2006-08-06 Paolo Carlini <pcarlini@suse.de>
[official-gcc.git] / gcc / loop-unroll.c
blob711b02161abc2f2725544b6cd6eabecbde6eec85
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 /* Information about accumulators to expand. */
89 struct var_to_expand
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
103 /* Information about optimization applied in
104 the unrolled loop. */
106 struct opt_info
108 htab_t insns_to_split; /* A hashtable of insns to split. */
109 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
110 to expand. */
111 unsigned first_new_block; /* The first basic block that was
112 duplicated. */
113 basic_block loop_exit; /* The loop exit basic block. */
114 basic_block loop_preheader; /* The loop preheader basic block. */
117 static void decide_unrolling_and_peeling (struct loops *, int);
118 static void peel_loops_completely (struct loops *, int);
119 static void decide_peel_simple (struct loop *, int);
120 static void decide_peel_once_rolling (struct loop *, int);
121 static void decide_peel_completely (struct loop *, int);
122 static void decide_unroll_stupid (struct loop *, int);
123 static void decide_unroll_constant_iterations (struct loop *, int);
124 static void decide_unroll_runtime_iterations (struct loop *, int);
125 static void peel_loop_simple (struct loops *, struct loop *);
126 static void peel_loop_completely (struct loops *, struct loop *);
127 static void unroll_loop_stupid (struct loops *, struct loop *);
128 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
129 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
130 static struct opt_info *analyze_insns_in_loop (struct loop *);
131 static void opt_info_start_duplication (struct opt_info *);
132 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
133 static void free_opt_info (struct opt_info *);
134 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
135 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
136 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
137 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
138 static int insert_var_expansion_initialization (void **, void *);
139 static int combine_var_copies_in_loop_exit (void **, void *);
140 static int release_var_copies (void **, void *);
141 static rtx get_expansion (struct var_to_expand *);
143 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
144 void
145 unroll_and_peel_loops (struct loops *loops, int flags)
147 struct loop *loop, *next;
148 bool check;
150 /* First perform complete loop peeling (it is almost surely a win,
151 and affects parameters for further decision a lot). */
152 peel_loops_completely (loops, flags);
154 /* Now decide rest of unrolling and peeling. */
155 decide_unrolling_and_peeling (loops, flags);
157 loop = loops->tree_root;
158 while (loop->inner)
159 loop = loop->inner;
161 /* Scan the loops, inner ones first. */
162 while (loop != loops->tree_root)
164 if (loop->next)
166 next = loop->next;
167 while (next->inner)
168 next = next->inner;
170 else
171 next = loop->outer;
173 check = true;
174 /* And perform the appropriate transformations. */
175 switch (loop->lpt_decision.decision)
177 case LPT_PEEL_COMPLETELY:
178 /* Already done. */
179 gcc_unreachable ();
180 case LPT_PEEL_SIMPLE:
181 peel_loop_simple (loops, loop);
182 break;
183 case LPT_UNROLL_CONSTANT:
184 unroll_loop_constant_iterations (loops, loop);
185 break;
186 case LPT_UNROLL_RUNTIME:
187 unroll_loop_runtime_iterations (loops, loop);
188 break;
189 case LPT_UNROLL_STUPID:
190 unroll_loop_stupid (loops, loop);
191 break;
192 case LPT_NONE:
193 check = false;
194 break;
195 default:
196 gcc_unreachable ();
198 if (check)
200 #ifdef ENABLE_CHECKING
201 verify_dominators (CDI_DOMINATORS);
202 verify_loop_structure (loops);
203 #endif
205 loop = next;
208 iv_analysis_done ();
211 /* Check whether exit of the LOOP is at the end of loop body. */
213 static bool
214 loop_exit_at_end_p (struct loop *loop)
216 struct niter_desc *desc = get_simple_loop_desc (loop);
217 rtx insn;
219 if (desc->in_edge->dest != loop->latch)
220 return false;
222 /* Check that the latch is empty. */
223 FOR_BB_INSNS (loop->latch, insn)
225 if (INSN_P (insn))
226 return false;
229 return true;
232 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
233 static void
234 peel_loops_completely (struct loops *loops, int flags)
236 struct loop *loop;
237 unsigned i;
239 /* Scan the loops, the inner ones first. */
240 for (i = loops->num - 1; i > 0; i--)
242 loop = loops->parray[i];
243 if (!loop)
244 continue;
246 loop->lpt_decision.decision = LPT_NONE;
248 if (dump_file)
249 fprintf (dump_file,
250 "\n;; *** Considering loop %d for complete peeling ***\n",
251 loop->num);
253 loop->ninsns = num_loop_insns (loop);
255 decide_peel_once_rolling (loop, flags);
256 if (loop->lpt_decision.decision == LPT_NONE)
257 decide_peel_completely (loop, flags);
259 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
261 peel_loop_completely (loops, loop);
262 #ifdef ENABLE_CHECKING
263 verify_dominators (CDI_DOMINATORS);
264 verify_loop_structure (loops);
265 #endif
270 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
271 static void
272 decide_unrolling_and_peeling (struct loops *loops, int flags)
274 struct loop *loop = loops->tree_root, *next;
276 while (loop->inner)
277 loop = loop->inner;
279 /* Scan the loops, inner ones first. */
280 while (loop != loops->tree_root)
282 if (loop->next)
284 next = loop->next;
285 while (next->inner)
286 next = next->inner;
288 else
289 next = loop->outer;
291 loop->lpt_decision.decision = LPT_NONE;
293 if (dump_file)
294 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
296 /* Do not peel cold areas. */
297 if (!maybe_hot_bb_p (loop->header))
299 if (dump_file)
300 fprintf (dump_file, ";; Not considering loop, cold area\n");
301 loop = next;
302 continue;
305 /* Can the loop be manipulated? */
306 if (!can_duplicate_loop_p (loop))
308 if (dump_file)
309 fprintf (dump_file,
310 ";; Not considering loop, cannot duplicate\n");
311 loop = next;
312 continue;
315 /* Skip non-innermost loops. */
316 if (loop->inner)
318 if (dump_file)
319 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
320 loop = next;
321 continue;
324 loop->ninsns = num_loop_insns (loop);
325 loop->av_ninsns = average_num_loop_insns (loop);
327 /* Try transformations one by one in decreasing order of
328 priority. */
330 decide_unroll_constant_iterations (loop, flags);
331 if (loop->lpt_decision.decision == LPT_NONE)
332 decide_unroll_runtime_iterations (loop, flags);
333 if (loop->lpt_decision.decision == LPT_NONE)
334 decide_unroll_stupid (loop, flags);
335 if (loop->lpt_decision.decision == LPT_NONE)
336 decide_peel_simple (loop, flags);
338 loop = next;
342 /* Decide whether the LOOP is once rolling and suitable for complete
343 peeling. */
344 static void
