1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 #include "coretypes.h"
33 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
45 #include "typeclass.h"
48 #include "langhooks.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
77 #define STACK_PUSH_CODE PRE_INC
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
90 /* This structure is used by move_by_pieces to describe the move to
101 int explicit_inc_from
;
102 unsigned HOST_WIDE_INT len
;
103 HOST_WIDE_INT offset
;
107 /* This structure is used by store_by_pieces to describe the clear to
110 struct store_by_pieces
116 unsigned HOST_WIDE_INT len
;
117 HOST_WIDE_INT offset
;
118 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
123 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
126 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
127 struct move_by_pieces
*);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
130 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
, bool);
131 static tree
emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
133 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
134 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
137 struct store_by_pieces
*);
138 static rtx
clear_storage_via_libcall (rtx
, rtx
, bool);
139 static tree
clear_storage_libcall_fn (int);
140 static rtx
compress_float_constant (rtx
, rtx
);
141 static rtx
get_subtarget (rtx
);
142 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
143 HOST_WIDE_INT
, enum machine_mode
,
144 tree
, tree
, int, int);
145 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
146 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
149 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
151 static int is_aligning_offset (tree
, tree
);
152 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
153 enum expand_modifier
);
154 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
155 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
157 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
159 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
160 static rtx
const_vector_from_tree (tree
);
161 static void write_complex_part (rtx
, rtx
, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load
[NUM_MACHINE_MODES
];
168 static char direct_store
[NUM_MACHINE_MODES
];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
202 /* This array records the insn_code of insns to perform block sets. */
203 enum insn_code setmem_optab
[NUM_MACHINE_MODES
];
205 /* These arrays record the insn_code of three different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
208 enum insn_code cmpstrn_optab
[NUM_MACHINE_MODES
];
209 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
213 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
214 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
215 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
216 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
217 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
218 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
230 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
231 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
232 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
233 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
245 init_expr_once (void)
248 enum machine_mode mode
;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
257 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg
= gen_rtx_REG (VOIDmode
, -1);
263 insn
= rtx_alloc (INSN
);
264 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
265 PATTERN (insn
) = pat
;
267 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
268 mode
= (enum machine_mode
) ((int) mode
+ 1))
272 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
273 PUT_MODE (mem
, mode
);
274 PUT_MODE (mem1
, mode
);
275 PUT_MODE (reg
, mode
);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
281 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
282 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
285 if (! HARD_REGNO_MODE_OK (regno
, mode
))
291 SET_DEST (pat
) = reg
;
292 if (recog (pat
, insn
, &num_clobbers
) >= 0)
293 direct_load
[(int) mode
] = 1;
295 SET_SRC (pat
) = mem1
;
296 SET_DEST (pat
) = reg
;
297 if (recog (pat
, insn
, &num_clobbers
) >= 0)
298 direct_load
[(int) mode
] = 1;
301 SET_DEST (pat
) = mem
;
302 if (recog (pat
, insn
, &num_clobbers
) >= 0)
303 direct_store
[(int) mode
] = 1;
306 SET_DEST (pat
) = mem1
;
307 if (recog (pat
, insn
, &num_clobbers
) >= 0)
308 direct_store
[(int) mode
] = 1;
312 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
314 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
315 mode
= GET_MODE_WIDER_MODE (mode
))
317 enum machine_mode srcmode
;
318 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
319 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
323 ic
= can_extend_p (mode
, srcmode
, 0);
324 if (ic
== CODE_FOR_nothing
)
327 PUT_MODE (mem
, srcmode
);
329 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
330 float_extend_from_mem
[mode
][srcmode
] = true;
335 /* This is run at the start of compiling a function. */
340 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
349 convert_move (rtx to
, rtx from
, int unsignedp
)
351 enum machine_mode to_mode
= GET_MODE (to
);
352 enum machine_mode from_mode
= GET_MODE (from
);
353 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
354 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
360 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
363 gcc_assert (to_real
== from_real
);
365 /* If the source and destination are already the same, then there's
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
374 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
376 >= GET_MODE_SIZE (to_mode
))
377 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
378 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
380 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
382 if (to_mode
== from_mode
383 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
385 emit_move_insn (to
, from
);
389 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
391 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
393 if (VECTOR_MODE_P (to_mode
))
394 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
396 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
398 emit_move_insn (to
, from
);
402 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
404 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
405 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
414 gcc_assert ((GET_MODE_PRECISION (from_mode
)
415 != GET_MODE_PRECISION (to_mode
))
416 || (DECIMAL_FLOAT_MODE_P (from_mode
)
417 != DECIMAL_FLOAT_MODE_P (to_mode
)));
419 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
420 /* Conversion between decimal float and binary float, same size. */
421 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
422 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
427 /* Try converting directly if the insn is supported. */
429 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
430 if (code
!= CODE_FOR_nothing
)
432 emit_unop_insn (code
, to
, from
,
433 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
437 /* Otherwise use a libcall. */
438 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
440 /* Is this conversion implemented yet? */
441 gcc_assert (libcall
);
444 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
446 insns
= get_insns ();
448 emit_libcall_block (insns
, to
, value
,
449 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
451 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
455 /* Handle pointer conversion. */ /* SPEE 900220. */
456 /* Targets are expected to provide conversion insns between PxImode and
457 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
458 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
460 enum machine_mode full_mode
461 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
463 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
464 != CODE_FOR_nothing
);
466 if (full_mode
!= from_mode
)
467 from
= convert_to_mode (full_mode
, from
, unsignedp
);
468 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
472 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
475 enum machine_mode full_mode
476 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
478 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
479 != CODE_FOR_nothing
);
481 if (to_mode
== full_mode
)
483 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
488 new_from
= gen_reg_rtx (full_mode
);
489 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
490 new_from
, from
, UNKNOWN
);
492 /* else proceed to integer conversions below. */
493 from_mode
= full_mode
;
497 /* Now both modes are integers. */
499 /* Handle expanding beyond a word. */
500 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
501 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
508 enum machine_mode lowpart_mode
;
509 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
511 /* Try converting directly if the insn is supported. */
512 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
515 /* If FROM is a SUBREG, put it into a register. Do this
516 so that we always generate the same set of insns for
517 better cse'ing; if an intermediate assignment occurred,
518 we won't be doing the operation directly on the SUBREG. */
519 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
520 from
= force_reg (from_mode
, from
);
521 emit_unop_insn (code
, to
, from
, equiv_code
);
524 /* Next, try converting via full word. */
525 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
526 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
527 != CODE_FOR_nothing
))
531 if (reg_overlap_mentioned_p (to
, from
))
532 from
= force_reg (from_mode
, from
);
533 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
535 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
536 emit_unop_insn (code
, to
,
537 gen_lowpart (word_mode
, to
), equiv_code
);
541 /* No special multiword conversion insn; do it by hand. */
544 /* Since we will turn this into a no conflict block, we must ensure
545 that the source does not overlap the target. */
547 if (reg_overlap_mentioned_p (to
, from
))
548 from
= force_reg (from_mode
, from
);
550 /* Get a copy of FROM widened to a word, if necessary. */
551 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
552 lowpart_mode
= word_mode
;
554 lowpart_mode
= from_mode
;
556 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
558 lowpart
= gen_lowpart (lowpart_mode
, to
);
559 emit_move_insn (lowpart
, lowfrom
);
561 /* Compute the value to put in each remaining word. */
563 fill_value
= const0_rtx
;
568 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
569 && STORE_FLAG_VALUE
== -1)
571 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
573 fill_value
= gen_reg_rtx (word_mode
);
574 emit_insn (gen_slt (fill_value
));
580 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
581 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
583 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
587 /* Fill the remaining words. */
588 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
590 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
591 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
593 gcc_assert (subword
);
595 if (fill_value
!= subword
)
596 emit_move_insn (subword
, fill_value
);
599 insns
= get_insns ();
602 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
603 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
607 /* Truncating multi-word to a word or less. */
608 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
609 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
612 && ! MEM_VOLATILE_P (from
)
613 && direct_load
[(int) to_mode
]
614 && ! mode_dependent_address_p (XEXP (from
, 0)))
616 || GET_CODE (from
) == SUBREG
))
617 from
= force_reg (from_mode
, from
);
618 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
622 /* Now follow all the conversions between integers
623 no more than a word long. */
625 /* For truncation, usually we can just refer to FROM in a narrower mode. */
626 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
628 GET_MODE_BITSIZE (from_mode
)))
631 && ! MEM_VOLATILE_P (from
)
632 && direct_load
[(int) to_mode
]
633 && ! mode_dependent_address_p (XEXP (from
, 0)))
635 || GET_CODE (from
) == SUBREG
))
636 from
= force_reg (from_mode
, from
);
637 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
638 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
639 from
= copy_to_reg (from
);
640 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
644 /* Handle extension. */
645 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
647 /* Convert directly if that works. */
648 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
651 emit_unop_insn (code
, to
, from
, equiv_code
);
656 enum machine_mode intermediate
;
660 /* Search for a mode to convert via. */
661 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
662 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
663 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
665 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
666 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
667 GET_MODE_BITSIZE (intermediate
))))
668 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
669 != CODE_FOR_nothing
))
671 convert_move (to
, convert_to_mode (intermediate
, from
,
672 unsignedp
), unsignedp
);
676 /* No suitable intermediate mode.
677 Generate what we need with shifts. */
678 shift_amount
= build_int_cst (NULL_TREE
,
679 GET_MODE_BITSIZE (to_mode
)
680 - GET_MODE_BITSIZE (from_mode
));
681 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
682 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
684 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
687 emit_move_insn (to
, tmp
);
692 /* Support special truncate insns for certain modes. */
693 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
695 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
700 /* Handle truncation of volatile memrefs, and so on;
701 the things that couldn't be truncated directly,
702 and for which there was no special instruction.
704 ??? Code above formerly short-circuited this, for most integer
705 mode pairs, with a force_reg in from_mode followed by a recursive
706 call to this routine. Appears always to have been wrong. */
707 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
709 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
710 emit_move_insn (to
, temp
);
714 /* Mode combination is not recognized. */
718 /* Return an rtx for a value that would result
719 from converting X to mode MODE.
720 Both X and MODE may be floating, or both integer.
721 UNSIGNEDP is nonzero if X is an unsigned value.
722 This can be done by referring to a part of X in place
723 or by copying to a new temporary with conversion. */
726 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
728 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
731 /* Return an rtx for a value that would result
732 from converting X from mode OLDMODE to mode MODE.
733 Both modes may be floating, or both integer.
734 UNSIGNEDP is nonzero if X is an unsigned value.
736 This can be done by referring to a part of X in place
737 or by copying to a new temporary with conversion.
739 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
742 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
746 /* If FROM is a SUBREG that indicates that we have already done at least
747 the required extension, strip it. */
749 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
750 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
751 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
752 x
= gen_lowpart (mode
, x
);
754 if (GET_MODE (x
) != VOIDmode
)
755 oldmode
= GET_MODE (x
);
760 /* There is one case that we must handle specially: If we are converting
761 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
762 we are to interpret the constant as unsigned, gen_lowpart will do
763 the wrong if the constant appears negative. What we want to do is
764 make the high-order word of the constant zero, not all ones. */
766 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
767 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
768 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
770 HOST_WIDE_INT val
= INTVAL (x
);
772 if (oldmode
!= VOIDmode
773 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
775 int width
= GET_MODE_BITSIZE (oldmode
);
777 /* We need to zero extend VAL. */
778 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
781 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((GET_CODE (x
) == CONST_INT
790 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
791 || (GET_MODE_CLASS (mode
) == MODE_INT
792 && GET_MODE_CLASS (oldmode
) == MODE_INT
793 && (GET_CODE (x
) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
795 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
796 && direct_load
[(int) mode
])
798 && (! HARD_REGISTER_P (x
)
799 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
801 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
807 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
809 HOST_WIDE_INT val
= INTVAL (x
);
810 int width
= GET_MODE_BITSIZE (oldmode
);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
816 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
817 val
|= (HOST_WIDE_INT
) (-1) << width
;
819 return gen_int_mode (val
, mode
);
822 return gen_lowpart (mode
, x
);
825 /* Converting from integer constant into mode is always equivalent to an
827 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
829 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
830 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
833 temp
= gen_reg_rtx (mode
);
834 convert_move (temp
, x
, unsignedp
);
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
850 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
851 unsigned int align ATTRIBUTE_UNUSED
)
853 return MOVE_BY_PIECES_P (len
, align
);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
869 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
870 unsigned int align
, int endp
)
872 struct move_by_pieces data
;
873 rtx to_addr
, from_addr
= XEXP (from
, 0);
874 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
875 enum machine_mode mode
= VOIDmode
, tmode
;
876 enum insn_code icode
;
878 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
881 data
.from_addr
= from_addr
;
884 to_addr
= XEXP (to
, 0);
887 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
888 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
890 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
897 #ifdef STACK_GROWS_DOWNWARD
903 data
.to_addr
= to_addr
;
906 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
907 || GET_CODE (from_addr
) == POST_INC
908 || GET_CODE (from_addr
) == POST_DEC
);
910 data
.explicit_inc_from
= 0;
911 data
.explicit_inc_to
= 0;
912 if (data
.reverse
) data
.offset
= len
;
915 /* If copying requires more than two move insns,
916 copy addresses to registers (to make displacements shorter)
917 and use post-increment if available. */
918 if (!(data
.autinc_from
&& data
.autinc_to
)
919 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
921 /* Find the mode of the largest move... */
922 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
923 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
924 if (GET_MODE_SIZE (tmode
) < max_size
)
927 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
929 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
930 data
.autinc_from
= 1;
931 data
.explicit_inc_from
= -1;
933 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
935 data
.from_addr
= copy_addr_to_reg (from_addr
);
936 data
.autinc_from
= 1;
937 data
.explicit_inc_from
= 1;
939 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
940 data
.from_addr
= copy_addr_to_reg (from_addr
);
941 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
943 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
945 data
.explicit_inc_to
= -1;
947 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
949 data
.to_addr
= copy_addr_to_reg (to_addr
);
951 data
.explicit_inc_to
= 1;
953 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
954 data
.to_addr
= copy_addr_to_reg (to_addr
);
957 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
958 if (align
>= GET_MODE_ALIGNMENT (tmode
))
959 align
= GET_MODE_ALIGNMENT (tmode
);
962 enum machine_mode xmode
;
964 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
966 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
967 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
968 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
971 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
979 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
980 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
981 if (GET_MODE_SIZE (tmode
) < max_size
)
984 if (mode
== VOIDmode
)
987 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
988 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
989 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
991 max_size
= GET_MODE_SIZE (mode
);
994 /* The code above should have handled everything. */
995 gcc_assert (!data
.len
);
1001 gcc_assert (!data
.reverse
);
1006 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1007 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1009 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1012 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1019 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1027 /* Return number of insns required to move L bytes by pieces.
1028 ALIGN (in bits) is maximum alignment we can assume. */
1030 static unsigned HOST_WIDE_INT
1031 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1032 unsigned int max_size
)
1034 unsigned HOST_WIDE_INT n_insns
= 0;
1035 enum machine_mode tmode
;
1037 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1038 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1039 align
= GET_MODE_ALIGNMENT (tmode
);
1042 enum machine_mode tmode
, xmode
;
1044 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1046 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1047 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1048 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1051 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1054 while (max_size
> 1)
1056 enum machine_mode mode
= VOIDmode
;
1057 enum insn_code icode
;
1059 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1060 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1061 if (GET_MODE_SIZE (tmode
) < max_size
)
1064 if (mode
== VOIDmode
)
1067 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1068 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1069 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1071 max_size
= GET_MODE_SIZE (mode
);
1078 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1079 with move instructions for mode MODE. GENFUN is the gen_... function
1080 to make a move insn for that mode. DATA has all the other info. */
1083 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1084 struct move_by_pieces
*data
)
1086 unsigned int size
= GET_MODE_SIZE (mode
);
1087 rtx to1
= NULL_RTX
, from1
;
1089 while (data
->len
>= size
)
1092 data
->offset
-= size
;
1096 if (data
->autinc_to
)
1097 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1100 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1103 if (data
->autinc_from
)
1104 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1107 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1109 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1110 emit_insn (gen_add2_insn (data
->to_addr
,
1111 GEN_INT (-(HOST_WIDE_INT
)size
)));
1112 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1113 emit_insn (gen_add2_insn (data
->from_addr
,
1114 GEN_INT (-(HOST_WIDE_INT
)size
)));
1117 emit_insn ((*genfun
) (to1
, from1
));
1120 #ifdef PUSH_ROUNDING
1121 emit_single_push_insn (mode
, from1
, NULL
);
1127 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1128 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1129 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1130 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1132 if (! data
->reverse
)
1133 data
->offset
+= size
;
1139 /* Emit code to move a block Y to a block X. This may be done with
1140 string-move instructions, with multiple scalar move instructions,
1141 or with a library call.
1143 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1144 SIZE is an rtx that says how long they are.
1145 ALIGN is the maximum alignment we can assume they have.
1146 METHOD describes what kind of copy this is, and what mechanisms may be used.
1148 Return the address of the new block, if memcpy is called and returns it,
1152 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1160 case BLOCK_OP_NORMAL
:
1161 case BLOCK_OP_TAILCALL
:
1162 may_use_call
= true;
1165 case BLOCK_OP_CALL_PARM
:
1166 may_use_call
= block_move_libcall_safe_for_call_parm ();
1168 /* Make inhibit_defer_pop nonzero around the library call
1169 to force it to pop the arguments right away. */
1173 case BLOCK_OP_NO_LIBCALL
:
1174 may_use_call
= false;
1181 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1183 gcc_assert (MEM_P (x
));
1184 gcc_assert (MEM_P (y
));
1187 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1188 block copy is more efficient for other large modes, e.g. DCmode. */
1189 x
= adjust_address (x
, BLKmode
, 0);
1190 y
= adjust_address (y
, BLKmode
, 0);
1192 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1193 can be incorrect is coming from __builtin_memcpy. */
1194 if (GET_CODE (size
) == CONST_INT
)
1196 if (INTVAL (size
) == 0)
1199 x
= shallow_copy_rtx (x
);
1200 y
= shallow_copy_rtx (y
);
1201 set_mem_size (x
, size
);
1202 set_mem_size (y
, size
);
1205 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1206 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1207 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1209 else if (may_use_call
)
1210 retval
= emit_block_move_via_libcall (x
, y
, size
,
1211 method
== BLOCK_OP_TAILCALL
);
1213 emit_block_move_via_loop (x
, y
, size
, align
);
1215 if (method
== BLOCK_OP_CALL_PARM
)
1221 /* A subroutine of emit_block_move. Returns true if calling the
1222 block move libcall will not clobber any parameters which may have
1223 already been placed on the stack. */
1226 block_move_libcall_safe_for_call_parm (void)
1228 /* If arguments are pushed on the stack, then they're safe. */
1232 /* If registers go on the stack anyway, any argument is sure to clobber
1233 an outgoing argument. */
1234 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1236 tree fn
= emit_block_move_libcall_fn (false);
1238 if (REG_PARM_STACK_SPACE (fn
) != 0)
1243 /* If any argument goes in memory, then it might clobber an outgoing
1246 CUMULATIVE_ARGS args_so_far
;
1249 fn
= emit_block_move_libcall_fn (false);
1250 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1252 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1253 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1255 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1256 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1257 if (!tmp
|| !REG_P (tmp
))
1259 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1261 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1271 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1273 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1274 int save_volatile_ok
= volatile_ok
;
1275 enum machine_mode mode
;
1277 /* Since this is a move insn, we don't care about volatility. */
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1285 mode
= GET_MODE_WIDER_MODE (mode
))
1287 enum insn_code code
= movmem_optab
[(int) mode
];
1288 insn_operand_predicate_fn pred
;
1290 if (code
!= CODE_FOR_nothing
1291 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1292 here because if SIZE is less than the mode mask, as it is
1293 returned by the macro, it will definitely be less than the
1294 actual mode mask. */
1295 && ((GET_CODE (size
) == CONST_INT
1296 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1297 <= (GET_MODE_MASK (mode
) >> 1)))
1298 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1299 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1300 || (*pred
) (x
, BLKmode
))
1301 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1302 || (*pred
) (y
, BLKmode
))
1303 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1304 || (*pred
) (opalign
, VOIDmode
)))
1307 rtx last
= get_last_insn ();
1310 op2
= convert_to_mode (mode
, size
, 1);
1311 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1312 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1313 op2
= copy_to_mode_reg (mode
, op2
);
1315 /* ??? When called via emit_block_move_for_call, it'd be
1316 nice if there were some way to inform the backend, so
1317 that it doesn't fail the expansion because it thinks
1318 emitting the libcall would be more efficient. */
1320 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1324 volatile_ok
= save_volatile_ok
;
1328 delete_insns_since (last
);
1332 volatile_ok
= save_volatile_ok
;
1336 /* A subroutine of emit_block_move. Expand a call to memcpy.
