PR tree-optimization/36329
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobfbc7a683ec8a349ef9e4da79f681e3db4dffa094
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "ggc.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "tree-dump.h"
35 #include "langhooks.h"
36 #include "pointer-set.h"
37 #include "domwalk.h"
39 static unsigned int tree_ssa_phiopt_worker (bool);
40 static bool conditional_replacement (basic_block, basic_block,
41 edge, edge, tree, tree, tree);
42 static bool value_replacement (basic_block, basic_block,
43 edge, edge, tree, tree, tree);
44 static bool minmax_replacement (basic_block, basic_block,
45 edge, edge, tree, tree, tree);
46 static bool abs_replacement (basic_block, basic_block,
47 edge, edge, tree, tree, tree);
48 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
49 struct pointer_set_t *);
50 static struct pointer_set_t * get_non_trapping (void);
51 static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
53 /* This pass tries to replaces an if-then-else block with an
54 assignment. We have four kinds of transformations. Some of these
55 transformations are also performed by the ifcvt RTL optimizer.
57 Conditional Replacement
58 -----------------------
60 This transformation, implemented in conditional_replacement,
61 replaces
63 bb0:
64 if (cond) goto bb2; else goto bb1;
65 bb1:
66 bb2:
67 x = PHI <0 (bb1), 1 (bb0), ...>;
69 with
71 bb0:
72 x' = cond;
73 goto bb2;
74 bb2:
75 x = PHI <x' (bb0), ...>;
77 We remove bb1 as it becomes unreachable. This occurs often due to
78 gimplification of conditionals.
80 Value Replacement
81 -----------------
83 This transformation, implemented in value_replacement, replaces
85 bb0:
86 if (a != b) goto bb2; else goto bb1;
87 bb1:
88 bb2:
89 x = PHI <a (bb1), b (bb0), ...>;
91 with
93 bb0:
94 bb2:
95 x = PHI <b (bb0), ...>;
97 This opportunity can sometimes occur as a result of other
98 optimizations.
100 ABS Replacement
101 ---------------
103 This transformation, implemented in abs_replacement, replaces
105 bb0:
106 if (a >= 0) goto bb2; else goto bb1;
107 bb1:
108 x = -a;
109 bb2:
110 x = PHI <x (bb1), a (bb0), ...>;
112 with
114 bb0:
115 x' = ABS_EXPR< a >;
116 bb2:
117 x = PHI <x' (bb0), ...>;
119 MIN/MAX Replacement
120 -------------------
122 This transformation, minmax_replacement replaces
124 bb0:
125 if (a <= b) goto bb2; else goto bb1;
126 bb1:
127 bb2:
128 x = PHI <b (bb1), a (bb0), ...>;
130 with
132 bb0:
133 x' = MIN_EXPR (a, b)
134 bb2:
135 x = PHI <x' (bb0), ...>;
137 A similar transformation is done for MAX_EXPR. */
139 static unsigned int
140 tree_ssa_phiopt (void)
142 return tree_ssa_phiopt_worker (false);
145 /* This pass tries to transform conditional stores into unconditional
146 ones, enabling further simplifications with the simpler then and else
147 blocks. In particular it replaces this:
149 bb0:
150 if (cond) goto bb2; else goto bb1;
151 bb1:
152 *p = RHS
153 bb2:
155 with
157 bb0:
158 if (cond) goto bb1; else goto bb2;
159 bb1:
160 condtmp' = *p;
161 bb2:
162 condtmp = PHI <RHS, condtmp'>
163 *p = condtmp
165 This transformation can only be done under several constraints,
166 documented below. */
168 static unsigned int
169 tree_ssa_cs_elim (void)
171 return tree_ssa_phiopt_worker (true);
174 /* For conditional store replacement we need a temporary to
175 put the old contents of the memory in. */
176 static tree condstoretemp;
178 /* The core routine of conditional store replacement and normal
179 phi optimizations. Both share much of the infrastructure in how
180 to match applicable basic block patterns. DO_STORE_ELIM is true
181 when we want to do conditional store replacement, false otherwise. */
182 static unsigned int
183 tree_ssa_phiopt_worker (bool do_store_elim)
185 basic_block bb;
186 basic_block *bb_order;
187 unsigned n, i;
188 bool cfgchanged = false;
189 struct pointer_set_t *nontrap = 0;
191 if (do_store_elim)
193 condstoretemp = NULL_TREE;
194 /* Calculate the set of non-trapping memory accesses. */
195 nontrap = get_non_trapping ();
198 /* Search every basic block for COND_EXPR we may be able to optimize.
200 We walk the blocks in order that guarantees that a block with
201 a single predecessor is processed before the predecessor.
