PR tree-optimization/36329
[official-gcc.git] / gcc / tree-ssa-dse.c
blobf6f76d5b7c5d41b58881b98df2add4cfa99e622d
1 /* Dead store elimination
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "ggc.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "timevar.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "domwalk.h"
35 #include "flags.h"
37 /* This file implements dead store elimination.
39 A dead store is a store into a memory location which will later be
40 overwritten by another store without any intervening loads. In this
41 case the earlier store can be deleted.
43 In our SSA + virtual operand world we use immediate uses of virtual
44 operands to detect dead stores. If a store's virtual definition
45 is used precisely once by a later store to the same location which
46 post dominates the first store, then the first store is dead.
48 The single use of the store's virtual definition ensures that
49 there are no intervening aliased loads and the requirement that
50 the second load post dominate the first ensures that if the earlier
51 store executes, then the later stores will execute before the function
52 exits.
54 It may help to think of this as first moving the earlier store to
55 the point immediately before the later store. Again, the single
56 use of the virtual definition and the post-dominance relationship
57 ensure that such movement would be safe. Clearly if there are
58 back to back stores, then the second is redundant.
60 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
61 may also help in understanding this code since it discusses the
62 relationship between dead store and redundant load elimination. In
63 fact, they are the same transformation applied to different views of
64 the CFG. */
67 struct dse_global_data
69 /* This is the global bitmap for store statements.
71 Each statement has a unique ID. When we encounter a store statement
72 that we want to record, set the bit corresponding to the statement's
73 unique ID in this bitmap. */
74 bitmap stores;
77 /* We allocate a bitmap-per-block for stores which are encountered
78 during the scan of that block. This allows us to restore the
79 global bitmap of stores when we finish processing a block. */
80 struct dse_block_local_data
82 bitmap stores;
85 /* Basic blocks of the potentially dead store and the following
86 store, for memory_address_same. */
87 struct address_walk_data
89 basic_block store1_bb, store2_bb;
92 static bool gate_dse (void);
93 static unsigned int tree_ssa_dse (void);
94 static void dse_initialize_block_local_data (struct dom_walk_data *,
95 basic_block,
96 bool);
97 static void dse_optimize_stmt (struct dom_walk_data *,
98 basic_block,
99 block_stmt_iterator);
100 static void dse_record_phis (struct dom_walk_data *, basic_block);
101 static void dse_finalize_block (struct dom_walk_data *, basic_block);
102 static void record_voperand_set (bitmap, bitmap *, unsigned int);
104 /* Returns uid of statement STMT. */
106 static unsigned
107 get_stmt_uid (tree stmt)
109 if (TREE_CODE (stmt) == PHI_NODE)
110 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + gimple_stmt_max_uid (cfun);
112 return gimple_stmt_uid (stmt);
115 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
117 static void
118 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
120 /* Lazily allocate the bitmap. Note that we do not get a notification
121 when the block local data structures die, so we allocate the local
122 bitmap backed by the GC system. */
123 if (*local == NULL)
124 *local = BITMAP_GGC_ALLOC ();
126 /* Set the bit in the local and global bitmaps. */
127 bitmap_set_bit (*local, uid);
128 bitmap_set_bit (global, uid);
131 /* Initialize block local data structures. */
133 static void
134 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
135 basic_block bb ATTRIBUTE_UNUSED,
136 bool recycled)
138 struct dse_block_local_data *bd
139 = (struct dse_block_local_data *)
140 VEC_last (void_p, walk_data->block_data_stack);
