL (t));
4500 case NOP_EXPR:
4501 case FLOAT_EXPR:
4502 case CONVERT_EXPR:
4503 case FIX_TRUNC_EXPR:
4504 /* Other kinds of FIX are not handled properly by fold_convert. */
4506 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
4507 return TREE_OPERAND (t, 0);
4509 /* Handle cases of two conversions in a row. */
4510 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
4511 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
4513 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4514 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
4515 tree final_type = TREE_TYPE (t);
4516 int inside_int = INTEGRAL_TYPE_P (inside_type);
4517 int inside_ptr = POINTER_TYPE_P (inside_type);
4518 int inside_float = FLOAT_TYPE_P (inside_type);
4519 int inside_prec = TYPE_PRECISION (inside_type);
4520 int inside_unsignedp = TREE_UNSIGNED (inside_type);
4521 int inter_int = INTEGRAL_TYPE_P (inter_type);
4522 int inter_ptr = POINTER_TYPE_P (inter_type);
4523 int inter_float = FLOAT_TYPE_P (inter_type);
4524 int inter_prec = TYPE_PRECISION (inter_type);
4525 int inter_unsignedp = TREE_UNSIGNED (inter_type);
4526 int final_int = INTEGRAL_TYPE_P (final_type);
4527 int final_ptr = POINTER_TYPE_P (final_type);
4528 int final_float = FLOAT_TYPE_P (final_type);
4529 int final_prec = TYPE_PRECISION (final_type);
4530 int final_unsignedp = TREE_UNSIGNED (final_type);
4532 /* In addition to the cases of two conversions in a row
4533 handled below, if we are converting something to its own
4534 type via an object of identical or wider precision, neither
4535 conversion is needed. */
4536 if (inside_type == final_type
4537 && ((inter_int && final_int) || (inter_float && final_float))
4538 && inter_prec >= final_prec)
4539 return TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4541 /* Likewise, if the intermediate and final types are either both
4542 float or both integer, we don't need the middle conversion if
4543 it is wider than the final type and doesn't change the signedness
4544 (for integers). Avoid this if the final type is a pointer
4545 since then we sometimes need the inner conversion. Likewise if
4546 the outer has a precision not equal to the size of its mode. */
4547 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
4548 || (inter_float && inside_float))
4549 && inter_prec >= inside_prec
4550 && (inter_float || inter_unsignedp == inside_unsignedp)
4551 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
4552 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
4553 && ! final_ptr)
4554 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4556 /* If we have a sign-extension of a zero-extended value, we can
4557 replace that by a single zero-extension. */
4558 if (inside_int && inter_int && final_int
4559 && inside_prec < inter_prec && inter_prec < final_prec
4560 && inside_unsignedp && !inter_unsignedp)
4561 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4563 /* Two conversions in a row are not needed unless:
4564 - some conversion is floating-point (overstrict for now), or
4565 - the intermediate type is narrower than both initial and
4566 final, or
4567 - the intermediate type and innermost type differ in signedness,
4568 and the outermost type is wider than the intermediate, or
4569 - the initial type is a pointer type and the precisions of the
4570 intermediate and final types differ, or
4571 - the final type is a pointer type and the precisions of the
4572 initial and intermediate types differ. */
4573 if (! inside_float && ! inter_float && ! final_float
4574 && (inter_prec > inside_prec || inter_prec > final_prec)
4575 && ! (inside_int && inter_int
4576 && inter_unsignedp != inside_unsignedp
4577 && inter_prec < final_prec)
4578 && ((inter_unsignedp && inter_prec > inside_prec)
4579 == (final_unsignedp && final_prec > inter_prec))
4580 && ! (inside_ptr && inter_prec != final_prec)
4581 && ! (final_ptr && inside_prec != inter_prec)
4582 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
4583 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
4584 && ! final_ptr)
4585 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4588 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
4589 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
4590 /* Detect assigning a bitfield. */
4591 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
4592 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
4594 /* Don't leave an assignment inside a conversion
4595 unless assigning a bitfield. */
4596 tree prev = TREE_OPERAND (t, 0);
4597 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
4598 /* First do the assignment, then return converted constant. */
4599 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
4600 TREE_USED (t) = 1;
4601 return t;
4603 if (!wins)
4605 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
4606 return t;
4608 return fold_convert (t, arg0);
4610 #if 0 /* This loses on &"foo"[0]. */
4611 case ARRAY_REF:
4613 int i;
4615 /* Fold an expression like: "foo"[2] */
4616 if (TREE_CODE (arg0) == STRING_CST
4617 && TREE_CODE (arg1) == INTEGER_CST
4618 && !TREE_INT_CST_HIGH (arg1)
4619 && (i = TREE_INT_CST_LOW (arg1)) < TREE_STRING_LENGTH (arg0))
4621 t = build_int_2 (TREE_STRING_POINTER (arg0)[i], 0);
4622 TREE_TYPE (t) = TREE_TYPE (TREE_TYPE (arg0));
4623 force_fit_type (t, 0);
4626 return t;
4627 #endif /* 0 */
4629 case COMPONENT_REF:
4630 if (TREE_CODE (arg0) == CONSTRUCTOR)
4632 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
4633 if (m)
4634 t = TREE_VALUE (m);
4636 return t;
4638 case RANGE_EXPR:
4639 TREE_CONSTANT (t) = wins;
4640 return t;
4642 case NEGATE_EXPR:
4643 if (wins)
4645 if (TREE_CODE (arg0) == INTEGER_CST)
4647 HOST_WIDE_INT low, high;
4648 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
4649 TREE_INT_CST_HIGH (arg0),
4650 &low, &high);
4651 t = build_int_2 (low, high);
4652 TREE_TYPE (t) = type;
4653 TREE_OVERFLOW (t)
4654 = (TREE_OVERFLOW (arg0)
4655 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
4656 TREE_CONSTANT_OVERFLOW (t)
4657 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
4659 else if (TREE_CODE (arg0) == REAL_CST)
4660 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
4662 else if (TREE_CODE (arg0) == NEGATE_EXPR)
4663 return TREE_OPERAND (arg0, 0);
4665 /* Convert - (a - b) to (b - a) for non-floating-point. */
4666 else if (TREE_CODE (arg0) == MINUS_EXPR && ! FLOAT_TYPE_P (type))
4667 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
4668 TREE_OPERAND (arg0, 0));
4670 return t;
4672 case ABS_EXPR:
4673 if (wins)
4675 if (TREE_CODE (arg0) == INTEGER_CST)
4677 if (! TREE_UNSIGNED (type)
4678 && TREE_INT_CST_HIGH (arg0) < 0)
4680 HOST_WIDE_INT low, high;
4681 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
4682 TREE_INT_CST_HIGH (arg0),
4683 &low, &high);
4684 t = build_int_2 (low, high);
4685 TREE_TYPE (t) = type;
4686 TREE_OVERFLOW (t)
4687 = (TREE_OVERFLOW (arg0)
4688 | force_fit_type (t, overflow));
4689 TREE_CONSTANT_OVERFLOW (t)
4690 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
4693 else if (TREE_CODE (arg0) == REAL_CST)
4695 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
4696 t = build_real (type,
4697 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
4700 else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
4701 return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
4702 return t;
4704 case CONJ_EXPR:
4705 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
4706 return arg0;
4707 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
4708 return build (COMPLEX_EXPR, TREE_TYPE (arg0),
4709 TREE_OPERAND (arg0, 0),
4710 fold (build1 (NEGATE_EXPR,
4711 TREE_TYPE (TREE_TYPE (arg0)),
4712 TREE_OPERAND (arg0, 1))));
4713 else if (TREE_CODE (arg0) == COMPLEX_CST)
4714 return build_complex (type, TREE_OPERAND (arg0, 0),
4715 fold (build1 (NEGATE_EXPR,
4716 TREE_TYPE (TREE_TYPE (arg0)),
4717 TREE_OPERAND (arg0, 1))));
4718 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
4719 return fold (build (TREE_CODE (arg0), type,
4720 fold (build1 (CONJ_EXPR, type,
4721 TREE_OPERAND (arg0, 0))),
4722 fold (build1 (CONJ_EXPR,
4723 type, TREE_OPERAND (arg0, 1)))));
4724 else if (TREE_CODE (arg0) == CONJ_EXPR)
4725 return TREE_OPERAND (arg0, 0);
4726 return t;
4728 case BIT_NOT_EXPR:
4729 if (wins)
4731 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
4732 ~ TREE_INT_CST_HIGH (arg0));
4733 TREE_TYPE (t) = type;
4734 force_fit_type (t, 0);
4735 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
4736 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
4738 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
4739 return TREE_OPERAND (arg0, 0);
4740 return t;
4742 case PLUS_EXPR:
4743 /* A + (-B) -> A - B */
4744 if (TREE_CODE (arg1) == NEGATE_EXPR)
4745 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
4746 else if (! FLOAT_TYPE_P (type))
4748 if (integer_zerop (arg1))
4749 return non_lvalue (convert (type, arg0));
4751 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
4752 with a constant, and the two constants have no bits in common,
4753 we should treat this as a BIT_IOR_EXPR since this may produce more
4754 simplifications. */
4755 if (TREE_CODE (arg0) == BIT_AND_EXPR
4756 && TREE_CODE (arg1) == BIT_AND_EXPR
4757 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
4758 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
4759 && integer_zerop (const_binop (BIT_AND_EXPR,
4760 TREE_OPERAND (arg0, 1),
4761 TREE_OPERAND (arg1, 1), 0)))
4763 code = BIT_IOR_EXPR;
4764 goto bit_ior;
4767 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
4769 tree arg00, arg01, arg10, arg11;
4770 tree alt0, alt1, same;
4772 /* (A * C) + (B * C) -> (A+B) * C.