1337 Return the return value from memcpy, 0 otherwise. */
1340 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1342 rtx dst_addr
, src_addr
;
1343 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1344 enum machine_mode size_mode
;
1347 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1348 pseudos. We can then place those new pseudos into a VAR_DECL and
1351 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1352 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1354 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1355 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1357 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1358 src_tree
= make_tree (ptr_type_node
, src_addr
);
1360 size_mode
= TYPE_MODE (sizetype
);
1362 size
= convert_to_mode (size_mode
, size
, 1);
1363 size
= copy_to_mode_reg (size_mode
, size
);
1365 /* It is incorrect to use the libcall calling conventions to call
1366 memcpy in this context. This could be a user call to memcpy and
1367 the user may wish to examine the return value from memcpy. For
1368 targets where libcalls and normal calls have different conventions
1369 for returning pointers, we could end up generating incorrect code. */
1371 size_tree
= make_tree (sizetype
, size
);
1373 fn
= emit_block_move_libcall_fn (true);
1374 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1375 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1376 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1378 /* Now we have to build up the CALL_EXPR itself. */
1379 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1380 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1381 call_expr
, arg_list
, NULL_TREE
);
1382 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1384 retval
= expand_normal (call_expr
);
1389 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1390 for the function we use for block copies. The first time FOR_CALL
1391 is true, we call assemble_external. */
1393 static GTY(()) tree block_move_fn
;
1396 init_block_move_fn (const char *asmspec
)
1402 fn
= get_identifier ("memcpy");
1403 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1404 const_ptr_type_node
, sizetype
,
1407 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1408 DECL_EXTERNAL (fn
) = 1;
1409 TREE_PUBLIC (fn
) = 1;
1410 DECL_ARTIFICIAL (fn
) = 1;
1411 TREE_NOTHROW (fn
) = 1;
1412 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1413 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1419 set_user_assembler_name (block_move_fn
, asmspec
);
1423 emit_block_move_libcall_fn (int for_call
)
1425 static bool emitted_extern
;
1428 init_block_move_fn (NULL
);
1430 if (for_call
&& !emitted_extern
)
1432 emitted_extern
= true;
1433 make_decl_rtl (block_move_fn
);
1434 assemble_external (block_move_fn
);
1437 return block_move_fn
;
1440 /* A subroutine of emit_block_move. Copy the data via an explicit
1441 loop. This is used only when libcalls are forbidden. */
1442 /* ??? It'd be nice to copy in hunks larger than QImode. */
1445 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1446 unsigned int align ATTRIBUTE_UNUSED
)
1448 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1449 enum machine_mode iter_mode
;
1451 iter_mode
= GET_MODE (size
);
1452 if (iter_mode
== VOIDmode
)
1453 iter_mode
= word_mode
;
1455 top_label
= gen_label_rtx ();
1456 cmp_label
= gen_label_rtx ();
1457 iter
= gen_reg_rtx (iter_mode
);
1459 emit_move_insn (iter
, const0_rtx
);
1461 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1462 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1463 do_pending_stack_adjust ();
1465 emit_jump (cmp_label
);
1466 emit_label (top_label
);
1468 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1469 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1470 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1471 x
= change_address (x
, QImode
, x_addr
);
1472 y
= change_address (y
, QImode
, y_addr
);
1474 emit_move_insn (x
, y
);
1476 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1477 true, OPTAB_LIB_WIDEN
);
1479 emit_move_insn (iter
, tmp
);
1481 emit_label (cmp_label
);
1483 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1487 /* Copy all or part of a value X into registers starting at REGNO.
1488 The number of registers to be filled is NREGS. */
1491 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1494 #ifdef HAVE_load_multiple
1502 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1503 x
= validize_mem (force_const_mem (mode
, x
));
1505 /* See if the machine can do this with a load multiple insn. */
1506 #ifdef HAVE_load_multiple
1507 if (HAVE_load_multiple
)
1509 last
= get_last_insn ();
1510 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1518 delete_insns_since (last
);
1522 for (i
= 0; i
< nregs
; i
++)
1523 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1524 operand_subword_force (x
, i
, mode
));
1527 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1528 The number of registers to be filled is NREGS. */
1531 move_block_from_reg (int regno
, rtx x
, int nregs
)
1538 /* See if the machine can do this with a store multiple insn. */
1539 #ifdef HAVE_store_multiple
1540 if (HAVE_store_multiple
)
1542 rtx last
= get_last_insn ();
1543 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1551 delete_insns_since (last
);
1555 for (i
= 0; i
< nregs
; i
++)
1557 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1561 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1565 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1566 ORIG, where ORIG is a non-consecutive group of registers represented by
1567 a PARALLEL. The clone is identical to the original except in that the
1568 original set of registers is replaced by a new set of pseudo registers.
1569 The new set has the same modes as the original set. */
1572 gen_group_rtx (rtx orig
)
1577 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1579 length
= XVECLEN (orig
, 0);
1580 tmps
= alloca (sizeof (rtx
) * length
);
1582 /* Skip a NULL entry in first slot. */
1583 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1588 for (; i
< length
; i
++)
1590 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1591 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1593 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1596 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1599 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1600 except that values are placed in TMPS[i], and must later be moved
1601 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1604 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1608 enum machine_mode m
= GET_MODE (orig_src
);
1610 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1613 && !SCALAR_INT_MODE_P (m
)
1614 && !MEM_P (orig_src
)
1615 && GET_CODE (orig_src
) != CONCAT
)
1617 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1618 if (imode
== BLKmode
)
1619 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1621 src
= gen_reg_rtx (imode
);
1622 if (imode
!= BLKmode
)
1623 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1624 emit_move_insn (src
, orig_src
);
1625 /* ...and back again. */
1626 if (imode
!= BLKmode
)
1627 src
= gen_lowpart (imode
, src
);
1628 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1632 /* Check for a NULL entry, used to indicate that the parameter goes
1633 both on the stack and in registers. */
1634 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1639 /* Process the pieces. */
1640 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1642 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1643 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1644 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1647 /* Handle trailing fragments that run over the size of the struct. */
1648 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1650 /* Arrange to shift the fragment to where it belongs.
1651 extract_bit_field loads to the lsb of the reg. */
1653 #ifdef BLOCK_REG_PADDING
1654 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1655 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1660 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1661 bytelen
= ssize
- bytepos
;
1662 gcc_assert (bytelen
> 0);
1665 /* If we won't be loading directly from memory, protect the real source
1666 from strange tricks we might play; but make sure that the source can
1667 be loaded directly into the destination. */
1669 if (!MEM_P (orig_src
)
1670 && (!CONSTANT_P (orig_src
)
1671 || (GET_MODE (orig_src
) != mode
1672 && GET_MODE (orig_src
) != VOIDmode
)))
1674 if (GET_MODE (orig_src
) == VOIDmode
)
1675 src
= gen_reg_rtx (mode
);
1677 src
= gen_reg_rtx (GET_MODE (orig_src
));
1679 emit_move_insn (src
, orig_src
);
1682 /* Optimize the access just a bit. */
1684 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1685 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1686 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1687 && bytelen
== GET_MODE_SIZE (mode
))
1689 tmps
[i
] = gen_reg_rtx (mode
);
1690 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1692 else if (COMPLEX_MODE_P (mode
)
1693 && GET_MODE (src
) == mode
1694 && bytelen
== GET_MODE_SIZE (mode
))
1695 /* Let emit_move_complex do the bulk of the work. */
1697 else if (GET_CODE (src
) == CONCAT
)
1699 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1700 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1702 if ((bytepos
== 0 && bytelen
== slen0
)
1703 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1705 /* The following assumes that the concatenated objects all
1706 have the same size. In this case, a simple calculation
1707 can be used to determine the object and the bit field
1709 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1710 if (! CONSTANT_P (tmps
[i
])
1711 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1712 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1713 (bytepos
% slen0
) * BITS_PER_UNIT
,
1714 1, NULL_RTX
, mode
, mode
);
1720 gcc_assert (!bytepos
);
1721 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1722 emit_move_insn (mem
, src
);
1723 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1724 0, 1, NULL_RTX
, mode
, mode
);
1727 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1728 SIMD register, which is currently broken. While we get GCC
1729 to emit proper RTL for these cases, let's dump to memory. */
1730 else if (VECTOR_MODE_P (GET_MODE (dst
))
1733 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1736 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1737 emit_move_insn (mem
, src
);
1738 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1740 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1741 && XVECLEN (dst
, 0) > 1)
1742 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1743 else if (CONSTANT_P (src
)
1744 || (REG_P (src
) && GET_MODE (src
) == mode
))
1747 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1748 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1752 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1753 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1757 /* Emit code to move a block SRC of type TYPE to a block DST,
1758 where DST is non-consecutive registers represented by a PARALLEL.
1759 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1763 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1768 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1769 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1771 /* Copy the extracted pieces into the proper (probable) hard regs. */
1772 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1774 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1777 emit_move_insn (d
, tmps
[i
]);
1781 /* Similar, but load SRC into new pseudos in a format that looks like
1782 PARALLEL. This can later be fed to emit_group_move to get things
1783 in the right place. */
1786 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1791 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1792 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1794 /* Convert the vector to look just like the original PARALLEL, except
1795 with the computed values. */
1796 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1798 rtx e
= XVECEXP (parallel
, 0, i
);
1799 rtx d
= XEXP (e
, 0);
1803 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1804 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1806 RTVEC_ELT (vec
, i
) = e
;
1809 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1812 /* Emit code to move a block SRC to block DST, where SRC and DST are
1813 non-consecutive groups of registers, each represented by a PARALLEL. */
1816 emit_group_move (rtx dst
, rtx src
)
1820 gcc_assert (GET_CODE (src
) == PARALLEL
1821 && GET_CODE (dst
) == PARALLEL
1822 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1824 /* Skip first entry if NULL. */
1825 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1826 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1827 XEXP (XVECEXP (src
, 0, i
), 0));
1830 /* Move a group of registers represented by a PARALLEL into pseudos. */
1833 emit_group_move_into_temps (rtx src
)
1835 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1838 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1840 rtx e
= XVECEXP (src
, 0, i
);
1841 rtx d
= XEXP (e
, 0);
1844 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1845 RTVEC_ELT (vec
, i
) = e
;
1848 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1851 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1852 where SRC is non-consecutive registers represented by a PARALLEL.
1853 SSIZE represents the total size of block ORIG_DST, or -1 if not
1857 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1860 int start
, finish
, i
;
1861 enum machine_mode m
= GET_MODE (orig_dst
);
1863 gcc_assert (GET_CODE (src
) == PARALLEL
);
1865 if (!SCALAR_INT_MODE_P (m
)
1866 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1868 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1869 if (imode
== BLKmode
)
1870 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1872 dst
= gen_reg_rtx (imode
);
1873 emit_group_store (dst
, src
, type
, ssize
);
1874 if (imode
!= BLKmode
)
1875 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1876 emit_move_insn (orig_dst
, dst
);
1880 /* Check for a NULL entry, used to indicate that the parameter goes
1881 both on the stack and in registers. */
1882 if (XEXP (XVECEXP (src
, 0, 0), 0))
1886 finish
= XVECLEN (src
, 0);
1888 tmps
= alloca (sizeof (rtx
) * finish
);
1890 /* Copy the (probable) hard regs into pseudos. */
1891 for (i
= start
; i
< finish
; i
++)
1893 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1894 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1896 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1897 emit_move_insn (tmps
[i
], reg
);
1903 /* If we won't be storing directly into memory, protect the real destination
1904 from strange tricks we might play. */
1906 if (GET_CODE (dst
) == PARALLEL
)
1910 /* We can get a PARALLEL dst if there is a conditional expression in
1911 a return statement. In that case, the dst and src are the same,
1912 so no action is necessary. */
1913 if (rtx_equal_p (dst
, src
))
1916 /* It is unclear if we can ever reach here, but we may as well handle
1917 it. Allocate a temporary, and split this into a store/load to/from
1920 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1921 emit_group_store (temp
, src
, type
, ssize
);
1922 emit_group_load (dst
, temp
, type
, ssize
);
1925 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1927 enum machine_mode outer
= GET_MODE (dst
);
1928 enum machine_mode inner
;
1929 HOST_WIDE_INT bytepos
;
1933 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1934 dst
= gen_reg_rtx (outer
);
1936 /* Make life a bit easier for combine. */
1937 /* If the first element of the vector is the low part
1938 of the destination mode, use a paradoxical subreg to
1939 initialize the destination. */
1942 inner
= GET_MODE (tmps
[start
]);
1943 bytepos
= subreg_lowpart_offset (inner
, outer
);
1944 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1946 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1950 emit_move_insn (dst
, temp
);
1957 /* If the first element wasn't the low part, try the last. */
1959 && start
< finish
- 1)
1961 inner
= GET_MODE (tmps
[finish
- 1]);
1962 bytepos
= subreg_lowpart_offset (inner
, outer
);
1963 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1965 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1969 emit_move_insn (dst
, temp
);
1976 /* Otherwise, simply initialize the result to zero. */
1978 emit_move_insn (dst
, CONST0_RTX (outer
));
1981 /* Process the pieces. */
1982 for (i
= start
; i
< finish
; i
++)
1984 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1985 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1986 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1989 /* Handle trailing fragments that run over the size of the struct. */
1990 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1992 /* store_bit_field always takes its value from the lsb.
1993 Move the fragment to the lsb if it's not already there. */
1995 #ifdef BLOCK_REG_PADDING
1996 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1997 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2003 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2004 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2005 build_int_cst (NULL_TREE
, shift
),
2008 bytelen
= ssize
- bytepos
;
2011 if (GET_CODE (dst
) == CONCAT
)
2013 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2014 dest
= XEXP (dst
, 0);
2015 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2017 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2018 dest
= XEXP (dst
, 1);
2022 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2023 dest
= assign_stack_temp (GET_MODE (dest
),
2024 GET_MODE_SIZE (GET_MODE (dest
)), 0);
2025 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
2032 /* Optimize the access just a bit. */
2034 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2035 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2036 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2037 && bytelen
== GET_MODE_SIZE (mode
))
2038 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2040 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2044 /* Copy from the pseudo into the (probable) hard reg. */
2045 if (orig_dst
!= dst
)
2046 emit_move_insn (orig_dst
, dst
);
2049 /* Generate code to copy a BLKmode object of TYPE out of a
2050 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2051 is null, a stack temporary is created. TGTBLK is returned.
2053 The purpose of this routine is to handle functions that return
2054 BLKmode structures in registers. Some machines (the PA for example)
2055 want to return all small structures in registers regardless of the
2056 structure's alignment. */
2059 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2061 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2062 rtx src
= NULL
, dst
= NULL
;
2063 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2064 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2068 tgtblk
= assign_temp (build_qualified_type (type
,
2070 | TYPE_QUAL_CONST
)),
2072 preserve_temp_slots (tgtblk
);
2075 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2076 into a new pseudo which is a full word. */
2078 if (GET_MODE (srcreg
) != BLKmode
2079 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2080 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2082 /* If the structure doesn't take up a whole number of words, see whether
2083 SRCREG is padded on the left or on the right. If it's on the left,
2084 set PADDING_CORRECTION to the number of bits to skip.
2086 In most ABIs, the structure will be returned at the least end of
2087 the register, which translates to right padding on little-endian
2088 targets and left padding on big-endian targets. The opposite
2089 holds if the structure is returned at the most significant
2090 end of the register. */
2091 if (bytes
% UNITS_PER_WORD
!= 0
2092 && (targetm
.calls
.return_in_msb (type
)
2094 : BYTES_BIG_ENDIAN
))
2096 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2098 /* Copy the structure BITSIZE bites at a time.
2100 We could probably emit more efficient code for machines which do not use
2101 strict alignment, but it doesn't seem worth the effort at the current
2103 for (bitpos
= 0, xbitpos
= padding_correction
;
2104 bitpos
< bytes
* BITS_PER_UNIT
;
2105 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2107 /* We need a new source operand each time xbitpos is on a
2108 word boundary and when xbitpos == padding_correction
2109 (the first time through). */
2110 if (xbitpos
% BITS_PER_WORD
== 0
2111 || xbitpos
== padding_correction
)
2112 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2115 /* We need a new destination operand each time bitpos is on
2117 if (bitpos
% BITS_PER_WORD
== 0)
2118 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2120 /* Use xbitpos for the source extraction (right justified) and
2121 xbitpos for the destination store (left justified). */
2122 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2123 extract_bit_field (src
, bitsize
,
2124 xbitpos
% BITS_PER_WORD
, 1,
2125 NULL_RTX
, word_mode
, word_mode
));
2131 /* Add a USE expression for REG to the (possibly empty) list pointed
2132 to by CALL_FUSAGE. REG must denote a hard register. */
2135 use_reg (rtx
*call_fusage
, rtx reg
)
2137 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2140 = gen_rtx_EXPR_LIST (VOIDmode
,
2141 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2144 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2145 starting at REGNO. All of these registers must be hard registers. */
2148 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2152 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2154 for (i
= 0; i
< nregs
; i
++)
2155 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2158 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2159 PARALLEL REGS. This is for calls that pass values in multiple
2160 non-contiguous locations. The Irix 6 ABI has examples of this. */
2163 use_group_regs (rtx
*call_fusage
, rtx regs
)
2167 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2169 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2171 /* A NULL entry means the parameter goes both on the stack and in
2172 registers. This can also be a MEM for targets that pass values
2173 partially on the stack and partially in registers. */
2174 if (reg
!= 0 && REG_P (reg
))
2175 use_reg (call_fusage
, reg
);
2180 /* Determine whether the LEN bytes generated by CONSTFUN can be
2181 stored to memory using several move instructions. CONSTFUNDATA is
2182 a pointer which will be passed as argument in every CONSTFUN call.
2183 ALIGN is maximum alignment we can assume. Return nonzero if a
2184 call to store_by_pieces should succeed. */
2187 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2188 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2189 void *constfundata
, unsigned int align
)
2191 unsigned HOST_WIDE_INT l
;
2192 unsigned int max_size
;
2193 HOST_WIDE_INT offset
= 0;
2194 enum machine_mode mode
, tmode
;
2195 enum insn_code icode
;
2202 if (! STORE_BY_PIECES_P (len
, align
))
2205 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2206 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2207 align
= GET_MODE_ALIGNMENT (tmode
);
2210 enum machine_mode xmode
;
2212 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2214 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2215 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2216 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2219 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2222 /* We would first store what we can in the largest integer mode, then go to
2223 successively smaller modes. */
2226 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2231 max_size
= STORE_MAX_PIECES
+ 1;
2232 while (max_size
> 1)
2234 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2235 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2236 if (GET_MODE_SIZE (tmode
) < max_size
)
2239 if (mode
== VOIDmode
)
2242 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2243 if (icode
!= CODE_FOR_nothing
2244 && align
>= GET_MODE_ALIGNMENT (mode
))
2246 unsigned int size
= GET_MODE_SIZE (mode
);
2253 cst
= (*constfun
) (constfundata
, offset
, mode
);
2254 if (!LEGITIMATE_CONSTANT_P (cst
))
2264 max_size
= GET_MODE_SIZE (mode
);
2267 /* The code above should have handled everything. */
2274 /* Generate several move instructions to store LEN bytes generated by
2275 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2276 pointer which will be passed as argument in every CONSTFUN call.
2277 ALIGN is maximum alignment we can assume.
2278 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2279 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2283 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2284 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2285 void *constfundata
, unsigned int align
, int endp
)
2287 struct store_by_pieces data
;
2291 gcc_assert (endp
!= 2);
2295 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2296 data
.constfun
= constfun
;
2297 data
.constfundata
= constfundata
;
2300 store_by_pieces_1 (&data
, align
);
2305 gcc_assert (!data
.reverse
);
2310 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2311 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2313 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2316 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2323 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2331 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2332 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2335 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2337 struct store_by_pieces data
;
2342 data
.constfun
= clear_by_pieces_1
;
2343 data
.constfundata
= NULL
;
2346 store_by_pieces_1 (&data
, align
);
2349 /* Callback routine for clear_by_pieces.
2350 Return const0_rtx unconditionally. */
2353 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2354 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2355 enum machine_mode mode ATTRIBUTE_UNUSED
)
2360 /* Subroutine of clear_by_pieces and store_by_pieces.
2361 Generate several move instructions to store LEN bytes of block TO. (A MEM
2362 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2365 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2366 unsigned int align ATTRIBUTE_UNUSED
)
2368 rtx to_addr
= XEXP (data
->to
, 0);
2369 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2370 enum machine_mode mode
= VOIDmode
, tmode
;
2371 enum insn_code icode
;
2374 data
->to_addr
= to_addr
;
2376 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2377 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2379 data
->explicit_inc_to
= 0;
2381 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2383 data
->offset
= data
->len
;
2385 /* If storing requires more than two move insns,
2386 copy addresses to registers (to make displacements shorter)
2387 and use post-increment if available. */
2388 if (!data
->autinc_to
2389 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2391 /* Determine the main mode we'll be using. */
2392 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2393 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2394 if (GET_MODE_SIZE (tmode
) < max_size
)
2397 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2399 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2400 data
->autinc_to
= 1;
2401 data
->explicit_inc_to
= -1;
2404 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2405 && ! data
->autinc_to
)
2407 data
->to_addr
= copy_addr_to_reg (to_addr
);
2408 data
->autinc_to
= 1;
2409 data
->explicit_inc_to
= 1;
2412 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2413 data
->to_addr
= copy_addr_to_reg (to_addr
);
2416 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2417 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2418 align
= GET_MODE_ALIGNMENT (tmode
);
2421 enum machine_mode xmode
;
2423 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2425 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2426 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2427 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2430 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2433 /* First store what we can in the largest integer mode, then go to
2434 successively smaller modes. */
2436 while (max_size
> 1)
2438 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2439 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2440 if (GET_MODE_SIZE (tmode
) < max_size
)
2443 if (mode
== VOIDmode
)
2446 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2447 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2448 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2450 max_size
= GET_MODE_SIZE (mode
);
2453 /* The code above should have handled everything. */
2454 gcc_assert (!data
->len
);
2457 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2458 with move instructions for mode MODE. GENFUN is the gen_... function
2459 to make a move insn for that mode. DATA has all the other info. */
2462 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2463 struct store_by_pieces
*data
)
2465 unsigned int size
= GET_MODE_SIZE (mode
);
2468 while (data
->len
>= size
)
2471 data
->offset
-= size
;
2473 if (data
->autinc_to
)
2474 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2477 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2479 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2480 emit_insn (gen_add2_insn (data
->to_addr
,
2481 GEN_INT (-(HOST_WIDE_INT
) size
)));
2483 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2484 emit_insn ((*genfun
) (to1
, cst
));
2486 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2487 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2489 if (! data
->reverse
)
2490 data
->offset
+= size
;
2496 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2497 its length in bytes. */
2500 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2502 enum machine_mode mode
= GET_MODE (object
);
2505 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2507 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2508 just move a zero. Otherwise, do this a piece at a time. */
2510 && GET_CODE (size
) == CONST_INT
2511 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2513 rtx zero
= CONST0_RTX (mode
);
2516 emit_move_insn (object
, zero
);
2520 if (COMPLEX_MODE_P (mode
))
2522 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2525 write_complex_part (object
, zero
, 0);
2526 write_complex_part (object
, zero
, 1);
2532 if (size
== const0_rtx
)
2535 align
= MEM_ALIGN (object
);
2537 if (GET_CODE (size
) == CONST_INT
2538 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2539 clear_by_pieces (object
, INTVAL (size
), align
);
2540 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
))
2543 return clear_storage_via_libcall (object
, size
,
2544 method
== BLOCK_OP_TAILCALL
);
2549 /* A subroutine of clear_storage. Expand a call to memset.