142 /* If we are given a recycled block local data structure, ensure any
143 bitmap associated with the block is cleared. */
144 if (recycled)
146 if (bd->stores)
147 bitmap_clear (bd->stores);
151 /* Helper function for memory_address_same via walk_tree. Returns
152 non-NULL if it finds an SSA_NAME which is part of the address,
153 such that the definition of the SSA_NAME post-dominates the store
154 we want to delete but not the store that we believe makes it
155 redundant. This indicates that the address may change between
156 the two stores. */
158 static tree
159 memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
160 void *data)
162 struct address_walk_data *walk_data = (struct address_walk_data *) data;
163 tree expr = *expr_p;
164 tree def_stmt;
165 basic_block def_bb;
167 if (TREE_CODE (expr) != SSA_NAME)
168 return NULL_TREE;
170 /* If we've found a default definition, then there's no problem. Both
171 stores will post-dominate it. And def_bb will be NULL. */
172 if (SSA_NAME_IS_DEFAULT_DEF (expr))
173 return NULL_TREE;
175 def_stmt = SSA_NAME_DEF_STMT (expr);
176 def_bb = bb_for_stmt (def_stmt);
178 /* DEF_STMT must dominate both stores. So if it is in the same
179 basic block as one, it does not post-dominate that store. */
180 if (walk_data->store1_bb != def_bb
181 && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
183 if (walk_data->store2_bb == def_bb
184 || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
185 def_bb))
186 /* Return non-NULL to stop the walk. */
187 return def_stmt;
190 return NULL_TREE;
193 /* Return TRUE if the destination memory address in STORE1 and STORE2
194 might be modified after STORE1, before control reaches STORE2. */
196 static bool
197 memory_address_same (tree store1, tree store2)
199 struct address_walk_data walk_data;
201 walk_data.store1_bb = bb_for_stmt (store1);
202 walk_data.store2_bb = bb_for_stmt (store2);
204 return (walk_tree (&GIMPLE_STMT_OPERAND (store1, 0), memory_ssa_name_same,
205 &walk_data, NULL)
206 == NULL);
209 /* Return true if there is a stmt that kills the lhs of STMT and is in the
210 virtual def-use chain of STMT without a use inbetween the kill and STMT.
211 Returns false if no such stmt is found.
212 *FIRST_USE_P is set to the first use of the single virtual def of
213 STMT. *USE_P is set to the vop killed by *USE_STMT. */
215 static bool
216 get_kill_of_stmt_lhs (tree stmt,
217 use_operand_p * first_use_p,
218 use_operand_p * use_p, tree * use_stmt)
220 tree lhs;
222 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
224 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
226 /* We now walk the chain of single uses of the single VDEFs.
227 We succeeded finding a kill if the lhs of the use stmt is
228 equal to the original lhs. We can keep walking to the next
229 use if there are no possible uses of the original lhs in
230 the stmt. */
233 tree use_lhs, use_rhs;
234 def_operand_p def_p;
236 /* The stmt must have a single VDEF. */
237 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_VDEF);
238 if (def_p == NULL_DEF_OPERAND_P)
239 return false;
241 /* Get the single immediate use of the def. */
242 if (!single_imm_use (DEF_FROM_PTR (def_p), first_use_p, &stmt))
243 return false;
244 first_use_p = use_p;
246 /* If there are possible hidden uses, give up. */
247 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
248 return false;
249 use_rhs = GIMPLE_STMT_OPERAND (stmt, 1);
250 if (TREE_CODE (use_rhs) == CALL_EXPR
251 || (!is_gimple_min_invariant (use_rhs)
252 && TREE_CODE (use_rhs) != SSA_NAME))
253 return false;
255 /* If the use stmts lhs matches the original lhs we have
256 found the kill, otherwise continue walking. */
257 use_lhs = GIMPLE_STMT_OPERAND (stmt, 0);
258 if (operand_equal_p (use_lhs, lhs, 0))
260 *use_stmt = stmt;
261 return true;
264 while (1);
267 /* A helper of dse_optimize_stmt.
268 Given a GIMPLE_MODIFY_STMT in STMT, check that each VDEF has one
269 use, and that one use is another VDEF clobbering the first one.