345 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
347 struct niter_desc *desc;
349 if (dump_file)
350 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
352 /* Is the loop small enough? */
353 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
355 if (dump_file)
356 fprintf (dump_file, ";; Not considering loop, is too big\n");
357 return;
360 /* Check for simple loops. */
361 desc = get_simple_loop_desc (loop);
363 /* Check number of iterations. */
364 if (!desc->simple_p
365 || desc->assumptions
366 || desc->infinite
367 || !desc->const_iter
368 || desc->niter != 0)
370 if (dump_file)
371 fprintf (dump_file,
372 ";; Unable to prove that the loop rolls exactly once\n");
373 return;
376 /* Success. */
377 if (dump_file)
378 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
379 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
382 /* Decide whether the LOOP is suitable for complete peeling. */
383 static void
384 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
386 unsigned npeel;
387 struct niter_desc *desc;
389 if (dump_file)
390 fprintf (dump_file, "\n;; Considering peeling completely\n");
392 /* Skip non-innermost loops. */
393 if (loop->inner)
395 if (dump_file)
396 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
397 return;
400 /* Do not peel cold areas. */
401 if (!maybe_hot_bb_p (loop->header))
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, cold area\n");
405 return;
408 /* Can the loop be manipulated? */
409 if (!can_duplicate_loop_p (loop))
411 if (dump_file)
412 fprintf (dump_file,
413 ";; Not considering loop, cannot duplicate\n");
414 return;
417 /* npeel = number of iterations to peel. */
418 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
419 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
420 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
422 /* Is the loop small enough? */
423 if (!npeel)
425 if (dump_file)
426 fprintf (dump_file, ";; Not considering loop, is too big\n");
427 return;
430 /* Check for simple loops. */
431 desc = get_simple_loop_desc (loop);
433 /* Check number of iterations. */
434 if (!desc->simple_p
435 || desc->assumptions
436 || !desc->const_iter
437 || desc->infinite)
439 if (dump_file)
440 fprintf (dump_file,
441 ";; Unable to prove that the loop iterates constant times\n");
442 return;
445 if (desc->niter > npeel - 1)
447 if (dump_file)
449 fprintf (dump_file,
450 ";; Not peeling loop completely, rolls too much (");
451 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
452 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
454 return;
457 /* Success. */
458 if (dump_file)
459 fprintf (dump_file, ";; Decided to peel loop completely\n");
460 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
463 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
464 completely. The transformation done:
466 for (i = 0; i < 4; i++)
467 body;
471 i = 0;
472 body; i++;
473 body; i++;
474 body; i++;
475 body; i++;
477 static void
478 peel_loop_completely (struct loops *loops, struct loop *loop)
480 sbitmap wont_exit;
481 unsigned HOST_WIDE_INT npeel;
482 unsigned n_remove_edges, i;
483 edge *remove_edges, ein;
484 struct niter_desc *desc = get_simple_loop_desc (loop);
485 struct opt_info *opt_info = NULL;
487 npeel = desc->niter;
489 if (npeel)
491 bool ok;
493 wont_exit = sbitmap_alloc (npeel + 1);
494 sbitmap_ones (wont_exit);
495 RESET_BIT (wont_exit, 0);
496 if (desc->noloop_assumptions)
497 RESET_BIT (wont_exit, 1);
499 remove_edges = XCNEWVEC (edge, npeel);
500 n_remove_edges = 0;
502 if (flag_split_ivs_in_unroller)
503 opt_info = analyze_insns_in_loop (loop);
505 opt_info_start_duplication (opt_info);
506 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
507 loops, npeel,
508 wont_exit, desc->out_edge,
509 remove_edges, &n_remove_edges,
510 DLTHE_FLAG_UPDATE_FREQ
511 | DLTHE_FLAG_COMPLETTE_PEEL
512 | (opt_info
513 ? DLTHE_RECORD_COPY_NUMBER : 0));
514 gcc_assert (ok);
516 free (wont_exit);
518 if (opt_info)
520 apply_opt_in_copies (opt_info, npeel, false, true);
521 free_opt_info (opt_info);
524 /* Remove the exit edges. */
525 for (i = 0; i < n_remove_edges; i++)
526 remove_path (loops, remove_edges[i]);
527 free (remove_edges);
530 ein = desc->in_edge;
531 free_simple_loop_desc (loop);
533 /* Now remove the unreachable part of the last iteration and cancel
534 the loop. */
535 remove_path (loops, ein);
537 if (dump_file)
538 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
541 /* Decide whether to unroll LOOP iterating constant number of times
542 and how much. */
544 static void
545 decide_unroll_constant_iterations (struct loop *loop, int flags)
547 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
548 struct niter_desc *desc;
550 if (!(flags & UAP_UNROLL))
552 /* We were not asked to, just return back silently. */
553 return;
556 if (dump_file)
557 fprintf (dump_file,
558 "\n;; Considering unrolling loop with constant "
559 "number of iterations\n");
561 /* nunroll = total number of copies of the original loop body in
562 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
563 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
564 nunroll_by_av
565 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
566 if (nunroll > nunroll_by_av)
567 nunroll = nunroll_by_av;
568 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
569 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
571 /* Skip big loops. */
572 if (nunroll <= 1)
574 if (dump_file)
575 fprintf (dump_file, ";; Not considering loop, is too big\n");
576 return;
579 /* Check for simple loops. */
580 desc = get_simple_loop_desc (loop);
582 /* Check number of iterations. */
583 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
585 if (dump_file)
586 fprintf (dump_file,
587 ";; Unable to prove that the loop iterates constant times\n");
588 return;
591 /* Check whether the loop rolls enough to consider. */
592 if (desc->niter < 2 * nunroll)
594 if (dump_file)
595 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
596 return;
599 /* Success; now compute number of iterations to unroll. We alter
600 nunroll so that as few as possible copies of loop body are
601 necessary, while still not decreasing the number of unrollings
602 too much (at most by 1). */
603 best_copies = 2 * nunroll + 10;
605 i = 2 * nunroll + 2;
606 if (i - 1 >= desc->niter)
607 i = desc->niter - 2;
609 for (; i >= nunroll - 1; i--)
611 unsigned exit_mod = desc->niter % (i + 1);
613 if (!loop_exit_at_end_p (loop))
614 n_copies = exit_mod + i + 1;
615 else if (exit_mod != (unsigned) i
616 || desc->noloop_assumptions != NULL_RTX)
617 n_copies = exit_mod + i + 2;
618 else
619 n_copies = i + 1;
621 if (n_copies < best_copies)
623 best_copies = n_copies;
624 best_unroll = i;
628 if (dump_file)
629 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
630 best_unroll + 1, best_copies, nunroll);