2550 Return the return value of memset, 0 otherwise. */
2553 clear_storage_via_libcall (rtx object
, rtx size
, bool tailcall
)
2555 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2556 enum machine_mode size_mode
;
2559 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2560 place those into new pseudos into a VAR_DECL and use them later. */
2562 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2564 size_mode
= TYPE_MODE (sizetype
);
2565 size
= convert_to_mode (size_mode
, size
, 1);
2566 size
= copy_to_mode_reg (size_mode
, size
);
2568 /* It is incorrect to use the libcall calling conventions to call
2569 memset in this context. This could be a user call to memset and
2570 the user may wish to examine the return value from memset. For
2571 targets where libcalls and normal calls have different conventions
2572 for returning pointers, we could end up generating incorrect code. */
2574 object_tree
= make_tree (ptr_type_node
, object
);
2575 size_tree
= make_tree (sizetype
, size
);
2577 fn
= clear_storage_libcall_fn (true);
2578 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2579 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2580 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2582 /* Now we have to build up the CALL_EXPR itself. */
2583 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2584 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2585 call_expr
, arg_list
, NULL_TREE
);
2586 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2588 retval
= expand_normal (call_expr
);
2593 /* A subroutine of clear_storage_via_libcall. Create the tree node
2594 for the function we use for block clears. The first time FOR_CALL
2595 is true, we call assemble_external. */
2597 static GTY(()) tree block_clear_fn
;
2600 init_block_clear_fn (const char *asmspec
)
2602 if (!block_clear_fn
)
2606 fn
= get_identifier ("memset");
2607 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2608 integer_type_node
, sizetype
,
2611 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2612 DECL_EXTERNAL (fn
) = 1;
2613 TREE_PUBLIC (fn
) = 1;
2614 DECL_ARTIFICIAL (fn
) = 1;
2615 TREE_NOTHROW (fn
) = 1;
2616 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2617 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2619 block_clear_fn
= fn
;
2623 set_user_assembler_name (block_clear_fn
, asmspec
);
2627 clear_storage_libcall_fn (int for_call
)
2629 static bool emitted_extern
;
2631 if (!block_clear_fn
)
2632 init_block_clear_fn (NULL
);
2634 if (for_call
&& !emitted_extern
)
2636 emitted_extern
= true;
2637 make_decl_rtl (block_clear_fn
);
2638 assemble_external (block_clear_fn
);
2641 return block_clear_fn
;
2644 /* Expand a setmem pattern; return true if successful. */
2647 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
)
2649 /* Try the most limited insn first, because there's no point
2650 including more than one in the machine description unless
2651 the more limited one has some advantage. */
2653 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2654 enum machine_mode mode
;
2656 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2657 mode
= GET_MODE_WIDER_MODE (mode
))
2659 enum insn_code code
= setmem_optab
[(int) mode
];
2660 insn_operand_predicate_fn pred
;
2662 if (code
!= CODE_FOR_nothing
2663 /* We don't need MODE to be narrower than
2664 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2665 the mode mask, as it is returned by the macro, it will
2666 definitely be less than the actual mode mask. */
2667 && ((GET_CODE (size
) == CONST_INT
2668 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2669 <= (GET_MODE_MASK (mode
) >> 1)))
2670 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2671 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2672 || (*pred
) (object
, BLKmode
))
2673 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
2674 || (*pred
) (opalign
, VOIDmode
)))
2677 enum machine_mode char_mode
;
2678 rtx last
= get_last_insn ();
2681 opsize
= convert_to_mode (mode
, size
, 1);
2682 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2683 if (pred
!= 0 && ! (*pred
) (opsize
, mode
))
2684 opsize
= copy_to_mode_reg (mode
, opsize
);
2687 char_mode
= insn_data
[(int) code
].operand
[2].mode
;
2688 if (char_mode
!= VOIDmode
)
2690 opchar
= convert_to_mode (char_mode
, opchar
, 1);
2691 pred
= insn_data
[(int) code
].operand
[2].predicate
;
2692 if (pred
!= 0 && ! (*pred
) (opchar
, char_mode
))
2693 opchar
= copy_to_mode_reg (char_mode
, opchar
);
2696 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
);
2703 delete_insns_since (last
);
2711 /* Write to one of the components of the complex value CPLX. Write VAL to
2712 the real part if IMAG_P is false, and the imaginary part if its true. */
2715 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2717 enum machine_mode cmode
;
2718 enum machine_mode imode
;
2721 if (GET_CODE (cplx
) == CONCAT
)
2723 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2727 cmode
= GET_MODE (cplx
);
2728 imode
= GET_MODE_INNER (cmode
);
2729 ibitsize
= GET_MODE_BITSIZE (imode
);
2731 /* For MEMs simplify_gen_subreg may generate an invalid new address
2732 because, e.g., the original address is considered mode-dependent
2733 by the target, which restricts simplify_subreg from invoking
2734 adjust_address_nv. Instead of preparing fallback support for an
2735 invalid address, we call adjust_address_nv directly. */
2738 emit_move_insn (adjust_address_nv (cplx
, imode
,
2739 imag_p
? GET_MODE_SIZE (imode
) : 0),
2744 /* If the sub-object is at least word sized, then we know that subregging
2745 will work. This special case is important, since store_bit_field
2746 wants to operate on integer modes, and there's rarely an OImode to
2747 correspond to TCmode. */
2748 if (ibitsize
>= BITS_PER_WORD
2749 /* For hard regs we have exact predicates. Assume we can split
2750 the original object if it spans an even number of hard regs.
2751 This special case is important for SCmode on 64-bit platforms
2752 where the natural size of floating-point regs is 32-bit. */
2754 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2755 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2757 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2758 imag_p
? GET_MODE_SIZE (imode
) : 0);
2761 emit_move_insn (part
, val
);
2765 /* simplify_gen_subreg may fail for sub-word MEMs. */
2766 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2769 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2772 /* Extract one of the components of the complex value CPLX. Extract the
2773 real part if IMAG_P is false, and the imaginary part if it's true. */
2776 read_complex_part (rtx cplx
, bool imag_p
)
2778 enum machine_mode cmode
, imode
;
2781 if (GET_CODE (cplx
) == CONCAT
)
2782 return XEXP (cplx
, imag_p
);
2784 cmode
= GET_MODE (cplx
);
2785 imode
= GET_MODE_INNER (cmode
);
2786 ibitsize
= GET_MODE_BITSIZE (imode
);
2788 /* Special case reads from complex constants that got spilled to memory. */
2789 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2791 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2792 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2794 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2795 if (CONSTANT_CLASS_P (part
))
2796 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2800 /* For MEMs simplify_gen_subreg may generate an invalid new address
2801 because, e.g., the original address is considered mode-dependent
2802 by the target, which restricts simplify_subreg from invoking
2803 adjust_address_nv. Instead of preparing fallback support for an
2804 invalid address, we call adjust_address_nv directly. */
2806 return adjust_address_nv (cplx
, imode
,
2807 imag_p
? GET_MODE_SIZE (imode
) : 0);
2809 /* If the sub-object is at least word sized, then we know that subregging
2810 will work. This special case is important, since extract_bit_field
2811 wants to operate on integer modes, and there's rarely an OImode to
2812 correspond to TCmode. */
2813 if (ibitsize
>= BITS_PER_WORD
2814 /* For hard regs we have exact predicates. Assume we can split
2815 the original object if it spans an even number of hard regs.
2816 This special case is important for SCmode on 64-bit platforms
2817 where the natural size of floating-point regs is 32-bit. */
2819 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2820 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2822 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2823 imag_p
? GET_MODE_SIZE (imode
) : 0);
2827 /* simplify_gen_subreg may fail for sub-word MEMs. */
2828 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2831 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2832 true, NULL_RTX
, imode
, imode
);
2835 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2836 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2837 represented in NEW_MODE. If FORCE is true, this will never happen, as
2838 we'll force-create a SUBREG if needed. */
2841 emit_move_change_mode (enum machine_mode new_mode
,
2842 enum machine_mode old_mode
, rtx x
, bool force
)
2848 /* We don't have to worry about changing the address since the
2849 size in bytes is supposed to be the same. */
2850 if (reload_in_progress
)
2852 /* Copy the MEM to change the mode and move any
2853 substitutions from the old MEM to the new one. */
2854 ret
= adjust_address_nv (x
, new_mode
, 0);
2855 copy_replacements (x
, ret
);
2858 ret
= adjust_address (x
, new_mode
, 0);
2862 /* Note that we do want simplify_subreg's behavior of validating
2863 that the new mode is ok for a hard register. If we were to use
2864 simplify_gen_subreg, we would create the subreg, but would
2865 probably run into the target not being able to implement it. */
2866 /* Except, of course, when FORCE is true, when this is exactly what
2867 we want. Which is needed for CCmodes on some targets. */
2869 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2871 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2877 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2878 an integer mode of the same size as MODE. Returns the instruction
2879 emitted, or NULL if such a move could not be generated. */
2882 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
2884 enum machine_mode imode
;
2885 enum insn_code code
;
2887 /* There must exist a mode of the exact size we require. */
2888 imode
= int_mode_for_mode (mode
);
2889 if (imode
== BLKmode
)
2892 /* The target must support moves in this mode. */
2893 code
= mov_optab
->handlers
[imode
].insn_code
;
2894 if (code
== CODE_FOR_nothing
)
2897 x
= emit_move_change_mode (imode
, mode
, x
, force
);
2900 y
= emit_move_change_mode (imode
, mode
, y
, force
);
2903 return emit_insn (GEN_FCN (code
) (x
, y
));
2906 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2907 Return an equivalent MEM that does not use an auto-increment. */
2910 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2912 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2913 HOST_WIDE_INT adjust
;
2916 adjust
= GET_MODE_SIZE (mode
);
2917 #ifdef PUSH_ROUNDING
2918 adjust
= PUSH_ROUNDING (adjust
);
2920 if (code
== PRE_DEC
|| code
== POST_DEC
)
2922 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
2924 rtx expr
= XEXP (XEXP (x
, 0), 1);
2927 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
2928 gcc_assert (GET_CODE (XEXP (expr
, 1)) == CONST_INT
);
2929 val
= INTVAL (XEXP (expr
, 1));
2930 if (GET_CODE (expr
) == MINUS
)
2932 gcc_assert (adjust
== val
|| adjust
== -val
);
2936 /* Do not use anti_adjust_stack, since we don't want to update
2937 stack_pointer_delta. */
2938 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2939 GEN_INT (adjust
), stack_pointer_rtx
,
2940 0, OPTAB_LIB_WIDEN
);
2941 if (temp
!= stack_pointer_rtx
)
2942 emit_move_insn (stack_pointer_rtx
, temp
);
2949 temp
= stack_pointer_rtx
;
2954 temp
= plus_constant (stack_pointer_rtx
, -adjust
);
2960 return replace_equiv_address (x
, temp
);
2963 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2964 X is known to satisfy push_operand, and MODE is known to be complex.
2965 Returns the last instruction emitted. */
2968 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
2970 enum machine_mode submode
= GET_MODE_INNER (mode
);
2973 #ifdef PUSH_ROUNDING
2974 unsigned int submodesize
= GET_MODE_SIZE (submode
);
2976 /* In case we output to the stack, but the size is smaller than the
2977 machine can push exactly, we need to use move instructions. */
2978 if (PUSH_ROUNDING (submodesize
) != submodesize
)
2980 x
= emit_move_resolve_push (mode
, x
);
2981 return emit_move_insn (x
, y
);
2985 /* Note that the real part always precedes the imag part in memory
2986 regardless of machine's endianness. */
2987 switch (GET_CODE (XEXP (x
, 0)))
3001 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3002 read_complex_part (y
, imag_first
));
3003 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3004 read_complex_part (y
, !imag_first
));
3007 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3008 MODE is known to be complex. Returns the last instruction emitted. */
3011 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3015 /* Need to take special care for pushes, to maintain proper ordering
3016 of the data, and possibly extra padding. */
3017 if (push_operand (x
, mode
))
3018 return emit_move_complex_push (mode
, x
, y
);
3020 /* See if we can coerce the target into moving both values at once. */
3022 /* Move floating point as parts. */
3023 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3024 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
3026 /* Not possible if the values are inherently not adjacent. */
3027 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3029 /* Is possible if both are registers (or subregs of registers). */
3030 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3032 /* If one of the operands is a memory, and alignment constraints
3033 are friendly enough, we may be able to do combined memory operations.
3034 We do not attempt this if Y is a constant because that combination is
3035 usually better with the by-parts thing below. */
3036 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3037 && (!STRICT_ALIGNMENT
3038 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3047 /* For memory to memory moves, optimal behavior can be had with the
3048 existing block move logic. */
3049 if (MEM_P (x
) && MEM_P (y
))
3051 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3052 BLOCK_OP_NO_LIBCALL
);
3053 return get_last_insn ();
3056 ret
= emit_move_via_integer (mode
, x
, y
, true);
3061 /* Show the output dies here. This is necessary for SUBREGs
3062 of pseudos since we cannot track their lifetimes correctly;
3063 hard regs shouldn't appear here except as return values. */
3064 if (!reload_completed
&& !reload_in_progress
3065 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3066 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3068 write_complex_part (x
, read_complex_part (y
, false), false);
3069 write_complex_part (x
, read_complex_part (y
, true), true);
3070 return get_last_insn ();
3073 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3074 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3077 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3081 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3084 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
3085 if (code
!= CODE_FOR_nothing
)
3087 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3088 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3089 return emit_insn (GEN_FCN (code
) (x
, y
));
3093 /* Otherwise, find the MODE_INT mode of the same width. */
3094 ret
= emit_move_via_integer (mode
, x
, y
, false);
3095 gcc_assert (ret
!= NULL
);
3099 /* Return true if word I of OP lies entirely in the
3100 undefined bits of a paradoxical subreg. */
3103 undefined_operand_subword_p (rtx op
, int i
)
3105 enum machine_mode innermode
, innermostmode
;
3107 if (GET_CODE (op
) != SUBREG
)
3109 innermode
= GET_MODE (op
);
3110 innermostmode
= GET_MODE (SUBREG_REG (op
));
3111 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3112 /* The SUBREG_BYTE represents offset, as if the value were stored in
3113 memory, except for a paradoxical subreg where we define
3114 SUBREG_BYTE to be 0; undo this exception as in
3116 if (SUBREG_BYTE (op
) == 0
3117 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3119 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3120 if (WORDS_BIG_ENDIAN
)
3121 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3122 if (BYTES_BIG_ENDIAN
)
3123 offset
+= difference
% UNITS_PER_WORD
;
3125 if (offset
>= GET_MODE_SIZE (innermostmode
)
3126 || offset
<= -GET_MODE_SIZE (word_mode
))
3131 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3132 MODE is any multi-word or full-word mode that lacks a move_insn
3133 pattern. Note that you will get better code if you define such
3134 patterns, even if they must turn into multiple assembler instructions. */
3137 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3144 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3146 /* If X is a push on the stack, do the push now and replace
3147 X with a reference to the stack pointer. */
3148 if (push_operand (x
, mode
))
3149 x
= emit_move_resolve_push (mode
, x
);
3151 /* If we are in reload, see if either operand is a MEM whose address
3152 is scheduled for replacement. */
3153 if (reload_in_progress
&& MEM_P (x
)
3154 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3155 x
= replace_equiv_address_nv (x
, inner
);
3156 if (reload_in_progress
&& MEM_P (y
)
3157 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3158 y
= replace_equiv_address_nv (y
, inner
);
3162 need_clobber
= false;
3164 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3167 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3170 /* Do not generate code for a move if it would come entirely
3171 from the undefined bits of a paradoxical subreg. */
3172 if (undefined_operand_subword_p (y
, i
))
3175 ypart
= operand_subword (y
, i
, 1, mode
);
3177 /* If we can't get a part of Y, put Y into memory if it is a
3178 constant. Otherwise, force it into a register. Then we must
3179 be able to get a part of Y. */
3180 if (ypart
== 0 && CONSTANT_P (y
))
3182 y
= use_anchored_address (force_const_mem (mode
, y
));
3183 ypart
= operand_subword (y
, i
, 1, mode
);
3185 else if (ypart
== 0)
3186 ypart
= operand_subword_force (y
, i
, mode
);
3188 gcc_assert (xpart
&& ypart
);
3190 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3192 last_insn
= emit_move_insn (xpart
, ypart
);
3198 /* Show the output dies here. This is necessary for SUBREGs
3199 of pseudos since we cannot track their lifetimes correctly;
3200 hard regs shouldn't appear here except as return values.
3201 We never want to emit such a clobber after reload. */
3203 && ! (reload_in_progress
|| reload_completed
)
3204 && need_clobber
!= 0)
3205 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3212 /* Low level part of emit_move_insn.
3213 Called just like emit_move_insn, but assumes X and Y
3214 are basically valid. */
3217 emit_move_insn_1 (rtx x
, rtx y
)
3219 enum machine_mode mode
= GET_MODE (x
);
3220 enum insn_code code
;
3222 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3224 code
= mov_optab
->handlers
[mode
].insn_code
;
3225 if (code
!= CODE_FOR_nothing
)
3226 return emit_insn (GEN_FCN (code
) (x
, y
));
3228 /* Expand complex moves by moving real part and imag part. */
3229 if (COMPLEX_MODE_P (mode
))
3230 return emit_move_complex (mode
, x
, y
);
3232 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
)
3234 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3236 /* If we can't find an integer mode, use multi words. */
3240 return emit_move_multi_word (mode
, x
, y
);
3243 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3244 return emit_move_ccmode (mode
, x
, y
);
3246 /* Try using a move pattern for the corresponding integer mode. This is
3247 only safe when simplify_subreg can convert MODE constants into integer
3248 constants. At present, it can only do this reliably if the value
3249 fits within a HOST_WIDE_INT. */
3250 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3252 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3257 return emit_move_multi_word (mode
, x
, y
);
3260 /* Generate code to copy Y into X.
3261 Both Y and X must have the same mode, except that
3262 Y can be a constant with VOIDmode.
3263 This mode cannot be BLKmode; use emit_block_move for that.
3265 Return the last instruction emitted. */
3268 emit_move_insn (rtx x
, rtx y
)
3270 enum machine_mode mode
= GET_MODE (x
);
3271 rtx y_cst
= NULL_RTX
;
3274 gcc_assert (mode
!= BLKmode
3275 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3280 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3281 && (last_insn
= compress_float_constant (x
, y
)))
3286 if (!LEGITIMATE_CONSTANT_P (y
))
3288 y
= force_const_mem (mode
, y
);
3290 /* If the target's cannot_force_const_mem prevented the spill,
3291 assume that the target's move expanders will also take care
3292 of the non-legitimate constant. */
3296 y
= use_anchored_address (y
);
3300 /* If X or Y are memory references, verify that their addresses are valid
3303 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3304 && ! push_operand (x
, GET_MODE (x
)))
3306 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3307 x
= validize_mem (x
);
3310 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3312 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3313 y
= validize_mem (y
);
3315 gcc_assert (mode
!= BLKmode
);
3317 last_insn
= emit_move_insn_1 (x
, y
);
3319 if (y_cst
&& REG_P (x
)
3320 && (set
= single_set (last_insn
)) != NULL_RTX
3321 && SET_DEST (set
) == x
3322 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3323 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3328 /* If Y is representable exactly in a narrower mode, and the target can
3329 perform the extension directly from constant or memory, then emit the
3330 move as an extension. */
3333 compress_float_constant (rtx x
, rtx y
)
3335 enum machine_mode dstmode
= GET_MODE (x
);
3336 enum machine_mode orig_srcmode
= GET_MODE (y
);
3337 enum machine_mode srcmode
;
3339 int oldcost
, newcost
;
3341 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3343 if (LEGITIMATE_CONSTANT_P (y
))
3344 oldcost
= rtx_cost (y
, SET
);
3346 oldcost
= rtx_cost (force_const_mem (dstmode
, y
), SET
);
3348 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3349 srcmode
!= orig_srcmode
;
3350 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3353 rtx trunc_y
, last_insn
;
3355 /* Skip if the target can't extend this way. */
3356 ic
= can_extend_p (dstmode
, srcmode
, 0);
3357 if (ic
== CODE_FOR_nothing
)
3360 /* Skip if the narrowed value isn't exact. */
3361 if (! exact_real_truncate (srcmode
, &r
))
3364 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3366 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3368 /* Skip if the target needs extra instructions to perform
3370 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3372 /* This is valid, but may not be cheaper than the original. */
3373 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3374 if (oldcost
< newcost
)
3377 else if (float_extend_from_mem
[dstmode
][srcmode
])
3379 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3380 /* This is valid, but may not be cheaper than the original. */
3381 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3382 if (oldcost
< newcost
)
3384 trunc_y
= validize_mem (trunc_y
);
3389 /* For CSE's benefit, force the compressed constant pool entry
3390 into a new pseudo. This constant may be used in different modes,
3391 and if not, combine will put things back together for us. */
3392 trunc_y
= force_reg (srcmode
, trunc_y
);
3393 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3394 last_insn
= get_last_insn ();
3397 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3405 /* Pushing data onto the stack. */
3407 /* Push a block of length SIZE (perhaps variable)
3408 and return an rtx to address the beginning of the block.
