2006-08-06 Paolo Carlini <pcarlini@suse.de>
[official-gcc.git] / gcc / regclass.c
blob7b2d5b1f3fb4b769fdc450167b34b129c0d4f0a5
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "function.h"
41 #include "insn-config.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "output.h"
47 #include "ggc.h"
48 #include "timevar.h"
49 #include "hashtab.h"
50 #include "target.h"
52 static void init_reg_sets_1 (void);
53 static void init_reg_autoinc (void);
55 /* If we have auto-increment or auto-decrement and we can have secondary
56 reloads, we are not allowed to use classes requiring secondary
57 reloads for pseudos auto-incremented since reload can't handle it. */
58 /* We leave it to target hooks to decide if we have secondary reloads, so
59 assume that we might have them. */
60 #if defined(AUTO_INC_DEC) /* */
61 #define FORBIDDEN_INC_DEC_CLASSES
62 #endif
64 /* Register tables used by many passes. */
66 /* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
69 a pseudo reg for general use. */
71 char fixed_regs[FIRST_PSEUDO_REGISTER];
73 /* Same info as a HARD_REG_SET. */
75 HARD_REG_SET fixed_reg_set;
77 /* Data for initializing the above. */
79 static const char initial_fixed_regs[] = FIXED_REGISTERS;
81 /* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
87 char call_used_regs[FIRST_PSEUDO_REGISTER];
89 /* Same info as a HARD_REG_SET. */
91 HARD_REG_SET call_used_reg_set;
93 /* HARD_REG_SET of registers we want to avoid caller saving. */
94 HARD_REG_SET losing_caller_save_reg_set;
96 /* Data for initializing the above. */
98 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
100 /* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
102 what is really call clobbered, and is used when defining
103 regs_invalidated_by_call. */
105 #ifdef CALL_REALLY_USED_REGISTERS
106 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 #endif
109 #ifdef CALL_REALLY_USED_REGISTERS
110 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
111 #else
112 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
113 #endif
116 /* Indexed by hard register number, contains 1 for registers that are
117 fixed use or call used registers that cannot hold quantities across
118 calls even if we are willing to save and restore them. call fixed
119 registers are a subset of call used registers. */
121 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
123 /* The same info as a HARD_REG_SET. */
125 HARD_REG_SET call_fixed_reg_set;
127 /* Indexed by hard register number, contains 1 for registers
128 that are being used for global register decls.
129 These must be exempt from ordinary flow analysis
130 and are also considered fixed. */
132 char global_regs[FIRST_PSEUDO_REGISTER];
134 /* Contains 1 for registers that are set or clobbered by calls. */
135 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
136 for someone's bright idea to have call_used_regs strictly include
137 fixed_regs. Which leaves us guessing as to the set of fixed_regs
138 that are actually preserved. We know for sure that those associated
139 with the local stack frame are safe, but scant others. */
141 HARD_REG_SET regs_invalidated_by_call;
143 /* Table of register numbers in the order in which to try to use them. */
144 #ifdef REG_ALLOC_ORDER
145 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
147 /* The inverse of reg_alloc_order. */
148 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
149 #endif
151 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
153 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
155 /* The same information, but as an array of unsigned ints. We copy from
156 these unsigned ints to the table above. We do this so the tm.h files
157 do not have to be aware of the wordsize for machines with <= 64 regs.
158 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
160 #define N_REG_INTS \
161 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
163 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
164 = REG_CLASS_CONTENTS;
166 /* For each reg class, number of regs it contains. */
168 unsigned int reg_class_size[N_REG_CLASSES];
170 /* For each reg class, table listing all the containing classes. */
172 static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
174 /* For each reg class, table listing all the classes contained in it. */
176 static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 a largest reg class contained in their union. */
181 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* For each pair of reg classes,
184 the smallest reg class containing their union. */
186 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
188 /* Array containing all of the register names. */
190 const char * reg_names[] = REGISTER_NAMES;
192 /* Array containing all of the register class names. */
194 const char * reg_class_names[] = REG_CLASS_NAMES;
196 /* For each hard register, the widest mode object that it can contain.
197 This will be a MODE_INT mode if the register can hold integers. Otherwise
198 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
199 register. */
201 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
203 /* 1 if there is a register of given mode. */
205 bool have_regs_of_mode [MAX_MACHINE_MODE];
207 /* 1 if class does contain register of given mode. */
209 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
211 /* Maximum cost of moving from a register in one class to a register in
212 another class. Based on REGISTER_MOVE_COST. */
214 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216 /* Similar, but here we don't have to move if the first index is a subset
217 of the second so in that case the cost is zero. */
219 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
221 /* Similar, but here we don't have to move if the first index is a superset
222 of the second so in that case the cost is zero. */
224 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
226 #ifdef FORBIDDEN_INC_DEC_CLASSES
228 /* These are the classes that regs which are auto-incremented or decremented
229 cannot be put in. */
231 static int forbidden_inc_dec_class[N_REG_CLASSES];
233 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
234 context. */
236 static char *in_inc_dec;
238 #endif /* FORBIDDEN_INC_DEC_CLASSES */
240 /* Sample MEM values for use by memory_move_secondary_cost. */
242 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
244 /* Linked list of reg_info structures allocated for reg_n_info array.
245 Grouping all of the allocated structures together in one lump
246 means only one call to bzero to clear them, rather than n smaller
247 calls. */
248 struct reg_info_data {
249 struct reg_info_data *next; /* next set of reg_info structures */
250 size_t min_index; /* minimum index # */
251 size_t max_index; /* maximum index # */
252 char used_p; /* nonzero if this has been used previously */
253 reg_info data[1]; /* beginning of the reg_info data */
256 static struct reg_info_data *reg_info_head;
258 /* No more global register variables may be declared; true once
259 regclass has been initialized. */
261 static int no_global_reg_vars = 0;
263 /* Specify number of hard registers given machine mode occupy. */
264 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
266 /* Function called only once to initialize the above data on reg usage.
267 Once this is done, various switches may override. */
269 void
270 init_reg_sets (void)
272 int i, j;
274 /* First copy the register information from the initial int form into
275 the regsets. */
277 for (i = 0; i < N_REG_CLASSES; i++)
279 CLEAR_HARD_REG_SET (reg_class_contents[i]);
281 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
282 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
283 if (int_reg_class_contents[i][j / 32]
284 & ((unsigned) 1 << (j % 32)))
285 SET_HARD_REG_BIT (reg_class_contents[i], j);
288 /* Sanity check: make sure the target macros FIXED_REGISTERS and
289 CALL_USED_REGISTERS had the right number of initializers. */
290 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
291 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
293 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
294 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
295 memset (global_regs, 0, sizeof global_regs);
297 #ifdef REG_ALLOC_ORDER
298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299 inv_reg_alloc_order[reg_alloc_order[i]] = i;
300 #endif
303 /* After switches have been processed, which perhaps alter
304 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
306 static void
307 init_reg_sets_1 (void)
309 unsigned int i, j;
310 unsigned int /* enum machine_mode */ m;
312 /* This macro allows the fixed or call-used registers
313 and the register classes to depend on target flags. */
315 #ifdef CONDITIONAL_REGISTER_USAGE
316 CONDITIONAL_REGISTER_USAGE;
317 #endif
319 /* Compute number of hard regs in each class. */
321 memset (reg_class_size, 0, sizeof reg_class_size);
322 for (i = 0; i < N_REG_CLASSES; i++)
323 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
324 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
325 reg_class_size[i]++;
327 /* Initialize the table of subunions.
328 reg_class_subunion[I][J] gets the largest-numbered reg-class
329 that is contained in the union of classes I and J. */
331 for (i = 0; i < N_REG_CLASSES; i++)
333 for (j = 0; j < N_REG_CLASSES; j++)
335 HARD_REG_SET c;
336 int k;
338 COPY_HARD_REG_SET (c, reg_class_contents[i]);
339 IOR_HARD_REG_SET (c, reg_class_contents[j]);
340 for (k = 0; k < N_REG_CLASSES; k++)
342 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343 subclass1);
344 continue;
346 subclass1:
347 /* Keep the largest subclass. */ /* SPEE 900308 */
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
349 reg_class_contents[(int) reg_class_subunion[i][j]],
350 subclass2);
351 reg_class_subunion[i][j] = (enum reg_class) k;
352 subclass2:
358 /* Initialize the table of superunions.
359 reg_class_superunion[I][J] gets the smallest-numbered reg-class
360 containing the union of classes I and J. */
362 for (i = 0; i < N_REG_CLASSES; i++)
364 for (j = 0; j < N_REG_CLASSES; j++)
366 HARD_REG_SET c;
367 int k;
369 COPY_HARD_REG_SET (c, reg_class_contents[i]);
370 IOR_HARD_REG_SET (c, reg_class_contents[j]);
371 for (k = 0; k < N_REG_CLASSES; k++)
372 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
374 superclass:
375 reg_class_superunion[i][j] = (enum reg_class) k;
379 /* Initialize the tables of subclasses and superclasses of each reg class.