202 This ensures that we collapse inner ifs before visiting the
203 outer ones, and also that we do not try to visit a removed
204 block. */
205 bb_order = blocks_in_phiopt_order ();
206 n = n_basic_blocks - NUM_FIXED_BLOCKS;
208 for (i = 0; i < n; i++)
210 tree cond_expr;
211 tree phi;
212 basic_block bb1, bb2;
213 edge e1, e2;
214 tree arg0, arg1;
216 bb = bb_order[i];
218 cond_expr = last_stmt (bb);
219 /* Check to see if the last statement is a COND_EXPR. */
220 if (!cond_expr
221 || TREE_CODE (cond_expr) != COND_EXPR)
222 continue;
224 e1 = EDGE_SUCC (bb, 0);
225 bb1 = e1->dest;
226 e2 = EDGE_SUCC (bb, 1);
227 bb2 = e2->dest;
229 /* We cannot do the optimization on abnormal edges. */
230 if ((e1->flags & EDGE_ABNORMAL) != 0
231 || (e2->flags & EDGE_ABNORMAL) != 0)
232 continue;
234 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
235 if (EDGE_COUNT (bb1->succs) == 0
236 || bb2 == NULL
237 || EDGE_COUNT (bb2->succs) == 0)
238 continue;
240 /* Find the bb which is the fall through to the other. */
241 if (EDGE_SUCC (bb1, 0)->dest == bb2)
243 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
245 basic_block bb_tmp = bb1;
246 edge e_tmp = e1;
247 bb1 = bb2;
248 bb2 = bb_tmp;
249 e1 = e2;
250 e2 = e_tmp;
252 else
253 continue;
255 e1 = EDGE_SUCC (bb1, 0);
257 /* Make sure that bb1 is just a fall through. */
258 if (!single_succ_p (bb1)
259 || (e1->flags & EDGE_FALLTHRU) == 0)
260 continue;
262 /* Also make sure that bb1 only have one predecessor and that it
263 is bb. */
264 if (!single_pred_p (bb1)
265 || single_pred (bb1) != bb)
266 continue;
268 if (do_store_elim)
270 /* bb1 is the middle block, bb2 the join block, bb the split block,
271 e1 the fallthrough edge from bb1 to bb2. We can't do the
272 optimization if the join block has more than two predecessors. */
273 if (EDGE_COUNT (bb2->preds) > 2)
274 continue;
275 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
276 cfgchanged = true;
278 else
280 phi = phi_nodes (bb2);
282 /* Check to make sure that there is only one PHI node.
283 TODO: we could do it with more than one iff the other PHI nodes
284 have the same elements for these two edges. */
285 if (!phi || PHI_CHAIN (phi) != NULL)
286 continue;
288 arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
289 arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
291 /* Something is wrong if we cannot find the arguments in the PHI
292 node. */
293 gcc_assert (arg0 != NULL && arg1 != NULL);
295 /* Do the replacement of conditional if it can be done. */
296 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
297 cfgchanged = true;
298 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
299 cfgchanged = true;
300 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
301 cfgchanged = true;
302 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
303 cfgchanged = true;
307 free (bb_order);
309 if (do_store_elim)
310 pointer_set_destroy (nontrap);
311 /* If the CFG has changed, we should cleanup the CFG. */
312 if (cfgchanged && do_store_elim)
314 /* In cond-store replacement we have added some loads on edges
315 and new VOPS (as we moved the store, and created a load). */
316 bsi_commit_edge_inserts ();
317 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
319 else if (cfgchanged)
320 return TODO_cleanup_cfg;
321 return 0;
324 /* Returns the list of basic blocks in the function in an order that guarantees
325 that if a block X has just a single predecessor Y, then Y is after X in the
326 ordering. */
328 basic_block *
329 blocks_in_phiopt_order (void)
331 basic_block x, y;
332 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
333 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
334 unsigned np, i;
335 sbitmap visited = sbitmap_alloc (last_basic_block);
337 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
338 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
340 sbitmap_zero (visited);
342 MARK_VISITED (ENTRY_BLOCK_PTR);
343 FOR_EACH_BB (x)
345 if (VISITED_P (x))
346 continue;
348 /* Walk the predecessors of x as long as they have precisely one
349 predecessor and add them to the list, so that they get stored
350 after x. */
351 for (y = x, np = 1;
352 single_pred_p (y) && !VISITED_P (single_pred (y));
353 y = single_pred (y))
354 np++;
355 for (y = x, i = n - np;
356 single_pred_p (y) && !VISITED_P (single_pred (y));
357 y = single_pred (y), i++)
359 order[i] = y;
360 MARK_VISITED (y);
362 order[i] = y;
363 MARK_VISITED (y);
365 gcc_assert (i == n - 1);
366 n -= np;
369 sbitmap_free (visited);
370 gcc_assert (n == 0);
371 return order;
373 #undef MARK_VISITED
374 #undef VISITED_P
378 /* Return TRUE if block BB has no executable statements, otherwise return
379 FALSE. */
381 bool
382 empty_block_p (basic_block bb)
384 block_stmt_iterator bsi;
386 /* BB must have no executable statements. */
387 bsi = bsi_start (bb);
388 while (!bsi_end_p (bsi)
389 && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
390 || IS_EMPTY_STMT (bsi_stmt (bsi))))
391 bsi_next (&bsi);
393 if (!bsi_end_p (bsi))
394 return false;
396 return true;
399 /* Replace PHI node element whose edge is E in block BB with variable NEW.