632 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
633 loop->lpt_decision.times = best_unroll;
635 if (dump_file)
636 fprintf (dump_file,
637 ";; Decided to unroll the constant times rolling loop, %d times.\n",
638 loop->lpt_decision.times);
641 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
642 times. The transformation does this:
644 for (i = 0; i < 102; i++)
645 body;
649 i = 0;
650 body; i++;
651 body; i++;
652 while (i < 102)
654 body; i++;
655 body; i++;
656 body; i++;
657 body; i++;
660 static void
661 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
663 unsigned HOST_WIDE_INT niter;
664 unsigned exit_mod;
665 sbitmap wont_exit;
666 unsigned n_remove_edges, i;
667 edge *remove_edges;
668 unsigned max_unroll = loop->lpt_decision.times;
669 struct niter_desc *desc = get_simple_loop_desc (loop);
670 bool exit_at_end = loop_exit_at_end_p (loop);
671 struct opt_info *opt_info = NULL;
672 bool ok;
674 niter = desc->niter;
676 /* Should not get here (such loop should be peeled instead). */
677 gcc_assert (niter > max_unroll + 1);
679 exit_mod = niter % (max_unroll + 1);
681 wont_exit = sbitmap_alloc (max_unroll + 1);
682 sbitmap_ones (wont_exit);
684 remove_edges = XCNEWVEC (edge, max_unroll + exit_mod + 1);
685 n_remove_edges = 0;
686 if (flag_split_ivs_in_unroller
687 || flag_variable_expansion_in_unroller)
688 opt_info = analyze_insns_in_loop (loop);
690 if (!exit_at_end)
692 /* The exit is not at the end of the loop; leave exit test
693 in the first copy, so that the loops that start with test
694 of exit condition have continuous body after unrolling. */
696 if (dump_file)
697 fprintf (dump_file, ";; Condition on beginning of loop.\n");
699 /* Peel exit_mod iterations. */
700 RESET_BIT (wont_exit, 0);
701 if (desc->noloop_assumptions)
702 RESET_BIT (wont_exit, 1);
704 if (exit_mod)
706 opt_info_start_duplication (opt_info);
707 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
708 loops, exit_mod,
709 wont_exit, desc->out_edge,
710 remove_edges, &n_remove_edges,
711 DLTHE_FLAG_UPDATE_FREQ
712 | (opt_info && exit_mod > 1
713 ? DLTHE_RECORD_COPY_NUMBER
714 : 0));
715 gcc_assert (ok);
717 if (opt_info && exit_mod > 1)
718 apply_opt_in_copies (opt_info, exit_mod, false, false);
720 desc->noloop_assumptions = NULL_RTX;
721 desc->niter -= exit_mod;
722 desc->niter_max -= exit_mod;
725 SET_BIT (wont_exit, 1);
727 else
729 /* Leave exit test in last copy, for the same reason as above if
730 the loop tests the condition at the end of loop body. */
732 if (dump_file)
733 fprintf (dump_file, ";; Condition on end of loop.\n");
735 /* We know that niter >= max_unroll + 2; so we do not need to care of
736 case when we would exit before reaching the loop. So just peel
737 exit_mod + 1 iterations. */
738 if (exit_mod != max_unroll
739 || desc->noloop_assumptions)
741 RESET_BIT (wont_exit, 0);
742 if (desc->noloop_assumptions)
743 RESET_BIT (wont_exit, 1);
745 opt_info_start_duplication (opt_info);
746 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
747 loops, exit_mod + 1,
748 wont_exit, desc->out_edge,
749 remove_edges, &n_remove_edges,
750 DLTHE_FLAG_UPDATE_FREQ
751 | (opt_info && exit_mod > 0
752 ? DLTHE_RECORD_COPY_NUMBER
753 : 0));
754 gcc_assert (ok);
756 if (opt_info && exit_mod > 0)
757 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
759 desc->niter -= exit_mod + 1;
760 desc->niter_max -= exit_mod + 1;
761 desc->noloop_assumptions = NULL_RTX;
763 SET_BIT (wont_exit, 0);
764 SET_BIT (wont_exit, 1);
767 RESET_BIT (wont_exit, max_unroll);
770 /* Now unroll the loop. */
772 opt_info_start_duplication (opt_info);
773 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
774 loops, max_unroll,
775 wont_exit, desc->out_edge,
776 remove_edges, &n_remove_edges,
777 DLTHE_FLAG_UPDATE_FREQ
778 | (opt_info
779 ? DLTHE_RECORD_COPY_NUMBER
780 : 0));
781 gcc_assert (ok);
783 if (opt_info)
785 apply_opt_in_copies (opt_info, max_unroll, true, true);
786 free_opt_info (opt_info);
789 free (wont_exit);
791 if (exit_at_end)
793 basic_block exit_block = get_bb_copy (desc->in_edge->src);
794 /* Find a new in and out edge; they are in the last copy we have made. */
796 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
798 desc->out_edge = EDGE_SUCC (exit_block, 0);
799 desc->in_edge = EDGE_SUCC (exit_block, 1);
801 else
803 desc->out_edge = EDGE_SUCC (exit_block, 1);
804 desc->in_edge = EDGE_SUCC (exit_block, 0);
808 desc->niter /= max_unroll + 1;
809 desc->niter_max /= max_unroll + 1;
810 desc->niter_expr = GEN_INT (desc->niter);
812 /* Remove the edges. */
813 for (i = 0; i < n_remove_edges; i++)
814 remove_path (loops, remove_edges[i]);
815 free (remove_edges);
817 if (dump_file)
818 fprintf (dump_file,
819 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
820 max_unroll, num_loop_insns (loop));
823 /* Decide whether to unroll LOOP iterating runtime computable number of times
824 and how much. */
825 static void
826 decide_unroll_runtime_iterations (struct loop *loop, int flags)
828 unsigned nunroll, nunroll_by_av, i;
829 struct niter_desc *desc;
831 if (!(flags & UAP_UNROLL))
833 /* We were not asked to, just return back silently. */
834 return;
837 if (dump_file)
838 fprintf (dump_file,
839 "\n;; Considering unrolling loop with runtime "
840 "computable number of iterations\n");
842 /* nunroll = total number of copies of the original loop body in
843 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
844 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
845 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
846 if (nunroll > nunroll_by_av)
847 nunroll = nunroll_by_av;
848 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
849 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
851 /* Skip big loops. */
852 if (nunroll <= 1)
854 if (dump_file)
855 fprintf (dump_file, ";; Not considering loop, is too big\n");
856 return;
859 /* Check for simple loops. */
860 desc = get_simple_loop_desc (loop);
862 /* Check simpleness. */
863 if (!desc->simple_p || desc->assumptions)
865 if (dump_file)
866 fprintf (dump_file,
867 ";; Unable to prove that the number of iterations "
868 "can be counted in runtime\n");
869 return;
872 if (desc->const_iter)
874 if (dump_file)
875 fprintf (dump_file, ";; Loop iterates constant times\n");
876 return;
879 /* If we have profile feedback, check whether the loop rolls. */
880 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
882 if (dump_file)
883 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
884 return;
887 /* Success; now force nunroll to be power of 2, as we are unable to
888 cope with overflows in computation of number of iterations. */
889 for (i = 1; 2 * i <= nunroll; i *= 2)
890 continue;
892 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
893 loop->lpt_decision.times = i - 1;
895 if (dump_file)
896 fprintf (dump_file,