380 First clear the whole table, then add the elements as they are found. */
382 for (i = 0; i < N_REG_CLASSES; i++)
384 for (j = 0; j < N_REG_CLASSES; j++)
386 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
387 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
391 for (i = 0; i < N_REG_CLASSES; i++)
393 if (i == (int) NO_REGS)
394 continue;
396 for (j = i + 1; j < N_REG_CLASSES; j++)
398 enum reg_class *p;
400 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
401 subclass);
402 continue;
403 subclass:
404 /* Reg class I is a subclass of J.
405 Add J to the table of superclasses of I. */
406 p = &reg_class_superclasses[i][0];
407 while (*p != LIM_REG_CLASSES) p++;
408 *p = (enum reg_class) j;
409 /* Add I to the table of superclasses of J. */
410 p = &reg_class_subclasses[j][0];
411 while (*p != LIM_REG_CLASSES) p++;
412 *p = (enum reg_class) i;
416 /* Initialize "constant" tables. */
418 CLEAR_HARD_REG_SET (fixed_reg_set);
419 CLEAR_HARD_REG_SET (call_used_reg_set);
420 CLEAR_HARD_REG_SET (call_fixed_reg_set);
421 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
423 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
427 /* call_used_regs must include fixed_regs. */
428 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
429 #ifdef CALL_REALLY_USED_REGISTERS
430 /* call_used_regs must include call_really_used_regs. */
431 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
432 #endif
434 if (fixed_regs[i])
435 SET_HARD_REG_BIT (fixed_reg_set, i);
437 if (call_used_regs[i])
438 SET_HARD_REG_BIT (call_used_reg_set, i);
439 if (call_fixed_regs[i])
440 SET_HARD_REG_BIT (call_fixed_reg_set, i);
441 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
442 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
444 /* There are a couple of fixed registers that we know are safe to
445 exclude from being clobbered by calls:
447 The frame pointer is always preserved across calls. The arg pointer
448 is if it is fixed. The stack pointer usually is, unless
449 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
450 If we are generating PIC code, the PIC offset table register is
451 preserved across calls, though the target can override that. */
453 if (i == STACK_POINTER_REGNUM)
455 else if (global_regs[i])
456 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
457 else if (i == FRAME_POINTER_REGNUM)
459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
460 else if (i == HARD_FRAME_POINTER_REGNUM)
462 #endif
463 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
464 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
466 #endif
467 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
468 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
470 #endif
471 else if (CALL_REALLY_USED_REGNO_P (i))
472 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
475 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
476 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
477 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
478 for (i = 0; i < N_REG_CLASSES; i++)
479 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
480 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 && HARD_REGNO_MODE_OK (j, m))
484 contains_reg_of_mode [i][m] = 1;
485 have_regs_of_mode [m] = 1;
486 break;
489 /* Initialize the move cost table. Find every subset of each class
490 and take the maximum cost of moving any subset to any other. */
492 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
493 if (have_regs_of_mode [m])
495 for (i = 0; i < N_REG_CLASSES; i++)
496 if (contains_reg_of_mode [i][m])
497 for (j = 0; j < N_REG_CLASSES; j++)
499 int cost;
500 enum reg_class *p1, *p2;
502 if (!contains_reg_of_mode [j][m])
504 move_cost[m][i][j] = 65536;
505 may_move_in_cost[m][i][j] = 65536;
506 may_move_out_cost[m][i][j] = 65536;
508 else
510 cost = REGISTER_MOVE_COST (m, i, j);
512 for (p2 = &reg_class_subclasses[j][0];
513 *p2 != LIM_REG_CLASSES;
514 p2++)
515 if (*p2 != i && contains_reg_of_mode [*p2][m])
516 cost = MAX (cost, move_cost [m][i][*p2]);
518 for (p1 = &reg_class_subclasses[i][0];
519 *p1 != LIM_REG_CLASSES;
520 p1++)
521 if (*p1 != j && contains_reg_of_mode [*p1][m])
522 cost = MAX (cost, move_cost [m][*p1][j]);
524 move_cost[m][i][j] = cost;
526 if (reg_class_subset_p (i, j))
527 may_move_in_cost[m][i][j] = 0;
528 else
529 may_move_in_cost[m][i][j] = cost;
531 if (reg_class_subset_p (j, i))
532 may_move_out_cost[m][i][j] = 0;
533 else
534 may_move_out_cost[m][i][j] = cost;
537 else
538 for (j = 0; j < N_REG_CLASSES; j++)
540 move_cost[m][i][j] = 65536;
541 may_move_in_cost[m][i][j] = 65536;
542 may_move_out_cost[m][i][j] = 65536;
547 /* Compute the table of register modes.
548 These values are used to record death information for individual registers
549 (as opposed to a multi-register mode). */
551 void
552 init_reg_modes_once (void)
554 int i, j;
556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
557 for (j = 0; j < MAX_MACHINE_MODE; j++)
558 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
560 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
562 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
564 /* If we couldn't find a valid mode, just use the previous mode.
565 ??? One situation in which we need to do this is on the mips where
566 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
567 to use DF mode for the even registers and VOIDmode for the odd
568 (for the cpu models where the odd ones are inaccessible). */
569 if (reg_raw_mode[i] == VOIDmode)
570 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
574 /* Finish initializing the register sets and
575 initialize the register modes. */
577 void
578 init_regs (void)
580 /* This finishes what was started by init_reg_sets, but couldn't be done
581 until after register usage was specified. */
582 init_reg_sets_1 ();
584 init_reg_autoinc ();
587 /* Initialize some fake stack-frame MEM references for use in
588 memory_move_secondary_cost. */
590 void
591 init_fake_stack_mems (void)
594 int i;
596 for (i = 0; i < MAX_MACHINE_MODE; i++)
597 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
602 /* Compute extra cost of moving registers to/from memory due to reloads.
603 Only needed if secondary reloads are required for memory moves. */
606 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
608 enum reg_class altclass;
609 int partial_cost = 0;
610 /* We need a memory reference to feed to SECONDARY... macros. */
611 /* mem may be unused even if the SECONDARY_ macros are defined. */
612 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
615 altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
617 if (altclass == NO_REGS)
618 return 0;
620 if (in)
621 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
622 else
623 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
625 if (class == altclass)
626 /* This isn't simply a copy-to-temporary situation. Can't guess
627 what it is, so MEMORY_MOVE_COST really ought not to be calling
628 here in that case.
630 I'm tempted to put in an assert here, but returning this will
631 probably only give poor estimates, which is what we would've
632 had before this code anyways. */
633 return partial_cost;
635 /* Check if the secondary reload register will also need a
636 secondary reload. */
637 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
640 /* Return a machine mode that is legitimate for hard reg REGNO and large
641 enough to save nregs. If we can't find one, return VOIDmode.
642 If CALL_SAVED is true, only consider modes that are call saved. */
644 enum machine_mode
645 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
646 unsigned int nregs, bool call_saved)
648 unsigned int /* enum machine_mode */ m;
649 enum machine_mode found_mode = VOIDmode, mode;
651 /* We first look for the largest integer mode that can be validly
652 held in REGNO. If none, we look for the largest floating-point mode.
653 If we still didn't find a valid mode, try CCmode. */
655 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
656 mode != VOIDmode;
657 mode = GET_MODE_WIDER_MODE (mode))
658 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
659 && HARD_REGNO_MODE_OK (regno, mode)
660 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
661 found_mode = mode;
663 if (found_mode != VOIDmode)
664 return found_mode;
666 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
667 mode != VOIDmode;
668 mode = GET_MODE_WIDER_MODE (mode))
669 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
670 && HARD_REGNO_MODE_OK (regno, mode)
671 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
672 found_mode = mode;
674 if (found_mode != VOIDmode)
675 return found_mode;
677 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
678 mode != VOIDmode;
679 mode = GET_MODE_WIDER_MODE (mode))
680 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
681 && HARD_REGNO_MODE_OK (regno, mode)
682 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
683 found_mode = mode;
685 if (found_mode != VOIDmode)
686 return found_mode;
688 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
689 mode != VOIDmode;
690 mode = GET_MODE_WIDER_MODE (mode))
691 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
692 && HARD_REGNO_MODE_OK (regno, mode)
693 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
694 found_mode = mode;
696 if (found_mode != VOIDmode)
697 return found_mode;
699 /* Iterate over all of the CCmodes. */
700 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
702 mode = (enum machine_mode) m;
703 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
704 && HARD_REGNO_MODE_OK (regno, mode)
705 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
706 return mode;
709 /* We can't find a mode valid for this register. */
710 return VOIDmode;
713 /* Specify the usage characteristics of the register named NAME.