400 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
401 is known to have two edges, one of which must reach BB). */
403 static void
404 replace_phi_edge_with_variable (basic_block cond_block,
405 edge e, tree phi, tree new_tree)
407 basic_block bb = bb_for_stmt (phi);
408 basic_block block_to_remove;
409 block_stmt_iterator bsi;
411 /* Change the PHI argument to new. */
412 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
414 /* Remove the empty basic block. */
415 if (EDGE_SUCC (cond_block, 0)->dest == bb)
417 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
418 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
419 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
420 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
422 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
424 else
426 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
427 EDGE_SUCC (cond_block, 1)->flags
428 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
429 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
430 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
432 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
434 delete_basic_block (block_to_remove);
436 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
437 bsi = bsi_last (cond_block);
438 bsi_remove (&bsi, true);
440 if (dump_file && (dump_flags & TDF_DETAILS))
441 fprintf (dump_file,
442 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
443 cond_block->index,
444 bb->index);
447 /* The function conditional_replacement does the main work of doing the
448 conditional replacement. Return true if the replacement is done.
449 Otherwise return false.
450 BB is the basic block where the replacement is going to be done on. ARG0
451 is argument 0 from PHI. Likewise for ARG1. */
453 static bool
454 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
455 edge e0, edge e1, tree phi,
456 tree arg0, tree arg1)
458 tree result;
459 tree old_result = NULL;
460 tree new_stmt, cond;
461 block_stmt_iterator bsi;
462 edge true_edge, false_edge;
463 tree new_var = NULL;
464 tree new_var1;
466 /* FIXME: Gimplification of complex type is too hard for now. */
467 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
468 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
469 return false;
471 /* The PHI arguments have the constants 0 and 1, then convert
472 it to the conditional. */
473 if ((integer_zerop (arg0) && integer_onep (arg1))
474 || (integer_zerop (arg1) && integer_onep (arg0)))
476 else
477 return false;
479 if (!empty_block_p (middle_bb))
480 return false;
482 /* If the condition is not a naked SSA_NAME and its type does not
483 match the type of the result, then we have to create a new
484 variable to optimize this case as it would likely create
485 non-gimple code when the condition was converted to the
486 result's type. */
487 cond = COND_EXPR_COND (last_stmt (cond_bb));
488 result = PHI_RESULT (phi);
489 if (TREE_CODE (cond) != SSA_NAME
490 && !useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (cond)))
492 tree tmp;
494 if (!COMPARISON_CLASS_P (cond))
495 return false;
497 tmp = create_tmp_var (TREE_TYPE (cond), NULL);
498 add_referenced_var (tmp);
499 new_var = make_ssa_name (tmp, NULL);
500 old_result = cond;
501 cond = new_var;
504 /* If the condition was a naked SSA_NAME and the type is not the
505 same as the type of the result, then convert the type of the
506 condition. */
507 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (cond)))
508 cond = fold_convert (TREE_TYPE (result), cond);
510 /* We need to know which is the true edge and which is the false
511 edge so that we know when to invert the condition below. */
512 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
514 /* Insert our new statement at the end of conditional block before the
515 COND_EXPR. */
516 bsi = bsi_last (cond_bb);
517 bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
519 if (old_result)
521 tree new1;
523 new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
524 TREE_OPERAND (old_result, 0),
525 TREE_OPERAND (old_result, 1));
527 new1 = build_gimple_modify_stmt (new_var, new1);
528 SSA_NAME_DEF_STMT (new_var) = new1;
530 bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
533 new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
536 /* At this point we know we have a COND_EXPR with two successors.
537 One successor is BB, the other successor is an empty block which
538 falls through into BB.
540 There is a single PHI node at the join point (BB) and its arguments
541 are constants (0, 1).