4773 We are most concerned about the case where C is a constant,
4774 but other combinations show up during loop reduction. Since
4775 it is not difficult, try all four possibilities. */
4777 arg00 = TREE_OPERAND (arg0, 0);
4778 arg01 = TREE_OPERAND (arg0, 1);
4779 arg10 = TREE_OPERAND (arg1, 0);
4780 arg11 = TREE_OPERAND (arg1, 1);
4781 same = NULL_TREE;
4783 if (operand_equal_p (arg01, arg11, 0))
4784 same = arg01, alt0 = arg00, alt1 = arg10;
4785 else if (operand_equal_p (arg00, arg10, 0))
4786 same = arg00, alt0 = arg01, alt1 = arg11;
4787 else if (operand_equal_p (arg00, arg11, 0))
4788 same = arg00, alt0 = arg01, alt1 = arg10;
4789 else if (operand_equal_p (arg01, arg10, 0))
4790 same = arg01, alt0 = arg00, alt1 = arg11;
4792 if (same)
4793 return fold (build (MULT_EXPR, type,
4794 fold (build (PLUS_EXPR, type, alt0, alt1)),
4795 same));
4798 /* In IEEE floating point, x+0 may not equal x. */
4799 else if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4800 || flag_fast_math)
4801 && real_zerop (arg1))
4802 return non_lvalue (convert (type, arg0));
4803 associate:
4804 /* In most languages, can't associate operations on floats
4805 through parentheses. Rather than remember where the parentheses
4806 were, we don't associate floats at all. It shouldn't matter much.
4807 However, associating multiplications is only very slightly
4808 inaccurate, so do that if -ffast-math is specified. */
4809 if (FLOAT_TYPE_P (type)
4810 && ! (flag_fast_math && code == MULT_EXPR))
4811 goto binary;
4813 /* The varsign == -1 cases happen only for addition and subtraction.
4814 It says that the arg that was split was really CON minus VAR.
4815 The rest of the code applies to all associative operations. */
4816 if (!wins)
4818 tree var, con;
4819 int varsign;
4821 if (split_tree (arg0, code, &var, &con, &varsign))
4823 if (varsign == -1)
4825 /* EXPR is (CON-VAR) +- ARG1. */
4826 /* If it is + and VAR==ARG1, return just CONST. */
4827 if (code == PLUS_EXPR && operand_equal_p (var, arg1, 0))
4828 return convert (TREE_TYPE (t), con);
4830 /* If ARG0 is a constant, don't change things around;
4831 instead keep all the constant computations together. */
4833 if (TREE_CONSTANT (arg0))
4834 return t;
4836 /* Otherwise return (CON +- ARG1) - VAR. */
4837 t = build (MINUS_EXPR, type,
4838 fold (build (code, type, con, arg1)), var);
4840 else
4842 /* EXPR is (VAR+CON) +- ARG1. */
4843 /* If it is - and VAR==ARG1, return just CONST. */
4844 if (code == MINUS_EXPR && operand_equal_p (var, arg1, 0))
4845 return convert (TREE_TYPE (t), con);
4847 /* If ARG0 is a constant, don't change things around;
4848 instead keep all the constant computations together. */
4850 if (TREE_CONSTANT (arg0))
4851 return t;
4853 /* Otherwise return VAR +- (ARG1 +- CON). */
4854 tem = fold (build (code, type, arg1, con));
4855 t = build (code, type, var, tem);
4857 if (integer_zerop (tem)
4858 && (code == PLUS_EXPR || code == MINUS_EXPR))
4859 return convert (type, var);
4860 /* If we have x +/- (c - d) [c an explicit integer]
4861 change it to x -/+ (d - c) since if d is relocatable
4862 then the latter can be a single immediate insn
4863 and the former cannot. */
4864 if (TREE_CODE (tem) == MINUS_EXPR
4865 && TREE_CODE (TREE_OPERAND (tem, 0)) == INTEGER_CST)
4867 tree tem1 = TREE_OPERAND (tem, 1);
4868 TREE_OPERAND (tem, 1) = TREE_OPERAND (tem, 0);
4869 TREE_OPERAND (tem, 0) = tem1;
4870 TREE_SET_CODE (t,
4871 (code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR));
4874 return t;
4877 if (split_tree (arg1, code, &var, &con, &varsign))
4879 if (TREE_CONSTANT (arg1))
4880 return t;
4882 if (varsign == -1)
4883 TREE_SET_CODE (t,
4884 (code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR));
4886 /* EXPR is ARG0 +- (CON +- VAR). */
4887 if (TREE_CODE (t) == MINUS_EXPR
4888 && operand_equal_p (var, arg0, 0))
4890 /* If VAR and ARG0 cancel, return just CON or -CON. */
4891 if (code == PLUS_EXPR)
4892 return convert (TREE_TYPE (t), con);
4893 return fold (build1 (NEGATE_EXPR, TREE_TYPE (t),
4894 convert (TREE_TYPE (t), con)));
4897 t = build (TREE_CODE (t), type,
4898 fold (build (code, TREE_TYPE (t), arg0, con)), var);
4900 if (integer_zerop (TREE_OPERAND (t, 0))
4901 && TREE_CODE (t) == PLUS_EXPR)
4902 return convert (TREE_TYPE (t), var);
4903 return t;
4906 binary:
4907 #if defined (REAL_IS_NOT_DOUBLE) && ! defined (REAL_ARITHMETIC)
4908 if (TREE_CODE (arg1) == REAL_CST)
4909 return t;
4910 #endif /* REAL_IS_NOT_DOUBLE, and no REAL_ARITHMETIC */
4911 if (wins)
4912 t1 = const_binop (code, arg0, arg1, 0);
4913 if (t1 != NULL_TREE)
4915 /* The return value should always have
4916 the same type as the original expression. */
4917 if (TREE_TYPE (t1) != TREE_TYPE (t))
4918 t1 = convert (TREE_TYPE (t), t1);
4920 return t1;
4922 return t;
4924 case MINUS_EXPR:
4925 if (! FLOAT_TYPE_P (type))
4927 if (! wins && integer_zerop (arg0))
4928 return build1 (NEGATE_EXPR, type, arg1);
4929 if (integer_zerop (arg1))
4930 return non_lvalue (convert (type, arg0));
4932 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
4933 about the case where C is a constant, just try one of the
4934 four possibilities. */
4936 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
4937 && operand_equal_p (TREE_OPERAND (arg0, 1),
4938 TREE_OPERAND (arg1, 1), 0))
4939 return fold (build (MULT_EXPR, type,
4940 fold (build (MINUS_EXPR, type,
4941 TREE_OPERAND (arg0, 0),
4942 TREE_OPERAND (arg1, 0))),
4943 TREE_OPERAND (arg0, 1)));
4945 /* Convert A - (-B) to A + B. */
4946 else if (TREE_CODE (arg1) == NEGATE_EXPR)
4947 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
4949 else if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4950 || flag_fast_math)
4952 /* Except with IEEE floating point, 0-x equals -x. */
4953 if (! wins && real_zerop (arg0))
4954 return build1 (NEGATE_EXPR, type, arg1);
4955 /* Except with IEEE floating point, x-0 equals x. */
4956 if (real_zerop (arg1))
4957 return non_lvalue (convert (type, arg0));
4960 /* Fold &x - &x. This can happen from &x.foo - &x.
4961 This is unsafe for certain floats even in non-IEEE formats.
4962 In IEEE, it is unsafe because it does wrong for NaNs.
4963 Also note that operand_equal_p is always false if an operand
4964 is volatile. */
4966 if ((! FLOAT_TYPE_P (type) || flag_fast_math)
4967 && operand_equal_p (arg0, arg1, 0))
4968 return convert (type, integer_zero_node);
4970 goto associate;
4972 case MULT_EXPR:
4973 if (! FLOAT_TYPE_P (type))
4975 if (integer_zerop (arg1))
4976 return omit_one_operand (type, arg1, arg0);
4977 if (integer_onep (arg1))
4978 return non_lvalue (convert (type, arg0));
4980 /* ((A / C) * C) is A if the division is an
4981 EXACT_DIV_EXPR. Since C is normally a constant,
4982 just check for one of the four possibilities. */
4984 if (TREE_CODE (arg0) == EXACT_DIV_EXPR
4985 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
4986 return TREE_OPERAND (arg0, 0);
4988 /* (a * (1 << b)) is (a << b) */
4989 if (TREE_CODE (arg1) == LSHIFT_EXPR
4990 && integer_onep (TREE_OPERAND (arg1, 0)))
4991 return fold (build (LSHIFT_EXPR, type, arg0,
4992 TREE_OPERAND (arg1, 1)));
4993 if (TREE_CODE (arg0) == LSHIFT_EXPR
4994 && integer_onep (TREE_OPERAND (arg0, 0)))
4995 return fold (build (LSHIFT_EXPR, type, arg1,
4996 TREE_OPERAND (arg0, 1)));
4998 else
5000 /* x*0 is 0, except for IEEE floating point. */
5001 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
5002 || flag_fast_math)
5003 && real_zerop (arg1))
5004 return omit_one_operand (type, arg1, arg0);
5005 /* In IEEE floating point, x*1 is not equivalent to x for snans.