714 It should be a fixed register if FIXED and a
715 call-used register if CALL_USED. */
717 void
718 fix_register (const char *name, int fixed, int call_used)
720 int i;
722 /* Decode the name and update the primary form of
723 the register info. */
725 if ((i = decode_reg_name (name)) >= 0)
727 if ((i == STACK_POINTER_REGNUM
728 #ifdef HARD_FRAME_POINTER_REGNUM
729 || i == HARD_FRAME_POINTER_REGNUM
730 #else
731 || i == FRAME_POINTER_REGNUM
732 #endif
734 && (fixed == 0 || call_used == 0))
736 static const char * const what_option[2][2] = {
737 { "call-saved", "call-used" },
738 { "no-such-option", "fixed" }};
740 error ("can't use '%s' as a %s register", name,
741 what_option[fixed][call_used]);
743 else
745 fixed_regs[i] = fixed;
746 call_used_regs[i] = call_used;
747 #ifdef CALL_REALLY_USED_REGISTERS
748 if (fixed == 0)
749 call_really_used_regs[i] = call_used;
750 #endif
753 else
755 warning (0, "unknown register name: %s", name);
759 /* Mark register number I as global. */
761 void
762 globalize_reg (int i)
764 if (fixed_regs[i] == 0 && no_global_reg_vars)
765 error ("global register variable follows a function definition");
767 if (global_regs[i])
769 warning (0, "register used for two global register variables");
770 return;
773 if (call_used_regs[i] && ! fixed_regs[i])
774 warning (0, "call-clobbered register used for global register variable");
776 global_regs[i] = 1;
778 /* If we're globalizing the frame pointer, we need to set the
779 appropriate regs_invalidated_by_call bit, even if it's already
780 set in fixed_regs. */
781 if (i != STACK_POINTER_REGNUM)
782 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
784 /* If already fixed, nothing else to do. */
785 if (fixed_regs[i])
786 return;
788 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
789 #ifdef CALL_REALLY_USED_REGISTERS
790 call_really_used_regs[i] = 1;
791 #endif
793 SET_HARD_REG_BIT (fixed_reg_set, i);
794 SET_HARD_REG_BIT (call_used_reg_set, i);
795 SET_HARD_REG_BIT (call_fixed_reg_set, i);
798 /* Now the data and code for the `regclass' pass, which happens
799 just before local-alloc. */
801 /* The `costs' struct records the cost of using a hard register of each class
802 and of using memory for each pseudo. We use this data to set up
803 register class preferences. */
805 struct costs
807 int cost[N_REG_CLASSES];
808 int mem_cost;
811 /* Structure used to record preferences of given pseudo. */
812 struct reg_pref
814 /* (enum reg_class) prefclass is the preferred class. */
815 char prefclass;
817 /* altclass is a register class that we should use for allocating
818 pseudo if no register in the preferred class is available.
819 If no register in this class is available, memory is preferred.
821 It might appear to be more general to have a bitmask of classes here,
822 but since it is recommended that there be a class corresponding to the
823 union of most major pair of classes, that generality is not required. */
824 char altclass;
827 /* Record the cost of each class for each pseudo. */
829 static struct costs *costs;
831 /* Initialized once, and used to initialize cost values for each insn. */
833 static struct costs init_cost;
835 /* Record preferences of each pseudo.
836 This is available after `regclass' is run. */
838 static struct reg_pref *reg_pref;
840 /* Allocated buffers for reg_pref. */
842 static struct reg_pref *reg_pref_buffer;
844 /* Frequency of executions of current insn. */
846 static int frequency;
848 static rtx scan_one_insn (rtx, int);
849 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
850 static void dump_regclass (FILE *);
851 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
852 const char **, rtx, struct costs *,
853 struct reg_pref *);
854 static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
855 secondary_reload_info *);
856 static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
857 enum rtx_code, int);
858 #ifdef FORBIDDEN_INC_DEC_CLASSES
859 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
860 #endif
861 static void reg_scan_mark_refs (rtx, rtx, int);
863 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
865 static inline bool
866 ok_for_index_p_nonstrict (rtx reg)
868 unsigned regno = REGNO (reg);
869 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
872 /* A version of regno_ok_for_base_p for use during regclass, when all pseudos
873 should count as OK. Arguments as for regno_ok_for_base_p. */
875 static inline bool
876 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
877 enum rtx_code outer_code, enum rtx_code index_code)
879 unsigned regno = REGNO (reg);
880 if (regno >= FIRST_PSEUDO_REGISTER)
881 return true;
883 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
886 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
887 This function is sometimes called before the info has been computed.
888 When that happens, just return GENERAL_REGS, which is innocuous. */
890 enum reg_class
891 reg_preferred_class (int regno)
893 if (reg_pref == 0)
894 return GENERAL_REGS;
895 return (enum reg_class) reg_pref[regno].prefclass;
898 enum reg_class
899 reg_alternate_class (int regno)
901 if (reg_pref == 0)
902 return ALL_REGS;
904 return (enum reg_class) reg_pref[regno].altclass;
907 /* Initialize some global data for this pass. */
909 void
910 regclass_init (void)
912 int i;
914 init_cost.mem_cost = 10000;
915 for (i = 0; i < N_REG_CLASSES; i++)
916 init_cost.cost[i] = 10000;
918 /* This prevents dump_flow_info from losing if called
919 before regclass is run. */
920 reg_pref = NULL;
922 /* No more global register variables may be declared. */
923 no_global_reg_vars = 1;
926 /* Dump register costs. */
927 static void
928 dump_regclass (FILE *dump)
930 int i;
931 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
933 int /* enum reg_class */ class;
934 if (REG_N_REFS (i))
936 fprintf (dump, " Register %i costs:", i);
937 for (class = 0; class < (int) N_REG_CLASSES; class++)
938 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
939 #ifdef FORBIDDEN_INC_DEC_CLASSES
940 && (!in_inc_dec[i]
941 || !forbidden_inc_dec_class[(enum reg_class) class])
942 #endif
943 #ifdef CANNOT_CHANGE_MODE_CLASS
944 && ! invalid_mode_change_p (i, (enum reg_class) class,
945 PSEUDO_REGNO_MODE (i))
946 #endif
948 fprintf (dump, " %s:%i", reg_class_names[class],
949 costs[i].cost[(enum reg_class) class]);
950 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
956 /* Calculate the costs of insn operands. */
958 static void
959 record_operand_costs (rtx insn, struct costs *op_costs,
960 struct reg_pref *reg_pref)
962 const char *constraints[MAX_RECOG_OPERANDS];
963 enum machine_mode modes[MAX_RECOG_OPERANDS];
964 int i;
966 for (i = 0; i < recog_data.n_operands; i++)
968 constraints[i] = recog_data.constraints[i];
969 modes[i] = recog_data.operand_mode[i];
972 /* If we get here, we are set up to record the costs of all the
973 operands for this insn. Start by initializing the costs.
974 Then handle any address registers. Finally record the desired
975 classes for any pseudos, doing it twice if some pair of
976 operands are commutative. */
978 for (i = 0; i < recog_data.n_operands; i++)
980 op_costs[i] = init_cost;
982 if (GET_CODE (recog_data.operand[i]) == SUBREG)
983 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
985 if (MEM_P (recog_data.operand[i]))
986 record_address_regs (GET_MODE (recog_data.operand[i]),
987 XEXP (recog_data.operand[i], 0),
988 0, MEM, SCRATCH, frequency * 2);
989 else if (constraints[i][0] == 'p'
990 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
991 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
992 SCRATCH, frequency * 2);
995 /* Check for commutative in a separate loop so everything will
996 have been initialized. We must do this even if one operand
997 is a constant--see addsi3 in m68k.md. */
999 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1000 if (constraints[i][0] == '%')
1002 const char *xconstraints[MAX_RECOG_OPERANDS];
1003 int j;
1005 /* Handle commutative operands by swapping the constraints.
1006 We assume the modes are the same. */
1008 for (j = 0; j < recog_data.n_operands; j++)
1009 xconstraints[j] = constraints[j];
1011 xconstraints[i] = constraints[i+1];
1012 xconstraints[i+1] = constraints[i];
1013 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1014 recog_data.operand, modes,
1015 xconstraints, insn, op_costs, reg_pref);
1018 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1019 recog_data.operand, modes,
1020 constraints, insn, op_costs, reg_pref);
1023 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1024 time it would save code to put a certain register in a certain class.
1025 PASS, when nonzero, inhibits some optimizations which need only be done
1026 once.