543 So, given the condition COND, and the two PHI arguments, we can
544 rewrite this PHI into non-branching code:
546 dest = (COND) or dest = COND'
548 We use the condition as-is if the argument associated with the
549 true edge has the value one or the argument associated with the
550 false edge as the value zero. Note that those conditions are not
551 the same since only one of the outgoing edges from the COND_EXPR
552 will directly reach BB and thus be associated with an argument. */
553 if ((e0 == true_edge && integer_onep (arg0))
554 || (e0 == false_edge && integer_zerop (arg0))
555 || (e1 == true_edge && integer_onep (arg1))
556 || (e1 == false_edge && integer_zerop (arg1)))
558 new_stmt = build_gimple_modify_stmt (new_var1, cond);
560 else
562 tree cond1 = invert_truthvalue (cond);
564 cond = cond1;
566 /* If what we get back is a conditional expression, there is no
567 way that it can be gimple. */
568 if (TREE_CODE (cond) == COND_EXPR)
570 release_ssa_name (new_var1);
571 return false;
574 /* If COND is not something we can expect to be reducible to a GIMPLE
575 condition, return early. */
576 if (is_gimple_cast (cond))
577 cond1 = TREE_OPERAND (cond, 0);
578 if (TREE_CODE (cond1) == TRUTH_NOT_EXPR
579 && !is_gimple_val (TREE_OPERAND (cond1, 0)))
581 release_ssa_name (new_var1);
582 return false;
585 /* If what we get back is not gimple try to create it as gimple by
586 using a temporary variable. */
587 if (is_gimple_cast (cond)
588 && !is_gimple_val (TREE_OPERAND (cond, 0)))
590 tree op0, tmp, cond_tmp;
592 /* Only "real" casts are OK here, not everything that is
593 acceptable to is_gimple_cast. Make sure we don't do
594 anything stupid here. */
595 gcc_assert (CONVERT_EXPR_P (cond));
597 op0 = TREE_OPERAND (cond, 0);
598 tmp = create_tmp_var (TREE_TYPE (op0), NULL);
599 add_referenced_var (tmp);
600 cond_tmp = make_ssa_name (tmp, NULL);
601 new_stmt = build_gimple_modify_stmt (cond_tmp, op0);
602 SSA_NAME_DEF_STMT (cond_tmp) = new_stmt;
604 bsi_insert_after (&bsi, new_stmt, BSI_NEW_STMT);
605 cond = fold_convert (TREE_TYPE (result), cond_tmp);
608 new_stmt = build_gimple_modify_stmt (new_var1, cond);
611 bsi_insert_after (&bsi, new_stmt, BSI_NEW_STMT);
613 SSA_NAME_DEF_STMT (new_var1) = new_stmt;
615 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
617 /* Note that we optimized this PHI. */
618 return true;
621 /* The function value_replacement does the main work of doing the value
622 replacement. Return true if the replacement is done. Otherwise return
623 false.
624 BB is the basic block where the replacement is going to be done on. ARG0
625 is argument 0 from the PHI. Likewise for ARG1. */
627 static bool
628 value_replacement (basic_block cond_bb, basic_block middle_bb,
629 edge e0, edge e1, tree phi,
630 tree arg0, tree arg1)
632 tree cond;
633 edge true_edge, false_edge;
635 /* If the type says honor signed zeros we cannot do this
636 optimization. */
637 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
638 return false;
640 if (!empty_block_p (middle_bb))
641 return false;
643 cond = COND_EXPR_COND (last_stmt (cond_bb));
645 /* This transformation is only valid for equality comparisons. */
646 if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
647 return false;
649 /* We need to know which is the true edge and which is the false
650 edge so that we know if have abs or negative abs. */
651 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
653 /* At this point we know we have a COND_EXPR with two successors.
654 One successor is BB, the other successor is an empty block which
655 falls through into BB.
657 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
659 There is a single PHI node at the join point (BB) with two arguments.
661 We now need to verify that the two arguments in the PHI node match
662 the two arguments to the equality comparison. */
664 if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
665 && operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
666 || (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
667 && operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
669 edge e;
670 tree arg;
672 /* For NE_EXPR, we want to build an assignment result = arg where
673 arg is the PHI argument associated with the true edge. For
674 EQ_EXPR we want the PHI argument associated with the false edge. */
675 e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
677 /* Unfortunately, E may not reach BB (it may instead have gone to
678 OTHER_BLOCK). If that is the case, then we want the single outgoing
679 edge from OTHER_BLOCK which reaches BB and represents the desired
680 path from COND_BLOCK. */
681 if (e->dest == middle_bb)
682 e = single_succ_edge (e->dest);
684 /* Now we know the incoming edge to BB that has the argument for the
685 RHS of our new assignment statement. */
686 if (e0 == e)
687 arg = arg0;
688 else
689 arg = arg1;
691 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
693 /* Note that we optimized this PHI. */
694 return true;
696 return false;
699 /* The function minmax_replacement does the main work of doing the minmax
700 replacement. Return true if the replacement is done. Otherwise return
701 false.
