1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "diagnostic.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph
;
44 /* Local functions. */
45 static int compare_values (tree val1
, tree val2
);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
54 /* Basic block where the assertion would be inserted. */
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si
;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code
;
67 /* Value being compared against. */
70 /* Next node in the linked list. */
71 struct assert_locus_d
*next
;
74 typedef struct assert_locus_d
*assert_locus_t
;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for
;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t
*asserts_for
;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited
;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t
**vr_value
;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
98 nonnull_arg_p (tree arg
)
100 tree t
, attrs
, fntype
;
101 unsigned HOST_WIDE_INT arg_num
;
103 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
105 fntype
= TREE_TYPE (current_function_decl
);
106 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs
== NULL_TREE
)
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs
) == NULL_TREE
)
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
119 t
= TREE_CHAIN (t
), arg_num
++)
125 gcc_assert (t
== arg
);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
130 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
141 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
142 tree max
, bitmap equiv
)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
150 gcc_assert (min
&& max
);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
153 gcc_assert (min
!= TYPE_MIN_VALUE (TREE_TYPE (min
))
154 || max
!= TYPE_MAX_VALUE (TREE_TYPE (max
)));
156 cmp
= compare_values (min
, max
);
157 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
160 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
161 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
163 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
164 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr
->equiv
== NULL
)
174 vr
->equiv
= BITMAP_ALLOC (NULL
);
176 if (equiv
!= vr
->equiv
)
178 if (equiv
&& !bitmap_empty_p (equiv
))
179 bitmap_copy (vr
->equiv
, equiv
);
181 bitmap_clear (vr
->equiv
);
186 /* Copy value range FROM into value range TO. */
189 copy_value_range (value_range_t
*to
, value_range_t
*from
)
191 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
194 /* Set value range VR to a non-negative range of type TYPE. */
197 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
)
199 tree zero
= build_int_cst (type
, 0);
200 set_value_range (vr
, VR_RANGE
, zero
, TYPE_MAX_VALUE (type
), vr
->equiv
);
203 /* Set value range VR to a non-NULL range of type TYPE. */
206 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
208 tree zero
= build_int_cst (type
, 0);
209 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
213 /* Set value range VR to a NULL range of type TYPE. */
216 set_value_range_to_null (value_range_t
*vr
, tree type
)
218 tree zero
= build_int_cst (type
, 0);
219 set_value_range (vr
, VR_RANGE
, zero
, zero
, vr
->equiv
);
223 /* Set value range VR to VR_VARYING. */
226 set_value_range_to_varying (value_range_t
*vr
)
228 vr
->type
= VR_VARYING
;
229 vr
->min
= vr
->max
= NULL_TREE
;
231 bitmap_clear (vr
->equiv
);
235 /* Set value range VR to VR_UNDEFINED. */
238 set_value_range_to_undefined (value_range_t
*vr
)
240 vr
->type
= VR_UNDEFINED
;
241 vr
->min
= vr
->max
= NULL_TREE
;
243 bitmap_clear (vr
->equiv
);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t
*
253 get_value_range (tree var
)
257 unsigned ver
= SSA_NAME_VERSION (var
);
259 /* If we have no recorded ranges, then return NULL. */
267 /* Create a default value range. */
268 vr_value
[ver
] = vr
= XNEW (value_range_t
);
269 memset (vr
, 0, sizeof (*vr
));
271 /* Allocate an equivalence set. */
272 vr
->equiv
= BITMAP_ALLOC (NULL
);
274 /* If VAR is a default definition, the variable can take any value
276 sym
= SSA_NAME_VAR (var
);
277 if (var
== default_def (sym
))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym
) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym
))
284 && nonnull_arg_p (sym
))
285 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
287 set_value_range_to_varying (vr
);
293 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
296 vrp_operand_equal_p (tree val1
, tree val2
)
300 && operand_equal_p (val1
, val2
, 0)));
303 /* Return true, if the bitmaps B1 and B2 are equal. */
306 vrp_bitmap_equal_p (bitmap b1
, bitmap b2
)
310 && bitmap_equal_p (b1
, b2
)));
313 /* Update the value range and equivalence set for variable VAR to
314 NEW_VR. Return true if NEW_VR is different from VAR's previous
317 NOTE: This function assumes that NEW_VR is a temporary value range
318 object created for the sole purpose of updating VAR's range. The
319 storage used by the equivalence set from NEW_VR will be freed by
320 this function. Do not call update_value_range when NEW_VR
321 is the range object associated with another SSA name. */
324 update_value_range (tree var
, value_range_t
*new_vr
)
326 value_range_t
*old_vr
;
329 /* Update the value range, if necessary. */
330 old_vr
= get_value_range (var
);
331 is_new
= old_vr
->type
!= new_vr
->type
332 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
333 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
334 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
337 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
340 BITMAP_FREE (new_vr
->equiv
);
341 new_vr
->equiv
= NULL
;
347 /* Add VAR and VAR's equivalence set to EQUIV. */
350 add_equivalence (bitmap equiv
, tree var
)
352 unsigned ver
= SSA_NAME_VERSION (var
);
353 value_range_t
*vr
= vr_value
[ver
];
355 bitmap_set_bit (equiv
, ver
);
357 bitmap_ior_into (equiv
, vr
->equiv
);
361 /* Return true if VR is ~[0, 0]. */
364 range_is_nonnull (value_range_t
*vr
)
366 return vr
->type
== VR_ANTI_RANGE
367 && integer_zerop (vr
->min
)
368 && integer_zerop (vr
->max
);
372 /* Return true if VR is [0, 0]. */
375 range_is_null (value_range_t
*vr
)
377 return vr
->type
== VR_RANGE
378 && integer_zerop (vr
->min
)
379 && integer_zerop (vr
->max
);
383 /* Return true if value range VR involves at least one symbol. */
386 symbolic_range_p (value_range_t
*vr
)
388 return (!is_gimple_min_invariant (vr
->min
)
389 || !is_gimple_min_invariant (vr
->max
));
392 /* Like tree_expr_nonnegative_p, but this function uses value ranges
396 vrp_expr_computes_nonnegative (tree expr
)
398 return tree_expr_nonnegative_p (expr
);
401 /* Like tree_expr_nonzero_p, but this function uses value ranges
405 vrp_expr_computes_nonzero (tree expr
)
407 if (tree_expr_nonzero_p (expr
))
410 /* If we have an expression of the form &X->a, then the expression
411 is nonnull if X is nonnull. */
412 if (TREE_CODE (expr
) == ADDR_EXPR
)
414 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
416 if (base
!= NULL_TREE
417 && TREE_CODE (base
) == INDIRECT_REF
418 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
420 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
421 if (range_is_nonnull (vr
))
429 /* Returns true if EXPR is a valid value (as expected by compare_values) --
430 a gimple invariant, or SSA_NAME +- CST. */
433 valid_value_p (tree expr
)
435 if (TREE_CODE (expr
) == SSA_NAME
)
438 if (TREE_CODE (expr
) == PLUS_EXPR
439 || TREE_CODE (expr
) == MINUS_EXPR
)
440 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
441 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
443 return is_gimple_min_invariant (expr
);
446 /* Compare two values VAL1 and VAL2. Return
448 -2 if VAL1 and VAL2 cannot be compared at compile-time,
451 +1 if VAL1 > VAL2, and
454 This is similar to tree_int_cst_compare but supports pointer values
455 and values that cannot be compared at compile time. */
458 compare_values (tree val1
, tree val2
)
463 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
465 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
466 == POINTER_TYPE_P (TREE_TYPE (val2
)));
468 if ((TREE_CODE (val1
) == SSA_NAME
469 || TREE_CODE (val1
) == PLUS_EXPR
470 || TREE_CODE (val1
) == MINUS_EXPR
)
471 && (TREE_CODE (val2
) == SSA_NAME
472 || TREE_CODE (val2
) == PLUS_EXPR
473 || TREE_CODE (val2
) == MINUS_EXPR
))
476 enum tree_code code1
, code2
;
478 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
479 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
480 same name, return -2. */
481 if (TREE_CODE (val1
) == SSA_NAME
)
489 code1
= TREE_CODE (val1
);
490 n1
= TREE_OPERAND (val1
, 0);
491 c1
= TREE_OPERAND (val1
, 1);
492 if (tree_int_cst_sgn (c1
) == -1)
494 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
497 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
501 if (TREE_CODE (val2
) == SSA_NAME
)
509 code2
= TREE_CODE (val2
);
510 n2
= TREE_OPERAND (val2
, 0);
511 c2
= TREE_OPERAND (val2
, 1);
512 if (tree_int_cst_sgn (c2
) == -1)
514 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
517 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
521 /* Both values must use the same name. */
525 if (code1
== SSA_NAME
526 && code2
== SSA_NAME
)
530 /* If overflow is defined we cannot simplify more. */
531 if (TYPE_UNSIGNED (TREE_TYPE (val1
))
535 if (code1
== SSA_NAME
)
537 if (code2
== PLUS_EXPR
)
538 /* NAME < NAME + CST */
540 else if (code2
== MINUS_EXPR
)
541 /* NAME > NAME - CST */
544 else if (code1
== PLUS_EXPR
)
546 if (code2
== SSA_NAME
)
547 /* NAME + CST > NAME */
549 else if (code2
== PLUS_EXPR
)
550 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
551 return compare_values (c1
, c2
);
552 else if (code2
== MINUS_EXPR
)
553 /* NAME + CST1 > NAME - CST2 */
556 else if (code1
== MINUS_EXPR
)
558 if (code2
== SSA_NAME
)
559 /* NAME - CST < NAME */
561 else if (code2
== PLUS_EXPR
)
562 /* NAME - CST1 < NAME + CST2 */
564 else if (code2
== MINUS_EXPR
)
565 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
566 C1 and C2 are swapped in the call to compare_values. */
567 return compare_values (c2
, c1
);
573 /* We cannot compare non-constants. */
574 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
577 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
579 /* We cannot compare overflowed values. */
580 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
583 return tree_int_cst_compare (val1
, val2
);
589 /* First see if VAL1 and VAL2 are not the same. */
590 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
593 /* If VAL1 is a lower address than VAL2, return -1. */
594 t
= fold_binary (LT_EXPR
, boolean_type_node
, val1
, val2
);
595 if (t
== boolean_true_node
)
598 /* If VAL1 is a higher address than VAL2, return +1. */
599 t
= fold_binary (GT_EXPR
, boolean_type_node
, val1
, val2
);
600 if (t
== boolean_true_node
)
603 /* If VAL1 is different than VAL2, return +2. */
604 t
= fold_binary (NE_EXPR
, boolean_type_node
, val1
, val2
);
605 if (t
== boolean_true_node
)
613 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
614 0 if VAL is not inside VR,
615 -2 if we cannot tell either way.
617 FIXME, the current semantics of this functions are a bit quirky
618 when taken in the context of VRP. In here we do not care
619 about VR's type. If VR is the anti-range ~[3, 5] the call
620 value_inside_range (4, VR) will return 1.
622 This is counter-intuitive in a strict sense, but the callers
623 currently expect this. They are calling the function
624 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
625 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
628 This also applies to value_ranges_intersect_p and
629 range_includes_zero_p. The semantics of VR_RANGE and
630 VR_ANTI_RANGE should be encoded here, but that also means
631 adapting the users of these functions to the new semantics. */
634 value_inside_range (tree val
, value_range_t
*vr
)
638 cmp1
= fold_binary_to_constant (GE_EXPR
, boolean_type_node
, val
, vr
->min
);
642 cmp2
= fold_binary_to_constant (LE_EXPR
, boolean_type_node
, val
, vr
->max
);
646 return cmp1
== boolean_true_node
&& cmp2
== boolean_true_node
;
650 /* Return true if value ranges VR0 and VR1 have a non-empty
654 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
656 return (value_inside_range (vr1
->min
, vr0
) == 1
657 || value_inside_range (vr1
->max
, vr0
) == 1
658 || value_inside_range (vr0
->min
, vr1
) == 1
659 || value_inside_range (vr0
->max
, vr1
) == 1);
663 /* Return true if VR includes the value zero, false otherwise. FIXME,
664 currently this will return false for an anti-range like ~[-4, 3].