897 ";; Decided to unroll the runtime computable "
898 "times rolling loop, %d times.\n",
899 loop->lpt_decision.times);
902 /* Unroll LOOP for that we are able to count number of iterations in runtime
903 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
904 extra care for case n < 0):
906 for (i = 0; i < n; i++)
907 body;
911 i = 0;
912 mod = n % 4;
914 switch (mod)
916 case 3:
917 body; i++;
918 case 2:
919 body; i++;
920 case 1:
921 body; i++;
922 case 0: ;
925 while (i < n)
927 body; i++;
928 body; i++;
929 body; i++;
930 body; i++;
933 static void
934 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
936 rtx old_niter, niter, init_code, branch_code, tmp;
937 unsigned i, j, p;
938 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
939 unsigned n_dom_bbs;
940 sbitmap wont_exit;
941 int may_exit_copy;
942 unsigned n_peel, n_remove_edges;
943 edge *remove_edges, e;
944 bool extra_zero_check, last_may_exit;
945 unsigned max_unroll = loop->lpt_decision.times;
946 struct niter_desc *desc = get_simple_loop_desc (loop);
947 bool exit_at_end = loop_exit_at_end_p (loop);
948 struct opt_info *opt_info = NULL;
949 bool ok;
951 if (flag_split_ivs_in_unroller
952 || flag_variable_expansion_in_unroller)
953 opt_info = analyze_insns_in_loop (loop);
955 /* Remember blocks whose dominators will have to be updated. */
956 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
957 n_dom_bbs = 0;
959 body = get_loop_body (loop);
960 for (i = 0; i < loop->num_nodes; i++)
962 unsigned nldom;
963 basic_block *ldom;
965 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
966 for (j = 0; j < nldom; j++)
967 if (!flow_bb_inside_loop_p (loop, ldom[j]))
968 dom_bbs[n_dom_bbs++] = ldom[j];
970 free (ldom);
972 free (body);
974 if (!exit_at_end)
976 /* Leave exit in first copy (for explanation why see comment in
977 unroll_loop_constant_iterations). */
978 may_exit_copy = 0;
979 n_peel = max_unroll - 1;
980 extra_zero_check = true;
981 last_may_exit = false;
983 else
985 /* Leave exit in last copy (for explanation why see comment in
986 unroll_loop_constant_iterations). */
987 may_exit_copy = max_unroll;
988 n_peel = max_unroll;
989 extra_zero_check = false;
990 last_may_exit = true;
993 /* Get expression for number of iterations. */
994 start_sequence ();
995 old_niter = niter = gen_reg_rtx (desc->mode);
996 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
997 if (tmp != niter)
998 emit_move_insn (niter, tmp);
1000 /* Count modulo by ANDing it with max_unroll; we use the fact that
1001 the number of unrollings is a power of two, and thus this is correct
1002 even if there is overflow in the computation. */
1003 niter = expand_simple_binop (desc->mode, AND,
1004 niter,
1005 GEN_INT (max_unroll),
1006 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1008 init_code = get_insns ();
1009 end_sequence ();
1011 /* Precondition the loop. */
1012 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1014 remove_edges = XCNEWVEC (edge, max_unroll + n_peel + 1);
1015 n_remove_edges = 0;
1017 wont_exit = sbitmap_alloc (max_unroll + 2);
1019 /* Peel the first copy of loop body (almost always we must leave exit test
1020 here; the only exception is when we have extra zero check and the number
1021 of iterations is reliable. Also record the place of (possible) extra
1022 zero check. */
1023 sbitmap_zero (wont_exit);
1024 if (extra_zero_check
1025 && !desc->noloop_assumptions)
1026 SET_BIT (wont_exit, 1);
1027 ezc_swtch = loop_preheader_edge (loop)->src;
1028 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1029 loops, 1,
1030 wont_exit, desc->out_edge,
1031 remove_edges, &n_remove_edges,
1032 DLTHE_FLAG_UPDATE_FREQ);
1033 gcc_assert (ok);
1035 /* Record the place where switch will be built for preconditioning. */
1036 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1037 NULL_RTX);
1039 for (i = 0; i < n_peel; i++)
1041 /* Peel the copy. */
1042 sbitmap_zero (wont_exit);
1043 if (i != n_peel - 1 || !last_may_exit)
1044 SET_BIT (wont_exit, 1);
1045 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1046 loops, 1,
1047 wont_exit, desc->out_edge,
1048 remove_edges, &n_remove_edges,
1049 DLTHE_FLAG_UPDATE_FREQ);
1050 gcc_assert (ok);
1052 /* Create item for switch. */
1053 j = n_peel - i - (extra_zero_check ? 0 : 1);
1054 p = REG_BR_PROB_BASE / (i + 2);
1056 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1057 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1058 block_label (preheader), p,
1059 NULL_RTX);
1061 swtch = loop_split_edge_with (single_pred_edge (swtch), branch_code);
1062 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1063 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1064 e = make_edge (swtch, preheader,
1065 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1066 e->probability = p;
1069 if (extra_zero_check)
1071 /* Add branch for zero iterations. */
1072 p = REG_BR_PROB_BASE / (max_unroll + 1);
1073 swtch = ezc_swtch;
1074 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1075 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1076 block_label (preheader), p,
1077 NULL_RTX);
1079 swtch = loop_split_edge_with (single_succ_edge (swtch), branch_code);
1080 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1081 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1082 e = make_edge (swtch, preheader,
1083 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1084 e->probability = p;
1087 /* Recount dominators for outer blocks. */
1088 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1090 /* And unroll loop. */
1092 sbitmap_ones (wont_exit);
1093 RESET_BIT (wont_exit, may_exit_copy);
1094 opt_info_start_duplication (opt_info);
1096 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1097 loops, max_unroll,
1098 wont_exit, desc->out_edge,
1099 remove_edges, &n_remove_edges,
1100 DLTHE_FLAG_UPDATE_FREQ
1101 | (opt_info
1102 ? DLTHE_RECORD_COPY_NUMBER
1103 : 0));
1104 gcc_assert (ok);
1106 if (opt_info)
1108 apply_opt_in_copies (opt_info, max_unroll, true, true);
1109 free_opt_info (opt_info);
1112 free (wont_exit);
1114 if (exit_at_end)
1116 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1117 /* Find a new in and out edge; they are in the last copy we have
1118 made. */
1120 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1122 desc->out_edge = EDGE_SUCC (exit_block, 0);
1123 desc->in_edge = EDGE_SUCC (exit_block, 1);
1125 else
1127 desc->out_edge = EDGE_SUCC (exit_block, 1);
1128 desc->in_edge = EDGE_SUCC (exit_block, 0);
1132 /* Remove the edges. */
1133 for (i = 0; i < n_remove_edges; i++)
1134 remove_path (loops, remove_edges[i]);
1135 free (remove_edges);
1137 /* We must be careful when updating the number of iterations due to
1138 preconditioning and the fact that the value must be valid at entry
1139 of the loop. After passing through the above code, we see that