3409 The value may be virtual_outgoing_args_rtx.
3411 EXTRA is the number of bytes of padding to push in addition to SIZE.
3412 BELOW nonzero means this padding comes at low addresses;
3413 otherwise, the padding comes at high addresses. */
3416 push_block (rtx size
, int extra
, int below
)
3420 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3421 if (CONSTANT_P (size
))
3422 anti_adjust_stack (plus_constant (size
, extra
));
3423 else if (REG_P (size
) && extra
== 0)
3424 anti_adjust_stack (size
);
3427 temp
= copy_to_mode_reg (Pmode
, size
);
3429 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3430 temp
, 0, OPTAB_LIB_WIDEN
);
3431 anti_adjust_stack (temp
);
3434 #ifndef STACK_GROWS_DOWNWARD
3440 temp
= virtual_outgoing_args_rtx
;
3441 if (extra
!= 0 && below
)
3442 temp
= plus_constant (temp
, extra
);
3446 if (GET_CODE (size
) == CONST_INT
)
3447 temp
= plus_constant (virtual_outgoing_args_rtx
,
3448 -INTVAL (size
) - (below
? 0 : extra
));
3449 else if (extra
!= 0 && !below
)
3450 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3451 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3453 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3454 negate_rtx (Pmode
, size
));
3457 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3460 #ifdef PUSH_ROUNDING
3462 /* Emit single push insn. */
3465 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3468 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3470 enum insn_code icode
;
3471 insn_operand_predicate_fn pred
;
3473 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3474 /* If there is push pattern, use it. Otherwise try old way of throwing
3475 MEM representing push operation to move expander. */
3476 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3477 if (icode
!= CODE_FOR_nothing
)
3479 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3480 && !((*pred
) (x
, mode
))))
3481 x
= force_reg (mode
, x
);
3482 emit_insn (GEN_FCN (icode
) (x
));
3485 if (GET_MODE_SIZE (mode
) == rounded_size
)
3486 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3487 /* If we are to pad downward, adjust the stack pointer first and
3488 then store X into the stack location using an offset. This is
3489 because emit_move_insn does not know how to pad; it does not have
3491 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3493 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3494 HOST_WIDE_INT offset
;
3496 emit_move_insn (stack_pointer_rtx
,
3497 expand_binop (Pmode
,
3498 #ifdef STACK_GROWS_DOWNWARD
3504 GEN_INT (rounded_size
),
3505 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3507 offset
= (HOST_WIDE_INT
) padding_size
;
3508 #ifdef STACK_GROWS_DOWNWARD
3509 if (STACK_PUSH_CODE
== POST_DEC
)
3510 /* We have already decremented the stack pointer, so get the
3512 offset
+= (HOST_WIDE_INT
) rounded_size
;
3514 if (STACK_PUSH_CODE
== POST_INC
)
3515 /* We have already incremented the stack pointer, so get the
3517 offset
-= (HOST_WIDE_INT
) rounded_size
;
3519 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3523 #ifdef STACK_GROWS_DOWNWARD
3524 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3525 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3526 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3528 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3529 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3530 GEN_INT (rounded_size
));
3532 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3535 dest
= gen_rtx_MEM (mode
, dest_addr
);
3539 set_mem_attributes (dest
, type
, 1);
3541 if (flag_optimize_sibling_calls
)
3542 /* Function incoming arguments may overlap with sibling call
3543 outgoing arguments and we cannot allow reordering of reads
3544 from function arguments with stores to outgoing arguments
3545 of sibling calls. */
3546 set_mem_alias_set (dest
, 0);
3548 emit_move_insn (dest
, x
);
3552 /* Generate code to push X onto the stack, assuming it has mode MODE and
3554 MODE is redundant except when X is a CONST_INT (since they don't
3556 SIZE is an rtx for the size of data to be copied (in bytes),
3557 needed only if X is BLKmode.
3559 ALIGN (in bits) is maximum alignment we can assume.
3561 If PARTIAL and REG are both nonzero, then copy that many of the first
3562 bytes of X into registers starting with REG, and push the rest of X.
3563 The amount of space pushed is decreased by PARTIAL bytes.
3564 REG must be a hard register in this case.
3565 If REG is zero but PARTIAL is not, take any all others actions for an
3566 argument partially in registers, but do not actually load any
3569 EXTRA is the amount in bytes of extra space to leave next to this arg.
3570 This is ignored if an argument block has already been allocated.
3572 On a machine that lacks real push insns, ARGS_ADDR is the address of
3573 the bottom of the argument block for this call. We use indexing off there
3574 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3575 argument block has not been preallocated.
3577 ARGS_SO_FAR is the size of args previously pushed for this call.
3579 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3580 for arguments passed in registers. If nonzero, it will be the number
3581 of bytes required. */
3584 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3585 unsigned int align
, int partial
, rtx reg
, int extra
,
3586 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3590 enum direction stack_direction
3591 #ifdef STACK_GROWS_DOWNWARD
3597 /* Decide where to pad the argument: `downward' for below,
3598 `upward' for above, or `none' for don't pad it.
3599 Default is below for small data on big-endian machines; else above. */
3600 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3602 /* Invert direction if stack is post-decrement.
3604 if (STACK_PUSH_CODE
== POST_DEC
)
3605 if (where_pad
!= none
)
3606 where_pad
= (where_pad
== downward
? upward
: downward
);
3610 if (mode
== BLKmode
)
3612 /* Copy a block into the stack, entirely or partially. */
3619 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3620 used
= partial
- offset
;
3624 /* USED is now the # of bytes we need not copy to the stack
3625 because registers will take care of them. */
3628 xinner
= adjust_address (xinner
, BLKmode
, used
);
3630 /* If the partial register-part of the arg counts in its stack size,
3631 skip the part of stack space corresponding to the registers.
3632 Otherwise, start copying to the beginning of the stack space,
3633 by setting SKIP to 0. */
3634 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3636 #ifdef PUSH_ROUNDING
3637 /* Do it with several push insns if that doesn't take lots of insns
3638 and if there is no difficulty with push insns that skip bytes
3639 on the stack for alignment purposes. */
3642 && GET_CODE (size
) == CONST_INT
3644 && MEM_ALIGN (xinner
) >= align
3645 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3646 /* Here we avoid the case of a structure whose weak alignment
3647 forces many pushes of a small amount of data,
3648 and such small pushes do rounding that causes trouble. */
3649 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3650 || align
>= BIGGEST_ALIGNMENT
3651 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3652 == (align
/ BITS_PER_UNIT
)))
3653 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3655 /* Push padding now if padding above and stack grows down,
3656 or if padding below and stack grows up.
3657 But if space already allocated, this has already been done. */
3658 if (extra
&& args_addr
== 0
3659 && where_pad
!= none
&& where_pad
!= stack_direction
)
3660 anti_adjust_stack (GEN_INT (extra
));
3662 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3665 #endif /* PUSH_ROUNDING */
3669 /* Otherwise make space on the stack and copy the data
3670 to the address of that space. */
3672 /* Deduct words put into registers from the size we must copy. */
3675 if (GET_CODE (size
) == CONST_INT
)
3676 size
= GEN_INT (INTVAL (size
) - used
);
3678 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3679 GEN_INT (used
), NULL_RTX
, 0,
3683 /* Get the address of the stack space.
3684 In this case, we do not deal with EXTRA separately.
3685 A single stack adjust will do. */
3688 temp
= push_block (size
, extra
, where_pad
== downward
);
3691 else if (GET_CODE (args_so_far
) == CONST_INT
)
3692 temp
= memory_address (BLKmode
,
3693 plus_constant (args_addr
,
3694 skip
+ INTVAL (args_so_far
)));
3696 temp
= memory_address (BLKmode
,
3697 plus_constant (gen_rtx_PLUS (Pmode
,
3702 if (!ACCUMULATE_OUTGOING_ARGS
)
3704 /* If the source is referenced relative to the stack pointer,
3705 copy it to another register to stabilize it. We do not need
3706 to do this if we know that we won't be changing sp. */
3708 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3709 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3710 temp
= copy_to_reg (temp
);
3713 target
= gen_rtx_MEM (BLKmode
, temp
);
3715 /* We do *not* set_mem_attributes here, because incoming arguments
3716 may overlap with sibling call outgoing arguments and we cannot
3717 allow reordering of reads from function arguments with stores
3718 to outgoing arguments of sibling calls. We do, however, want
3719 to record the alignment of the stack slot. */
3720 /* ALIGN may well be better aligned than TYPE, e.g. due to
3721 PARM_BOUNDARY. Assume the caller isn't lying. */
3722 set_mem_align (target
, align
);
3724 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3727 else if (partial
> 0)
3729 /* Scalar partly in registers. */
3731 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3734 /* # bytes of start of argument
3735 that we must make space for but need not store. */
3736 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3737 int args_offset
= INTVAL (args_so_far
);
3740 /* Push padding now if padding above and stack grows down,
3741 or if padding below and stack grows up.
3742 But if space already allocated, this has already been done. */
3743 if (extra
&& args_addr
== 0
3744 && where_pad
!= none
&& where_pad
!= stack_direction
)
3745 anti_adjust_stack (GEN_INT (extra
));
3747 /* If we make space by pushing it, we might as well push
3748 the real data. Otherwise, we can leave OFFSET nonzero
3749 and leave the space uninitialized. */
3753 /* Now NOT_STACK gets the number of words that we don't need to
3754 allocate on the stack. Convert OFFSET to words too. */
3755 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3756 offset
/= UNITS_PER_WORD
;
3758 /* If the partial register-part of the arg counts in its stack size,
3759 skip the part of stack space corresponding to the registers.
3760 Otherwise, start copying to the beginning of the stack space,
3761 by setting SKIP to 0. */
3762 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3764 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3765 x
= validize_mem (force_const_mem (mode
, x
));
3767 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3768 SUBREGs of such registers are not allowed. */
3769 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3770 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3771 x
= copy_to_reg (x
);
3773 /* Loop over all the words allocated on the stack for this arg. */
3774 /* We can do it by words, because any scalar bigger than a word
3775 has a size a multiple of a word. */
3776 #ifndef PUSH_ARGS_REVERSED
3777 for (i
= not_stack
; i
< size
; i
++)
3779 for (i
= size
- 1; i
>= not_stack
; i
--)
3781 if (i
>= not_stack
+ offset
)
3782 emit_push_insn (operand_subword_force (x
, i
, mode
),
3783 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3785 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3787 reg_parm_stack_space
, alignment_pad
);
3794 /* Push padding now if padding above and stack grows down,
3795 or if padding below and stack grows up.
3796 But if space already allocated, this has already been done. */
3797 if (extra
&& args_addr
== 0
3798 && where_pad
!= none
&& where_pad
!= stack_direction
)
3799 anti_adjust_stack (GEN_INT (extra
));
3801 #ifdef PUSH_ROUNDING
3802 if (args_addr
== 0 && PUSH_ARGS
)
3803 emit_single_push_insn (mode
, x
, type
);
3807 if (GET_CODE (args_so_far
) == CONST_INT
)
3809 = memory_address (mode
,
3810 plus_constant (args_addr
,
3811 INTVAL (args_so_far
)));
3813 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3815 dest
= gen_rtx_MEM (mode
, addr
);
3817 /* We do *not* set_mem_attributes here, because incoming arguments
3818 may overlap with sibling call outgoing arguments and we cannot
3819 allow reordering of reads from function arguments with stores
3820 to outgoing arguments of sibling calls. We do, however, want
3821 to record the alignment of the stack slot. */
3822 /* ALIGN may well be better aligned than TYPE, e.g. due to
3823 PARM_BOUNDARY. Assume the caller isn't lying. */
3824 set_mem_align (dest
, align
);
3826 emit_move_insn (dest
, x
);
3830 /* If part should go in registers, copy that part
3831 into the appropriate registers. Do this now, at the end,
3832 since mem-to-mem copies above may do function calls. */
3833 if (partial
> 0 && reg
!= 0)
3835 /* Handle calls that pass values in multiple non-contiguous locations.
3836 The Irix 6 ABI has examples of this. */
3837 if (GET_CODE (reg
) == PARALLEL
)
3838 emit_group_load (reg
, x
, type
, -1);
3841 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3842 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3846 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3847 anti_adjust_stack (GEN_INT (extra
));
3849 if (alignment_pad
&& args_addr
== 0)
3850 anti_adjust_stack (alignment_pad
);
3853 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3857 get_subtarget (rtx x
)
3861 /* Only registers can be subtargets. */
3863 /* Don't use hard regs to avoid extending their life. */
3864 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3868 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3869 FIELD is a bitfield. Returns true if the optimization was successful,
3870 and there's nothing else to do. */
3873 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3874 unsigned HOST_WIDE_INT bitpos
,
3875 enum machine_mode mode1
, rtx str_rtx
,
3878 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3879 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3884 if (mode1
!= VOIDmode
3885 || bitsize
>= BITS_PER_WORD
3886 || str_bitsize
> BITS_PER_WORD
3887 || TREE_SIDE_EFFECTS (to
)
3888 || TREE_THIS_VOLATILE (to
))
3892 if (!BINARY_CLASS_P (src
)
3893 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3896 op0
= TREE_OPERAND (src
, 0);
3897 op1
= TREE_OPERAND (src
, 1);
3900 if (!operand_equal_p (to
, op0
, 0))
3903 if (MEM_P (str_rtx
))
3905 unsigned HOST_WIDE_INT offset1
;
3907 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3908 str_mode
= word_mode
;
3909 str_mode
= get_best_mode (bitsize
, bitpos
,
3910 MEM_ALIGN (str_rtx
), str_mode
, 0);
3911 if (str_mode
== VOIDmode
)
3913 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3916 bitpos
%= str_bitsize
;
3917 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3918 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3920 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3923 /* If the bit field covers the whole REG/MEM, store_field
3924 will likely generate better code. */
3925 if (bitsize
>= str_bitsize
)
3928 /* We can't handle fields split across multiple entities. */
3929 if (bitpos
+ bitsize
> str_bitsize
)
3932 if (BYTES_BIG_ENDIAN
)
3933 bitpos
= str_bitsize
- bitpos
- bitsize
;
3935 switch (TREE_CODE (src
))
3939 /* For now, just optimize the case of the topmost bitfield
3940 where we don't need to do any masking and also
3941 1 bit bitfields where xor can be used.
3942 We might win by one instruction for the other bitfields
3943 too if insv/extv instructions aren't used, so that
3944 can be added later. */
3945 if (bitpos
+ bitsize
!= str_bitsize
3946 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3949 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
3950 value
= convert_modes (str_mode
,
3951 TYPE_MODE (TREE_TYPE (op1
)), value
,
3952 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3954 /* We may be accessing data outside the field, which means
3955 we can alias adjacent data. */
3956 if (MEM_P (str_rtx
))
3958 str_rtx
= shallow_copy_rtx (str_rtx
);
3959 set_mem_alias_set (str_rtx
, 0);
3960 set_mem_expr (str_rtx
, 0);
3963 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3964 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
3966 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
3969 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
3970 build_int_cst (NULL_TREE
, bitpos
),
3972 result
= expand_binop (str_mode
, binop
, str_rtx
,
3973 value
, str_rtx
, 1, OPTAB_WIDEN
);
3974 if (result
!= str_rtx
)
3975 emit_move_insn (str_rtx
, result
);
3980 if (TREE_CODE (op1
) != INTEGER_CST
)
3982 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3983 value
= convert_modes (GET_MODE (str_rtx
),
3984 TYPE_MODE (TREE_TYPE (op1
)), value
,
3985 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3987 /* We may be accessing data outside the field, which means
3988 we can alias adjacent data. */
3989 if (MEM_P (str_rtx
))
3991 str_rtx
= shallow_copy_rtx (str_rtx
);
3992 set_mem_alias_set (str_rtx
, 0);
3993 set_mem_expr (str_rtx
, 0);
3996 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
3997 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3999 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
4001 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
4004 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
4005 build_int_cst (NULL_TREE
, bitpos
),
4007 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
4008 value
, str_rtx
, 1, OPTAB_WIDEN
);
4009 if (result
!= str_rtx
)
4010 emit_move_insn (str_rtx
, result
);
4021 /* Expand an assignment that stores the value of FROM into TO. */
4024 expand_assignment (tree to
, tree from
)
4029 /* Don't crash if the lhs of the assignment was erroneous. */
4030 if (TREE_CODE (to
) == ERROR_MARK
)
4032 result
= expand_normal (from
);
4036 /* Optimize away no-op moves without side-effects. */
4037 if (operand_equal_p (to
, from
, 0))
4040 /* Assignment of a structure component needs special treatment
4041 if the structure component's rtx is not simply a MEM.
4042 Assignment of an array element at a constant index, and assignment of
4043 an array element in an unaligned packed structure field, has the same
4045 if (handled_component_p (to
)
4046 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4048 enum machine_mode mode1
;
4049 HOST_WIDE_INT bitsize
, bitpos
;
4056 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4057 &unsignedp
, &volatilep
, true);
4059 /* If we are going to use store_bit_field and extract_bit_field,
4060 make sure to_rtx will be safe for multiple use. */
4062 to_rtx
= expand_normal (tem
);
4068 if (!MEM_P (to_rtx
))
4070 /* We can get constant negative offsets into arrays with broken
4071 user code. Translate this to a trap instead of ICEing. */
4072 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4073 expand_builtin_trap ();
4074 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4077 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4078 #ifdef POINTERS_EXTEND_UNSIGNED
4079 if (GET_MODE (offset_rtx
) != Pmode
)
4080 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4082 if (GET_MODE (offset_rtx
) != ptr_mode
)
4083 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4086 /* A constant address in TO_RTX can have VOIDmode, we must not try
4087 to call force_reg for that case. Avoid that case. */
4089 && GET_MODE (to_rtx
) == BLKmode
4090 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4092 && (bitpos
% bitsize
) == 0
4093 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4094 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4096 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4100 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4101 highest_pow2_factor_for_target (to
,
4105 /* Handle expand_expr of a complex value returning a CONCAT. */
4106 if (GET_CODE (to_rtx
) == CONCAT
)
4108 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
4110 gcc_assert (bitpos
== 0);
4111 result
= store_expr (from
, to_rtx
, false);
4115 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
4116 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
4123 /* If the field is at offset zero, we could have been given the
4124 DECL_RTX of the parent struct. Don't munge it. */
4125 to_rtx
= shallow_copy_rtx (to_rtx
);
4127 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4129 /* Deal with volatile and readonly fields. The former is only
4130 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4132 MEM_VOLATILE_P (to_rtx
) = 1;
4133 if (component_uses_parent_alias_set (to
))
4134 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4137 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
4141 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
4142 TREE_TYPE (tem
), get_alias_set (to
));
4146 preserve_temp_slots (result
);
4152 /* If the rhs is a function call and its value is not an aggregate,
4153 call the function before we start to compute the lhs.
4154 This is needed for correct code for cases such as
4155 val = setjmp (buf) on machines where reference to val
4156 requires loading up part of an address in a separate insn.
4158 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4159 since it might be a promoted variable where the zero- or sign- extension
4160 needs to be done. Handling this in the normal way is safe because no
4161 computation is done before the call. */
4162 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4163 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4164 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4165 && REG_P (DECL_RTL (to
))))
4170 value
= expand_normal (from
);
4172 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4174 /* Handle calls that return values in multiple non-contiguous locations.
4175 The Irix 6 ABI has examples of this. */
4176 if (GET_CODE (to_rtx
) == PARALLEL
)
4177 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4178 int_size_in_bytes (TREE_TYPE (from
)));
4179 else if (GET_MODE (to_rtx
) == BLKmode
)
4180 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4183 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4184 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4185 emit_move_insn (to_rtx
, value
);
4187 preserve_temp_slots (to_rtx
);
4193 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4194 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4197 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4199 /* Don't move directly into a return register. */
4200 if (TREE_CODE (to
) == RESULT_DECL
4201 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4206 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
4208 if (GET_CODE (to_rtx
) == PARALLEL
)
4209 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4210 int_size_in_bytes (TREE_TYPE (from
)));
4212 emit_move_insn (to_rtx
, temp
);
4214 preserve_temp_slots (to_rtx
);
4220 /* In case we are returning the contents of an object which overlaps
4221 the place the value is being stored, use a safe function when copying
4222 a value through a pointer into a structure value return block. */
4223 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4224 && current_function_returns_struct
4225 && !current_function_returns_pcc_struct
)
4230 size
= expr_size (from
);
4231 from_rtx
= expand_normal (from
);
4233 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4234 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4235 XEXP (from_rtx
, 0), Pmode
,
4236 convert_to_mode (TYPE_MODE (sizetype
),
4237 size
, TYPE_UNSIGNED (sizetype
)),
4238 TYPE_MODE (sizetype
));
4240 preserve_temp_slots (to_rtx
);
4246 /* Compute FROM and store the value in the rtx we got. */
4249 result
= store_expr (from
, to_rtx
, 0);
4250 preserve_temp_slots (result
);
4256 /* Generate code for computing expression EXP,
4257 and storing the value into TARGET.