5006 However, ANSI says we can drop signals,
5007 so we can do this anyway. */
5008 if (real_onep (arg1))
5009 return non_lvalue (convert (type, arg0));
5010 /* x*2 is x+x */
5011 if (! wins && real_twop (arg1) && current_function_decl != 0
5012 && ! contains_placeholder_p (arg0))
5014 tree arg = save_expr (arg0);
5015 return build (PLUS_EXPR, type, arg, arg);
5018 goto associate;
5020 case BIT_IOR_EXPR:
5021 bit_ior:
5023 register enum tree_code code0, code1;
5025 if (integer_all_onesp (arg1))
5026 return omit_one_operand (type, arg1, arg0);
5027 if (integer_zerop (arg1))
5028 return non_lvalue (convert (type, arg0));
5029 t1 = distribute_bit_expr (code, type, arg0, arg1);
5030 if (t1 != NULL_TREE)
5031 return t1;
5033 /* (A << C1) | (A >> C2) if A is unsigned and C1+C2 is the size of A
5034 is a rotate of A by C1 bits. */
5035 /* (A << B) | (A >> (Z - B)) if A is unsigned and Z is the size of A
5036 is a rotate of A by B bits. */
5038 code0 = TREE_CODE (arg0);
5039 code1 = TREE_CODE (arg1);
5040 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5041 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5042 && operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1,0), 0)
5043 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5045 register tree tree01, tree11;
5046 register enum tree_code code01, code11;
5048 tree01 = TREE_OPERAND (arg0, 1);
5049 tree11 = TREE_OPERAND (arg1, 1);
5050 STRIP_NOPS (tree01);
5051 STRIP_NOPS (tree11);
5052 code01 = TREE_CODE (tree01);
5053 code11 = TREE_CODE (tree11);
5054 if (code01 == INTEGER_CST
5055 && code11 == INTEGER_CST
5056 && TREE_INT_CST_HIGH (tree01) == 0
5057 && TREE_INT_CST_HIGH (tree11) == 0
5058 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5059 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5060 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5061 code0 == LSHIFT_EXPR ? tree01 : tree11);
5062 else if (code11 == MINUS_EXPR)
5064 tree tree110, tree111;
5065 tree110 = TREE_OPERAND (tree11, 0);
5066 tree111 = TREE_OPERAND (tree11, 1);
5067 STRIP_NOPS (tree110);
5068 STRIP_NOPS (tree111);
5069 if (TREE_CODE (tree110) == INTEGER_CST
5070 && TREE_INT_CST_HIGH (tree110) == 0
5071 && (TREE_INT_CST_LOW (tree110)
5072 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5073 && operand_equal_p (tree01, tree111, 0))
5074 return build ((code0 == LSHIFT_EXPR
5075 ? LROTATE_EXPR
5076 : RROTATE_EXPR),
5077 type, TREE_OPERAND (arg0, 0), tree01);
5079 else if (code01 == MINUS_EXPR)
5081 tree tree010, tree011;
5082 tree010 = TREE_OPERAND (tree01, 0);
5083 tree011 = TREE_OPERAND (tree01, 1);
5084 STRIP_NOPS (tree010);
5085 STRIP_NOPS (tree011);
5086 if (TREE_CODE (tree010) == INTEGER_CST
5087 && TREE_INT_CST_HIGH (tree010) == 0
5088 && (TREE_INT_CST_LOW (tree010)
5089 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5090 && operand_equal_p (tree11, tree011, 0))
5091 return build ((code0 != LSHIFT_EXPR
5092 ? LROTATE_EXPR
5093 : RROTATE_EXPR),
5094 type, TREE_OPERAND (arg0, 0), tree11);
5098 goto associate;
5101 case BIT_XOR_EXPR:
5102 if (integer_zerop (arg1))
5103 return non_lvalue (convert (type, arg0));
5104 if (integer_all_onesp (arg1))
5105 return fold (build1 (BIT_NOT_EXPR, type, arg0));
5106 goto associate;
5108 case BIT_AND_EXPR:
5109 bit_and:
5110 if (integer_all_onesp (arg1))
5111 return non_lvalue (convert (type, arg0));
5112 if (integer_zerop (arg1))
5113 return omit_one_operand (type, arg1, arg0);
5114 t1 = distribute_bit_expr (code, type, arg0, arg1);
5115 if (t1 != NULL_TREE)
5116 return t1;
5117 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
5118 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == NOP_EXPR
5119 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))))
5121 int prec = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)));
5122 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5123 && (~TREE_INT_CST_LOW (arg0)
5124 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5125 return build1 (NOP_EXPR, type, TREE_OPERAND (arg1, 0));
5127 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
5128 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5130 int prec = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
5131 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5132 && (~TREE_INT_CST_LOW (arg1)
5133 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5134 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
5136 goto associate;
5138 case BIT_ANDTC_EXPR:
5139 if (integer_all_onesp (arg0))
5140 return non_lvalue (convert (type, arg1));
5141 if (integer_zerop (arg0))
5142 return omit_one_operand (type, arg0, arg1);
5143 if (TREE_CODE (arg1) == INTEGER_CST)
5145 arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
5146 code = BIT_AND_EXPR;
5147 goto bit_and;
5149 goto binary;
5151 case RDIV_EXPR:
5152 /* In most cases, do nothing with a divide by zero. */
5153 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
5154 #ifndef REAL_INFINITY
5155 if (TREE_CODE (arg1) == REAL_CST && real_zerop (arg1))
5156 return t;
5157 #endif
5158 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
5160 /* In IEEE floating point, x/1 is not equivalent to x for snans.
5161 However, ANSI says we can drop signals, so we can do this anyway. */
5162 if (real_onep (arg1))
5163 return non_lvalue (convert (type, arg0));
5165 /* If ARG1 is a constant, we can convert this to a multiply by the
5166 reciprocal. This does not have the same rounding properties,
5167 so only do this if -ffast-math. We can actually always safely
5168 do it if ARG1 is a power of two, but it's hard to tell if it is
5169 or not in a portable manner. */
5170 if (TREE_CODE (arg1) == REAL_CST)
5172 if (flag_fast_math
5173 && 0 != (tem = const_binop (code, build_real (type, dconst1),
5174 arg1, 0)))
5175 return fold (build (MULT_EXPR, type, arg0, tem));
5176 /* Find the reciprocal if optimizing and the result is exact. */
5177 else if (optimize)
5179 REAL_VALUE_TYPE r;
5180 r = TREE_REAL_CST (arg1);
5181 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
5183 tem = build_real (type, r);
5184 return fold (build (MULT_EXPR, type, arg0, tem));
5188 goto binary;
5190 case TRUNC_DIV_EXPR:
5191 case ROUND_DIV_EXPR:
5192 case FLOOR_DIV_EXPR:
5193 case CEIL_DIV_EXPR:
5194 case EXACT_DIV_EXPR:
5195 if (integer_onep (arg1))
5196 return non_lvalue (convert (type, arg0));
5197 if (integer_zerop (arg1))
5198 return t;
5200 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
5201 operation, EXACT_DIV_EXPR.
5203 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
5204 At one time others generated faster code, it's not clear if they do
5205 after the last round to changes to the DIV code in expmed.c. */
5206 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
5207 && multiple_of_p (type, arg0, arg1))
5208 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
5210 /* If we have ((a / C1) / C2) where both division are the same type, try
5211 to simplify. First see if C1 * C2 overflows or not. */
5212 if (TREE_CODE (arg0) == code && TREE_CODE (arg1) == INTEGER_CST
5213 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
5215 tree new_divisor;
5217 new_divisor = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 1), arg1, 0);
5218 tem = const_binop (FLOOR_DIV_EXPR, new_divisor, arg1, 0);
5220 if (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) == TREE_INT_CST_LOW (tem)
5221 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == TREE_INT_CST_HIGH (tem))
5223 /* If no overflow, divide by C1*C2. */
5224 return fold (build (code, type, TREE_OPERAND (arg0, 0), new_divisor));
5228 /* Look for ((a * C1) / C3) or (((a * C1) + C2) / C3),
5229 where C1 % C3 == 0 or C3 % C1 == 0. We can simplify these
5230 expressions, which often appear in the offsets or sizes of
5231 objects with a varying size. Only deal with positive divisors
5232 and multiplicands. If C2 is negative, we must have C2 % C3 == 0.
