1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Util
; use Exp_Util
;
32 with Fname
; use Fname
;
33 with Itypes
; use Itypes
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Namet
.Sp
; use Namet
.Sp
;
38 with Nlists
; use Nlists
;
39 with Nmake
; use Nmake
;
41 with Output
; use Output
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Cat
; use Sem_Cat
;
46 with Sem_Ch3
; use Sem_Ch3
;
47 with Sem_Ch6
; use Sem_Ch6
;
48 with Sem_Ch8
; use Sem_Ch8
;
49 with Sem_Disp
; use Sem_Disp
;
50 with Sem_Dist
; use Sem_Dist
;
51 with Sem_Eval
; use Sem_Eval
;
52 with Sem_Res
; use Sem_Res
;
53 with Sem_Util
; use Sem_Util
;
54 with Sem_Type
; use Sem_Type
;
55 with Stand
; use Stand
;
56 with Sinfo
; use Sinfo
;
57 with Snames
; use Snames
;
58 with Tbuild
; use Tbuild
;
60 package body Sem_Ch4
is
62 -----------------------
63 -- Local Subprograms --
64 -----------------------
66 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
67 -- Does the "rest" of the work of Analyze_Concatenation, after the left
68 -- operand has been analyzed. See Analyze_Concatenation for details.
70 procedure Analyze_Expression
(N
: Node_Id
);
71 -- For expressions that are not names, this is just a call to analyze.
72 -- If the expression is a name, it may be a call to a parameterless
73 -- function, and if so must be converted into an explicit call node
74 -- and analyzed as such. This deproceduring must be done during the first
75 -- pass of overload resolution, because otherwise a procedure call with
76 -- overloaded actuals may fail to resolve.
78 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
79 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
80 -- is an operator name or an expanded name whose selector is an operator
81 -- name, and one possible interpretation is as a predefined operator.
83 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
84 -- If the prefix of a selected_component is overloaded, the proper
85 -- interpretation that yields a record type with the proper selector
86 -- name must be selected.
88 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
89 -- Procedure to analyze a user defined binary operator, which is resolved
90 -- like a function, but instead of a list of actuals it is presented
91 -- with the left and right operands of an operator node.
93 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
94 -- Procedure to analyze a user defined unary operator, which is resolved
95 -- like a function, but instead of a list of actuals, it is presented with
96 -- the operand of the operator node.
98 procedure Ambiguous_Operands
(N
: Node_Id
);
99 -- for equality, membership, and comparison operators with overloaded
100 -- arguments, list possible interpretations.
102 procedure Analyze_One_Call
106 Success
: out Boolean;
107 Skip_First
: Boolean := False);
108 -- Check one interpretation of an overloaded subprogram name for
109 -- compatibility with the types of the actuals in a call. If there is a
110 -- single interpretation which does not match, post error if Report is
113 -- Nam is the entity that provides the formals against which the actuals
114 -- are checked. Nam is either the name of a subprogram, or the internal
115 -- subprogram type constructed for an access_to_subprogram. If the actuals
116 -- are compatible with Nam, then Nam is added to the list of candidate
117 -- interpretations for N, and Success is set to True.
119 -- The flag Skip_First is used when analyzing a call that was rewritten
120 -- from object notation. In this case the first actual may have to receive
121 -- an explicit dereference, depending on the first formal of the operation
122 -- being called. The caller will have verified that the object is legal
123 -- for the call. If the remaining parameters match, the first parameter
124 -- will rewritten as a dereference if needed, prior to completing analysis.
126 procedure Check_Misspelled_Selector
129 -- Give possible misspelling diagnostic if Sel is likely to be
130 -- a misspelling of one of the selectors of the Prefix.
131 -- This is called by Analyze_Selected_Component after producing
132 -- an invalid selector error message.
134 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean;
135 -- Verify that type T is declared in scope S. Used to find interpretations
136 -- for operators given by expanded names. This is abstracted as a separate
137 -- function to handle extensions to System, where S is System, but T is
138 -- declared in the extension.
140 procedure Find_Arithmetic_Types
144 -- L and R are the operands of an arithmetic operator. Find
145 -- consistent pairs of interpretations for L and R that have a
146 -- numeric type consistent with the semantics of the operator.
148 procedure Find_Comparison_Types
152 -- L and R are operands of a comparison operator. Find consistent
153 -- pairs of interpretations for L and R.
155 procedure Find_Concatenation_Types
159 -- For the four varieties of concatenation
161 procedure Find_Equality_Types
165 -- Ditto for equality operators
167 procedure Find_Boolean_Types
171 -- Ditto for binary logical operations
173 procedure Find_Negation_Types
177 -- Find consistent interpretation for operand of negation operator
179 procedure Find_Non_Universal_Interpretations
184 -- For equality and comparison operators, the result is always boolean,
185 -- and the legality of the operation is determined from the visibility
186 -- of the operand types. If one of the operands has a universal interpre-
187 -- tation, the legality check uses some compatible non-universal
188 -- interpretation of the other operand. N can be an operator node, or
189 -- a function call whose name is an operator designator.
191 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
192 -- Find candidate interpretations for the name Obj.Proc when it appears
193 -- in a subprogram renaming declaration.
195 procedure Find_Unary_Types
199 -- Unary arithmetic types: plus, minus, abs
201 procedure Check_Arithmetic_Pair
205 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
206 -- types for left and right operand. Determine whether they constitute
207 -- a valid pair for the given operator, and record the corresponding
208 -- interpretation of the operator node. The node N may be an operator
209 -- node (the usual case) or a function call whose prefix is an operator
210 -- designator. In both cases Op_Id is the operator name itself.
212 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
213 -- Give detailed information on overloaded call where none of the
214 -- interpretations match. N is the call node, Nam the designator for
215 -- the overloaded entity being called.
217 function Junk_Operand
(N
: Node_Id
) return Boolean;
218 -- Test for an operand that is an inappropriate entity (e.g. a package
219 -- name or a label). If so, issue an error message and return True. If
220 -- the operand is not an inappropriate entity kind, return False.
222 procedure Operator_Check
(N
: Node_Id
);
223 -- Verify that an operator has received some valid interpretation. If none
224 -- was found, determine whether a use clause would make the operation
225 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
226 -- every type compatible with the operator, even if the operator for the
227 -- type is not directly visible. The routine uses this type to emit a more
228 -- informative message.
230 function Process_Implicit_Dereference_Prefix
232 P
: Node_Id
) return Entity_Id
;
233 -- Called when P is the prefix of an implicit dereference, denoting an
234 -- object E. The function returns the designated type of the prefix, taking
235 -- into account that the designated type of an anonymous access type may be
236 -- a limited view, when the non-limited view is visible.
237 -- If in semantics only mode (-gnatc or generic), the function also records
238 -- that the prefix is a reference to E, if any. Normally, such a reference
239 -- is generated only when the implicit dereference is expanded into an
240 -- explicit one, but for consistency we must generate the reference when
241 -- expansion is disabled as well.
243 procedure Remove_Abstract_Operations
(N
: Node_Id
);
244 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
245 -- operation is not a candidate interpretation.
247 function Try_Indexed_Call
251 Skip_First
: Boolean) return Boolean;
252 -- If a function has defaults for all its actuals, a call to it may in fact
253 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
254 -- interpretation as an indexing, prior to analysis as a call. If both are
255 -- possible, the node is overloaded with both interpretations (same symbol
256 -- but two different types). If the call is written in prefix form, the
257 -- prefix becomes the first parameter in the call, and only the remaining
258 -- actuals must be checked for the presence of defaults.
260 function Try_Indirect_Call
263 Typ
: Entity_Id
) return Boolean;
264 -- Similarly, a function F that needs no actuals can return an access to a
265 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
266 -- the call may be overloaded with both interpretations.
268 function Try_Object_Operation
(N
: Node_Id
) return Boolean;
269 -- Ada 2005 (AI-252): Support the object.operation notation
271 procedure wpo
(T
: Entity_Id
);
272 pragma Warnings
(Off
, wpo
);
273 -- Used for debugging: obtain list of primitive operations even if
274 -- type is not frozen and dispatch table is not built yet.
276 ------------------------
277 -- Ambiguous_Operands --
278 ------------------------
280 procedure Ambiguous_Operands
(N
: Node_Id
) is
281 procedure List_Operand_Interps
(Opnd
: Node_Id
);
283 --------------------------
284 -- List_Operand_Interps --
285 --------------------------
287 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
292 if Is_Overloaded
(Opnd
) then
293 if Nkind
(Opnd
) in N_Op
then
295 elsif Nkind
(Opnd
) = N_Function_Call
then
305 if Opnd
= Left_Opnd
(N
) then
307 ("\left operand has the following interpretations", N
);
310 ("\right operand has the following interpretations", N
);
314 List_Interps
(Nam
, Err
);
315 end List_Operand_Interps
;
317 -- Start of processing for Ambiguous_Operands
320 if Nkind
(N
) in N_Membership_Test
then
321 Error_Msg_N
("ambiguous operands for membership", N
);
323 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
324 Error_Msg_N
("ambiguous operands for equality", N
);
327 Error_Msg_N
("ambiguous operands for comparison", N
);
330 if All_Errors_Mode
then
331 List_Operand_Interps
(Left_Opnd
(N
));
332 List_Operand_Interps
(Right_Opnd
(N
));
334 Error_Msg_N
("\use -gnatf switch for details", N
);
336 end Ambiguous_Operands
;
338 -----------------------
339 -- Analyze_Aggregate --
340 -----------------------
342 -- Most of the analysis of Aggregates requires that the type be known,
343 -- and is therefore put off until resolution.
345 procedure Analyze_Aggregate
(N
: Node_Id
) is
347 if No
(Etype
(N
)) then
348 Set_Etype
(N
, Any_Composite
);
350 end Analyze_Aggregate
;
352 -----------------------
353 -- Analyze_Allocator --
354 -----------------------
356 procedure Analyze_Allocator
(N
: Node_Id
) is
357 Loc
: constant Source_Ptr
:= Sloc
(N
);
358 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
359 E
: Node_Id
:= Expression
(N
);
360 Acc_Type
: Entity_Id
;
364 -- In accordance with H.4(7), the No_Allocators restriction only applies
365 -- to user-written allocators.
367 if Comes_From_Source
(N
) then
368 Check_Restriction
(No_Allocators
, N
);
371 if Nkind
(E
) = N_Qualified_Expression
then
372 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
373 Set_Etype
(Acc_Type
, Acc_Type
);
374 Find_Type
(Subtype_Mark
(E
));
376 -- Analyze the qualified expression, and apply the name resolution
377 -- rule given in 4.7 (3).
380 Type_Id
:= Etype
(E
);
381 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
383 Resolve
(Expression
(E
), Type_Id
);
385 if Is_Limited_Type
(Type_Id
)
386 and then Comes_From_Source
(N
)
387 and then not In_Instance_Body
389 if not OK_For_Limited_Init
(Expression
(E
)) then
390 Error_Msg_N
("initialization not allowed for limited types", N
);
391 Explain_Limited_Type
(Type_Id
, N
);
395 -- A qualified expression requires an exact match of the type,
396 -- class-wide matching is not allowed.
398 -- if Is_Class_Wide_Type (Type_Id)
399 -- and then Base_Type
400 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
402 -- Wrong_Type (Expression (E), Type_Id);
405 Check_Non_Static_Context
(Expression
(E
));
407 -- We don't analyze the qualified expression itself because it's
408 -- part of the allocator
410 Set_Etype
(E
, Type_Id
);
412 -- Case where allocator has a subtype indication
417 Base_Typ
: Entity_Id
;
420 -- If the allocator includes a N_Subtype_Indication then a
421 -- constraint is present, otherwise the node is a subtype mark.
422 -- Introduce an explicit subtype declaration into the tree
423 -- defining some anonymous subtype and rewrite the allocator to
424 -- use this subtype rather than the subtype indication.
426 -- It is important to introduce the explicit subtype declaration
427 -- so that the bounds of the subtype indication are attached to
428 -- the tree in case the allocator is inside a generic unit.
430 if Nkind
(E
) = N_Subtype_Indication
then
432 -- A constraint is only allowed for a composite type in Ada
433 -- 95. In Ada 83, a constraint is also allowed for an
434 -- access-to-composite type, but the constraint is ignored.
436 Find_Type
(Subtype_Mark
(E
));
437 Base_Typ
:= Entity
(Subtype_Mark
(E
));
439 if Is_Elementary_Type
(Base_Typ
) then
440 if not (Ada_Version
= Ada_83
441 and then Is_Access_Type
(Base_Typ
))
443 Error_Msg_N
("constraint not allowed here", E
);
445 if Nkind
(Constraint
(E
)) =
446 N_Index_Or_Discriminant_Constraint
449 ("\if qualified expression was meant, " &
450 "use apostrophe", Constraint
(E
));
454 -- Get rid of the bogus constraint:
456 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
457 Analyze_Allocator
(N
);
460 -- Ada 2005, AI-363: if the designated type has a constrained
461 -- partial view, it cannot receive a discriminant constraint,
462 -- and the allocated object is unconstrained.
464 elsif Ada_Version
>= Ada_05
465 and then Has_Constrained_Partial_View
(Base_Typ
)
468 ("constraint no allowed when type " &
469 "has a constrained partial view", Constraint
(E
));
472 if Expander_Active
then
474 Make_Defining_Identifier
(Loc
, New_Internal_Name
('S'));
477 Make_Subtype_Declaration
(Loc
,
478 Defining_Identifier
=> Def_Id
,
479 Subtype_Indication
=> Relocate_Node
(E
)));
481 if Sav_Errs
/= Serious_Errors_Detected
482 and then Nkind
(Constraint
(E
)) =
483 N_Index_Or_Discriminant_Constraint
486 ("if qualified expression was meant, " &
487 "use apostrophe!", Constraint
(E
));
490 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
491 Rewrite
(Expression
(N
), E
);
495 Type_Id
:= Process_Subtype
(E
, N
);
496 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
497 Set_Etype
(Acc_Type
, Acc_Type
);
498 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
499 Check_Fully_Declared
(Type_Id
, N
);
503 if Can_Never_Be_Null
(Type_Id
) then
504 Error_Msg_N
("(Ada 2005) qualified expression required",
508 -- Check restriction against dynamically allocated protected
509 -- objects. Note that when limited aggregates are supported,
510 -- a similar test should be applied to an allocator with a
511 -- qualified expression ???
513 if Is_Protected_Type
(Type_Id
) then
514 Check_Restriction
(No_Protected_Type_Allocators
, N
);
517 -- Check for missing initialization. Skip this check if we already
518 -- had errors on analyzing the allocator, since in that case these
519 -- are probably cascaded errors.
521 if Is_Indefinite_Subtype
(Type_Id
)
522 and then Serious_Errors_Detected
= Sav_Errs
524 if Is_Class_Wide_Type
(Type_Id
) then
526 ("initialization required in class-wide allocation", N
);
528 if Ada_Version
< Ada_05
529 and then Is_Limited_Type
(Type_Id
)
531 Error_Msg_N
("unconstrained allocation not allowed", N
);
533 if Is_Array_Type
(Type_Id
) then
535 ("\constraint with array bounds required", N
);
537 elsif Has_Unknown_Discriminants
(Type_Id
) then
540 else pragma Assert
(Has_Discriminants
(Type_Id
));
542 ("\constraint with discriminant values required", N
);
545 -- Limited Ada 2005 and general non-limited case
549 ("uninitialized unconstrained allocation not allowed",
552 if Is_Array_Type
(Type_Id
) then
554 ("\qualified expression or constraint with " &
555 "array bounds required", N
);
557 elsif Has_Unknown_Discriminants
(Type_Id
) then
558 Error_Msg_N
("\qualified expression required", N
);
560 else pragma Assert
(Has_Discriminants
(Type_Id
));
562 ("\qualified expression or constraint with " &
563 "discriminant values required", N
);
571 if Is_Abstract_Type
(Type_Id
) then
572 Error_Msg_N
("cannot allocate abstract object", E
);
575 if Has_Task
(Designated_Type
(Acc_Type
)) then
576 Check_Restriction
(No_Tasking
, N
);
577 Check_Restriction
(Max_Tasks
, N
);
578 Check_Restriction
(No_Task_Allocators
, N
);
581 -- If the No_Streams restriction is set, check that the type of the
582 -- object is not, and does not contain, any subtype derived from
583 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
584 -- Has_Stream just for efficiency reasons. There is no point in
585 -- spending time on a Has_Stream check if the restriction is not set.
587 if Restrictions
.Set
(No_Streams
) then
588 if Has_Stream
(Designated_Type
(Acc_Type
)) then
589 Check_Restriction
(No_Streams
, N
);
593 Set_Etype
(N
, Acc_Type
);
595 if not Is_Library_Level_Entity
(Acc_Type
) then
596 Check_Restriction
(No_Local_Allocators
, N
);
599 if Serious_Errors_Detected
> Sav_Errs
then
600 Set_Error_Posted
(N
);
601 Set_Etype
(N
, Any_Type
);
603 end Analyze_Allocator
;
605 ---------------------------
606 -- Analyze_Arithmetic_Op --
607 ---------------------------
609 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
610 L
: constant Node_Id
:= Left_Opnd
(N
);
611 R
: constant Node_Id
:= Right_Opnd
(N
);
615 Candidate_Type
:= Empty
;
616 Analyze_Expression
(L
);
617 Analyze_Expression
(R
);
619 -- If the entity is already set, the node is the instantiation of a
620 -- generic node with a non-local reference, or was manufactured by a
621 -- call to Make_Op_xxx. In either case the entity is known to be valid,
622 -- and we do not need to collect interpretations, instead we just get
623 -- the single possible interpretation.
627 if Present
(Op_Id
) then
628 if Ekind
(Op_Id
) = E_Operator
then
630 if Nkind_In
(N
, N_Op_Divide
, N_Op_Mod
, N_Op_Multiply
, N_Op_Rem
)
631 and then Treat_Fixed_As_Integer
(N
)
635 Set_Etype
(N
, Any_Type
);
636 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
640 Set_Etype
(N
, Any_Type
);
641 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
644 -- Entity is not already set, so we do need to collect interpretations
647 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
648 Set_Etype
(N
, Any_Type
);
650 while Present
(Op_Id
) loop
651 if Ekind
(Op_Id
) = E_Operator
652 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
654 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
656 -- The following may seem superfluous, because an operator cannot
657 -- be generic, but this ignores the cleverness of the author of
660 elsif Is_Overloadable
(Op_Id
) then
661 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
664 Op_Id
:= Homonym
(Op_Id
);
669 end Analyze_Arithmetic_Op
;
675 -- Function, procedure, and entry calls are checked here. The Name in
676 -- the call may be overloaded. The actuals have been analyzed and may
677 -- themselves be overloaded. On exit from this procedure, the node N
678 -- may have zero, one or more interpretations. In the first case an
679 -- error message is produced. In the last case, the node is flagged
680 -- as overloaded and the interpretations are collected in All_Interp.
682 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
683 -- the type-checking is similar to that of other calls.
685 procedure Analyze_Call
(N
: Node_Id
) is
686 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
687 Nam
: Node_Id
:= Name
(N
);
691 Success
: Boolean := False;
693 function Name_Denotes_Function
return Boolean;
694 -- If the type of the name is an access to subprogram, this may be the
695 -- type of a name, or the return type of the function being called. If
696 -- the name is not an entity then it can denote a protected function.
697 -- Until we distinguish Etype from Return_Type, we must use this routine
698 -- to resolve the meaning of the name in the call.
700 procedure No_Interpretation
;
701 -- Output error message when no valid interpretation exists
703 ---------------------------
704 -- Name_Denotes_Function --
705 ---------------------------
707 function Name_Denotes_Function
return Boolean is
709 if Is_Entity_Name
(Nam
) then
710 return Ekind
(Entity
(Nam
)) = E_Function
;
712 elsif Nkind
(Nam
) = N_Selected_Component
then
713 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
718 end Name_Denotes_Function
;
720 -----------------------
721 -- No_Interpretation --
722 -----------------------
724 procedure No_Interpretation
is
725 L
: constant Boolean := Is_List_Member
(N
);
726 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
729 -- If the node is in a list whose parent is not an expression then it
730 -- must be an attempted procedure call.
732 if L
and then K
not in N_Subexpr
then
733 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
735 ("must instantiate generic procedure& before call",
739 ("procedure or entry name expected", Nam
);
742 -- Check for tasking cases where only an entry call will do
745 and then Nkind_In
(K
, N_Entry_Call_Alternative
,
746 N_Triggering_Alternative
)
748 Error_Msg_N
("entry name expected", Nam
);
750 -- Otherwise give general error message
753 Error_Msg_N
("invalid prefix in call", Nam
);
755 end No_Interpretation
;
757 -- Start of processing for Analyze_Call
760 -- Initialize the type of the result of the call to the error type,
761 -- which will be reset if the type is successfully resolved.
763 Set_Etype
(N
, Any_Type
);
765 if not Is_Overloaded
(Nam
) then
767 -- Only one interpretation to check
769 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
770 Nam_Ent
:= Etype
(Nam
);
772 -- If the prefix is an access_to_subprogram, this may be an indirect
773 -- call. This is the case if the name in the call is not an entity
774 -- name, or if it is a function name in the context of a procedure
775 -- call. In this latter case, we have a call to a parameterless
776 -- function that returns a pointer_to_procedure which is the entity
777 -- being called. Finally, F (X) may be a call to a parameterless
778 -- function that returns a pointer to a function with parameters.
780 elsif Is_Access_Type
(Etype
(Nam
))
781 and then Ekind
(Designated_Type
(Etype
(Nam
))) = E_Subprogram_Type
783 (not Name_Denotes_Function
784 or else Nkind
(N
) = N_Procedure_Call_Statement
786 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
787 and then Is_Entity_Name
(Nam
)
788 and then No
(First_Formal
(Entity
(Nam
)))
789 and then Present
(Actuals
)))
791 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
792 Insert_Explicit_Dereference
(Nam
);
794 -- Selected component case. Simple entry or protected operation,
795 -- where the entry name is given by the selector name.