4259 If the mode is BLKmode then we may return TARGET itself.
4260 It turns out that in BLKmode it doesn't cause a problem.
4261 because C has no operators that could combine two different
4262 assignments into the same BLKmode object with different values
4263 with no sequence point. Will other languages need this to
4266 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4267 stack, and block moves may need to be treated specially. */
4270 store_expr (tree exp
, rtx target
, int call_param_p
)
4273 rtx alt_rtl
= NULL_RTX
;
4274 int dont_return_target
= 0;
4276 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4278 /* C++ can generate ?: expressions with a throw expression in one
4279 branch and an rvalue in the other. Here, we resolve attempts to
4280 store the throw expression's nonexistent result. */
4281 gcc_assert (!call_param_p
);
4282 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4285 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4287 /* Perform first part of compound expression, then assign from second
4289 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4290 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4291 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4293 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4295 /* For conditional expression, get safe form of the target. Then
4296 test the condition, doing the appropriate assignment on either
4297 side. This avoids the creation of unnecessary temporaries.
4298 For non-BLKmode, it is more efficient not to do this. */
4300 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4302 do_pending_stack_adjust ();
4304 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4305 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4306 emit_jump_insn (gen_jump (lab2
));
4309 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4315 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4316 /* If this is a scalar in a register that is stored in a wider mode
4317 than the declared mode, compute the result into its declared mode
4318 and then convert to the wider mode. Our value is the computed
4321 rtx inner_target
= 0;
4323 /* We can do the conversion inside EXP, which will often result
4324 in some optimizations. Do the conversion in two steps: first
4325 change the signedness, if needed, then the extend. But don't
4326 do this if the type of EXP is a subtype of something else
4327 since then the conversion might involve more than just
4328 converting modes. */
4329 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4330 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4331 && (!lang_hooks
.reduce_bit_field_operations
4332 || (GET_MODE_PRECISION (GET_MODE (target
))
4333 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4335 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4336 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4338 (lang_hooks
.types
.signed_or_unsigned_type
4339 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4341 exp
= fold_convert (lang_hooks
.types
.type_for_mode
4342 (GET_MODE (SUBREG_REG (target
)),
4343 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4346 inner_target
= SUBREG_REG (target
);
4349 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4350 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4352 /* If TEMP is a VOIDmode constant, use convert_modes to make
4353 sure that we properly convert it. */
4354 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4356 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4357 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4358 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4359 GET_MODE (target
), temp
,
4360 SUBREG_PROMOTED_UNSIGNED_P (target
));
4363 convert_move (SUBREG_REG (target
), temp
,
4364 SUBREG_PROMOTED_UNSIGNED_P (target
));
4370 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4372 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4374 /* Return TARGET if it's a specified hardware register.
4375 If TARGET is a volatile mem ref, either return TARGET
4376 or return a reg copied *from* TARGET; ANSI requires this.
4378 Otherwise, if TEMP is not TARGET, return TEMP
4379 if it is constant (for efficiency),
4380 or if we really want the correct value. */
4381 if (!(target
&& REG_P (target
)
4382 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4383 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4384 && ! rtx_equal_p (temp
, target
)
4385 && CONSTANT_P (temp
))
4386 dont_return_target
= 1;
4389 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4390 the same as that of TARGET, adjust the constant. This is needed, for
4391 example, in case it is a CONST_DOUBLE and we want only a word-sized
4393 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4394 && TREE_CODE (exp
) != ERROR_MARK
4395 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4396 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4397 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4399 /* If value was not generated in the target, store it there.
4400 Convert the value to TARGET's type first if necessary and emit the
4401 pending incrementations that have been queued when expanding EXP.
4402 Note that we cannot emit the whole queue blindly because this will
4403 effectively disable the POST_INC optimization later.
4405 If TEMP and TARGET compare equal according to rtx_equal_p, but
4406 one or both of them are volatile memory refs, we have to distinguish
4408 - expand_expr has used TARGET. In this case, we must not generate
4409 another copy. This can be detected by TARGET being equal according
4411 - expand_expr has not used TARGET - that means that the source just
4412 happens to have the same RTX form. Since temp will have been created
4413 by expand_expr, it will compare unequal according to == .
4414 We must generate a copy in this case, to reach the correct number
4415 of volatile memory references. */
4417 if ((! rtx_equal_p (temp
, target
)
4418 || (temp
!= target
&& (side_effects_p (temp
)
4419 || side_effects_p (target
))))
4420 && TREE_CODE (exp
) != ERROR_MARK
4421 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4422 but TARGET is not valid memory reference, TEMP will differ
4423 from TARGET although it is really the same location. */
4424 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4425 /* If there's nothing to copy, don't bother. Don't call
4426 expr_size unless necessary, because some front-ends (C++)
4427 expr_size-hook must not be given objects that are not
4428 supposed to be bit-copied or bit-initialized. */
4429 && expr_size (exp
) != const0_rtx
)
4431 if (GET_MODE (temp
) != GET_MODE (target
)
4432 && GET_MODE (temp
) != VOIDmode
)
4434 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4435 if (dont_return_target
)
4437 /* In this case, we will return TEMP,
4438 so make sure it has the proper mode.
4439 But don't forget to store the value into TARGET. */
4440 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4441 emit_move_insn (target
, temp
);
4444 convert_move (target
, temp
, unsignedp
);
4447 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4449 /* Handle copying a string constant into an array. The string
4450 constant may be shorter than the array. So copy just the string's
4451 actual length, and clear the rest. First get the size of the data
4452 type of the string, which is actually the size of the target. */
4453 rtx size
= expr_size (exp
);
4455 if (GET_CODE (size
) == CONST_INT
4456 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4457 emit_block_move (target
, temp
, size
,
4459 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4462 /* Compute the size of the data to copy from the string. */
4464 = size_binop (MIN_EXPR
,
4465 make_tree (sizetype
, size
),
4466 size_int (TREE_STRING_LENGTH (exp
)));
4468 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4470 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4473 /* Copy that much. */
4474 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4475 TYPE_UNSIGNED (sizetype
));
4476 emit_block_move (target
, temp
, copy_size_rtx
,
4478 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4480 /* Figure out how much is left in TARGET that we have to clear.
4481 Do all calculations in ptr_mode. */
4482 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4484 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4485 target
= adjust_address (target
, BLKmode
,
4486 INTVAL (copy_size_rtx
));
4490 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4491 copy_size_rtx
, NULL_RTX
, 0,
4494 #ifdef POINTERS_EXTEND_UNSIGNED
4495 if (GET_MODE (copy_size_rtx
) != Pmode
)
4496 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4497 TYPE_UNSIGNED (sizetype
));
4500 target
= offset_address (target
, copy_size_rtx
,
4501 highest_pow2_factor (copy_size
));
4502 label
= gen_label_rtx ();
4503 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4504 GET_MODE (size
), 0, label
);
4507 if (size
!= const0_rtx
)
4508 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4514 /* Handle calls that return values in multiple non-contiguous locations.
4515 The Irix 6 ABI has examples of this. */
4516 else if (GET_CODE (target
) == PARALLEL
)
4517 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4518 int_size_in_bytes (TREE_TYPE (exp
)));
4519 else if (GET_MODE (temp
) == BLKmode
)
4520 emit_block_move (target
, temp
, expr_size (exp
),
4522 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4525 temp
= force_operand (temp
, target
);
4527 emit_move_insn (target
, temp
);
4534 /* Helper for categorize_ctor_elements. Identical interface. */
4537 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4538 HOST_WIDE_INT
*p_elt_count
,
4541 unsigned HOST_WIDE_INT idx
;
4542 HOST_WIDE_INT nz_elts
, elt_count
;
4543 tree value
, purpose
;
4545 /* Whether CTOR is a valid constant initializer, in accordance with what
4546 initializer_constant_valid_p does. If inferred from the constructor
4547 elements, true until proven otherwise. */
4548 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
4549 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
4554 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
4559 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4561 tree lo_index
= TREE_OPERAND (purpose
, 0);
4562 tree hi_index
= TREE_OPERAND (purpose
, 1);
4564 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4565 mult
= (tree_low_cst (hi_index
, 1)
4566 - tree_low_cst (lo_index
, 1) + 1);
4569 switch (TREE_CODE (value
))
4573 HOST_WIDE_INT nz
= 0, ic
= 0;
4576 = categorize_ctor_elements_1 (value
, &nz
, &ic
, p_must_clear
);
4578 nz_elts
+= mult
* nz
;
4579 elt_count
+= mult
* ic
;
4581 if (const_from_elts_p
&& const_p
)
4582 const_p
= const_elt_p
;
4588 if (!initializer_zerop (value
))
4594 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4595 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4599 if (!initializer_zerop (TREE_REALPART (value
)))
4601 if (!initializer_zerop (TREE_IMAGPART (value
)))
4609 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4611 if (!initializer_zerop (TREE_VALUE (v
)))
4622 if (const_from_elts_p
&& const_p
)
4623 const_p
= initializer_constant_valid_p (value
, TREE_TYPE (value
))
4630 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4631 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4634 bool clear_this
= true;
4636 if (!VEC_empty (constructor_elt
, CONSTRUCTOR_ELTS (ctor
)))
4638 /* We don't expect more than one element of the union to be
4639 initialized. Not sure what we should do otherwise... */
4640 gcc_assert (VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (ctor
))
4643 init_sub_type
= TREE_TYPE (VEC_index (constructor_elt
,
4644 CONSTRUCTOR_ELTS (ctor
),
4647 /* ??? We could look at each element of the union, and find the
4648 largest element. Which would avoid comparing the size of the
4649 initialized element against any tail padding in the union.
4650 Doesn't seem worth the effort... */
4651 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4652 TYPE_SIZE (init_sub_type
)) == 1)
4654 /* And now we have to find out if the element itself is fully
4655 constructed. E.g. for union { struct { int a, b; } s; } u
4656 = { .s = { .a = 1 } }. */
4657 if (elt_count
== count_type_elements (init_sub_type
, false))
4662 *p_must_clear
= clear_this
;
4665 *p_nz_elts
+= nz_elts
;
4666 *p_elt_count
+= elt_count
;
4671 /* Examine CTOR to discover:
4672 * how many scalar fields are set to nonzero values,
4673 and place it in *P_NZ_ELTS;
4674 * how many scalar fields in total are in CTOR,
4675 and place it in *P_ELT_COUNT.
4676 * if a type is a union, and the initializer from the constructor
4677 is not the largest element in the union, then set *p_must_clear.
4679 Return whether or not CTOR is a valid static constant initializer, the same
4680 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4683 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4684 HOST_WIDE_INT
*p_elt_count
,
4689 *p_must_clear
= false;
4692 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_elt_count
, p_must_clear
);
4695 /* Count the number of scalars in TYPE. Return -1 on overflow or
4696 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4697 array member at the end of the structure. */
4700 count_type_elements (tree type
, bool allow_flexarr
)
4702 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4703 switch (TREE_CODE (type
))
4707 tree telts
= array_type_nelts (type
);
4708 if (telts
&& host_integerp (telts
, 1))
4710 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4711 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
), false);
4714 else if (max
/ n
> m
)
4722 HOST_WIDE_INT n
= 0, t
;
4725 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4726 if (TREE_CODE (f
) == FIELD_DECL
)
4728 t
= count_type_elements (TREE_TYPE (f
), false);
4731 /* Check for structures with flexible array member. */
4732 tree tf
= TREE_TYPE (f
);
4734 && TREE_CHAIN (f
) == NULL
4735 && TREE_CODE (tf
) == ARRAY_TYPE
4737 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
4738 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
4739 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
4740 && int_size_in_bytes (type
) >= 0)
4752 case QUAL_UNION_TYPE
:
4754 /* Ho hum. How in the world do we guess here? Clearly it isn't
4755 right to count the fields. Guess based on the number of words. */
4756 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4759 return n
/ UNITS_PER_WORD
;
4766 return TYPE_VECTOR_SUBPARTS (type
);
4774 case REFERENCE_TYPE
:
4786 /* Return 1 if EXP contains mostly (3/4) zeros. */
4789 mostly_zeros_p (tree exp
)
4791 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4794 HOST_WIDE_INT nz_elts
, count
, elts
;
4797 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
4801 elts
= count_type_elements (TREE_TYPE (exp
), false);
4803 return nz_elts
< elts
/ 4;
4806 return initializer_zerop (exp
);
4809 /* Return 1 if EXP contains all zeros. */
4812 all_zeros_p (tree exp
)
4814 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4817 HOST_WIDE_INT nz_elts
, count
;
4820 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
4821 return nz_elts
== 0;
4824 return initializer_zerop (exp
);
4827 /* Helper function for store_constructor.
4828 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4829 TYPE is the type of the CONSTRUCTOR, not the element type.
4830 CLEARED is as for store_constructor.
4831 ALIAS_SET is the alias set to use for any stores.
4833 This provides a recursive shortcut back to store_constructor when it isn't
4834 necessary to go through store_field. This is so that we can pass through
4835 the cleared field to let store_constructor know that we may not have to
4836 clear a substructure if the outer structure has already been cleared. */
4839 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4840 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4841 tree exp
, tree type
, int cleared
, int alias_set
)
4843 if (TREE_CODE (exp
) == CONSTRUCTOR
4844 /* We can only call store_constructor recursively if the size and
4845 bit position are on a byte boundary. */
4846 && bitpos
% BITS_PER_UNIT
== 0
4847 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4848 /* If we have a nonzero bitpos for a register target, then we just
4849 let store_field do the bitfield handling. This is unlikely to
4850 generate unnecessary clear instructions anyways. */
4851 && (bitpos
== 0 || MEM_P (target
)))
4855 = adjust_address (target
,
4856 GET_MODE (target
) == BLKmode
4858 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4859 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4862 /* Update the alias set, if required. */
4863 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4864 && MEM_ALIAS_SET (target
) != 0)
4866 target
= copy_rtx (target
);
4867 set_mem_alias_set (target
, alias_set
);
4870 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4873 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4876 /* Store the value of constructor EXP into the rtx TARGET.
4877 TARGET is either a REG or a MEM; we know it cannot conflict, since
4878 safe_from_p has been called.
4879 CLEARED is true if TARGET is known to have been zero'd.
4880 SIZE is the number of bytes of TARGET we are allowed to modify: this
4881 may not be the same as the size of EXP if we are assigning to a field
4882 which has been packed to exclude padding bits. */
4885 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4887 tree type
= TREE_TYPE (exp
);
4888 #ifdef WORD_REGISTER_OPERATIONS
4889 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4892 switch (TREE_CODE (type
))
4896 case QUAL_UNION_TYPE
:
4898 unsigned HOST_WIDE_INT idx
;
4901 /* If size is zero or the target is already cleared, do nothing. */
4902 if (size
== 0 || cleared
)
4904 /* We either clear the aggregate or indicate the value is dead. */
4905 else if ((TREE_CODE (type
) == UNION_TYPE
4906 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4907 && ! CONSTRUCTOR_ELTS (exp
))
4908 /* If the constructor is empty, clear the union. */
4910 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
4914 /* If we are building a static constructor into a register,
4915 set the initial value as zero so we can fold the value into
4916 a constant. But if more than one register is involved,
4917 this probably loses. */
4918 else if (REG_P (target
) && TREE_STATIC (exp
)
4919 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4921 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4925 /* If the constructor has fewer fields than the structure or
4926 if we are initializing the structure to mostly zeros, clear
4927 the whole structure first. Don't do this if TARGET is a
4928 register whose mode size isn't equal to SIZE since
4929 clear_storage can't handle this case. */
4931 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
4932 != fields_length (type
))
4933 || mostly_zeros_p (exp
))
4935 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4938 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4943 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4945 /* Store each element of the constructor into the
4946 corresponding field of TARGET. */
4947 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
4949 enum machine_mode mode
;
4950 HOST_WIDE_INT bitsize
;
4951 HOST_WIDE_INT bitpos
= 0;
4953 rtx to_rtx
= target
;
4955 /* Just ignore missing fields. We cleared the whole
4956 structure, above, if any fields are missing. */
4960 if (cleared
&& initializer_zerop (value
))
4963 if (host_integerp (DECL_SIZE (field
), 1))
4964 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4968 mode
= DECL_MODE (field
);
4969 if (DECL_BIT_FIELD (field
))
4972 offset
= DECL_FIELD_OFFSET (field
);
4973 if (host_integerp (offset
, 0)
4974 && host_integerp (bit_position (field
), 0))
4976 bitpos
= int_bit_position (field
);
4980 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4987 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4988 make_tree (TREE_TYPE (exp
),
4991 offset_rtx
= expand_normal (offset
);
4992 gcc_assert (MEM_P (to_rtx
));
4994 #ifdef POINTERS_EXTEND_UNSIGNED
4995 if (GET_MODE (offset_rtx
) != Pmode
)
4996 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4998 if (GET_MODE (offset_rtx
) != ptr_mode
)
4999 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
5002 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5003 highest_pow2_factor (offset
));
5006 #ifdef WORD_REGISTER_OPERATIONS
5007 /* If this initializes a field that is smaller than a
5008 word, at the start of a word, try to widen it to a full
5009 word. This special case allows us to output C++ member
5010 function initializations in a form that the optimizers
5013 && bitsize
< BITS_PER_WORD
5014 && bitpos
% BITS_PER_WORD
== 0
5015 && GET_MODE_CLASS (mode
) == MODE_INT
5016 && TREE_CODE (value
) == INTEGER_CST
5018 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5020 tree type
= TREE_TYPE (value
);
5022 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5024 type
= lang_hooks
.types
.type_for_size
5025 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
5026 value
= fold_convert (type
, value
);
5029 if (BYTES_BIG_ENDIAN
)
5031 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5032 build_int_cst (type
,
5033 BITS_PER_WORD
- bitsize
));
5034 bitsize
= BITS_PER_WORD
;
5039 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5040 && DECL_NONADDRESSABLE_P (field
))
5042 to_rtx
= copy_rtx (to_rtx
);
5043 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5046 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5047 value
, type
, cleared
,
5048 get_alias_set (TREE_TYPE (field
)));
5055 unsigned HOST_WIDE_INT i
;
5058 tree elttype
= TREE_TYPE (type
);
5060 HOST_WIDE_INT minelt
= 0;
5061 HOST_WIDE_INT maxelt
= 0;
5063 domain
= TYPE_DOMAIN (type
);
5064 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5065 && TYPE_MAX_VALUE (domain
)
5066 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5067 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5069 /* If we have constant bounds for the range of the type, get them. */
5072 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5073 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5076 /* If the constructor has fewer elements than the array, clear
5077 the whole array first. Similarly if this is static
5078 constructor of a non-BLKmode object. */
5081 else if (REG_P (target
) && TREE_STATIC (exp
))
5085 unsigned HOST_WIDE_INT idx
;
5087 HOST_WIDE_INT count
= 0, zero_count
= 0;
5088 need_to_clear
= ! const_bounds_p
;
5090 /* This loop is a more accurate version of the loop in
5091 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5092 is also needed to check for missing elements. */
5093 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5095 HOST_WIDE_INT this_node_count
;
5100 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5102 tree lo_index
= TREE_OPERAND (index
, 0);
5103 tree hi_index
= TREE_OPERAND (index
, 1);
5105 if (! host_integerp (lo_index
, 1)
5106 || ! host_integerp (hi_index
, 1))
5112 this_node_count
= (tree_low_cst (hi_index
, 1)
5113 - tree_low_cst (lo_index
, 1) + 1);
5116 this_node_count
= 1;
5118 count
+= this_node_count
;
5119 if (mostly_zeros_p (value
))
5120 zero_count
+= this_node_count
;
5123 /* Clear the entire array first if there are any missing
5124 elements, or if the incidence of zero elements is >=
5127 && (count
< maxelt
- minelt
+ 1
5128 || 4 * zero_count
>= 3 * count
))
5132 if (need_to_clear
&& size
> 0)
5135 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5137 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5141 if (!cleared
&& REG_P (target
))
5142 /* Inform later passes that the old value is dead. */
5143 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
5145 /* Store each element of the constructor into the
5146 corresponding element of TARGET, determined by counting the
5148 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
5150 enum machine_mode mode
;
5151 HOST_WIDE_INT bitsize
;
5152 HOST_WIDE_INT bitpos
;
5154 rtx xtarget
= target
;
5156 if (cleared
&& initializer_zerop (value
))
5159 unsignedp
= TYPE_UNSIGNED (elttype
);
5160 mode
= TYPE_MODE (elttype
);
5161 if (mode
== BLKmode
)
5162 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5163 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5166 bitsize
= GET_MODE_BITSIZE (mode
);
5168 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5170 tree lo_index
= TREE_OPERAND (index
, 0);
5171 tree hi_index
= TREE_OPERAND (index
, 1);
5172 rtx index_r
, pos_rtx
;
5173 HOST_WIDE_INT lo
, hi
, count
;
5176 /* If the range is constant and "small", unroll the loop. */
5178 && host_integerp (lo_index
, 0)
5179 && host_integerp (hi_index
, 0)
5180 && (lo
= tree_low_cst (lo_index
, 0),
5181 hi
= tree_low_cst (hi_index
, 0),
5182 count
= hi
- lo
+ 1,
5185 || (host_integerp (TYPE_SIZE (elttype
), 1)
5186 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
5189 lo
-= minelt
; hi
-= minelt
;
5190 for (; lo
<= hi
; lo
++)
5192 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
5195 && !MEM_KEEP_ALIAS_SET_P (target
)
5196 && TREE_CODE (type
) == ARRAY_TYPE
5197 && TYPE_NONALIASED_COMPONENT (type
))
5199 target
= copy_rtx (target
);
5200 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5203 store_constructor_field
5204 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5205 get_alias_set (elttype
));
5210 rtx loop_start
= gen_label_rtx ();
5211 rtx loop_end
= gen_label_rtx ();
5214 expand_normal (hi_index
);
5215 unsignedp
= TYPE_UNSIGNED (domain
);
5217 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
5220 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5222 SET_DECL_RTL (index
, index_r
);
5223 store_expr (lo_index
, index_r
, 0);
5225 /* Build the head of the loop. */
5226 do_pending_stack_adjust ();
5227 emit_label (loop_start
);
5229 /* Assign value to element index. */
5231 fold_convert (ssizetype
,
5232 fold_build2 (MINUS_EXPR
,
5235 TYPE_MIN_VALUE (domain
)));
5238 size_binop (MULT_EXPR
, position
,
5239 fold_convert (ssizetype
,
5240 TYPE_SIZE_UNIT (elttype
)));
5242 pos_rtx
= expand_normal (position
);
5243 xtarget
= offset_address (target
, pos_rtx
,
5244 highest_pow2_factor (position
));
5245 xtarget
= adjust_address (xtarget
, mode
, 0);
5246 if (TREE_CODE (value
) == CONSTRUCTOR
)
5247 store_constructor (value
, xtarget
, cleared
,
5248 bitsize
/ BITS_PER_UNIT
);
5250 store_expr (value
, xtarget
, 0);
5252 /* Generate a conditional jump to exit the loop. */
5253 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5255 jumpif (exit_cond
, loop_end
);
5257 /* Update the loop counter, and jump to the head of
5259 expand_assignment (index
,
5260 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5261 index
, integer_one_node
));
5263 emit_jump (loop_start
);
5265 /* Build the end of the loop. */
5266 emit_label (loop_end
);
5269 else if ((index
!= 0 && ! host_integerp (index
, 0))
5270 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5275 index
= ssize_int (1);
5278 index
= fold_convert (ssizetype
,
5279 fold_build2 (MINUS_EXPR
,
5282 TYPE_MIN_VALUE (domain
)));
5285 size_binop (MULT_EXPR
, index
,
5286 fold_convert (ssizetype
,
5287 TYPE_SIZE_UNIT (elttype
)));
5288 xtarget
= offset_address (target
,
5289 expand_normal (position
),
5290 highest_pow2_factor (position
));
5291 xtarget
= adjust_address (xtarget
, mode
, 0);
5292 store_expr (value
, xtarget
, 0);
5297 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5298 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5300 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5302 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5303 && TREE_CODE (type
) == ARRAY_TYPE
5304 && TYPE_NONALIASED_COMPONENT (type
))
5306 target
= copy_rtx (target
);
5307 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5309 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5310 type
, cleared
, get_alias_set (elttype
));
5318 unsigned HOST_WIDE_INT idx
;
5319 constructor_elt
*ce
;
5323 tree elttype
= TREE_TYPE (type
);
5324 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5325 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5326 HOST_WIDE_INT bitsize
;
5327 HOST_WIDE_INT bitpos
;
5328 rtvec vector
= NULL
;
5331 gcc_assert (eltmode
!= BLKmode
);
5333 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5334 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5336 enum machine_mode mode
= GET_MODE (target
);
5338 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5339 if (icode
!= CODE_FOR_nothing
)
5343 vector
= rtvec_alloc (n_elts
);
5344 for (i
= 0; i
< n_elts
; i
++)
5345 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5349 /* If the constructor has fewer elements than the vector,
5350 clear the whole array first. Similarly if this is static
5351 constructor of a non-BLKmode object. */
5354 else if (REG_P (target
) && TREE_STATIC (exp
))
5358 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5361 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
5363 int n_elts_here
= tree_low_cst
5364 (int_const_binop (TRUNC_DIV_EXPR
,
5365 TYPE_SIZE (TREE_TYPE (value
)),
5366 TYPE_SIZE (elttype
), 0), 1);
5368 count
+= n_elts_here
;
5369 if (mostly_zeros_p (value
))
5370 zero_count
+= n_elts_here
;
5373 /* Clear the entire vector first if there are any missing elements,
5374 or if the incidence of zero elements is >= 75%. */
5375 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5378 if (need_to_clear
&& size
> 0 && !vector
)
5381 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5383 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5387 /* Inform later passes that the old value is dead. */
5388 if (!cleared
&& !vector
&& REG_P (target
))
5389 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5391 /* Store each element of the constructor into the corresponding
5392 element of TARGET, determined by counting the elements. */
5393 for (idx
= 0, i
= 0;
5394 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
5395 idx
++, i
+= bitsize
/ elt_size
)
5397 HOST_WIDE_INT eltpos
;
5398 tree value
= ce
->value
;
5400 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5401 if (cleared
&& initializer_zerop (value
))
5405 eltpos
= tree_low_cst (ce
->index
, 1);
5411 /* Vector CONSTRUCTORs should only be built from smaller
5412 vectors in the case of BLKmode vectors. */
5413 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5414 RTVEC_ELT (vector
, eltpos
)
5415 = expand_normal (value
);
5419 enum machine_mode value_mode
=
5420 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5421 ? TYPE_MODE (TREE_TYPE (value
))
5423 bitpos
= eltpos
* elt_size
;
5424 store_constructor_field (target
, bitsize
, bitpos
,
5425 value_mode
, value
, type
,
5426 cleared
, get_alias_set (elttype
));
5431 emit_insn (GEN_FCN (icode
)
5433 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5442 /* Store the value of EXP (an expression tree)
5443 into a subfield of TARGET which has mode MODE and occupies
5444 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5445 If MODE is VOIDmode, it means that we are storing into a bit-field.