665 This will be wrong when the semantics of value_inside_range are
666 modified (currently the users of this function expect these
670 range_includes_zero_p (value_range_t
*vr
)
674 gcc_assert (vr
->type
!= VR_UNDEFINED
675 && vr
->type
!= VR_VARYING
676 && !symbolic_range_p (vr
));
678 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
679 return (value_inside_range (zero
, vr
) == 1);
682 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
683 false otherwise or if no value range information is available. */
686 ssa_name_nonnegative_p (tree t
)
688 value_range_t
*vr
= get_value_range (t
);
693 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
694 which would return a useful value should be encoded as a VR_RANGE. */
695 if (vr
->type
== VR_RANGE
)
697 int result
= compare_values (vr
->min
, integer_zero_node
);
699 return (result
== 0 || result
== 1);
704 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
705 false otherwise or if no value range information is available. */
708 ssa_name_nonzero_p (tree t
)
710 value_range_t
*vr
= get_value_range (t
);
715 /* A VR_RANGE which does not include zero is a nonzero value. */
716 if (vr
->type
== VR_RANGE
&& !symbolic_range_p (vr
))
717 return ! range_includes_zero_p (vr
);
719 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
720 if (vr
->type
== VR_ANTI_RANGE
&& !symbolic_range_p (vr
))
721 return range_includes_zero_p (vr
);
727 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
728 initially consider X_i and Y_j equivalent, so the equivalence set
729 of Y_j is added to the equivalence set of X_i. However, it is
730 possible to have a chain of ASSERT_EXPRs whose predicates are
731 actually incompatible. This is usually the result of nesting of
732 contradictory if-then-else statements. For instance, in PR 24670:
734 count_4 has range [-INF, 63]
738 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
741 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
747 Notice that 'if (count_19 > 63)' is trivially false and will be
748 folded out at the end. However, during propagation, the flowgraph
749 is not cleaned up and so, VRP will evaluate predicates more
750 predicates than necessary, so it must support these
751 inconsistencies. The problem here is that because of the chaining
752 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
753 Since count_4 has an incompatible range, we ICE when evaluating the
754 ranges in the equivalency set. So, we need to remove count_4 from
758 fix_equivalence_set (value_range_t
*vr_p
)
762 bitmap e
= vr_p
->equiv
;
765 /* Only detect inconsistencies on numeric ranges. */
766 if (vr_p
->type
== VR_VARYING
767 || vr_p
->type
== VR_UNDEFINED
768 || symbolic_range_p (vr_p
))
771 to_remove
= BITMAP_ALLOC (NULL
);
772 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
774 value_range_t
*equiv_vr
= vr_value
[i
];
776 if (equiv_vr
->type
== VR_VARYING
777 || equiv_vr
->type
== VR_UNDEFINED
778 || symbolic_range_p (equiv_vr
))
781 if (equiv_vr
->type
== VR_RANGE
782 && vr_p
->type
== VR_RANGE
783 && !value_ranges_intersect_p (vr_p
, equiv_vr
))
784 bitmap_set_bit (to_remove
, i
);
785 else if ((equiv_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
786 || (equiv_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
788 /* A range and an anti-range have an empty intersection if
789 their end points are the same. FIXME,
790 value_ranges_intersect_p should handle this
792 if (compare_values (equiv_vr
->min
, vr_p
->min
) == 0
793 && compare_values (equiv_vr
->max
, vr_p
->max
) == 0)
794 bitmap_set_bit (to_remove
, i
);
798 bitmap_and_compl_into (vr_p
->equiv
, to_remove
);
799 BITMAP_FREE (to_remove
);
803 /* Extract value range information from an ASSERT_EXPR EXPR and store
807 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
809 tree var
, cond
, limit
, min
, max
, type
;
810 value_range_t
*var_vr
, *limit_vr
;
811 enum tree_code cond_code
;
813 var
= ASSERT_EXPR_VAR (expr
);
814 cond
= ASSERT_EXPR_COND (expr
);
816 gcc_assert (COMPARISON_CLASS_P (cond
));
818 /* Find VAR in the ASSERT_EXPR conditional. */
819 if (var
== TREE_OPERAND (cond
, 0))
821 /* If the predicate is of the form VAR COMP LIMIT, then we just
822 take LIMIT from the RHS and use the same comparison code. */
823 limit
= TREE_OPERAND (cond
, 1);
824 cond_code
= TREE_CODE (cond
);
828 /* If the predicate is of the form LIMIT COMP VAR, then we need
829 to flip around the comparison code to create the proper range
831 limit
= TREE_OPERAND (cond
, 0);
832 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
835 type
= TREE_TYPE (limit
);
836 gcc_assert (limit
!= var
);
838 /* For pointer arithmetic, we only keep track of pointer equality
840 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
842 set_value_range_to_varying (vr_p
);
846 /* If LIMIT is another SSA name and LIMIT has a range of its own,
847 try to use LIMIT's range to avoid creating symbolic ranges
849 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
851 /* LIMIT's range is only interesting if it has any useful information. */
853 && (limit_vr
->type
== VR_UNDEFINED
854 || limit_vr
->type
== VR_VARYING
855 || symbolic_range_p (limit_vr
)))
858 /* Initially, the new range has the same set of equivalences of
859 VAR's range. This will be revised before returning the final
860 value. Since assertions may be chained via mutually exclusive
861 predicates, we will need to trim the set of equivalences before
863 gcc_assert (vr_p
->equiv
== NULL
);
864 vr_p
->equiv
= BITMAP_ALLOC (NULL
);
865 add_equivalence (vr_p
->equiv
, var
);
867 /* Extract a new range based on the asserted comparison for VAR and
868 LIMIT's value range. Notice that if LIMIT has an anti-range, we
869 will only use it for equality comparisons (EQ_EXPR). For any
870 other kind of assertion, we cannot derive a range from LIMIT's
871 anti-range that can be used to describe the new range. For
872 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
873 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
874 no single range for x_2 that could describe LE_EXPR, so we might
875 as well build the range [b_4, +INF] for it. */
876 if (cond_code
== EQ_EXPR
)
878 enum value_range_type range_type
;
882 range_type
= limit_vr
->type
;
888 range_type
= VR_RANGE
;
893 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
895 /* When asserting the equality VAR == LIMIT and LIMIT is another
896 SSA name, the new range will also inherit the equivalence set
898 if (TREE_CODE (limit
) == SSA_NAME
)
899 add_equivalence (vr_p
->equiv
, limit
);
901 else if (cond_code
== NE_EXPR
)
903 /* As described above, when LIMIT's range is an anti-range and
904 this assertion is an inequality (NE_EXPR), then we cannot
905 derive anything from the anti-range. For instance, if
906 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
907 not imply that VAR's range is [0, 0]. So, in the case of
908 anti-ranges, we just assert the inequality using LIMIT and
911 If LIMIT_VR is a range, we can only use it to build a new
912 anti-range if LIMIT_VR is a single-valued range. For
913 instance, if LIMIT_VR is [0, 1], the predicate
914 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
915 Rather, it means that for value 0 VAR should be ~[0, 0]
916 and for value 1, VAR should be ~[1, 1]. We cannot
917 represent these ranges.
919 The only situation in which we can build a valid
920 anti-range is when LIMIT_VR is a single-valued range
921 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
922 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
924 && limit_vr
->type
== VR_RANGE
925 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
932 /* In any other case, we cannot use LIMIT's range to build a
937 /* If MIN and MAX cover the whole range for their type, then
938 just use the original LIMIT. */
939 if (INTEGRAL_TYPE_P (type
)
940 && min
== TYPE_MIN_VALUE (type
)
941 && max
== TYPE_MAX_VALUE (type
))
944 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
946 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
948 min
= TYPE_MIN_VALUE (type
);
950 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
954 /* If LIMIT_VR is of the form [N1, N2], we need to build the
955 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
960 /* If the maximum value forces us to be out of bounds, simply punt.
961 It would be pointless to try and do anything more since this
962 all should be optimized away above us. */
963 if (cond_code
== LT_EXPR
&& compare_values (max
, min
) == 0)
964 set_value_range_to_varying (vr_p
);
967 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
968 if (cond_code
== LT_EXPR
)
970 tree one
= build_int_cst (type
, 1);
971 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
974 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
977 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
979 max
= TYPE_MAX_VALUE (type
);
981 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
985 /* If LIMIT_VR is of the form [N1, N2], we need to build the
986 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
991 /* If the minimum value forces us to be out of bounds, simply punt.
992 It would be pointless to try and do anything more since this
993 all should be optimized away above us. */
994 if (cond_code
== GT_EXPR
&& compare_values (min
, max
) == 0)
995 set_value_range_to_varying (vr_p
);
998 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
999 if (cond_code
== GT_EXPR
)
1001 tree one
= build_int_cst (type
, 1);
1002 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
1005 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1011 /* If VAR already had a known range, it may happen that the new
1012 range we have computed and VAR's range are not compatible. For
1016 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1018 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1020 While the above comes from a faulty program, it will cause an ICE
1021 later because p_8 and p_6 will have incompatible ranges and at
1022 the same time will be considered equivalent. A similar situation
1026 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1028 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1030 Again i_6 and i_7 will have incompatible ranges. It would be
1031 pointless to try and do anything with i_7's range because
1032 anything dominated by 'if (i_5 < 5)' will be optimized away.
1033 Note, due to the wa in which simulation proceeds, the statement
1034 i_7 = ASSERT_EXPR <...> we would never be visited because the
1035 conditional 'if (i_5 < 5)' always evaluates to false. However,
1036 this extra check does not hurt and may protect against future
1037 changes to VRP that may get into a situation similar to the
1038 NULL pointer dereference example.
1040 Note that these compatibility tests are only needed when dealing
1041 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1042 are both anti-ranges, they will always be compatible, because two
1043 anti-ranges will always have a non-empty intersection. */
1045 var_vr
= get_value_range (var
);
1047 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1048 ranges or anti-ranges. */
1049 if (vr_p
->type
== VR_VARYING
1050 || vr_p
->type
== VR_UNDEFINED
1051 || var_vr
->type
== VR_VARYING
1052 || var_vr
->type
== VR_UNDEFINED
1053 || symbolic_range_p (vr_p
)
1054 || symbolic_range_p (var_vr
))
1057 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1059 /* If the two ranges have a non-empty intersection, we can
1060 refine the resulting range. Since the assert expression
1061 creates an equivalency and at the same time it asserts a
1062 predicate, we can take the intersection of the two ranges to
1063 get better precision. */
1064 if (value_ranges_intersect_p (var_vr
, vr_p
))
1066 /* Use the larger of the two minimums. */
1067 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1072 /* Use the smaller of the two maximums. */
1073 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1078 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1082 /* The two ranges do not intersect, set the new range to
1083 VARYING, because we will not be able to do anything
1084 meaningful with it. */
1085 set_value_range_to_varying (vr_p
);
1088 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1089 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1091 /* A range and an anti-range will cancel each other only if
1092 their ends are the same. For instance, in the example above,
1093 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1094 so VR_P should be set to VR_VARYING. */
1095 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1096 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1097 set_value_range_to_varying (vr_p
);
1100 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1102 /* We want to compute the logical AND of the two ranges;
1103 there are three cases to consider.
1106 1. The VR_ANTI_RANGE range is completely within the
1107 VR_RANGE and the endpoints of the ranges are
1108 different. In that case the resulting range
1109 should be whichever range is more precise.
1110 Typically that will be the VR_RANGE.
1112 2. The VR_ANTI_RANGE is completely disjoint from
1113 the VR_RANGE. In this case the resulting range
1114 should be the VR_RANGE.
1116 3. There is some overlap between the VR_ANTI_RANGE
1119 3a. If the high limit of the VR_ANTI_RANGE resides
1120 within the VR_RANGE, then the result is a new
1121 VR_RANGE starting at the high limit of the
1122 the VR_ANTI_RANGE + 1 and extending to the
1123 high limit of the original VR_RANGE.
1125 3b. If the low limit of the VR_ANTI_RANGE resides
1126 within the VR_RANGE, then the result is a new
1127 VR_RANGE starting at the low limit of the original
1128 VR_RANGE and extending to the low limit of the
1129 VR_ANTI_RANGE - 1. */
1130 if (vr_p
->type
== VR_ANTI_RANGE
)
1132 anti_min
= vr_p
->min
;
1133 anti_max
= vr_p
->max
;
1134 real_min
= var_vr
->min
;
1135 real_max
= var_vr
->max
;
1139 anti_min
= var_vr
->min
;
1140 anti_max
= var_vr
->max
;
1141 real_min
= vr_p
->min
;
1142 real_max
= vr_p
->max
;
1146 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1147 not including any endpoints. */
1148 if (compare_values (anti_max
, real_max
) == -1
1149 && compare_values (anti_min
, real_min
) == 1)
1151 set_value_range (vr_p
, VR_RANGE
, real_min
,
1152 real_max
, vr_p
->equiv
);
1154 /* Case 2, VR_ANTI_RANGE completely disjoint from
1156 else if (compare_values (anti_min
, real_max
) == 1
1157 || compare_values (anti_max
, real_min
) == -1)
1159 set_value_range (vr_p
, VR_RANGE
, real_min
,
1160 real_max
, vr_p
->equiv
);
1162 /* Case 3a, the anti-range extends into the low
1163 part of the real range. Thus creating a new
1164 low for the real range. */
1165 else if ((compare_values (anti_max
, real_min
) == 1
1166 || compare_values (anti_max
, real_min
) == 0)
1167 && compare_values (anti_max
, real_max
) == -1)
1169 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1171 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1173 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1175 /* Case 3b, the anti-range extends into the high
1176 part of the real range. Thus creating a new
1177 higher for the real range. */
1178 else if (compare_values (anti_min
, real_min
) == 1
1179 && (compare_values (anti_min
, real_max
) == -1
1180 || compare_values (anti_min
, real_max
) == 0))
1182 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1184 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1186 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1191 /* Remove names from the equivalence set that have ranges
1192 incompatible with VR_P. */
1194 fix_equivalence_set (vr_p
);
1198 /* Extract range information from SSA name VAR and store it in VR. If
1199 VAR has an interesting range, use it. Otherwise, create the
1200 range [VAR, VAR] and return it. This is useful in situations where
1201 we may have conditionals testing values of VARYING names. For
1208 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1212 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1214 value_range_t
*var_vr
= get_value_range (var
);
1216 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1217 copy_value_range (vr
, var_vr
);
1219 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1221 add_equivalence (vr
->equiv
, var
);
1225 /* Wrapper around int_const_binop. If the operation overflows and we
1226 are not using wrapping arithmetic, then adjust the result to be
1227 -INF or +INF depending on CODE, VAL1 and VAL2. */
1230 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1235 return int_const_binop (code
, val1
, val2
, 0);
1237 /* If we are not using wrapping arithmetic, operate symbolically
1238 on -INF and +INF. */
1239 res
= int_const_binop (code
, val1
, val2
, 0);
1241 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1243 int checkz
= compare_values (res
, val1
);
1244 bool overflow
= false;
1246 /* Ensure that res = val1 [+*] val2 >= val1
1247 or that res = val1 - val2 <= val1. */
1248 if ((code
== PLUS_EXPR
1249 && !(checkz
== 1 || checkz
== 0))
1250 || (code
== MINUS_EXPR
1251 && !(checkz
== 0 || checkz
== -1)))
1255 /* Checking for multiplication overflow is done by dividing the
1256 output of the multiplication by the first input of the
1257 multiplication. If the result of that division operation is
1258 not equal to the second input of the multiplication, then the
1259 multiplication overflowed. */
1260 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1262 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1263 TYPE_MAX_VALUE (TREE_TYPE (val1
)),
1265 int check
= compare_values (tmp
, val2
);
1273 res
= copy_node (res
);
1274 TREE_OVERFLOW (res
) = 1;
1278 else if (TREE_OVERFLOW (res
)
1279 && !TREE_OVERFLOW (val1
)
1280 && !TREE_OVERFLOW (val2
))
1282 /* If the operation overflowed but neither VAL1 nor VAL2 are
1283 overflown, return -INF or +INF depending on the operation
1284 and the combination of signs of the operands. */
1285 int sgn1
= tree_int_cst_sgn (val1
);
1286 int sgn2
= tree_int_cst_sgn (val2
);
1288 /* Notice that we only need to handle the restricted set of
1289 operations handled by extract_range_from_binary_expr.