797 elsif Nkind
(Nam
) = N_Selected_Component
then
798 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
800 if Ekind
(Nam_Ent
) /= E_Entry
801 and then Ekind
(Nam_Ent
) /= E_Entry_Family
802 and then Ekind
(Nam_Ent
) /= E_Function
803 and then Ekind
(Nam_Ent
) /= E_Procedure
805 Error_Msg_N
("name in call is not a callable entity", Nam
);
806 Set_Etype
(N
, Any_Type
);
810 -- If the name is an Indexed component, it can be a call to a member
811 -- of an entry family. The prefix must be a selected component whose
812 -- selector is the entry. Analyze_Procedure_Call normalizes several
813 -- kinds of call into this form.
815 elsif Nkind
(Nam
) = N_Indexed_Component
then
816 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
817 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
819 Error_Msg_N
("name in call is not a callable entity", Nam
);
820 Set_Etype
(N
, Any_Type
);
824 elsif not Is_Entity_Name
(Nam
) then
825 Error_Msg_N
("name in call is not a callable entity", Nam
);
826 Set_Etype
(N
, Any_Type
);
830 Nam_Ent
:= Entity
(Nam
);
832 -- If no interpretations, give error message
834 if not Is_Overloadable
(Nam_Ent
) then
840 -- Operations generated for RACW stub types are called only through
841 -- dispatching, and can never be the static interpretation of a call.
843 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
848 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
850 -- If this is an indirect call, the return type of the access_to
851 -- subprogram may be an incomplete type. At the point of the call,
852 -- use the full type if available, and at the same time update
853 -- the return type of the access_to_subprogram.
856 and then Nkind
(Nam
) = N_Explicit_Dereference
857 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
858 and then Present
(Full_View
(Etype
(N
)))
860 Set_Etype
(N
, Full_View
(Etype
(N
)));
861 Set_Etype
(Nam_Ent
, Etype
(N
));
865 -- An overloaded selected component must denote overloaded operations
866 -- of a concurrent type. The interpretations are attached to the
867 -- simple name of those operations.
869 if Nkind
(Nam
) = N_Selected_Component
then
870 Nam
:= Selector_Name
(Nam
);
873 Get_First_Interp
(Nam
, X
, It
);
875 while Present
(It
.Nam
) loop
878 -- Name may be call that returns an access to subprogram, or more
879 -- generally an overloaded expression one of whose interpretations
880 -- yields an access to subprogram. If the name is an entity, we
881 -- do not dereference, because the node is a call that returns
882 -- the access type: note difference between f(x), where the call
883 -- may return an access subprogram type, and f(x)(y), where the
884 -- type returned by the call to f is implicitly dereferenced to
885 -- analyze the outer call.
887 if Is_Access_Type
(Nam_Ent
) then
888 Nam_Ent
:= Designated_Type
(Nam_Ent
);
890 elsif Is_Access_Type
(Etype
(Nam_Ent
))
891 and then not Is_Entity_Name
(Nam
)
892 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
895 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
898 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
900 -- If the interpretation succeeds, mark the proper type of the
901 -- prefix (any valid candidate will do). If not, remove the
902 -- candidate interpretation. This only needs to be done for
903 -- overloaded protected operations, for other entities disambi-
904 -- guation is done directly in Resolve.
907 Set_Etype
(Nam
, It
.Typ
);
909 elsif Nkind_In
(Name
(N
), N_Selected_Component
,
915 Get_Next_Interp
(X
, It
);
918 -- If the name is the result of a function call, it can only
919 -- be a call to a function returning an access to subprogram.
920 -- Insert explicit dereference.
922 if Nkind
(Nam
) = N_Function_Call
then
923 Insert_Explicit_Dereference
(Nam
);
926 if Etype
(N
) = Any_Type
then
928 -- None of the interpretations is compatible with the actuals
930 Diagnose_Call
(N
, Nam
);
932 -- Special checks for uninstantiated put routines
934 if Nkind
(N
) = N_Procedure_Call_Statement
935 and then Is_Entity_Name
(Nam
)
936 and then Chars
(Nam
) = Name_Put
937 and then List_Length
(Actuals
) = 1
940 Arg
: constant Node_Id
:= First
(Actuals
);
944 if Nkind
(Arg
) = N_Parameter_Association
then
945 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
950 if Is_Signed_Integer_Type
(Typ
) then
952 ("possible missing instantiation of " &
953 "'Text_'I'O.'Integer_'I'O!", Nam
);
955 elsif Is_Modular_Integer_Type
(Typ
) then
957 ("possible missing instantiation of " &
958 "'Text_'I'O.'Modular_'I'O!", Nam
);
960 elsif Is_Floating_Point_Type
(Typ
) then
962 ("possible missing instantiation of " &
963 "'Text_'I'O.'Float_'I'O!", Nam
);
965 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
967 ("possible missing instantiation of " &
968 "'Text_'I'O.'Fixed_'I'O!", Nam
);
970 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
972 ("possible missing instantiation of " &
973 "'Text_'I'O.'Decimal_'I'O!", Nam
);
975 elsif Is_Enumeration_Type
(Typ
) then
977 ("possible missing instantiation of " &
978 "'Text_'I'O.'Enumeration_'I'O!", Nam
);
983 elsif not Is_Overloaded
(N
)
984 and then Is_Entity_Name
(Nam
)
986 -- Resolution yields a single interpretation. Verify that the
987 -- reference has capitalization consistent with the declaration.
989 Set_Entity_With_Style_Check
(Nam
, Entity
(Nam
));
990 Generate_Reference
(Entity
(Nam
), Nam
);
992 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
994 Remove_Abstract_Operations
(N
);
1001 ---------------------------
1002 -- Analyze_Comparison_Op --
1003 ---------------------------
1005 procedure Analyze_Comparison_Op
(N
: Node_Id
) is
1006 L
: constant Node_Id
:= Left_Opnd
(N
);
1007 R
: constant Node_Id
:= Right_Opnd
(N
);
1008 Op_Id
: Entity_Id
:= Entity
(N
);
1011 Set_Etype
(N
, Any_Type
);
1012 Candidate_Type
:= Empty
;
1014 Analyze_Expression
(L
);
1015 Analyze_Expression
(R
);
1017 if Present
(Op_Id
) then
1018 if Ekind
(Op_Id
) = E_Operator
then
1019 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1021 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1024 if Is_Overloaded
(L
) then
1025 Set_Etype
(L
, Intersect_Types
(L
, R
));
1029 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1030 while Present
(Op_Id
) loop
1031 if Ekind
(Op_Id
) = E_Operator
then
1032 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1034 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1037 Op_Id
:= Homonym
(Op_Id
);
1042 end Analyze_Comparison_Op
;
1044 ---------------------------
1045 -- Analyze_Concatenation --
1046 ---------------------------
1048 procedure Analyze_Concatenation
(N
: Node_Id
) is
1050 -- We wish to avoid deep recursion, because concatenations are often
1051 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1052 -- operands nonrecursively until we find something that is not a
1053 -- concatenation (A in this case), or has already been analyzed. We
1054 -- analyze that, and then walk back up the tree following Parent
1055 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1056 -- work at each level. The Parent pointers allow us to avoid recursion,
1057 -- and thus avoid running out of memory.
1063 Candidate_Type
:= Empty
;
1065 -- The following code is equivalent to:
1067 -- Set_Etype (N, Any_Type);
1068 -- Analyze_Expression (Left_Opnd (N));
1069 -- Analyze_Concatenation_Rest (N);
1071 -- where the Analyze_Expression call recurses back here if the left
1072 -- operand is a concatenation.
1074 -- Walk down left operands
1077 Set_Etype
(NN
, Any_Type
);
1078 L
:= Left_Opnd
(NN
);
1079 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1083 -- Now (given the above example) NN is A&B and L is A
1085 -- First analyze L ...
1087 Analyze_Expression
(L
);
1089 -- ... then walk NN back up until we reach N (where we started), calling
1090 -- Analyze_Concatenation_Rest along the way.
1093 Analyze_Concatenation_Rest
(NN
);
1097 end Analyze_Concatenation
;
1099 --------------------------------
1100 -- Analyze_Concatenation_Rest --
1101 --------------------------------
1103 -- If the only one-dimensional array type in scope is String,
1104 -- this is the resulting type of the operation. Otherwise there
1105 -- will be a concatenation operation defined for each user-defined
1106 -- one-dimensional array.
1108 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1109 L
: constant Node_Id
:= Left_Opnd
(N
);
1110 R
: constant Node_Id
:= Right_Opnd
(N
);
1111 Op_Id
: Entity_Id
:= Entity
(N
);
1116 Analyze_Expression
(R
);
1118 -- If the entity is present, the node appears in an instance, and
1119 -- denotes a predefined concatenation operation. The resulting type is
1120 -- obtained from the arguments when possible. If the arguments are
1121 -- aggregates, the array type and the concatenation type must be
1124 if Present
(Op_Id
) then
1125 if Ekind
(Op_Id
) = E_Operator
then
1127 LT
:= Base_Type
(Etype
(L
));
1128 RT
:= Base_Type
(Etype
(R
));
1130 if Is_Array_Type
(LT
)
1131 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1133 Add_One_Interp
(N
, Op_Id
, LT
);
1135 elsif Is_Array_Type
(RT
)
1136 and then LT
= Base_Type
(Component_Type
(RT
))
1138 Add_One_Interp
(N
, Op_Id
, RT
);
1140 -- If one operand is a string type or a user-defined array type,
1141 -- and the other is a literal, result is of the specific type.
1144 (Root_Type
(LT
) = Standard_String
1145 or else Scope
(LT
) /= Standard_Standard
)
1146 and then Etype
(R
) = Any_String
1148 Add_One_Interp
(N
, Op_Id
, LT
);
1151 (Root_Type
(RT
) = Standard_String
1152 or else Scope
(RT
) /= Standard_Standard
)
1153 and then Etype
(L
) = Any_String
1155 Add_One_Interp
(N
, Op_Id
, RT
);
1157 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1158 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1161 -- Type and its operations must be visible
1163 Set_Entity
(N
, Empty
);
1164 Analyze_Concatenation
(N
);
1168 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1172 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
1173 while Present
(Op_Id
) loop
1174 if Ekind
(Op_Id
) = E_Operator
then
1176 -- Do not consider operators declared in dead code, they can
1177 -- not be part of the resolution.
1179 if Is_Eliminated
(Op_Id
) then
1182 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
1186 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1189 Op_Id
:= Homonym
(Op_Id
);
1194 end Analyze_Concatenation_Rest
;
1196 ------------------------------------
1197 -- Analyze_Conditional_Expression --
1198 ------------------------------------
1200 procedure Analyze_Conditional_Expression
(N
: Node_Id
) is
1201 Condition
: constant Node_Id
:= First
(Expressions
(N
));
1202 Then_Expr
: constant Node_Id
:= Next
(Condition
);
1203 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
1205 Analyze_Expression
(Condition
);
1206 Analyze_Expression
(Then_Expr
);
1207 Analyze_Expression
(Else_Expr
);
1208 Set_Etype
(N
, Etype
(Then_Expr
));
1209 end Analyze_Conditional_Expression
;
1211 -------------------------
1212 -- Analyze_Equality_Op --
1213 -------------------------
1215 procedure Analyze_Equality_Op
(N
: Node_Id
) is
1216 Loc
: constant Source_Ptr
:= Sloc
(N
);
1217 L
: constant Node_Id
:= Left_Opnd
(N
);
1218 R
: constant Node_Id
:= Right_Opnd
(N
);
1222 Set_Etype
(N
, Any_Type
);
1223 Candidate_Type
:= Empty
;
1225 Analyze_Expression
(L
);
1226 Analyze_Expression
(R
);
1228 -- If the entity is set, the node is a generic instance with a non-local
1229 -- reference to the predefined operator or to a user-defined function.
1230 -- It can also be an inequality that is expanded into the negation of a
1231 -- call to a user-defined equality operator.
1233 -- For the predefined case, the result is Boolean, regardless of the
1234 -- type of the operands. The operands may even be limited, if they are
1235 -- generic actuals. If they are overloaded, label the left argument with
1236 -- the common type that must be present, or with the type of the formal
1237 -- of the user-defined function.
1239 if Present
(Entity
(N
)) then
1240 Op_Id
:= Entity
(N
);
1242 if Ekind
(Op_Id
) = E_Operator
then
1243 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
1245 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1248 if Is_Overloaded
(L
) then
1249 if Ekind
(Op_Id
) = E_Operator
then
1250 Set_Etype
(L
, Intersect_Types
(L
, R
));
1252 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
1257 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1258 while Present
(Op_Id
) loop
1259 if Ekind
(Op_Id
) = E_Operator
then
1260 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1262 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1265 Op_Id
:= Homonym
(Op_Id
);
1269 -- If there was no match, and the operator is inequality, this may
1270 -- be a case where inequality has not been made explicit, as for
1271 -- tagged types. Analyze the node as the negation of an equality
1272 -- operation. This cannot be done earlier, because before analysis
1273 -- we cannot rule out the presence of an explicit inequality.
1275 if Etype
(N
) = Any_Type
1276 and then Nkind
(N
) = N_Op_Ne
1278 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
1279 while Present
(Op_Id
) loop
1280 if Ekind
(Op_Id
) = E_Operator
then
1281 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1283 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1286 Op_Id
:= Homonym
(Op_Id
);
1289 if Etype
(N
) /= Any_Type
then
1290 Op_Id
:= Entity
(N
);
1296 Left_Opnd
=> Left_Opnd
(N
),
1297 Right_Opnd
=> Right_Opnd
(N
))));
1299 Set_Entity
(Right_Opnd
(N
), Op_Id
);
1305 end Analyze_Equality_Op
;
1307 ----------------------------------
1308 -- Analyze_Explicit_Dereference --
1309 ----------------------------------
1311 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
1312 Loc
: constant Source_Ptr
:= Sloc
(N
);
1313 P
: constant Node_Id
:= Prefix
(N
);
1319 function Is_Function_Type
return Boolean;
1320 -- Check whether node may be interpreted as an implicit function call
1322 ----------------------
1323 -- Is_Function_Type --
1324 ----------------------
1326 function Is_Function_Type
return Boolean is
1331 if not Is_Overloaded
(N
) then
1332 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
1333 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
1336 Get_First_Interp
(N
, I
, It
);
1337 while Present
(It
.Nam
) loop
1338 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
1339 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
1344 Get_Next_Interp
(I
, It
);
1349 end Is_Function_Type
;
1351 -- Start of processing for Analyze_Explicit_Dereference
1355 Set_Etype
(N
, Any_Type
);
1357 -- Test for remote access to subprogram type, and if so return
1358 -- after rewriting the original tree.
1360 if Remote_AST_E_Dereference
(P
) then
1364 -- Normal processing for other than remote access to subprogram type
1366 if not Is_Overloaded
(P
) then
1367 if Is_Access_Type
(Etype
(P
)) then
1369 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1370 -- avoid other problems caused by the Private_Subtype and it is
1371 -- safe to go to the Base_Type because this is the same as
1372 -- converting the access value to its Base_Type.
1375 DT
: Entity_Id
:= Designated_Type
(Etype
(P
));
1378 if Ekind
(DT
) = E_Private_Subtype
1379 and then Is_For_Access_Subtype
(DT
)
1381 DT
:= Base_Type
(DT
);
1384 -- An explicit dereference is a legal occurrence of an
1385 -- incomplete type imported through a limited_with clause,
1386 -- if the full view is visible.
1388 if From_With_Type
(DT
)
1389 and then not From_With_Type
(Scope
(DT
))
1391 (Is_Immediately_Visible
(Scope
(DT
))
1393 (Is_Child_Unit
(Scope
(DT
))
1394 and then Is_Visible_Child_Unit
(Scope
(DT
))))
1396 Set_Etype
(N
, Available_View
(DT
));
1403 elsif Etype
(P
) /= Any_Type
then
1404 Error_Msg_N
("prefix of dereference must be an access type", N
);
1409 Get_First_Interp
(P
, I
, It
);
1410 while Present
(It
.Nam
) loop
1413 if Is_Access_Type
(T
) then
1414 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
1417 Get_Next_Interp
(I
, It
);
1420 -- Error if no interpretation of the prefix has an access type
1422 if Etype
(N
) = Any_Type
then
1424 ("access type required in prefix of explicit dereference", P
);
1425 Set_Etype
(N
, Any_Type
);
1431 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
1433 and then (Nkind
(Parent
(N
)) /= N_Function_Call
1434 or else N
/= Name
(Parent
(N
)))
1436 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1437 or else N
/= Name
(Parent
(N
)))
1439 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
1440 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1442 (Attribute_Name
(Parent
(N
)) /= Name_Address
1444 Attribute_Name
(Parent
(N
)) /= Name_Access
))
1446 -- Name is a function call with no actuals, in a context that
1447 -- requires deproceduring (including as an actual in an enclosing
1448 -- function or procedure call). There are some pathological cases
1449 -- where the prefix might include functions that return access to
1450 -- subprograms and others that return a regular type. Disambiguation
1451 -- of those has to take place in Resolve.
1454 Make_Function_Call
(Loc
,
1455 Name
=> Make_Explicit_Dereference
(Loc
, P
),
1456 Parameter_Associations
=> New_List
);
1458 -- If the prefix is overloaded, remove operations that have formals,
1459 -- we know that this is a parameterless call.
1461 if Is_Overloaded
(P
) then
1462 Get_First_Interp
(P
, I
, It
);
1463 while Present
(It
.Nam
) loop
1466 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
1472 Get_Next_Interp
(I
, It
);
1479 elsif not Is_Function_Type
1480 and then Is_Overloaded
(N
)
1482 -- The prefix may include access to subprograms and other access
1483 -- types. If the context selects the interpretation that is a call,
1484 -- we cannot rewrite the node yet, but we include the result of
1485 -- the call interpretation.
1487 Get_First_Interp
(N
, I
, It
);
1488 while Present
(It
.Nam
) loop
1489 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
1490 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
1492 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
1495 Get_Next_Interp
(I
, It
);
1499 -- A value of remote access-to-class-wide must not be dereferenced
1502 Validate_Remote_Access_To_Class_Wide_Type
(N
);
1503 end Analyze_Explicit_Dereference
;
1505 ------------------------
1506 -- Analyze_Expression --
1507 ------------------------
1509 procedure Analyze_Expression
(N
: Node_Id
) is
1512 Check_Parameterless_Call
(N
);
1513 end Analyze_Expression
;
1515 ------------------------------------
1516 -- Analyze_Indexed_Component_Form --
1517 ------------------------------------
1519 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
1520 P
: constant Node_Id
:= Prefix
(N
);
1521 Exprs
: constant List_Id
:= Expressions
(N
);
1527 procedure Process_Function_Call
;
1528 -- Prefix in indexed component form is an overloadable entity,
1529 -- so the node is a function call. Reformat it as such.
1531 procedure Process_Indexed_Component
;
1532 -- Prefix in indexed component form is actually an indexed component.
1533 -- This routine processes it, knowing that the prefix is already
1536 procedure Process_Indexed_Component_Or_Slice
;
1537 -- An indexed component with a single index may designate a slice if
1538 -- the index is a subtype mark. This routine disambiguates these two
1539 -- cases by resolving the prefix to see if it is a subtype mark.
1541 procedure Process_Overloaded_Indexed_Component
;
1542 -- If the prefix of an indexed component is overloaded, the proper
1543 -- interpretation is selected by the index types and the context.
1545 ---------------------------
1546 -- Process_Function_Call --
1547 ---------------------------
1549 procedure Process_Function_Call
is
1553 Change_Node
(N
, N_Function_Call
);
1555 Set_Parameter_Associations
(N
, Exprs
);
1557 -- Analyze actuals prior to analyzing the call itself
1559 Actual
:= First
(Parameter_Associations
(N
));
1560 while Present
(Actual
) loop
1562 Check_Parameterless_Call
(Actual
);
1564 -- Move to next actual. Note that we use Next, not Next_Actual
1565 -- here. The reason for this is a bit subtle. If a function call
1566 -- includes named associations, the parser recognizes the node as
1567 -- a call, and it is analyzed as such. If all associations are
1568 -- positional, the parser builds an indexed_component node, and
1569 -- it is only after analysis of the prefix that the construct
1570 -- is recognized as a call, in which case Process_Function_Call
1571 -- rewrites the node and analyzes the actuals. If the list of
1572 -- actuals is malformed, the parser may leave the node as an
1573 -- indexed component (despite the presence of named associations).
1574 -- The iterator Next_Actual is equivalent to Next if the list is
1575 -- positional, but follows the normalized chain of actuals when
1576 -- named associations are present. In this case normalization has
1577 -- not taken place, and actuals remain unanalyzed, which leads to
1578 -- subsequent crashes or loops if there is an attempt to continue
1579 -- analysis of the program.
1585 end Process_Function_Call
;
1587 -------------------------------
1588 -- Process_Indexed_Component --
1589 -------------------------------
1591 procedure Process_Indexed_Component
is
1593 Array_Type
: Entity_Id
;
1595 Pent
: Entity_Id
:= Empty
;
1598 Exp
:= First
(Exprs
);
1600 if Is_Overloaded
(P
) then
1601 Process_Overloaded_Indexed_Component
;
1604 Array_Type
:= Etype
(P
);
1606 if Is_Entity_Name
(P
) then
1608 elsif Nkind
(P
) = N_Selected_Component
1609 and then Is_Entity_Name
(Selector_Name
(P
))
1611 Pent
:= Entity
(Selector_Name
(P
));
1614 -- Prefix must be appropriate for an array type, taking into
1615 -- account a possible implicit dereference.