1140 the correct new number of iterations is this: */
1141 gcc_assert (!desc->const_iter);
1142 desc->niter_expr =
1143 simplify_gen_binary (UDIV, desc->mode, old_niter,
1144 GEN_INT (max_unroll + 1));
1145 desc->niter_max /= max_unroll + 1;
1146 if (exit_at_end)
1148 desc->niter_expr =
1149 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1150 desc->noloop_assumptions = NULL_RTX;
1151 desc->niter_max--;
1154 if (dump_file)
1155 fprintf (dump_file,
1156 ";; Unrolled loop %d times, counting # of iterations "
1157 "in runtime, %i insns\n",
1158 max_unroll, num_loop_insns (loop));
1160 if (dom_bbs)
1161 free (dom_bbs);
1164 /* Decide whether to simply peel LOOP and how much. */
1165 static void
1166 decide_peel_simple (struct loop *loop, int flags)
1168 unsigned npeel;
1169 struct niter_desc *desc;
1171 if (!(flags & UAP_PEEL))
1173 /* We were not asked to, just return back silently. */
1174 return;
1177 if (dump_file)
1178 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1180 /* npeel = number of iterations to peel. */
1181 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1182 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1183 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1185 /* Skip big loops. */
1186 if (!npeel)
1188 if (dump_file)
1189 fprintf (dump_file, ";; Not considering loop, is too big\n");
1190 return;
1193 /* Check for simple loops. */
1194 desc = get_simple_loop_desc (loop);
1196 /* Check number of iterations. */
1197 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1199 if (dump_file)
1200 fprintf (dump_file, ";; Loop iterates constant times\n");
1201 return;
1204 /* Do not simply peel loops with branches inside -- it increases number
1205 of mispredicts. */
1206 if (num_loop_branches (loop) > 1)
1208 if (dump_file)
1209 fprintf (dump_file, ";; Not peeling, contains branches\n");
1210 return;
1213 if (loop->header->count)
1215 unsigned niter = expected_loop_iterations (loop);
1216 if (niter + 1 > npeel)
1218 if (dump_file)
1220 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1221 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1222 (HOST_WIDEST_INT) (niter + 1));
1223 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1224 npeel);
1226 return;
1228 npeel = niter + 1;
1230 else
1232 /* For now we have no good heuristics to decide whether loop peeling
1233 will be effective, so disable it. */
1234 if (dump_file)
1235 fprintf (dump_file,
1236 ";; Not peeling loop, no evidence it will be profitable\n");
1237 return;
1240 /* Success. */
1241 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1242 loop->lpt_decision.times = npeel;
1244 if (dump_file)
1245 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1246 loop->lpt_decision.times);
1249 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1250 while (cond)
1251 body;
1255 if (!cond) goto end;
1256 body;
1257 if (!cond) goto end;
1258 body;
1259 while (cond)
1260 body;
1261 end: ;
1263 static void
1264 peel_loop_simple (struct loops *loops, struct loop *loop)
1266 sbitmap wont_exit;
1267 unsigned npeel = loop->lpt_decision.times;
1268 struct niter_desc *desc = get_simple_loop_desc (loop);
1269 struct opt_info *opt_info = NULL;
1270 bool ok;
1272 if (flag_split_ivs_in_unroller && npeel > 1)
1273 opt_info = analyze_insns_in_loop (loop);
1275 wont_exit = sbitmap_alloc (npeel + 1);
1276 sbitmap_zero (wont_exit);
1278 opt_info_start_duplication (opt_info);
1280 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1281 loops, npeel, wont_exit,
1282 NULL, NULL,
1283 NULL, DLTHE_FLAG_UPDATE_FREQ
1284 | (opt_info
1285 ? DLTHE_RECORD_COPY_NUMBER
1286 : 0));
1287 gcc_assert (ok);
1289 free (wont_exit);
1291 if (opt_info)
1293 apply_opt_in_copies (opt_info, npeel, false, false);
1294 free_opt_info (opt_info);
1297 if (desc->simple_p)
1299 if (desc->const_iter)
1301 desc->niter -= npeel;
1302 desc->niter_expr = GEN_INT (desc->niter);
1303 desc->noloop_assumptions = NULL_RTX;
1305 else
1307 /* We cannot just update niter_expr, as its value might be clobbered
1308 inside loop. We could handle this by counting the number into
1309 temporary just like we do in runtime unrolling, but it does not
1310 seem worthwhile. */
1311 free_simple_loop_desc (loop);
1314 if (dump_file)
1315 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1318 /* Decide whether to unroll LOOP stupidly and how much. */
1319 static void
1320 decide_unroll_stupid (struct loop *loop, int flags)
1322 unsigned nunroll, nunroll_by_av, i;
1323 struct niter_desc *desc;
1325 if (!(flags & UAP_UNROLL_ALL))
1327 /* We were not asked to, just return back silently. */
1328 return;
1331 if (dump_file)
1332 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1334 /* nunroll = total number of copies of the original loop body in
1335 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1336 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1337 nunroll_by_av
1338 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1339 if (nunroll > nunroll_by_av)
1340 nunroll = nunroll_by_av;
1341 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1342 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1344 /* Skip big loops. */
1345 if (nunroll <= 1)
1347 if (dump_file)
1348 fprintf (dump_file, ";; Not considering loop, is too big\n");
1349 return;
1352 /* Check for simple loops. */
1353 desc = get_simple_loop_desc (loop);
1355 /* Check simpleness. */
1356 if (desc->simple_p && !desc->assumptions)
1358 if (dump_file)
1359 fprintf (dump_file, ";; The loop is simple\n");
1360 return;
1363 /* Do not unroll loops with branches inside -- it increases number
1364 of mispredicts. */
1365 if (num_loop_branches (loop) > 1)
1367 if (dump_file)
1368 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1369 return;
1372 /* If we have profile feedback, check whether the loop rolls. */
1373 if (loop->header->count
1374 && expected_loop_iterations (loop) < 2 * nunroll)
1376 if (dump_file)
1377 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1378 return;
1381 /* Success. Now force nunroll to be power of 2, as it seems that this
1382 improves results (partially because of better alignments, partially
1383 because of some dark magic). */
1384 for (i = 1; 2 * i <= nunroll; i *= 2)
1385 continue;
1387 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1388 loop->lpt_decision.times = i - 1;
1390 if (dump_file)
1391 fprintf (dump_file,
1392 ";; Decided to unroll the loop stupidly, %d times.\n",
1393 loop->lpt_decision.times);
1396 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1397 while (cond)
1398 body;
1402 while (cond)
1404 body;
1405 if (!cond) break;
1406 body;
1407 if (!cond) break;
1408 body;
1409 if (!cond) break;
1410 body;
1413 static void
1414 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1416 sbitmap wont_exit;
1417 unsigned nunroll = loop->lpt_decision.times;