1027 Return the last insn processed, so that the scan can be continued from
1028 there. */
1030 static rtx
1031 scan_one_insn (rtx insn, int pass)
1033 enum rtx_code pat_code;
1034 rtx set, note;
1035 int i, j;
1036 struct costs op_costs[MAX_RECOG_OPERANDS];
1038 if (!INSN_P (insn))
1039 return insn;
1041 pat_code = GET_CODE (PATTERN (insn));
1042 if (pat_code == USE
1043 || pat_code == CLOBBER
1044 || pat_code == ASM_INPUT
1045 || pat_code == ADDR_VEC
1046 || pat_code == ADDR_DIFF_VEC)
1047 return insn;
1049 set = single_set (insn);
1050 extract_insn (insn);
1052 /* If this insn loads a parameter from its stack slot, then
1053 it represents a savings, rather than a cost, if the
1054 parameter is stored in memory. Record this fact. */
1056 if (set != 0 && REG_P (SET_DEST (set))
1057 && MEM_P (SET_SRC (set))
1058 && (note = find_reg_note (insn, REG_EQUIV,
1059 NULL_RTX)) != 0
1060 && MEM_P (XEXP (note, 0)))
1062 costs[REGNO (SET_DEST (set))].mem_cost
1063 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1064 GENERAL_REGS, 1)
1065 * frequency);
1066 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1067 0, MEM, SCRATCH, frequency * 2);
1068 return insn;
1071 /* Improve handling of two-address insns such as
1072 (set X (ashift CONST Y)) where CONST must be made to
1073 match X. Change it into two insns: (set X CONST)
1074 (set X (ashift X Y)). If we left this for reloading, it
1075 would probably get three insns because X and Y might go
1076 in the same place. This prevents X and Y from receiving
1077 the same hard reg.
1079 We can only do this if the modes of operands 0 and 1
1080 (which might not be the same) are tieable and we only need
1081 do this during our first pass. */
1083 if (pass == 0 && optimize
1084 && recog_data.n_operands >= 3
1085 && recog_data.constraints[1][0] == '0'
1086 && recog_data.constraints[1][1] == 0
1087 && CONSTANT_P (recog_data.operand[1])
1088 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1089 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1090 && REG_P (recog_data.operand[0])
1091 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1092 recog_data.operand_mode[1]))
1094 rtx previnsn = prev_real_insn (insn);
1095 rtx dest
1096 = gen_lowpart (recog_data.operand_mode[1],
1097 recog_data.operand[0]);
1098 rtx newinsn
1099 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1101 /* If this insn was the start of a basic block,
1102 include the new insn in that block.
1103 We need not check for code_label here;
1104 while a basic block can start with a code_label,
1105 INSN could not be at the beginning of that block. */
1106 if (previnsn == 0 || JUMP_P (previnsn))
1108 basic_block b;
1109 FOR_EACH_BB (b)
1110 if (insn == BB_HEAD (b))
1111 BB_HEAD (b) = newinsn;
1114 /* This makes one more setting of new insns's dest. */
1115 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1116 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1117 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1119 *recog_data.operand_loc[1] = recog_data.operand[0];
1120 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1121 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1122 for (i = recog_data.n_dups - 1; i >= 0; i--)
1123 if (recog_data.dup_num[i] == 1)
1125 *recog_data.dup_loc[i] = recog_data.operand[0];
1126 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1127 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1130 return PREV_INSN (newinsn);
1133 record_operand_costs (insn, op_costs, reg_pref);
1135 /* Now add the cost for each operand to the total costs for
1136 its register. */
1138 for (i = 0; i < recog_data.n_operands; i++)
1139 if (REG_P (recog_data.operand[i])
1140 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1142 int regno = REGNO (recog_data.operand[i]);
1143 struct costs *p = &costs[regno], *q = &op_costs[i];
1145 p->mem_cost += q->mem_cost * frequency;
1146 for (j = 0; j < N_REG_CLASSES; j++)
1147 p->cost[j] += q->cost[j] * frequency;
1150 return insn;
1153 /* Initialize information about which register classes can be used for
1154 pseudos that are auto-incremented or auto-decremented. */
1156 static void
1157 init_reg_autoinc (void)
1159 #ifdef FORBIDDEN_INC_DEC_CLASSES
1160 int i;
1162 for (i = 0; i < N_REG_CLASSES; i++)
1164 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1165 enum machine_mode m;
1166 int j;
1168 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1169 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1171 REGNO (r) = j;
1173 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1174 m = (enum machine_mode) ((int) m + 1))
1175 if (HARD_REGNO_MODE_OK (j, m))
1177 /* ??? There are two assumptions here; that the base class does not
1178 depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1179 that it does not depend on the machine mode of the memory
1180 reference. */
1181 enum reg_class base_class
1182 = base_reg_class (VOIDmode, POST_INC, SCRATCH);
1184 PUT_MODE (r, m);
1186 /* If a register is not directly suitable for an
1187 auto-increment or decrement addressing mode and
1188 requires secondary reloads, disallow its class from
1189 being used in such addresses. */
1191 if ((secondary_reload_class (1, base_class, m, r)
1192 || secondary_reload_class (1, base_class, m, r))
1193 && ! auto_inc_dec_reg_p (r, m))
1194 forbidden_inc_dec_class[i] = 1;
1198 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1201 /* This is a pass of the compiler that scans all instructions
1202 and calculates the preferred class for each pseudo-register.
1203 This information can be accessed later by calling `reg_preferred_class'.
1204 This pass comes just before local register allocation. */
1206 void
1207 regclass (rtx f, int nregs)
1209 rtx insn;
1210 int i;
1211 int pass;
1213 init_recog ();
1215 costs = XNEWVEC (struct costs, nregs);
1217 #ifdef FORBIDDEN_INC_DEC_CLASSES
1219 in_inc_dec = XNEWVEC (char, nregs);
1221 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1223 /* Normally we scan the insns once and determine the best class to use for
1224 each register. However, if -fexpensive_optimizations are on, we do so
1225 twice, the second time using the tentative best classes to guide the
1226 selection. */
1228 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1230 basic_block bb;
1232 if (dump_file)
1233 fprintf (dump_file, "\n\nPass %i\n\n",pass);
1234 /* Zero out our accumulation of the cost of each class for each reg. */
1236 memset (costs, 0, nregs * sizeof (struct costs));
1238 #ifdef FORBIDDEN_INC_DEC_CLASSES
1239 memset (in_inc_dec, 0, nregs);
1240 #endif
1242 /* Scan the instructions and record each time it would
1243 save code to put a certain register in a certain class. */
1245 if (!optimize)
1247 frequency = REG_FREQ_MAX;
1248 for (insn = f; insn; insn = NEXT_INSN (insn))
1249 insn = scan_one_insn (insn, pass);
1251 else
1252 FOR_EACH_BB (bb)
1254 /* Show that an insn inside a loop is likely to be executed three
1255 times more than insns outside a loop. This is much more
1256 aggressive than the assumptions made elsewhere and is being
1257 tried as an experiment. */
1258 frequency = REG_FREQ_FROM_BB (bb);
1259 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1261 insn = scan_one_insn (insn, pass);
1262 if (insn == BB_END (bb))
1263 break;
1267 /* Now for each register look at how desirable each class is
1268 and find which class is preferred. Store that in
1269 `prefclass'. Record in `altclass' the largest register
1270 class any of whose registers is better than memory. */
1272 if (pass == 0)
1273 reg_pref = reg_pref_buffer;
1275 if (dump_file)
1277 dump_regclass (dump_file);
1278 fprintf (dump_file,"\n");
1280 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1282 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1283 enum reg_class best = ALL_REGS, alt = NO_REGS;
1284 /* This is an enum reg_class, but we call it an int
1285 to save lots of casts. */
1286 int class;
1287 struct costs *p = &costs[i];
1289 /* In non-optimizing compilation REG_N_REFS is not initialized
1290 yet. */
1291 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1292 continue;
1294 for (class = (int) ALL_REGS - 1; class > 0; class--)
1296 /* Ignore classes that are too small for this operand or
1297 invalid for an operand that was auto-incremented. */
1298 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1299 #ifdef FORBIDDEN_INC_DEC_CLASSES
1300 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1301 #endif
1302 #ifdef CANNOT_CHANGE_MODE_CLASS
1303 || invalid_mode_change_p (i, (enum reg_class) class,
1304 PSEUDO_REGNO_MODE (i))
1305 #endif
1308 else if (p->cost[class] < best_cost)
1310 best_cost = p->cost[class];
1311 best = (enum reg_class) class;
1313 else if (p->cost[class] == best_cost)
1314 best = reg_class_subunion[(int) best][class];
1317 /* Record the alternate register class; i.e., a class for which
1318 every register in it is better than using memory. If adding a
1319 class would make a smaller class (i.e., no union of just those
1320 classes exists), skip that class. The major unions of classes
1321 should be provided as a register class. Don't do this if we
1322 will be doing it again later. */
1324 if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
1325 for (class = 0; class < N_REG_CLASSES; class++)
1326 if (p->cost[class] < p->mem_cost
1327 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1328 > reg_class_size[(int) alt])
1329 #ifdef FORBIDDEN_INC_DEC_CLASSES
1330 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1331 #endif
1332 #ifdef CANNOT_CHANGE_MODE_CLASS
1333 && ! invalid_mode_change_p (i, (enum reg_class) class,
1334 PSEUDO_REGNO_MODE (i))
1335 #endif
1337 alt = reg_class_subunion[(int) alt][class];
1339 /* If we don't add any classes, nothing to try. */
1340 if (alt == best)
1341 alt = NO_REGS;
1343 if (dump_file
1344 && (reg_pref[i].prefclass != (int) best
1345 || reg_pref[i].altclass != (int) alt))
1347 fprintf (dump_file, " Register %i", i);
1348 if (alt == ALL_REGS || best == ALL_REGS)
1349 fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
1350 else if (alt == NO_REGS)
1351 fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
1352 else
1353 fprintf (dump_file, " pref %s, else %s\n",
1354 reg_class_names[(int) best],
1355 reg_class_names[(int) alt]);
1358 /* We cast to (int) because (char) hits bugs in some compilers. */
1359 reg_pref[i].prefclass = (int) best;
1360 reg_pref[i].altclass = (int) alt;
1364 #ifdef FORBIDDEN_INC_DEC_CLASSES
1365 free (in_inc_dec);
1366 #endif
1367 free (costs);
1370 /* Record the cost of using memory or registers of various classes for
1371 the operands in INSN.