1617 if Is_Access_Type
(Array_Type
) then
1618 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
1619 Array_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, P
);
1622 if Is_Array_Type
(Array_Type
) then
1625 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
1627 Set_Etype
(N
, Any_Type
);
1629 if not Has_Compatible_Type
1630 (Exp
, Entry_Index_Type
(Pent
))
1632 Error_Msg_N
("invalid index type in entry name", N
);
1634 elsif Present
(Next
(Exp
)) then
1635 Error_Msg_N
("too many subscripts in entry reference", N
);
1638 Set_Etype
(N
, Etype
(P
));
1643 elsif Is_Record_Type
(Array_Type
)
1644 and then Remote_AST_I_Dereference
(P
)
1648 elsif Array_Type
= Any_Type
then
1649 Set_Etype
(N
, Any_Type
);
1652 -- Here we definitely have a bad indexing
1655 if Nkind
(Parent
(N
)) = N_Requeue_Statement
1656 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
1659 ("REQUEUE does not permit parameters", First
(Exprs
));
1661 elsif Is_Entity_Name
(P
)
1662 and then Etype
(P
) = Standard_Void_Type
1664 Error_Msg_NE
("incorrect use of&", P
, Entity
(P
));
1667 Error_Msg_N
("array type required in indexed component", P
);
1670 Set_Etype
(N
, Any_Type
);
1674 Index
:= First_Index
(Array_Type
);
1675 while Present
(Index
) and then Present
(Exp
) loop
1676 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
1677 Wrong_Type
(Exp
, Etype
(Index
));
1678 Set_Etype
(N
, Any_Type
);
1686 Set_Etype
(N
, Component_Type
(Array_Type
));
1688 if Present
(Index
) then
1690 ("too few subscripts in array reference", First
(Exprs
));
1692 elsif Present
(Exp
) then
1693 Error_Msg_N
("too many subscripts in array reference", Exp
);
1696 end Process_Indexed_Component
;
1698 ----------------------------------------
1699 -- Process_Indexed_Component_Or_Slice --
1700 ----------------------------------------
1702 procedure Process_Indexed_Component_Or_Slice
is
1704 Exp
:= First
(Exprs
);
1705 while Present
(Exp
) loop
1706 Analyze_Expression
(Exp
);
1710 Exp
:= First
(Exprs
);
1712 -- If one index is present, and it is a subtype name, then the
1713 -- node denotes a slice (note that the case of an explicit range
1714 -- for a slice was already built as an N_Slice node in the first
1715 -- place, so that case is not handled here).
1717 -- We use a replace rather than a rewrite here because this is one
1718 -- of the cases in which the tree built by the parser is plain wrong.
1721 and then Is_Entity_Name
(Exp
)
1722 and then Is_Type
(Entity
(Exp
))
1725 Make_Slice
(Sloc
(N
),
1727 Discrete_Range
=> New_Copy
(Exp
)));
1730 -- Otherwise (more than one index present, or single index is not
1731 -- a subtype name), then we have the indexed component case.
1734 Process_Indexed_Component
;
1736 end Process_Indexed_Component_Or_Slice
;
1738 ------------------------------------------
1739 -- Process_Overloaded_Indexed_Component --
1740 ------------------------------------------
1742 procedure Process_Overloaded_Indexed_Component
is
1751 Set_Etype
(N
, Any_Type
);
1753 Get_First_Interp
(P
, I
, It
);
1754 while Present
(It
.Nam
) loop
1757 if Is_Access_Type
(Typ
) then
1758 Typ
:= Designated_Type
(Typ
);
1759 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
1762 if Is_Array_Type
(Typ
) then
1764 -- Got a candidate: verify that index types are compatible
1766 Index
:= First_Index
(Typ
);
1768 Exp
:= First
(Exprs
);
1769 while Present
(Index
) and then Present
(Exp
) loop
1770 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
1782 if Found
and then No
(Index
) and then No
(Exp
) then
1784 Etype
(Component_Type
(Typ
)),
1785 Etype
(Component_Type
(Typ
)));
1789 Get_Next_Interp
(I
, It
);
1792 if Etype
(N
) = Any_Type
then
1793 Error_Msg_N
("no legal interpretation for indexed component", N
);
1794 Set_Is_Overloaded
(N
, False);
1798 end Process_Overloaded_Indexed_Component
;
1800 -- Start of processing for Analyze_Indexed_Component_Form
1803 -- Get name of array, function or type
1807 if Nkind_In
(N
, N_Function_Call
, N_Procedure_Call_Statement
) then
1809 -- If P is an explicit dereference whose prefix is of a
1810 -- remote access-to-subprogram type, then N has already
1811 -- been rewritten as a subprogram call and analyzed.
1816 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
1818 P_T
:= Base_Type
(Etype
(P
));
1820 if Is_Entity_Name
(P
)
1821 or else Nkind
(P
) = N_Operator_Symbol
1825 if Is_Type
(U_N
) then
1827 -- Reformat node as a type conversion
1829 E
:= Remove_Head
(Exprs
);
1831 if Present
(First
(Exprs
)) then
1833 ("argument of type conversion must be single expression", N
);
1836 Change_Node
(N
, N_Type_Conversion
);
1837 Set_Subtype_Mark
(N
, P
);
1839 Set_Expression
(N
, E
);
1841 -- After changing the node, call for the specific Analysis
1842 -- routine directly, to avoid a double call to the expander.
1844 Analyze_Type_Conversion
(N
);
1848 if Is_Overloadable
(U_N
) then
1849 Process_Function_Call
;
1851 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
1852 or else (Is_Access_Type
(Etype
(P
))
1854 Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
)
1856 -- Call to access_to-subprogram with possible implicit dereference
1858 Process_Function_Call
;
1860 elsif Is_Generic_Subprogram
(U_N
) then
1862 -- A common beginner's (or C++ templates fan) error
1864 Error_Msg_N
("generic subprogram cannot be called", N
);
1865 Set_Etype
(N
, Any_Type
);
1869 Process_Indexed_Component_Or_Slice
;
1872 -- If not an entity name, prefix is an expression that may denote
1873 -- an array or an access-to-subprogram.
1876 if Ekind
(P_T
) = E_Subprogram_Type
1877 or else (Is_Access_Type
(P_T
)
1879 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
1881 Process_Function_Call
;
1883 elsif Nkind
(P
) = N_Selected_Component
1884 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
1886 Process_Function_Call
;
1889 -- Indexed component, slice, or a call to a member of a family
1890 -- entry, which will be converted to an entry call later.
1892 Process_Indexed_Component_Or_Slice
;
1895 end Analyze_Indexed_Component_Form
;
1897 ------------------------
1898 -- Analyze_Logical_Op --
1899 ------------------------
1901 procedure Analyze_Logical_Op
(N
: Node_Id
) is
1902 L
: constant Node_Id
:= Left_Opnd
(N
);
1903 R
: constant Node_Id
:= Right_Opnd
(N
);
1904 Op_Id
: Entity_Id
:= Entity
(N
);
1907 Set_Etype
(N
, Any_Type
);
1908 Candidate_Type
:= Empty
;
1910 Analyze_Expression
(L
);
1911 Analyze_Expression
(R
);
1913 if Present
(Op_Id
) then
1915 if Ekind
(Op_Id
) = E_Operator
then
1916 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
1918 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1922 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1923 while Present
(Op_Id
) loop
1924 if Ekind
(Op_Id
) = E_Operator
then
1925 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
1927 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1930 Op_Id
:= Homonym
(Op_Id
);
1935 end Analyze_Logical_Op
;
1937 ---------------------------
1938 -- Analyze_Membership_Op --
1939 ---------------------------
1941 procedure Analyze_Membership_Op
(N
: Node_Id
) is
1942 L
: constant Node_Id
:= Left_Opnd
(N
);
1943 R
: constant Node_Id
:= Right_Opnd
(N
);
1945 Index
: Interp_Index
;
1947 Found
: Boolean := False;
1951 procedure Try_One_Interp
(T1
: Entity_Id
);
1952 -- Routine to try one proposed interpretation. Note that the context
1953 -- of the operation plays no role in resolving the arguments, so that
1954 -- if there is more than one interpretation of the operands that is
1955 -- compatible with a membership test, the operation is ambiguous.
1957 --------------------
1958 -- Try_One_Interp --
1959 --------------------
1961 procedure Try_One_Interp
(T1
: Entity_Id
) is
1963 if Has_Compatible_Type
(R
, T1
) then
1965 and then Base_Type
(T1
) /= Base_Type
(T_F
)
1967 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
1969 if It
= No_Interp
then
1970 Ambiguous_Operands
(N
);
1971 Set_Etype
(L
, Any_Type
);
1989 -- Start of processing for Analyze_Membership_Op
1992 Analyze_Expression
(L
);
1994 if Nkind
(R
) = N_Range
1995 or else (Nkind
(R
) = N_Attribute_Reference
1996 and then Attribute_Name
(R
) = Name_Range
)
2000 if not Is_Overloaded
(L
) then
2001 Try_One_Interp
(Etype
(L
));
2004 Get_First_Interp
(L
, Index
, It
);
2005 while Present
(It
.Typ
) loop
2006 Try_One_Interp
(It
.Typ
);
2007 Get_Next_Interp
(Index
, It
);
2011 -- If not a range, it can only be a subtype mark, or else there
2012 -- is a more basic error, to be diagnosed in Find_Type.
2017 if Is_Entity_Name
(R
) then
2018 Check_Fully_Declared
(Entity
(R
), R
);
2022 -- Compatibility between expression and subtype mark or range is
2023 -- checked during resolution. The result of the operation is Boolean
2026 Set_Etype
(N
, Standard_Boolean
);
2028 if Comes_From_Source
(N
)
2029 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
2031 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
2033 end Analyze_Membership_Op
;
2035 ----------------------
2036 -- Analyze_Negation --
2037 ----------------------
2039 procedure Analyze_Negation
(N
: Node_Id
) is
2040 R
: constant Node_Id
:= Right_Opnd
(N
);
2041 Op_Id
: Entity_Id
:= Entity
(N
);
2044 Set_Etype
(N
, Any_Type
);
2045 Candidate_Type
:= Empty
;
2047 Analyze_Expression
(R
);
2049 if Present
(Op_Id
) then
2050 if Ekind
(Op_Id
) = E_Operator
then
2051 Find_Negation_Types
(R
, Op_Id
, N
);
2053 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2057 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2058 while Present
(Op_Id
) loop
2059 if Ekind
(Op_Id
) = E_Operator
then
2060 Find_Negation_Types
(R
, Op_Id
, N
);
2062 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
2065 Op_Id
:= Homonym
(Op_Id
);
2070 end Analyze_Negation
;
2076 procedure Analyze_Null
(N
: Node_Id
) is
2078 Set_Etype
(N
, Any_Access
);
2081 ----------------------
2082 -- Analyze_One_Call --
2083 ----------------------
2085 procedure Analyze_One_Call
2089 Success
: out Boolean;
2090 Skip_First
: Boolean := False)
2092 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
2093 Prev_T
: constant Entity_Id
:= Etype
(N
);
2095 Must_Skip
: constant Boolean := Skip_First
2096 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
2098 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
2099 and then Nkind
(Prefix
(Original_Node
(N
)))
2100 = N_Selected_Component
);
2101 -- The first formal must be omitted from the match when trying to find
2102 -- a primitive operation that is a possible interpretation, and also
2103 -- after the call has been rewritten, because the corresponding actual
2104 -- is already known to be compatible, and because this may be an
2105 -- indexing of a call with default parameters.
2109 Is_Indexed
: Boolean := False;
2110 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
2113 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
2114 -- There may be a user-defined operator that hides the current
2115 -- interpretation. We must check for this independently of the
2116 -- analysis of the call with the user-defined operation, because
2117 -- the parameter names may be wrong and yet the hiding takes place.
2118 -- This fixes a problem with ACATS test B34014O.
2120 -- When the type Address is a visible integer type, and the DEC
2121 -- system extension is visible, the predefined operator may be
2122 -- hidden as well, by one of the address operations in auxdec.
2123 -- Finally, The abstract operations on address do not hide the
2124 -- predefined operator (this is the purpose of making them abstract).
2126 procedure Indicate_Name_And_Type
;
2127 -- If candidate interpretation matches, indicate name and type of
2128 -- result on call node.
2130 ----------------------------
2131 -- Indicate_Name_And_Type --
2132 ----------------------------
2134 procedure Indicate_Name_And_Type
is
2136 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
2139 -- If the prefix of the call is a name, indicate the entity
2140 -- being called. If it is not a name, it is an expression that
2141 -- denotes an access to subprogram or else an entry or family. In
2142 -- the latter case, the name is a selected component, and the entity
2143 -- being called is noted on the selector.
2145 if not Is_Type
(Nam
) then
2146 if Is_Entity_Name
(Name
(N
))
2147 or else Nkind
(Name
(N
)) = N_Operator_Symbol
2149 Set_Entity
(Name
(N
), Nam
);
2151 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2152 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
2156 if Debug_Flag_E
and not Report
then
2157 Write_Str
(" Overloaded call ");
2158 Write_Int
(Int
(N
));
2159 Write_Str
(" compatible with ");
2160 Write_Int
(Int
(Nam
));
2163 end Indicate_Name_And_Type
;
2165 ------------------------
2166 -- Operator_Hidden_By --
2167 ------------------------
2169 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
2170 Act1
: constant Node_Id
:= First_Actual
(N
);
2171 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2172 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
2173 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
2176 if Ekind
(Fun
) /= E_Function
2177 or else Is_Abstract_Subprogram
(Fun
)
2181 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
2184 elsif Present
(Form2
) then
2186 No
(Act2
) or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
2191 elsif Present
(Act2
) then
2195 -- Now we know that the arity of the operator matches the function,
2196 -- and the function call is a valid interpretation. The function
2197 -- hides the operator if it has the right signature, or if one of
2198 -- its operands is a non-abstract operation on Address when this is
2199 -- a visible integer type.
2201 return Hides_Op
(Fun
, Nam
)
2202 or else Is_Descendent_Of_Address
(Etype
(Form1
))
2205 and then Is_Descendent_Of_Address
(Etype
(Form2
)));
2206 end Operator_Hidden_By
;
2208 -- Start of processing for Analyze_One_Call
2213 -- If the subprogram has no formals or if all the formals have defaults,
2214 -- and the return type is an array type, the node may denote an indexing
2215 -- of the result of a parameterless call. In Ada 2005, the subprogram
2216 -- may have one non-defaulted formal, and the call may have been written
2217 -- in prefix notation, so that the rebuilt parameter list has more than
2220 if Present
(Actuals
)
2222 (Needs_No_Actuals
(Nam
)
2224 (Needs_One_Actual
(Nam
)
2225 and then Present
(Next_Actual
(First
(Actuals
)))))
2227 if Is_Array_Type
(Subp_Type
) then
2228 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
2230 elsif Is_Access_Type
(Subp_Type
)
2231 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
2235 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
2237 -- The prefix can also be a parameterless function that returns an
2238 -- access to subprogram, in which case this is an indirect call.
2240 elsif Is_Access_Type
(Subp_Type
)
2241 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
2243 Is_Indexed
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
2248 -- If the call has been transformed into a slice, it is of the form
2249 -- F (Subtype) where F is paramterless. The node has ben rewritten in
2250 -- Try_Indexed_Call and there is nothing else to do.
2253 and then Nkind
(N
) = N_Slice
2258 Normalize_Actuals
(N
, Nam
, (Report
and not Is_Indexed
), Norm_OK
);
2262 -- Mismatch in number or names of parameters
2264 if Debug_Flag_E
then
2265 Write_Str
(" normalization fails in call ");
2266 Write_Int
(Int
(N
));
2267 Write_Str
(" with subprogram ");
2268 Write_Int
(Int
(Nam
));
2272 -- If the context expects a function call, discard any interpretation
2273 -- that is a procedure. If the node is not overloaded, leave as is for
2274 -- better error reporting when type mismatch is found.
2276 elsif Nkind
(N
) = N_Function_Call
2277 and then Is_Overloaded
(Name
(N
))
2278 and then Ekind
(Nam
) = E_Procedure
2282 -- Ditto for function calls in a procedure context
2284 elsif Nkind
(N
) = N_Procedure_Call_Statement
2285 and then Is_Overloaded
(Name
(N
))
2286 and then Etype
(Nam
) /= Standard_Void_Type
2290 elsif No
(Actuals
) then
2292 -- If Normalize succeeds, then there are default parameters for
2295 Indicate_Name_And_Type
;
2297 elsif Ekind
(Nam
) = E_Operator
then
2298 if Nkind
(N
) = N_Procedure_Call_Statement
then
2302 -- This can occur when the prefix of the call is an operator
2303 -- name or an expanded name whose selector is an operator name.
2305 Analyze_Operator_Call
(N
, Nam
);
2307 if Etype
(N
) /= Prev_T
then
2309 -- Check that operator is not hidden by a function interpretation
2311 if Is_Overloaded
(Name
(N
)) then
2317 Get_First_Interp
(Name
(N
), I
, It
);
2318 while Present
(It
.Nam
) loop
2319 if Operator_Hidden_By
(It
.Nam
) then
2320 Set_Etype
(N
, Prev_T
);
2324 Get_Next_Interp
(I
, It
);
2329 -- If operator matches formals, record its name on the call.
2330 -- If the operator is overloaded, Resolve will select the
2331 -- correct one from the list of interpretations. The call
2332 -- node itself carries the first candidate.
2334 Set_Entity
(Name
(N
), Nam
);
2337 elsif Report
and then Etype
(N
) = Any_Type
then
2338 Error_Msg_N
("incompatible arguments for operator", N
);
2342 -- Normalize_Actuals has chained the named associations in the
2343 -- correct order of the formals.
2345 Actual
:= First_Actual
(N
);
2346 Formal
:= First_Formal
(Nam
);
2348 -- If we are analyzing a call rewritten from object notation,
2349 -- skip first actual, which may be rewritten later as an
2350 -- explicit dereference.
2353 Next_Actual
(Actual
);
2354 Next_Formal
(Formal
);
2357 while Present
(Actual
) and then Present
(Formal
) loop
2358 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
2359 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
2361 -- The actual can be compatible with the formal, but we must
2362 -- also check that the context is not an address type that is
2363 -- visibly an integer type, as is the case in VMS_64. In this
2364 -- case the use of literals is illegal, except in the body of
2365 -- descendents of system, where arithmetic operations on
2366 -- address are of course used.
2368 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
2370 (Etype
(Actual
) /= Universal_Integer
2371 or else not Is_Descendent_Of_Address
(Etype
(Formal
))
2373 Is_Predefined_File_Name
2374 (Unit_File_Name
(Get_Source_Unit
(N
))))
2376 Next_Actual
(Actual
);
2377 Next_Formal
(Formal
);
2380 if Debug_Flag_E
then
2381 Write_Str
(" type checking fails in call ");
2382 Write_Int
(Int
(N
));
2383 Write_Str
(" with formal ");
2384 Write_Int
(Int
(Formal
));
2385 Write_Str
(" in subprogram ");
2386 Write_Int
(Int
(Nam
));
2390 if Report
and not Is_Indexed
then
2392 -- Ada 2005 (AI-251): Complete the error notification
2393 -- to help new Ada 2005 users
2395 if Is_Class_Wide_Type
(Etype
(Formal
))
2396 and then Is_Interface
(Etype
(Etype
(Formal
)))
2397 and then not Interface_Present_In_Ancestor
2398 (Typ
=> Etype
(Actual
),
2399 Iface
=> Etype
(Etype
(Formal
)))
2402 ("(Ada 2005) does not implement interface }",
2403 Actual
, Etype
(Etype
(Formal
)));
2406 Wrong_Type
(Actual
, Etype
(Formal
));
2408 if Nkind
(Actual
) = N_Op_Eq
2409 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
2411 Formal
:= First_Formal
(Nam
);
2412 while Present
(Formal
) loop
2413 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
2415 ("possible misspelling of `='>`!", Actual
);
2419 Next_Formal
(Formal
);
2423 if All_Errors_Mode
then
2424 Error_Msg_Sloc
:= Sloc
(Nam
);
2426 if Is_Overloadable
(Nam
)
2427 and then Present
(Alias
(Nam
))
2428 and then not Comes_From_Source
(Nam
)
2431 ("\\ =='> in call to inherited operation & #!",
2434 elsif Ekind
(Nam
) = E_Subprogram_Type
then
2436 Access_To_Subprogram_Typ
:
2437 constant Entity_Id
:=
2439 (Associated_Node_For_Itype
(Nam
));
2442 "\\ =='> in call to dereference of &#!",
2443 Actual
, Access_To_Subprogram_Typ
);
2448 ("\\ =='> in call to &#!", Actual
, Nam
);
2458 -- Normalize_Actuals has verified that a default value exists
2459 -- for this formal. Current actual names a subsequent formal.
2461 Next_Formal
(Formal
);
2465 -- On exit, all actuals match
2467 Indicate_Name_And_Type
;
2469 end Analyze_One_Call
;
2471 ---------------------------
2472 -- Analyze_Operator_Call --
2473 ---------------------------
2475 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
2476 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
2477 Act1
: constant Node_Id
:= First_Actual
(N
);
2478 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2481 -- Binary operator case
2483 if Present
(Act2
) then
2485 -- If more than two operands, then not binary operator after all
2487 if Present
(Next_Actual
(Act2
)) then
2490 elsif Op_Name
= Name_Op_Add
2491 or else Op_Name
= Name_Op_Subtract
2492 or else Op_Name
= Name_Op_Multiply
2493 or else Op_Name
= Name_Op_Divide
2494 or else Op_Name
= Name_Op_Mod
2495 or else Op_Name
= Name_Op_Rem
2496 or else Op_Name
= Name_Op_Expon
2498 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
2500 elsif Op_Name
= Name_Op_And
2501 or else Op_Name
= Name_Op_Or
2502 or else Op_Name
= Name_Op_Xor
2504 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
2506 elsif Op_Name
= Name_Op_Lt
2507 or else Op_Name
= Name_Op_Le
2508 or else Op_Name
= Name_Op_Gt
2509 or else Op_Name
= Name_Op_Ge
2511 Find_Comparison_Types
(Act1
, Act2
, Op_Id
, N
);
2513 elsif Op_Name
= Name_Op_Eq
2514 or else Op_Name
= Name_Op_Ne
2516 Find_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
2518 elsif Op_Name
= Name_Op_Concat
then
2519 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
2521 -- Is this else null correct, or should it be an abort???