5447 Always return const0_rtx unless we have something particular to
5450 TYPE is the type of the underlying object,
5452 ALIAS_SET is the alias set for the destination. This value will
5453 (in general) be different from that for TARGET, since TARGET is a
5454 reference to the containing structure. */
5457 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5458 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5460 HOST_WIDE_INT width_mask
= 0;
5462 if (TREE_CODE (exp
) == ERROR_MARK
)
5465 /* If we have nothing to store, do nothing unless the expression has
5468 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5469 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5470 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5472 /* If we are storing into an unaligned field of an aligned union that is
5473 in a register, we may have the mode of TARGET being an integer mode but
5474 MODE == BLKmode. In that case, get an aligned object whose size and
5475 alignment are the same as TARGET and store TARGET into it (we can avoid
5476 the store if the field being stored is the entire width of TARGET). Then
5477 call ourselves recursively to store the field into a BLKmode version of
5478 that object. Finally, load from the object into TARGET. This is not
5479 very efficient in general, but should only be slightly more expensive
5480 than the otherwise-required unaligned accesses. Perhaps this can be
5481 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5482 twice, once with emit_move_insn and once via store_field. */
5485 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5487 rtx object
= assign_temp (type
, 0, 1, 1);
5488 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5490 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5491 emit_move_insn (object
, target
);
5493 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5495 emit_move_insn (target
, object
);
5497 /* We want to return the BLKmode version of the data. */
5501 if (GET_CODE (target
) == CONCAT
)
5503 /* We're storing into a struct containing a single __complex. */
5505 gcc_assert (!bitpos
);
5506 return store_expr (exp
, target
, 0);
5509 /* If the structure is in a register or if the component
5510 is a bit field, we cannot use addressing to access it.
5511 Use bit-field techniques or SUBREG to store in it. */
5513 if (mode
== VOIDmode
5514 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5515 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5516 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5518 || GET_CODE (target
) == SUBREG
5519 /* If the field isn't aligned enough to store as an ordinary memref,
5520 store it as a bit field. */
5522 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5523 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5524 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5525 || (bitpos
% BITS_PER_UNIT
!= 0)))
5526 /* If the RHS and field are a constant size and the size of the
5527 RHS isn't the same size as the bitfield, we must use bitfield
5530 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5531 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5535 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5536 implies a mask operation. If the precision is the same size as
5537 the field we're storing into, that mask is redundant. This is
5538 particularly common with bit field assignments generated by the
5540 if (TREE_CODE (exp
) == NOP_EXPR
)
5542 tree type
= TREE_TYPE (exp
);
5543 if (INTEGRAL_TYPE_P (type
)
5544 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5545 && bitsize
== TYPE_PRECISION (type
))
5547 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5548 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5549 exp
= TREE_OPERAND (exp
, 0);
5553 temp
= expand_normal (exp
);
5555 /* If BITSIZE is narrower than the size of the type of EXP
5556 we will be narrowing TEMP. Normally, what's wanted are the
5557 low-order bits. However, if EXP's type is a record and this is
5558 big-endian machine, we want the upper BITSIZE bits. */
5559 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5560 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5561 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5562 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5563 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5567 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5569 if (mode
!= VOIDmode
&& mode
!= BLKmode
5570 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5571 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5573 /* If the modes of TARGET and TEMP are both BLKmode, both
5574 must be in memory and BITPOS must be aligned on a byte
5575 boundary. If so, we simply do a block copy. */
5576 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5578 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5579 && !(bitpos
% BITS_PER_UNIT
));
5581 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5582 emit_block_move (target
, temp
,
5583 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5590 /* Store the value in the bitfield. */
5591 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5597 /* Now build a reference to just the desired component. */
5598 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5600 if (to_rtx
== target
)
5601 to_rtx
= copy_rtx (to_rtx
);
5603 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5604 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5605 set_mem_alias_set (to_rtx
, alias_set
);
5607 return store_expr (exp
, to_rtx
, 0);
5611 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5612 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5613 codes and find the ultimate containing object, which we return.
5615 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5616 bit position, and *PUNSIGNEDP to the signedness of the field.
5617 If the position of the field is variable, we store a tree
5618 giving the variable offset (in units) in *POFFSET.
5619 This offset is in addition to the bit position.
5620 If the position is not variable, we store 0 in *POFFSET.
5622 If any of the extraction expressions is volatile,
5623 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5625 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5626 is a mode that can be used to access the field. In that case, *PBITSIZE
5629 If the field describes a variable-sized object, *PMODE is set to
5630 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5631 this case, but the address of the object can be found.
5633 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5634 look through nodes that serve as markers of a greater alignment than
5635 the one that can be deduced from the expression. These nodes make it
5636 possible for front-ends to prevent temporaries from being created by
5637 the middle-end on alignment considerations. For that purpose, the
5638 normal operating mode at high-level is to always pass FALSE so that
5639 the ultimate containing object is really returned; moreover, the
5640 associated predicate handled_component_p will always return TRUE
5641 on these nodes, thus indicating that they are essentially handled
5642 by get_inner_reference. TRUE should only be passed when the caller
5643 is scanning the expression in order to build another representation
5644 and specifically knows how to handle these nodes; as such, this is
5645 the normal operating mode in the RTL expanders. */
5648 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5649 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5650 enum machine_mode
*pmode
, int *punsignedp
,
5651 int *pvolatilep
, bool keep_aligning
)
5654 enum machine_mode mode
= VOIDmode
;
5655 tree offset
= size_zero_node
;
5656 tree bit_offset
= bitsize_zero_node
;
5659 /* First get the mode, signedness, and size. We do this from just the
5660 outermost expression. */
5661 if (TREE_CODE (exp
) == COMPONENT_REF
)
5663 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5664 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5665 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5667 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5669 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5671 size_tree
= TREE_OPERAND (exp
, 1);
5672 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5676 mode
= TYPE_MODE (TREE_TYPE (exp
));
5677 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5679 if (mode
== BLKmode
)
5680 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5682 *pbitsize
= GET_MODE_BITSIZE (mode
);
5687 if (! host_integerp (size_tree
, 1))
5688 mode
= BLKmode
, *pbitsize
= -1;
5690 *pbitsize
= tree_low_cst (size_tree
, 1);
5693 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5694 and find the ultimate containing object. */
5697 switch (TREE_CODE (exp
))
5700 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5701 TREE_OPERAND (exp
, 2));
5706 tree field
= TREE_OPERAND (exp
, 1);
5707 tree this_offset
= component_ref_field_offset (exp
);
5709 /* If this field hasn't been filled in yet, don't go past it.
5710 This should only happen when folding expressions made during
5711 type construction. */
5712 if (this_offset
== 0)
5715 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5716 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5717 DECL_FIELD_BIT_OFFSET (field
));
5719 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5724 case ARRAY_RANGE_REF
:
5726 tree index
= TREE_OPERAND (exp
, 1);
5727 tree low_bound
= array_ref_low_bound (exp
);
5728 tree unit_size
= array_ref_element_size (exp
);
5730 /* We assume all arrays have sizes that are a multiple of a byte.
5731 First subtract the lower bound, if any, in the type of the
5732 index, then convert to sizetype and multiply by the size of
5733 the array element. */
5734 if (! integer_zerop (low_bound
))
5735 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
5738 offset
= size_binop (PLUS_EXPR
, offset
,
5739 size_binop (MULT_EXPR
,
5740 fold_convert (sizetype
, index
),
5749 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5750 bitsize_int (*pbitsize
));
5753 case VIEW_CONVERT_EXPR
:
5754 if (keep_aligning
&& STRICT_ALIGNMENT
5755 && (TYPE_ALIGN (TREE_TYPE (exp
))
5756 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5757 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5758 < BIGGEST_ALIGNMENT
)
5759 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5760 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5768 /* If any reference in the chain is volatile, the effect is volatile. */
5769 if (TREE_THIS_VOLATILE (exp
))
5772 exp
= TREE_OPERAND (exp
, 0);
5776 /* If OFFSET is constant, see if we can return the whole thing as a
5777 constant bit position. Otherwise, split it up. */
5778 if (host_integerp (offset
, 0)
5779 && 0 != (tem
= size_binop (MULT_EXPR
,
5780 fold_convert (bitsizetype
, offset
),
5782 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5783 && host_integerp (tem
, 0))
5784 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5786 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5792 /* Return a tree of sizetype representing the size, in bytes, of the element
5793 of EXP, an ARRAY_REF. */
5796 array_ref_element_size (tree exp
)
5798 tree aligned_size
= TREE_OPERAND (exp
, 3);
5799 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5801 /* If a size was specified in the ARRAY_REF, it's the size measured
5802 in alignment units of the element type. So multiply by that value. */
5805 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5806 sizetype from another type of the same width and signedness. */
5807 if (TREE_TYPE (aligned_size
) != sizetype
)
5808 aligned_size
= fold_convert (sizetype
, aligned_size
);
5809 return size_binop (MULT_EXPR
, aligned_size
,
5810 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5813 /* Otherwise, take the size from that of the element type. Substitute
5814 any PLACEHOLDER_EXPR that we have. */
5816 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5819 /* Return a tree representing the lower bound of the array mentioned in
5820 EXP, an ARRAY_REF. */
5823 array_ref_low_bound (tree exp
)
5825 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5827 /* If a lower bound is specified in EXP, use it. */
5828 if (TREE_OPERAND (exp
, 2))
5829 return TREE_OPERAND (exp
, 2);
5831 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5832 substituting for a PLACEHOLDER_EXPR as needed. */
5833 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5834 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5836 /* Otherwise, return a zero of the appropriate type. */
5837 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5840 /* Return a tree representing the upper bound of the array mentioned in
5841 EXP, an ARRAY_REF. */
5844 array_ref_up_bound (tree exp
)
5846 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5848 /* If there is a domain type and it has an upper bound, use it, substituting
5849 for a PLACEHOLDER_EXPR as needed. */
5850 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5851 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5853 /* Otherwise fail. */
5857 /* Return a tree representing the offset, in bytes, of the field referenced
5858 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5861 component_ref_field_offset (tree exp
)
5863 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5864 tree field
= TREE_OPERAND (exp
, 1);
5866 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5867 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5871 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5872 sizetype from another type of the same width and signedness. */
5873 if (TREE_TYPE (aligned_offset
) != sizetype
)
5874 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5875 return size_binop (MULT_EXPR
, aligned_offset
,
5876 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5879 /* Otherwise, take the offset from that of the field. Substitute
5880 any PLACEHOLDER_EXPR that we have. */
5882 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5885 /* Return 1 if T is an expression that get_inner_reference handles. */
5888 handled_component_p (tree t
)
5890 switch (TREE_CODE (t
))
5895 case ARRAY_RANGE_REF
:
5896 case VIEW_CONVERT_EXPR
:
5906 /* Given an rtx VALUE that may contain additions and multiplications, return
5907 an equivalent value that just refers to a register, memory, or constant.
5908 This is done by generating instructions to perform the arithmetic and
5909 returning a pseudo-register containing the value.
5911 The returned value may be a REG, SUBREG, MEM or constant. */
5914 force_operand (rtx value
, rtx target
)
5917 /* Use subtarget as the target for operand 0 of a binary operation. */
5918 rtx subtarget
= get_subtarget (target
);
5919 enum rtx_code code
= GET_CODE (value
);
5921 /* Check for subreg applied to an expression produced by loop optimizer. */
5923 && !REG_P (SUBREG_REG (value
))
5924 && !MEM_P (SUBREG_REG (value
)))
5926 value
= simplify_gen_subreg (GET_MODE (value
),
5927 force_reg (GET_MODE (SUBREG_REG (value
)),
5928 force_operand (SUBREG_REG (value
),
5930 GET_MODE (SUBREG_REG (value
)),
5931 SUBREG_BYTE (value
));
5932 code
= GET_CODE (value
);
5935 /* Check for a PIC address load. */
5936 if ((code
== PLUS
|| code
== MINUS
)
5937 && XEXP (value
, 0) == pic_offset_table_rtx
5938 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5939 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5940 || GET_CODE (XEXP (value
, 1)) == CONST
))
5943 subtarget
= gen_reg_rtx (GET_MODE (value
));
5944 emit_move_insn (subtarget
, value
);
5948 if (ARITHMETIC_P (value
))
5950 op2
= XEXP (value
, 1);
5951 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5953 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5956 op2
= negate_rtx (GET_MODE (value
), op2
);
5959 /* Check for an addition with OP2 a constant integer and our first
5960 operand a PLUS of a virtual register and something else. In that
5961 case, we want to emit the sum of the virtual register and the
5962 constant first and then add the other value. This allows virtual
5963 register instantiation to simply modify the constant rather than
5964 creating another one around this addition. */
5965 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5966 && GET_CODE (XEXP (value
, 0)) == PLUS
5967 && REG_P (XEXP (XEXP (value
, 0), 0))
5968 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5969 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5971 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5972 XEXP (XEXP (value
, 0), 0), op2
,
5973 subtarget
, 0, OPTAB_LIB_WIDEN
);
5974 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5975 force_operand (XEXP (XEXP (value
,
5977 target
, 0, OPTAB_LIB_WIDEN
);
5980 op1
= force_operand (XEXP (value
, 0), subtarget
);
5981 op2
= force_operand (op2
, NULL_RTX
);
5985 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5987 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5988 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5989 target
, 1, OPTAB_LIB_WIDEN
);
5991 return expand_divmod (0,
5992 FLOAT_MODE_P (GET_MODE (value
))
5993 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5994 GET_MODE (value
), op1
, op2
, target
, 0);
5997 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6001 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
6005 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6009 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6010 target
, 0, OPTAB_LIB_WIDEN
);
6013 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6014 target
, 1, OPTAB_LIB_WIDEN
);
6017 if (UNARY_P (value
))
6020 target
= gen_reg_rtx (GET_MODE (value
));
6021 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
6028 case FLOAT_TRUNCATE
:
6029 convert_move (target
, op1
, code
== ZERO_EXTEND
);
6034 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
6038 case UNSIGNED_FLOAT
:
6039 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
6043 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
6047 #ifdef INSN_SCHEDULING
6048 /* On machines that have insn scheduling, we want all memory reference to be
6049 explicit, so we need to deal with such paradoxical SUBREGs. */
6050 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
6051 && (GET_MODE_SIZE (GET_MODE (value
))
6052 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
6054 = simplify_gen_subreg (GET_MODE (value
),
6055 force_reg (GET_MODE (SUBREG_REG (value
)),
6056 force_operand (SUBREG_REG (value
),
6058 GET_MODE (SUBREG_REG (value
)),
6059 SUBREG_BYTE (value
));
6065 /* Subroutine of expand_expr: return nonzero iff there is no way that
6066 EXP can reference X, which is being modified. TOP_P is nonzero if this
6067 call is going to be used to determine whether we need a temporary
6068 for EXP, as opposed to a recursive call to this function.
6070 It is always safe for this routine to return zero since it merely
6071 searches for optimization opportunities. */
6074 safe_from_p (rtx x
, tree exp
, int top_p
)
6080 /* If EXP has varying size, we MUST use a target since we currently
6081 have no way of allocating temporaries of variable size
6082 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6083 So we assume here that something at a higher level has prevented a
6084 clash. This is somewhat bogus, but the best we can do. Only
6085 do this when X is BLKmode and when we are at the top level. */
6086 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
6087 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
6088 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
6089 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
6090 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
6092 && GET_MODE (x
) == BLKmode
)
6093 /* If X is in the outgoing argument area, it is always safe. */
6095 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
6096 || (GET_CODE (XEXP (x
, 0)) == PLUS
6097 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
6100 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6101 find the underlying pseudo. */
6102 if (GET_CODE (x
) == SUBREG
)
6105 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6109 /* Now look at our tree code and possibly recurse. */
6110 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
6112 case tcc_declaration
:
6113 exp_rtl
= DECL_RTL_IF_SET (exp
);
6119 case tcc_exceptional
:
6120 if (TREE_CODE (exp
) == TREE_LIST
)
6124 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
6126 exp
= TREE_CHAIN (exp
);
6129 if (TREE_CODE (exp
) != TREE_LIST
)
6130 return safe_from_p (x
, exp
, 0);
6133 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
6135 constructor_elt
*ce
;
6136 unsigned HOST_WIDE_INT idx
;
6139 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
6141 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
6142 || !safe_from_p (x
, ce
->value
, 0))
6146 else if (TREE_CODE (exp
) == ERROR_MARK
)
6147 return 1; /* An already-visited SAVE_EXPR? */
6152 /* The only case we look at here is the DECL_INITIAL inside a
6154 return (TREE_CODE (exp
) != DECL_EXPR
6155 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
6156 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
6157 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
6160 case tcc_comparison
:
6161 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
6166 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6168 case tcc_expression
:
6170 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6171 the expression. If it is set, we conflict iff we are that rtx or
6172 both are in memory. Otherwise, we check all operands of the
6173 expression recursively. */
6175 switch (TREE_CODE (exp
))
6178 /* If the operand is static or we are static, we can't conflict.