5234 Look for NOPs and SAVE_EXPRs inside. */
5236 if (TREE_CODE (arg1) == INTEGER_CST
5237 && tree_int_cst_sgn (arg1) >= 0)
5239 int have_save_expr = 0;
5240 tree c2 = integer_zero_node;
5241 tree xarg0 = arg0;
5243 if (TREE_CODE (xarg0) == SAVE_EXPR && SAVE_EXPR_RTL (xarg0) == 0)
5244 have_save_expr = 1, xarg0 = TREE_OPERAND (xarg0, 0);
5246 STRIP_NOPS (xarg0);
5248 /* Look inside the dividend and simplify using EXACT_DIV_EXPR
5249 if possible. */
5250 if (TREE_CODE (xarg0) == MULT_EXPR
5251 && multiple_of_p (type, TREE_OPERAND (xarg0, 0), arg1))
5253 tree t;
5255 t = fold (build (MULT_EXPR, type,
5256 fold (build (EXACT_DIV_EXPR, type,
5257 TREE_OPERAND (xarg0, 0), arg1)),
5258 TREE_OPERAND (xarg0, 1)));
5259 if (have_save_expr)
5260 t = save_expr (t);
5261 return t;
5265 if (TREE_CODE (xarg0) == MULT_EXPR
5266 && multiple_of_p (type, TREE_OPERAND (xarg0, 1), arg1))
5268 tree t;
5270 t = fold (build (MULT_EXPR, type,
5271 fold (build (EXACT_DIV_EXPR, type,
5272 TREE_OPERAND (xarg0, 1), arg1)),
5273 TREE_OPERAND (xarg0, 0)));
5274 if (have_save_expr)
5275 t = save_expr (t);
5276 return t;
5279 if (TREE_CODE (xarg0) == PLUS_EXPR
5280 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST)
5281 c2 = TREE_OPERAND (xarg0, 1), xarg0 = TREE_OPERAND (xarg0, 0);
5282 else if (TREE_CODE (xarg0) == MINUS_EXPR
5283 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5284 /* If we are doing this computation unsigned, the negate
5285 is incorrect. */
5286 && ! TREE_UNSIGNED (type))
5288 c2 = fold (build1 (NEGATE_EXPR, type, TREE_OPERAND (xarg0, 1)));
5289 xarg0 = TREE_OPERAND (xarg0, 0);
5292 if (TREE_CODE (xarg0) == SAVE_EXPR && SAVE_EXPR_RTL (xarg0) == 0)
5293 have_save_expr = 1, xarg0 = TREE_OPERAND (xarg0, 0);
5295 STRIP_NOPS (xarg0);
5297 if (TREE_CODE (xarg0) == MULT_EXPR
5298 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5299 && tree_int_cst_sgn (TREE_OPERAND (xarg0, 1)) >= 0
5300 && (integer_zerop (const_binop (TRUNC_MOD_EXPR,
5301 TREE_OPERAND (xarg0, 1), arg1, 1))
5302 || integer_zerop (const_binop (TRUNC_MOD_EXPR, arg1,
5303 TREE_OPERAND (xarg0, 1), 1)))
5304 && (tree_int_cst_sgn (c2) >= 0
5305 || integer_zerop (const_binop (TRUNC_MOD_EXPR, c2,
5306 arg1, 1))))
5308 tree outer_div = integer_one_node;
5309 tree c1 = TREE_OPERAND (xarg0, 1);
5310 tree c3 = arg1;
5312 /* If C3 > C1, set them equal and do a divide by
5313 C3/C1 at the end of the operation. */
5314 if (tree_int_cst_lt (c1, c3))
5315 outer_div = const_binop (code, c3, c1, 0), c3 = c1;
5317 /* The result is A * (C1/C3) + (C2/C3). */
5318 t = fold (build (PLUS_EXPR, type,
5319 fold (build (MULT_EXPR, type,
5320 TREE_OPERAND (xarg0, 0),
5321 const_binop (code, c1, c3, 1))),
5322 const_binop (code, c2, c3, 1)));
5324 if (! integer_onep (outer_div))
5325 t = fold (build (code, type, t, convert (type, outer_div)));
5327 if (have_save_expr)
5328 t = save_expr (t);
5330 return t;
5334 goto binary;
5336 case CEIL_MOD_EXPR:
5337 case FLOOR_MOD_EXPR:
5338 case ROUND_MOD_EXPR:
5339 case TRUNC_MOD_EXPR:
5340 if (integer_onep (arg1))
5341 return omit_one_operand (type, integer_zero_node, arg0);
5342 if (integer_zerop (arg1))
5343 return t;
5345 /* Look for ((a * C1) % C3) or (((a * C1) + C2) % C3),
5346 where C1 % C3 == 0. Handle similarly to the division case,
5347 but don't bother with SAVE_EXPRs. */
5349 if (TREE_CODE (arg1) == INTEGER_CST
5350 && ! integer_zerop (arg1))
5352 tree c2 = integer_zero_node;
5353 tree xarg0 = arg0;
5355 if (TREE_CODE (xarg0) == PLUS_EXPR
5356 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST)
5357 c2 = TREE_OPERAND (xarg0, 1), xarg0 = TREE_OPERAND (xarg0, 0);
5358 else if (TREE_CODE (xarg0) == MINUS_EXPR
5359 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5360 && ! TREE_UNSIGNED (type))
5362 c2 = fold (build1 (NEGATE_EXPR, type, TREE_OPERAND (xarg0, 1)));
5363 xarg0 = TREE_OPERAND (xarg0, 0);
5366 STRIP_NOPS (xarg0);
5368 if (TREE_CODE (xarg0) == MULT_EXPR
5369 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5370 && integer_zerop (const_binop (TRUNC_MOD_EXPR,
5371 TREE_OPERAND (xarg0, 1),
5372 arg1, 1))
5373 && tree_int_cst_sgn (c2) >= 0)
5374 /* The result is (C2%C3). */
5375 return omit_one_operand (type, const_binop (code, c2, arg1, 1),
5376 TREE_OPERAND (xarg0, 0));
5379 goto binary;
5381 case LSHIFT_EXPR:
5382 case RSHIFT_EXPR:
5383 case LROTATE_EXPR:
5384 case RROTATE_EXPR:
5385 if (integer_zerop (arg1))
5386 return non_lvalue (convert (type, arg0));
5387 /* Since negative shift count is not well-defined,
5388 don't try to compute it in the compiler. */
5389 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
5390 return t;
5391 /* Rewrite an LROTATE_EXPR by a constant into an
5392 RROTATE_EXPR by a new constant. */
5393 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
5395 TREE_SET_CODE (t, RROTATE_EXPR);
5396 code = RROTATE_EXPR;
5397 TREE_OPERAND (t, 1) = arg1
5398 = const_binop
5399 (MINUS_EXPR,
5400 convert (TREE_TYPE (arg1),
5401 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
5402 arg1, 0);
5403 if (tree_int_cst_sgn (arg1) < 0)
5404 return t;
5407 /* If we have a rotate of a bit operation with the rotate count and
5408 the second operand of the bit operation both constant,
5409 permute the two operations. */
5410 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
5411 && (TREE_CODE (arg0) == BIT_AND_EXPR
5412 || TREE_CODE (arg0) == BIT_ANDTC_EXPR
5413 || TREE_CODE (arg0) == BIT_IOR_EXPR
5414 || TREE_CODE (arg0) == BIT_XOR_EXPR)
5415 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
5416 return fold (build (TREE_CODE (arg0), type,
5417 fold (build (code, type,
5418 TREE_OPERAND (arg0, 0), arg1)),
5419 fold (build (code, type,
5420 TREE_OPERAND (arg0, 1), arg1))));
5422 /* Two consecutive rotates adding up to the width of the mode can
5423 be ignored. */
5424 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
5425 && TREE_CODE (arg0) == RROTATE_EXPR
5426 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5427 && TREE_INT_CST_HIGH (arg1) == 0
5428 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
5429 && ((TREE_INT_CST_LOW (arg1)
5430 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
5431 == GET_MODE_BITSIZE (TYPE_MODE (type))))
5432 return TREE_OPERAND (arg0, 0);
5434 goto binary;
5436 case MIN_EXPR:
5437 if (operand_equal_p (arg0, arg1, 0))
5438 return arg0;
5439 if (INTEGRAL_TYPE_P (type)
5440 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
5441 return omit_one_operand (type, arg1, arg0);
5442 goto associate;
5444 case MAX_EXPR:
5445 if (operand_equal_p (arg0, arg1, 0))
5446 return arg0;
5447 if (INTEGRAL_TYPE_P (type)
5448 && TYPE_MAX_VALUE (type)
5449 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
5450 return omit_one_operand (type, arg1, arg0);
5451 goto associate;
5453 case TRUTH_NOT_EXPR:
5454 /* Note that the operand of this must be an int
5455 and its values must be 0 or 1.
5456 ("true" is a fixed value perhaps depending on the language,
5457 but we don't handle values other than 1 correctly yet.) */
5458 tem = invert_truthvalue (arg0);
5459 /* Avoid infinite recursion. */
5460 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
5461 return t;
5462 return convert (type, tem);
5464 case TRUTH_ANDIF_EXPR:
5465 /* Note that the operands of this must be ints
5466 and their values must be 0 or 1.