2527 -- Unary operator case
2530 if Op_Name
= Name_Op_Subtract
or else
2531 Op_Name
= Name_Op_Add
or else
2532 Op_Name
= Name_Op_Abs
2534 Find_Unary_Types
(Act1
, Op_Id
, N
);
2537 Op_Name
= Name_Op_Not
2539 Find_Negation_Types
(Act1
, Op_Id
, N
);
2541 -- Is this else null correct, or should it be an abort???
2547 end Analyze_Operator_Call
;
2549 -------------------------------------------
2550 -- Analyze_Overloaded_Selected_Component --
2551 -------------------------------------------
2553 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
2554 Nam
: constant Node_Id
:= Prefix
(N
);
2555 Sel
: constant Node_Id
:= Selector_Name
(N
);
2562 Set_Etype
(Sel
, Any_Type
);
2564 Get_First_Interp
(Nam
, I
, It
);
2565 while Present
(It
.Typ
) loop
2566 if Is_Access_Type
(It
.Typ
) then
2567 T
:= Designated_Type
(It
.Typ
);
2568 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
2573 if Is_Record_Type
(T
) then
2575 -- If the prefix is a class-wide type, the visible components are
2576 -- those of the base type.
2578 if Is_Class_Wide_Type
(T
) then
2582 Comp
:= First_Entity
(T
);
2583 while Present
(Comp
) loop
2584 if Chars
(Comp
) = Chars
(Sel
)
2585 and then Is_Visible_Component
(Comp
)
2587 Set_Entity
(Sel
, Comp
);
2588 Set_Etype
(Sel
, Etype
(Comp
));
2589 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
2591 -- This also specifies a candidate to resolve the name.
2592 -- Further overloading will be resolved from context.
2594 Set_Etype
(Nam
, It
.Typ
);
2600 elsif Is_Concurrent_Type
(T
) then
2601 Comp
:= First_Entity
(T
);
2602 while Present
(Comp
)
2603 and then Comp
/= First_Private_Entity
(T
)
2605 if Chars
(Comp
) = Chars
(Sel
) then
2606 if Is_Overloadable
(Comp
) then
2607 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
2609 Set_Entity_With_Style_Check
(Sel
, Comp
);
2610 Generate_Reference
(Comp
, Sel
);
2613 Set_Etype
(Sel
, Etype
(Comp
));
2614 Set_Etype
(N
, Etype
(Comp
));
2615 Set_Etype
(Nam
, It
.Typ
);
2617 -- For access type case, introduce explicit deference for
2618 -- more uniform treatment of entry calls. Do this only
2619 -- once if several interpretations yield an access type.
2621 if Is_Access_Type
(Etype
(Nam
))
2622 and then Nkind
(Nam
) /= N_Explicit_Dereference
2624 Insert_Explicit_Dereference
(Nam
);
2626 (Warn_On_Dereference
, "?implicit dereference", N
);
2633 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
2636 Get_Next_Interp
(I
, It
);
2639 if Etype
(N
) = Any_Type
2640 and then not Try_Object_Operation
(N
)
2642 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
2643 Set_Entity
(Sel
, Any_Id
);
2644 Set_Etype
(Sel
, Any_Type
);
2646 end Analyze_Overloaded_Selected_Component
;
2648 ----------------------------------
2649 -- Analyze_Qualified_Expression --
2650 ----------------------------------
2652 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
2653 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
2654 Expr
: constant Node_Id
:= Expression
(N
);
2660 Analyze_Expression
(Expr
);
2662 Set_Etype
(N
, Any_Type
);
2667 if T
= Any_Type
then
2671 Check_Fully_Declared
(T
, N
);
2673 -- If expected type is class-wide, check for exact match before
2674 -- expansion, because if the expression is a dispatching call it
2675 -- may be rewritten as explicit dereference with class-wide result.
2676 -- If expression is overloaded, retain only interpretations that
2677 -- will yield exact matches.
2679 if Is_Class_Wide_Type
(T
) then
2680 if not Is_Overloaded
(Expr
) then
2681 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
) then
2682 if Nkind
(Expr
) = N_Aggregate
then
2683 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
2685 Wrong_Type
(Expr
, T
);
2690 Get_First_Interp
(Expr
, I
, It
);
2692 while Present
(It
.Nam
) loop
2693 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
2697 Get_Next_Interp
(I
, It
);
2703 end Analyze_Qualified_Expression
;
2709 procedure Analyze_Range
(N
: Node_Id
) is
2710 L
: constant Node_Id
:= Low_Bound
(N
);
2711 H
: constant Node_Id
:= High_Bound
(N
);
2712 I1
, I2
: Interp_Index
;
2715 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
2716 -- Verify the compatibility of two types, and choose the
2717 -- non universal one if the other is universal.
2719 procedure Check_High_Bound
(T
: Entity_Id
);
2720 -- Test one interpretation of the low bound against all those
2721 -- of the high bound.
2723 procedure Check_Universal_Expression
(N
: Node_Id
);
2724 -- In Ada83, reject bounds of a universal range that are not
2725 -- literals or entity names.
2727 -----------------------
2728 -- Check_Common_Type --
2729 -----------------------
2731 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
2733 if Covers
(T1
=> T1
, T2
=> T2
)
2735 Covers
(T1
=> T2
, T2
=> T1
)
2737 if T1
= Universal_Integer
2738 or else T1
= Universal_Real
2739 or else T1
= Any_Character
2741 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
2744 Add_One_Interp
(N
, T1
, T1
);
2747 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
2750 end Check_Common_Type
;
2752 ----------------------
2753 -- Check_High_Bound --
2754 ----------------------
2756 procedure Check_High_Bound
(T
: Entity_Id
) is
2758 if not Is_Overloaded
(H
) then
2759 Check_Common_Type
(T
, Etype
(H
));
2761 Get_First_Interp
(H
, I2
, It2
);
2762 while Present
(It2
.Typ
) loop
2763 Check_Common_Type
(T
, It2
.Typ
);
2764 Get_Next_Interp
(I2
, It2
);
2767 end Check_High_Bound
;
2769 -----------------------------
2770 -- Is_Universal_Expression --
2771 -----------------------------
2773 procedure Check_Universal_Expression
(N
: Node_Id
) is
2775 if Etype
(N
) = Universal_Integer
2776 and then Nkind
(N
) /= N_Integer_Literal
2777 and then not Is_Entity_Name
(N
)
2778 and then Nkind
(N
) /= N_Attribute_Reference
2780 Error_Msg_N
("illegal bound in discrete range", N
);
2782 end Check_Universal_Expression
;
2784 -- Start of processing for Analyze_Range
2787 Set_Etype
(N
, Any_Type
);
2788 Analyze_Expression
(L
);
2789 Analyze_Expression
(H
);
2791 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
2795 if not Is_Overloaded
(L
) then
2796 Check_High_Bound
(Etype
(L
));
2798 Get_First_Interp
(L
, I1
, It1
);
2799 while Present
(It1
.Typ
) loop
2800 Check_High_Bound
(It1
.Typ
);
2801 Get_Next_Interp
(I1
, It1
);
2805 -- If result is Any_Type, then we did not find a compatible pair
2807 if Etype
(N
) = Any_Type
then
2808 Error_Msg_N
("incompatible types in range ", N
);
2812 if Ada_Version
= Ada_83
2814 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
2815 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
2817 Check_Universal_Expression
(L
);
2818 Check_Universal_Expression
(H
);
2822 -----------------------
2823 -- Analyze_Reference --
2824 -----------------------
2826 procedure Analyze_Reference
(N
: Node_Id
) is
2827 P
: constant Node_Id
:= Prefix
(N
);
2830 Acc_Type
: Entity_Id
;
2835 -- An interesting error check, if we take the 'Reference of an object
2836 -- for which a pragma Atomic or Volatile has been given, and the type
2837 -- of the object is not Atomic or Volatile, then we are in trouble. The
2838 -- problem is that no trace of the atomic/volatile status will remain
2839 -- for the backend to respect when it deals with the resulting pointer,
2840 -- since the pointer type will not be marked atomic (it is a pointer to
2841 -- the base type of the object).
2843 -- It is not clear if that can ever occur, but in case it does, we will
2844 -- generate an error message. Not clear if this message can ever be
2845 -- generated, and pretty clear that it represents a bug if it is, still
2846 -- seems worth checking!
2850 if Is_Entity_Name
(P
)
2851 and then Is_Object_Reference
(P
)
2856 if (Has_Atomic_Components
(E
)
2857 and then not Has_Atomic_Components
(T
))
2859 (Has_Volatile_Components
(E
)
2860 and then not Has_Volatile_Components
(T
))
2861 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
2862 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
2864 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
2868 -- Carry on with normal processing
2870 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
2871 Set_Etype
(Acc_Type
, Acc_Type
);
2872 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
2873 Set_Etype
(N
, Acc_Type
);
2874 end Analyze_Reference
;
2876 --------------------------------
2877 -- Analyze_Selected_Component --
2878 --------------------------------
2880 -- Prefix is a record type or a task or protected type. In the
2881 -- later case, the selector must denote a visible entry.
2883 procedure Analyze_Selected_Component
(N
: Node_Id
) is
2884 Name
: constant Node_Id
:= Prefix
(N
);
2885 Sel
: constant Node_Id
:= Selector_Name
(N
);
2888 Has_Candidate
: Boolean := False;
2891 Pent
: Entity_Id
:= Empty
;
2892 Prefix_Type
: Entity_Id
;
2894 Type_To_Use
: Entity_Id
;
2895 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
2896 -- a class-wide type, we use its root type, whose components are
2897 -- present in the class-wide type.
2899 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
2900 -- It is known that the parent of N denotes a subprogram call. Comp
2901 -- is an overloadable component of the concurrent type of the prefix.
2902 -- Determine whether all formals of the parent of N and Comp are mode
2903 -- conformant. If the parent node is not analyzed yet it may be an
2904 -- indexed component rather than a function call.
2906 ------------------------------
2907 -- Has_Mode_Conformant_Spec --
2908 ------------------------------
2910 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
2911 Comp_Param
: Entity_Id
;
2913 Param_Typ
: Entity_Id
;
2916 Comp_Param
:= First_Formal
(Comp
);
2918 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
2919 Param
:= First
(Expressions
(Parent
(N
)));
2921 Param
:= First
(Parameter_Associations
(Parent
(N
)));
2924 while Present
(Comp_Param
)
2925 and then Present
(Param
)
2927 Param_Typ
:= Find_Parameter_Type
(Param
);
2929 if Present
(Param_Typ
)
2931 not Conforming_Types
2932 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
2937 Next_Formal
(Comp_Param
);
2941 -- One of the specs has additional formals
2943 if Present
(Comp_Param
) or else Present
(Param
) then
2948 end Has_Mode_Conformant_Spec
;
2950 -- Start of processing for Analyze_Selected_Component
2953 Set_Etype
(N
, Any_Type
);
2955 if Is_Overloaded
(Name
) then
2956 Analyze_Overloaded_Selected_Component
(N
);
2959 elsif Etype
(Name
) = Any_Type
then
2960 Set_Entity
(Sel
, Any_Id
);
2961 Set_Etype
(Sel
, Any_Type
);
2965 Prefix_Type
:= Etype
(Name
);
2968 if Is_Access_Type
(Prefix_Type
) then
2970 -- A RACW object can never be used as prefix of a selected
2971 -- component since that means it is dereferenced without
2972 -- being a controlling operand of a dispatching operation
2973 -- (RM E.2.2(16/1)). Before reporting an error, we must check
2974 -- whether this is actually a dispatching call in prefix form.
2976 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
2977 and then Comes_From_Source
(N
)
2979 if Try_Object_Operation
(N
) then
2983 ("invalid dereference of a remote access-to-class-wide value",
2987 -- Normal case of selected component applied to access type
2990 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
2992 if Is_Entity_Name
(Name
) then
2993 Pent
:= Entity
(Name
);
2994 elsif Nkind
(Name
) = N_Selected_Component
2995 and then Is_Entity_Name
(Selector_Name
(Name
))
2997 Pent
:= Entity
(Selector_Name
(Name
));
3000 Prefix_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, Name
);
3003 -- If we have an explicit dereference of a remote access-to-class-wide
3004 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3005 -- have to check for the case of a prefix that is a controlling operand
3006 -- of a prefixed dispatching call, as the dereference is legal in that
3007 -- case. Normally this condition is checked in Validate_Remote_Access_
3008 -- To_Class_Wide_Type, but we have to defer the checking for selected
3009 -- component prefixes because of the prefixed dispatching call case.
3010 -- Note that implicit dereferences are checked for this just above.
3012 elsif Nkind
(Name
) = N_Explicit_Dereference
3013 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
3014 and then Comes_From_Source
(N
)
3016 if Try_Object_Operation
(N
) then
3020 ("invalid dereference of a remote access-to-class-wide value",
3025 -- (Ada 2005): if the prefix is the limited view of a type, and
3026 -- the context already includes the full view, use the full view
3027 -- in what follows, either to retrieve a component of to find
3028 -- a primitive operation. If the prefix is an explicit dereference,
3029 -- set the type of the prefix to reflect this transformation.
3030 -- If the non-limited view is itself an incomplete type, get the
3031 -- full view if available.
3033 if Is_Incomplete_Type
(Prefix_Type
)
3034 and then From_With_Type
(Prefix_Type
)
3035 and then Present
(Non_Limited_View
(Prefix_Type
))
3037 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
3039 if Nkind
(N
) = N_Explicit_Dereference
then
3040 Set_Etype
(Prefix
(N
), Prefix_Type
);
3043 elsif Ekind
(Prefix_Type
) = E_Class_Wide_Type
3044 and then From_With_Type
(Prefix_Type
)
3045 and then Present
(Non_Limited_View
(Etype
(Prefix_Type
)))
3048 Class_Wide_Type
(Non_Limited_View
(Etype
(Prefix_Type
)));
3050 if Nkind
(N
) = N_Explicit_Dereference
then
3051 Set_Etype
(Prefix
(N
), Prefix_Type
);
3055 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
3056 Prefix_Type
:= Base_Type
(Prefix_Type
);
3059 Type_To_Use
:= Prefix_Type
;
3061 -- For class-wide types, use the entity list of the root type. This
3062 -- indirection is specially important for private extensions because
3063 -- only the root type get switched (not the class-wide type).
3065 if Is_Class_Wide_Type
(Prefix_Type
) then
3066 Type_To_Use
:= Root_Type
(Prefix_Type
);
3069 Comp
:= First_Entity
(Type_To_Use
);
3071 -- If the selector has an original discriminant, the node appears in
3072 -- an instance. Replace the discriminant with the corresponding one
3073 -- in the current discriminated type. For nested generics, this must
3074 -- be done transitively, so note the new original discriminant.
3076 if Nkind
(Sel
) = N_Identifier
3077 and then Present
(Original_Discriminant
(Sel
))
3079 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
3081 -- Mark entity before rewriting, for completeness and because
3082 -- subsequent semantic checks might examine the original node.
3084 Set_Entity
(Sel
, Comp
);
3085 Rewrite
(Selector_Name
(N
),
3086 New_Occurrence_Of
(Comp
, Sloc
(N
)));
3087 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
3088 Set_Etype
(N
, Etype
(Comp
));
3090 if Is_Access_Type
(Etype
(Name
)) then
3091 Insert_Explicit_Dereference
(Name
);
3092 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3095 elsif Is_Record_Type
(Prefix_Type
) then
3097 -- Find component with given name
3099 while Present
(Comp
) loop
3100 if Chars
(Comp
) = Chars
(Sel
)
3101 and then Is_Visible_Component
(Comp
)
3103 Set_Entity_With_Style_Check
(Sel
, Comp
);
3104 Set_Etype
(Sel
, Etype
(Comp
));
3106 if Ekind
(Comp
) = E_Discriminant
then
3107 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
3109 ("cannot reference discriminant of Unchecked_Union",
3113 if Is_Generic_Type
(Prefix_Type
)
3115 Is_Generic_Type
(Root_Type
(Prefix_Type
))
3117 Set_Original_Discriminant
(Sel
, Comp
);
3121 -- Resolve the prefix early otherwise it is not possible to
3122 -- build the actual subtype of the component: it may need
3123 -- to duplicate this prefix and duplication is only allowed
3124 -- on fully resolved expressions.
3128 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3129 -- subtypes in a package specification.
3132 -- limited with Pkg;
3134 -- type Acc_Inc is access Pkg.T;
3136 -- N : Natural := X.all.Comp; -- ERROR, limited view
3137 -- end Pkg; -- Comp is not visible
3139 if Nkind
(Name
) = N_Explicit_Dereference
3140 and then From_With_Type
(Etype
(Prefix
(Name
)))
3141 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
3142 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
3143 N_Package_Specification
3146 ("premature usage of incomplete}", Prefix
(Name
),
3147 Etype
(Prefix
(Name
)));
3150 -- We never need an actual subtype for the case of a selection
3151 -- for a indexed component of a non-packed array, since in
3152 -- this case gigi generates all the checks and can find the
3153 -- necessary bounds information.
3155 -- We also do not need an actual subtype for the case of
3156 -- a first, last, length, or range attribute applied to a
3157 -- non-packed array, since gigi can again get the bounds in
3158 -- these cases (gigi cannot handle the packed case, since it
3159 -- has the bounds of the packed array type, not the original
3160 -- bounds of the type). However, if the prefix is itself a
3161 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3162 -- as a dynamic-sized temporary, so we do generate an actual
3163 -- subtype for this case.
3165 Parent_N
:= Parent
(N
);
3167 if not Is_Packed
(Etype
(Comp
))
3169 ((Nkind
(Parent_N
) = N_Indexed_Component
3170 and then Nkind
(Name
) /= N_Selected_Component
)
3172 (Nkind
(Parent_N
) = N_Attribute_Reference
3173 and then (Attribute_Name
(Parent_N
) = Name_First
3175 Attribute_Name
(Parent_N
) = Name_Last
3177 Attribute_Name
(Parent_N
) = Name_Length
3179 Attribute_Name
(Parent_N
) = Name_Range
)))
3181 Set_Etype
(N
, Etype
(Comp
));
3183 -- If full analysis is not enabled, we do not generate an
3184 -- actual subtype, because in the absence of expansion
3185 -- reference to a formal of a protected type, for example,
3186 -- will not be properly transformed, and will lead to
3187 -- out-of-scope references in gigi.
3189 -- In all other cases, we currently build an actual subtype.
3190 -- It seems likely that many of these cases can be avoided,
3191 -- but right now, the front end makes direct references to the
3192 -- bounds (e.g. in generating a length check), and if we do
3193 -- not make an actual subtype, we end up getting a direct
3194 -- reference to a discriminant, which will not do.
3196 elsif Full_Analysis
then
3198 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
3199 Insert_Action
(N
, Act_Decl
);
3201 if No
(Act_Decl
) then
3202 Set_Etype
(N
, Etype
(Comp
));
3205 -- Component type depends on discriminants. Enter the
3206 -- main attributes of the subtype.
3209 Subt
: constant Entity_Id
:=
3210 Defining_Identifier
(Act_Decl
);
3213 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
3214 Set_Ekind
(Subt
, Ekind
(Etype
(Comp
)));
3215 Set_Etype
(N
, Subt
);
3219 -- If Full_Analysis not enabled, just set the Etype
3222 Set_Etype
(N
, Etype
(Comp
));
3228 -- If the prefix is a private extension, check only the visible
3229 -- components of the partial view. This must include the tag,
3230 -- which can appear in expanded code in a tag check.
3232 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
3233 and then Chars
(Selector_Name
(N
)) /= Name_uTag
3235 exit when Comp
= Last_Entity
(Type_To_Use
);
3241 -- Ada 2005 (AI-252): The selected component can be interpreted as
3242 -- a prefixed view of a subprogram. Depending on the context, this is
3243 -- either a name that can appear in a renaming declaration, or part
3244 -- of an enclosing call given in prefix form.
3246 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3247 -- selected component should resolve to a name.
3249 if Ada_Version
>= Ada_05
3250 and then Is_Tagged_Type
(Prefix_Type
)
3251 and then not Is_Concurrent_Type
(Prefix_Type
)
3253 if Nkind
(Parent
(N
)) = N_Generic_Association
3254 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
3255 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
3257 if Find_Primitive_Operation
(N
) then
3261 elsif Try_Object_Operation
(N
) then
3265 -- If the transformation fails, it will be necessary to redo the
3266 -- analysis with all errors enabled, to indicate candidate
3267 -- interpretations and reasons for each failure ???
3271 elsif Is_Private_Type
(Prefix_Type
) then
3273 -- Allow access only to discriminants of the type. If the type has
3274 -- no full view, gigi uses the parent type for the components, so we
3275 -- do the same here.
3277 if No
(Full_View
(Prefix_Type
)) then
3278 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
3279 Comp
:= First_Entity
(Type_To_Use
);
3282 while Present
(Comp
) loop
3283 if Chars
(Comp
) = Chars
(Sel
) then
3284 if Ekind
(Comp
) = E_Discriminant
then
3285 Set_Entity_With_Style_Check
(Sel
, Comp
);
3286 Generate_Reference
(Comp
, Sel
);
3288 Set_Etype
(Sel
, Etype
(Comp
));
3289 Set_Etype
(N
, Etype
(Comp
));
3291 if Is_Generic_Type
(Prefix_Type
)
3292 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
3294 Set_Original_Discriminant
(Sel
, Comp
);
3297 -- Before declaring an error, check whether this is tagged
3298 -- private type and a call to a primitive operation.