271 Return TRUE if the above conditions are met, otherwise FALSE. */
273 static bool
274 dse_possible_dead_store_p (tree stmt,
275 use_operand_p *first_use_p,
276 use_operand_p *use_p,
277 tree *use_stmt,
278 struct dse_global_data *dse_gd,
279 struct dse_block_local_data *bd)
281 ssa_op_iter op_iter;
282 bool fail = false;
283 def_operand_p var1;
284 vuse_vec_p vv;
285 tree defvar = NULL_TREE, temp;
286 tree prev_defvar = NULL_TREE;
288 /* We want to verify that each virtual definition in STMT has
289 precisely one use and that all the virtual definitions are
290 used by the same single statement. When complete, we
291 want USE_STMT to refer to the one statement which uses
292 all of the virtual definitions from STMT. */
293 *use_stmt = NULL;
294 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
296 defvar = DEF_FROM_PTR (var1);
298 /* If this virtual def does not have precisely one use, then
299 we will not be able to eliminate STMT. */
300 if (!has_single_use (defvar))
302 fail = true;
303 break;
306 /* Get the one and only immediate use of DEFVAR. */
307 single_imm_use (defvar, use_p, &temp);
308 gcc_assert (*use_p != NULL_USE_OPERAND_P);
309 *first_use_p = *use_p;
311 /* ??? If we hit a PHI_NODE we could skip to the PHI_RESULT uses.
312 Don't bother to do that for now. */
313 if (TREE_CODE (temp) == PHI_NODE)
315 fail = true;
316 break;
319 /* In the case of memory partitions, we may get:
321 # MPT.764_162 = VDEF <MPT.764_161(D)>
322 x = {};
323 # MPT.764_167 = VDEF <MPT.764_162>
324 y = {};
326 So we must make sure we're talking about the same LHS.
328 if (TREE_CODE (temp) == GIMPLE_MODIFY_STMT)
330 tree base1 = get_base_address (GIMPLE_STMT_OPERAND (stmt, 0));
331 tree base2 = get_base_address (GIMPLE_STMT_OPERAND (temp, 0));
333 while (base1 && INDIRECT_REF_P (base1))
334 base1 = TREE_OPERAND (base1, 0);
335 while (base2 && INDIRECT_REF_P (base2))
336 base2 = TREE_OPERAND (base2, 0);
338 if (base1 != base2)
340 fail = true;
341 break;
345 /* If the immediate use of DEF_VAR is not the same as the
346 previously find immediate uses, then we will not be able
347 to eliminate STMT. */
348 if (*use_stmt == NULL)
350 *use_stmt = temp;
351 prev_defvar = defvar;
353 else if (temp != *use_stmt)
355 fail = true;
356 break;
360 if (fail)
362 record_voperand_set (dse_gd->stores, &bd->stores, gimple_stmt_uid (stmt));
363 return false;
366 return true;
370 /* Attempt to eliminate dead stores in the statement referenced by BSI.
372 A dead store is a store into a memory location which will later be
373 overwritten by another store without any intervening loads. In this
374 case the earlier store can be deleted.