1290 Among them, only multiplication, addition and subtraction
1291 can yield overflow without overflown operands because we
1292 are working with integral types only... except in the
1293 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1294 for division too. */
1296 /* For multiplication, the sign of the overflow is given
1297 by the comparison of the signs of the operands. */
1298 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1299 /* For addition, the operands must be of the same sign
1300 to yield an overflow. Its sign is therefore that
1301 of one of the operands, for example the first. */
1302 || (code
== PLUS_EXPR
&& sgn1
> 0)
1303 /* For subtraction, the operands must be of different
1304 signs to yield an overflow. Its sign is therefore
1305 that of the first operand or the opposite of that
1306 of the second operand. A first operand of 0 counts
1307 as positive here, for the corner case 0 - (-INF),
1308 which overflows, but must yield +INF. */
1309 || (code
== MINUS_EXPR
&& sgn1
>= 0)
1310 /* For division, the only case is -INF / -1 = +INF. */
1311 || code
== TRUNC_DIV_EXPR
1312 || code
== FLOOR_DIV_EXPR
1313 || code
== CEIL_DIV_EXPR
1314 || code
== EXACT_DIV_EXPR
1315 || code
== ROUND_DIV_EXPR
)
1316 return TYPE_MAX_VALUE (TREE_TYPE (res
));
1318 return TYPE_MIN_VALUE (TREE_TYPE (res
));
1325 /* Extract range information from a binary expression EXPR based on
1326 the ranges of each of its operands and the expression code. */
1329 extract_range_from_binary_expr (value_range_t
*vr
, tree expr
)
1331 enum tree_code code
= TREE_CODE (expr
);
1332 enum value_range_type type
;
1333 tree op0
, op1
, min
, max
;
1335 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1336 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1338 /* Not all binary expressions can be applied to ranges in a
1339 meaningful way. Handle only arithmetic operations. */
1340 if (code
!= PLUS_EXPR
1341 && code
!= MINUS_EXPR
1342 && code
!= MULT_EXPR
1343 && code
!= TRUNC_DIV_EXPR
1344 && code
!= FLOOR_DIV_EXPR
1345 && code
!= CEIL_DIV_EXPR
1346 && code
!= EXACT_DIV_EXPR
1347 && code
!= ROUND_DIV_EXPR
1350 && code
!= BIT_AND_EXPR
1351 && code
!= TRUTH_ANDIF_EXPR
1352 && code
!= TRUTH_ORIF_EXPR
1353 && code
!= TRUTH_AND_EXPR
1354 && code
!= TRUTH_OR_EXPR
)
1356 set_value_range_to_varying (vr
);
1360 /* Get value ranges for each operand. For constant operands, create
1361 a new value range with the operand to simplify processing. */
1362 op0
= TREE_OPERAND (expr
, 0);
1363 if (TREE_CODE (op0
) == SSA_NAME
)
1364 vr0
= *(get_value_range (op0
));
1365 else if (is_gimple_min_invariant (op0
))
1366 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1368 set_value_range_to_varying (&vr0
);
1370 op1
= TREE_OPERAND (expr
, 1);
1371 if (TREE_CODE (op1
) == SSA_NAME
)
1372 vr1
= *(get_value_range (op1
));
1373 else if (is_gimple_min_invariant (op1
))
1374 set_value_range (&vr1
, VR_RANGE
, op1
, op1
, NULL
);
1376 set_value_range_to_varying (&vr1
);
1378 /* If either range is UNDEFINED, so is the result. */
1379 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
1381 set_value_range_to_undefined (vr
);
1385 /* The type of the resulting value range defaults to VR0.TYPE. */
1388 /* Refuse to operate on VARYING ranges, ranges of different kinds
1389 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1390 because we may be able to derive a useful range even if one of
1391 the operands is VR_VARYING or symbolic range. TODO, we may be
1392 able to derive anti-ranges in some cases. */
1393 if (code
!= BIT_AND_EXPR
1394 && code
!= TRUTH_AND_EXPR
1395 && code
!= TRUTH_OR_EXPR
1396 && (vr0
.type
== VR_VARYING
1397 || vr1
.type
== VR_VARYING
1398 || vr0
.type
!= vr1
.type
1399 || symbolic_range_p (&vr0
)
1400 || symbolic_range_p (&vr1
)))
1402 set_value_range_to_varying (vr
);
1406 /* Now evaluate the expression to determine the new range. */
1407 if (POINTER_TYPE_P (TREE_TYPE (expr
))
1408 || POINTER_TYPE_P (TREE_TYPE (op0
))
1409 || POINTER_TYPE_P (TREE_TYPE (op1
)))
1411 /* For pointer types, we are really only interested in asserting
1412 whether the expression evaluates to non-NULL. FIXME, we used
1413 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1414 ivopts is generating expressions with pointer multiplication
1416 if (code
== PLUS_EXPR
)
1418 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
1419 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1420 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
1421 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1423 set_value_range_to_varying (vr
);
1427 /* Subtracting from a pointer, may yield 0, so just drop the
1428 resulting range to varying. */
1429 set_value_range_to_varying (vr
);
1435 /* For integer ranges, apply the operation to each end of the
1436 range and see what we end up with. */
1437 if (code
== TRUTH_ANDIF_EXPR
1438 || code
== TRUTH_ORIF_EXPR
1439 || code
== TRUTH_AND_EXPR
1440 || code
== TRUTH_OR_EXPR
)
1442 /* If one of the operands is zero, we know that the whole
1443 expression evaluates zero. */
1444 if (code
== TRUTH_AND_EXPR
1445 && ((vr0
.type
== VR_RANGE
1446 && integer_zerop (vr0
.min
)
1447 && integer_zerop (vr0
.max
))
1448 || (vr1
.type
== VR_RANGE
1449 && integer_zerop (vr1
.min
)
1450 && integer_zerop (vr1
.max
))))
1453 min
= max
= build_int_cst (TREE_TYPE (expr
), 0);
1455 /* If one of the operands is one, we know that the whole
1456 expression evaluates one. */
1457 else if (code
== TRUTH_OR_EXPR
1458 && ((vr0
.type
== VR_RANGE
1459 && integer_onep (vr0
.min
)
1460 && integer_onep (vr0
.max
))
1461 || (vr1
.type
== VR_RANGE
1462 && integer_onep (vr1
.min
)
1463 && integer_onep (vr1
.max
))))
1466 min
= max
= build_int_cst (TREE_TYPE (expr
), 1);
1468 else if (vr0
.type
!= VR_VARYING
1469 && vr1
.type
!= VR_VARYING
1470 && vr0
.type
== vr1
.type
1471 && !symbolic_range_p (&vr0
)
1472 && !symbolic_range_p (&vr1
))
1474 /* Boolean expressions cannot be folded with int_const_binop. */
1475 min
= fold_binary (code
, TREE_TYPE (expr
), vr0
.min
, vr1
.min
);
1476 max
= fold_binary (code
, TREE_TYPE (expr
), vr0
.max
, vr1
.max
);
1480 set_value_range_to_varying (vr
);
1484 else if (code
== PLUS_EXPR
1486 || code
== MAX_EXPR
)
1488 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1489 VR_VARYING. It would take more effort to compute a precise
1490 range for such a case. For example, if we have op0 == 1 and
1491 op1 == -1 with their ranges both being ~[0,0], we would have
1492 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1493 Note that we are guaranteed to have vr0.type == vr1.type at
1495 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
1497 set_value_range_to_varying (vr
);
1501 /* For operations that make the resulting range directly
1502 proportional to the original ranges, apply the operation to
1503 the same end of each range. */
1504 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1505 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
1507 else if (code
== MULT_EXPR
1508 || code
== TRUNC_DIV_EXPR
1509 || code
== FLOOR_DIV_EXPR
1510 || code
== CEIL_DIV_EXPR
1511 || code
== EXACT_DIV_EXPR
1512 || code
== ROUND_DIV_EXPR
)
1517 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1518 drop to VR_VARYING. It would take more effort to compute a
1519 precise range for such a case. For example, if we have
1520 op0 == 65536 and op1 == 65536 with their ranges both being
1521 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1522 we cannot claim that the product is in ~[0,0]. Note that we
1523 are guaranteed to have vr0.type == vr1.type at this
1525 if (code
== MULT_EXPR
1526 && vr0
.type
== VR_ANTI_RANGE
1527 && (flag_wrapv
|| TYPE_UNSIGNED (TREE_TYPE (op0
))))
1529 set_value_range_to_varying (vr
);
1533 /* Multiplications and divisions are a bit tricky to handle,
1534 depending on the mix of signs we have in the two ranges, we
1535 need to operate on different values to get the minimum and
1536 maximum values for the new range. One approach is to figure
1537 out all the variations of range combinations and do the
1540 However, this involves several calls to compare_values and it
1541 is pretty convoluted. It's simpler to do the 4 operations
1542 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1543 MAX1) and then figure the smallest and largest values to form
1546 /* Divisions by zero result in a VARYING value. */
1547 if (code
!= MULT_EXPR
1548 && (vr0
.type
== VR_ANTI_RANGE
|| range_includes_zero_p (&vr1
)))
1550 set_value_range_to_varying (vr
);
1554 /* Compute the 4 cross operations. */
1555 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1557 val
[1] = (vr1
.max
!= vr1
.min
)
1558 ? vrp_int_const_binop (code
, vr0
.min
, vr1
.max
)
1561 val
[2] = (vr0
.max
!= vr0
.min
)
1562 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.min
)
1565 val
[3] = (vr0
.min
!= vr0
.max
&& vr1
.min
!= vr1
.max
)
1566 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.max
)
1569 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1573 for (i
= 1; i
< 4; i
++)
1575 if (!is_gimple_min_invariant (min
) || TREE_OVERFLOW (min
)
1576 || !is_gimple_min_invariant (max
) || TREE_OVERFLOW (max
))
1581 if (!is_gimple_min_invariant (val
[i
]) || TREE_OVERFLOW (val
[i
]))
1583 /* If we found an overflowed value, set MIN and MAX
1584 to it so that we set the resulting range to
1590 if (compare_values (val
[i
], min
) == -1)
1593 if (compare_values (val
[i
], max
) == 1)
1598 else if (code
== MINUS_EXPR
)
1600 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1601 VR_VARYING. It would take more effort to compute a precise
1602 range for such a case. For example, if we have op0 == 1 and
1603 op1 == 1 with their ranges both being ~[0,0], we would have
1604 op0 - op1 == 0, so we cannot claim that the difference is in
1605 ~[0,0]. Note that we are guaranteed to have
1606 vr0.type == vr1.type at this point. */
1607 if (vr0
.type
== VR_ANTI_RANGE
)
1609 set_value_range_to_varying (vr
);
1613 /* For MINUS_EXPR, apply the operation to the opposite ends of
1615 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
1616 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
1618 else if (code
== BIT_AND_EXPR
)
1620 if (vr0
.type
== VR_RANGE
1621 && vr0
.min
== vr0
.max
1622 && tree_expr_nonnegative_p (vr0
.max
)
1623 && TREE_CODE (vr0
.max
) == INTEGER_CST
)
1625 min
= build_int_cst (TREE_TYPE (expr
), 0);
1628 else if (vr1
.type
== VR_RANGE
1629 && vr1
.min
== vr1
.max
1630 && tree_expr_nonnegative_p (vr1
.max
)
1631 && TREE_CODE (vr1
.max
) == INTEGER_CST
)
1634 min
= build_int_cst (TREE_TYPE (expr
), 0);
1639 set_value_range_to_varying (vr
);
1646 /* If either MIN or MAX overflowed, then set the resulting range to
1648 if (!is_gimple_min_invariant (min
) || TREE_OVERFLOW (min
)
1649 || !is_gimple_min_invariant (max
) || TREE_OVERFLOW (max
))
1651 set_value_range_to_varying (vr
);
1655 cmp
= compare_values (min
, max
);
1656 if (cmp
== -2 || cmp
== 1)
1658 /* If the new range has its limits swapped around (MIN > MAX),
1659 then the operation caused one of them to wrap around, mark
1660 the new range VARYING. */
1661 set_value_range_to_varying (vr
);
1664 set_value_range (vr
, type
, min
, max
, NULL
);
1668 /* Extract range information from a unary expression EXPR based on
1669 the range of its operand and the expression code. */
1672 extract_range_from_unary_expr (value_range_t
*vr
, tree expr
)
1674 enum tree_code code
= TREE_CODE (expr
);
1677 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1679 /* Refuse to operate on certain unary expressions for which we
1680 cannot easily determine a resulting range. */
1681 if (code
== FIX_TRUNC_EXPR
1682 || code
== FIX_CEIL_EXPR
1683 || code
== FIX_FLOOR_EXPR
1684 || code
== FIX_ROUND_EXPR
1685 || code
== FLOAT_EXPR
1686 || code
== BIT_NOT_EXPR
1687 || code
== NON_LVALUE_EXPR
1688 || code
== CONJ_EXPR
)
1690 set_value_range_to_varying (vr
);
1694 /* Get value ranges for the operand. For constant operands, create
1695 a new value range with the operand to simplify processing. */
1696 op0
= TREE_OPERAND (expr
, 0);
1697 if (TREE_CODE (op0
) == SSA_NAME
)
1698 vr0
= *(get_value_range (op0
));
1699 else if (is_gimple_min_invariant (op0
))
1700 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1702 set_value_range_to_varying (&vr0
);
1704 /* If VR0 is UNDEFINED, so is the result. */
1705 if (vr0
.type
== VR_UNDEFINED
)
1707 set_value_range_to_undefined (vr
);
1711 /* Refuse to operate on symbolic ranges, or if neither operand is
1712 a pointer or integral type. */
1713 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
1714 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
1715 || (vr0
.type
!= VR_VARYING
1716 && symbolic_range_p (&vr0
)))
1718 set_value_range_to_varying (vr
);
1722 /* If the expression involves pointers, we are only interested in
1723 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1724 if (POINTER_TYPE_P (TREE_TYPE (expr
)) || POINTER_TYPE_P (TREE_TYPE (op0
)))
1726 if (range_is_nonnull (&vr0
) || tree_expr_nonzero_p (expr
))
1727 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1728 else if (range_is_null (&vr0
))
1729 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1731 set_value_range_to_varying (vr
);
1736 /* Handle unary expressions on integer ranges. */
1737 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
)
1739 tree inner_type
= TREE_TYPE (op0
);
1740 tree outer_type
= TREE_TYPE (expr
);
1742 /* If VR0 represents a simple range, then try to convert
1743 the min and max values for the range to the same type
1744 as OUTER_TYPE. If the results compare equal to VR0's
1745 min and max values and the new min is still less than
1746 or equal to the new max, then we can safely use the newly
1747 computed range for EXPR. This allows us to compute
1748 accurate ranges through many casts. */
1749 if (vr0
.type
== VR_RANGE
1750 || (vr0
.type
== VR_VARYING
1751 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)))
1753 tree new_min
, new_max
, orig_min
, orig_max
;
1755 /* Convert the input operand min/max to OUTER_TYPE. If
1756 the input has no range information, then use the min/max
1757 for the input's type. */
1758 if (vr0
.type
== VR_RANGE
)
1765 orig_min
= TYPE_MIN_VALUE (inner_type
);
1766 orig_max
= TYPE_MAX_VALUE (inner_type
);
1769 new_min
= fold_convert (outer_type
, orig_min
);
1770 new_max
= fold_convert (outer_type
, orig_max
);
1772 /* Verify the new min/max values are gimple values and
1773 that they compare equal to the original input's
1775 if (is_gimple_val (new_min
)
1776 && is_gimple_val (new_max
)
1777 && tree_int_cst_equal (new_min
, orig_min
)
1778 && tree_int_cst_equal (new_max
, orig_max
)
1779 && compare_values (new_min
, new_max
) <= 0
1780 && compare_values (new_min
, new_max
) >= -1)
1782 set_value_range (vr
, VR_RANGE
, new_min
, new_max
, vr
->equiv
);
1787 /* When converting types of different sizes, set the result to
1788 VARYING. Things like sign extensions and precision loss may
1789 change the range. For instance, if x_3 is of type 'long long
1790 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1791 is impossible to know at compile time whether y_5 will be
1793 if (TYPE_SIZE (inner_type
) != TYPE_SIZE (outer_type
)
1794 || TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
1796 set_value_range_to_varying (vr
);
1801 /* Conversion of a VR_VARYING value to a wider type can result
1802 in a usable range. So wait until after we've handled conversions
1803 before dropping the result to VR_VARYING if we had a source
1804 operand that is VR_VARYING. */
1805 if (vr0
.type
== VR_VARYING
)
1807 set_value_range_to_varying (vr
);
1811 /* Apply the operation to each end of the range and see what we end
1813 if (code
== NEGATE_EXPR
1814 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1816 /* NEGATE_EXPR flips the range around. We need to treat
1817 TYPE_MIN_VALUE specially dependent on wrapping, range type
1818 and if it was used as minimum or maximum value:
1819 -~[MIN, MIN] == ~[MIN, MIN]
1820 -[MIN, 0] == [0, MAX] for -fno-wrapv
1821 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1822 min
= vr0
.max
== TYPE_MIN_VALUE (TREE_TYPE (expr
))
1823 ? TYPE_MIN_VALUE (TREE_TYPE (expr
))