3300 elsif Ada_Version
>= Ada_05
3301 and then Is_Tagged_Type
(Prefix_Type
)
3302 and then Try_Object_Operation
(N
)
3308 ("invisible selector for }",
3309 N
, First_Subtype
(Prefix_Type
));
3310 Set_Entity
(Sel
, Any_Id
);
3311 Set_Etype
(N
, Any_Type
);
3320 elsif Is_Concurrent_Type
(Prefix_Type
) then
3322 -- Find visible operation with given name. For a protected type,
3323 -- the possible candidates are discriminants, entries or protected
3324 -- procedures. For a task type, the set can only include entries or
3325 -- discriminants if the task type is not an enclosing scope. If it
3326 -- is an enclosing scope (e.g. in an inner task) then all entities
3327 -- are visible, but the prefix must denote the enclosing scope, i.e.
3328 -- can only be a direct name or an expanded name.
3330 Set_Etype
(Sel
, Any_Type
);
3331 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
3333 while Present
(Comp
) loop
3334 if Chars
(Comp
) = Chars
(Sel
) then
3335 if Is_Overloadable
(Comp
) then
3336 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3338 -- If the prefix is tagged, the correct interpretation may
3339 -- lie in the primitive or class-wide operations of the
3340 -- type. Perform a simple conformance check to determine
3341 -- whether Try_Object_Operation should be invoked even if
3342 -- a visible entity is found.
3344 if Is_Tagged_Type
(Prefix_Type
)
3346 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
3348 N_Indexed_Component
)
3349 and then Has_Mode_Conformant_Spec
(Comp
)
3351 Has_Candidate
:= True;
3354 elsif Ekind
(Comp
) = E_Discriminant
3355 or else Ekind
(Comp
) = E_Entry_Family
3357 and then Is_Entity_Name
(Name
))
3359 Set_Entity_With_Style_Check
(Sel
, Comp
);
3360 Generate_Reference
(Comp
, Sel
);
3366 Set_Etype
(Sel
, Etype
(Comp
));
3367 Set_Etype
(N
, Etype
(Comp
));
3369 if Ekind
(Comp
) = E_Discriminant
then
3370 Set_Original_Discriminant
(Sel
, Comp
);
3373 -- For access type case, introduce explicit deference for more
3374 -- uniform treatment of entry calls.
3376 if Is_Access_Type
(Etype
(Name
)) then
3377 Insert_Explicit_Dereference
(Name
);
3379 (Warn_On_Dereference
, "?implicit dereference", N
);
3385 exit when not In_Scope
3387 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
3390 -- If there is no visible entity with the given name or none of the
3391 -- visible entities are plausible interpretations, check whether
3392 -- there is some other primitive operation with that name.
3394 if Ada_Version
>= Ada_05
3395 and then Is_Tagged_Type
(Prefix_Type
)
3397 if (Etype
(N
) = Any_Type
3398 or else not Has_Candidate
)
3399 and then Try_Object_Operation
(N
)
3403 -- If the context is not syntactically a procedure call, it
3404 -- may be a call to a primitive function declared outside of
3405 -- the synchronized type.
3407 -- If the context is a procedure call, there might still be
3408 -- an overloading between an entry and a primitive procedure
3409 -- declared outside of the synchronized type, called in prefix
3410 -- notation. This is harder to disambiguate because in one case
3411 -- the controlling formal is implicit ???
3413 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
3414 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
3415 and then Try_Object_Operation
(N
)
3421 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
3426 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
3429 -- If N still has no type, the component is not defined in the prefix
3431 if Etype
(N
) = Any_Type
then
3433 -- If the prefix is a single concurrent object, use its name in the
3434 -- error message, rather than that of its anonymous type.
3436 if Is_Concurrent_Type
(Prefix_Type
)
3437 and then Is_Internal_Name
(Chars
(Prefix_Type
))
3438 and then not Is_Derived_Type
(Prefix_Type
)
3439 and then Is_Entity_Name
(Name
)
3442 Error_Msg_Node_2
:= Entity
(Name
);
3443 Error_Msg_NE
("no selector& for&", N
, Sel
);
3445 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
3447 elsif Is_Generic_Type
(Prefix_Type
)
3448 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
3449 and then Prefix_Type
/= Etype
(Prefix_Type
)
3450 and then Is_Record_Type
(Etype
(Prefix_Type
))
3452 -- If this is a derived formal type, the parent may have
3453 -- different visibility at this point. Try for an inherited
3454 -- component before reporting an error.
3456 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
3457 Analyze_Selected_Component
(N
);
3460 elsif Ekind
(Prefix_Type
) = E_Record_Subtype_With_Private
3461 and then Is_Generic_Actual_Type
(Prefix_Type
)
3462 and then Present
(Full_View
(Prefix_Type
))
3464 -- Similarly, if this the actual for a formal derived type, the
3465 -- component inherited from the generic parent may not be visible
3466 -- in the actual, but the selected component is legal.
3473 First_Component
(Generic_Parent_Type
(Parent
(Prefix_Type
)));
3474 while Present
(Comp
) loop
3475 if Chars
(Comp
) = Chars
(Sel
) then
3476 Set_Entity_With_Style_Check
(Sel
, Comp
);
3477 Set_Etype
(Sel
, Etype
(Comp
));
3478 Set_Etype
(N
, Etype
(Comp
));
3482 Next_Component
(Comp
);
3485 pragma Assert
(Etype
(N
) /= Any_Type
);
3489 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
3491 -- Check whether this is a component of the base type
3492 -- which is absent from a statically constrained subtype.
3493 -- This will raise constraint error at run-time, but is
3494 -- not a compile-time error. When the selector is illegal
3495 -- for base type as well fall through and generate a
3496 -- compilation error anyway.
3498 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
3499 while Present
(Comp
) loop
3500 if Chars
(Comp
) = Chars
(Sel
)
3501 and then Is_Visible_Component
(Comp
)
3503 Set_Entity_With_Style_Check
(Sel
, Comp
);
3504 Generate_Reference
(Comp
, Sel
);
3505 Set_Etype
(Sel
, Etype
(Comp
));
3506 Set_Etype
(N
, Etype
(Comp
));
3508 -- Emit appropriate message. Gigi will replace the
3509 -- node subsequently with the appropriate Raise.
3511 Apply_Compile_Time_Constraint_Error
3512 (N
, "component not present in }?",
3513 CE_Discriminant_Check_Failed
,
3514 Ent
=> Prefix_Type
, Rep
=> False);
3515 Set_Raises_Constraint_Error
(N
);
3519 Next_Component
(Comp
);
3524 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
3525 Error_Msg_NE
("no selector& for}", N
, Sel
);
3527 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
3530 Set_Entity
(Sel
, Any_Id
);
3531 Set_Etype
(Sel
, Any_Type
);
3533 end Analyze_Selected_Component
;
3535 ---------------------------
3536 -- Analyze_Short_Circuit --
3537 ---------------------------
3539 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
3540 L
: constant Node_Id
:= Left_Opnd
(N
);
3541 R
: constant Node_Id
:= Right_Opnd
(N
);
3546 Analyze_Expression
(L
);
3547 Analyze_Expression
(R
);
3548 Set_Etype
(N
, Any_Type
);
3550 if not Is_Overloaded
(L
) then
3551 if Root_Type
(Etype
(L
)) = Standard_Boolean
3552 and then Has_Compatible_Type
(R
, Etype
(L
))
3554 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
3558 Get_First_Interp
(L
, Ind
, It
);
3559 while Present
(It
.Typ
) loop
3560 if Root_Type
(It
.Typ
) = Standard_Boolean
3561 and then Has_Compatible_Type
(R
, It
.Typ
)
3563 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
3566 Get_Next_Interp
(Ind
, It
);
3570 -- Here we have failed to find an interpretation. Clearly we know that
3571 -- it is not the case that both operands can have an interpretation of
3572 -- Boolean, but this is by far the most likely intended interpretation.
3573 -- So we simply resolve both operands as Booleans, and at least one of
3574 -- these resolutions will generate an error message, and we do not need
3575 -- to give another error message on the short circuit operation itself.
3577 if Etype
(N
) = Any_Type
then
3578 Resolve
(L
, Standard_Boolean
);
3579 Resolve
(R
, Standard_Boolean
);
3580 Set_Etype
(N
, Standard_Boolean
);
3582 end Analyze_Short_Circuit
;
3588 procedure Analyze_Slice
(N
: Node_Id
) is
3589 P
: constant Node_Id
:= Prefix
(N
);
3590 D
: constant Node_Id
:= Discrete_Range
(N
);
3591 Array_Type
: Entity_Id
;
3593 procedure Analyze_Overloaded_Slice
;
3594 -- If the prefix is overloaded, select those interpretations that
3595 -- yield a one-dimensional array type.
3597 ------------------------------
3598 -- Analyze_Overloaded_Slice --
3599 ------------------------------
3601 procedure Analyze_Overloaded_Slice
is
3607 Set_Etype
(N
, Any_Type
);
3609 Get_First_Interp
(P
, I
, It
);
3610 while Present
(It
.Nam
) loop
3613 if Is_Access_Type
(Typ
) then
3614 Typ
:= Designated_Type
(Typ
);
3615 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3618 if Is_Array_Type
(Typ
)
3619 and then Number_Dimensions
(Typ
) = 1
3620 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
3622 Add_One_Interp
(N
, Typ
, Typ
);
3625 Get_Next_Interp
(I
, It
);
3628 if Etype
(N
) = Any_Type
then
3629 Error_Msg_N
("expect array type in prefix of slice", N
);
3631 end Analyze_Overloaded_Slice
;
3633 -- Start of processing for Analyze_Slice
3639 if Is_Overloaded
(P
) then
3640 Analyze_Overloaded_Slice
;
3643 Array_Type
:= Etype
(P
);
3644 Set_Etype
(N
, Any_Type
);
3646 if Is_Access_Type
(Array_Type
) then
3647 Array_Type
:= Designated_Type
(Array_Type
);
3648 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3651 if not Is_Array_Type
(Array_Type
) then
3652 Wrong_Type
(P
, Any_Array
);
3654 elsif Number_Dimensions
(Array_Type
) > 1 then
3656 ("type is not one-dimensional array in slice prefix", N
);
3659 Has_Compatible_Type
(D
, Etype
(First_Index
(Array_Type
)))
3661 Wrong_Type
(D
, Etype
(First_Index
(Array_Type
)));
3664 Set_Etype
(N
, Array_Type
);
3669 -----------------------------
3670 -- Analyze_Type_Conversion --
3671 -----------------------------
3673 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
3674 Expr
: constant Node_Id
:= Expression
(N
);
3678 -- If Conversion_OK is set, then the Etype is already set, and the
3679 -- only processing required is to analyze the expression. This is
3680 -- used to construct certain "illegal" conversions which are not
3681 -- allowed by Ada semantics, but can be handled OK by Gigi, see
3682 -- Sinfo for further details.
3684 if Conversion_OK
(N
) then
3689 -- Otherwise full type analysis is required, as well as some semantic
3690 -- checks to make sure the argument of the conversion is appropriate.
3692 Find_Type
(Subtype_Mark
(N
));
3693 T
:= Entity
(Subtype_Mark
(N
));
3695 Check_Fully_Declared
(T
, N
);
3696 Analyze_Expression
(Expr
);
3697 Validate_Remote_Type_Type_Conversion
(N
);
3699 -- Only remaining step is validity checks on the argument. These
3700 -- are skipped if the conversion does not come from the source.
3702 if not Comes_From_Source
(N
) then
3705 -- If there was an error in a generic unit, no need to replicate the
3706 -- error message. Conversely, constant-folding in the generic may
3707 -- transform the argument of a conversion into a string literal, which
3708 -- is legal. Therefore the following tests are not performed in an
3711 elsif In_Instance
then
3714 elsif Nkind
(Expr
) = N_Null
then
3715 Error_Msg_N
("argument of conversion cannot be null", N
);
3716 Error_Msg_N
("\use qualified expression instead", N
);
3717 Set_Etype
(N
, Any_Type
);
3719 elsif Nkind
(Expr
) = N_Aggregate
then
3720 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
3721 Error_Msg_N
("\use qualified expression instead", N
);
3723 elsif Nkind
(Expr
) = N_Allocator
then
3724 Error_Msg_N
("argument of conversion cannot be an allocator", N
);
3725 Error_Msg_N
("\use qualified expression instead", N
);
3727 elsif Nkind
(Expr
) = N_String_Literal
then
3728 Error_Msg_N
("argument of conversion cannot be string literal", N
);
3729 Error_Msg_N
("\use qualified expression instead", N
);
3731 elsif Nkind
(Expr
) = N_Character_Literal
then
3732 if Ada_Version
= Ada_83
then
3735 Error_Msg_N
("argument of conversion cannot be character literal",
3737 Error_Msg_N
("\use qualified expression instead", N
);
3740 elsif Nkind
(Expr
) = N_Attribute_Reference
3742 (Attribute_Name
(Expr
) = Name_Access
or else
3743 Attribute_Name
(Expr
) = Name_Unchecked_Access
or else
3744 Attribute_Name
(Expr
) = Name_Unrestricted_Access
)
3746 Error_Msg_N
("argument of conversion cannot be access", N
);
3747 Error_Msg_N
("\use qualified expression instead", N
);
3749 end Analyze_Type_Conversion
;
3751 ----------------------
3752 -- Analyze_Unary_Op --
3753 ----------------------
3755 procedure Analyze_Unary_Op
(N
: Node_Id
) is
3756 R
: constant Node_Id
:= Right_Opnd
(N
);
3757 Op_Id
: Entity_Id
:= Entity
(N
);
3760 Set_Etype
(N
, Any_Type
);
3761 Candidate_Type
:= Empty
;
3763 Analyze_Expression
(R
);
3765 if Present
(Op_Id
) then
3766 if Ekind
(Op_Id
) = E_Operator
then
3767 Find_Unary_Types
(R
, Op_Id
, N
);
3769 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3773 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
3774 while Present
(Op_Id
) loop
3775 if Ekind
(Op_Id
) = E_Operator
then
3776 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
3777 Find_Unary_Types
(R
, Op_Id
, N
);
3780 elsif Is_Overloadable
(Op_Id
) then
3781 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
3784 Op_Id
:= Homonym
(Op_Id
);
3789 end Analyze_Unary_Op
;
3791 ----------------------------------
3792 -- Analyze_Unchecked_Expression --
3793 ----------------------------------
3795 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
3797 Analyze
(Expression
(N
), Suppress
=> All_Checks
);
3798 Set_Etype
(N
, Etype
(Expression
(N
)));
3799 Save_Interps
(Expression
(N
), N
);
3800 end Analyze_Unchecked_Expression
;
3802 ---------------------------------------
3803 -- Analyze_Unchecked_Type_Conversion --
3804 ---------------------------------------
3806 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
3808 Find_Type
(Subtype_Mark
(N
));
3809 Analyze_Expression
(Expression
(N
));
3810 Set_Etype
(N
, Entity
(Subtype_Mark
(N
)));
3811 end Analyze_Unchecked_Type_Conversion
;
3813 ------------------------------------
3814 -- Analyze_User_Defined_Binary_Op --
3815 ------------------------------------
3817 procedure Analyze_User_Defined_Binary_Op
3822 -- Only do analysis if the operator Comes_From_Source, since otherwise
3823 -- the operator was generated by the expander, and all such operators
3824 -- always refer to the operators in package Standard.
3826 if Comes_From_Source
(N
) then
3828 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
3829 F2
: constant Entity_Id
:= Next_Formal
(F1
);
3832 -- Verify that Op_Id is a visible binary function. Note that since
3833 -- we know Op_Id is overloaded, potentially use visible means use
3834 -- visible for sure (RM 9.4(11)).
3836 if Ekind
(Op_Id
) = E_Function
3837 and then Present
(F2
)
3838 and then (Is_Immediately_Visible
(Op_Id
)
3839 or else Is_Potentially_Use_Visible
(Op_Id
))
3840 and then Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
3841 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
3843 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3845 if Debug_Flag_E
then
3846 Write_Str
("user defined operator ");
3847 Write_Name
(Chars
(Op_Id
));
3848 Write_Str
(" on node ");
3849 Write_Int
(Int
(N
));
3855 end Analyze_User_Defined_Binary_Op
;
3857 -----------------------------------
3858 -- Analyze_User_Defined_Unary_Op --
3859 -----------------------------------
3861 procedure Analyze_User_Defined_Unary_Op
3866 -- Only do analysis if the operator Comes_From_Source, since otherwise
3867 -- the operator was generated by the expander, and all such operators
3868 -- always refer to the operators in package Standard.
3870 if Comes_From_Source
(N
) then
3872 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
3875 -- Verify that Op_Id is a visible unary function. Note that since
3876 -- we know Op_Id is overloaded, potentially use visible means use
3877 -- visible for sure (RM 9.4(11)).
3879 if Ekind
(Op_Id
) = E_Function
3880 and then No
(Next_Formal
(F
))
3881 and then (Is_Immediately_Visible
(Op_Id
)
3882 or else Is_Potentially_Use_Visible
(Op_Id
))
3883 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
3885 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3889 end Analyze_User_Defined_Unary_Op
;
3891 ---------------------------
3892 -- Check_Arithmetic_Pair --
3893 ---------------------------
3895 procedure Check_Arithmetic_Pair
3896 (T1
, T2
: Entity_Id
;
3900 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
3902 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
3903 -- Check whether the fixed-point type Typ has a user-defined operator
3904 -- (multiplication or division) that should hide the corresponding
3905 -- predefined operator. Used to implement Ada 2005 AI-264, to make
3906 -- such operators more visible and therefore useful.
3908 -- If the name of the operation is an expanded name with prefix
3909 -- Standard, the predefined universal fixed operator is available,
3910 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
3912 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
;
3913 -- Get specific type (i.e. non-universal type if there is one)
3919 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
3920 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
3926 -- If the universal_fixed operation is given explicitly the rule
3927 -- concerning primitive operations of the type do not apply.
3929 if Nkind
(N
) = N_Function_Call
3930 and then Nkind
(Name
(N
)) = N_Expanded_Name
3931 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
3936 -- The operation is treated as primitive if it is declared in the
3937 -- same scope as the type, and therefore on the same entity chain.
3939 Ent
:= Next_Entity
(Typ
);
3940 while Present
(Ent
) loop
3941 if Chars
(Ent
) = Chars
(Op
) then
3942 F1
:= First_Formal
(Ent
);
3943 F2
:= Next_Formal
(F1
);
3945 -- The operation counts as primitive if either operand or
3946 -- result are of the given base type, and both operands are
3947 -- fixed point types.
3949 if (Base_Type
(Etype
(F1
)) = Bas
3950 and then Is_Fixed_Point_Type
(Etype
(F2
)))
3953 (Base_Type
(Etype
(F2
)) = Bas
3954 and then Is_Fixed_Point_Type
(Etype
(F1
)))
3957 (Base_Type
(Etype
(Ent
)) = Bas
3958 and then Is_Fixed_Point_Type
(Etype
(F1
))
3959 and then Is_Fixed_Point_Type
(Etype
(F2
)))
3975 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
is
3977 if T1
= Universal_Integer
or else T1
= Universal_Real
then
3978 return Base_Type
(T2
);
3980 return Base_Type
(T1
);
3984 -- Start of processing for Check_Arithmetic_Pair
3987 if Op_Name
= Name_Op_Add
or else Op_Name
= Name_Op_Subtract
then
3989 if Is_Numeric_Type
(T1
)
3990 and then Is_Numeric_Type
(T2
)
3991 and then (Covers
(T1
=> T1
, T2
=> T2
)
3993 Covers
(T1
=> T2
, T2
=> T1
))
3995 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
3998 elsif Op_Name
= Name_Op_Multiply
or else Op_Name
= Name_Op_Divide
then
4000 if Is_Fixed_Point_Type
(T1
)
4001 and then (Is_Fixed_Point_Type
(T2
)
4002 or else T2
= Universal_Real
)
4004 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4005 -- and no further processing is required (this is the case of an
4006 -- operator constructed by Exp_Fixd for a fixed point operation)
4007 -- Otherwise add one interpretation with universal fixed result
4008 -- If the operator is given in functional notation, it comes
4009 -- from source and Fixed_As_Integer cannot apply.
4011 if (Nkind
(N
) not in N_Op
4012 or else not Treat_Fixed_As_Integer
(N
))
4014 (not Has_Fixed_Op
(T1
, Op_Id
)
4015 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4017 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4020 elsif Is_Fixed_Point_Type
(T2
)
4021 and then (Nkind
(N
) not in N_Op
4022 or else not Treat_Fixed_As_Integer
(N
))
4023 and then T1
= Universal_Real
4025 (not Has_Fixed_Op
(T1
, Op_Id
)
4026 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4028 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4030 elsif Is_Numeric_Type
(T1
)
4031 and then Is_Numeric_Type
(T2
)
4032 and then (Covers
(T1
=> T1
, T2
=> T2
)
4034 Covers
(T1
=> T2
, T2
=> T1
))
4036 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4038 elsif Is_Fixed_Point_Type
(T1
)
4039 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4040 or else T2
= Universal_Integer
)
4042 Add_One_Interp
(N
, Op_Id
, T1
);
4044 elsif T2
= Universal_Real
4045 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4046 and then Op_Name
= Name_Op_Multiply
4048 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4050 elsif T1
= Universal_Real
4051 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4053 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4055 elsif Is_Fixed_Point_Type
(T2
)
4056 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4057 or else T1
= Universal_Integer
)
4058 and then Op_Name
= Name_Op_Multiply
4060 Add_One_Interp
(N
, Op_Id
, T2
);
4062 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
4063 Add_One_Interp
(N
, Op_Id
, T1
);
4065 elsif T2
= Universal_Real
4066 and then T1
= Universal_Integer
4067 and then Op_Name
= Name_Op_Multiply
4069 Add_One_Interp
(N
, Op_Id
, T2
);
4072 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
4074 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4075 -- set does not require any special processing, since the Etype is
4076 -- already set (case of operation constructed by Exp_Fixed).