702 BB is the basic block where the replacement is going to be done on. ARG0
703 is argument 0 from the PHI. Likewise for ARG1. */
705 static bool
706 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
707 edge e0, edge e1, tree phi,
708 tree arg0, tree arg1)
710 tree result, type;
711 tree cond, new_stmt;
712 edge true_edge, false_edge;
713 enum tree_code cmp, minmax, ass_code;
714 tree smaller, larger, arg_true, arg_false;
715 block_stmt_iterator bsi, bsi_from;
717 type = TREE_TYPE (PHI_RESULT (phi));
719 /* The optimization may be unsafe due to NaNs. */
720 if (HONOR_NANS (TYPE_MODE (type)))
721 return false;
723 cond = COND_EXPR_COND (last_stmt (cond_bb));
724 cmp = TREE_CODE (cond);
725 result = PHI_RESULT (phi);
727 /* This transformation is only valid for order comparisons. Record which
728 operand is smaller/larger if the result of the comparison is true. */
729 if (cmp == LT_EXPR || cmp == LE_EXPR)
731 smaller = TREE_OPERAND (cond, 0);
732 larger = TREE_OPERAND (cond, 1);
734 else if (cmp == GT_EXPR || cmp == GE_EXPR)
736 smaller = TREE_OPERAND (cond, 1);
737 larger = TREE_OPERAND (cond, 0);
739 else
740 return false;
742 /* We need to know which is the true edge and which is the false
743 edge so that we know if have abs or negative abs. */
744 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
746 /* Forward the edges over the middle basic block. */
747 if (true_edge->dest == middle_bb)
748 true_edge = EDGE_SUCC (true_edge->dest, 0);
749 if (false_edge->dest == middle_bb)
750 false_edge = EDGE_SUCC (false_edge->dest, 0);
752 if (true_edge == e0)
754 gcc_assert (false_edge == e1);
755 arg_true = arg0;
756 arg_false = arg1;
758 else
760 gcc_assert (false_edge == e0);
761 gcc_assert (true_edge == e1);
762 arg_true = arg1;
763 arg_false = arg0;
766 if (empty_block_p (middle_bb))
768 if (operand_equal_for_phi_arg_p (arg_true, smaller)
769 && operand_equal_for_phi_arg_p (arg_false, larger))
771 /* Case
773 if (smaller < larger)
774 rslt = smaller;
775 else
776 rslt = larger; */
777 minmax = MIN_EXPR;
779 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
780 && operand_equal_for_phi_arg_p (arg_true, larger))
781 minmax = MAX_EXPR;
782 else
783 return false;
785 else
787 /* Recognize the following case, assuming d <= u:
789 if (a <= u)
790 b = MAX (a, d);
791 x = PHI <b, u>
793 This is equivalent to
795 b = MAX (a, d);
796 x = MIN (b, u); */
798 tree assign = last_and_only_stmt (middle_bb);
799 tree lhs, rhs, op0, op1, bound;
801 if (!assign
802 || TREE_CODE (assign) != GIMPLE_MODIFY_STMT)
803 return false;
805 lhs = GIMPLE_STMT_OPERAND (assign, 0);
806 rhs = GIMPLE_STMT_OPERAND (assign, 1);
807 ass_code = TREE_CODE (rhs);
808 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
809 return false;
810 op0 = TREE_OPERAND (rhs, 0);
811 op1 = TREE_OPERAND (rhs, 1);
813 if (true_edge->src == middle_bb)
815 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
816 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
817 return false;
819 if (operand_equal_for_phi_arg_p (arg_false, larger))
821 /* Case
823 if (smaller < larger)
825 r' = MAX_EXPR (smaller, bound)
827 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
828 if (ass_code != MAX_EXPR)
829 return false;
831 minmax = MIN_EXPR;
832 if (operand_equal_for_phi_arg_p (op0, smaller))
833 bound = op1;
834 else if (operand_equal_for_phi_arg_p (op1, smaller))
835 bound = op0;
836 else
837 return false;
839 /* We need BOUND <= LARGER. */
840 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
841 bound, larger)))
842 return false;
844 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
846 /* Case
848 if (smaller < larger)
850 r' = MIN_EXPR (larger, bound)
852 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
853 if (ass_code != MIN_EXPR)
854 return false;
856 minmax = MAX_EXPR;
857 if (operand_equal_for_phi_arg_p (op0, larger))
858 bound = op1;
859 else if (operand_equal_for_phi_arg_p (op1, larger))
860 bound = op0;
861 else
862 return false;
864 /* We need BOUND >= SMALLER. */
865 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
866 bound, smaller)))
867 return false;
869 else
870 return false;
872 else
874 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
875 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
876 return false;
878 if (operand_equal_for_phi_arg_p (arg_true, larger))
880 /* Case
882 if (smaller > larger)
884 r' = MIN_EXPR (smaller, bound)
886 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
887 if (ass_code != MIN_EXPR)
888 return false;
890 minmax = MAX_EXPR;
891 if (operand_equal_for_phi_arg_p (op0, smaller))
892 bound = op1;
893 else if (operand_equal_for_phi_arg_p (op1, smaller))
894 bound = op0;
895 else
896 return false;
898 /* We need BOUND >= LARGER. */
899 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
900 bound, larger)))
901 return false;
903 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
905 /* Case
907 if (smaller > larger)
909 r' = MAX_EXPR (larger, bound)
911 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
912 if (ass_code != MAX_EXPR)
913 return false;
915 minmax = MIN_EXPR;
916 if (operand_equal_for_phi_arg_p (op0, larger))
917 bound = op1;
918 else if (operand_equal_for_phi_arg_p (op1, larger))
919 bound = op0;
920 else
921 return false;
923 /* We need BOUND <= SMALLER. */
924 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
925 bound, smaller)))
926 return false;
928 else
929 return false;
932 /* Move the statement from the middle block. */
933 bsi = bsi_last (cond_bb);
934 bsi_from = bsi_last (middle_bb);
935 bsi_move_before (&bsi_from, &bsi);
938 /* Emit the statement to compute min/max. */
939 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
940 new_stmt = build_gimple_modify_stmt (result, build2 (minmax, type, arg0, arg1));
941 SSA_NAME_DEF_STMT (result) = new_stmt;
942 bsi = bsi_last (cond_bb);
943 bsi_insert_before (&bsi, new_stmt, BSI_NEW_STMT);
945 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
946 return true;
949 /* The function absolute_replacement does the main work of doing the absolute
950 replacement. Return true if the replacement is done. Otherwise return
951 false.