376 In our SSA + virtual operand world we use immediate uses of virtual
377 operands to detect dead stores. If a store's virtual definition
378 is used precisely once by a later store to the same location which
379 post dominates the first store, then the first store is dead. */
381 static void
382 dse_optimize_stmt (struct dom_walk_data *walk_data,
383 basic_block bb ATTRIBUTE_UNUSED,
384 block_stmt_iterator bsi)
386 struct dse_block_local_data *bd
387 = (struct dse_block_local_data *)
388 VEC_last (void_p, walk_data->block_data_stack);
389 struct dse_global_data *dse_gd
390 = (struct dse_global_data *) walk_data->global_data;
391 tree stmt = bsi_stmt (bsi);
392 stmt_ann_t ann = stmt_ann (stmt);
394 /* If this statement has no virtual defs, then there is nothing
395 to do. */
396 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
397 return;
399 /* We know we have virtual definitions. If this is a GIMPLE_MODIFY_STMT
400 that's not also a function call, then record it into our table. */
401 if (get_call_expr_in (stmt))
402 return;
404 if (ann->has_volatile_ops)
405 return;
407 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
409 use_operand_p first_use_p = NULL_USE_OPERAND_P;
410 use_operand_p use_p = NULL;
411 tree use_stmt;
413 if (!dse_possible_dead_store_p (stmt, &first_use_p, &use_p, &use_stmt,
414 dse_gd, bd))
415 return;
417 /* If we have precisely one immediate use at this point, then we may
418 have found redundant store. Make sure that the stores are to
419 the same memory location. This includes checking that any
420 SSA-form variables in the address will have the same values. */
421 if (use_p != NULL_USE_OPERAND_P
422 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
423 && !operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
424 GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
425 && memory_address_same (stmt, use_stmt))
427 /* If we have precisely one immediate use at this point, but
428 the stores are not to the same memory location then walk the
429 virtual def-use chain to get the stmt which stores to that same
430 memory location. */
431 if (!get_kill_of_stmt_lhs (stmt, &first_use_p, &use_p, &use_stmt))
433 record_voperand_set (dse_gd->stores, &bd->stores, gimple_stmt_uid (stmt));
434 return;
438 /* If we have precisely one immediate use at this point and the
439 stores are to the same memory location or there is a chain of
440 virtual uses from stmt and the stmt which stores to that same
441 memory location, then we may have found redundant store. */
442 if (use_p != NULL_USE_OPERAND_P
443 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
444 && operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
445 GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
446 && memory_address_same (stmt, use_stmt))
448 ssa_op_iter op_iter;
449 def_operand_p var1;
450 vuse_vec_p vv;
451 tree stmt_lhs;
453 /* If use_stmt is or might be a nop assignment, e.g. for
454 struct { ... } S a, b, *p; ...
455 b = a; b = b;
457 b = a; b = *p; where p might be &b,
459 *p = a; *p = b; where p might be &b,
461 *p = *u; *p = *v; where p might be v, then USE_STMT
462 acts as a use as well as definition, so store in STMT
463 is not dead. */
464 if (LOADED_SYMS (use_stmt)
465 && bitmap_intersect_p (LOADED_SYMS (use_stmt),
466 STORED_SYMS (use_stmt)))
468 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
469 return;
472 if (dump_file && (dump_flags & TDF_DETAILS))
474 fprintf (dump_file, " Deleted dead store '");
475 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
476 fprintf (dump_file, "'\n");
479 /* Then we need to fix the operand of the consuming stmt. */
480 stmt_lhs = USE_FROM_PTR (first_use_p);
481 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
483 tree usevar, temp;
485 single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
486 gcc_assert (VUSE_VECT_NUM_ELEM (*vv) == 1);
487 usevar = VUSE_ELEMENT_VAR (*vv, 0);
488 SET_USE (use_p, usevar);
490 /* Make sure we propagate the ABNORMAL bit setting. */
491 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (stmt_lhs))
492 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
495 /* Remove the dead store. */
496 bsi_remove (&bsi, true);
498 /* And release any SSA_NAMEs set in this statement back to the
499 SSA_NAME manager. */
500 release_defs (stmt);