4078 if Is_Integer_Type
(T1
)
4079 and then (Covers
(T1
=> T1
, T2
=> T2
)
4081 Covers
(T1
=> T2
, T2
=> T1
))
4083 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4086 elsif Op_Name
= Name_Op_Expon
then
4087 if Is_Numeric_Type
(T1
)
4088 and then not Is_Fixed_Point_Type
(T1
)
4089 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4090 or else T2
= Universal_Integer
)
4092 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
4095 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
4097 -- If not one of the predefined operators, the node may be one
4098 -- of the intrinsic functions. Its kind is always specific, and
4099 -- we can use it directly, rather than the name of the operation.
4101 if Is_Integer_Type
(T1
)
4102 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4103 or else T2
= Universal_Integer
)
4105 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
4108 end Check_Arithmetic_Pair
;
4110 -------------------------------
4111 -- Check_Misspelled_Selector --
4112 -------------------------------
4114 procedure Check_Misspelled_Selector
4115 (Prefix
: Entity_Id
;
4118 Max_Suggestions
: constant := 2;
4119 Nr_Of_Suggestions
: Natural := 0;
4121 Suggestion_1
: Entity_Id
:= Empty
;
4122 Suggestion_2
: Entity_Id
:= Empty
;
4127 -- All the components of the prefix of selector Sel are matched
4128 -- against Sel and a count is maintained of possible misspellings.
4129 -- When at the end of the analysis there are one or two (not more!)
4130 -- possible misspellings, these misspellings will be suggested as
4131 -- possible correction.
4133 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
4135 -- Concurrent types should be handled as well ???
4140 Comp
:= First_Entity
(Prefix
);
4141 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
4142 if Is_Visible_Component
(Comp
) then
4143 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
4144 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
4146 case Nr_Of_Suggestions
is
4147 when 1 => Suggestion_1
:= Comp
;
4148 when 2 => Suggestion_2
:= Comp
;
4149 when others => exit;
4154 Comp
:= Next_Entity
(Comp
);
4157 -- Report at most two suggestions
4159 if Nr_Of_Suggestions
= 1 then
4161 ("\possible misspelling of&", Sel
, Suggestion_1
);
4163 elsif Nr_Of_Suggestions
= 2 then
4164 Error_Msg_Node_2
:= Suggestion_2
;
4166 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
4168 end Check_Misspelled_Selector
;
4170 ----------------------
4171 -- Defined_In_Scope --
4172 ----------------------
4174 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean
4176 S1
: constant Entity_Id
:= Scope
(Base_Type
(T
));
4179 or else (S1
= System_Aux_Id
and then S
= Scope
(S1
));
4180 end Defined_In_Scope
;
4186 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
4192 Void_Interp_Seen
: Boolean := False;
4195 pragma Warnings
(Off
, Boolean);
4198 if Ada_Version
>= Ada_05
then
4199 Actual
:= First_Actual
(N
);
4200 while Present
(Actual
) loop
4202 -- Ada 2005 (AI-50217): Post an error in case of premature
4203 -- usage of an entity from the limited view.
4205 if not Analyzed
(Etype
(Actual
))
4206 and then From_With_Type
(Etype
(Actual
))
4208 Error_Msg_Qual_Level
:= 1;
4210 ("missing with_clause for scope of imported type&",
4211 Actual
, Etype
(Actual
));
4212 Error_Msg_Qual_Level
:= 0;
4215 Next_Actual
(Actual
);
4219 -- Analyze each candidate call again, with full error reporting
4223 ("no candidate interpretations match the actuals:!", Nam
);
4224 Err_Mode
:= All_Errors_Mode
;
4225 All_Errors_Mode
:= True;
4227 -- If this is a call to an operation of a concurrent type,
4228 -- the failed interpretations have been removed from the
4229 -- name. Recover them to provide full diagnostics.
4231 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
4232 Set_Entity
(Nam
, Empty
);
4233 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
4234 Set_Is_Overloaded
(New_Nam
, False);
4235 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
4236 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
4237 Analyze_Selected_Component
(New_Nam
);
4238 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
4240 Get_First_Interp
(Nam
, X
, It
);
4243 while Present
(It
.Nam
) loop
4244 if Etype
(It
.Nam
) = Standard_Void_Type
then
4245 Void_Interp_Seen
:= True;
4248 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
4249 Get_Next_Interp
(X
, It
);
4252 if Nkind
(N
) = N_Function_Call
then
4253 Get_First_Interp
(Nam
, X
, It
);
4254 while Present
(It
.Nam
) loop
4255 if Ekind
(It
.Nam
) = E_Function
4256 or else Ekind
(It
.Nam
) = E_Operator
4260 Get_Next_Interp
(X
, It
);
4264 -- If all interpretations are procedures, this deserves a
4265 -- more precise message. Ditto if this appears as the prefix
4266 -- of a selected component, which may be a lexical error.
4269 ("\context requires function call, found procedure name", Nam
);
4271 if Nkind
(Parent
(N
)) = N_Selected_Component
4272 and then N
= Prefix
(Parent
(N
))
4275 "\period should probably be semicolon", Parent
(N
));
4278 elsif Nkind
(N
) = N_Procedure_Call_Statement
4279 and then not Void_Interp_Seen
4282 "\function name found in procedure call", Nam
);
4285 All_Errors_Mode
:= Err_Mode
;
4288 ---------------------------
4289 -- Find_Arithmetic_Types --
4290 ---------------------------
4292 procedure Find_Arithmetic_Types
4297 Index1
: Interp_Index
;
4298 Index2
: Interp_Index
;
4302 procedure Check_Right_Argument
(T
: Entity_Id
);
4303 -- Check right operand of operator
4305 --------------------------
4306 -- Check_Right_Argument --
4307 --------------------------
4309 procedure Check_Right_Argument
(T
: Entity_Id
) is
4311 if not Is_Overloaded
(R
) then
4312 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
4314 Get_First_Interp
(R
, Index2
, It2
);
4315 while Present
(It2
.Typ
) loop
4316 Check_Arithmetic_Pair
(T
, It2
.Typ
, Op_Id
, N
);
4317 Get_Next_Interp
(Index2
, It2
);
4320 end Check_Right_Argument
;
4322 -- Start processing for Find_Arithmetic_Types
4325 if not Is_Overloaded
(L
) then
4326 Check_Right_Argument
(Etype
(L
));
4329 Get_First_Interp
(L
, Index1
, It1
);
4330 while Present
(It1
.Typ
) loop
4331 Check_Right_Argument
(It1
.Typ
);
4332 Get_Next_Interp
(Index1
, It1
);
4336 end Find_Arithmetic_Types
;
4338 ------------------------
4339 -- Find_Boolean_Types --
4340 ------------------------
4342 procedure Find_Boolean_Types
4347 Index
: Interp_Index
;
4350 procedure Check_Numeric_Argument
(T
: Entity_Id
);
4351 -- Special case for logical operations one of whose operands is an
4352 -- integer literal. If both are literal the result is any modular type.
4354 ----------------------------
4355 -- Check_Numeric_Argument --
4356 ----------------------------
4358 procedure Check_Numeric_Argument
(T
: Entity_Id
) is
4360 if T
= Universal_Integer
then
4361 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
4363 elsif Is_Modular_Integer_Type
(T
) then
4364 Add_One_Interp
(N
, Op_Id
, T
);
4366 end Check_Numeric_Argument
;
4368 -- Start of processing for Find_Boolean_Types
4371 if not Is_Overloaded
(L
) then
4372 if Etype
(L
) = Universal_Integer
4373 or else Etype
(L
) = Any_Modular
4375 if not Is_Overloaded
(R
) then
4376 Check_Numeric_Argument
(Etype
(R
));
4379 Get_First_Interp
(R
, Index
, It
);
4380 while Present
(It
.Typ
) loop
4381 Check_Numeric_Argument
(It
.Typ
);
4382 Get_Next_Interp
(Index
, It
);
4386 -- If operands are aggregates, we must assume that they may be
4387 -- boolean arrays, and leave disambiguation for the second pass.
4388 -- If only one is an aggregate, verify that the other one has an
4389 -- interpretation as a boolean array
4391 elsif Nkind
(L
) = N_Aggregate
then
4392 if Nkind
(R
) = N_Aggregate
then
4393 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
4395 elsif not Is_Overloaded
(R
) then
4396 if Valid_Boolean_Arg
(Etype
(R
)) then
4397 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
4401 Get_First_Interp
(R
, Index
, It
);
4402 while Present
(It
.Typ
) loop
4403 if Valid_Boolean_Arg
(It
.Typ
) then
4404 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
4407 Get_Next_Interp
(Index
, It
);
4411 elsif Valid_Boolean_Arg
(Etype
(L
))
4412 and then Has_Compatible_Type
(R
, Etype
(L
))
4414 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
4418 Get_First_Interp
(L
, Index
, It
);
4419 while Present
(It
.Typ
) loop
4420 if Valid_Boolean_Arg
(It
.Typ
)
4421 and then Has_Compatible_Type
(R
, It
.Typ
)
4423 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
4426 Get_Next_Interp
(Index
, It
);
4429 end Find_Boolean_Types
;
4431 ---------------------------
4432 -- Find_Comparison_Types --
4433 ---------------------------
4435 procedure Find_Comparison_Types
4440 Index
: Interp_Index
;
4442 Found
: Boolean := False;
4445 Scop
: Entity_Id
:= Empty
;
4447 procedure Try_One_Interp
(T1
: Entity_Id
);
4448 -- Routine to try one proposed interpretation. Note that the context
4449 -- of the operator plays no role in resolving the arguments, so that
4450 -- if there is more than one interpretation of the operands that is
4451 -- compatible with comparison, the operation is ambiguous.
4453 --------------------
4454 -- Try_One_Interp --
4455 --------------------
4457 procedure Try_One_Interp
(T1
: Entity_Id
) is
4460 -- If the operator is an expanded name, then the type of the operand
4461 -- must be defined in the corresponding scope. If the type is
4462 -- universal, the context will impose the correct type.
4465 and then not Defined_In_Scope
(T1
, Scop
)
4466 and then T1
/= Universal_Integer
4467 and then T1
/= Universal_Real
4468 and then T1
/= Any_String
4469 and then T1
/= Any_Composite
4474 if Valid_Comparison_Arg
(T1
)
4475 and then Has_Compatible_Type
(R
, T1
)
4478 and then Base_Type
(T1
) /= Base_Type
(T_F
)
4480 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
4482 if It
= No_Interp
then
4483 Ambiguous_Operands
(N
);
4484 Set_Etype
(L
, Any_Type
);
4498 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
4503 -- Start processing for Find_Comparison_Types
4506 -- If left operand is aggregate, the right operand has to
4507 -- provide a usable type for it.
4509 if Nkind
(L
) = N_Aggregate
4510 and then Nkind
(R
) /= N_Aggregate
4512 Find_Comparison_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
4516 if Nkind
(N
) = N_Function_Call
4517 and then Nkind
(Name
(N
)) = N_Expanded_Name
4519 Scop
:= Entity
(Prefix
(Name
(N
)));
4521 -- The prefix may be a package renaming, and the subsequent test
4522 -- requires the original package.
4524 if Ekind
(Scop
) = E_Package
4525 and then Present
(Renamed_Entity
(Scop
))
4527 Scop
:= Renamed_Entity
(Scop
);
4528 Set_Entity
(Prefix
(Name
(N
)), Scop
);
4532 if not Is_Overloaded
(L
) then
4533 Try_One_Interp
(Etype
(L
));
4536 Get_First_Interp
(L
, Index
, It
);
4537 while Present
(It
.Typ
) loop
4538 Try_One_Interp
(It
.Typ
);
4539 Get_Next_Interp
(Index
, It
);
4542 end Find_Comparison_Types
;
4544 ----------------------------------------
4545 -- Find_Non_Universal_Interpretations --
4546 ----------------------------------------
4548 procedure Find_Non_Universal_Interpretations
4554 Index
: Interp_Index
;
4558 if T1
= Universal_Integer
4559 or else T1
= Universal_Real
4561 if not Is_Overloaded
(R
) then
4563 (N
, Op_Id
, Standard_Boolean
, Base_Type
(Etype
(R
)));
4565 Get_First_Interp
(R
, Index
, It
);
4566 while Present
(It
.Typ
) loop
4567 if Covers
(It
.Typ
, T1
) then
4569 (N
, Op_Id
, Standard_Boolean
, Base_Type
(It
.Typ
));
4572 Get_Next_Interp
(Index
, It
);
4576 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(T1
));
4578 end Find_Non_Universal_Interpretations
;
4580 ------------------------------
4581 -- Find_Concatenation_Types --
4582 ------------------------------
4584 procedure Find_Concatenation_Types
4589 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
4592 if Is_Array_Type
(Op_Type
)
4593 and then not Is_Limited_Type
(Op_Type
)
4595 and then (Has_Compatible_Type
(L
, Op_Type
)
4597 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
4599 and then (Has_Compatible_Type
(R
, Op_Type
)
4601 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
4603 Add_One_Interp
(N
, Op_Id
, Op_Type
);
4605 end Find_Concatenation_Types
;
4607 -------------------------
4608 -- Find_Equality_Types --
4609 -------------------------
4611 procedure Find_Equality_Types
4616 Index
: Interp_Index
;
4618 Found
: Boolean := False;
4621 Scop
: Entity_Id
:= Empty
;
4623 procedure Try_One_Interp
(T1
: Entity_Id
);
4624 -- The context of the operator plays no role in resolving the
4625 -- arguments, so that if there is more than one interpretation
4626 -- of the operands that is compatible with equality, the construct
4627 -- is ambiguous and an error can be emitted now, after trying to
4628 -- disambiguate, i.e. applying preference rules.
4630 --------------------
4631 -- Try_One_Interp --
4632 --------------------
4634 procedure Try_One_Interp
(T1
: Entity_Id
) is
4636 -- If the operator is an expanded name, then the type of the operand
4637 -- must be defined in the corresponding scope. If the type is
4638 -- universal, the context will impose the correct type. An anonymous
4639 -- type for a 'Access reference is also universal in this sense, as
4640 -- the actual type is obtained from context.
4641 -- In Ada 2005, the equality operator for anonymous access types
4642 -- is declared in Standard, and preference rules apply to it.
4644 if Present
(Scop
) then
4645 if Defined_In_Scope
(T1
, Scop
)
4646 or else T1
= Universal_Integer
4647 or else T1
= Universal_Real
4648 or else T1
= Any_Access
4649 or else T1
= Any_String
4650 or else T1
= Any_Composite
4651 or else (Ekind
(T1
) = E_Access_Subprogram_Type
4652 and then not Comes_From_Source
(T1
))
4656 elsif Ekind
(T1
) = E_Anonymous_Access_Type
4657 and then Scop
= Standard_Standard
4662 -- The scope does not contain an operator for the type
4668 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
4669 -- Do not allow anonymous access types in equality operators.
4671 if Ada_Version
< Ada_05
4672 and then Ekind
(T1
) = E_Anonymous_Access_Type
4677 if T1
/= Standard_Void_Type
4678 and then not Is_Limited_Type
(T1
)
4679 and then not Is_Limited_Composite
(T1
)
4680 and then Has_Compatible_Type
(R
, T1
)
4683 and then Base_Type
(T1
) /= Base_Type
(T_F
)
4685 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
4687 if It
= No_Interp
then
4688 Ambiguous_Operands
(N
);
4689 Set_Etype
(L
, Any_Type
);
4702 if not Analyzed
(L
) then
4706 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
4708 -- Case of operator was not visible, Etype still set to Any_Type
4710 if Etype
(N
) = Any_Type
then
4714 elsif Scop
= Standard_Standard
4715 and then Ekind
(T1
) = E_Anonymous_Access_Type
4721 -- Start of processing for Find_Equality_Types
4724 -- If left operand is aggregate, the right operand has to
4725 -- provide a usable type for it.
4727 if Nkind
(L
) = N_Aggregate
4728 and then Nkind
(R
) /= N_Aggregate
4730 Find_Equality_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
4734 if Nkind
(N
) = N_Function_Call
4735 and then Nkind
(Name
(N
)) = N_Expanded_Name
4737 Scop
:= Entity
(Prefix
(Name
(N
)));
4739 -- The prefix may be a package renaming, and the subsequent test
4740 -- requires the original package.
4742 if Ekind
(Scop
) = E_Package
4743 and then Present
(Renamed_Entity
(Scop
))
4745 Scop
:= Renamed_Entity
(Scop
);
4746 Set_Entity
(Prefix
(Name
(N
)), Scop
);
4750 if not Is_Overloaded
(L
) then
4751 Try_One_Interp
(Etype
(L
));
4754 Get_First_Interp
(L
, Index
, It
);
4755 while Present
(It
.Typ
) loop
4756 Try_One_Interp
(It
.Typ
);
4757 Get_Next_Interp
(Index
, It
);
4760 end Find_Equality_Types
;
4762 -------------------------
4763 -- Find_Negation_Types --
4764 -------------------------
4766 procedure Find_Negation_Types
4771 Index
: Interp_Index
;
4775 if not Is_Overloaded
(R
) then
4776 if Etype
(R
) = Universal_Integer
then
4777 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
4778 elsif Valid_Boolean_Arg
(Etype
(R
)) then
4779 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
4783 Get_First_Interp
(R
, Index
, It
);
4784 while Present
(It
.Typ
) loop
4785 if Valid_Boolean_Arg
(It
.Typ
) then
4786 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
4789 Get_Next_Interp
(Index
, It
);
4792 end Find_Negation_Types
;
4794 ------------------------------
4795 -- Find_Primitive_Operation --
4796 ------------------------------
4798 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
4799 Obj
: constant Node_Id
:= Prefix
(N
);
4800 Op
: constant Node_Id
:= Selector_Name
(N
);
4807 Set_Etype
(Op
, Any_Type
);
4809 if Is_Access_Type
(Etype
(Obj
)) then
4810 Typ
:= Designated_Type
(Etype
(Obj
));
4815 if Is_Class_Wide_Type
(Typ
) then
4816 Typ
:= Root_Type
(Typ
);
4819 Prims
:= Primitive_Operations
(Typ
);
4821 Prim
:= First_Elmt
(Prims
);
4822 while Present
(Prim
) loop
4823 if Chars
(Node
(Prim
)) = Chars
(Op
) then
4824 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
4825 Set_Etype
(N
, Etype
(Node
(Prim
)));
4831 -- Now look for class-wide operations of the type or any of its
4832 -- ancestors by iterating over the homonyms of the selector.
4835 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
4839 Hom
:= Current_Entity
(Op
);
4840 while Present
(Hom
) loop
4841 if (Ekind
(Hom
) = E_Procedure
4843 Ekind
(Hom
) = E_Function
)
4844 and then Scope
(Hom
) = Scope
(Typ
)
4845 and then Present
(First_Formal
(Hom
))
4847 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
4849 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
4851 Ekind
(Etype
(First_Formal
(Hom
))) =
4852 E_Anonymous_Access_Type
4855 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
4858 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
4859 Set_Etype
(N
, Etype
(Hom
));
4862 Hom
:= Homonym
(Hom
);
4866 return Etype
(Op
) /= Any_Type
;
4867 end Find_Primitive_Operation
;
4869 ----------------------
4870 -- Find_Unary_Types --
4871 ----------------------
4873 procedure Find_Unary_Types
4878 Index
: Interp_Index
;
4882 if not Is_Overloaded
(R
) then
4883 if Is_Numeric_Type
(Etype
(R
)) then
4884 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
4888 Get_First_Interp
(R
, Index
, It
);
4889 while Present
(It
.Typ
) loop
4890 if Is_Numeric_Type
(It
.Typ
) then
4891 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
4894 Get_Next_Interp
(Index
, It
);
4897 end Find_Unary_Types
;
4903 function Junk_Operand
(N
: Node_Id
) return Boolean is
4907 if Error_Posted
(N
) then
4911 -- Get entity to be tested
4913 if Is_Entity_Name
(N
)
4914 and then Present
(Entity
(N
))
4918 -- An odd case, a procedure name gets converted to a very peculiar
4919 -- function call, and here is where we detect this happening.
4921 elsif Nkind
(N
) = N_Function_Call
4922 and then Is_Entity_Name
(Name
(N
))
4923 and then Present
(Entity
(Name
(N
)))
4927 -- Another odd case, there are at least some cases of selected
4928 -- components where the selected component is not marked as having
4929 -- an entity, even though the selector does have an entity
4931 elsif Nkind
(N
) = N_Selected_Component
4932 and then Present
(Entity
(Selector_Name
(N
)))
4934 Enode
:= Selector_Name
(N
);
4940 -- Now test the entity we got to see if it is a bad case
4942 case Ekind
(Entity
(Enode
)) is
4946 ("package name cannot be used as operand", Enode
);
4948 when Generic_Unit_Kind
=>
4950 ("generic unit name cannot be used as operand", Enode
);
4954 ("subtype name cannot be used as operand", Enode
);
4958 ("entry name cannot be used as operand", Enode
);
4962 ("procedure name cannot be used as operand", Enode
);
4966 ("exception name cannot be used as operand", Enode
);
4968 when E_Block | E_Label | E_Loop
=>
4970 ("label name cannot be used as operand", Enode
);
4980 --------------------
4981 -- Operator_Check --
4982 --------------------
4984 procedure Operator_Check
(N
: Node_Id
) is
4986 Remove_Abstract_Operations
(N
);
4988 -- Test for case of no interpretation found for operator
4990 if Etype
(N
) = Any_Type
then
4994 Op_Id
: Entity_Id
:= Empty
;
4997 R
:= Right_Opnd
(N
);
4999 if Nkind
(N
) in N_Binary_Op
then
5005 -- If either operand has no type, then don't complain further,
5006 -- since this simply means that we have a propagated error.