952 bb is the basic block where the replacement is going to be done on. arg0
953 is argument 0 from the phi. Likewise for arg1. */
955 static bool
956 abs_replacement (basic_block cond_bb, basic_block middle_bb,
957 edge e0 ATTRIBUTE_UNUSED, edge e1,
958 tree phi, tree arg0, tree arg1)
960 tree result;
961 tree new_stmt, cond;
962 block_stmt_iterator bsi;
963 edge true_edge, false_edge;
964 tree assign;
965 edge e;
966 tree rhs, lhs;
967 bool negate;
968 enum tree_code cond_code;
970 /* If the type says honor signed zeros we cannot do this
971 optimization. */
972 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
973 return false;
975 /* OTHER_BLOCK must have only one executable statement which must have the
976 form arg0 = -arg1 or arg1 = -arg0. */
978 assign = last_and_only_stmt (middle_bb);
979 /* If we did not find the proper negation assignment, then we can not
980 optimize. */
981 if (assign == NULL)
982 return false;
984 /* If we got here, then we have found the only executable statement
985 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
986 arg1 = -arg0, then we can not optimize. */
987 if (TREE_CODE (assign) != GIMPLE_MODIFY_STMT)
988 return false;
990 lhs = GIMPLE_STMT_OPERAND (assign, 0);
991 rhs = GIMPLE_STMT_OPERAND (assign, 1);
993 if (TREE_CODE (rhs) != NEGATE_EXPR)
994 return false;
996 rhs = TREE_OPERAND (rhs, 0);
998 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
999 if (!(lhs == arg0 && rhs == arg1)
1000 && !(lhs == arg1 && rhs == arg0))
1001 return false;
1003 cond = COND_EXPR_COND (last_stmt (cond_bb));
1004 result = PHI_RESULT (phi);
1006 /* Only relationals comparing arg[01] against zero are interesting. */
1007 cond_code = TREE_CODE (cond);
1008 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1009 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1010 return false;
1012 /* Make sure the conditional is arg[01] OP y. */
1013 if (TREE_OPERAND (cond, 0) != rhs)
1014 return false;
1016 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
1017 ? real_zerop (TREE_OPERAND (cond, 1))
1018 : integer_zerop (TREE_OPERAND (cond, 1)))
1020 else
1021 return false;
1023 /* We need to know which is the true edge and which is the false
1024 edge so that we know if have abs or negative abs. */
1025 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1027 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1028 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1029 the false edge goes to OTHER_BLOCK. */
1030 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1031 e = true_edge;
1032 else
1033 e = false_edge;
1035 if (e->dest == middle_bb)
1036 negate = true;
1037 else
1038 negate = false;
1040 result = duplicate_ssa_name (result, NULL);
1042 if (negate)
1044 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
1045 add_referenced_var (tmp);
1046 lhs = make_ssa_name (tmp, NULL);
1048 else
1049 lhs = result;
1051 /* Build the modify expression with abs expression. */
1052 new_stmt = build_gimple_modify_stmt (lhs,
1053 build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
1054 SSA_NAME_DEF_STMT (lhs) = new_stmt;
1056 bsi = bsi_last (cond_bb);
1057 bsi_insert_before (&bsi, new_stmt, BSI_NEW_STMT);
1059 if (negate)
1061 /* Get the right BSI. We want to insert after the recently
1062 added ABS_EXPR statement (which we know is the first statement
1063 in the block. */
1064 new_stmt = build_gimple_modify_stmt (result,
1065 build1 (NEGATE_EXPR, TREE_TYPE (lhs),
1066 lhs));
1067 SSA_NAME_DEF_STMT (result) = new_stmt;
1069 bsi_insert_after (&bsi, new_stmt, BSI_NEW_STMT);
1072 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1074 /* Note that we optimized this PHI. */
1075 return true;
1078 /* Auxiliary functions to determine the set of memory accesses which
1079 can't trap because they are preceded by accesses to the same memory
1080 portion. We do that for INDIRECT_REFs, so we only need to track
1081 the SSA_NAME of the pointer indirectly referenced. The algorithm
1082 simply is a walk over all instructions in dominator order. When
1083 we see an INDIRECT_REF we determine if we've already seen a same
1084 ref anywhere up to the root of the dominator tree. If we do the
1085 current access can't trap. If we don't see any dominating access
1086 the current access might trap, but might also make later accesses
1087 non-trapping, so we remember it. We need to be careful with loads
1088 or stores, for instance a load might not trap, while a store would,
1089 so if we see a dominating read access this doesn't mean that a later
1090 write access would not trap. Hence we also need to differentiate the
1091 type of access(es) seen.