6179 Likewise if we don't conflict with the operand at all. */
6180 if (staticp (TREE_OPERAND (exp
, 0))
6181 || TREE_STATIC (exp
)
6182 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
6185 /* Otherwise, the only way this can conflict is if we are taking
6186 the address of a DECL a that address if part of X, which is
6188 exp
= TREE_OPERAND (exp
, 0);
6191 if (!DECL_RTL_SET_P (exp
)
6192 || !MEM_P (DECL_RTL (exp
)))
6195 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
6199 case MISALIGNED_INDIRECT_REF
:
6200 case ALIGN_INDIRECT_REF
:
6203 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
6204 get_alias_set (exp
)))
6209 /* Assume that the call will clobber all hard registers and
6211 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6216 case WITH_CLEANUP_EXPR
:
6217 case CLEANUP_POINT_EXPR
:
6218 /* Lowered by gimplify.c. */
6222 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6228 /* If we have an rtx, we do not need to scan our operands. */
6232 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
6233 for (i
= 0; i
< nops
; i
++)
6234 if (TREE_OPERAND (exp
, i
) != 0
6235 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6238 /* If this is a language-specific tree code, it may require
6239 special handling. */
6240 if ((unsigned int) TREE_CODE (exp
)
6241 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6242 && !lang_hooks
.safe_from_p (x
, exp
))
6247 /* Should never get a type here. */
6251 /* If we have an rtl, find any enclosed object. Then see if we conflict
6255 if (GET_CODE (exp_rtl
) == SUBREG
)
6257 exp_rtl
= SUBREG_REG (exp_rtl
);
6259 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6263 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6264 are memory and they conflict. */
6265 return ! (rtx_equal_p (x
, exp_rtl
)
6266 || (MEM_P (x
) && MEM_P (exp_rtl
)
6267 && true_dependence (exp_rtl
, VOIDmode
, x
,
6268 rtx_addr_varies_p
)));
6271 /* If we reach here, it is safe. */
6276 /* Return the highest power of two that EXP is known to be a multiple of.
6277 This is used in updating alignment of MEMs in array references. */
6279 unsigned HOST_WIDE_INT
6280 highest_pow2_factor (tree exp
)
6282 unsigned HOST_WIDE_INT c0
, c1
;
6284 switch (TREE_CODE (exp
))
6287 /* We can find the lowest bit that's a one. If the low
6288 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6289 We need to handle this case since we can find it in a COND_EXPR,
6290 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6291 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6293 if (TREE_CONSTANT_OVERFLOW (exp
))
6294 return BIGGEST_ALIGNMENT
;
6297 /* Note: tree_low_cst is intentionally not used here,
6298 we don't care about the upper bits. */
6299 c0
= TREE_INT_CST_LOW (exp
);
6301 return c0
? c0
: BIGGEST_ALIGNMENT
;
6305 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6306 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6307 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6308 return MIN (c0
, c1
);
6311 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6312 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6315 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6317 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6318 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6320 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6321 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6322 return MAX (1, c0
/ c1
);
6326 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6328 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6331 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6334 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6335 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6336 return MIN (c0
, c1
);
6345 /* Similar, except that the alignment requirements of TARGET are
6346 taken into account. Assume it is at least as aligned as its
6347 type, unless it is a COMPONENT_REF in which case the layout of
6348 the structure gives the alignment. */
6350 static unsigned HOST_WIDE_INT
6351 highest_pow2_factor_for_target (tree target
, tree exp
)
6353 unsigned HOST_WIDE_INT target_align
, factor
;
6355 factor
= highest_pow2_factor (exp
);
6356 if (TREE_CODE (target
) == COMPONENT_REF
)
6357 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6359 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6360 return MAX (factor
, target_align
);
6363 /* Expands variable VAR. */
6366 expand_var (tree var
)
6368 if (DECL_EXTERNAL (var
))
6371 if (TREE_STATIC (var
))
6372 /* If this is an inlined copy of a static local variable,
6373 look up the original decl. */
6374 var
= DECL_ORIGIN (var
);
6376 if (TREE_STATIC (var
)
6377 ? !TREE_ASM_WRITTEN (var
)
6378 : !DECL_RTL_SET_P (var
))
6380 if (TREE_CODE (var
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (var
))
6381 /* Should be ignored. */;
6382 else if (lang_hooks
.expand_decl (var
))
6384 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6386 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6387 rest_of_decl_compilation (var
, 0, 0);
6389 /* No expansion needed. */
6390 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6391 || TREE_CODE (var
) == CONST_DECL
6392 || TREE_CODE (var
) == FUNCTION_DECL
6393 || TREE_CODE (var
) == LABEL_DECL
);
6397 /* Subroutine of expand_expr. Expand the two operands of a binary
6398 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6399 The value may be stored in TARGET if TARGET is nonzero. The
6400 MODIFIER argument is as documented by expand_expr. */
6403 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6404 enum expand_modifier modifier
)
6406 if (! safe_from_p (target
, exp1
, 1))
6408 if (operand_equal_p (exp0
, exp1
, 0))
6410 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6411 *op1
= copy_rtx (*op0
);
6415 /* If we need to preserve evaluation order, copy exp0 into its own
6416 temporary variable so that it can't be clobbered by exp1. */
6417 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6418 exp0
= save_expr (exp0
);
6419 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6420 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6425 /* Return a MEM that contains constant EXP. DEFER is as for
6426 output_constant_def and MODIFIER is as for expand_expr. */
6429 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
6433 mem
= output_constant_def (exp
, defer
);
6434 if (modifier
!= EXPAND_INITIALIZER
)
6435 mem
= use_anchored_address (mem
);
6439 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6440 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6443 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6444 enum expand_modifier modifier
)
6446 rtx result
, subtarget
;
6448 HOST_WIDE_INT bitsize
, bitpos
;
6449 int volatilep
, unsignedp
;
6450 enum machine_mode mode1
;
6452 /* If we are taking the address of a constant and are at the top level,
6453 we have to use output_constant_def since we can't call force_const_mem
6455 /* ??? This should be considered a front-end bug. We should not be
6456 generating ADDR_EXPR of something that isn't an LVALUE. The only
6457 exception here is STRING_CST. */
6458 if (TREE_CODE (exp
) == CONSTRUCTOR
6459 || CONSTANT_CLASS_P (exp
))
6460 return XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
6462 /* Everything must be something allowed by is_gimple_addressable. */
6463 switch (TREE_CODE (exp
))
6466 /* This case will happen via recursion for &a->b. */
6467 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
6470 /* Recurse and make the output_constant_def clause above handle this. */
6471 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6475 /* The real part of the complex number is always first, therefore
6476 the address is the same as the address of the parent object. */
6479 inner
= TREE_OPERAND (exp
, 0);
6483 /* The imaginary part of the complex number is always second.
6484 The expression is therefore always offset by the size of the
6487 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6488 inner
= TREE_OPERAND (exp
, 0);
6492 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6493 expand_expr, as that can have various side effects; LABEL_DECLs for
6494 example, may not have their DECL_RTL set yet. Assume language
6495 specific tree nodes can be expanded in some interesting way. */
6497 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6499 result
= expand_expr (exp
, target
, tmode
,
6500 modifier
== EXPAND_INITIALIZER
6501 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6503 /* If the DECL isn't in memory, then the DECL wasn't properly
6504 marked TREE_ADDRESSABLE, which will be either a front-end
6505 or a tree optimizer bug. */
6506 gcc_assert (MEM_P (result
));
6507 result
= XEXP (result
, 0);
6509 /* ??? Is this needed anymore? */
6510 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6512 assemble_external (exp
);
6513 TREE_USED (exp
) = 1;
6516 if (modifier
!= EXPAND_INITIALIZER
6517 && modifier
!= EXPAND_CONST_ADDRESS
)
6518 result
= force_operand (result
, target
);
6522 /* Pass FALSE as the last argument to get_inner_reference although
6523 we are expanding to RTL. The rationale is that we know how to
6524 handle "aligning nodes" here: we can just bypass them because
6525 they won't change the final object whose address will be returned
6526 (they actually exist only for that purpose). */
6527 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6528 &mode1
, &unsignedp
, &volatilep
, false);
6532 /* We must have made progress. */
6533 gcc_assert (inner
!= exp
);
6535 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6536 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6542 if (modifier
!= EXPAND_NORMAL
)
6543 result
= force_operand (result
, NULL
);
6544 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6546 result
= convert_memory_address (tmode
, result
);
6547 tmp
= convert_memory_address (tmode
, tmp
);
6549 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
6550 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6553 subtarget
= bitpos
? NULL_RTX
: target
;
6554 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6555 1, OPTAB_LIB_WIDEN
);
6561 /* Someone beforehand should have rejected taking the address
6562 of such an object. */
6563 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6565 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6566 if (modifier
< EXPAND_SUM
)
6567 result
= force_operand (result
, target
);
6573 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6574 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6577 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6578 enum expand_modifier modifier
)
6580 enum machine_mode rmode
;
6583 /* Target mode of VOIDmode says "whatever's natural". */
6584 if (tmode
== VOIDmode
)
6585 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6587 /* We can get called with some Weird Things if the user does silliness
6588 like "(short) &a". In that case, convert_memory_address won't do
6589 the right thing, so ignore the given target mode. */
6590 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6593 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6596 /* Despite expand_expr claims concerning ignoring TMODE when not
6597 strictly convenient, stuff breaks if we don't honor it. Note
6598 that combined with the above, we only do this for pointer modes. */
6599 rmode
= GET_MODE (result
);
6600 if (rmode
== VOIDmode
)
6603 result
= convert_memory_address (tmode
, result
);
6609 /* expand_expr: generate code for computing expression EXP.
6610 An rtx for the computed value is returned. The value is never null.
6611 In the case of a void EXP, const0_rtx is returned.
6613 The value may be stored in TARGET if TARGET is nonzero.
6614 TARGET is just a suggestion; callers must assume that
6615 the rtx returned may not be the same as TARGET.
6617 If TARGET is CONST0_RTX, it means that the value will be ignored.
6619 If TMODE is not VOIDmode, it suggests generating the
6620 result in mode TMODE. But this is done only when convenient.
6621 Otherwise, TMODE is ignored and the value generated in its natural mode.
6622 TMODE is just a suggestion; callers must assume that
6623 the rtx returned may not have mode TMODE.
6625 Note that TARGET may have neither TMODE nor MODE. In that case, it
6626 probably will not be used.
6628 If MODIFIER is EXPAND_SUM then when EXP is an addition
6629 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6630 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6631 products as above, or REG or MEM, or constant.
6632 Ordinarily in such cases we would output mul or add instructions
6633 and then return a pseudo reg containing the sum.
6635 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6636 it also marks a label as absolutely required (it can't be dead).
6637 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6638 This is used for outputting expressions used in initializers.
6640 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6641 with a constant address even if that address is not normally legitimate.
6642 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6644 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6645 a call parameter. Such targets require special care as we haven't yet
6646 marked TARGET so that it's safe from being trashed by libcalls. We
6647 don't want to use TARGET for anything but the final result;
6648 Intermediate values must go elsewhere. Additionally, calls to
6649 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6651 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6652 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6653 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6654 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6657 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6658 enum expand_modifier
, rtx
*);
6661 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6662 enum expand_modifier modifier
, rtx
*alt_rtl
)
6665 rtx ret
, last
= NULL
;
6667 /* Handle ERROR_MARK before anybody tries to access its type. */
6668 if (TREE_CODE (exp
) == ERROR_MARK
6669 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6671 ret
= CONST0_RTX (tmode
);
6672 return ret
? ret
: const0_rtx
;
6675 if (flag_non_call_exceptions
)
6677 rn
= lookup_stmt_eh_region (exp
);
6678 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6680 last
= get_last_insn ();
6683 /* If this is an expression of some kind and it has an associated line
6684 number, then emit the line number before expanding the expression.
6686 We need to save and restore the file and line information so that
6687 errors discovered during expansion are emitted with the right
6688 information. It would be better of the diagnostic routines
6689 used the file/line information embedded in the tree nodes rather
6691 if (cfun
&& cfun
->ib_boundaries_block
&& EXPR_HAS_LOCATION (exp
))
6693 location_t saved_location
= input_location
;
6694 input_location
= EXPR_LOCATION (exp
);
6695 emit_line_note (input_location
);
6697 /* Record where the insns produced belong. */
6698 record_block_change (TREE_BLOCK (exp
));
6700 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6702 input_location
= saved_location
;
6706 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6709 /* If using non-call exceptions, mark all insns that may trap.
6710 expand_call() will mark CALL_INSNs before we get to this code,
6711 but it doesn't handle libcalls, and these may trap. */
6715 for (insn
= next_real_insn (last
); insn
;
6716 insn
= next_real_insn (insn
))
6718 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6719 /* If we want exceptions for non-call insns, any
6720 may_trap_p instruction may throw. */
6721 && GET_CODE (PATTERN (insn
)) != CLOBBER
6722 && GET_CODE (PATTERN (insn
)) != USE
6723 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6725 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6735 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6736 enum expand_modifier modifier
, rtx
*alt_rtl
)
6738 rtx op0
, op1
, temp
, decl_rtl
;
6739 tree type
= TREE_TYPE (exp
);
6741 enum machine_mode mode
;
6742 enum tree_code code
= TREE_CODE (exp
);
6744 rtx subtarget
, original_target
;
6746 tree context
, subexp0
, subexp1
;
6747 bool reduce_bit_field
= false;
6748 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6749 ? reduce_to_bit_field_precision ((expr), \
6754 mode
= TYPE_MODE (type
);
6755 unsignedp
= TYPE_UNSIGNED (type
);
6756 if (lang_hooks
.reduce_bit_field_operations
6757 && TREE_CODE (type
) == INTEGER_TYPE
6758 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6760 /* An operation in what may be a bit-field type needs the
6761 result to be reduced to the precision of the bit-field type,
6762 which is narrower than that of the type's mode. */
6763 reduce_bit_field
= true;
6764 if (modifier
== EXPAND_STACK_PARM
)
6768 /* Use subtarget as the target for operand 0 of a binary operation. */
6769 subtarget
= get_subtarget (target
);
6770 original_target
= target
;
6771 ignore
= (target
== const0_rtx
6772 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6773 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6774 || code
== VIEW_CONVERT_EXPR
)
6775 && TREE_CODE (type
) == VOID_TYPE
));
6777 /* If we are going to ignore this result, we need only do something
6778 if there is a side-effect somewhere in the expression. If there
6779 is, short-circuit the most common cases here. Note that we must
6780 not call expand_expr with anything but const0_rtx in case this
6781 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6785 if (! TREE_SIDE_EFFECTS (exp
))
6788 /* Ensure we reference a volatile object even if value is ignored, but
6789 don't do this if all we are doing is taking its address. */
6790 if (TREE_THIS_VOLATILE (exp
)
6791 && TREE_CODE (exp
) != FUNCTION_DECL
6792 && mode
!= VOIDmode
&& mode
!= BLKmode
6793 && modifier
!= EXPAND_CONST_ADDRESS
)
6795 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6797 temp
= copy_to_reg (temp
);
6801 if (TREE_CODE_CLASS (code
) == tcc_unary
6802 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6803 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6806 else if (TREE_CODE_CLASS (code
) == tcc_binary
6807 || TREE_CODE_CLASS (code
) == tcc_comparison
6808 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6810 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6811 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6814 else if (code
== BIT_FIELD_REF
)
6816 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6817 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6818 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6830 tree function
= decl_function_context (exp
);
6832 temp
= label_rtx (exp
);
6833 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6835 if (function
!= current_function_decl
6837 LABEL_REF_NONLOCAL_P (temp
) = 1;
6839 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6844 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6849 /* If a static var's type was incomplete when the decl was written,
6850 but the type is complete now, lay out the decl now. */
6851 if (DECL_SIZE (exp
) == 0
6852 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6853 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6854 layout_decl (exp
, 0);
6856 /* ... fall through ... */
6860 decl_rtl
= DECL_RTL (exp
);
6861 gcc_assert (decl_rtl
);
6863 /* Ensure variable marked as used even if it doesn't go through
6864 a parser. If it hasn't be used yet, write out an external
6866 if (! TREE_USED (exp
))
6868 assemble_external (exp
);
6869 TREE_USED (exp
) = 1;
6872 /* Show we haven't gotten RTL for this yet. */
6875 /* Variables inherited from containing functions should have
6876 been lowered by this point. */
6877 context
= decl_function_context (exp
);
6878 gcc_assert (!context
6879 || context
== current_function_decl
6880 || TREE_STATIC (exp
)
6881 /* ??? C++ creates functions that are not TREE_STATIC. */
6882 || TREE_CODE (exp
) == FUNCTION_DECL
);
6884 /* This is the case of an array whose size is to be determined
6885 from its initializer, while the initializer is still being parsed.
6888 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
6889 temp
= validize_mem (decl_rtl
);
6891 /* If DECL_RTL is memory, we are in the normal case and either
6892 the address is not valid or it is not a register and -fforce-addr
6893 is specified, get the address into a register. */
6895 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
6898 *alt_rtl
= decl_rtl
;
6899 decl_rtl
= use_anchored_address (decl_rtl
);
6900 if (modifier
!= EXPAND_CONST_ADDRESS
6901 && modifier
!= EXPAND_SUM
6902 && (!memory_address_p (DECL_MODE (exp
), XEXP (decl_rtl
, 0))
6903 || (flag_force_addr
&& !REG_P (XEXP (decl_rtl
, 0)))))
6904 temp
= replace_equiv_address (decl_rtl
,
6905 copy_rtx (XEXP (decl_rtl
, 0)));
6908 /* If we got something, return it. But first, set the alignment
6909 if the address is a register. */
6912 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6913 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6918 /* If the mode of DECL_RTL does not match that of the decl, it
6919 must be a promoted value. We return a SUBREG of the wanted mode,
6920 but mark it so that we know that it was already extended. */
6922 if (REG_P (decl_rtl
)
6923 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
6925 enum machine_mode pmode
;
6927 /* Get the signedness used for this variable. Ensure we get the
6928 same mode we got when the variable was declared. */
6929 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6930 (TREE_CODE (exp
) == RESULT_DECL
6931 || TREE_CODE (exp
) == PARM_DECL
) ? 1 : 0);
6932 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
6934 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
6935 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6936 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6943 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6944 TREE_INT_CST_HIGH (exp
), mode
);
6946 /* ??? If overflow is set, fold will have done an incomplete job,
6947 which can result in (plus xx (const_int 0)), which can get
6948 simplified by validate_replace_rtx during virtual register
6949 instantiation, which can result in unrecognizable insns.
6950 Avoid this by forcing all overflows into registers. */
6951 if (TREE_CONSTANT_OVERFLOW (exp
)
6952 && modifier
!= EXPAND_INITIALIZER
)
6953 temp
= force_reg (mode
, temp
);
6959 tree tmp
= NULL_TREE
;
6960 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
6961 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
)
6962 return const_vector_from_tree (exp
);
6963 if (GET_MODE_CLASS (mode
) == MODE_INT
)
6965 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
6967 tmp
= fold_unary (VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
6970 tmp
= build_constructor_from_list (type
,
6971 TREE_VECTOR_CST_ELTS (exp
));
6972 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
6977 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6980 /* If optimized, generate immediate CONST_DOUBLE
6981 which will be turned into memory by reload if necessary.
6983 We used to force a register so that loop.c could see it. But
6984 this does not allow gen_* patterns to perform optimizations with
6985 the constants. It also produces two insns in cases like "x = 1.0;".
6986 On most machines, floating-point constants are not permitted in
6987 many insns, so we'd end up copying it to a register in any case.
6989 Now, we do the copying in expand_binop, if appropriate. */
6990 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6991 TYPE_MODE (TREE_TYPE (exp
)));
6994 /* Handle evaluating a complex constant in a CONCAT target. */
6995 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6997 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
7000 rtarg
= XEXP (original_target
, 0);
7001 itarg
= XEXP (original_target
, 1);
7003 /* Move the real and imaginary parts separately. */
7004 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
7005 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
7008 emit_move_insn (rtarg
, op0
);
7010 emit_move_insn (itarg
, op1
);
7012 return original_target
;
7015 /* ... fall through ... */
7018 temp
= expand_expr_constant (exp
, 1, modifier
);
7020 /* temp contains a constant address.