1824 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1826 max
= vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
))
1827 ? (vr0
.type
== VR_ANTI_RANGE
|| flag_wrapv
1828 ? TYPE_MIN_VALUE (TREE_TYPE (expr
))
1829 : TYPE_MAX_VALUE (TREE_TYPE (expr
)))
1830 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1833 else if (code
== NEGATE_EXPR
1834 && TYPE_UNSIGNED (TREE_TYPE (expr
)))
1836 if (!range_includes_zero_p (&vr0
))
1838 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1839 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1843 if (range_is_null (&vr0
))
1844 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1846 set_value_range_to_varying (vr
);
1850 else if (code
== ABS_EXPR
1851 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1853 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1856 && ((vr0
.type
== VR_RANGE
1857 && vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1858 || (vr0
.type
== VR_ANTI_RANGE
1859 && vr0
.min
!= TYPE_MIN_VALUE (TREE_TYPE (expr
))
1860 && !range_includes_zero_p (&vr0
))))
1862 set_value_range_to_varying (vr
);
1866 /* ABS_EXPR may flip the range around, if the original range
1867 included negative values. */
1868 min
= (vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1869 ? TYPE_MAX_VALUE (TREE_TYPE (expr
))
1870 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1872 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1874 cmp
= compare_values (min
, max
);
1876 /* If a VR_ANTI_RANGEs contains zero, then we have
1877 ~[-INF, min(MIN, MAX)]. */
1878 if (vr0
.type
== VR_ANTI_RANGE
)
1880 if (range_includes_zero_p (&vr0
))
1882 tree type_min_value
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
1884 /* Take the lower of the two values. */
1888 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1889 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1890 flag_wrapv is set and the original anti-range doesn't include
1891 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1892 min
= (flag_wrapv
&& vr0
.min
!= type_min_value
1893 ? int_const_binop (PLUS_EXPR
,
1895 integer_one_node
, 0)
1900 /* All else has failed, so create the range [0, INF], even for
1901 flag_wrapv since TYPE_MIN_VALUE is in the original
1903 vr0
.type
= VR_RANGE
;
1904 min
= build_int_cst (TREE_TYPE (expr
), 0);
1905 max
= TYPE_MAX_VALUE (TREE_TYPE (expr
));
1909 /* If the range contains zero then we know that the minimum value in the
1910 range will be zero. */
1911 else if (range_includes_zero_p (&vr0
))
1915 min
= build_int_cst (TREE_TYPE (expr
), 0);
1919 /* If the range was reversed, swap MIN and MAX. */
1930 /* Otherwise, operate on each end of the range. */
1931 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1932 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1935 cmp
= compare_values (min
, max
);
1936 if (cmp
== -2 || cmp
== 1)
1938 /* If the new range has its limits swapped around (MIN > MAX),
1939 then the operation caused one of them to wrap around, mark
1940 the new range VARYING. */
1941 set_value_range_to_varying (vr
);
1944 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
1948 /* Extract range information from a comparison expression EXPR based
1949 on the range of its operand and the expression code. */
1952 extract_range_from_comparison (value_range_t
*vr
, tree expr
)
1954 tree val
= vrp_evaluate_conditional (expr
, false);
1957 /* Since this expression was found on the RHS of an assignment,
1958 its type may be different from _Bool. Convert VAL to EXPR's
1960 val
= fold_convert (TREE_TYPE (expr
), val
);
1961 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
1964 set_value_range_to_varying (vr
);
1968 /* Try to compute a useful range out of expression EXPR and store it
1972 extract_range_from_expr (value_range_t
*vr
, tree expr
)
1974 enum tree_code code
= TREE_CODE (expr
);
1976 if (code
== ASSERT_EXPR
)
1977 extract_range_from_assert (vr
, expr
);
1978 else if (code
== SSA_NAME
)
1979 extract_range_from_ssa_name (vr
, expr
);
1980 else if (TREE_CODE_CLASS (code
) == tcc_binary
1981 || code
== TRUTH_ANDIF_EXPR
1982 || code
== TRUTH_ORIF_EXPR
1983 || code
== TRUTH_AND_EXPR
1984 || code
== TRUTH_OR_EXPR
1985 || code
== TRUTH_XOR_EXPR
)
1986 extract_range_from_binary_expr (vr
, expr
);
1987 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
1988 extract_range_from_unary_expr (vr
, expr
);
1989 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1990 extract_range_from_comparison (vr
, expr
);
1991 else if (is_gimple_min_invariant (expr
))
1992 set_value_range (vr
, VR_RANGE
, expr
, expr
, NULL
);
1994 set_value_range_to_varying (vr
);
1996 /* If we got a varying range from the tests above, try a final
1997 time to derive a nonnegative or nonzero range. This time
1998 relying primarily on generic routines in fold in conjunction
2000 if (vr
->type
== VR_VARYING
)
2002 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
2003 && vrp_expr_computes_nonnegative (expr
))
2004 set_value_range_to_nonnegative (vr
, TREE_TYPE (expr
));
2005 else if (vrp_expr_computes_nonzero (expr
))
2006 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
2010 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2011 would be profitable to adjust VR using scalar evolution information
2012 for VAR. If so, update VR with the new limits. */
2015 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
, tree stmt
,
2018 tree init
, step
, chrec
;
2019 enum ev_direction dir
;
2021 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2022 better opportunities than a regular range, but I'm not sure. */
2023 if (vr
->type
== VR_ANTI_RANGE
)
2026 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
2027 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
2030 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
2031 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
2033 /* If STEP is symbolic, we can't know whether INIT will be the
2034 minimum or maximum value in the range. Also, unless INIT is
2035 a simple expression, compare_values and possibly other functions
2036 in tree-vrp won't be able to handle it. */
2037 if (step
== NULL_TREE
2038 || !is_gimple_min_invariant (step
)
2039 || !valid_value_p (init
))
2042 dir
= scev_direction (chrec
);
2043 if (/* Do not adjust ranges if we do not know whether the iv increases
2044 or decreases, ... */
2045 dir
== EV_DIR_UNKNOWN
2046 /* ... or if it may wrap. */
2047 || scev_probably_wraps_p (init
, step
, stmt
,
2048 current_loops
->parray
[CHREC_VARIABLE (chrec
)],
2052 if (!POINTER_TYPE_P (TREE_TYPE (init
))
2053 && (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
))
2055 /* For VARYING or UNDEFINED ranges, just about anything we get
2056 from scalar evolutions should be better. */
2057 tree min
= TYPE_MIN_VALUE (TREE_TYPE (init
));
2058 tree max
= TYPE_MAX_VALUE (TREE_TYPE (init
));
2060 if (dir
== EV_DIR_DECREASES
)
2065 /* If we would create an invalid range, then just assume we
2066 know absolutely nothing. This may be over-conservative,
2067 but it's clearly safe. */
2068 if (compare_values (min
, max
) == 1)
2071 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
2073 else if (vr
->type
== VR_RANGE
)
2078 if (dir
== EV_DIR_DECREASES
)
2080 /* INIT is the maximum value. If INIT is lower than VR->MAX
2081 but no smaller than VR->MIN, set VR->MAX to INIT. */
2082 if (compare_values (init
, max
) == -1)
2086 /* If we just created an invalid range with the minimum
2087 greater than the maximum, take the minimum all the
2089 if (compare_values (min
, max
) == 1)
2090 min
= TYPE_MIN_VALUE (TREE_TYPE (min
));
2095 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2096 if (compare_values (init
, min
) == 1)
2100 /* If we just created an invalid range with the minimum
2101 greater than the maximum, take the maximum all the
2103 if (compare_values (min
, max
) == 1)
2104 max
= TYPE_MAX_VALUE (TREE_TYPE (max
));
2108 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
2113 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2115 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2116 all the values in the ranges.
2118 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2120 - Return NULL_TREE if it is not always possible to determine the
2121 value of the comparison. */
2125 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
)
2127 /* VARYING or UNDEFINED ranges cannot be compared. */
2128 if (vr0
->type
== VR_VARYING
2129 || vr0
->type
== VR_UNDEFINED
2130 || vr1
->type
== VR_VARYING
2131 || vr1
->type
== VR_UNDEFINED
)
2134 /* Anti-ranges need to be handled separately. */
2135 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
2137 /* If both are anti-ranges, then we cannot compute any
2139 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
2142 /* These comparisons are never statically computable. */
2149 /* Equality can be computed only between a range and an
2150 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2151 if (vr0
->type
== VR_RANGE
)
2153 /* To simplify processing, make VR0 the anti-range. */
2154 value_range_t
*tmp
= vr0
;
2159 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
2161 if (compare_values (vr0
->min
, vr1
->min
) == 0
2162 && compare_values (vr0
->max
, vr1
->max
) == 0)
2163 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2168 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2169 operands around and change the comparison code. */
2170 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
2173 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
2179 if (comp
== EQ_EXPR
)
2181 /* Equality may only be computed if both ranges represent
2182 exactly one value. */
2183 if (compare_values (vr0
->min
, vr0
->max
) == 0
2184 && compare_values (vr1
->min
, vr1
->max
) == 0)
2186 int cmp_min
= compare_values (vr0
->min
, vr1
->min
);
2187 int cmp_max
= compare_values (vr0
->max
, vr1
->max
);
2188 if (cmp_min
== 0 && cmp_max
== 0)
2189 return boolean_true_node
;
2190 else if (cmp_min
!= -2 && cmp_max
!= -2)
2191 return boolean_false_node
;
2193 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2194 else if (compare_values (vr0
->min
, vr1
->max
) == 1
2195 || compare_values (vr1
->min
, vr0
->max
) == 1)
2196 return boolean_false_node
;
2200 else if (comp
== NE_EXPR
)
2204 /* If VR0 is completely to the left or completely to the right
2205 of VR1, they are always different. Notice that we need to
2206 make sure that both comparisons yield similar results to
2207 avoid comparing values that cannot be compared at
2209 cmp1
= compare_values (vr0
->max
, vr1
->min
);
2210 cmp2
= compare_values (vr0
->min
, vr1
->max
);
2211 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
2212 return boolean_true_node
;
2214 /* If VR0 and VR1 represent a single value and are identical,
2216 else if (compare_values (vr0
->min
, vr0
->max
) == 0
2217 && compare_values (vr1
->min
, vr1
->max
) == 0
2218 && compare_values (vr0
->min
, vr1
->min
) == 0
2219 && compare_values (vr0
->max
, vr1
->max
) == 0)
2220 return boolean_false_node
;
2222 /* Otherwise, they may or may not be different. */
2226 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
2230 /* If VR0 is to the left of VR1, return true. */
2231 tst
= compare_values (vr0
->max
, vr1
->min
);
2232 if ((comp
== LT_EXPR
&& tst
== -1)
2233 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
2234 return boolean_true_node
;
2236 /* If VR0 is to the right of VR1, return false. */
2237 tst
= compare_values (vr0
->min
, vr1
->max
);
2238 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
2239 || (comp
== LE_EXPR
&& tst
== 1))
2240 return boolean_false_node
;
2242 /* Otherwise, we don't know. */
2250 /* Given a value range VR, a value VAL and a comparison code COMP, return
2251 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2252 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2253 always returns false. Return NULL_TREE if it is not always
2254 possible to determine the value of the comparison. */
2257 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
)
2259 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
2262 /* Anti-ranges need to be handled separately. */
2263 if (vr
->type
== VR_ANTI_RANGE
)
2265 /* For anti-ranges, the only predicates that we can compute at
2266 compile time are equality and inequality. */
2273 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2274 if (value_inside_range (val
, vr
) == 1)
2275 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2280 if (comp
== EQ_EXPR
)
2282 /* EQ_EXPR may only be computed if VR represents exactly
2284 if (compare_values (vr
->min
, vr
->max
) == 0)
2286 int cmp
= compare_values (vr
->min
, val
);
2288 return boolean_true_node
;
2289 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
2290 return boolean_false_node
;
2292 else if (compare_values (val
, vr
->min
) == -1
2293 || compare_values (vr
->max
, val
) == -1)
2294 return boolean_false_node
;
2298 else if (comp
== NE_EXPR
)
2300 /* If VAL is not inside VR, then they are always different. */
2301 if (compare_values (vr
->max
, val
) == -1
2302 || compare_values (vr
->min
, val
) == 1)
2303 return boolean_true_node
;
2305 /* If VR represents exactly one value equal to VAL, then return
2307 if (compare_values (vr
->min
, vr
->max
) == 0
2308 && compare_values (vr
->min
, val
) == 0)
2309 return boolean_false_node
;
2311 /* Otherwise, they may or may not be different. */
2314 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
2318 /* If VR is to the left of VAL, return true. */
2319 tst
= compare_values (vr
->max
, val
);
2320 if ((comp
== LT_EXPR
&& tst
== -1)
2321 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
2322 return boolean_true_node
;
2324 /* If VR is to the right of VAL, return false. */
2325 tst
= compare_values (vr
->min
, val
);
2326 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
2327 || (comp
== LE_EXPR
&& tst
== 1))
2328 return boolean_false_node
;
2330 /* Otherwise, we don't know. */
2333 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
2337 /* If VR is to the right of VAL, return true. */
2338 tst
= compare_values (vr
->min
, val
);
2339 if ((comp
== GT_EXPR
&& tst
== 1)
2340 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
2341 return boolean_true_node
;
2343 /* If VR is to the left of VAL, return false. */
2344 tst
= compare_values (vr
->max
, val
);
2345 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
2346 || (comp
== GE_EXPR
&& tst
== -1))
2347 return boolean_false_node
;
2349 /* Otherwise, we don't know. */
2357 /* Debugging dumps. */
2359 void dump_value_range (FILE *, value_range_t
*);
2360 void debug_value_range (value_range_t
*);
2361 void dump_all_value_ranges (FILE *);
2362 void debug_all_value_ranges (void);
2363 void dump_vr_equiv (FILE *, bitmap
);
2364 void debug_vr_equiv (bitmap
);
2367 /* Dump value range VR to FILE. */
2370 dump_value_range (FILE *file
, value_range_t
*vr
)
2373 fprintf (file
, "[]");
2374 else if (vr
->type
== VR_UNDEFINED
)
2375 fprintf (file
, "UNDEFINED");
2376 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
2378 tree type
= TREE_TYPE (vr
->min
);
2380 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
2382 if (INTEGRAL_TYPE_P (type
)
2383 && !TYPE_UNSIGNED (type
)
2384 && vr
->min
== TYPE_MIN_VALUE (type
))
2385 fprintf (file
, "-INF");
2387 print_generic_expr (file
, vr
->min
, 0);
2389 fprintf (file
, ", ");
2391 if (INTEGRAL_TYPE_P (type
)
2392 && vr
->max
== TYPE_MAX_VALUE (type
))
2393 fprintf (file
, "+INF");
2395 print_generic_expr (file
, vr
->max
, 0);
2397 fprintf (file
, "]");
2404 fprintf (file
, " EQUIVALENCES: { ");
2406 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
2408 print_generic_expr (file
, ssa_name (i
), 0);
2409 fprintf (file
, " ");
2413 fprintf (file
, "} (%u elements)", c
);
2416 else if (vr
->type
== VR_VARYING
)
2417 fprintf (file
, "VARYING");
2419 fprintf (file
, "INVALID RANGE");
2423 /* Dump value range VR to stderr. */
2426 debug_value_range (value_range_t
*vr
)
2428 dump_value_range (stderr
, vr
);
2432 /* Dump value ranges of all SSA_NAMEs to FILE. */
2435 dump_all_value_ranges (FILE *file
)
2439 for (i
= 0; i
< num_ssa_names
; i
++)
2443 print_generic_expr (file
, ssa_name (i
), 0);
2444 fprintf (file
, ": ");