1373 N_ALTS is the number of alternatives.
1375 N_OPS is the number of operands.
1377 OPS is an array of the operands.
1379 MODES are the modes of the operands, in case any are VOIDmode.
1381 CONSTRAINTS are the constraints to use for the operands. This array
1382 is modified by this procedure.
1384 This procedure works alternative by alternative. For each alternative
1385 we assume that we will be able to allocate all pseudos to their ideal
1386 register class and calculate the cost of using that alternative. Then
1387 we compute for each operand that is a pseudo-register, the cost of
1388 having the pseudo allocated to each register class and using it in that
1389 alternative. To this cost is added the cost of the alternative.
1391 The cost of each class for this insn is its lowest cost among all the
1392 alternatives. */
1394 static void
1395 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1396 enum machine_mode *modes, const char **constraints,
1397 rtx insn, struct costs *op_costs,
1398 struct reg_pref *reg_pref)
1400 int alt;
1401 int i, j;
1402 rtx set;
1404 /* Process each alternative, each time minimizing an operand's cost with
1405 the cost for each operand in that alternative. */
1407 for (alt = 0; alt < n_alts; alt++)
1409 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1410 int alt_fail = 0;
1411 int alt_cost = 0;
1412 enum reg_class classes[MAX_RECOG_OPERANDS];
1413 int allows_mem[MAX_RECOG_OPERANDS];
1414 int class;
1416 for (i = 0; i < n_ops; i++)
1418 const char *p = constraints[i];
1419 rtx op = ops[i];
1420 enum machine_mode mode = modes[i];
1421 int allows_addr = 0;
1422 int win = 0;
1423 unsigned char c;
1425 /* Initially show we know nothing about the register class. */
1426 classes[i] = NO_REGS;
1427 allows_mem[i] = 0;
1429 /* If this operand has no constraints at all, we can conclude
1430 nothing about it since anything is valid. */
1432 if (*p == 0)
1434 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1435 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1437 continue;
1440 /* If this alternative is only relevant when this operand
1441 matches a previous operand, we do different things depending
1442 on whether this operand is a pseudo-reg or not. We must process
1443 any modifiers for the operand before we can make this test. */
1445 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1446 p++;
1448 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1450 /* Copy class and whether memory is allowed from the matching
1451 alternative. Then perform any needed cost computations
1452 and/or adjustments. */
1453 j = p[0] - '0';
1454 classes[i] = classes[j];
1455 allows_mem[i] = allows_mem[j];
1457 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1459 /* If this matches the other operand, we have no added
1460 cost and we win. */
1461 if (rtx_equal_p (ops[j], op))
1462 win = 1;
1464 /* If we can put the other operand into a register, add to
1465 the cost of this alternative the cost to copy this
1466 operand to the register used for the other operand. */
1468 else if (classes[j] != NO_REGS)
1470 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1471 win = 1;
1474 else if (!REG_P (ops[j])
1475 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1477 /* This op is a pseudo but the one it matches is not. */
1479 /* If we can't put the other operand into a register, this
1480 alternative can't be used. */
1482 if (classes[j] == NO_REGS)
1483 alt_fail = 1;
1485 /* Otherwise, add to the cost of this alternative the cost
1486 to copy the other operand to the register used for this
1487 operand. */
1489 else
1490 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
1492 else
1494 /* The costs of this operand are not the same as the other
1495 operand since move costs are not symmetric. Moreover,
1496 if we cannot tie them, this alternative needs to do a
1497 copy, which is one instruction. */
1499 struct costs *pp = &this_op_costs[i];
1501 for (class = 0; class < N_REG_CLASSES; class++)
1502 pp->cost[class]
1503 = ((recog_data.operand_type[i] != OP_OUT
1504 ? may_move_in_cost[mode][class][(int) classes[i]]
1505 : 0)
1506 + (recog_data.operand_type[i] != OP_IN
1507 ? may_move_out_cost[mode][(int) classes[i]][class]
1508 : 0));
1510 /* If the alternative actually allows memory, make things
1511 a bit cheaper since we won't need an extra insn to
1512 load it. */
1514 pp->mem_cost
1515 = ((recog_data.operand_type[i] != OP_IN
1516 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1517 : 0)
1518 + (recog_data.operand_type[i] != OP_OUT
1519 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1520 : 0) - allows_mem[i]);
1522 /* If we have assigned a class to this register in our
1523 first pass, add a cost to this alternative corresponding
1524 to what we would add if this register were not in the
1525 appropriate class. */
1527 if (reg_pref)
1528 alt_cost
1529 += (may_move_in_cost[mode]
1530 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1531 [(int) classes[i]]);
1533 if (REGNO (ops[i]) != REGNO (ops[j])
1534 && ! find_reg_note (insn, REG_DEAD, op))
1535 alt_cost += 2;
1537 /* This is in place of ordinary cost computation
1538 for this operand, so skip to the end of the
1539 alternative (should be just one character). */
1540 while (*p && *p++ != ',')
1543 constraints[i] = p;
1544 continue;
1548 /* Scan all the constraint letters. See if the operand matches
1549 any of the constraints. Collect the valid register classes
1550 and see if this operand accepts memory. */
1552 while ((c = *p))
1554 switch (c)
1556 case ',':
1557 break;
1558 case '*':
1559 /* Ignore the next letter for this pass. */
1560 c = *++p;
1561 break;
1563 case '?':
1564 alt_cost += 2;
1565 case '!': case '#': case '&':
1566 case '0': case '1': case '2': case '3': case '4':
1567 case '5': case '6': case '7': case '8': case '9':
1568 break;
1570 case 'p':
1571 allows_addr = 1;
1572 win = address_operand (op, GET_MODE (op));
1573 /* We know this operand is an address, so we want it to be
1574 allocated to a register that can be the base of an
1575 address, i.e. BASE_REG_CLASS. */
1576 classes[i]
1577 = reg_class_subunion[(int) classes[i]]
1578 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1579 break;
1581 case 'm': case 'o': case 'V':
1582 /* It doesn't seem worth distinguishing between offsettable
1583 and non-offsettable addresses here. */
1584 allows_mem[i] = 1;
1585 if (MEM_P (op))
1586 win = 1;
1587 break;
1589 case '<':
1590 if (MEM_P (op)
1591 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1592 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1593 win = 1;
1594 break;
1596 case '>':
1597 if (MEM_P (op)
1598 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1599 || GET_CODE (XEXP (op, 0)) == POST_INC))
1600 win = 1;
1601 break;
1603 case 'E':
1604 case 'F':
1605 if (GET_CODE (op) == CONST_DOUBLE
1606 || (GET_CODE (op) == CONST_VECTOR
1607 && (GET_MODE_CLASS (GET_MODE (op))
1608 == MODE_VECTOR_FLOAT)))
1609 win = 1;
1610 break;
1612 case 'G':
1613 case 'H':
1614 if (GET_CODE (op) == CONST_DOUBLE
1615 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1616 win = 1;
1617 break;
1619 case 's':
1620 if (GET_CODE (op) == CONST_INT
1621 || (GET_CODE (op) == CONST_DOUBLE
1622 && GET_MODE (op) == VOIDmode))
1623 break;
1624 case 'i':
1625 if (CONSTANT_P (op)
1626 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1627 win = 1;
1628 break;
1630 case 'n':
1631 if (GET_CODE (op) == CONST_INT
1632 || (GET_CODE (op) == CONST_DOUBLE
1633 && GET_MODE (op) == VOIDmode))
1634 win = 1;
1635 break;
1637 case 'I':
1638 case 'J':
1639 case 'K':
1640 case 'L':
1641 case 'M':
1642 case 'N':
1643 case 'O':
1644 case 'P':
1645 if (GET_CODE (op) == CONST_INT
1646 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1647 win = 1;
1648 break;
1650 case 'X':
1651 win = 1;
1652 break;
1654 case 'g':
1655 if (MEM_P (op)
1656 || (CONSTANT_P (op)
1657 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1658 win = 1;
1659 allows_mem[i] = 1;
1660 case 'r':
1661 classes[i]
1662 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1663 break;
1665 default:
1666 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1667 classes[i]
1668 = reg_class_subunion[(int) classes[i]]
1669 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1670 #ifdef EXTRA_CONSTRAINT_STR
1671 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1672 win = 1;
1674 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1676 /* Every MEM can be reloaded to fit. */
1677 allows_mem[i] = 1;
1678 if (MEM_P (op))
1679 win = 1;
1681 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1683 /* Every address can be reloaded to fit. */
1684 allows_addr = 1;
1685 if (address_operand (op, GET_MODE (op)))
1686 win = 1;
1687 /* We know this operand is an address, so we want it to
1688 be allocated to a register that can be the base of an
1689 address, i.e. BASE_REG_CLASS. */
1690 classes[i]
1691 = reg_class_subunion[(int) classes[i]]
1692 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1694 #endif
1695 break;
1697 p += CONSTRAINT_LEN (c, p);
1698 if (c == ',')
1699 break;
1702 constraints[i] = p;
1704 /* How we account for this operand now depends on whether it is a
1705 pseudo register or not. If it is, we first check if any
1706 register classes are valid. If not, we ignore this alternative,
1707 since we want to assume that all pseudos get allocated for
1708 register preferencing. If some register class is valid, compute
1709 the costs of moving the pseudo into that class. */
1711 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1713 if (classes[i] == NO_REGS)
1715 /* We must always fail if the operand is a REG, but
1716 we did not find a suitable class.