5467 ("true" is a fixed value perhaps depending on the language.) */
5468 /* If first arg is constant zero, return it. */
5469 if (integer_zerop (arg0))
5470 return arg0;
5471 case TRUTH_AND_EXPR:
5472 /* If either arg is constant true, drop it. */
5473 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5474 return non_lvalue (arg1);
5475 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
5476 return non_lvalue (arg0);
5477 /* If second arg is constant zero, result is zero, but first arg
5478 must be evaluated. */
5479 if (integer_zerop (arg1))
5480 return omit_one_operand (type, arg1, arg0);
5481 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
5482 case will be handled here. */
5483 if (integer_zerop (arg0))
5484 return omit_one_operand (type, arg0, arg1);
5486 truth_andor:
5487 /* We only do these simplifications if we are optimizing. */
5488 if (!optimize)
5489 return t;
5491 /* Check for things like (A || B) && (A || C). We can convert this
5492 to A || (B && C). Note that either operator can be any of the four
5493 truth and/or operations and the transformation will still be
5494 valid. Also note that we only care about order for the
5495 ANDIF and ORIF operators. If B contains side effects, this
5496 might change the truth-value of A. */
5497 if (TREE_CODE (arg0) == TREE_CODE (arg1)
5498 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
5499 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
5500 || TREE_CODE (arg0) == TRUTH_AND_EXPR
5501 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
5502 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
5504 tree a00 = TREE_OPERAND (arg0, 0);
5505 tree a01 = TREE_OPERAND (arg0, 1);
5506 tree a10 = TREE_OPERAND (arg1, 0);
5507 tree a11 = TREE_OPERAND (arg1, 1);
5508 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
5509 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
5510 && (code == TRUTH_AND_EXPR
5511 || code == TRUTH_OR_EXPR));
5513 if (operand_equal_p (a00, a10, 0))
5514 return fold (build (TREE_CODE (arg0), type, a00,
5515 fold (build (code, type, a01, a11))));
5516 else if (commutative && operand_equal_p (a00, a11, 0))
5517 return fold (build (TREE_CODE (arg0), type, a00,
5518 fold (build (code, type, a01, a10))));
5519 else if (commutative && operand_equal_p (a01, a10, 0))
5520 return fold (build (TREE_CODE (arg0), type, a01,
5521 fold (build (code, type, a00, a11))));
5523 /* This case if tricky because we must either have commutative
5524 operators or else A10 must not have side-effects. */
5526 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
5527 && operand_equal_p (a01, a11, 0))
5528 return fold (build (TREE_CODE (arg0), type,
5529 fold (build (code, type, a00, a10)),
5530 a01));
5533 /* See if we can build a range comparison. */
5534 if (0 != (tem = fold_range_test (t)))
5535 return tem;
5537 /* Check for the possibility of merging component references. If our
5538 lhs is another similar operation, try to merge its rhs with our
5539 rhs. Then try to merge our lhs and rhs. */
5540 if (TREE_CODE (arg0) == code
5541 && 0 != (tem = fold_truthop (code, type,
5542 TREE_OPERAND (arg0, 1), arg1)))
5543 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
5545 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
5546 return tem;
5548 return t;
5550 case TRUTH_ORIF_EXPR:
5551 /* Note that the operands of this must be ints
5552 and their values must be 0 or true.
5553 ("true" is a fixed value perhaps depending on the language.) */
5554 /* If first arg is constant true, return it. */
5555 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5556 return arg0;
5557 case TRUTH_OR_EXPR:
5558 /* If either arg is constant zero, drop it. */
5559 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
5560 return non_lvalue (arg1);
5561 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1))
5562 return non_lvalue (arg0);
5563 /* If second arg is constant true, result is true, but we must
5564 evaluate first arg. */
5565 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
5566 return omit_one_operand (type, arg1, arg0);
5567 /* Likewise for first arg, but note this only occurs here for
5568 TRUTH_OR_EXPR. */
5569 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5570 return omit_one_operand (type, arg0, arg1);
5571 goto truth_andor;
5573 case TRUTH_XOR_EXPR:
5574 /* If either arg is constant zero, drop it. */
5575 if (integer_zerop (arg0))
5576 return non_lvalue (arg1);
5577 if (integer_zerop (arg1))
5578 return non_lvalue (arg0);
5579 /* If either arg is constant true, this is a logical inversion. */
5580 if (integer_onep (arg0))
5581 return non_lvalue (invert_truthvalue (arg1));
5582 if (integer_onep (arg1))
5583 return non_lvalue (invert_truthvalue (arg0));
5584 return t;
5586 case EQ_EXPR:
5587 case NE_EXPR:
5588 case LT_EXPR:
5589 case GT_EXPR:
5590 case LE_EXPR:
5591 case GE_EXPR:
5592 /* If one arg is a constant integer, put it last. */
5593 if (TREE_CODE (arg0) == INTEGER_CST
5594 && TREE_CODE (arg1) != INTEGER_CST)
5596 TREE_OPERAND (t, 0) = arg1;
5597 TREE_OPERAND (t, 1) = arg0;
5598 arg0 = TREE_OPERAND (t, 0);
5599 arg1 = TREE_OPERAND (t, 1);
5600 code = swap_tree_comparison (code);
5601 TREE_SET_CODE (t, code);
5604 /* Convert foo++ == CONST into ++foo == CONST + INCR.
5605 First, see if one arg is constant; find the constant arg
5606 and the other one. */
5608 tree constop = 0, varop = NULL_TREE;
5609 int constopnum = -1;
5611 if (TREE_CONSTANT (arg1))
5612 constopnum = 1, constop = arg1, varop = arg0;
5613 if (TREE_CONSTANT (arg0))
5614 constopnum = 0, constop = arg0, varop = arg1;
5616 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
5618 /* This optimization is invalid for ordered comparisons
5619 if CONST+INCR overflows or if foo+incr might overflow.
5620 This optimization is invalid for floating point due to rounding.
5621 For pointer types we assume overflow doesn't happen. */
5622 if (POINTER_TYPE_P (TREE_TYPE (varop))
5623 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
5624 && (code == EQ_EXPR || code == NE_EXPR)))
5626 tree newconst
5627 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
5628 constop, TREE_OPERAND (varop, 1)));
5629 TREE_SET_CODE (varop, PREINCREMENT_EXPR);
5631 /* If VAROP is a reference to a bitfield, we must mask
5632 the constant by the width of the field. */
5633 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
5634 && DECL_BIT_FIELD(TREE_OPERAND
5635 (TREE_OPERAND (varop, 0), 1)))
5637 int size
5638 = TREE_INT_CST_LOW (DECL_SIZE
5639 (TREE_OPERAND
5640 (TREE_OPERAND (varop, 0), 1)));
5641 tree mask, unsigned_type;
5642 int precision;
5643 tree folded_compare;
5645 /* First check whether the comparison would come out
5646 always the same. If we don't do that we would
5647 change the meaning with the masking. */
5648 if (constopnum == 0)
5649 folded_compare = fold (build (code, type, constop,
5650 TREE_OPERAND (varop, 0)));
5651 else
5652 folded_compare = fold (build (code, type,
5653 TREE_OPERAND (varop, 0),
5654 constop));
5655 if (integer_zerop (folded_compare)
5656 || integer_onep (folded_compare))
5657 return omit_one_operand (type, folded_compare, varop);
5659 unsigned_type = type_for_size (size, 1);
5660 precision = TYPE_PRECISION (unsigned_type);
5661 mask = build_int_2 (~0, ~0);
5662 TREE_TYPE (mask) = unsigned_type;
5663 force_fit_type (mask, 0);
5664 mask = const_binop (RSHIFT_EXPR, mask,
5665 size_int (precision - size), 0);
5666 newconst = fold (build (BIT_AND_EXPR,
5667 TREE_TYPE (varop), newconst,
5668 convert (TREE_TYPE (varop),
5669 mask)));
5673 t = build (code, type, TREE_OPERAND (t, 0),
5674 TREE_OPERAND (t, 1));
5675 TREE_OPERAND (t, constopnum) = newconst;
5676 return t;
5679 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
5681 if (POINTER_TYPE_P (TREE_TYPE (varop))
5682 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
5683 && (code == EQ_EXPR || code == NE_EXPR)))
5685 tree newconst
5686 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
5687 constop, TREE_OPERAND (varop, 1)));
5688 TREE_SET_CODE (varop, PREDECREMENT_EXPR);
5690 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
5691 && DECL_BIT_FIELD(TREE_OPERAND
5692 (TREE_OPERAND (varop, 0), 1)))
5694 int size
5695 = TREE_INT_CST_LOW (DECL_SIZE
5696 (TREE_OPERAND
5697 (TREE_OPERAND (varop, 0), 1)));
5698 tree mask, unsigned_type;
5699 int precision;
5700 tree folded_compare;
5702 if (constopnum == 0)
5703 folded_compare = fold (build (code, type, constop,
5704 TREE_OPERAND (varop, 0)));
5705 else
5706 folded_compare = fold (build (code, type,
5707 TREE_OPERAND (varop, 0),
5708 constop));
5709 if (integer_zerop (folded_compare)
5710 || integer_onep (folded_compare))
5711 return omit_one_operand (type, folded_compare, varop);
5713 unsigned_type = type_for_size (size, 1);
5714 precision = TYPE_PRECISION (unsigned_type);
5715 mask = build_int_2 (~0, ~0);
5716 TREE_TYPE (mask) = TREE_TYPE (varop);
5717 force_fit_type (mask, 0);
5718 mask = const_binop (RSHIFT_EXPR, mask,
5719 size_int (precision - size), 0);
5720 newconst = fold (build (BIT_AND_EXPR,
5721 TREE_TYPE (varop), newconst,
5722 convert (TREE_TYPE (varop),
5723 mask)));
5727 t = build (code, type, TREE_OPERAND (t, 0),
5728 TREE_OPERAND (t, 1));
5729 TREE_OPERAND (t, constopnum) = newconst;
5730 return t;
5735 /* Change X >= CST to X > (CST - 1) if CST is positive. */
5736 if (TREE_CODE (arg1) == INTEGER_CST
5737 && TREE_CODE (arg0) != INTEGER_CST
5738 && tree_int_cst_sgn (arg1) > 0)
5740 switch (TREE_CODE (t))
5742 case GE_EXPR:
5743 code = GT_EXPR;
5744 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
5745 t = build (code, type, TREE_OPERAND (t, 0), arg1);
5746 break;
5748 case LT_EXPR:
5749 code = LE_EXPR;
5750 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
5751 t = build (code, type, TREE_OPERAND (t, 0), arg1);
5752 break;
5754 default:
5755 break;
5759 /* If this is an EQ or NE comparison with zero and ARG0 is
5760 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
5761 two operations, but the latter can be done in one less insn
5762 on machines that have only two-operand insns or on which a
5763 constant cannot be the first operand. */
5764 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
5765 && TREE_CODE (arg0) == BIT_AND_EXPR)
5767 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
5768 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
5769 return
5770 fold (build (code, type,
5771 build (BIT_AND_EXPR, TREE_TYPE (arg0),