2445 dump_value_range (file
, vr_value
[i
]);
2446 fprintf (file
, "\n");
2450 fprintf (file
, "\n");
2454 /* Dump all value ranges to stderr. */
2457 debug_all_value_ranges (void)
2459 dump_all_value_ranges (stderr
);
2463 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2464 create a new SSA name N and return the assertion assignment
2465 'V = ASSERT_EXPR <V, V OP W>'. */
2468 build_assert_expr_for (tree cond
, tree v
)
2472 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
2473 n
= duplicate_ssa_name (v
, NULL_TREE
);
2475 if (COMPARISON_CLASS_P (cond
))
2477 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
2478 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, a
);
2480 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
2482 /* Given !V, build the assignment N = false. */
2483 tree op0
= TREE_OPERAND (cond
, 0);
2484 gcc_assert (op0
== v
);
2485 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_false_node
);
2487 else if (TREE_CODE (cond
) == SSA_NAME
)
2489 /* Given V, build the assignment N = true. */
2490 gcc_assert (v
== cond
);
2491 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_true_node
);
2496 SSA_NAME_DEF_STMT (n
) = assertion
;
2498 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2499 operand of the ASSERT_EXPR. Register the new name and the old one
2500 in the replacement table so that we can fix the SSA web after
2501 adding all the ASSERT_EXPRs. */
2502 register_new_name_mapping (n
, v
);
2508 /* Return false if EXPR is a predicate expression involving floating
2512 fp_predicate (tree expr
)
2514 return (COMPARISON_CLASS_P (expr
)
2515 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0))));
2519 /* If the range of values taken by OP can be inferred after STMT executes,
2520 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2521 describes the inferred range. Return true if a range could be
2525 infer_value_range (tree stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
2528 *comp_code_p
= ERROR_MARK
;
2530 /* Do not attempt to infer anything in names that flow through
2532 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
2535 /* Similarly, don't infer anything from statements that may throw
2537 if (tree_could_throw_p (stmt
))
2540 /* If STMT is the last statement of a basic block with no
2541 successors, there is no point inferring anything about any of its
2542 operands. We would not be able to find a proper insertion point
2543 for the assertion, anyway. */
2544 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (bb_for_stmt (stmt
)->succs
) == 0)
2547 /* We can only assume that a pointer dereference will yield
2548 non-NULL if -fdelete-null-pointer-checks is enabled. */
2549 if (flag_delete_null_pointer_checks
&& POINTER_TYPE_P (TREE_TYPE (op
)))
2552 unsigned num_uses
, num_derefs
;
2554 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_derefs
, &is_store
);
2557 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
2558 *comp_code_p
= NE_EXPR
;
2567 void dump_asserts_for (FILE *, tree
);
2568 void debug_asserts_for (tree
);
2569 void dump_all_asserts (FILE *);
2570 void debug_all_asserts (void);
2572 /* Dump all the registered assertions for NAME to FILE. */
2575 dump_asserts_for (FILE *file
, tree name
)
2579 fprintf (file
, "Assertions to be inserted for ");
2580 print_generic_expr (file
, name
, 0);
2581 fprintf (file
, "\n");
2583 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2586 fprintf (file
, "\t");
2587 print_generic_expr (file
, bsi_stmt (loc
->si
), 0);
2588 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
2591 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
2592 loc
->e
->dest
->index
);
2593 dump_edge_info (file
, loc
->e
, 0);
2595 fprintf (file
, "\n\tPREDICATE: ");
2596 print_generic_expr (file
, name
, 0);
2597 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
2598 print_generic_expr (file
, loc
->val
, 0);
2599 fprintf (file
, "\n\n");
2603 fprintf (file
, "\n");
2607 /* Dump all the registered assertions for NAME to stderr. */
2610 debug_asserts_for (tree name
)
2612 dump_asserts_for (stderr
, name
);
2616 /* Dump all the registered assertions for all the names to FILE. */
2619 dump_all_asserts (FILE *file
)
2624 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
2625 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2626 dump_asserts_for (file
, ssa_name (i
));
2627 fprintf (file
, "\n");
2631 /* Dump all the registered assertions for all the names to stderr. */
2634 debug_all_asserts (void)
2636 dump_all_asserts (stderr
);
2640 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2641 'NAME COMP_CODE VAL' at a location that dominates block BB or
2642 E->DEST, then register this location as a possible insertion point
2643 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2645 BB, E and SI provide the exact insertion point for the new
2646 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2647 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2648 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2649 must not be NULL. */
2652 register_new_assert_for (tree name
,
2653 enum tree_code comp_code
,
2657 block_stmt_iterator si
)
2659 assert_locus_t n
, loc
, last_loc
;
2661 basic_block dest_bb
;
2663 #if defined ENABLE_CHECKING
2664 gcc_assert (bb
== NULL
|| e
== NULL
);
2667 gcc_assert (TREE_CODE (bsi_stmt (si
)) != COND_EXPR
2668 && TREE_CODE (bsi_stmt (si
)) != SWITCH_EXPR
);
2671 /* The new assertion A will be inserted at BB or E. We need to
2672 determine if the new location is dominated by a previously
2673 registered location for A. If we are doing an edge insertion,
2674 assume that A will be inserted at E->DEST. Note that this is not
2677 If E is a critical edge, it will be split. But even if E is
2678 split, the new block will dominate the same set of blocks that
2681 The reverse, however, is not true, blocks dominated by E->DEST
2682 will not be dominated by the new block created to split E. So,
2683 if the insertion location is on a critical edge, we will not use
2684 the new location to move another assertion previously registered
2685 at a block dominated by E->DEST. */
2686 dest_bb
= (bb
) ? bb
: e
->dest
;
2688 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2689 VAL at a block dominating DEST_BB, then we don't need to insert a new
2690 one. Similarly, if the same assertion already exists at a block
2691 dominated by DEST_BB and the new location is not on a critical
2692 edge, then update the existing location for the assertion (i.e.,
2693 move the assertion up in the dominance tree).
2695 Note, this is implemented as a simple linked list because there
2696 should not be more than a handful of assertions registered per
2697 name. If this becomes a performance problem, a table hashed by
2698 COMP_CODE and VAL could be implemented. */
2699 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2704 if (loc
->comp_code
== comp_code
2706 || operand_equal_p (loc
->val
, val
, 0)))
2708 /* If the assertion NAME COMP_CODE VAL has already been
2709 registered at a basic block that dominates DEST_BB, then
2710 we don't need to insert the same assertion again. Note
2711 that we don't check strict dominance here to avoid
2712 replicating the same assertion inside the same basic
2713 block more than once (e.g., when a pointer is
2714 dereferenced several times inside a block).
2716 An exception to this rule are edge insertions. If the
2717 new assertion is to be inserted on edge E, then it will
2718 dominate all the other insertions that we may want to
2719 insert in DEST_BB. So, if we are doing an edge
2720 insertion, don't do this dominance check. */
2722 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
2725 /* Otherwise, if E is not a critical edge and DEST_BB
2726 dominates the existing location for the assertion, move
2727 the assertion up in the dominance tree by updating its
2728 location information. */
2729 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
2730 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
2739 /* Update the last node of the list and move to the next one. */
2744 /* If we didn't find an assertion already registered for
2745 NAME COMP_CODE VAL, add a new one at the end of the list of
2746 assertions associated with NAME. */
2747 n
= XNEW (struct assert_locus_d
);
2751 n
->comp_code
= comp_code
;
2758 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
2760 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
2764 /* Try to register an edge assertion for SSA name NAME on edge E for
2765 the conditional jump pointed to by SI. Return true if an assertion
2766 for NAME could be registered. */
2769 register_edge_assert_for (tree name
, edge e
, block_stmt_iterator si
)
2772 enum tree_code comp_code
;
2774 stmt
= bsi_stmt (si
);
2776 /* Do not attempt to infer anything in names that flow through
2778 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
2781 /* If NAME was not found in the sub-graph reachable from E, then
2782 there's nothing to do. */
2783 if (!TEST_BIT (found_in_subgraph
, SSA_NAME_VERSION (name
)))
2786 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2787 Register an assertion for NAME according to the value that NAME
2789 if (TREE_CODE (stmt
) == COND_EXPR
)
2791 /* If BB ends in a COND_EXPR then NAME then we should insert
2792 the original predicate on EDGE_TRUE_VALUE and the
2793 opposite predicate on EDGE_FALSE_VALUE. */
2794 tree cond
= COND_EXPR_COND (stmt
);
2795 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
2797 /* Predicates may be a single SSA name or NAME OP VAL. */
2800 /* If the predicate is a name, it must be NAME, in which
2801 case we create the predicate NAME == true or
2802 NAME == false accordingly. */
2803 comp_code
= EQ_EXPR
;
2804 val
= (is_else_edge
) ? boolean_false_node
: boolean_true_node
;
2808 /* Otherwise, we have a comparison of the form NAME COMP VAL
2809 or VAL COMP NAME. */
2810 if (name
== TREE_OPERAND (cond
, 1))
2812 /* If the predicate is of the form VAL COMP NAME, flip
2813 COMP around because we need to register NAME as the
2814 first operand in the predicate. */
2815 comp_code
= swap_tree_comparison (TREE_CODE (cond
));
2816 val
= TREE_OPERAND (cond
, 0);
2820 /* The comparison is of the form NAME COMP VAL, so the
2821 comparison code remains unchanged. */
2822 comp_code
= TREE_CODE (cond
);
2823 val
= TREE_OPERAND (cond
, 1);
2826 /* If we are inserting the assertion on the ELSE edge, we
2827 need to invert the sign comparison. */
2829 comp_code
= invert_tree_comparison (comp_code
, 0);
2831 /* Do not register always-false predicates. FIXME, this
2832 works around a limitation in fold() when dealing with
2833 enumerations. Given 'enum { N1, N2 } x;', fold will not
2834 fold 'if (x > N2)' to 'if (0)'. */
2835 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
2836 && (INTEGRAL_TYPE_P (TREE_TYPE (val
))
2837 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
))))
2839 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
2840 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
2842 if (comp_code
== GT_EXPR
&& compare_values (val
, max
) == 0)
2845 if (comp_code
== LT_EXPR
&& compare_values (val
, min
) == 0)
2852 /* FIXME. Handle SWITCH_EXPR. */
2856 register_new_assert_for (name
, comp_code
, val
, NULL
, e
, si
);
2861 static bool find_assert_locations (basic_block bb
);
2863 /* Determine whether the outgoing edges of BB should receive an
2864 ASSERT_EXPR for each of the operands of BB's last statement. The
2865 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2867 If any of the sub-graphs rooted at BB have an interesting use of
2868 the predicate operands, an assert location node is added to the
2869 list of assertions for the corresponding operands. */
2872 find_conditional_asserts (basic_block bb
)
2875 block_stmt_iterator last_si
;
2881 need_assert
= false;
2882 last_si
= bsi_last (bb
);
2883 last
= bsi_stmt (last_si
);
2885 /* Look for uses of the operands in each of the sub-graphs
2886 rooted at BB. We need to check each of the outgoing edges
2887 separately, so that we know what kind of ASSERT_EXPR to
2889 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2894 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2895 Otherwise, when we finish traversing each of the sub-graphs, we
2896 won't know whether the variables were found in the sub-graphs or
2897 if they had been found in a block upstream from BB.
2899 This is actually a bad idea is some cases, particularly jump
2900 threading. Consider a CFG like the following:
2910 Assume that one or more operands in the conditional at the
2911 end of block 0 are used in a conditional in block 2, but not
2912 anywhere in block 1. In this case we will not insert any
2913 assert statements in block 1, which may cause us to miss
2914 opportunities to optimize, particularly for jump threading. */
2915 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2916 RESET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2918 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2919 to determine if any of the operands in the conditional
2920 predicate are used. */
2922 need_assert
|= find_assert_locations (e
->dest
);
2924 /* Register the necessary assertions for each operand in the
2925 conditional predicate. */
2926 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2927 need_assert
|= register_edge_assert_for (op
, e
, last_si
);
2930 /* Finally, indicate that we have found the operands in the
2932 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2933 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2939 /* Traverse all the statements in block BB looking for statements that
2940 may generate useful assertions for the SSA names in their operand.
2941 If a statement produces a useful assertion A for name N_i, then the
2942 list of assertions already generated for N_i is scanned to
2943 determine if A is actually needed.
2945 If N_i already had the assertion A at a location dominating the
2946 current location, then nothing needs to be done. Otherwise, the
2947 new location for A is recorded instead.
2949 1- For every statement S in BB, all the variables used by S are
2950 added to bitmap FOUND_IN_SUBGRAPH.
2952 2- If statement S uses an operand N in a way that exposes a known
2953 value range for N, then if N was not already generated by an
2954 ASSERT_EXPR, create a new assert location for N. For instance,
2955 if N is a pointer and the statement dereferences it, we can
2956 assume that N is not NULL.
2958 3- COND_EXPRs are a special case of #2. We can derive range
2959 information from the predicate but need to insert different
2960 ASSERT_EXPRs for each of the sub-graphs rooted at the
2961 conditional block. If the last statement of BB is a conditional
2962 expression of the form 'X op Y', then
2964 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2966 b) If the conditional is the only entry point to the sub-graph
2967 corresponding to the THEN_CLAUSE, recurse into it. On
2968 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2969 an ASSERT_EXPR is added for the corresponding variable.
2971 c) Repeat step (b) on the ELSE_CLAUSE.
2973 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2982 In this case, an assertion on the THEN clause is useful to
2983 determine that 'a' is always 9 on that edge. However, an assertion
2984 on the ELSE clause would be unnecessary.
2986 4- If BB does not end in a conditional expression, then we recurse
2987 into BB's dominator children.
2989 At the end of the recursive traversal, every SSA name will have a
2990 list of locations where ASSERT_EXPRs should be added. When a new
2991 location for name N is found, it is registered by calling
2992 register_new_assert_for. That function keeps track of all the
2993 registered assertions to prevent adding unnecessary assertions.
2994 For instance, if a pointer P_4 is dereferenced more than once in a
2995 dominator tree, only the location dominating all the dereference of
2996 P_4 will receive an ASSERT_EXPR.
2998 If this function returns true, then it means that there are names
2999 for which we need to generate ASSERT_EXPRs. Those assertions are
3000 inserted by process_assert_insertions.