1418 struct niter_desc *desc = get_simple_loop_desc (loop);
1419 struct opt_info *opt_info = NULL;
1420 bool ok;
1422 if (flag_split_ivs_in_unroller
1423 || flag_variable_expansion_in_unroller)
1424 opt_info = analyze_insns_in_loop (loop);
1427 wont_exit = sbitmap_alloc (nunroll + 1);
1428 sbitmap_zero (wont_exit);
1429 opt_info_start_duplication (opt_info);
1431 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1432 loops, nunroll, wont_exit,
1433 NULL, NULL, NULL,
1434 DLTHE_FLAG_UPDATE_FREQ
1435 | (opt_info
1436 ? DLTHE_RECORD_COPY_NUMBER
1437 : 0));
1438 gcc_assert (ok);
1440 if (opt_info)
1442 apply_opt_in_copies (opt_info, nunroll, true, true);
1443 free_opt_info (opt_info);
1446 free (wont_exit);
1448 if (desc->simple_p)
1450 /* We indeed may get here provided that there are nontrivial assumptions
1451 for a loop to be really simple. We could update the counts, but the
1452 problem is that we are unable to decide which exit will be taken
1453 (not really true in case the number of iterations is constant,
1454 but noone will do anything with this information, so we do not
1455 worry about it). */
1456 desc->simple_p = false;
1459 if (dump_file)
1460 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1461 nunroll, num_loop_insns (loop));
1464 /* A hash function for information about insns to split. */
1466 static hashval_t
1467 si_info_hash (const void *ivts)
1469 return (hashval_t) INSN_UID (((struct iv_to_split *) ivts)->insn);
1472 /* An equality functions for information about insns to split. */
1474 static int
1475 si_info_eq (const void *ivts1, const void *ivts2)
1477 const struct iv_to_split *i1 = ivts1;
1478 const struct iv_to_split *i2 = ivts2;
1480 return i1->insn == i2->insn;
1483 /* Return a hash for VES, which is really a "var_to_expand *". */
1485 static hashval_t
1486 ve_info_hash (const void *ves)
1488 return (hashval_t) INSN_UID (((struct var_to_expand *) ves)->insn);
1491 /* Return true if IVTS1 and IVTS2 (which are really both of type
1492 "var_to_expand *") refer to the same instruction. */
1494 static int
1495 ve_info_eq (const void *ivts1, const void *ivts2)
1497 const struct var_to_expand *i1 = ivts1;
1498 const struct var_to_expand *i2 = ivts2;
1500 return i1->insn == i2->insn;
1503 /* Returns true if REG is referenced in one insn in LOOP. */
1505 bool
1506 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1508 basic_block *body, bb;
1509 unsigned i;
1510 int count_ref = 0;
1511 rtx insn;
1513 body = get_loop_body (loop);
1514 for (i = 0; i < loop->num_nodes; i++)
1516 bb = body[i];
1518 FOR_BB_INSNS (bb, insn)
1520 if (rtx_referenced_p (reg, insn))
1521 count_ref++;
1524 return (count_ref == 1);
1527 /* Determine whether INSN contains an accumulator
1528 which can be expanded into separate copies,
1529 one for each copy of the LOOP body.
1531 for (i = 0 ; i < n; i++)
1532 sum += a[i];
1536 sum += a[i]
1537 ....
1538 i = i+1;
1539 sum1 += a[i]
1540 ....
1541 i = i+1
1542 sum2 += a[i];
1543 ....
1545 Return NULL if INSN contains no opportunity for expansion of accumulator.
1546 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1547 information and return a pointer to it.
1550 static struct var_to_expand *
1551 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1553 rtx set, dest, src, op1;
1554 struct var_to_expand *ves;
1555 enum machine_mode mode1, mode2;
1557 set = single_set (insn);
1558 if (!set)
1559 return NULL;
1561 dest = SET_DEST (set);
1562 src = SET_SRC (set);
1564 if (GET_CODE (src) != PLUS
1565 && GET_CODE (src) != MINUS
1566 && GET_CODE (src) != MULT)
1567 return NULL;
1569 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1570 in MD. But if there is no optab to generate the insn, we can not
1571 perform the variable expansion. This can happen if an MD provides
1572 an insn but not a named pattern to generate it, for example to avoid
1573 producing code that needs additional mode switches like for x87/mmx.
1575 So we check have_insn_for which looks for an optab for the operation
1576 in SRC. If it doesn't exist, we can't perform the expansion even
1577 though INSN is valid. */
1578 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1579 return NULL;
1581 if (!XEXP (src, 0))
1582 return NULL;
1584 op1 = XEXP (src, 0);
1586 if (!REG_P (dest)
1587 && !(GET_CODE (dest) == SUBREG
1588 && REG_P (SUBREG_REG (dest))))
1589 return NULL;
1591 if (!rtx_equal_p (dest, op1))
1592 return NULL;
1594 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1595 return NULL;
1597 if (rtx_referenced_p (dest, XEXP (src, 1)))
1598 return NULL;
1600 mode1 = GET_MODE (dest);
1601 mode2 = GET_MODE (XEXP (src, 1));
1602 if ((FLOAT_MODE_P (mode1)
1603 || FLOAT_MODE_P (mode2))
1604 && !flag_unsafe_math_optimizations)
1605 return NULL;
1607 /* Record the accumulator to expand. */
1608 ves = XNEW (struct var_to_expand);
1609 ves->insn = insn;
1610 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1611 ves->reg = copy_rtx (dest);
1612 ves->op = GET_CODE (src);
1613 ves->expansion_count = 0;
1614 ves->reuse_expansion = 0;
1615 return ves;
1618 /* Determine whether there is an induction variable in INSN that
1619 we would like to split during unrolling.
1621 I.e. replace
1623 i = i + 1;
1625 i = i + 1;
1627 i = i + 1;
1630 type chains by
1632 i0 = i + 1
1634 i = i0 + 1
1636 i = i0 + 2
1639 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1640 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1641 pointer to it. */
1643 static struct iv_to_split *
1644 analyze_iv_to_split_insn (rtx insn)
1646 rtx set, dest;
1647 struct rtx_iv iv;
1648 struct iv_to_split *ivts;
1649 bool ok;
1651 /* For now we just split the basic induction variables. Later this may be
1652 extended for example by selecting also addresses of memory references. */
1653 set = single_set (insn);
1654 if (!set)
1655 return NULL;
1657 dest = SET_DEST (set);
1658 if (!REG_P (dest))
1659 return NULL;
1661 if (!biv_p (insn, dest))
1662 return NULL;
1664 ok = iv_analyze_result (insn, dest, &iv);
1666 /* This used to be an assert under the assumption that if biv_p returns
1667 true that iv_analyze_result must also return true. However, that
1668 assumption is not strictly correct as evidenced by pr25569.
1670 Returning NULL when iv_analyze_result returns false is safe and
1671 avoids the problems in pr25569 until the iv_analyze_* routines
1672 can be fixed, which is apparently hard and time consuming
1673 according to their author. */
1674 if (! ok)
1675 return NULL;
1677 if (iv.step == const0_rtx
1678 || iv.mode != iv.extend_mode)
1679 return NULL;
1681 /* Record the insn to split. */
1682 ivts = XNEW (struct iv_to_split);
1683 ivts->insn = insn;
1684 ivts->base_var = NULL_RTX;
1685 ivts->step = iv.step;
1686 ivts->n_loc = 1;
1687 ivts->loc[0] = 1;
1689 return ivts;
1692 /* Determines which of insns in LOOP can be optimized.