503 record_voperand_set (dse_gd->stores, &bd->stores, gimple_stmt_uid (stmt));
507 /* Record that we have seen the PHIs at the start of BB which correspond
508 to virtual operands. */
509 static void
510 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
512 struct dse_block_local_data *bd
513 = (struct dse_block_local_data *)
514 VEC_last (void_p, walk_data->block_data_stack);
515 struct dse_global_data *dse_gd
516 = (struct dse_global_data *) walk_data->global_data;
517 tree phi;
519 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
520 if (!is_gimple_reg (PHI_RESULT (phi)))
521 record_voperand_set (dse_gd->stores,
522 &bd->stores,
523 get_stmt_uid (phi));
526 static void
527 dse_finalize_block (struct dom_walk_data *walk_data,
528 basic_block bb ATTRIBUTE_UNUSED)
530 struct dse_block_local_data *bd
531 = (struct dse_block_local_data *)
532 VEC_last (void_p, walk_data->block_data_stack);
533 struct dse_global_data *dse_gd
534 = (struct dse_global_data *) walk_data->global_data;
535 bitmap stores = dse_gd->stores;
536 unsigned int i;
537 bitmap_iterator bi;
539 /* Unwind the stores noted in this basic block. */
540 if (bd->stores)
541 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
543 bitmap_clear_bit (stores, i);
547 /* Main entry point. */
549 static unsigned int
550 tree_ssa_dse (void)
552 struct dom_walk_data walk_data;
553 struct dse_global_data dse_gd;
555 renumber_gimple_stmt_uids ();
557 /* We might consider making this a property of each pass so that it
558 can be [re]computed on an as-needed basis. Particularly since
559 this pass could be seen as an extension of DCE which needs post
560 dominators. */
561 calculate_dominance_info (CDI_POST_DOMINATORS);
563 /* Dead store elimination is fundamentally a walk of the post-dominator
564 tree and a backwards walk of statements within each block. */
565 walk_data.walk_stmts_backward = true;
566 walk_data.dom_direction = CDI_POST_DOMINATORS;
567 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
568 walk_data.before_dom_children_before_stmts = NULL;
569 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
570 walk_data.before_dom_children_after_stmts = dse_record_phis;
571 walk_data.after_dom_children_before_stmts = NULL;
572 walk_data.after_dom_children_walk_stmts = NULL;
573 walk_data.after_dom_children_after_stmts = dse_finalize_block;
574 walk_data.interesting_blocks = NULL;
576 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
578 /* This is the main hash table for the dead store elimination pass. */
579 dse_gd.stores = BITMAP_ALLOC (NULL);
580 walk_data.global_data = &dse_gd;
582 /* Initialize the dominator walker. */
583 init_walk_dominator_tree (&walk_data);
585 /* Recursively walk the dominator tree. */
586 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
588 /* Finalize the dominator walker. */
589 fini_walk_dominator_tree (&walk_data);
591 /* Release the main bitmap. */
592 BITMAP_FREE (dse_gd.stores);
594 /* For now, just wipe the post-dominator information. */
595 free_dominance_info (CDI_POST_DOMINATORS);
596 return 0;
599 static bool
600 gate_dse (void)
602 return flag_tree_dse != 0;
605 struct gimple_opt_pass pass_dse =
608 GIMPLE_PASS,
609 "dse", /* name */
610 gate_dse, /* gate */
611 tree_ssa_dse, /* execute */
612 NULL, /* sub */
613 NULL, /* next */
614 0, /* static_pass_number */
615 TV_TREE_DSE, /* tv_id */
616 PROP_cfg
617 | PROP_ssa
618 | PROP_alias, /* properties_required */
619 0, /* properties_provided */
620 0, /* properties_destroyed */
621 0, /* todo_flags_start */
622 TODO_dump_func
623 | TODO_ggc_collect
624 | TODO_verify_ssa /* todo_flags_finish */
628 /* A very simple dead store pass eliminating write only local variables.
629 The pass does not require alias information and thus can be run before
630 inlining to quickly eliminate artifacts of some common C++ constructs. */
632 static unsigned int
633 execute_simple_dse (void)
635 block_stmt_iterator bsi;
636 basic_block bb;
637 bitmap variables_loaded = BITMAP_ALLOC (NULL);
638 unsigned int todo = 0;
640 /* Collect into VARIABLES LOADED all variables that are read in function
641 body. */
642 FOR_EACH_BB (bb)
643 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
644 if (LOADED_SYMS (bsi_stmt (bsi)))
645 bitmap_ior_into (variables_loaded,
646 LOADED_SYMS (bsi_stmt (bsi)));
648 /* Look for statements writing into the write only variables.