3002 TODO. Handle SWITCH_EXPR. */
3005 find_assert_locations (basic_block bb
)
3007 block_stmt_iterator si
;
3012 if (TEST_BIT (blocks_visited
, bb
->index
))
3015 SET_BIT (blocks_visited
, bb
->index
);
3017 need_assert
= false;
3019 /* Traverse all PHI nodes in BB marking used operands. */
3020 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
3022 use_operand_p arg_p
;
3025 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
3027 tree arg
= USE_FROM_PTR (arg_p
);
3028 if (TREE_CODE (arg
) == SSA_NAME
)
3030 gcc_assert (is_gimple_reg (PHI_RESULT (phi
)));
3031 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (arg
));
3036 /* Traverse all the statements in BB marking used names and looking
3037 for statements that may infer assertions for their used operands. */
3039 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
3044 stmt
= bsi_stmt (si
);
3046 /* See if we can derive an assertion for any of STMT's operands. */
3047 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
3050 enum tree_code comp_code
;
3052 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3053 the sub-graph of a conditional block, when we return from
3054 this recursive walk, our parent will use the
3055 FOUND_IN_SUBGRAPH bitset to determine if one of the
3056 operands it was looking for was present in the sub-graph. */
3057 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
3059 /* If OP is used in such a way that we can infer a value
3060 range for it, and we don't find a previous assertion for
3061 it, create a new assertion location node for OP. */
3062 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
3064 /* If we are able to infer a nonzero value range for OP,
3065 then walk backwards through the use-def chain to see if OP
3066 was set via a typecast.
3068 If so, then we can also infer a nonzero value range
3069 for the operand of the NOP_EXPR. */
3070 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
3073 tree def_stmt
= SSA_NAME_DEF_STMT (t
);
3075 while (TREE_CODE (def_stmt
) == MODIFY_EXPR
3076 && TREE_CODE (TREE_OPERAND (def_stmt
, 1)) == NOP_EXPR
3077 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt
, 1), 0)) == SSA_NAME
3078 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt
, 1), 0))))
3080 t
= TREE_OPERAND (TREE_OPERAND (def_stmt
, 1), 0);
3081 def_stmt
= SSA_NAME_DEF_STMT (t
);
3083 /* Note we want to register the assert for the
3084 operand of the NOP_EXPR after SI, not after the
3086 if (! has_single_use (t
))
3088 register_new_assert_for (t
, comp_code
, value
,
3095 /* If OP is used only once, namely in this STMT, don't
3096 bother creating an ASSERT_EXPR for it. Such an
3097 ASSERT_EXPR would do nothing but increase compile time. */
3098 if (!has_single_use (op
))
3100 register_new_assert_for (op
, comp_code
, value
, bb
, NULL
, si
);
3106 /* Remember the last statement of the block. */
3110 /* If BB's last statement is a conditional expression
3111 involving integer operands, recurse into each of the sub-graphs
3112 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3114 && TREE_CODE (last
) == COND_EXPR
3115 && !fp_predicate (COND_EXPR_COND (last
))
3116 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
3117 need_assert
|= find_conditional_asserts (bb
);
3119 /* Recurse into the dominator children of BB. */
3120 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
3122 son
= next_dom_son (CDI_DOMINATORS
, son
))
3123 need_assert
|= find_assert_locations (son
);
3129 /* Create an ASSERT_EXPR for NAME and insert it in the location
3130 indicated by LOC. Return true if we made any edge insertions. */
3133 process_assert_insertions_for (tree name
, assert_locus_t loc
)
3135 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3136 tree stmt
, cond
, assert_expr
;
3140 cond
= build2 (loc
->comp_code
, boolean_type_node
, name
, loc
->val
);
3141 assert_expr
= build_assert_expr_for (cond
, name
);
3145 /* We have been asked to insert the assertion on an edge. This
3146 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3147 #if defined ENABLE_CHECKING
3148 gcc_assert (TREE_CODE (bsi_stmt (loc
->si
)) == COND_EXPR
3149 || TREE_CODE (bsi_stmt (loc
->si
)) == SWITCH_EXPR
);
3152 bsi_insert_on_edge (loc
->e
, assert_expr
);
3156 /* Otherwise, we can insert right after LOC->SI iff the
3157 statement must not be the last statement in the block. */
3158 stmt
= bsi_stmt (loc
->si
);
3159 if (!stmt_ends_bb_p (stmt
))
3161 bsi_insert_after (&loc
->si
, assert_expr
, BSI_SAME_STMT
);
3165 /* If STMT must be the last statement in BB, we can only insert new
3166 assertions on the non-abnormal edge out of BB. Note that since
3167 STMT is not control flow, there may only be one non-abnormal edge
3169 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
3170 if (!(e
->flags
& EDGE_ABNORMAL
))
3172 bsi_insert_on_edge (e
, assert_expr
);
3180 /* Process all the insertions registered for every name N_i registered
3181 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3182 found in ASSERTS_FOR[i]. */
3185 process_assert_insertions (void)
3189 bool update_edges_p
= false;
3190 int num_asserts
= 0;
3192 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3193 dump_all_asserts (dump_file
);
3195 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
3197 assert_locus_t loc
= asserts_for
[i
];
3202 assert_locus_t next
= loc
->next
;
3203 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
3211 bsi_commit_edge_inserts ();
3213 if (dump_file
&& (dump_flags
& TDF_STATS
))
3214 fprintf (dump_file
, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3219 /* Traverse the flowgraph looking for conditional jumps to insert range
3220 expressions. These range expressions are meant to provide information
3221 to optimizations that need to reason in terms of value ranges. They
3222 will not be expanded into RTL. For instance, given:
3231 this pass will transform the code into:
3237 x = ASSERT_EXPR <x, x < y>
3242 y = ASSERT_EXPR <y, x <= y>
3246 The idea is that once copy and constant propagation have run, other
3247 optimizations will be able to determine what ranges of values can 'x'
3248 take in different paths of the code, simply by checking the reaching
3249 definition of 'x'. */
3252 insert_range_assertions (void)
3258 found_in_subgraph
= sbitmap_alloc (num_ssa_names
);
3259 sbitmap_zero (found_in_subgraph
);
3261 blocks_visited
= sbitmap_alloc (last_basic_block
);
3262 sbitmap_zero (blocks_visited
);
3264 need_assert_for
= BITMAP_ALLOC (NULL
);
3265 asserts_for
= XNEWVEC (assert_locus_t
, num_ssa_names
);
3266 memset (asserts_for
, 0, num_ssa_names
* sizeof (assert_locus_t
));
3268 calculate_dominance_info (CDI_DOMINATORS
);
3270 update_ssa_p
= false;
3271 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
3272 if (find_assert_locations (e
->dest
))
3273 update_ssa_p
= true;
3277 process_assert_insertions ();
3278 update_ssa (TODO_update_ssa_no_phi
);
3281 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3283 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
3284 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
3287 sbitmap_free (found_in_subgraph
);
3289 BITMAP_FREE (need_assert_for
);
3293 /* Convert range assertion expressions into the implied copies and
3294 copy propagate away the copies. Doing the trivial copy propagation
3295 here avoids the need to run the full copy propagation pass after
3298 FIXME, this will eventually lead to copy propagation removing the
3299 names that had useful range information attached to them. For
3300 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3301 then N_i will have the range [3, +INF].
3303 However, by converting the assertion into the implied copy
3304 operation N_i = N_j, we will then copy-propagate N_j into the uses
3305 of N_i and lose the range information. We may want to hold on to
3306 ASSERT_EXPRs a little while longer as the ranges could be used in
3307 things like jump threading.
3309 The problem with keeping ASSERT_EXPRs around is that passes after
3310 VRP need to handle them appropriately.
3312 Another approach would be to make the range information a first
3313 class property of the SSA_NAME so that it can be queried from
3314 any pass. This is made somewhat more complex by the need for
3315 multiple ranges to be associated with one SSA_NAME. */
3318 remove_range_assertions (void)
3321 block_stmt_iterator si
;
3323 /* Note that the BSI iterator bump happens at the bottom of the
3324 loop and no bump is necessary if we're removing the statement
3325 referenced by the current BSI. */
3327 for (si
= bsi_start (bb
); !bsi_end_p (si
);)
3329 tree stmt
= bsi_stmt (si
);
3332 if (TREE_CODE (stmt
) == MODIFY_EXPR
3333 && TREE_CODE (TREE_OPERAND (stmt
, 1)) == ASSERT_EXPR
)
3335 tree rhs
= TREE_OPERAND (stmt
, 1), var
;
3336 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
3337 use_operand_p use_p
;
3338 imm_use_iterator iter
;
3340 gcc_assert (cond
!= boolean_false_node
);
3342 /* Propagate the RHS into every use of the LHS. */
3343 var
= ASSERT_EXPR_VAR (rhs
);
3344 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, TREE_OPERAND (stmt
, 0))
3345 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3347 SET_USE (use_p
, var
);
3348 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
3351 /* And finally, remove the copy, it is not needed. */
3352 bsi_remove (&si
, true);
3358 sbitmap_free (blocks_visited
);
3362 /* Return true if STMT is interesting for VRP. */
3365 stmt_interesting_for_vrp (tree stmt
)
3367 if (TREE_CODE (stmt
) == PHI_NODE
3368 && is_gimple_reg (PHI_RESULT (stmt
))
3369 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))
3370 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))))
3372 else if (TREE_CODE (stmt
) == MODIFY_EXPR
)
3374 tree lhs
= TREE_OPERAND (stmt
, 0);
3375 tree rhs
= TREE_OPERAND (stmt
, 1);
3377 /* In general, assignments with virtual operands are not useful
3378 for deriving ranges, with the obvious exception of calls to
3379 builtin functions. */
3380 if (TREE_CODE (lhs
) == SSA_NAME
3381 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3382 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
3383 && ((TREE_CODE (rhs
) == CALL_EXPR
3384 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == ADDR_EXPR
3385 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0))
3386 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0)))
3387 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
)))
3390 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3397 /* Initialize local data structures for VRP. */
3400 vrp_initialize (void)
3404 vr_value
= XNEWVEC (value_range_t
*, num_ssa_names
);
3405 memset (vr_value
, 0, num_ssa_names
* sizeof (value_range_t
*));
3409 block_stmt_iterator si
;
3412 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
3414 if (!stmt_interesting_for_vrp (phi
))
3416 tree lhs
= PHI_RESULT (phi
);
3417 set_value_range_to_varying (get_value_range (lhs
));
3418 DONT_SIMULATE_AGAIN (phi
) = true;
3421 DONT_SIMULATE_AGAIN (phi
) = false;
3424 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
3426 tree stmt
= bsi_stmt (si
);
3428 if (!stmt_interesting_for_vrp (stmt
))
3432 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
3433 set_value_range_to_varying (get_value_range (def
));
3434 DONT_SIMULATE_AGAIN (stmt
) = true;
3438 DONT_SIMULATE_AGAIN (stmt
) = false;
3445 /* Visit assignment STMT. If it produces an interesting range, record
3446 the SSA name in *OUTPUT_P. */
3448 static enum ssa_prop_result
3449 vrp_visit_assignment (tree stmt
, tree
*output_p
)
3454 lhs
= TREE_OPERAND (stmt
, 0);
3455 rhs
= TREE_OPERAND (stmt
, 1);
3457 /* We only keep track of ranges in integral and pointer types. */
3458 if (TREE_CODE (lhs
) == SSA_NAME
3459 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3460 /* It is valid to have NULL MIN/MAX values on a type. See
3461 build_range_type. */
3462 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
3463 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
3464 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
3467 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3469 extract_range_from_expr (&new_vr
, rhs
);
3471 /* If STMT is inside a loop, we may be able to know something
3472 else about the range of LHS by examining scalar evolution
3474 if (current_loops
&& (l
= loop_containing_stmt (stmt
)))
3475 adjust_range_with_scev (&new_vr
, l
, stmt
, lhs
);
3477 if (update_value_range (lhs
, &new_vr
))
3481 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3483 fprintf (dump_file
, "Found new range for ");
3484 print_generic_expr (dump_file
, lhs
, 0);
3485 fprintf (dump_file
, ": ");
3486 dump_value_range (dump_file
, &new_vr
);
3487 fprintf (dump_file
, "\n\n");
3490 if (new_vr
.type
== VR_VARYING
)
3491 return SSA_PROP_VARYING
;
3493 return SSA_PROP_INTERESTING
;
3496 return SSA_PROP_NOT_INTERESTING
;
3499 /* Every other statement produces no useful ranges. */
3500 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3501 set_value_range_to_varying (get_value_range (def
));
3503 return SSA_PROP_VARYING
;
3507 /* Compare all the value ranges for names equivalent to VAR with VAL
3508 using comparison code COMP. Return the same value returned by
3509 compare_range_with_value. */
3512 compare_name_with_value (enum tree_code comp
, tree var
, tree val
)
3519 t
= retval
= NULL_TREE
;
3521 /* Get the set of equivalences for VAR. */
3522 e
= get_value_range (var
)->equiv
;
3524 /* Add VAR to its own set of equivalences so that VAR's value range
3525 is processed by this loop (otherwise, we would have to replicate
3526 the body of the loop just to check VAR's value range). */
3527 bitmap_set_bit (e
, SSA_NAME_VERSION (var
));
3529 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
3531 value_range_t equiv_vr
= *(vr_value
[i
]);
3533 /* If name N_i does not have a valid range, use N_i as its own
3534 range. This allows us to compare against names that may
3535 have N_i in their ranges. */
3536 if (equiv_vr
.type
== VR_VARYING
|| equiv_vr
.type
== VR_UNDEFINED
)
3538 equiv_vr
.type
= VR_RANGE
;
3539 equiv_vr
.min
= ssa_name (i
);
3540 equiv_vr
.max
= ssa_name (i
);
3543 t
= compare_range_with_value (comp
, &equiv_vr
, val
);
3546 /* All the ranges should compare the same against VAL. */
3547 gcc_assert (retval
== NULL
|| t
== retval
);
3552 /* Remove VAR from its own equivalence set. */
3553 bitmap_clear_bit (e
, SSA_NAME_VERSION (var
));
3558 /* We couldn't find a non-NULL value for the predicate. */
3563 /* Given a comparison code COMP and names N1 and N2, compare all the
3564 ranges equivalent to N1 against all the ranges equivalent to N2
3565 to determine the value of N1 COMP N2. Return the same value
3566 returned by compare_ranges. */
3569 compare_names (enum tree_code comp
, tree n1
, tree n2
)
3573 bitmap_iterator bi1
, bi2
;
3576 /* Compare the ranges of every name equivalent to N1 against the
3577 ranges of every name equivalent to N2. */
3578 e1
= get_value_range (n1
)->equiv
;
3579 e2
= get_value_range (n2
)->equiv
;
3581 /* Add N1 and N2 to their own set of equivalences to avoid
3582 duplicating the body of the loop just to check N1 and N2
3584 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
3585 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
3587 /* If the equivalence sets have a common intersection, then the two
3588 names can be compared without checking their ranges. */
3589 if (bitmap_intersect_p (e1
, e2
))
3591 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3592 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3594 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
3596 : boolean_false_node
;
3599 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3600 N2 to their own set of equivalences to avoid duplicating the body
3601 of the loop just to check N1 and N2 ranges. */
3602 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
3604 value_range_t vr1
= *(vr_value
[i1
]);
3606 /* If the range is VARYING or UNDEFINED, use the name itself. */
3607 if (vr1
.type
== VR_VARYING
|| vr1
.type
== VR_UNDEFINED
)
3609 vr1
.type
= VR_RANGE
;
3610 vr1
.min
= ssa_name (i1
);
3611 vr1
.max
= ssa_name (i1
);
3614 t
= retval
= NULL_TREE
;
3615 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
3617 value_range_t vr2
= *(vr_value
[i2
]);
3619 if (vr2
.type
== VR_VARYING
|| vr2
.type
== VR_UNDEFINED
)
3621 vr2
.type
= VR_RANGE
;
3622 vr2
.min
= ssa_name (i2
);
3623 vr2
.max
= ssa_name (i2
);
3626 t
= compare_ranges (comp
, &vr1
, &vr2
);
3629 /* All the ranges in the equivalent sets should compare
3631 gcc_assert (retval
== NULL
|| t
== retval
);
3638 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3639 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3644 /* None of the equivalent ranges are useful in computing this
3646 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3647 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3652 /* Given a conditional predicate COND, try to determine if COND yields
3653 true or false based on the value ranges of its operands. Return
3654 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3655 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3656 NULL if the conditional cannot be evaluated at compile time.