1718 Otherwise we may perform an uninitialized read
1719 from this_op_costs after the `continue' statement
1720 below. */
1721 alt_fail = 1;
1723 else
1725 struct costs *pp = &this_op_costs[i];
1727 for (class = 0; class < N_REG_CLASSES; class++)
1728 pp->cost[class]
1729 = ((recog_data.operand_type[i] != OP_OUT
1730 ? may_move_in_cost[mode][class][(int) classes[i]]
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_IN
1733 ? may_move_out_cost[mode][(int) classes[i]][class]
1734 : 0));
1736 /* If the alternative actually allows memory, make things
1737 a bit cheaper since we won't need an extra insn to
1738 load it. */
1740 pp->mem_cost
1741 = ((recog_data.operand_type[i] != OP_IN
1742 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1743 : 0)
1744 + (recog_data.operand_type[i] != OP_OUT
1745 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1746 : 0) - allows_mem[i]);
1748 /* If we have assigned a class to this register in our
1749 first pass, add a cost to this alternative corresponding
1750 to what we would add if this register were not in the
1751 appropriate class. */
1753 if (reg_pref)
1754 alt_cost
1755 += (may_move_in_cost[mode]
1756 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1757 [(int) classes[i]]);
1761 /* Otherwise, if this alternative wins, either because we
1762 have already determined that or if we have a hard register of
1763 the proper class, there is no cost for this alternative. */
1765 else if (win
1766 || (REG_P (op)
1767 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1770 /* If registers are valid, the cost of this alternative includes
1771 copying the object to and/or from a register. */
1773 else if (classes[i] != NO_REGS)
1775 if (recog_data.operand_type[i] != OP_OUT)
1776 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1778 if (recog_data.operand_type[i] != OP_IN)
1779 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1782 /* The only other way this alternative can be used is if this is a
1783 constant that could be placed into memory. */
1785 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1786 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1787 else
1788 alt_fail = 1;
1791 if (alt_fail)
1792 continue;
1794 /* Finally, update the costs with the information we've calculated
1795 about this alternative. */
1797 for (i = 0; i < n_ops; i++)
1798 if (REG_P (ops[i])
1799 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1801 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1802 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1804 pp->mem_cost = MIN (pp->mem_cost,
1805 (qq->mem_cost + alt_cost) * scale);
1807 for (class = 0; class < N_REG_CLASSES; class++)
1808 pp->cost[class] = MIN (pp->cost[class],
1809 (qq->cost[class] + alt_cost) * scale);
1813 /* If this insn is a single set copying operand 1 to operand 0
1814 and one operand is a pseudo with the other a hard reg or a pseudo
1815 that prefers a register that is in its own register class then
1816 we may want to adjust the cost of that register class to -1.
1818 Avoid the adjustment if the source does not die to avoid stressing of
1819 register allocator by preferrencing two colliding registers into single
1820 class.
1822 Also avoid the adjustment if a copy between registers of the class
1823 is expensive (ten times the cost of a default copy is considered
1824 arbitrarily expensive). This avoids losing when the preferred class
1825 is very expensive as the source of a copy instruction. */
1827 if ((set = single_set (insn)) != 0
1828 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1829 && REG_P (ops[0]) && REG_P (ops[1])
1830 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1831 for (i = 0; i <= 1; i++)
1832 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1834 unsigned int regno = REGNO (ops[!i]);
1835 enum machine_mode mode = GET_MODE (ops[!i]);
1836 int class;
1837 unsigned int nr;
1839 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1841 enum reg_class pref = reg_pref[regno].prefclass;
1843 if ((reg_class_size[(unsigned char) pref]
1844 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1845 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1846 op_costs[i].cost[(unsigned char) pref] = -1;
1848 else if (regno < FIRST_PSEUDO_REGISTER)
1849 for (class = 0; class < N_REG_CLASSES; class++)
1850 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1851 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1853 if (reg_class_size[class] == 1)
1854 op_costs[i].cost[class] = -1;
1855 else
1857 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1859 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1860 regno + nr))
1861 break;
1864 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1865 op_costs[i].cost[class] = -1;
1871 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1872 TO_P is zero) a register of class CLASS in mode MODE.
1874 X must not be a pseudo. */
1876 static int
1877 copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1878 secondary_reload_info *prev_sri)
1880 enum reg_class secondary_class = NO_REGS;
1881 secondary_reload_info sri;
1883 /* If X is a SCRATCH, there is actually nothing to move since we are
1884 assuming optimal allocation. */
1886 if (GET_CODE (x) == SCRATCH)
1887 return 0;
1889 /* Get the class we will actually use for a reload. */
1890 class = PREFERRED_RELOAD_CLASS (x, class);
1892 /* If we need a secondary reload for an intermediate, the
1893 cost is that to load the input into the intermediate register, then
1894 to copy it. */
1896 sri.prev_sri = prev_sri;
1897 sri.extra_cost = 0;
1898 secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
1900 if (secondary_class != NO_REGS)
1901 return (move_cost[mode][(int) secondary_class][(int) class]
1902 + sri.extra_cost
1903 + copy_cost (x, mode, secondary_class, to_p, &sri));
1905 /* For memory, use the memory move cost, for (hard) registers, use the
1906 cost to move between the register classes, and use 2 for everything
1907 else (constants). */
1909 if (MEM_P (x) || class == NO_REGS)
1910 return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
1912 else if (REG_P (x))
1913 return (sri.extra_cost
1914 + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
1916 else
1917 /* If this is a constant, we may eventually want to call rtx_cost here. */
1918 return sri.extra_cost + COSTS_N_INSNS (1);
1921 /* Record the pseudo registers we must reload into hard registers
1922 in a subexpression of a memory address, X.
1924 If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1925 are looking at the index part.
1927 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1928 give the context that the rtx appears in. These three arguments are
1929 passed down to base_reg_class.
1931 SCALE is twice the amount to multiply the cost by (it is twice so we
1932 can represent half-cost adjustments). */
1934 static void
1935 record_address_regs (enum machine_mode mode, rtx x, int context,
1936 enum rtx_code outer_code, enum rtx_code index_code,
1937 int scale)
1939 enum rtx_code code = GET_CODE (x);
1940 enum reg_class class;
1942 if (context == 1)
1943 class = INDEX_REG_CLASS;
1944 else
1945 class = base_reg_class (mode, outer_code, index_code);
1947 switch (code)
1949 case CONST_INT:
1950 case CONST:
1951 case CC0:
1952 case PC:
1953 case SYMBOL_REF:
1954 case LABEL_REF:
1955 return;
1957 case PLUS:
1958 /* When we have an address that is a sum,
1959 we must determine whether registers are "base" or "index" regs.
1960 If there is a sum of two registers, we must choose one to be
1961 the "base". Luckily, we can use the REG_POINTER to make a good
1962 choice most of the time. We only need to do this on machines
1963 that can have two registers in an address and where the base
1964 and index register classes are different.