5009 or else Etype
(R
) = Any_Type
5010 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
5014 -- We explicitly check for the case of concatenation of component
5015 -- with component to avoid reporting spurious matching array types
5016 -- that might happen to be lurking in distant packages (such as
5017 -- run-time packages). This also prevents inconsistencies in the
5018 -- messages for certain ACVC B tests, which can vary depending on
5019 -- types declared in run-time interfaces. Another improvement when
5020 -- aggregates are present is to look for a well-typed operand.
5022 elsif Present
(Candidate_Type
)
5023 and then (Nkind
(N
) /= N_Op_Concat
5024 or else Is_Array_Type
(Etype
(L
))
5025 or else Is_Array_Type
(Etype
(R
)))
5028 if Nkind
(N
) = N_Op_Concat
then
5029 if Etype
(L
) /= Any_Composite
5030 and then Is_Array_Type
(Etype
(L
))
5032 Candidate_Type
:= Etype
(L
);
5034 elsif Etype
(R
) /= Any_Composite
5035 and then Is_Array_Type
(Etype
(R
))
5037 Candidate_Type
:= Etype
(R
);
5042 ("operator for} is not directly visible!",
5043 N
, First_Subtype
(Candidate_Type
));
5044 Error_Msg_N
("use clause would make operation legal!", N
);
5047 -- If either operand is a junk operand (e.g. package name), then
5048 -- post appropriate error messages, but do not complain further.
5050 -- Note that the use of OR in this test instead of OR ELSE is
5051 -- quite deliberate, we may as well check both operands in the
5052 -- binary operator case.
5054 elsif Junk_Operand
(R
)
5055 or (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
5059 -- If we have a logical operator, one of whose operands is
5060 -- Boolean, then we know that the other operand cannot resolve to
5061 -- Boolean (since we got no interpretations), but in that case we
5062 -- pretty much know that the other operand should be Boolean, so
5063 -- resolve it that way (generating an error)
5065 elsif Nkind_In
(N
, N_Op_And
, N_Op_Or
, N_Op_Xor
) then
5066 if Etype
(L
) = Standard_Boolean
then
5067 Resolve
(R
, Standard_Boolean
);
5069 elsif Etype
(R
) = Standard_Boolean
then
5070 Resolve
(L
, Standard_Boolean
);
5074 -- For an arithmetic operator or comparison operator, if one
5075 -- of the operands is numeric, then we know the other operand
5076 -- is not the same numeric type. If it is a non-numeric type,
5077 -- then probably it is intended to match the other operand.
5079 elsif Nkind_In
(N
, N_Op_Add
,
5085 Nkind_In
(N
, N_Op_Lt
,
5091 if Is_Numeric_Type
(Etype
(L
))
5092 and then not Is_Numeric_Type
(Etype
(R
))
5094 Resolve
(R
, Etype
(L
));
5097 elsif Is_Numeric_Type
(Etype
(R
))
5098 and then not Is_Numeric_Type
(Etype
(L
))
5100 Resolve
(L
, Etype
(R
));
5104 -- Comparisons on A'Access are common enough to deserve a
5107 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
5108 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
5109 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
5112 ("two access attributes cannot be compared directly", N
);
5114 ("\use qualified expression for one of the operands",
5118 -- Another one for C programmers
5120 elsif Nkind
(N
) = N_Op_Concat
5121 and then Valid_Boolean_Arg
(Etype
(L
))
5122 and then Valid_Boolean_Arg
(Etype
(R
))
5124 Error_Msg_N
("invalid operands for concatenation", N
);
5125 Error_Msg_N
("\maybe AND was meant", N
);
5128 -- A special case for comparison of access parameter with null
5130 elsif Nkind
(N
) = N_Op_Eq
5131 and then Is_Entity_Name
(L
)
5132 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
5133 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
5135 and then Nkind
(R
) = N_Null
5137 Error_Msg_N
("access parameter is not allowed to be null", L
);
5138 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
5142 -- If we fall through then just give general message. Note that in
5143 -- the following messages, if the operand is overloaded we choose
5144 -- an arbitrary type to complain about, but that is probably more
5145 -- useful than not giving a type at all.
5147 if Nkind
(N
) in N_Unary_Op
then
5148 Error_Msg_Node_2
:= Etype
(R
);
5149 Error_Msg_N
("operator& not defined for}", N
);
5153 if Nkind
(N
) in N_Binary_Op
then
5154 if not Is_Overloaded
(L
)
5155 and then not Is_Overloaded
(R
)
5156 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
5158 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
5159 Error_Msg_N
("there is no applicable operator& for}", N
);
5162 -- Another attempt to find a fix: one of the candidate
5163 -- interpretations may not be use-visible. This has
5164 -- already been checked for predefined operators, so
5165 -- we examine only user-defined functions.
5167 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
5169 while Present
(Op_Id
) loop
5170 if Ekind
(Op_Id
) /= E_Operator
5171 and then Is_Overloadable
(Op_Id
)
5173 if not Is_Immediately_Visible
(Op_Id
)
5174 and then not In_Use
(Scope
(Op_Id
))
5175 and then not Is_Abstract_Subprogram
(Op_Id
)
5176 and then not Is_Hidden
(Op_Id
)
5177 and then Ekind
(Scope
(Op_Id
)) = E_Package
5180 (L
, Etype
(First_Formal
(Op_Id
)))
5182 (Next_Formal
(First_Formal
(Op_Id
)))
5186 Etype
(Next_Formal
(First_Formal
(Op_Id
))))
5189 ("No legal interpretation for operator&", N
);
5191 ("\use clause on& would make operation legal",
5197 Op_Id
:= Homonym
(Op_Id
);
5201 Error_Msg_N
("invalid operand types for operator&", N
);
5203 if Nkind
(N
) /= N_Op_Concat
then
5204 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
5205 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
5215 -----------------------------------------
5216 -- Process_Implicit_Dereference_Prefix --
5217 -----------------------------------------
5219 function Process_Implicit_Dereference_Prefix
5221 P
: Entity_Id
) return Entity_Id
5224 Typ
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
5228 and then (Operating_Mode
= Check_Semantics
or else not Expander_Active
)
5230 -- We create a dummy reference to E to ensure that the reference
5231 -- is not considered as part of an assignment (an implicit
5232 -- dereference can never assign to its prefix). The Comes_From_Source
5233 -- attribute needs to be propagated for accurate warnings.
5235 Ref
:= New_Reference_To
(E
, Sloc
(P
));
5236 Set_Comes_From_Source
(Ref
, Comes_From_Source
(P
));
5237 Generate_Reference
(E
, Ref
);
5240 -- An implicit dereference is a legal occurrence of an
5241 -- incomplete type imported through a limited_with clause,
5242 -- if the full view is visible.
5244 if From_With_Type
(Typ
)
5245 and then not From_With_Type
(Scope
(Typ
))
5247 (Is_Immediately_Visible
(Scope
(Typ
))
5249 (Is_Child_Unit
(Scope
(Typ
))
5250 and then Is_Visible_Child_Unit
(Scope
(Typ
))))
5252 return Available_View
(Typ
);
5257 end Process_Implicit_Dereference_Prefix
;
5259 --------------------------------
5260 -- Remove_Abstract_Operations --
5261 --------------------------------
5263 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
5264 Abstract_Op
: Entity_Id
:= Empty
;
5265 Address_Kludge
: Boolean := False;
5269 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5270 -- activate this if either extensions are enabled, or if the abstract
5271 -- operation in question comes from a predefined file. This latter test
5272 -- allows us to use abstract to make operations invisible to users. In
5273 -- particular, if type Address is non-private and abstract subprograms
5274 -- are used to hide its operators, they will be truly hidden.
5276 type Operand_Position
is (First_Op
, Second_Op
);
5277 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
5279 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
5280 -- Ambiguities may arise when the operands are literal and the address
5281 -- operations in s-auxdec are visible. In that case, remove the
5282 -- interpretation of a literal as Address, to retain the semantics of
5283 -- Address as a private type.
5285 ------------------------------------
5286 -- Remove_Address_Interpretations --
5287 ------------------------------------
5289 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
5293 if Is_Overloaded
(N
) then
5294 Get_First_Interp
(N
, I
, It
);
5295 while Present
(It
.Nam
) loop
5296 Formal
:= First_Entity
(It
.Nam
);
5298 if Op
= Second_Op
then
5299 Formal
:= Next_Entity
(Formal
);
5302 if Is_Descendent_Of_Address
(Etype
(Formal
)) then
5303 Address_Kludge
:= True;
5307 Get_Next_Interp
(I
, It
);
5310 end Remove_Address_Interpretations
;
5312 -- Start of processing for Remove_Abstract_Operations
5315 if Is_Overloaded
(N
) then
5316 Get_First_Interp
(N
, I
, It
);
5318 while Present
(It
.Nam
) loop
5319 if Is_Overloadable
(It
.Nam
)
5320 and then Is_Abstract_Subprogram
(It
.Nam
)
5321 and then not Is_Dispatching_Operation
(It
.Nam
)
5323 Abstract_Op
:= It
.Nam
;
5325 if Is_Descendent_Of_Address
(It
.Typ
) then
5326 Address_Kludge
:= True;
5330 -- In Ada 2005, this operation does not participate in Overload
5331 -- resolution. If the operation is defined in a predefined
5332 -- unit, it is one of the operations declared abstract in some
5333 -- variants of System, and it must be removed as well.
5335 elsif Ada_Version
>= Ada_05
5336 or else Is_Predefined_File_Name
5337 (Unit_File_Name
(Get_Source_Unit
(It
.Nam
)))
5344 Get_Next_Interp
(I
, It
);
5347 if No
(Abstract_Op
) then
5349 -- If some interpretation yields an integer type, it is still
5350 -- possible that there are address interpretations. Remove them
5351 -- if one operand is a literal, to avoid spurious ambiguities
5352 -- on systems where Address is a visible integer type.
5354 if Is_Overloaded
(N
)
5355 and then Nkind
(N
) in N_Op
5356 and then Is_Integer_Type
(Etype
(N
))
5358 if Nkind
(N
) in N_Binary_Op
then
5359 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
5360 Remove_Address_Interpretations
(Second_Op
);
5362 elsif Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
5363 Remove_Address_Interpretations
(First_Op
);
5368 elsif Nkind
(N
) in N_Op
then
5370 -- Remove interpretations that treat literals as addresses. This
5371 -- is never appropriate, even when Address is defined as a visible
5372 -- Integer type. The reason is that we would really prefer Address
5373 -- to behave as a private type, even in this case, which is there
5374 -- only to accommodate oddities of VMS address sizes. If Address
5375 -- is a visible integer type, we get lots of overload ambiguities.
5377 if Nkind
(N
) in N_Binary_Op
then
5379 U1
: constant Boolean :=
5380 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
5381 U2
: constant Boolean :=
5382 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
5386 Remove_Address_Interpretations
(Second_Op
);
5390 Remove_Address_Interpretations
(First_Op
);
5393 if not (U1
and U2
) then
5395 -- Remove corresponding predefined operator, which is
5396 -- always added to the overload set.
5398 Get_First_Interp
(N
, I
, It
);
5399 while Present
(It
.Nam
) loop
5400 if Scope
(It
.Nam
) = Standard_Standard
5401 and then Base_Type
(It
.Typ
) =
5402 Base_Type
(Etype
(Abstract_Op
))
5407 Get_Next_Interp
(I
, It
);
5410 elsif Is_Overloaded
(N
)
5411 and then Present
(Univ_Type
)
5413 -- If both operands have a universal interpretation,
5414 -- it is still necessary to remove interpretations that
5415 -- yield Address. Any remaining ambiguities will be
5416 -- removed in Disambiguate.
5418 Get_First_Interp
(N
, I
, It
);
5419 while Present
(It
.Nam
) loop
5420 if Is_Descendent_Of_Address
(It
.Typ
) then
5423 elsif not Is_Type
(It
.Nam
) then
5424 Set_Entity
(N
, It
.Nam
);
5427 Get_Next_Interp
(I
, It
);
5433 elsif Nkind
(N
) = N_Function_Call
5435 (Nkind
(Name
(N
)) = N_Operator_Symbol
5437 (Nkind
(Name
(N
)) = N_Expanded_Name
5439 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
5443 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
5444 U1
: constant Boolean :=
5445 Present
(Universal_Interpretation
(Arg1
));
5446 U2
: constant Boolean :=
5447 Present
(Next
(Arg1
)) and then
5448 Present
(Universal_Interpretation
(Next
(Arg1
)));
5452 Remove_Address_Interpretations
(First_Op
);
5456 Remove_Address_Interpretations
(Second_Op
);
5459 if not (U1
and U2
) then
5460 Get_First_Interp
(N
, I
, It
);
5461 while Present
(It
.Nam
) loop
5462 if Scope
(It
.Nam
) = Standard_Standard
5463 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
5468 Get_Next_Interp
(I
, It
);
5474 -- If the removal has left no valid interpretations, emit an error
5475 -- message now and label node as illegal.
5477 if Present
(Abstract_Op
) then
5478 Get_First_Interp
(N
, I
, It
);
5482 -- Removal of abstract operation left no viable candidate
5484 Set_Etype
(N
, Any_Type
);
5485 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
5487 ("cannot call abstract operation& declared#", N
, Abstract_Op
);
5489 -- In Ada 2005, an abstract operation may disable predefined
5490 -- operators. Since the context is not yet known, we mark the
5491 -- predefined operators as potentially hidden. Do not include
5492 -- predefined operators when addresses are involved since this
5493 -- case is handled separately.
5495 elsif Ada_Version
>= Ada_05
5496 and then not Address_Kludge
5498 while Present
(It
.Nam
) loop
5499 if Is_Numeric_Type
(It
.Typ
)
5500 and then Scope
(It
.Typ
) = Standard_Standard
5502 Set_Abstract_Op
(I
, Abstract_Op
);
5505 Get_Next_Interp
(I
, It
);
5510 end Remove_Abstract_Operations
;
5512 -----------------------
5513 -- Try_Indirect_Call --
5514 -----------------------
5516 function Try_Indirect_Call
5519 Typ
: Entity_Id
) return Boolean
5525 pragma Warnings
(Off
, Call_OK
);
5528 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
5530 Actual
:= First_Actual
(N
);
5531 Formal
:= First_Formal
(Designated_Type
(Typ
));
5532 while Present
(Actual
) and then Present
(Formal
) loop
5533 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
5538 Next_Formal
(Formal
);
5541 if No
(Actual
) and then No
(Formal
) then
5542 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
5544 -- Nam is a candidate interpretation for the name in the call,
5545 -- if it is not an indirect call.
5547 if not Is_Type
(Nam
)
5548 and then Is_Entity_Name
(Name
(N
))
5550 Set_Entity
(Name
(N
), Nam
);
5557 end Try_Indirect_Call
;
5559 ----------------------
5560 -- Try_Indexed_Call --
5561 ----------------------
5563 function Try_Indexed_Call
5567 Skip_First
: Boolean) return Boolean
5569 Loc
: constant Source_Ptr
:= Sloc
(N
);
5570 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
5575 Actual
:= First
(Actuals
);
5577 -- If the call was originally written in prefix form, skip the first
5578 -- actual, which is obviously not defaulted.
5584 Index
:= First_Index
(Typ
);
5585 while Present
(Actual
) and then Present
(Index
) loop
5587 -- If the parameter list has a named association, the expression
5588 -- is definitely a call and not an indexed component.
5590 if Nkind
(Actual
) = N_Parameter_Association
then
5594 if Is_Entity_Name
(Actual
)
5595 and then Is_Type
(Entity
(Actual
))
5596 and then No
(Next
(Actual
))
5600 Prefix
=> Make_Function_Call
(Loc
,
5601 Name
=> Relocate_Node
(Name
(N
))),
5603 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
5608 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
5616 if No
(Actual
) and then No
(Index
) then
5617 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
5619 -- Nam is a candidate interpretation for the name in the call,
5620 -- if it is not an indirect call.
5622 if not Is_Type
(Nam
)
5623 and then Is_Entity_Name
(Name
(N
))
5625 Set_Entity
(Name
(N
), Nam
);
5632 end Try_Indexed_Call
;
5634 --------------------------
5635 -- Try_Object_Operation --
5636 --------------------------
5638 function Try_Object_Operation
(N
: Node_Id
) return Boolean is
5639 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
5640 Is_Subprg_Call
: constant Boolean := Nkind_In
5641 (K
, N_Procedure_Call_Statement
,
5643 Loc
: constant Source_Ptr
:= Sloc
(N
);
5644 Obj
: constant Node_Id
:= Prefix
(N
);
5645 Subprog
: constant Node_Id
:=
5646 Make_Identifier
(Sloc
(Selector_Name
(N
)),
5647 Chars
=> Chars
(Selector_Name
(N
)));
5648 -- Identifier on which possible interpretations will be collected
5650 Report_Error
: Boolean := False;
5651 -- If no candidate interpretation matches the context, redo the
5652 -- analysis with error enabled to provide additional information.
5655 Candidate
: Entity_Id
:= Empty
;
5656 New_Call_Node
: Node_Id
:= Empty
;
5657 Node_To_Replace
: Node_Id
;
5658 Obj_Type
: Entity_Id
:= Etype
(Obj
);
5659 Success
: Boolean := False;
5661 function Valid_Candidate
5664 Subp
: Entity_Id
) return Entity_Id
;
5665 -- If the subprogram is a valid interpretation, record it, and add
5666 -- to the list of interpretations of Subprog.
5668 procedure Complete_Object_Operation
5669 (Call_Node
: Node_Id
;
5670 Node_To_Replace
: Node_Id
);
5671 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
5672 -- Call_Node, insert the object (or its dereference) as the first actual
5673 -- in the call, and complete the analysis of the call.
5675 procedure Report_Ambiguity
(Op
: Entity_Id
);
5676 -- If a prefixed procedure call is ambiguous, indicate whether the
5677 -- call includes an implicit dereference or an implicit 'Access.
5679 procedure Transform_Object_Operation
5680 (Call_Node
: out Node_Id
;
5681 Node_To_Replace
: out Node_Id
);
5682 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
5683 -- Call_Node is the resulting subprogram call, Node_To_Replace is
5684 -- either N or the parent of N, and Subprog is a reference to the
5685 -- subprogram we are trying to match.
5687 function Try_Class_Wide_Operation
5688 (Call_Node
: Node_Id
;
5689 Node_To_Replace
: Node_Id
) return Boolean;
5690 -- Traverse all ancestor types looking for a class-wide subprogram
5691 -- for which the current operation is a valid non-dispatching call.
5693 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
5694 -- If prefix is overloaded, its interpretation may include different
5695 -- tagged types, and we must examine the primitive operations and
5696 -- the class-wide operations of each in order to find candidate
5697 -- interpretations for the call as a whole.
5699 function Try_Primitive_Operation
5700 (Call_Node
: Node_Id
;
5701 Node_To_Replace
: Node_Id
) return Boolean;
5702 -- Traverse the list of primitive subprograms looking for a dispatching
5703 -- operation for which the current node is a valid call .
5705 ---------------------
5706 -- Valid_Candidate --
5707 ---------------------
5709 function Valid_Candidate
5712 Subp
: Entity_Id
) return Entity_Id
5714 Comp_Type
: Entity_Id
;
5717 -- If the subprogram is a valid interpretation, record it in global
5718 -- variable Subprog, to collect all possible overloadings.
5721 if Subp
/= Entity
(Subprog
) then
5722 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
5726 -- If the call may be an indexed call, retrieve component type of
5727 -- resulting expression, and add possible interpretation.
5731 if Nkind
(Call
) = N_Function_Call
5732 and then Nkind
(Parent
(N
)) = N_Indexed_Component
5733 and then Needs_One_Actual
(Subp
)
5735 if Is_Array_Type
(Etype
(Subp
)) then
5736 Comp_Type
:= Component_Type
(Etype
(Subp
));
5738 elsif Is_Access_Type
(Etype
(Subp
))
5739 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
5741 Comp_Type
:= Component_Type
(Designated_Type
(Etype
(Subp
)));
5745 if Present
(Comp_Type
)
5746 and then Etype
(Subprog
) /= Comp_Type
5748 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
5751 if Etype
(Call
) /= Any_Type
then
5756 end Valid_Candidate
;
5758 -------------------------------
5759 -- Complete_Object_Operation --
5760 -------------------------------
5762 procedure Complete_Object_Operation
5763 (Call_Node
: Node_Id
;
5764 Node_To_Replace
: Node_Id
)
5766 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
5767 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
5768 First_Actual
: Node_Id
;
5771 -- Place the name of the operation, with its interpretations,
5772 -- on the rewritten call.
5774 Set_Name
(Call_Node
, Subprog
);
5776 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
5778 -- For cross-reference purposes, treat the new node as being in
5779 -- the source if the original one is.
5781 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
5782 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
5784 if Nkind
(N
) = N_Selected_Component
5785 and then not Inside_A_Generic
5787 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
5790 -- If need be, rewrite first actual as an explicit dereference
5791 -- If the call is overloaded, the rewriting can only be done
5792 -- once the primitive operation is identified.
5794 if Is_Overloaded
(Subprog
) then
5796 -- The prefix itself may be overloaded, and its interpretations
5797 -- must be propagated to the new actual in the call.