3658 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3659 the operands in COND are used when trying to compute its value.
3660 This is only used during final substitution. During propagation,
3661 we only check the range of each variable and not its equivalents. */
3664 vrp_evaluate_conditional (tree cond
, bool use_equiv_p
)
3666 gcc_assert (TREE_CODE (cond
) == SSA_NAME
3667 || TREE_CODE_CLASS (TREE_CODE (cond
)) == tcc_comparison
);
3669 if (TREE_CODE (cond
) == SSA_NAME
)
3675 retval
= compare_name_with_value (NE_EXPR
, cond
, boolean_false_node
);
3678 value_range_t
*vr
= get_value_range (cond
);
3679 retval
= compare_range_with_value (NE_EXPR
, vr
, boolean_false_node
);
3682 /* If COND has a known boolean range, return it. */
3686 /* Otherwise, if COND has a symbolic range of exactly one value,
3688 vr
= get_value_range (cond
);
3689 if (vr
->type
== VR_RANGE
&& vr
->min
== vr
->max
)
3694 tree op0
= TREE_OPERAND (cond
, 0);
3695 tree op1
= TREE_OPERAND (cond
, 1);
3697 /* We only deal with integral and pointer types. */
3698 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
3699 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
3704 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
3705 return compare_names (TREE_CODE (cond
), op0
, op1
);
3706 else if (TREE_CODE (op0
) == SSA_NAME
)
3707 return compare_name_with_value (TREE_CODE (cond
), op0
, op1
);
3708 else if (TREE_CODE (op1
) == SSA_NAME
)
3709 return compare_name_with_value (
3710 swap_tree_comparison (TREE_CODE (cond
)), op1
, op0
);
3714 value_range_t
*vr0
, *vr1
;
3716 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
3717 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
3720 return compare_ranges (TREE_CODE (cond
), vr0
, vr1
);
3721 else if (vr0
&& vr1
== NULL
)
3722 return compare_range_with_value (TREE_CODE (cond
), vr0
, op1
);
3723 else if (vr0
== NULL
&& vr1
)
3724 return compare_range_with_value (
3725 swap_tree_comparison (TREE_CODE (cond
)), vr1
, op0
);
3729 /* Anything else cannot be computed statically. */
3734 /* Visit conditional statement STMT. If we can determine which edge
3735 will be taken out of STMT's basic block, record it in
3736 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3737 SSA_PROP_VARYING. */
3739 static enum ssa_prop_result
3740 vrp_visit_cond_stmt (tree stmt
, edge
*taken_edge_p
)
3744 *taken_edge_p
= NULL
;
3746 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3747 add ASSERT_EXPRs for them. */
3748 if (TREE_CODE (stmt
) == SWITCH_EXPR
)
3749 return SSA_PROP_VARYING
;
3751 cond
= COND_EXPR_COND (stmt
);
3753 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3758 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
3759 print_generic_expr (dump_file
, cond
, 0);
3760 fprintf (dump_file
, "\nWith known ranges\n");
3762 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
3764 fprintf (dump_file
, "\t");
3765 print_generic_expr (dump_file
, use
, 0);
3766 fprintf (dump_file
, ": ");
3767 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
3770 fprintf (dump_file
, "\n");
3773 /* Compute the value of the predicate COND by checking the known
3774 ranges of each of its operands.
3776 Note that we cannot evaluate all the equivalent ranges here
3777 because those ranges may not yet be final and with the current
3778 propagation strategy, we cannot determine when the value ranges
3779 of the names in the equivalence set have changed.
3781 For instance, given the following code fragment
3785 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3789 Assume that on the first visit to i_14, i_5 has the temporary
3790 range [8, 8] because the second argument to the PHI function is
3791 not yet executable. We derive the range ~[0, 0] for i_14 and the
3792 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3793 the first time, since i_14 is equivalent to the range [8, 8], we
3794 determine that the predicate is always false.
3796 On the next round of propagation, i_13 is determined to be
3797 VARYING, which causes i_5 to drop down to VARYING. So, another
3798 visit to i_14 is scheduled. In this second visit, we compute the
3799 exact same range and equivalence set for i_14, namely ~[0, 0] and
3800 { i_5 }. But we did not have the previous range for i_5
3801 registered, so vrp_visit_assignment thinks that the range for
3802 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3803 is not visited again, which stops propagation from visiting
3804 statements in the THEN clause of that if().
3806 To properly fix this we would need to keep the previous range
3807 value for the names in the equivalence set. This way we would've
3808 discovered that from one visit to the other i_5 changed from
3809 range [8, 8] to VR_VARYING.
3811 However, fixing this apparent limitation may not be worth the
3812 additional checking. Testing on several code bases (GCC, DLV,
3813 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3814 4 more predicates folded in SPEC. */
3815 val
= vrp_evaluate_conditional (cond
, false);
3817 *taken_edge_p
= find_taken_edge (bb_for_stmt (stmt
), val
);
3819 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3821 fprintf (dump_file
, "\nPredicate evaluates to: ");
3822 if (val
== NULL_TREE
)
3823 fprintf (dump_file
, "DON'T KNOW\n");
3825 print_generic_stmt (dump_file
, val
, 0);
3828 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
3832 /* Evaluate statement STMT. If the statement produces a useful range,
3833 return SSA_PROP_INTERESTING and record the SSA name with the
3834 interesting range into *OUTPUT_P.
3836 If STMT is a conditional branch and we can determine its truth
3837 value, the taken edge is recorded in *TAKEN_EDGE_P.
3839 If STMT produces a varying value, return SSA_PROP_VARYING. */
3841 static enum ssa_prop_result
3842 vrp_visit_stmt (tree stmt
, edge
*taken_edge_p
, tree
*output_p
)
3848 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3850 fprintf (dump_file
, "\nVisiting statement:\n");
3851 print_generic_stmt (dump_file
, stmt
, dump_flags
);
3852 fprintf (dump_file
, "\n");
3855 ann
= stmt_ann (stmt
);
3856 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
3858 tree rhs
= TREE_OPERAND (stmt
, 1);
3860 /* In general, assignments with virtual operands are not useful
3861 for deriving ranges, with the obvious exception of calls to
3862 builtin functions. */
3863 if ((TREE_CODE (rhs
) == CALL_EXPR
3864 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == ADDR_EXPR
3865 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0))
3866 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0)))
3867 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
3868 return vrp_visit_assignment (stmt
, output_p
);
3870 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3871 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
3873 /* All other statements produce nothing of interest for VRP, so mark
3874 their outputs varying and prevent further simulation. */
3875 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3876 set_value_range_to_varying (get_value_range (def
));
3878 return SSA_PROP_VARYING
;
3882 /* Meet operation for value ranges. Given two value ranges VR0 and
3883 VR1, store in VR0 the result of meeting VR0 and VR1.
3885 The meeting rules are as follows:
3887 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3889 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3890 union of VR0 and VR1. */
3893 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
3895 if (vr0
->type
== VR_UNDEFINED
)
3897 copy_value_range (vr0
, vr1
);
3901 if (vr1
->type
== VR_UNDEFINED
)
3903 /* Nothing to do. VR0 already has the resulting range. */
3907 if (vr0
->type
== VR_VARYING
)
3909 /* Nothing to do. VR0 already has the resulting range. */
3913 if (vr1
->type
== VR_VARYING
)
3915 set_value_range_to_varying (vr0
);
3919 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
3921 /* If VR0 and VR1 have a non-empty intersection, compute the
3922 union of both ranges. */
3923 if (value_ranges_intersect_p (vr0
, vr1
))
3928 /* The lower limit of the new range is the minimum of the
3929 two ranges. If they cannot be compared, the result is
3931 cmp
= compare_values (vr0
->min
, vr1
->min
);
3932 if (cmp
== 0 || cmp
== 1)
3938 set_value_range_to_varying (vr0
);
3942 /* Similarly, the upper limit of the new range is the
3943 maximum of the two ranges. If they cannot be compared,
3944 the result is VARYING. */
3945 cmp
= compare_values (vr0
->max
, vr1
->max
);
3946 if (cmp
== 0 || cmp
== -1)
3952 set_value_range_to_varying (vr0
);
3956 /* The resulting set of equivalences is the intersection of
3958 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3959 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3960 else if (vr0
->equiv
&& !vr1
->equiv
)
3961 bitmap_clear (vr0
->equiv
);
3963 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
3968 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3970 /* Two anti-ranges meet only if they are both identical. */
3971 if (compare_values (vr0
->min
, vr1
->min
) == 0
3972 && compare_values (vr0
->max
, vr1
->max
) == 0
3973 && compare_values (vr0
->min
, vr0
->max
) == 0)
3975 /* The resulting set of equivalences is the intersection of
3977 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3978 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3979 else if (vr0
->equiv
&& !vr1
->equiv
)
3980 bitmap_clear (vr0
->equiv
);
3985 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3987 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3988 meet only if the ranges have an empty intersection. The
3989 result of the meet operation is the anti-range. */
3990 if (!symbolic_range_p (vr0
)
3991 && !symbolic_range_p (vr1
)
3992 && !value_ranges_intersect_p (vr0
, vr1
))
3994 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3995 set. We need to compute the intersection of the two
3996 equivalence sets. */
3997 if (vr1
->type
== VR_ANTI_RANGE
)
3998 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
4000 /* The resulting set of equivalences is the intersection of
4002 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
4003 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
4004 else if (vr0
->equiv
&& !vr1
->equiv
)
4005 bitmap_clear (vr0
->equiv
);
4016 /* The two range VR0 and VR1 do not meet. Before giving up and
4017 setting the result to VARYING, see if we can at least derive a
4018 useful anti-range. FIXME, all this nonsense about distinguishing
4019 anti-ranges from ranges is necessary because of the odd
4020 semantics of range_includes_zero_p and friends. */
4021 if (!symbolic_range_p (vr0
)
4022 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
4023 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
4024 && !symbolic_range_p (vr1
)
4025 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
4026 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
4028 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
4030 /* Since this meet operation did not result from the meeting of
4031 two equivalent names, VR0 cannot have any equivalences. */
4033 bitmap_clear (vr0
->equiv
);
4036 set_value_range_to_varying (vr0
);
4040 /* Visit all arguments for PHI node PHI that flow through executable
4041 edges. If a valid value range can be derived from all the incoming
4042 value ranges, set a new range for the LHS of PHI. */
4044 static enum ssa_prop_result
4045 vrp_visit_phi_node (tree phi
)
4048 tree lhs
= PHI_RESULT (phi
);
4049 value_range_t
*lhs_vr
= get_value_range (lhs
);
4050 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
4052 copy_value_range (&vr_result
, lhs_vr
);
4054 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4056 fprintf (dump_file
, "\nVisiting PHI node: ");
4057 print_generic_expr (dump_file
, phi
, dump_flags
);
4060 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
4062 edge e
= PHI_ARG_EDGE (phi
, i
);
4064 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4067 "\n Argument #%d (%d -> %d %sexecutable)\n",
4068 i
, e
->src
->index
, e
->dest
->index
,
4069 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
4072 if (e
->flags
& EDGE_EXECUTABLE
)
4074 tree arg
= PHI_ARG_DEF (phi
, i
);
4075 value_range_t vr_arg
;
4077 if (TREE_CODE (arg
) == SSA_NAME
)
4078 vr_arg
= *(get_value_range (arg
));
4081 vr_arg
.type
= VR_RANGE
;
4084 vr_arg
.equiv
= NULL
;
4087 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4089 fprintf (dump_file
, "\t");
4090 print_generic_expr (dump_file
, arg
, dump_flags
);
4091 fprintf (dump_file
, "\n\tValue: ");
4092 dump_value_range (dump_file
, &vr_arg
);
4093 fprintf (dump_file
, "\n");
4096 vrp_meet (&vr_result
, &vr_arg
);
4098 if (vr_result
.type
== VR_VARYING
)
4103 if (vr_result
.type
== VR_VARYING
)
4106 /* To prevent infinite iterations in the algorithm, derive ranges
4107 when the new value is slightly bigger or smaller than the
4109 if (lhs_vr
->type
== VR_RANGE
&& vr_result
.type
== VR_RANGE
)
4111 if (!POINTER_TYPE_P (TREE_TYPE (lhs
)))
4113 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
4114 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
4116 /* If the new minimum is smaller or larger than the previous
4117 one, go all the way to -INF. In the first case, to avoid
4118 iterating millions of times to reach -INF, and in the
4119 other case to avoid infinite bouncing between different
4121 if (cmp_min
> 0 || cmp_min
< 0)
4122 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
4124 /* Similarly, if the new maximum is smaller or larger than
4125 the previous one, go all the way to +INF. */
4126 if (cmp_max
< 0 || cmp_max
> 0)
4127 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
4129 /* If we ended up with a (-INF, +INF) range, set it to
4131 if (vr_result
.min
== TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
))
4132 && vr_result
.max
== TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
)))
4137 /* If the new range is different than the previous value, keep
4139 if (update_value_range (lhs
, &vr_result
))
4140 return SSA_PROP_INTERESTING
;
4142 /* Nothing changed, don't add outgoing edges. */
4143 return SSA_PROP_NOT_INTERESTING
;
4145 /* No match found. Set the LHS to VARYING. */
4147 set_value_range_to_varying (lhs_vr
);
4148 return SSA_PROP_VARYING
;
4151 /* Simplify a division or modulo operator to a right shift or
4152 bitwise and if the first operand is unsigned or is greater
4153 than zero and the second operand is an exact power of two. */
4156 simplify_div_or_mod_using_ranges (tree stmt
, tree rhs
, enum tree_code rhs_code
)
4159 tree op
= TREE_OPERAND (rhs
, 0);
4160 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
4162 if (TYPE_UNSIGNED (TREE_TYPE (op
)))
4164 val
= integer_one_node
;
4168 val
= compare_range_with_value (GT_EXPR
, vr
, integer_zero_node
);
4171 if (val
&& integer_onep (val
))
4174 tree op0
= TREE_OPERAND (rhs
, 0);
4175 tree op1
= TREE_OPERAND (rhs
, 1);
4177 if (rhs_code
== TRUNC_DIV_EXPR
)
4179 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
4180 t
= build2 (RSHIFT_EXPR
, TREE_TYPE (op0
), op0
, t
);
4184 t
= build_int_cst (TREE_TYPE (op1
), 1);
4185 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
4186 t
= fold_convert (TREE_TYPE (op0
), t
);
4187 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (op0
), op0
, t
);
4190 TREE_OPERAND (stmt
, 1) = t
;
4195 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4196 ABS_EXPR. If the operand is <= 0, then simplify the
4197 ABS_EXPR into a NEGATE_EXPR. */
4200 simplify_abs_using_ranges (tree stmt
, tree rhs
)
4203 tree op
= TREE_OPERAND (rhs
, 0);
4204 tree type
= TREE_TYPE (op
);
4205 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
4207 if (TYPE_UNSIGNED (type
))
4209 val
= integer_zero_node
;
4213 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
);
4216 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
);
4220 if (integer_zerop (val
))
4221 val
= integer_one_node
;
4222 else if (integer_onep (val
))
4223 val
= integer_zero_node
;
4228 && (integer_onep (val
) || integer_zerop (val
)))
4232 if (integer_onep (val
))
4233 t
= build1 (NEGATE_EXPR
, TREE_TYPE (op
), op
);
4237 TREE_OPERAND (stmt
, 1) = t
;
4243 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4244 a known value range VR.