1693 Return a OPT_INFO struct with the relevant hash tables filled
1694 with all insns to be optimized. The FIRST_NEW_BLOCK field
1695 is undefined for the return value. */
1697 static struct opt_info *
1698 analyze_insns_in_loop (struct loop *loop)
1700 basic_block *body, bb;
1701 unsigned i, num_edges = 0;
1702 struct opt_info *opt_info = XCNEW (struct opt_info);
1703 rtx insn;
1704 struct iv_to_split *ivts = NULL;
1705 struct var_to_expand *ves = NULL;
1706 PTR *slot1;
1707 PTR *slot2;
1708 edge *edges = get_loop_exit_edges (loop, &num_edges);
1709 bool can_apply = false;
1711 iv_analysis_loop_init (loop);
1713 body = get_loop_body (loop);
1715 if (flag_split_ivs_in_unroller)
1716 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1717 si_info_hash, si_info_eq, free);
1719 /* Record the loop exit bb and loop preheader before the unrolling. */
1720 if (!loop_preheader_edge (loop)->src)
1722 loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1723 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1725 else
1726 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1728 if (num_edges == 1
1729 && !(edges[0]->flags & EDGE_COMPLEX))
1731 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1732 can_apply = true;
1735 if (flag_variable_expansion_in_unroller
1736 && can_apply)
1737 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1738 ve_info_hash, ve_info_eq, free);
1740 for (i = 0; i < loop->num_nodes; i++)
1742 bb = body[i];
1743 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1744 continue;
1746 FOR_BB_INSNS (bb, insn)
1748 if (!INSN_P (insn))
1749 continue;
1751 if (opt_info->insns_to_split)
1752 ivts = analyze_iv_to_split_insn (insn);
1754 if (ivts)
1756 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1757 *slot1 = ivts;
1758 continue;
1761 if (opt_info->insns_with_var_to_expand)
1762 ves = analyze_insn_to_expand_var (loop, insn);
1764 if (ves)
1766 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1767 *slot2 = ves;
1772 free (edges);
1773 free (body);
1774 return opt_info;
1777 /* Called just before loop duplication. Records start of duplicated area
1778 to OPT_INFO. */
1780 static void
1781 opt_info_start_duplication (struct opt_info *opt_info)
1783 if (opt_info)
1784 opt_info->first_new_block = last_basic_block;
1787 /* Determine the number of iterations between initialization of the base
1788 variable and the current copy (N_COPY). N_COPIES is the total number
1789 of newly created copies. UNROLLING is true if we are unrolling
1790 (not peeling) the loop. */
1792 static unsigned
1793 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1795 if (unrolling)
1797 /* If we are unrolling, initialization is done in the original loop
1798 body (number 0). */
1799 return n_copy;
1801 else
1803 /* If we are peeling, the copy in that the initialization occurs has
1804 number 1. The original loop (number 0) is the last. */
1805 if (n_copy)
1806 return n_copy - 1;
1807 else
1808 return n_copies;
1812 /* Locate in EXPR the expression corresponding to the location recorded
1813 in IVTS, and return a pointer to the RTX for this location. */
1815 static rtx *
1816 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1818 unsigned i;
1819 rtx *ret = &expr;
1821 for (i = 0; i < ivts->n_loc; i++)
1822 ret = &XEXP (*ret, ivts->loc[i]);
1824 return ret;
1827 /* Allocate basic variable for the induction variable chain. Callback for
1828 htab_traverse. */
1830 static int
1831 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1833 struct iv_to_split *ivts = *slot;
1834 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1836 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1838 return 1;
1841 /* Insert initialization of basic variable of IVTS before INSN, taking
1842 the initial value from INSN. */
1844 static void
1845 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1847 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1848 rtx seq;
1850 start_sequence ();
1851 expr = force_operand (expr, ivts->base_var);
1852 if (expr != ivts->base_var)
1853 emit_move_insn (ivts->base_var, expr);
1854 seq = get_insns ();
1855 end_sequence ();
1857 emit_insn_before (seq, insn);
1860 /* Replace the use of induction variable described in IVTS in INSN
1861 by base variable + DELTA * step. */
1863 static void
1864 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1866 rtx expr, *loc, seq, incr, var;
1867 enum machine_mode mode = GET_MODE (ivts->base_var);
1868 rtx src, dest, set;
1870 /* Construct base + DELTA * step. */
1871 if (!delta)
1872 expr = ivts->base_var;
1873 else
1875 incr = simplify_gen_binary (MULT, mode,
1876 ivts->step, gen_int_mode (delta, mode));
1877 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1878 ivts->base_var, incr);
1881 /* Figure out where to do the replacement. */
1882 loc = get_ivts_expr (single_set (insn), ivts);
1884 /* If we can make the replacement right away, we're done. */
1885 if (validate_change (insn, loc, expr, 0))
1886 return;
1888 /* Otherwise, force EXPR into a register and try again. */
1889 start_sequence ();
1890 var = gen_reg_rtx (mode);
1891 expr = force_operand (expr, var);
1892 if (expr != var)
1893 emit_move_insn (var, expr);
1894 seq = get_insns ();
1895 end_sequence ();
1896 emit_insn_before (seq, insn);
1898 if (validate_change (insn, loc, var, 0))
1899 return;
1901 /* The last chance. Try recreating the assignment in insn
1902 completely from scratch. */
1903 set = single_set (insn);
1904 gcc_assert (set);
1906 start_sequence ();
1907 *loc = var;
1908 src = copy_rtx (SET_SRC (set));
1909 dest = copy_rtx (SET_DEST (set));
1910 src = force_operand (src, dest);
1911 if (src != dest)
1912 emit_move_insn (dest, src);
1913 seq = get_insns ();
1914 end_sequence ();
1916 emit_insn_before (seq, insn);
1917 delete_insn (insn);
1921 /* Return one expansion of the accumulator recorded in struct VE. */
1923 static rtx
1924 get_expansion (struct var_to_expand *ve)
1926 rtx reg;
1928 if (ve->reuse_expansion == 0)
1929 reg = ve->reg;
1930 else
1931 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1933 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1934 ve->reuse_expansion = 0;
1935 else
1936 ve->reuse_expansion++;
1938 return reg;
1942 /* Given INSN replace the uses of the accumulator recorded in VE
1943 with a new register. */
1945 static void
1946 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1948 rtx new_reg, set;
1949 bool really_new_expansion = false;
1951 set = single_set (insn);
1952 gcc_assert (set);
1954 /* Generate a new register only if the expansion limit has not been
1955 reached. Else reuse an already existing expansion. */
1956 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1958 really_new_expansion = true;
1959 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1961 else
1962 new_reg = get_expansion (ve);
1964 validate_change (insn, &SET_DEST (set), new_reg, 1);
1965 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1967 if (apply_change_group ())
1968 if (really_new_expansion)
1970 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1971 ve->expansion_count++;
1975 /* Initialize the variable expansions in loop preheader.