1966 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1967 that seems bogus since it should only be set when we are sure
1968 the register is being used as a pointer. */
1971 rtx arg0 = XEXP (x, 0);
1972 rtx arg1 = XEXP (x, 1);
1973 enum rtx_code code0 = GET_CODE (arg0);
1974 enum rtx_code code1 = GET_CODE (arg1);
1976 /* Look inside subregs. */
1977 if (code0 == SUBREG)
1978 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1979 if (code1 == SUBREG)
1980 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1982 /* If this machine only allows one register per address, it must
1983 be in the first operand. */
1985 if (MAX_REGS_PER_ADDRESS == 1)
1986 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
1988 /* If index and base registers are the same on this machine, just
1989 record registers in any non-constant operands. We assume here,
1990 as well as in the tests below, that all addresses are in
1991 canonical form. */
1993 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
1995 record_address_regs (mode, arg0, context, PLUS, code1, scale);
1996 if (! CONSTANT_P (arg1))
1997 record_address_regs (mode, arg1, context, PLUS, code0, scale);
2000 /* If the second operand is a constant integer, it doesn't change
2001 what class the first operand must be. */
2003 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2004 record_address_regs (mode, arg0, context, PLUS, code1, scale);
2006 /* If the second operand is a symbolic constant, the first operand
2007 must be an index register. */
2009 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2010 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2012 /* If both operands are registers but one is already a hard register
2013 of index or reg-base class, give the other the class that the
2014 hard register is not. */
2016 else if (code0 == REG && code1 == REG
2017 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2018 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2019 || ok_for_index_p_nonstrict (arg0)))
2020 record_address_regs (mode, arg1,
2021 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2022 ? 1 : 0,
2023 PLUS, REG, scale);
2024 else if (code0 == REG && code1 == REG
2025 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2026 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2027 || ok_for_index_p_nonstrict (arg1)))
2028 record_address_regs (mode, arg0,
2029 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2030 ? 1 : 0,
2031 PLUS, REG, scale);
2033 /* If one operand is known to be a pointer, it must be the base
2034 with the other operand the index. Likewise if the other operand
2035 is a MULT. */
2037 else if ((code0 == REG && REG_POINTER (arg0))
2038 || code1 == MULT)
2040 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
2041 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
2043 else if ((code1 == REG && REG_POINTER (arg1))
2044 || code0 == MULT)
2046 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2047 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
2050 /* Otherwise, count equal chances that each might be a base
2051 or index register. This case should be rare. */
2053 else
2055 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
2056 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
2057 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
2058 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
2061 break;
2063 /* Double the importance of a pseudo register that is incremented
2064 or decremented, since it would take two extra insns
2065 if it ends up in the wrong place. */
2066 case POST_MODIFY:
2067 case PRE_MODIFY:
2068 record_address_regs (mode, XEXP (x, 0), 0, code,
2069 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
2070 if (REG_P (XEXP (XEXP (x, 1), 1)))
2071 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
2072 2 * scale);
2073 break;
2075 case POST_INC:
2076 case PRE_INC:
2077 case POST_DEC:
2078 case PRE_DEC:
2079 /* Double the importance of a pseudo register that is incremented
2080 or decremented, since it would take two extra insns
2081 if it ends up in the wrong place. If the operand is a pseudo,
2082 show it is being used in an INC_DEC context. */
2084 #ifdef FORBIDDEN_INC_DEC_CLASSES
2085 if (REG_P (XEXP (x, 0))
2086 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2087 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2088 #endif
2090 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
2091 break;
2093 case REG:
2095 struct costs *pp = &costs[REGNO (x)];
2096 int i;
2098 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2100 for (i = 0; i < N_REG_CLASSES; i++)
2101 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2103 break;
2105 default:
2107 const char *fmt = GET_RTX_FORMAT (code);
2108 int i;
2109 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2110 if (fmt[i] == 'e')
2111 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2112 scale);
2117 #ifdef FORBIDDEN_INC_DEC_CLASSES
2119 /* Return 1 if REG is valid as an auto-increment memory reference
2120 to an object of MODE. */
2122 static int
2123 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2125 if (HAVE_POST_INCREMENT
2126 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2127 return 1;
2129 if (HAVE_POST_DECREMENT
2130 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2131 return 1;
2133 if (HAVE_PRE_INCREMENT
2134 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2135 return 1;
2137 if (HAVE_PRE_DECREMENT
2138 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2139 return 1;
2141 return 0;
2143 #endif
2145 static short *renumber;
2146 static size_t regno_allocated;
2147 static unsigned int reg_n_max;
2149 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2150 reg_scan and flow_analysis that are indexed by the register number. If
2151 NEW_P is nonzero, initialize all of the registers, otherwise only
2152 initialize the new registers allocated. The same table is kept from
2153 function to function, only reallocating it when we need more room. If
2154 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2156 void
2157 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2159 size_t size_info;
2160 size_t size_renumber;
2161 size_t min = (new_p) ? 0 : reg_n_max;
2162 struct reg_info_data *reg_data;
2164 if (num_regs > regno_allocated)
2166 size_t old_allocated = regno_allocated;
2168 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2169 size_renumber = regno_allocated * sizeof (short);
2171 if (!reg_n_info)
2173 reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
2174 VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2175 memset (VEC_address (reg_info_p, reg_n_info), 0,
2176 sizeof (reg_info_p) * regno_allocated);
2177 renumber = xmalloc (size_renumber);
2178 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2180 else
2182 size_t old_length = VEC_length (reg_info_p, reg_n_info);
2183 if (old_length < regno_allocated)
2185 reg_info_p *addr;
2186 VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2187 addr = VEC_address (reg_info_p, reg_n_info);
2188 memset (&addr[old_length], 0,
2189 sizeof (reg_info_p) * (regno_allocated - old_length));
2191 else if (regno_allocated < old_length)
2193 VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
2196 if (new_p) /* If we're zapping everything, no need to realloc. */
2198 free ((char *) renumber);
2199 free ((char *) reg_pref);
2200 renumber = xmalloc (size_renumber);
2201 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2204 else
2206 renumber = xrealloc (renumber, size_renumber);
2207 reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
2208 regno_allocated
2209 * sizeof (struct reg_pref));
2213 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2214 + sizeof (struct reg_info_data) - sizeof (reg_info);
2215 reg_data = xcalloc (size_info, 1);
2216 reg_data->min_index = old_allocated;
2217 reg_data->max_index = regno_allocated - 1;
2218 reg_data->next = reg_info_head;
2219 reg_info_head = reg_data;
2222 reg_n_max = num_regs;
2223 if (min < num_regs)
2225 /* Loop through each of the segments allocated for the actual
2226 reg_info pages, and set up the pointers, zero the pages, etc. */
2227 for (reg_data = reg_info_head;
2228 reg_data && reg_data->max_index >= min;
2229 reg_data = reg_data->next)
2231 size_t min_index = reg_data->min_index;
2232 size_t max_index = reg_data->max_index;
2233 size_t max = MIN (max_index, num_regs);
2234 size_t local_min = min - min_index;
2235 size_t i;
2237 if (reg_data->min_index > num_regs)
2238 continue;
2240 if (min < min_index)
2241 local_min = 0;
2242 if (!reg_data->used_p) /* page just allocated with calloc */
2243 reg_data->used_p = 1; /* no need to zero */
2244 else
2245 memset (&reg_data->data[local_min], 0,
2246 sizeof (reg_info) * (max - min_index - local_min + 1));
2248 for (i = min_index+local_min; i <= max; i++)
2250 VEC_replace (reg_info_p, reg_n_info, i,
2251 &reg_data->data[i-min_index]);
2252 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2253 renumber[i] = -1;
2254 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2255 reg_pref_buffer[i].altclass = (char) NO_REGS;
2260 /* If {pref,alt}class have already been allocated, update the pointers to
2261 the newly realloced ones. */
2262 if (reg_pref)
2263 reg_pref = reg_pref_buffer;
2265 if (renumber_p)
2266 reg_renumber = renumber;
2269 /* Free up the space allocated by allocate_reg_info. */
2270 void
2271 free_reg_info (void)
2273 if (reg_n_info)
2275 struct reg_info_data *reg_data;
2276 struct reg_info_data *reg_next;
2278 VEC_free (reg_info_p, heap, reg_n_info);
2279 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2281 reg_next = reg_data->next;
2282 free ((char *) reg_data);
2285 free (reg_pref_buffer);
2286 reg_pref_buffer = (struct reg_pref *) 0;
2287 reg_info_head = (struct reg_info_data *) 0;
2288 renumber = (short *) 0;
2290 regno_allocated = 0;
2291 reg_n_max = 0;
2294 /* This is the `regscan' pass of the compiler, run just before cse
2295 and again just before loop.
2297 It finds the first and last use of each pseudo-register
2298 and records them in the vectors regno_first_uid, regno_last_uid
2299 and counts the number of sets in the vector reg_n_sets.
2301 REPEAT is nonzero the second time this is called. */
2303 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2304 Always at least 3, since the combiner could put that many together
2305 and we want this to remain correct for all the remaining passes.