5772 build (RSHIFT_EXPR,
5773 TREE_TYPE (TREE_OPERAND (arg0, 0)),
5774 TREE_OPERAND (arg0, 1),
5775 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
5776 convert (TREE_TYPE (arg0),
5777 integer_one_node)),
5778 arg1));
5779 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
5780 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
5781 return
5782 fold (build (code, type,
5783 build (BIT_AND_EXPR, TREE_TYPE (arg0),
5784 build (RSHIFT_EXPR,
5785 TREE_TYPE (TREE_OPERAND (arg0, 1)),
5786 TREE_OPERAND (arg0, 0),
5787 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
5788 convert (TREE_TYPE (arg0),
5789 integer_one_node)),
5790 arg1));
5793 /* If this is an NE or EQ comparison of zero against the result of a
5794 signed MOD operation whose second operand is a power of 2, make
5795 the MOD operation unsigned since it is simpler and equivalent. */
5796 if ((code == NE_EXPR || code == EQ_EXPR)
5797 && integer_zerop (arg1)
5798 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
5799 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
5800 || TREE_CODE (arg0) == CEIL_MOD_EXPR
5801 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
5802 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
5803 && integer_pow2p (TREE_OPERAND (arg0, 1)))
5805 tree newtype = unsigned_type (TREE_TYPE (arg0));
5806 tree newmod = build (TREE_CODE (arg0), newtype,
5807 convert (newtype, TREE_OPERAND (arg0, 0)),
5808 convert (newtype, TREE_OPERAND (arg0, 1)));
5810 return build (code, type, newmod, convert (newtype, arg1));
5813 /* If this is an NE comparison of zero with an AND of one, remove the
5814 comparison since the AND will give the correct value. */
5815 if (code == NE_EXPR && integer_zerop (arg1)
5816 && TREE_CODE (arg0) == BIT_AND_EXPR
5817 && integer_onep (TREE_OPERAND (arg0, 1)))
5818 return convert (type, arg0);
5820 /* If we have (A & C) == C where C is a power of 2, convert this into
5821 (A & C) != 0. Similarly for NE_EXPR. */
5822 if ((code == EQ_EXPR || code == NE_EXPR)
5823 && TREE_CODE (arg0) == BIT_AND_EXPR
5824 && integer_pow2p (TREE_OPERAND (arg0, 1))
5825 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
5826 return build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
5827 arg0, integer_zero_node);
5829 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
5830 and similarly for >= into !=. */
5831 if ((code == LT_EXPR || code == GE_EXPR)
5832 && TREE_UNSIGNED (TREE_TYPE (arg0))
5833 && TREE_CODE (arg1) == LSHIFT_EXPR
5834 && integer_onep (TREE_OPERAND (arg1, 0)))
5835 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
5836 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
5837 TREE_OPERAND (arg1, 1)),
5838 convert (TREE_TYPE (arg0), integer_zero_node));
5840 else if ((code == LT_EXPR || code == GE_EXPR)
5841 && TREE_UNSIGNED (TREE_TYPE (arg0))
5842 && (TREE_CODE (arg1) == NOP_EXPR
5843 || TREE_CODE (arg1) == CONVERT_EXPR)
5844 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
5845 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
5846 return
5847 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
5848 convert (TREE_TYPE (arg0),
5849 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
5850 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
5851 convert (TREE_TYPE (arg0), integer_zero_node));
5853 /* Simplify comparison of something with itself. (For IEEE
5854 floating-point, we can only do some of these simplifications.) */
5855 if (operand_equal_p (arg0, arg1, 0))
5857 switch (code)
5859 case EQ_EXPR:
5860 case GE_EXPR:
5861 case LE_EXPR:
5862 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
5863 return constant_boolean_node (1, type);
5864 code = EQ_EXPR;
5865 TREE_SET_CODE (t, code);
5866 break;
5868 case NE_EXPR:
5869 /* For NE, we can only do this simplification if integer. */
5870 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
5871 break;
5872 /* ... fall through ... */
5873 case GT_EXPR:
5874 case LT_EXPR:
5875 return constant_boolean_node (0, type);
5876 default:
5877 abort ();
5881 /* An unsigned comparison against 0 can be simplified. */
5882 if (integer_zerop (arg1)
5883 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
5884 || POINTER_TYPE_P (TREE_TYPE (arg1)))
5885 && TREE_UNSIGNED (TREE_TYPE (arg1)))
5887 switch (TREE_CODE (t))
5889 case GT_EXPR:
5890 code = NE_EXPR;
5891 TREE_SET_CODE (t, NE_EXPR);
5892 break;
5893 case LE_EXPR:
5894 code = EQ_EXPR;
5895 TREE_SET_CODE (t, EQ_EXPR);
5896 break;
5897 case GE_EXPR:
5898 return omit_one_operand (type,
5899 convert (type, integer_one_node),
5900 arg0);
5901 case LT_EXPR:
5902 return omit_one_operand (type,
5903 convert (type, integer_zero_node),
5904 arg0);
5905 default:
5906 break;
5910 /* An unsigned <= 0x7fffffff can be simplified. */
5912 int width = TYPE_PRECISION (TREE_TYPE (arg1));
5913 if (TREE_CODE (arg1) == INTEGER_CST
5914 && ! TREE_CONSTANT_OVERFLOW (arg1)
5915 && width <= HOST_BITS_PER_WIDE_INT
5916 && TREE_INT_CST_LOW (arg1) == ((HOST_WIDE_INT) 1 << (width - 1)) - 1
5917 && TREE_INT_CST_HIGH (arg1) == 0
5918 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
5919 || POINTER_TYPE_P (TREE_TYPE (arg1)))
5920 && TREE_UNSIGNED (TREE_TYPE (arg1)))
5922 switch (TREE_CODE (t))
5924 case LE_EXPR:
5925 return fold (build (GE_EXPR, type,
5926 convert (signed_type (TREE_TYPE (arg0)),
5927 arg0),
5928 convert (signed_type (TREE_TYPE (arg1)),
5929 integer_zero_node)));
5930 case GT_EXPR:
5931 return fold (build (LT_EXPR, type,
5932 convert (signed_type (TREE_TYPE (arg0)),
5933 arg0),
5934 convert (signed_type (TREE_TYPE (arg1)),
5935 integer_zero_node)));
5936 default:
5937 break;
5942 /* If we are comparing an expression that just has comparisons
5943 of two integer values, arithmetic expressions of those comparisons,
5944 and constants, we can simplify it. There are only three cases
5945 to check: the two values can either be equal, the first can be
5946 greater, or the second can be greater. Fold the expression for
5947 those three values. Since each value must be 0 or 1, we have
5948 eight possibilities, each of which corresponds to the constant 0
5949 or 1 or one of the six possible comparisons.
5951 This handles common cases like (a > b) == 0 but also handles
5952 expressions like ((x > y) - (y > x)) > 0, which supposedly
5953 occur in macroized code. */
5955 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
5957 tree cval1 = 0, cval2 = 0;
5958 int save_p = 0;
5960 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
5961 /* Don't handle degenerate cases here; they should already
5962 have been handled anyway. */
5963 && cval1 != 0 && cval2 != 0
5964 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
5965 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
5966 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
5967 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
5968 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
5969 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
5970 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
5972 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
5973 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
5975 /* We can't just pass T to eval_subst in case cval1 or cval2
5976 was the same as ARG1. */
5978 tree high_result
5979 = fold (build (code, type,
5980 eval_subst (arg0, cval1, maxval, cval2, minval),
5981 arg1));
5982 tree equal_result
5983 = fold (build (code, type,
5984 eval_subst (arg0, cval1, maxval, cval2, maxval),
5985 arg1));
5986 tree low_result
5987 = fold (build (code, type,
5988 eval_subst (arg0, cval1, minval, cval2, maxval),
5989 arg1));
5991 /* All three of these results should be 0 or 1. Confirm they
5992 are. Then use those values to select the proper code
5993 to use. */
5995 if ((integer_zerop (high_result)
5996 || integer_onep (high_result))
5997 && (integer_zerop (equal_result)
5998 || integer_onep (equal_result))
5999 && (integer_zerop (low_result)
6000 || integer_onep (low_result)))
6002 /* Make a 3-bit mask with the high-order bit being the
6003 value for `>', the next for '=', and the low for '<'. */
6004 switch ((integer_onep (high_result) * 4)
6005 + (integer_onep (equal_result) * 2)
6006 + integer_onep (low_result))
6008 case 0:
6009 /* Always false. */
6010 return omit_one_operand (type, integer_zero_node, arg0);
6011 case 1:
6012 code = LT_EXPR;
6013 break;
6014 case 2:
6015 code = EQ_EXPR;
6016 break;
6017 case 3:
6018 code = LE_EXPR;
6019 break;
6020 case 4:
6021 code = GT_EXPR;
6022 break;
6023 case 5:
6024 code = NE_EXPR;
6025 break;
6026 case 6:
6027 code = GE_EXPR;
6028 break;
6029 case 7:
6030 /* Always true. */
6031 return omit_one_operand (type, integer_one_node, arg0);
6034 t = build (code, type, cval1, cval2);
6035 if (save_p)
6036 return save_expr (t);
6037 else
6038 return fold (t);
6043 /* If this is a comparison of a field, we may be able to simplify it. */
6044 if ((TREE_CODE (arg0) == COMPONENT_REF
6045 || TREE_CODE (arg0) == BIT_FIELD_REF)
6046 && (code == EQ_EXPR || code == NE_EXPR)
6047 /* Handle the constant case even without -O
6048 to make sure the warnings are given. */
6049 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
6051 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
6052 return t1 ? t1 : t;
6055 /* If this is a comparison of complex values and either or both sides
6056 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
6057 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
6058 This may prevent needless evaluations. */
6059 if ((code == EQ_EXPR || code == NE_EXPR)
6060 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
6061 && (TREE_CODE (arg0) == COMPLEX_EXPR
6062 || TREE_CODE (arg1) == COMPLEX_EXPR
6063 || TREE_CODE (arg0) == COMPLEX_CST
6064 || TREE_CODE (arg1) == COMPLEX_CST))
6066 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
6067 tree real0, imag0, real1, imag1;
6069 arg0 = save_expr (arg0);
6070 arg1 = save_expr (arg1);
6071 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
6072 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
6073 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
6074 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
6076 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
6077 : TRUTH_ORIF_EXPR),
6078 type,
6079 fold (build (code, type, real0, real1)),
6080 fold (build (code, type, imag0, imag1))));
6083 /* From here on, the only cases we handle are when the result is
6084 known to be a constant.