649 And try to remove them. */
651 FOR_EACH_BB (bb)
652 for (bsi = bsi_start (bb); !bsi_end_p (bsi);)
654 tree stmt = bsi_stmt (bsi), op;
655 bool removed = false;
656 ssa_op_iter iter;
658 if (STORED_SYMS (stmt) && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
659 && TREE_CODE (stmt) != RETURN_EXPR
660 && !bitmap_intersect_p (STORED_SYMS (stmt), variables_loaded))
662 unsigned int i;
663 bitmap_iterator bi;
664 bool dead = true;
668 /* See if STMT only stores to write-only variables and
669 verify that there are no volatile operands. tree-ssa-operands
670 sets has_volatile_ops flag for all statements involving
671 reads and writes when aliases are not built to prevent passes
672 from removing them as dead. The flag thus has no use for us
673 and we need to look into all operands. */
675 EXECUTE_IF_SET_IN_BITMAP (STORED_SYMS (stmt), 0, i, bi)
677 tree var = referenced_var_lookup (i);
678 if (TREE_ADDRESSABLE (var)
679 || is_global_var (var)
680 || TREE_THIS_VOLATILE (var))
681 dead = false;
684 if (dead && LOADED_SYMS (stmt))
685 EXECUTE_IF_SET_IN_BITMAP (LOADED_SYMS (stmt), 0, i, bi)
686 if (TREE_THIS_VOLATILE (referenced_var_lookup (i)))
687 dead = false;
689 if (dead)
690 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_OPERANDS)
691 if (TREE_THIS_VOLATILE (op))
692 dead = false;
694 /* Look for possible occurence var = indirect_ref (...) where
695 indirect_ref itself is volatile. */
697 if (dead && TREE_THIS_VOLATILE (GIMPLE_STMT_OPERAND (stmt, 1)))
698 dead = false;
700 if (dead)
702 tree call = get_call_expr_in (stmt);
704 /* When LHS of var = call (); is dead, simplify it into
705 call (); saving one operand. */
706 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
707 && call
708 && TREE_SIDE_EFFECTS (call))
710 if (dump_file && (dump_flags & TDF_DETAILS))
712 fprintf (dump_file, "Deleted LHS of call: ");
713 print_generic_stmt (dump_file, stmt, TDF_SLIM);
714 fprintf (dump_file, "\n");
716 push_stmt_changes (bsi_stmt_ptr (bsi));
717 TREE_BLOCK (call) = TREE_BLOCK (stmt);
718 bsi_replace (&bsi, call, false);
719 maybe_clean_or_replace_eh_stmt (stmt, call);
720 mark_symbols_for_renaming (call);
721 pop_stmt_changes (bsi_stmt_ptr (bsi));
723 else
725 if (dump_file && (dump_flags & TDF_DETAILS))
727 fprintf (dump_file, " Deleted dead store '");
728 print_generic_expr (dump_file, stmt, dump_flags);
729 fprintf (dump_file, "'\n");
731 removed = true;
732 bsi_remove (&bsi, true);
733 todo |= TODO_cleanup_cfg;
735 todo |= TODO_remove_unused_locals | TODO_ggc_collect;
738 if (!removed)
739 bsi_next (&bsi);
741 BITMAP_FREE (variables_loaded);
742 return todo;
745 struct gimple_opt_pass pass_simple_dse =
748 GIMPLE_PASS,
749 "sdse", /* name */
750 NULL, /* gate */
751 execute_simple_dse, /* execute */
752 NULL, /* sub */
753 NULL, /* next */
754 0, /* static_pass_number */
755 0, /* tv_id */
756 PROP_ssa, /* properties_required */
757 0, /* properties_provided */
758 0, /* properties_destroyed */
759 0, /* todo_flags_start */
760 TODO_dump_func /* todo_flags_finish */