2306 This corresponds to the maximum number of times note_stores will call
2307 a function for any insn. */
2309 int max_parallel;
2311 /* Used as a temporary to record the largest number of registers in
2312 PARALLEL in a SET_DEST. This is added to max_parallel. */
2314 static int max_set_parallel;
2316 void
2317 reg_scan (rtx f, unsigned int nregs)
2319 rtx insn;
2321 timevar_push (TV_REG_SCAN);
2323 allocate_reg_info (nregs, TRUE, FALSE);
2324 max_parallel = 3;
2325 max_set_parallel = 0;
2327 for (insn = f; insn; insn = NEXT_INSN (insn))
2328 if (INSN_P (insn))
2330 rtx pat = PATTERN (insn);
2331 if (GET_CODE (pat) == PARALLEL
2332 && XVECLEN (pat, 0) > max_parallel)
2333 max_parallel = XVECLEN (pat, 0);
2334 reg_scan_mark_refs (pat, insn, 0);
2336 if (REG_NOTES (insn))
2337 reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
2340 max_parallel += max_set_parallel;
2342 timevar_pop (TV_REG_SCAN);
2345 /* X is the expression to scan. INSN is the insn it appears in.
2346 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
2348 static void
2349 reg_scan_mark_refs (rtx x, rtx insn, int note_flag)
2351 enum rtx_code code;
2352 rtx dest;
2353 rtx note;
2355 if (!x)
2356 return;
2357 code = GET_CODE (x);
2358 switch (code)
2360 case CONST:
2361 case CONST_INT:
2362 case CONST_DOUBLE:
2363 case CONST_VECTOR:
2364 case CC0:
2365 case PC:
2366 case SYMBOL_REF:
2367 case LABEL_REF:
2368 case ADDR_VEC:
2369 case ADDR_DIFF_VEC:
2370 return;
2372 case REG:
2374 unsigned int regno = REGNO (x);
2376 if (!note_flag)
2377 REGNO_LAST_UID (regno) = INSN_UID (insn);
2378 if (REGNO_FIRST_UID (regno) == 0)
2379 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2381 break;
2383 case EXPR_LIST:
2384 if (XEXP (x, 0))
2385 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
2386 if (XEXP (x, 1))
2387 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
2388 break;
2390 case INSN_LIST:
2391 if (XEXP (x, 1))
2392 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
2393 break;
2395 case CLOBBER:
2397 rtx reg = XEXP (x, 0);
2398 if (REG_P (reg))
2400 REG_N_SETS (REGNO (reg))++;
2401 REG_N_REFS (REGNO (reg))++;
2403 else if (MEM_P (reg))
2404 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag);
2406 break;
2408 case SET:
2409 /* Count a set of the destination if it is a register. */
2410 for (dest = SET_DEST (x);
2411 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2412 || GET_CODE (dest) == ZERO_EXTEND;
2413 dest = XEXP (dest, 0))
2416 /* For a PARALLEL, record the number of things (less the usual one for a
2417 SET) that are set. */
2418 if (GET_CODE (dest) == PARALLEL)
2419 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2421 if (REG_P (dest))
2423 REG_N_SETS (REGNO (dest))++;
2424 REG_N_REFS (REGNO (dest))++;
2427 /* If this is setting a pseudo from another pseudo or the sum of a
2428 pseudo and a constant integer and the other pseudo is known to be
2429 a pointer, set the destination to be a pointer as well.
2431 Likewise if it is setting the destination from an address or from a
2432 value equivalent to an address or to the sum of an address and
2433 something else.
2435 But don't do any of this if the pseudo corresponds to a user
2436 variable since it should have already been set as a pointer based
2437 on the type. */
2439 if (REG_P (SET_DEST (x))
2440 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2441 /* If the destination pseudo is set more than once, then other
2442 sets might not be to a pointer value (consider access to a
2443 union in two threads of control in the presence of global
2444 optimizations). So only set REG_POINTER on the destination
2445 pseudo if this is the only set of that pseudo. */
2446 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2447 && ! REG_USERVAR_P (SET_DEST (x))
2448 && ! REG_POINTER (SET_DEST (x))
2449 && ((REG_P (SET_SRC (x))
2450 && REG_POINTER (SET_SRC (x)))
2451 || ((GET_CODE (SET_SRC (x)) == PLUS
2452 || GET_CODE (SET_SRC (x)) == LO_SUM)
2453 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2454 && REG_P (XEXP (SET_SRC (x), 0))
2455 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2456 || GET_CODE (SET_SRC (x)) == CONST
2457 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2458 || GET_CODE (SET_SRC (x)) == LABEL_REF
2459 || (GET_CODE (SET_SRC (x)) == HIGH
2460 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2461 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2462 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2463 || ((GET_CODE (SET_SRC (x)) == PLUS
2464 || GET_CODE (SET_SRC (x)) == LO_SUM)
2465 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2466 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2467 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2468 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2469 && (GET_CODE (XEXP (note, 0)) == CONST
2470 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2471 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2472 REG_POINTER (SET_DEST (x)) = 1;
2474 /* If this is setting a register from a register or from a simple
2475 conversion of a register, propagate REG_EXPR. */
2476 if (REG_P (dest))
2478 rtx src = SET_SRC (x);
2480 while (GET_CODE (src) == SIGN_EXTEND
2481 || GET_CODE (src) == ZERO_EXTEND
2482 || GET_CODE (src) == TRUNCATE
2483 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2484 src = XEXP (src, 0);
2486 if (!REG_ATTRS (dest) && REG_P (src))
2487 REG_ATTRS (dest) = REG_ATTRS (src);
2488 if (!REG_ATTRS (dest) && MEM_P (src))
2489 set_reg_attrs_from_mem (dest, src);
2492 /* ... fall through ... */
2494 default:
2496 const char *fmt = GET_RTX_FORMAT (code);
2497 int i;
2498 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2500 if (fmt[i] == 'e')
2501 reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
2502 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2504 int j;
2505 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2506 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
2513 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2514 is also in C2. */
2517 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2519 if (c1 == c2) return 1;
2521 if (c2 == ALL_REGS)
2522 win:
2523 return 1;
2524 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2525 reg_class_contents[(int) c2],
2526 win);
2527 return 0;
2530 /* Return nonzero if there is a register that is in both C1 and C2. */
2533 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2535 HARD_REG_SET c;
2537 if (c1 == c2) return 1;
2539 if (c1 == ALL_REGS || c2 == ALL_REGS)
2540 return 1;
2542 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2543 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2545 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2546 return 1;
2548 lose:
2549 return 0;
2552 #ifdef CANNOT_CHANGE_MODE_CLASS
2554 struct subregs_of_mode_node
2556 unsigned int block;
2557 unsigned char modes[MAX_MACHINE_MODE];
2560 static htab_t subregs_of_mode;
2562 static hashval_t
2563 som_hash (const void *x)
2565 const struct subregs_of_mode_node *a = x;
2566 return a->block;
2569 static int
2570 som_eq (const void *x, const void *y)
2572 const struct subregs_of_mode_node *a = x;
2573 const struct subregs_of_mode_node *b = y;
2574 return a->block == b->block;
2577 void
2578 init_subregs_of_mode (void)
2580 if (subregs_of_mode)
2581 htab_empty (subregs_of_mode);
2582 else
2583 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2586 void
2587 record_subregs_of_mode (rtx subreg)
2589 struct subregs_of_mode_node dummy, *node;
2590 enum machine_mode mode;
2591 unsigned int regno;
2592 void **slot;
2594 if (!REG_P (SUBREG_REG (subreg)))
2595 return;
2597 regno = REGNO (SUBREG_REG (subreg));
2598 mode = GET_MODE (subreg);
2600 if (regno < FIRST_PSEUDO_REGISTER)
2601 return;
2603 dummy.block = regno & -8;
2604 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2605 dummy.block, INSERT);
2606 node = *slot;
2607 if (node == NULL)
2609 node = XCNEW (struct subregs_of_mode_node);
2610 node->block = regno & -8;
2611 *slot = node;
2614 node->modes[mode] |= 1 << (regno & 7);
2617 /* Set bits in *USED which correspond to registers which can't change
2618 their mode from FROM to any mode in which REGNO was encountered. */
2620 void
2621 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2622 unsigned int regno)
2624 struct subregs_of_mode_node dummy, *node;
2625 enum machine_mode to;
2626 unsigned char mask;
2627 unsigned int i;
2629 dummy.block = regno & -8;
2630 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2631 if (node == NULL)
2632 return;
2634 mask = 1 << (regno & 7);
2635 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2636 if (node->modes[to] & mask)
2637 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2638 if (!TEST_HARD_REG_BIT (*used, i)
2639 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2640 SET_HARD_REG_BIT (*used, i);
2643 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2644 mode. */
2646 bool
2647 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2648 enum machine_mode from)
2650 struct subregs_of_mode_node dummy, *node;
2651 enum machine_mode to;
2652 unsigned char mask;
2654 dummy.block = regno & -8;
2655 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2656 if (node == NULL)
2657 return false;
2659 mask = 1 << (regno & 7);
2660 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2661 if (node->modes[to] & mask)
2662 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2663 return true;
2665 return false;
2667 #endif /* CANNOT_CHANGE_MODE_CLASS */
2669 #include "gt-regclass.h"