6086 To compute GT, swap the arguments and do LT.
6087 To compute GE, do LT and invert the result.
6088 To compute LE, swap the arguments, do LT and invert the result.
6089 To compute NE, do EQ and invert the result.
6091 Therefore, the code below must handle only EQ and LT. */
6093 if (code == LE_EXPR || code == GT_EXPR)
6095 tem = arg0, arg0 = arg1, arg1 = tem;
6096 code = swap_tree_comparison (code);
6099 /* Note that it is safe to invert for real values here because we
6100 will check below in the one case that it matters. */
6102 invert = 0;
6103 if (code == NE_EXPR || code == GE_EXPR)
6105 invert = 1;
6106 code = invert_tree_comparison (code);
6109 /* Compute a result for LT or EQ if args permit;
6110 otherwise return T. */
6111 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
6113 if (code == EQ_EXPR)
6114 t1 = build_int_2 ((TREE_INT_CST_LOW (arg0)
6115 == TREE_INT_CST_LOW (arg1))
6116 && (TREE_INT_CST_HIGH (arg0)
6117 == TREE_INT_CST_HIGH (arg1)),
6119 else
6120 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
6121 ? INT_CST_LT_UNSIGNED (arg0, arg1)
6122 : INT_CST_LT (arg0, arg1)),
6126 #if 0 /* This is no longer useful, but breaks some real code. */
6127 /* Assume a nonexplicit constant cannot equal an explicit one,
6128 since such code would be undefined anyway.
6129 Exception: on sysvr4, using #pragma weak,
6130 a label can come out as 0. */
6131 else if (TREE_CODE (arg1) == INTEGER_CST
6132 && !integer_zerop (arg1)
6133 && TREE_CONSTANT (arg0)
6134 && TREE_CODE (arg0) == ADDR_EXPR
6135 && code == EQ_EXPR)
6136 t1 = build_int_2 (0, 0);
6137 #endif
6138 /* Two real constants can be compared explicitly. */
6139 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
6141 /* If either operand is a NaN, the result is false with two
6142 exceptions: First, an NE_EXPR is true on NaNs, but that case
6143 is already handled correctly since we will be inverting the
6144 result for NE_EXPR. Second, if we had inverted a LE_EXPR
6145 or a GE_EXPR into a LT_EXPR, we must return true so that it
6146 will be inverted into false. */
6148 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
6149 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
6150 t1 = build_int_2 (invert && code == LT_EXPR, 0);
6152 else if (code == EQ_EXPR)
6153 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
6154 TREE_REAL_CST (arg1)),
6156 else
6157 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
6158 TREE_REAL_CST (arg1)),
6162 if (t1 == NULL_TREE)
6163 return t;
6165 if (invert)
6166 TREE_INT_CST_LOW (t1) ^= 1;
6168 TREE_TYPE (t1) = type;
6169 if (TREE_CODE (type) == BOOLEAN_TYPE)
6170 return truthvalue_conversion (t1);
6171 return t1;
6173 case COND_EXPR:
6174 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
6175 so all simple results must be passed through pedantic_non_lvalue. */
6176 if (TREE_CODE (arg0) == INTEGER_CST)
6177 return pedantic_non_lvalue
6178 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
6179 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
6180 return pedantic_omit_one_operand (type, arg1, arg0);
6182 /* If the second operand is zero, invert the comparison and swap
6183 the second and third operands. Likewise if the second operand
6184 is constant and the third is not or if the third operand is
6185 equivalent to the first operand of the comparison. */
6187 if (integer_zerop (arg1)
6188 || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
6189 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
6190 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
6191 TREE_OPERAND (t, 2),
6192 TREE_OPERAND (arg0, 1))))
6194 /* See if this can be inverted. If it can't, possibly because
6195 it was a floating-point inequality comparison, don't do
6196 anything. */
6197 tem = invert_truthvalue (arg0);
6199 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
6201 t = build (code, type, tem,
6202 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
6203 arg0 = tem;
6204 /* arg1 should be the first argument of the new T. */
6205 arg1 = TREE_OPERAND (t, 1);
6206 STRIP_NOPS (arg1);
6210 /* If we have A op B ? A : C, we may be able to convert this to a
6211 simpler expression, depending on the operation and the values
6212 of B and C. IEEE floating point prevents this though,
6213 because A or B might be -0.0 or a NaN. */
6215 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
6216 && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
6217 || ! FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
6218 || flag_fast_math)
6219 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
6220 arg1, TREE_OPERAND (arg0, 1)))
6222 tree arg2 = TREE_OPERAND (t, 2);
6223 enum tree_code comp_code = TREE_CODE (arg0);
6225 STRIP_NOPS (arg2);
6227 /* If we have A op 0 ? A : -A, this is A, -A, abs (A), or abs (-A),
6228 depending on the comparison operation. */
6229 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
6230 ? real_zerop (TREE_OPERAND (arg0, 1))
6231 : integer_zerop (TREE_OPERAND (arg0, 1)))
6232 && TREE_CODE (arg2) == NEGATE_EXPR
6233 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
6234 switch (comp_code)
6236 case EQ_EXPR:
6237 return pedantic_non_lvalue
6238 (fold (build1 (NEGATE_EXPR, type, arg1)));
6239 case NE_EXPR:
6240 return pedantic_non_lvalue (convert (type, arg1));
6241 case GE_EXPR:
6242 case GT_EXPR:
6243 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6244 arg1 = convert (signed_type (TREE_TYPE (arg1)), arg1);
6245 return pedantic_non_lvalue
6246 (convert (type, fold (build1 (ABS_EXPR,
6247 TREE_TYPE (arg1), arg1))));
6248 case LE_EXPR:
6249 case LT_EXPR:
6250 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6251 arg1 = convert (signed_type (TREE_TYPE (arg1)), arg1);
6252 return pedantic_non_lvalue
6253 (fold (build1 (NEGATE_EXPR, type,
6254 convert (type,
6255 fold (build1 (ABS_EXPR,
6256 TREE_TYPE (arg1),
6257 arg1))))));
6258 default:
6259 abort ();
6262 /* If this is A != 0 ? A : 0, this is simply A. For ==, it is
6263 always zero. */
6265 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
6267 if (comp_code == NE_EXPR)
6268 return pedantic_non_lvalue (convert (type, arg1));
6269 else if (comp_code == EQ_EXPR)
6270 return pedantic_non_lvalue (convert (type, integer_zero_node));
6273 /* If this is A op B ? A : B, this is either A, B, min (A, B),
6274 or max (A, B), depending on the operation. */
6276 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
6277 arg2, TREE_OPERAND (arg0, 0)))
6279 tree comp_op0 = TREE_OPERAND (arg0, 0);
6280 tree comp_op1 = TREE_OPERAND (arg0, 1);
6281 tree comp_type = TREE_TYPE (comp_op0);
6283 switch (comp_code)
6285 case EQ_EXPR:
6286 return pedantic_non_lvalue (convert (type, arg2));
6287 case NE_EXPR:
6288 return pedantic_non_lvalue (convert (type, arg1));
6289 case LE_EXPR:
6290 case LT_EXPR:
6291 /* In C++ a ?: expression can be an lvalue, so put the
6292 operand which will be used if they are equal first
6293 so that we can convert this back to the
6294 corresponding COND_EXPR. */
6295 return pedantic_non_lvalue
6296 (convert (type, (fold (build (MIN_EXPR, comp_type,
6297 (comp_code == LE_EXPR
6298 ? comp_op0 : comp_op1),
6299 (comp_code == LE_EXPR
6300 ? comp_op1 : comp_op0))))));
6301 break;
6302 case GE_EXPR:
6303 case GT_EXPR:
6304 return pedantic_non_lvalue
6305 (convert (type, fold (build (MAX_EXPR, comp_type,
6306 (comp_code == GE_EXPR
6307 ? comp_op0 : comp_op1),
6308 (comp_code == GE_EXPR
6309 ? comp_op1 : comp_op0)))));
6310 break;
6311 default:
6312 abort ();
6316 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
6317 we might still be able to simplify this. For example,
6318 if C1 is one less or one more than C2, this might have started
6319 out as a MIN or MAX and been transformed by this function.