1093 ??? We currently are very conservative and assume that a load might
1094 trap even if a store doesn't (write-only memory). This probably is
1095 overly conservative. */
1097 /* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
1098 through it was seen, which would constitute a no-trap region for
1099 same accesses. */
1100 struct name_to_bb
1102 tree ssa_name;
1103 basic_block bb;
1104 unsigned store : 1;
1107 /* The hash table for remembering what we've seen. */
1108 static htab_t seen_ssa_names;
1110 /* The set of INDIRECT_REFs which can't trap. */
1111 static struct pointer_set_t *nontrap_set;
1113 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1114 static hashval_t
1115 name_to_bb_hash (const void *p)
1117 tree n = ((struct name_to_bb *)p)->ssa_name;
1118 return htab_hash_pointer (n) ^ ((struct name_to_bb *)p)->store;
1121 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1122 it's enough to simply compare them for equality. */
1123 static int
1124 name_to_bb_eq (const void *p1, const void *p2)
1126 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1127 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1129 return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1132 /* We see a the expression EXP in basic block BB. If it's an interesting
1133 expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
1134 expression into the set NONTRAP or the hash table of seen expressions.
1135 STORE is true if this expression is on the LHS, otherwise it's on
1136 the RHS. */
1137 static void
1138 add_or_mark_expr (basic_block bb, tree exp,
1139 struct pointer_set_t *nontrap, bool store)
1141 if (INDIRECT_REF_P (exp)
1142 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1144 tree name = TREE_OPERAND (exp, 0);
1145 struct name_to_bb map;
1146 void **slot;
1147 struct name_to_bb *n2bb;
1148 basic_block found_bb = 0;
1150 /* Try to find the last seen INDIRECT_REF through the same
1151 SSA_NAME, which can trap. */
1152 map.ssa_name = name;
1153 map.bb = 0;
1154 map.store = store;
1155 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1156 n2bb = (struct name_to_bb *) *slot;
1157 if (n2bb)
1158 found_bb = n2bb->bb;
1160 /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
1161 (it's in a basic block on the path from us to the dominator root)
1162 then we can't trap. */
1163 if (found_bb && found_bb->aux == (void *)1)
1165 pointer_set_insert (nontrap, exp);
1167 else
1169 /* EXP might trap, so insert it into the hash table. */
1170 if (n2bb)
1172 n2bb->bb = bb;
1174 else
1176 n2bb = XNEW (struct name_to_bb);
1177 n2bb->ssa_name = name;
1178 n2bb->bb = bb;
1179 n2bb->store = store;
1180 *slot = n2bb;
1186 /* Called by walk_dominator_tree, when entering the block BB. */
1187 static void
1188 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1190 block_stmt_iterator bsi;
1191 /* Mark this BB as being on the path to dominator root. */
1192 bb->aux = (void*)1;
1194 /* And walk the statements in order. */
1195 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1197 tree stmt = bsi_stmt (bsi);
1199 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
1201 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
1202 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1203 add_or_mark_expr (bb, rhs, nontrap_set, false);
1204 add_or_mark_expr (bb, lhs, nontrap_set, true);
1209 /* Called by walk_dominator_tree, when basic block BB is exited. */
1210 static void
1211 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1213 /* This BB isn't on the path to dominator root anymore. */
1214 bb->aux = NULL;
1217 /* This is the entry point of gathering non trapping memory accesses.
1218 It will do a dominator walk over the whole function, and it will
1219 make use of the bb->aux pointers. It returns a set of trees
1220 (the INDIRECT_REFs itself) which can't trap. */
1221 static struct pointer_set_t *
1222 get_non_trapping (void)
1224 struct pointer_set_t *nontrap;
1225 struct dom_walk_data walk_data;
1227 nontrap = pointer_set_create ();
1228 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1229 free);
1230 /* We're going to do a dominator walk, so ensure that we have
1231 dominance information. */
1232 calculate_dominance_info (CDI_DOMINATORS);
1234 /* Setup callbacks for the generic dominator tree walker. */
1235 nontrap_set = nontrap;
1236 walk_data.walk_stmts_backward = false;
1237 walk_data.dom_direction = CDI_DOMINATORS;
1238 walk_data.initialize_block_local_data = NULL;
1239 walk_data.before_dom_children_before_stmts = nt_init_block;
1240 walk_data.before_dom_children_walk_stmts = NULL;
1241 walk_data.before_dom_children_after_stmts = NULL;
1242 walk_data.after_dom_children_before_stmts = NULL;
1243 walk_data.after_dom_children_walk_stmts = NULL;
1244 walk_data.after_dom_children_after_stmts = nt_fini_block;
1245 walk_data.global_data = NULL;
1246 walk_data.block_local_data_size = 0;