1976 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1977 basic block where the initialization of the expansions
1978 should take place. */
1980 static int
1981 insert_var_expansion_initialization (void **slot, void *place_p)
1983 struct var_to_expand *ve = *slot;
1984 basic_block place = (basic_block)place_p;
1985 rtx seq, var, zero_init, insn;
1986 unsigned i;
1988 if (VEC_length (rtx, ve->var_expansions) == 0)
1989 return 1;
1991 start_sequence ();
1992 if (ve->op == PLUS || ve->op == MINUS)
1993 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1995 zero_init = CONST0_RTX (GET_MODE (var));
1996 emit_move_insn (var, zero_init);
1998 else if (ve->op == MULT)
1999 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2001 zero_init = CONST1_RTX (GET_MODE (var));
2002 emit_move_insn (var, zero_init);
2005 seq = get_insns ();
2006 end_sequence ();
2008 insn = BB_HEAD (place);
2009 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2010 insn = NEXT_INSN (insn);
2012 emit_insn_after (seq, insn);
2013 /* Continue traversing the hash table. */
2014 return 1;
2017 /* Combine the variable expansions at the loop exit.
2018 Callbacks for htab_traverse. PLACE_P is the loop exit
2019 basic block where the summation of the expansions should
2020 take place. */
2022 static int
2023 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2025 struct var_to_expand *ve = *slot;
2026 basic_block place = (basic_block)place_p;
2027 rtx sum = ve->reg;
2028 rtx expr, seq, var, insn;
2029 unsigned i;
2031 if (VEC_length (rtx, ve->var_expansions) == 0)
2032 return 1;
2034 start_sequence ();
2035 if (ve->op == PLUS || ve->op == MINUS)
2036 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2038 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2039 var, sum);
2041 else if (ve->op == MULT)
2042 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2044 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2045 var, sum);
2048 expr = force_operand (sum, ve->reg);
2049 if (expr != ve->reg)
2050 emit_move_insn (ve->reg, expr);
2051 seq = get_insns ();
2052 end_sequence ();
2054 insn = BB_HEAD (place);
2055 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2056 insn = NEXT_INSN (insn);
2058 emit_insn_after (seq, insn);
2060 /* Continue traversing the hash table. */
2061 return 1;
2064 /* Apply loop optimizations in loop copies using the
2065 data which gathered during the unrolling. Structure
2066 OPT_INFO record that data.
2068 UNROLLING is true if we unrolled (not peeled) the loop.
2069 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2070 the loop (as it should happen in complete unrolling, but not in ordinary
2071 peeling of the loop). */
2073 static void
2074 apply_opt_in_copies (struct opt_info *opt_info,
2075 unsigned n_copies, bool unrolling,
2076 bool rewrite_original_loop)
2078 unsigned i, delta;
2079 basic_block bb, orig_bb;
2080 rtx insn, orig_insn, next;
2081 struct iv_to_split ivts_templ, *ivts;
2082 struct var_to_expand ve_templ, *ves;
2084 /* Sanity check -- we need to put initialization in the original loop
2085 body. */
2086 gcc_assert (!unrolling || rewrite_original_loop);
2088 /* Allocate the basic variables (i0). */
2089 if (opt_info->insns_to_split)
2090 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2092 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2094 bb = BASIC_BLOCK (i);
2095 orig_bb = get_bb_original (bb);
2097 /* bb->aux holds position in copy sequence initialized by
2098 duplicate_loop_to_header_edge. */
2099 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2100 unrolling);
2101 bb->aux = 0;
2102 orig_insn = BB_HEAD (orig_bb);
2103 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2105 next = NEXT_INSN (insn);
2106 if (!INSN_P (insn))
2107 continue;
2109 while (!INSN_P (orig_insn))
2110 orig_insn = NEXT_INSN (orig_insn);
2112 ivts_templ.insn = orig_insn;
2113 ve_templ.insn = orig_insn;
2115 /* Apply splitting iv optimization. */
2116 if (opt_info->insns_to_split)
2118 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2120 if (ivts)
2122 gcc_assert (GET_CODE (PATTERN (insn))
2123 == GET_CODE (PATTERN (orig_insn)));
2125 if (!delta)
2126 insert_base_initialization (ivts, insn);
2127 split_iv (ivts, insn, delta);
2130 /* Apply variable expansion optimization. */
2131 if (unrolling && opt_info->insns_with_var_to_expand)
2133 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2134 if (ves)
2136 gcc_assert (GET_CODE (PATTERN (insn))
2137 == GET_CODE (PATTERN (orig_insn)));
2138 expand_var_during_unrolling (ves, insn);
2141 orig_insn = NEXT_INSN (orig_insn);
2145 if (!rewrite_original_loop)
2146 return;
2148 /* Initialize the variable expansions in the loop preheader
2149 and take care of combining them at the loop exit. */
2150 if (opt_info->insns_with_var_to_expand)
2152 htab_traverse (opt_info->insns_with_var_to_expand,
2153 insert_var_expansion_initialization,
2154 opt_info->loop_preheader);
2155 htab_traverse (opt_info->insns_with_var_to_expand,
2156 combine_var_copies_in_loop_exit,
2157 opt_info->loop_exit);
2160 /* Rewrite also the original loop body. Find them as originals of the blocks
2161 in the last copied iteration, i.e. those that have
2162 get_bb_copy (get_bb_original (bb)) == bb. */
2163 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2165 bb = BASIC_BLOCK (i);
2166 orig_bb = get_bb_original (bb);
2167 if (get_bb_copy (orig_bb) != bb)
2168 continue;
2170 delta = determine_split_iv_delta (0, n_copies, unrolling);
2171 for (orig_insn = BB_HEAD (orig_bb);
2172 orig_insn != NEXT_INSN (BB_END (bb));
2173 orig_insn = next)
2175 next = NEXT_INSN (orig_insn);
2177 if (!INSN_P (orig_insn))
2178 continue;
2180 ivts_templ.insn = orig_insn;
2181 if (opt_info->insns_to_split)
2183 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2184 if (ivts)
2186 if (!delta)
2187 insert_base_initialization (ivts, orig_insn);
2188 split_iv (ivts, orig_insn, delta);
2189 continue;
2197 /* Release the data structures used for the variable expansion
2198 optimization. Callbacks for htab_traverse. */
2200 static int
2201 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2203 struct var_to_expand *ve = *slot;
2205 VEC_free (rtx, heap, ve->var_expansions);
2207 /* Continue traversing the hash table. */
2208 return 1;
2211 /* Release OPT_INFO. */
2213 static void
2214 free_opt_info (struct opt_info *opt_info)
2216 if (opt_info->insns_to_split)
2217 htab_delete (opt_info->insns_to_split);
2218 if (opt_info->insns_with_var_to_expand)
2220 htab_traverse (opt_info->insns_with_var_to_expand,
2221 release_var_copies, NULL);
2222 htab_delete (opt_info->insns_with_var_to_expand);
2224 free (opt_info);