6320 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
6322 if (INTEGRAL_TYPE_P (type)
6323 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6324 && TREE_CODE (arg2) == INTEGER_CST)
6325 switch (comp_code)
6327 case EQ_EXPR:
6328 /* We can replace A with C1 in this case. */
6329 arg1 = convert (type, TREE_OPERAND (arg0, 1));
6330 t = build (code, type, TREE_OPERAND (t, 0), arg1,
6331 TREE_OPERAND (t, 2));
6332 break;
6334 case LT_EXPR:
6335 /* If C1 is C2 + 1, this is min(A, C2). */
6336 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
6337 && operand_equal_p (TREE_OPERAND (arg0, 1),
6338 const_binop (PLUS_EXPR, arg2,
6339 integer_one_node, 0), 1))
6340 return pedantic_non_lvalue
6341 (fold (build (MIN_EXPR, type, arg1, arg2)));
6342 break;
6344 case LE_EXPR:
6345 /* If C1 is C2 - 1, this is min(A, C2). */
6346 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
6347 && operand_equal_p (TREE_OPERAND (arg0, 1),
6348 const_binop (MINUS_EXPR, arg2,
6349 integer_one_node, 0), 1))
6350 return pedantic_non_lvalue
6351 (fold (build (MIN_EXPR, type, arg1, arg2)));
6352 break;
6354 case GT_EXPR:
6355 /* If C1 is C2 - 1, this is max(A, C2). */
6356 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
6357 && operand_equal_p (TREE_OPERAND (arg0, 1),
6358 const_binop (MINUS_EXPR, arg2,
6359 integer_one_node, 0), 1))
6360 return pedantic_non_lvalue
6361 (fold (build (MAX_EXPR, type, arg1, arg2)));
6362 break;
6364 case GE_EXPR:
6365 /* If C1 is C2 + 1, this is max(A, C2). */
6366 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
6367 && operand_equal_p (TREE_OPERAND (arg0, 1),
6368 const_binop (PLUS_EXPR, arg2,
6369 integer_one_node, 0), 1))
6370 return pedantic_non_lvalue
6371 (fold (build (MAX_EXPR, type, arg1, arg2)));
6372 break;
6373 case NE_EXPR:
6374 break;
6375 default:
6376 abort ();
6380 /* If the second operand is simpler than the third, swap them
6381 since that produces better jump optimization results. */
6382 if ((TREE_CONSTANT (arg1) || TREE_CODE_CLASS (TREE_CODE (arg1)) == 'd'
6383 || TREE_CODE (arg1) == SAVE_EXPR)
6384 && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
6385 || TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (t, 2))) == 'd'
6386 || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
6388 /* See if this can be inverted. If it can't, possibly because
6389 it was a floating-point inequality comparison, don't do
6390 anything. */
6391 tem = invert_truthvalue (arg0);
6393 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
6395 t = build (code, type, tem,
6396 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
6397 arg0 = tem;
6398 /* arg1 should be the first argument of the new T. */
6399 arg1 = TREE_OPERAND (t, 1);
6400 STRIP_NOPS (arg1);
6404 /* Convert A ? 1 : 0 to simply A. */
6405 if (integer_onep (TREE_OPERAND (t, 1))
6406 && integer_zerop (TREE_OPERAND (t, 2))
6407 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
6408 call to fold will try to move the conversion inside
6409 a COND, which will recurse. In that case, the COND_EXPR
6410 is probably the best choice, so leave it alone. */
6411 && type == TREE_TYPE (arg0))
6412 return pedantic_non_lvalue (arg0);
6414 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
6415 operation is simply A & 2. */
6417 if (integer_zerop (TREE_OPERAND (t, 2))
6418 && TREE_CODE (arg0) == NE_EXPR
6419 && integer_zerop (TREE_OPERAND (arg0, 1))
6420 && integer_pow2p (arg1)
6421 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
6422 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
6423 arg1, 1))
6424 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
6426 return t;
6428 case COMPOUND_EXPR:
6429 /* When pedantic, a compound expression can be neither an lvalue
6430 nor an integer constant expression. */
6431 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
6432 return t;
6433 /* Don't let (0, 0) be null pointer constant. */
6434 if (integer_zerop (arg1))
6435 return build1 (NOP_EXPR, TREE_TYPE (arg1), arg1);
6436 return arg1;
6438 case COMPLEX_EXPR:
6439 if (wins)
6440 return build_complex (type, arg0, arg1);
6441 return t;
6443 case REALPART_EXPR:
6444 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
6445 return t;
6446 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
6447 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
6448 TREE_OPERAND (arg0, 1));
6449 else if (TREE_CODE (arg0) == COMPLEX_CST)
6450 return TREE_REALPART (arg0);
6451 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
6452 return fold (build (TREE_CODE (arg0), type,
6453 fold (build1 (REALPART_EXPR, type,
6454 TREE_OPERAND (arg0, 0))),
6455 fold (build1 (REALPART_EXPR,
6456 type, TREE_OPERAND (arg0, 1)))));
6457 return t;
6459 case IMAGPART_EXPR:
6460 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
6461 return convert (type, integer_zero_node);
6462 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
6463 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
6464 TREE_OPERAND (arg0, 0));
6465 else if (TREE_CODE (arg0) == COMPLEX_CST)
6466 return TREE_IMAGPART (arg0);
6467 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
6468 return fold (build (TREE_CODE (arg0), type,
6469 fold (build1 (IMAGPART_EXPR, type,
6470 TREE_OPERAND (arg0, 0))),
6471 fold (build1 (IMAGPART_EXPR, type,
6472 TREE_OPERAND (arg0, 1)))));
6473 return t;
6475 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
6476 appropriate. */
6477 case CLEANUP_POINT_EXPR:
6478 if (! has_cleanups (arg0))
6479 return TREE_OPERAND (t, 0);
6482 enum tree_code code0 = TREE_CODE (arg0);
6483 int kind0 = TREE_CODE_CLASS (code0);
6484 tree arg00 = TREE_OPERAND (arg0, 0);
6485 tree arg01;
6487 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
6488 return fold (build1 (code0, type,
6489 fold (build1 (CLEANUP_POINT_EXPR,
6490 TREE_TYPE (arg00), arg00))));
6492 if (kind0 == '<' || kind0 == '2'
6493 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
6494 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
6495 || code0 == TRUTH_XOR_EXPR)
6497 arg01 = TREE_OPERAND (arg0, 1);
6499 if (TREE_CONSTANT (arg00)
6500 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
6501 && ! has_cleanups (arg00)))
6502 return fold (build (code0, type, arg00,
6503 fold (build1 (CLEANUP_POINT_EXPR,
6504 TREE_TYPE (arg01), arg01))));
6506 if (TREE_CONSTANT (arg01))
6507 return fold (build (code0, type,
6508 fold (build1 (CLEANUP_POINT_EXPR,
6509 TREE_TYPE (arg00), arg00)),
6510 arg01));
6513 return t;
6516 default:
6517 return t;
6518 } /* switch (code) */
6521 /* Determine if first argument is a multiple of second argument.
6522 Return 0 if it is not, or is not easily determined to so be.
6524 An example of the sort of thing we care about (at this point --
6525 this routine could surely be made more general, and expanded
6526 to do what the *_DIV_EXPR's fold() cases do now) is discovering
6527 that
6529 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
6531 is a multiple of
6533 SAVE_EXPR (J * 8)
6535 when we know that the two `SAVE_EXPR (J * 8)' nodes are the
6536 same node (which means they will have the same value at run
6537 time, even though we don't know when they'll be assigned).
6539 This code also handles discovering that
6541 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
6543 is a multiple of
6547 (of course) so we don't have to worry about dealing with a
6548 possible remainder.
6550 Note that we _look_ inside a SAVE_EXPR only to determine
6551 how it was calculated; it is not safe for fold() to do much
6552 of anything else with the internals of a SAVE_EXPR, since
6553 fold() cannot know when it will be evaluated at run time.
6554 For example, the latter example above _cannot_ be implemented
6557 SAVE_EXPR (I) * J
6559 or any variant thereof, since the value of J at evaluation time
6560 of the original SAVE_EXPR is not necessarily the same at the time
6561 the new expression is evaluated. The only optimization of this
6562 sort that would be valid is changing
6564 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
6565 divided by
6570 SAVE_EXPR (I) * SAVE_EXPR (J)
6572 (where the same SAVE_EXPR (J) is used in the original and the
6573 transformed version). */
6575 static int
6576 multiple_of_p (type, top, bottom)
6577 tree type;
6578 tree top;
6579 tree bottom;
6581 if (operand_equal_p (top, bottom, 0))
6582 return 1;
6584 if (TREE_CODE (type) != INTEGER_TYPE)
6585 return 0;
6587 switch (TREE_CODE (top))
6589 case MULT_EXPR:
6590 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
6591 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
6593 case PLUS_EXPR:
6594 case MINUS_EXPR:
6595 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
6596 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
6598 case NOP_EXPR:
6599 /* Punt if conversion from non-integral or wider integral type. */
6600 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
6601 || (TYPE_PRECISION (type)
6602 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
6603 return 0;
6604 /* Fall through. */
6605 case SAVE_EXPR:
6606 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
6608 case INTEGER_CST:
6609 if ((TREE_CODE (bottom) != INTEGER_CST)
6610 || (tree_int_cst_sgn (top) < 0)
6611 || (tree_int_cst_sgn (bottom) < 0))
6612 return 0;
6613 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
6614 top, bottom, 0));
6616 default:
6617 return 0;