5799 if Is_Overloaded
(Obj
) then
5800 Save_Interps
(Obj
, First_Actual
);
5803 Rewrite
(First_Actual
, Obj
);
5805 elsif not Is_Access_Type
(Formal_Type
)
5806 and then Is_Access_Type
(Etype
(Obj
))
5808 Rewrite
(First_Actual
,
5809 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
5810 Analyze
(First_Actual
);
5812 -- If we need to introduce an explicit dereference, verify that
5813 -- the resulting actual is compatible with the mode of the formal.
5815 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
5816 and then Is_Access_Constant
(Etype
(Obj
))
5819 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
5822 -- Conversely, if the formal is an access parameter and the object
5823 -- is not, replace the actual with a 'Access reference. Its analysis
5824 -- will check that the object is aliased.
5826 elsif Is_Access_Type
(Formal_Type
)
5827 and then not Is_Access_Type
(Etype
(Obj
))
5829 -- A special case: A.all'access is illegal if A is an access to a
5830 -- constant and the context requires an access to a variable.
5832 if not Is_Access_Constant
(Formal_Type
) then
5833 if (Nkind
(Obj
) = N_Explicit_Dereference
5834 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
5835 or else not Is_Variable
(Obj
)
5838 ("actual for& must be a variable", Obj
, Control
);
5842 Rewrite
(First_Actual
,
5843 Make_Attribute_Reference
(Loc
,
5844 Attribute_Name
=> Name_Access
,
5845 Prefix
=> Relocate_Node
(Obj
)));
5847 if not Is_Aliased_View
(Obj
) then
5849 ("object in prefixed call to& must be aliased"
5850 & " (RM-2005 4.3.1 (13))",
5851 Prefix
(First_Actual
), Subprog
);
5854 Analyze
(First_Actual
);
5857 if Is_Overloaded
(Obj
) then
5858 Save_Interps
(Obj
, First_Actual
);
5861 Rewrite
(First_Actual
, Obj
);
5864 Rewrite
(Node_To_Replace
, Call_Node
);
5866 -- Propagate the interpretations collected in subprog to the new
5867 -- function call node, to be resolved from context.
5869 if Is_Overloaded
(Subprog
) then
5870 Save_Interps
(Subprog
, Node_To_Replace
);
5872 Analyze
(Node_To_Replace
);
5874 end Complete_Object_Operation
;
5876 ----------------------
5877 -- Report_Ambiguity --
5878 ----------------------
5880 procedure Report_Ambiguity
(Op
: Entity_Id
) is
5881 Access_Formal
: constant Boolean :=
5882 Is_Access_Type
(Etype
(First_Formal
(Op
)));
5883 Access_Actual
: constant Boolean :=
5884 Is_Access_Type
(Etype
(Prefix
(N
)));
5887 Error_Msg_Sloc
:= Sloc
(Op
);
5889 if Access_Formal
and then not Access_Actual
then
5890 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
5892 ("\possible interpretation"
5893 & " (inherited, with implicit 'Access) #", N
);
5896 ("\possible interpretation (with implicit 'Access) #", N
);
5899 elsif not Access_Formal
and then Access_Actual
then
5900 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
5902 ("\possible interpretation"
5903 & " ( inherited, with implicit dereference) #", N
);
5906 ("\possible interpretation (with implicit dereference) #", N
);
5910 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
5911 Error_Msg_N
("\possible interpretation (inherited)#", N
);
5913 Error_Msg_N
("\possible interpretation#", N
);
5916 end Report_Ambiguity
;
5918 --------------------------------
5919 -- Transform_Object_Operation --
5920 --------------------------------
5922 procedure Transform_Object_Operation
5923 (Call_Node
: out Node_Id
;
5924 Node_To_Replace
: out Node_Id
)
5926 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
5927 -- Placeholder used as a first parameter in the call, replaced
5928 -- eventually by the proper object.
5930 Parent_Node
: constant Node_Id
:= Parent
(N
);
5936 -- Common case covering 1) Call to a procedure and 2) Call to a
5937 -- function that has some additional actuals.
5939 if Nkind_In
(Parent_Node
, N_Function_Call
,
5940 N_Procedure_Call_Statement
)
5942 -- N is a selected component node containing the name of the
5943 -- subprogram. If N is not the name of the parent node we must
5944 -- not replace the parent node by the new construct. This case
5945 -- occurs when N is a parameterless call to a subprogram that
5946 -- is an actual parameter of a call to another subprogram. For
5948 -- Some_Subprogram (..., Obj.Operation, ...)
5950 and then Name
(Parent_Node
) = N
5952 Node_To_Replace
:= Parent_Node
;
5954 Actuals
:= Parameter_Associations
(Parent_Node
);
5956 if Present
(Actuals
) then
5957 Prepend
(Dummy
, Actuals
);
5959 Actuals
:= New_List
(Dummy
);
5962 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
5964 Make_Procedure_Call_Statement
(Loc
,
5965 Name
=> New_Copy
(Subprog
),
5966 Parameter_Associations
=> Actuals
);
5970 Make_Function_Call
(Loc
,
5971 Name
=> New_Copy
(Subprog
),
5972 Parameter_Associations
=> Actuals
);
5976 -- Before analysis, a function call appears as an indexed component
5977 -- if there are no named associations.
5979 elsif Nkind
(Parent_Node
) = N_Indexed_Component
5980 and then N
= Prefix
(Parent_Node
)
5982 Node_To_Replace
:= Parent_Node
;
5984 Actuals
:= Expressions
(Parent_Node
);
5986 Actual
:= First
(Actuals
);
5987 while Present
(Actual
) loop
5992 Prepend
(Dummy
, Actuals
);
5995 Make_Function_Call
(Loc
,
5996 Name
=> New_Copy
(Subprog
),
5997 Parameter_Associations
=> Actuals
);
5999 -- Parameterless call: Obj.F is rewritten as F (Obj)
6002 Node_To_Replace
:= N
;
6005 Make_Function_Call
(Loc
,
6006 Name
=> New_Copy
(Subprog
),
6007 Parameter_Associations
=> New_List
(Dummy
));
6009 end Transform_Object_Operation
;
6011 ------------------------------
6012 -- Try_Class_Wide_Operation --
6013 ------------------------------
6015 function Try_Class_Wide_Operation
6016 (Call_Node
: Node_Id
;
6017 Node_To_Replace
: Node_Id
) return Boolean
6019 Anc_Type
: Entity_Id
;
6020 Matching_Op
: Entity_Id
:= Empty
;
6023 procedure Traverse_Homonyms
6024 (Anc_Type
: Entity_Id
;
6025 Error
: out Boolean);
6026 -- Traverse the homonym chain of the subprogram searching for those
6027 -- homonyms whose first formal has the Anc_Type's class-wide type,
6028 -- or an anonymous access type designating the class-wide type. If
6029 -- an ambiguity is detected, then Error is set to True.
6031 procedure Traverse_Interfaces
6032 (Anc_Type
: Entity_Id
;
6033 Error
: out Boolean);
6034 -- Traverse the list of interfaces, if any, associated with Anc_Type
6035 -- and search for acceptable class-wide homonyms associated with each
6036 -- interface. If an ambiguity is detected, then Error is set to True.
6038 -----------------------
6039 -- Traverse_Homonyms --
6040 -----------------------
6042 procedure Traverse_Homonyms
6043 (Anc_Type
: Entity_Id
;
6044 Error
: out Boolean)
6046 Cls_Type
: Entity_Id
;
6054 Cls_Type
:= Class_Wide_Type
(Anc_Type
);
6056 Hom
:= Current_Entity
(Subprog
);
6058 -- Find operation whose first parameter is of the class-wide
6059 -- type, a subtype thereof, or an anonymous access to same.
6061 while Present
(Hom
) loop
6062 if (Ekind
(Hom
) = E_Procedure
6064 Ekind
(Hom
) = E_Function
)
6065 and then Scope
(Hom
) = Scope
(Anc_Type
)
6066 and then Present
(First_Formal
(Hom
))
6068 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
6070 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
6072 Ekind
(Etype
(First_Formal
(Hom
))) =
6073 E_Anonymous_Access_Type
6076 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
6079 Set_Etype
(Call_Node
, Any_Type
);
6080 Set_Is_Overloaded
(Call_Node
, False);
6083 if No
(Matching_Op
) then
6084 Hom_Ref
:= New_Reference_To
(Hom
, Sloc
(Subprog
));
6085 Set_Etype
(Call_Node
, Any_Type
);
6086 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
6088 Set_Name
(Call_Node
, Hom_Ref
);
6093 Report
=> Report_Error
,
6095 Skip_First
=> True);
6098 Valid_Candidate
(Success
, Call_Node
, Hom
);
6104 Report
=> Report_Error
,
6106 Skip_First
=> True);
6108 if Present
(Valid_Candidate
(Success
, Call_Node
, Hom
))
6109 and then Nkind
(Call_Node
) /= N_Function_Call
6111 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
6112 Report_Ambiguity
(Matching_Op
);
6113 Report_Ambiguity
(Hom
);
6120 Hom
:= Homonym
(Hom
);
6122 end Traverse_Homonyms
;
6124 -------------------------
6125 -- Traverse_Interfaces --
6126 -------------------------
6128 procedure Traverse_Interfaces
6129 (Anc_Type
: Entity_Id
;
6130 Error
: out Boolean)
6132 Intface_List
: constant List_Id
:=
6133 Abstract_Interface_List
(Anc_Type
);
6139 if Is_Non_Empty_List
(Intface_List
) then
6140 Intface
:= First
(Intface_List
);
6141 while Present
(Intface
) loop
6143 -- Look for acceptable class-wide homonyms associated with
6146 Traverse_Homonyms
(Etype
(Intface
), Error
);
6152 -- Continue the search by looking at each of the interface's
6153 -- associated interface ancestors.
6155 Traverse_Interfaces
(Etype
(Intface
), Error
);
6164 end Traverse_Interfaces
;
6166 -- Start of processing for Try_Class_Wide_Operation
6169 -- Loop through ancestor types (including interfaces), traversing
6170 -- the homonym chain of the subprogram, trying out those homonyms
6171 -- whose first formal has the class-wide type of the ancestor, or
6172 -- an anonymous access type designating the class-wide type.
6174 Anc_Type
:= Obj_Type
;
6176 -- Look for a match among homonyms associated with the ancestor
6178 Traverse_Homonyms
(Anc_Type
, Error
);
6184 -- Continue the search for matches among homonyms associated with
6185 -- any interfaces implemented by the ancestor.
6187 Traverse_Interfaces
(Anc_Type
, Error
);
6193 exit when Etype
(Anc_Type
) = Anc_Type
;
6194 Anc_Type
:= Etype
(Anc_Type
);
6197 if Present
(Matching_Op
) then
6198 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
6201 return Present
(Matching_Op
);
6202 end Try_Class_Wide_Operation
;
6204 -----------------------------------
6205 -- Try_One_Prefix_Interpretation --
6206 -----------------------------------
6208 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
6212 if Is_Access_Type
(Obj_Type
) then
6213 Obj_Type
:= Designated_Type
(Obj_Type
);
6216 if Ekind
(Obj_Type
) = E_Private_Subtype
then
6217 Obj_Type
:= Base_Type
(Obj_Type
);
6220 if Is_Class_Wide_Type
(Obj_Type
) then
6221 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
6224 -- The type may have be obtained through a limited_with clause,
6225 -- in which case the primitive operations are available on its
6226 -- non-limited view. If still incomplete, retrieve full view.
6228 if Ekind
(Obj_Type
) = E_Incomplete_Type
6229 and then From_With_Type
(Obj_Type
)
6231 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
6234 -- If the object is not tagged, or the type is still an incomplete
6235 -- type, this is not a prefixed call.
6237 if not Is_Tagged_Type
(Obj_Type
)
6238 or else Is_Incomplete_Type
(Obj_Type
)
6243 if Try_Primitive_Operation
6244 (Call_Node
=> New_Call_Node
,
6245 Node_To_Replace
=> Node_To_Replace
)
6247 Try_Class_Wide_Operation
6248 (Call_Node
=> New_Call_Node
,
6249 Node_To_Replace
=> Node_To_Replace
)
6253 end Try_One_Prefix_Interpretation
;
6255 -----------------------------
6256 -- Try_Primitive_Operation --
6257 -----------------------------
6259 function Try_Primitive_Operation
6260 (Call_Node
: Node_Id
;
6261 Node_To_Replace
: Node_Id
) return Boolean
6264 Prim_Op
: Entity_Id
;
6265 Matching_Op
: Entity_Id
:= Empty
;
6266 Prim_Op_Ref
: Node_Id
:= Empty
;
6268 Corr_Type
: Entity_Id
:= Empty
;
6269 -- If the prefix is a synchronized type, the controlling type of
6270 -- the primitive operation is the corresponding record type, else
6271 -- this is the object type itself.
6273 Success
: Boolean := False;
6275 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
6276 -- For tagged types the candidate interpretations are found in
6277 -- the list of primitive operations of the type and its ancestors.
6278 -- For formal tagged types we have to find the operations declared
6279 -- in the same scope as the type (including in the generic formal
6280 -- part) because the type itself carries no primitive operations,
6281 -- except for formal derived types that inherit the operations of
6282 -- the parent and progenitors.
6283 -- If the context is a generic subprogram body, the generic formals
6284 -- are visible by name, but are not in the entity list of the
6285 -- subprogram because that list starts with the subprogram formals.
6286 -- We retrieve the candidate operations from the generic declaration.
6288 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
6289 -- Verify that the prefix, dereferenced if need be, is a valid
6290 -- controlling argument in a call to Op. The remaining actuals
6291 -- are checked in the subsequent call to Analyze_One_Call.
6293 ------------------------------
6294 -- Collect_Generic_Type_Ops --
6295 ------------------------------
6297 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
6298 Bas
: constant Entity_Id
:= Base_Type
(T
);
6299 Candidates
: constant Elist_Id
:= New_Elmt_List
;
6303 procedure Check_Candidate
;
6304 -- The operation is a candidate if its first parameter is a
6305 -- controlling operand of the desired type.
6307 -----------------------
6308 -- Check_Candidate; --
6309 -----------------------
6311 procedure Check_Candidate
is
6313 Formal
:= First_Formal
(Subp
);
6316 and then Is_Controlling_Formal
(Formal
)
6318 (Base_Type
(Etype
(Formal
)) = Bas
6320 (Is_Access_Type
(Etype
(Formal
))
6321 and then Designated_Type
(Etype
(Formal
)) = Bas
))
6323 Append_Elmt
(Subp
, Candidates
);
6325 end Check_Candidate
;
6327 -- Start of processing for Collect_Generic_Type_Ops
6330 if Is_Derived_Type
(T
) then
6331 return Primitive_Operations
(T
);
6333 elsif Ekind
(Scope
(T
)) = E_Procedure
6334 or else Ekind
(Scope
(T
)) = E_Function
6336 -- Scan the list of generic formals to find subprograms
6337 -- that may have a first controlling formal of the type.
6344 First
(Generic_Formal_Declarations
6345 (Unit_Declaration_Node
(Scope
(T
))));
6346 while Present
(Decl
) loop
6347 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
6348 Subp
:= Defining_Entity
(Decl
);
6359 -- Scan the list of entities declared in the same scope as
6360 -- the type. In general this will be an open scope, given that
6361 -- the call we are analyzing can only appear within a generic
6362 -- declaration or body (either the one that declares T, or a
6365 Subp
:= First_Entity
(Scope
(T
));
6366 while Present
(Subp
) loop
6367 if Is_Overloadable
(Subp
) then
6376 end Collect_Generic_Type_Ops
;
6378 -----------------------------
6379 -- Valid_First_Argument_Of --
6380 -----------------------------
6382 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
6383 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Op
));
6386 -- Simple case. Object may be a subtype of the tagged type or
6387 -- may be the corresponding record of a synchronized type.
6389 return Obj_Type
= Typ
6390 or else Base_Type
(Obj_Type
) = Typ
6391 or else Corr_Type
= Typ
6393 -- Prefix can be dereferenced
6396 (Is_Access_Type
(Corr_Type
)
6397 and then Designated_Type
(Corr_Type
) = Typ
)
6399 -- Formal is an access parameter, for which the object
6400 -- can provide an access.
6403 (Ekind
(Typ
) = E_Anonymous_Access_Type
6404 and then Designated_Type
(Typ
) = Base_Type
(Corr_Type
));
6405 end Valid_First_Argument_Of
;
6407 -- Start of processing for Try_Primitive_Operation
6410 -- Look for subprograms in the list of primitive operations. The name
6411 -- must be identical, and the kind of call indicates the expected
6412 -- kind of operation (function or procedure). If the type is a
6413 -- (tagged) synchronized type, the primitive ops are attached to the
6414 -- corresponding record (base) type.
6416 if Is_Concurrent_Type
(Obj_Type
) then
6417 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
6418 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
6420 elsif not Is_Generic_Type
(Obj_Type
) then
6421 Corr_Type
:= Obj_Type
;
6422 Elmt
:= First_Elmt
(Primitive_Operations
(Obj_Type
));
6425 Corr_Type
:= Obj_Type
;
6426 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
6429 while Present
(Elmt
) loop
6430 Prim_Op
:= Node
(Elmt
);
6432 if Chars
(Prim_Op
) = Chars
(Subprog
)
6433 and then Present
(First_Formal
(Prim_Op
))
6434 and then Valid_First_Argument_Of
(Prim_Op
)
6436 (Nkind
(Call_Node
) = N_Function_Call
)
6437 = (Ekind
(Prim_Op
) = E_Function
)
6439 -- Ada 2005 (AI-251): If this primitive operation corresponds
6440 -- with an immediate ancestor interface there is no need to add
6441 -- it to the list of interpretations; the corresponding aliased
6442 -- primitive is also in this list of primitive operations and
6443 -- will be used instead.
6445 if (Present
(Interface_Alias
(Prim_Op
))
6446 and then Is_Ancestor
(Find_Dispatching_Type
6447 (Alias
(Prim_Op
)), Corr_Type
))
6450 -- Do not consider hidden primitives unless the type is
6451 -- in an open scope or we are within an instance, where
6452 -- visibility is known to be correct.
6454 (Is_Hidden
(Prim_Op
)
6455 and then not Is_Immediately_Visible
(Obj_Type
)
6456 and then not In_Instance
)
6461 Set_Etype
(Call_Node
, Any_Type
);
6462 Set_Is_Overloaded
(Call_Node
, False);
6464 if No
(Matching_Op
) then
6465 Prim_Op_Ref
:= New_Reference_To
(Prim_Op
, Sloc
(Subprog
));
6466 Candidate
:= Prim_Op
;
6468 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
6470 Set_Name
(Call_Node
, Prim_Op_Ref
);
6476 Report
=> Report_Error
,
6478 Skip_First
=> True);
6480 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
6482 -- More than one interpretation, collect for subsequent
6483 -- disambiguation. If this is a procedure call and there
6484 -- is another match, report ambiguity now.
6490 Report
=> Report_Error
,
6492 Skip_First
=> True);
6494 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
6495 and then Nkind
(Call_Node
) /= N_Function_Call
6497 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
6498 Report_Ambiguity
(Matching_Op
);
6499 Report_Ambiguity
(Prim_Op
);
6509 if Present
(Matching_Op
) then
6510 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
6513 return Present
(Matching_Op
);
6514 end Try_Primitive_Operation
;
6516 -- Start of processing for Try_Object_Operation
6519 Analyze_Expression
(Obj
);
6521 -- Analyze the actuals if node is known to be a subprogram call
6523 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
6524 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
6525 while Present
(Actual
) loop
6526 Analyze_Expression
(Actual
);
6531 -- Build a subprogram call node, using a copy of Obj as its first
6532 -- actual. This is a placeholder, to be replaced by an explicit
6533 -- dereference when needed.
6535 Transform_Object_Operation
6536 (Call_Node
=> New_Call_Node
,
6537 Node_To_Replace
=> Node_To_Replace
);
6539 Set_Etype
(New_Call_Node
, Any_Type
);
6540 Set_Etype
(Subprog
, Any_Type
);
6541 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
6543 if not Is_Overloaded
(Obj
) then
6544 Try_One_Prefix_Interpretation
(Obj_Type
);
6551 Get_First_Interp
(Obj
, I
, It
);
6552 while Present
(It
.Nam
) loop
6553 Try_One_Prefix_Interpretation
(It
.Typ
);
6554 Get_Next_Interp
(I
, It
);
6559 if Etype
(New_Call_Node
) /= Any_Type
then
6560 Complete_Object_Operation
6561 (Call_Node
=> New_Call_Node
,
6562 Node_To_Replace
=> Node_To_Replace
);
6565 elsif Present
(Candidate
) then
6567 -- The argument list is not type correct. Re-analyze with error
6568 -- reporting enabled, and use one of the possible candidates.
6569 -- In All_Errors_Mode, re-analyze all failed interpretations.
6571 if All_Errors_Mode
then
6572 Report_Error
:= True;
6573 if Try_Primitive_Operation
6574 (Call_Node
=> New_Call_Node
,
6575 Node_To_Replace
=> Node_To_Replace
)
6578 Try_Class_Wide_Operation
6579 (Call_Node
=> New_Call_Node
,
6580 Node_To_Replace
=> Node_To_Replace
)
6587 (N
=> New_Call_Node
,
6591 Skip_First
=> True);
6594 -- No need for further errors
6599 -- There was no candidate operation, so report it as an error
6600 -- in the caller: Analyze_Selected_Component.
6604 end Try_Object_Operation
;
6610 procedure wpo
(T
: Entity_Id
) is
6615 if not Is_Tagged_Type
(T
) then
6619 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
6620 while Present
(E
) loop
6622 Write_Int
(Int
(Op
));
6623 Write_Str
(" === ");
6624 Write_Name
(Chars
(Op
));
6626 Write_Name
(Chars
(Scope
(Op
)));