1247 walk_data.interesting_blocks = NULL;
1249 init_walk_dominator_tree (&walk_data);
1250 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1251 fini_walk_dominator_tree (&walk_data);
1252 htab_delete (seen_ssa_names);
1254 return nontrap;
1257 /* Do the main work of conditional store replacement. We already know
1258 that the recognized pattern looks like so:
1260 split:
1261 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1262 MIDDLE_BB:
1263 something
1264 fallthrough (edge E0)
1265 JOIN_BB:
1266 some more
1268 We check that MIDDLE_BB contains only one store, that that store
1269 doesn't trap (not via NOTRAP, but via checking if an access to the same
1270 memory location dominates us) and that the store has a "simple" RHS. */
1272 static bool
1273 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1274 edge e0, edge e1, struct pointer_set_t *nontrap)
1276 tree assign = last_and_only_stmt (middle_bb);
1277 tree lhs, rhs, newexpr, name;
1278 tree newphi;
1279 block_stmt_iterator bsi;
1281 /* Check if middle_bb contains of only one store. */
1282 if (!assign
1283 || TREE_CODE (assign) != GIMPLE_MODIFY_STMT)
1284 return false;
1286 lhs = GIMPLE_STMT_OPERAND (assign, 0);
1287 if (!INDIRECT_REF_P (lhs))
1288 return false;
1289 rhs = GIMPLE_STMT_OPERAND (assign, 1);
1290 if (TREE_CODE (rhs) != SSA_NAME && !is_gimple_min_invariant (rhs))
1291 return false;
1292 /* Prove that we can move the store down. We could also check
1293 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1294 whose value is not available readily, which we want to avoid. */
1295 if (!pointer_set_contains (nontrap, lhs))
1296 return false;
1298 /* Now we've checked the constraints, so do the transformation:
1299 1) Remove the single store. */
1300 mark_symbols_for_renaming (assign);
1301 bsi = bsi_for_stmt (assign);
1302 bsi_remove (&bsi, true);
1304 /* 2) Create a temporary where we can store the old content
1305 of the memory touched by the store, if we need to. */
1306 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1308 condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore");
1309 get_var_ann (condstoretemp);
1310 if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE
1311 || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
1312 DECL_GIMPLE_REG_P (condstoretemp) = 1;
1314 add_referenced_var (condstoretemp);
1316 /* 3) Insert a load from the memory of the store to the temporary
1317 on the edge which did not contain the store. */
1318 lhs = unshare_expr (lhs);
1319 newexpr = build_gimple_modify_stmt (condstoretemp, lhs);
1320 name = make_ssa_name (condstoretemp, newexpr);
1321 GIMPLE_STMT_OPERAND (newexpr, 0) = name;
1322 mark_symbols_for_renaming (newexpr);
1323 bsi_insert_on_edge (e1, newexpr);
1325 /* 4) Create a PHI node at the join block, with one argument
1326 holding the old RHS, and the other holding the temporary
1327 where we stored the old memory contents. */
1328 newphi = create_phi_node (condstoretemp, join_bb);
1329 add_phi_arg (newphi, rhs, e0);
1330 add_phi_arg (newphi, name, e1);
1332 lhs = unshare_expr (lhs);
1333 newexpr = build_gimple_modify_stmt (lhs, PHI_RESULT (newphi));
1334 mark_symbols_for_renaming (newexpr);
1336 /* 5) Insert that PHI node. */
1337 bsi = bsi_start (join_bb);
1338 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1339 bsi_next (&bsi);
1340 if (bsi_end_p (bsi))
1342 bsi = bsi_last (join_bb);
1343 bsi_insert_after (&bsi, newexpr, BSI_NEW_STMT);
1345 else
1346 bsi_insert_before (&bsi, newexpr, BSI_NEW_STMT);
1348 return true;
1351 /* Always do these optimizations if we have SSA
1352 trees to work on. */
1353 static bool
1354 gate_phiopt (void)
1356 return 1;
1359 struct gimple_opt_pass pass_phiopt =
1362 GIMPLE_PASS,
1363 "phiopt", /* name */
1364 gate_phiopt, /* gate */
1365 tree_ssa_phiopt, /* execute */
1366 NULL, /* sub */
1367 NULL, /* next */
1368 0, /* static_pass_number */
1369 TV_TREE_PHIOPT, /* tv_id */
1370 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1371 0, /* properties_provided */
1372 0, /* properties_destroyed */
1373 0, /* todo_flags_start */
1374 TODO_dump_func
1375 | TODO_ggc_collect
1376 | TODO_verify_ssa
1377 | TODO_verify_flow
1378 | TODO_verify_stmts /* todo_flags_finish */
1382 static bool
1383 gate_cselim (void)
1385 return flag_tree_cselim;
1388 struct gimple_opt_pass pass_cselim =
1391 GIMPLE_PASS,
1392 "cselim", /* name */
1393 gate_cselim, /* gate */
1394 tree_ssa_cs_elim, /* execute */
1395 NULL, /* sub */
1396 NULL, /* next */
1397 0, /* static_pass_number */
1398 TV_TREE_PHIOPT, /* tv_id */
1399 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1400 0, /* properties_provided */
1401 0, /* properties_destroyed */
1402 0, /* todo_flags_start */
1403 TODO_dump_func
1404 | TODO_ggc_collect
1405 | TODO_verify_ssa
1406 | TODO_verify_flow
1407 | TODO_verify_stmts /* todo_flags_finish */