4246 If there is one and only one value which will satisfy the
4247 conditional, then return that value. Else return NULL. */
4250 test_for_singularity (enum tree_code cond_code
, tree op0
,
4251 tree op1
, value_range_t
*vr
)
4256 /* Extract minimum/maximum values which satisfy the
4257 the conditional as it was written. */
4258 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
4260 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
4263 if (cond_code
== LT_EXPR
)
4265 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
4266 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
4269 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
4271 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
4274 if (cond_code
== GT_EXPR
)
4276 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
4277 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
4281 /* Now refine the minimum and maximum values using any
4282 value range information we have for op0. */
4285 if (compare_values (vr
->min
, min
) == -1)
4289 if (compare_values (vr
->max
, max
) == 1)
4294 /* If the new min/max values have converged to a single value,
4295 then there is only one value which can satisfy the condition,
4296 return that value. */
4297 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
4303 /* Simplify a conditional using a relational operator to an equality
4304 test if the range information indicates only one value can satisfy
4305 the original conditional. */
4308 simplify_cond_using_ranges (tree stmt
)
4310 tree cond
= COND_EXPR_COND (stmt
);
4311 tree op0
= TREE_OPERAND (cond
, 0);
4312 tree op1
= TREE_OPERAND (cond
, 1);
4313 enum tree_code cond_code
= TREE_CODE (cond
);
4315 if (cond_code
!= NE_EXPR
4316 && cond_code
!= EQ_EXPR
4317 && TREE_CODE (op0
) == SSA_NAME
4318 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
4319 && is_gimple_min_invariant (op1
))
4321 value_range_t
*vr
= get_value_range (op0
);
4323 /* If we have range information for OP0, then we might be
4324 able to simplify this conditional. */
4325 if (vr
->type
== VR_RANGE
)
4327 tree
new = test_for_singularity (cond_code
, op0
, op1
, vr
);
4333 fprintf (dump_file
, "Simplified relational ");
4334 print_generic_expr (dump_file
, cond
, 0);
4335 fprintf (dump_file
, " into ");
4338 COND_EXPR_COND (stmt
)
4339 = build2 (EQ_EXPR
, boolean_type_node
, op0
, new);
4344 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
4345 fprintf (dump_file
, "\n");
4351 /* Try again after inverting the condition. We only deal
4352 with integral types here, so no need to worry about
4353 issues with inverting FP comparisons. */
4354 cond_code
= invert_tree_comparison (cond_code
, false);
4355 new = test_for_singularity (cond_code
, op0
, op1
, vr
);
4361 fprintf (dump_file
, "Simplified relational ");
4362 print_generic_expr (dump_file
, cond
, 0);
4363 fprintf (dump_file
, " into ");
4366 COND_EXPR_COND (stmt
)
4367 = build2 (NE_EXPR
, boolean_type_node
, op0
, new);
4372 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
4373 fprintf (dump_file
, "\n");
4382 /* Simplify STMT using ranges if possible. */
4385 simplify_stmt_using_ranges (tree stmt
)
4387 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
4389 tree rhs
= TREE_OPERAND (stmt
, 1);
4390 enum tree_code rhs_code
= TREE_CODE (rhs
);
4392 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4393 and BIT_AND_EXPR respectively if the first operand is greater
4394 than zero and the second operand is an exact power of two. */
4395 if ((rhs_code
== TRUNC_DIV_EXPR
|| rhs_code
== TRUNC_MOD_EXPR
)
4396 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0)))
4397 && integer_pow2p (TREE_OPERAND (rhs
, 1)))
4398 simplify_div_or_mod_using_ranges (stmt
, rhs
, rhs_code
);
4400 /* Transform ABS (X) into X or -X as appropriate. */
4401 if (rhs_code
== ABS_EXPR
4402 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == SSA_NAME
4403 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0))))
4404 simplify_abs_using_ranges (stmt
, rhs
);
4406 else if (TREE_CODE (stmt
) == COND_EXPR
4407 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt
)))
4409 simplify_cond_using_ranges (stmt
);
4413 /* Stack of dest,src equivalency pairs that need to be restored after
4414 each attempt to thread a block's incoming edge to an outgoing edge.
4416 A NULL entry is used to mark the end of pairs which need to be
4418 static VEC(tree
,heap
) *stack
;
4420 /* A trivial wrapper so that we can present the generic jump
4421 threading code with a simple API for simplifying statements. */
4423 simplify_stmt_for_jump_threading (tree stmt
)
4425 /* We only use VRP information to simplify conditionals. This is
4426 overly conservative, but it's unclear if doing more would be
4427 worth the compile time cost. */
4428 if (TREE_CODE (stmt
) != COND_EXPR
)
4431 return vrp_evaluate_conditional (COND_EXPR_COND (stmt
), true);
4434 /* Blocks which have more than one predecessor and more than
4435 one successor present jump threading opportunities. ie,
4436 when the block is reached from a specific predecessor, we
4437 may be able to determine which of the outgoing edges will
4438 be traversed. When this optimization applies, we are able
4439 to avoid conditionals at runtime and we may expose secondary
4440 optimization opportunities.
4442 This routine is effectively a driver for the generic jump
4443 threading code. It basically just presents the generic code
4444 with edges that may be suitable for jump threading.
4446 Unlike DOM, we do not iterate VRP if jump threading was successful.
4447 While iterating may expose new opportunities for VRP, it is expected
4448 those opportunities would be very limited and the compile time cost
4449 to expose those opportunities would be significant.
4451 As jump threading opportunities are discovered, they are registered
4452 for later realization. */
4455 identify_jump_threads (void)
4460 /* Ugh. When substituting values earlier in this pass we can
4461 wipe the dominance information. So rebuild the dominator
4462 information as we need it within the jump threading code. */
4463 calculate_dominance_info (CDI_DOMINATORS
);
4465 /* We do not allow VRP information to be used for jump threading
4466 across a back edge in the CFG. Otherwise it becomes too
4467 difficult to avoid eliminating loop exit tests. Of course
4468 EDGE_DFS_BACK is not accurate at this time so we have to
4470 mark_dfs_back_edges ();
4472 /* Allocate our unwinder stack to unwind any temporary equivalences
4473 that might be recorded. */
4474 stack
= VEC_alloc (tree
, heap
, 20);
4476 /* To avoid lots of silly node creation, we create a single
4477 conditional and just modify it in-place when attempting to
4479 dummy
= build2 (EQ_EXPR
, boolean_type_node
, NULL
, NULL
);
4480 dummy
= build3 (COND_EXPR
, void_type_node
, dummy
, NULL
, NULL
);
4482 /* Walk through all the blocks finding those which present a
4483 potential jump threading opportunity. We could set this up
4484 as a dominator walker and record data during the walk, but
4485 I doubt it's worth the effort for the classes of jump
4486 threading opportunities we are trying to identify at this
4487 point in compilation. */
4492 /* If the generic jump threading code does not find this block
4493 interesting, then there is nothing to do. */
4494 if (! potentially_threadable_block (bb
))
4497 /* We only care about blocks ending in a COND_EXPR. While there
4498 may be some value in handling SWITCH_EXPR here, I doubt it's
4499 terribly important. */
4500 last
= bsi_stmt (bsi_last (bb
));
4501 if (TREE_CODE (last
) != COND_EXPR
)
4504 /* We're basically looking for any kind of conditional with
4505 integral type arguments. */
4506 cond
= COND_EXPR_COND (last
);
4507 if ((TREE_CODE (cond
) == SSA_NAME
4508 && INTEGRAL_TYPE_P (TREE_TYPE (cond
)))
4509 || (COMPARISON_CLASS_P (cond
)
4510 && TREE_CODE (TREE_OPERAND (cond
, 0)) == SSA_NAME
4511 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond
, 0)))
4512 && (TREE_CODE (TREE_OPERAND (cond
, 1)) == SSA_NAME
4513 || is_gimple_min_invariant (TREE_OPERAND (cond
, 1)))
4514 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond
, 1)))))
4519 /* We've got a block with multiple predecessors and multiple
4520 successors which also ends in a suitable conditional. For
4521 each predecessor, see if we can thread it to a specific
4523 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4525 /* Do not thread across back edges or abnormal edges
4527 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
4530 thread_across_edge (dummy
, e
, true,
4532 simplify_stmt_for_jump_threading
);
4537 /* We do not actually update the CFG or SSA graphs at this point as
4538 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4539 handle ASSERT_EXPRs gracefully. */
4542 /* We identified all the jump threading opportunities earlier, but could
4543 not transform the CFG at that time. This routine transforms the
4544 CFG and arranges for the dominator tree to be rebuilt if necessary.
4546 Note the SSA graph update will occur during the normal TODO
4547 processing by the pass manager. */
4549 finalize_jump_threads (void)
4551 bool cfg_altered
= false;
4552 cfg_altered
= thread_through_all_blocks ();
4554 /* If we threaded jumps, then we need to recompute the dominance
4555 information, to safely do that we must clean up the CFG first. */
4558 free_dominance_info (CDI_DOMINATORS
);
4559 cleanup_tree_cfg ();
4560 calculate_dominance_info (CDI_DOMINATORS
);
4562 VEC_free (tree
, heap
, stack
);
4566 /* Traverse all the blocks folding conditionals with known ranges. */
4572 prop_value_t
*single_val_range
;
4573 bool do_value_subst_p
;
4577 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
4578 dump_all_value_ranges (dump_file
);
4579 fprintf (dump_file
, "\n");
4582 /* We may have ended with ranges that have exactly one value. Those
4583 values can be substituted as any other copy/const propagated
4584 value using substitute_and_fold. */
4585 single_val_range
= XNEWVEC (prop_value_t
, num_ssa_names
);
4586 memset (single_val_range
, 0, num_ssa_names
* sizeof (*single_val_range
));
4588 do_value_subst_p
= false;
4589 for (i
= 0; i
< num_ssa_names
; i
++)
4591 && vr_value
[i
]->type
== VR_RANGE
4592 && vr_value
[i
]->min
== vr_value
[i
]->max
)
4594 single_val_range
[i
].value
= vr_value
[i
]->min
;
4595 do_value_subst_p
= true;
4598 if (!do_value_subst_p
)
4600 /* We found no single-valued ranges, don't waste time trying to
4601 do single value substitution in substitute_and_fold. */
4602 free (single_val_range
);
4603 single_val_range
= NULL
;
4606 substitute_and_fold (single_val_range
, true);
4608 /* We must identify jump threading opportunities before we release
4609 the datastructures built by VRP. */
4610 identify_jump_threads ();
4612 /* Free allocated memory. */
4613 for (i
= 0; i
< num_ssa_names
; i
++)
4616 BITMAP_FREE (vr_value
[i
]->equiv
);
4620 free (single_val_range
);
4623 /* So that we can distinguish between VRP data being available
4624 and not available. */
4629 /* Main entry point to VRP (Value Range Propagation). This pass is
4630 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4631 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4632 Programming Language Design and Implementation, pp. 67-78, 1995.
4633 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4635 This is essentially an SSA-CCP pass modified to deal with ranges
4636 instead of constants.
4638 While propagating ranges, we may find that two or more SSA name
4639 have equivalent, though distinct ranges. For instance,
4642 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4644 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4648 In the code above, pointer p_5 has range [q_2, q_2], but from the
4649 code we can also determine that p_5 cannot be NULL and, if q_2 had
4650 a non-varying range, p_5's range should also be compatible with it.
4652 These equivalences are created by two expressions: ASSERT_EXPR and
4653 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4654 result of another assertion, then we can use the fact that p_5 and
4655 p_4 are equivalent when evaluating p_5's range.
4657 Together with value ranges, we also propagate these equivalences
4658 between names so that we can take advantage of information from
4659 multiple ranges when doing final replacement. Note that this
4660 equivalency relation is transitive but not symmetric.
4662 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4663 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4664 in contexts where that assertion does not hold (e.g., in line 6).
4666 TODO, the main difference between this pass and Patterson's is that
4667 we do not propagate edge probabilities. We only compute whether
4668 edges can be taken or not. That is, instead of having a spectrum
4669 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4670 DON'T KNOW. In the future, it may be worthwhile to propagate
4671 probabilities to aid branch prediction. */
4676 insert_range_assertions ();
4678 current_loops
= loop_optimizer_init (LOOPS_NORMAL
);
4680 scev_initialize (current_loops
);
4683 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
4689 loop_optimizer_finalize (current_loops
);
4690 current_loops
= NULL
;
4693 /* ASSERT_EXPRs must be removed before finalizing jump threads
4694 as finalizing jump threads calls the CFG cleanup code which
4695 does not properly handle ASSERT_EXPRs. */
4696 remove_range_assertions ();
4698 /* If we exposed any new variables, go ahead and put them into
4699 SSA form now, before we handle jump threading. This simplifies
4700 interactions between rewriting of _DECL nodes into SSA form
4701 and rewriting SSA_NAME nodes into SSA form after block
4702 duplication and CFG manipulation. */
4703 update_ssa (TODO_update_ssa
);
4705 finalize_jump_threads ();
4712 return flag_tree_vrp
!= 0;
4715 struct tree_opt_pass pass_vrp
=
4718 gate_vrp
, /* gate */
4719 execute_vrp
, /* execute */
4722 0, /* static_pass_number */
4723 TV_TREE_VRP
, /* tv_id */
4724 PROP_ssa
| PROP_alias
, /* properties_required */
4725 0, /* properties_provided */
4726 PROP_smt_usage
, /* properties_destroyed */
4727 0, /* todo_flags_start */
4733 | TODO_update_smt_usage
, /* todo_flags_finish */