7021 On RISC machines where a constant address isn't valid,
7022 make some insns to get that address into a register. */
7023 if (modifier
!= EXPAND_CONST_ADDRESS
7024 && modifier
!= EXPAND_INITIALIZER
7025 && modifier
!= EXPAND_SUM
7026 && (! memory_address_p (mode
, XEXP (temp
, 0))
7027 || flag_force_addr
))
7028 return replace_equiv_address (temp
,
7029 copy_rtx (XEXP (temp
, 0)));
7034 tree val
= TREE_OPERAND (exp
, 0);
7035 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
7037 if (!SAVE_EXPR_RESOLVED_P (exp
))
7039 /* We can indeed still hit this case, typically via builtin
7040 expanders calling save_expr immediately before expanding
7041 something. Assume this means that we only have to deal
7042 with non-BLKmode values. */
7043 gcc_assert (GET_MODE (ret
) != BLKmode
);
7045 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
7046 DECL_ARTIFICIAL (val
) = 1;
7047 DECL_IGNORED_P (val
) = 1;
7048 TREE_OPERAND (exp
, 0) = val
;
7049 SAVE_EXPR_RESOLVED_P (exp
) = 1;
7051 if (!CONSTANT_P (ret
))
7052 ret
= copy_to_reg (ret
);
7053 SET_DECL_RTL (val
, ret
);
7060 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
7061 expand_goto (TREE_OPERAND (exp
, 0));
7063 expand_computed_goto (TREE_OPERAND (exp
, 0));
7067 /* If we don't need the result, just ensure we evaluate any
7071 unsigned HOST_WIDE_INT idx
;
7074 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
7075 expand_expr (value
, const0_rtx
, VOIDmode
, 0);
7080 /* Try to avoid creating a temporary at all. This is possible
7081 if all of the initializer is zero.
7082 FIXME: try to handle all [0..255] initializers we can handle
7084 else if (TREE_STATIC (exp
)
7085 && !TREE_ADDRESSABLE (exp
)
7086 && target
!= 0 && mode
== BLKmode
7087 && all_zeros_p (exp
))
7089 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7093 /* All elts simple constants => refer to a constant in memory. But
7094 if this is a non-BLKmode mode, let it store a field at a time
7095 since that should make a CONST_INT or CONST_DOUBLE when we
7096 fold. Likewise, if we have a target we can use, it is best to
7097 store directly into the target unless the type is large enough
7098 that memcpy will be used. If we are making an initializer and
7099 all operands are constant, put it in memory as well.
7101 FIXME: Avoid trying to fill vector constructors piece-meal.
7102 Output them with output_constant_def below unless we're sure
7103 they're zeros. This should go away when vector initializers
7104 are treated like VECTOR_CST instead of arrays.
7106 else if ((TREE_STATIC (exp
)
7107 && ((mode
== BLKmode
7108 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7109 || TREE_ADDRESSABLE (exp
)
7110 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7111 && (! MOVE_BY_PIECES_P
7112 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7114 && ! mostly_zeros_p (exp
))))
7115 || ((modifier
== EXPAND_INITIALIZER
7116 || modifier
== EXPAND_CONST_ADDRESS
)
7117 && TREE_CONSTANT (exp
)))
7119 rtx constructor
= expand_expr_constant (exp
, 1, modifier
);
7121 if (modifier
!= EXPAND_CONST_ADDRESS
7122 && modifier
!= EXPAND_INITIALIZER
7123 && modifier
!= EXPAND_SUM
)
7124 constructor
= validize_mem (constructor
);
7130 /* Handle calls that pass values in multiple non-contiguous
7131 locations. The Irix 6 ABI has examples of this. */
7132 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7133 || GET_CODE (target
) == PARALLEL
7134 || modifier
== EXPAND_STACK_PARM
)
7136 = assign_temp (build_qualified_type (type
,
7138 | (TREE_READONLY (exp
)
7139 * TYPE_QUAL_CONST
))),
7140 0, TREE_ADDRESSABLE (exp
), 1);
7142 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7146 case MISALIGNED_INDIRECT_REF
:
7147 case ALIGN_INDIRECT_REF
:
7150 tree exp1
= TREE_OPERAND (exp
, 0);
7152 if (modifier
!= EXPAND_WRITE
)
7156 t
= fold_read_from_constant_string (exp
);
7158 return expand_expr (t
, target
, tmode
, modifier
);
7161 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
7162 op0
= memory_address (mode
, op0
);
7164 if (code
== ALIGN_INDIRECT_REF
)
7166 int align
= TYPE_ALIGN_UNIT (type
);
7167 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
7168 op0
= memory_address (mode
, op0
);
7171 temp
= gen_rtx_MEM (mode
, op0
);
7173 set_mem_attributes (temp
, exp
, 0);
7175 /* Resolve the misalignment now, so that we don't have to remember
7176 to resolve it later. Of course, this only works for reads. */
7177 /* ??? When we get around to supporting writes, we'll have to handle
7178 this in store_expr directly. The vectorizer isn't generating
7179 those yet, however. */
7180 if (code
== MISALIGNED_INDIRECT_REF
)
7185 gcc_assert (modifier
== EXPAND_NORMAL
7186 || modifier
== EXPAND_STACK_PARM
);
7188 /* The vectorizer should have already checked the mode. */
7189 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
7190 gcc_assert (icode
!= CODE_FOR_nothing
);
7192 /* We've already validated the memory, and we're creating a
7193 new pseudo destination. The predicates really can't fail. */
7194 reg
= gen_reg_rtx (mode
);
7196 /* Nor can the insn generator. */
7197 insn
= GEN_FCN (icode
) (reg
, temp
);
7206 case TARGET_MEM_REF
:
7208 struct mem_address addr
;
7210 get_address_description (exp
, &addr
);
7211 op0
= addr_for_mem_ref (&addr
, true);
7212 op0
= memory_address (mode
, op0
);
7213 temp
= gen_rtx_MEM (mode
, op0
);
7214 set_mem_attributes (temp
, TMR_ORIGINAL (exp
), 0);
7221 tree array
= TREE_OPERAND (exp
, 0);
7222 tree index
= TREE_OPERAND (exp
, 1);
7224 /* Fold an expression like: "foo"[2].
7225 This is not done in fold so it won't happen inside &.
7226 Don't fold if this is for wide characters since it's too
7227 difficult to do correctly and this is a very rare case. */
7229 if (modifier
!= EXPAND_CONST_ADDRESS
7230 && modifier
!= EXPAND_INITIALIZER
7231 && modifier
!= EXPAND_MEMORY
)
7233 tree t
= fold_read_from_constant_string (exp
);
7236 return expand_expr (t
, target
, tmode
, modifier
);
7239 /* If this is a constant index into a constant array,
7240 just get the value from the array. Handle both the cases when
7241 we have an explicit constructor and when our operand is a variable
7242 that was declared const. */
7244 if (modifier
!= EXPAND_CONST_ADDRESS
7245 && modifier
!= EXPAND_INITIALIZER
7246 && modifier
!= EXPAND_MEMORY
7247 && TREE_CODE (array
) == CONSTRUCTOR
7248 && ! TREE_SIDE_EFFECTS (array
)
7249 && TREE_CODE (index
) == INTEGER_CST
)
7251 unsigned HOST_WIDE_INT ix
;
7254 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
7256 if (tree_int_cst_equal (field
, index
))
7258 if (!TREE_SIDE_EFFECTS (value
))
7259 return expand_expr (fold (value
), target
, tmode
, modifier
);
7264 else if (optimize
>= 1
7265 && modifier
!= EXPAND_CONST_ADDRESS
7266 && modifier
!= EXPAND_INITIALIZER
7267 && modifier
!= EXPAND_MEMORY
7268 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7269 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7270 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
7271 && targetm
.binds_local_p (array
))
7273 if (TREE_CODE (index
) == INTEGER_CST
)
7275 tree init
= DECL_INITIAL (array
);
7277 if (TREE_CODE (init
) == CONSTRUCTOR
)
7279 unsigned HOST_WIDE_INT ix
;
7282 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
7284 if (tree_int_cst_equal (field
, index
))
7286 if (!TREE_SIDE_EFFECTS (value
))
7287 return expand_expr (fold (value
), target
, tmode
,
7292 else if(TREE_CODE (init
) == STRING_CST
)
7294 tree index1
= index
;
7295 tree low_bound
= array_ref_low_bound (exp
);
7296 index1
= fold_convert (sizetype
, TREE_OPERAND (exp
, 1));
7298 /* Optimize the special-case of a zero lower bound.
7300 We convert the low_bound to sizetype to avoid some problems
7301 with constant folding. (E.g. suppose the lower bound is 1,
7302 and its mode is QI. Without the conversion,l (ARRAY
7303 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7304 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7306 if (! integer_zerop (low_bound
))
7307 index1
= size_diffop (index1
, fold_convert (sizetype
,
7310 if (0 > compare_tree_int (index1
,
7311 TREE_STRING_LENGTH (init
)))
7313 tree type
= TREE_TYPE (TREE_TYPE (init
));
7314 enum machine_mode mode
= TYPE_MODE (type
);
7316 if (GET_MODE_CLASS (mode
) == MODE_INT
7317 && GET_MODE_SIZE (mode
) == 1)
7318 return gen_int_mode (TREE_STRING_POINTER (init
)
7319 [TREE_INT_CST_LOW (index1
)],
7326 goto normal_inner_ref
;
7329 /* If the operand is a CONSTRUCTOR, we can just extract the
7330 appropriate field if it is present. */
7331 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7333 unsigned HOST_WIDE_INT idx
;
7336 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7338 if (field
== TREE_OPERAND (exp
, 1)
7339 /* We can normally use the value of the field in the
7340 CONSTRUCTOR. However, if this is a bitfield in
7341 an integral mode that we can fit in a HOST_WIDE_INT,
7342 we must mask only the number of bits in the bitfield,
7343 since this is done implicitly by the constructor. If
7344 the bitfield does not meet either of those conditions,
7345 we can't do this optimization. */
7346 && (! DECL_BIT_FIELD (field
)
7347 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
7348 && (GET_MODE_BITSIZE (DECL_MODE (field
))
7349 <= HOST_BITS_PER_WIDE_INT
))))
7351 if (DECL_BIT_FIELD (field
)
7352 && modifier
== EXPAND_STACK_PARM
)
7354 op0
= expand_expr (value
, target
, tmode
, modifier
);
7355 if (DECL_BIT_FIELD (field
))
7357 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
7358 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
7360 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
7362 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7363 op0
= expand_and (imode
, op0
, op1
, target
);
7368 = build_int_cst (NULL_TREE
,
7369 GET_MODE_BITSIZE (imode
) - bitsize
);
7371 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7373 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7381 goto normal_inner_ref
;
7384 case ARRAY_RANGE_REF
:
7387 enum machine_mode mode1
;
7388 HOST_WIDE_INT bitsize
, bitpos
;
7391 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7392 &mode1
, &unsignedp
, &volatilep
, true);
7395 /* If we got back the original object, something is wrong. Perhaps
7396 we are evaluating an expression too early. In any event, don't
7397 infinitely recurse. */
7398 gcc_assert (tem
!= exp
);
7400 /* If TEM's type is a union of variable size, pass TARGET to the inner
7401 computation, since it will need a temporary and TARGET is known
7402 to have to do. This occurs in unchecked conversion in Ada. */
7406 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7407 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7409 && modifier
!= EXPAND_STACK_PARM
7410 ? target
: NULL_RTX
),
7412 (modifier
== EXPAND_INITIALIZER
7413 || modifier
== EXPAND_CONST_ADDRESS
7414 || modifier
== EXPAND_STACK_PARM
)
7415 ? modifier
: EXPAND_NORMAL
);
7417 /* If this is a constant, put it into a register if it is a legitimate
7418 constant, OFFSET is 0, and we won't try to extract outside the
7419 register (in case we were passed a partially uninitialized object
7420 or a view_conversion to a larger size). Force the constant to
7421 memory otherwise. */
7422 if (CONSTANT_P (op0
))
7424 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7425 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7427 && bitpos
+ bitsize
<= GET_MODE_BITSIZE (mode
))
7428 op0
= force_reg (mode
, op0
);
7430 op0
= validize_mem (force_const_mem (mode
, op0
));
7433 /* Otherwise, if this object not in memory and we either have an
7434 offset, a BLKmode result, or a reference outside the object, put it
7435 there. Such cases can occur in Ada if we have unchecked conversion
7436 of an expression from a scalar type to an array or record type or
7437 for an ARRAY_RANGE_REF whose type is BLKmode. */
7438 else if (!MEM_P (op0
)
7440 || (bitpos
+ bitsize
> GET_MODE_BITSIZE (GET_MODE (op0
)))
7441 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7443 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7444 (TYPE_QUALS (TREE_TYPE (tem
))
7445 | TYPE_QUAL_CONST
));
7446 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7448 emit_move_insn (memloc
, op0
);
7454 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7457 gcc_assert (MEM_P (op0
));
7459 #ifdef POINTERS_EXTEND_UNSIGNED
7460 if (GET_MODE (offset_rtx
) != Pmode
)
7461 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7463 if (GET_MODE (offset_rtx
) != ptr_mode
)
7464 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7467 if (GET_MODE (op0
) == BLKmode
7468 /* A constant address in OP0 can have VOIDmode, we must
7469 not try to call force_reg in that case. */
7470 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7472 && (bitpos
% bitsize
) == 0
7473 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7474 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7476 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7480 op0
= offset_address (op0
, offset_rtx
,
7481 highest_pow2_factor (offset
));
7484 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7485 record its alignment as BIGGEST_ALIGNMENT. */
7486 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7487 && is_aligning_offset (offset
, tem
))
7488 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7490 /* Don't forget about volatility even if this is a bitfield. */
7491 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7493 if (op0
== orig_op0
)
7494 op0
= copy_rtx (op0
);
7496 MEM_VOLATILE_P (op0
) = 1;
7499 /* The following code doesn't handle CONCAT.
7500 Assume only bitpos == 0 can be used for CONCAT, due to
7501 one element arrays having the same mode as its element. */
7502 if (GET_CODE (op0
) == CONCAT
)
7504 gcc_assert (bitpos
== 0
7505 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7509 /* In cases where an aligned union has an unaligned object
7510 as a field, we might be extracting a BLKmode value from
7511 an integer-mode (e.g., SImode) object. Handle this case
7512 by doing the extract into an object as wide as the field
7513 (which we know to be the width of a basic mode), then
7514 storing into memory, and changing the mode to BLKmode. */
7515 if (mode1
== VOIDmode
7516 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7517 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7518 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7519 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7520 && modifier
!= EXPAND_CONST_ADDRESS
7521 && modifier
!= EXPAND_INITIALIZER
)
7522 /* If the field isn't aligned enough to fetch as a memref,
7523 fetch it as a bit field. */
7524 || (mode1
!= BLKmode
7525 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7526 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7528 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7529 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7530 && ((modifier
== EXPAND_CONST_ADDRESS
7531 || modifier
== EXPAND_INITIALIZER
)
7533 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7534 || (bitpos
% BITS_PER_UNIT
!= 0)))
7535 /* If the type and the field are a constant size and the
7536 size of the type isn't the same size as the bitfield,
7537 we must use bitfield operations. */
7539 && TYPE_SIZE (TREE_TYPE (exp
))
7540 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7541 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7544 enum machine_mode ext_mode
= mode
;
7546 if (ext_mode
== BLKmode
7547 && ! (target
!= 0 && MEM_P (op0
)
7549 && bitpos
% BITS_PER_UNIT
== 0))
7550 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7552 if (ext_mode
== BLKmode
)
7555 target
= assign_temp (type
, 0, 1, 1);
7560 /* In this case, BITPOS must start at a byte boundary and
7561 TARGET, if specified, must be a MEM. */
7562 gcc_assert (MEM_P (op0
)
7563 && (!target
|| MEM_P (target
))
7564 && !(bitpos
% BITS_PER_UNIT
));
7566 emit_block_move (target
,
7567 adjust_address (op0
, VOIDmode
,
7568 bitpos
/ BITS_PER_UNIT
),
7569 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7571 (modifier
== EXPAND_STACK_PARM
7572 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7577 op0
= validize_mem (op0
);
7579 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7580 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7582 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7583 (modifier
== EXPAND_STACK_PARM
7584 ? NULL_RTX
: target
),
7585 ext_mode
, ext_mode
);
7587 /* If the result is a record type and BITSIZE is narrower than
7588 the mode of OP0, an integral mode, and this is a big endian
7589 machine, we must put the field into the high-order bits. */
7590 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7591 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7592 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7593 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7594 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7598 /* If the result type is BLKmode, store the data into a temporary
7599 of the appropriate type, but with the mode corresponding to the
7600 mode for the data we have (op0's mode). It's tempting to make
7601 this a constant type, since we know it's only being stored once,
7602 but that can cause problems if we are taking the address of this
7603 COMPONENT_REF because the MEM of any reference via that address
7604 will have flags corresponding to the type, which will not
7605 necessarily be constant. */
7606 if (mode
== BLKmode
)
7609 = assign_stack_temp_for_type
7610 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7612 emit_move_insn (new, op0
);
7613 op0
= copy_rtx (new);
7614 PUT_MODE (op0
, BLKmode
);
7615 set_mem_attributes (op0
, exp
, 1);
7621 /* If the result is BLKmode, use that to access the object
7623 if (mode
== BLKmode
)
7626 /* Get a reference to just this component. */
7627 if (modifier
== EXPAND_CONST_ADDRESS
7628 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7629 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7631 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7633 if (op0
== orig_op0
)
7634 op0
= copy_rtx (op0
);
7636 set_mem_attributes (op0
, exp
, 0);
7637 if (REG_P (XEXP (op0
, 0)))
7638 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7640 MEM_VOLATILE_P (op0
) |= volatilep
;
7641 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7642 || modifier
== EXPAND_CONST_ADDRESS
7643 || modifier
== EXPAND_INITIALIZER
)
7645 else if (target
== 0)
7646 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7648 convert_move (target
, op0
, unsignedp
);
7653 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7656 /* Check for a built-in function. */
7657 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7658 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7660 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7662 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7663 == BUILT_IN_FRONTEND
)
7664 return lang_hooks
.expand_expr (exp
, original_target
,
7668 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7671 return expand_call (exp
, target
, ignore
);
7673 case NON_LVALUE_EXPR
:
7676 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7679 if (TREE_CODE (type
) == UNION_TYPE
)
7681 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7683 /* If both input and output are BLKmode, this conversion isn't doing
7684 anything except possibly changing memory attribute. */
7685 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7687 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7690 result
= copy_rtx (result
);
7691 set_mem_attributes (result
, exp
, 0);
7697 if (TYPE_MODE (type
) != BLKmode
)
7698 target
= gen_reg_rtx (TYPE_MODE (type
));
7700 target
= assign_temp (type
, 0, 1, 1);
7704 /* Store data into beginning of memory target. */
7705 store_expr (TREE_OPERAND (exp
, 0),
7706 adjust_address (target
, TYPE_MODE (valtype
), 0),
7707 modifier
== EXPAND_STACK_PARM
);
7711 gcc_assert (REG_P (target
));
7713 /* Store this field into a union of the proper type. */
7714 store_field (target
,
7715 MIN ((int_size_in_bytes (TREE_TYPE
7716 (TREE_OPERAND (exp
, 0)))
7718 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7719 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7723 /* Return the entire union. */
7727 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7729 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7732 /* If the signedness of the conversion differs and OP0 is
7733 a promoted SUBREG, clear that indication since we now
7734 have to do the proper extension. */
7735 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7736 && GET_CODE (op0
) == SUBREG
)
7737 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7739 return REDUCE_BIT_FIELD (op0
);
7742 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7743 if (GET_MODE (op0
) == mode
)
7746 /* If OP0 is a constant, just convert it into the proper mode. */
7747 else if (CONSTANT_P (op0
))
7749 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7750 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7752 if (modifier
== EXPAND_INITIALIZER
)
7753 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7754 subreg_lowpart_offset (mode
,
7757 op0
= convert_modes (mode
, inner_mode
, op0
,
7758 TYPE_UNSIGNED (inner_type
));
7761 else if (modifier
== EXPAND_INITIALIZER
)
7762 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7764 else if (target
== 0)
7765 op0
= convert_to_mode (mode
, op0
,
7766 TYPE_UNSIGNED (TREE_TYPE
7767 (TREE_OPERAND (exp
, 0))));
7770 convert_move (target
, op0
,
7771 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7775 return REDUCE_BIT_FIELD (op0
);
7777 case VIEW_CONVERT_EXPR
:
7778 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7780 /* If the input and output modes are both the same, we are done. */
7781 if (TYPE_MODE (type
) == GET_MODE (op0
))
7783 /* If neither mode is BLKmode, and both modes are the same size
7784 then we can use gen_lowpart. */
7785 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7786 && GET_MODE_SIZE (TYPE_MODE (type
))
7787 == GET_MODE_SIZE (GET_MODE (op0
)))
7789 if (GET_CODE (op0
) == SUBREG
)
7790 op0
= force_reg (GET_MODE (op0
), op0
);
7791 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7793 /* If both modes are integral, then we can convert from one to the
7795 else if (SCALAR_INT_MODE_P (GET_MODE (op0
))
7796 && SCALAR_INT_MODE_P (TYPE_MODE (type
)))
7797 op0
= convert_modes (TYPE_MODE (type
), GET_MODE (op0
), op0
,
7798 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7799 /* As a last resort, spill op0 to memory, and reload it in a
7801 else if (!MEM_P (op0
))
7803 /* If the operand is not a MEM, force it into memory. Since we
7804 are going to be changing the mode of the MEM, don't call
7805 force_const_mem for constants because we don't allow pool
7806 constants to change mode. */
7807 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7809 gcc_assert (!TREE_ADDRESSABLE (exp
));
7811 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7813 = assign_stack_temp_for_type
7814 (TYPE_MODE (inner_type
),
7815 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7817 emit_move_insn (target
, op0
);
7821 /* At this point, OP0 is in the correct mode. If the output type is such
7822 that the operand is known to be aligned, indicate that it is.
7823 Otherwise, we need only be concerned about alignment for non-BLKmode
7827 op0
= copy_rtx (op0
);
7829 if (TYPE_ALIGN_OK (type
))
7830 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7831 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7832 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7834 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7835 HOST_WIDE_INT temp_size
7836 = MAX (int_size_in_bytes (inner_type
),
7837 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7838 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7839 temp_size
, 0, type
);
7840 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7842 gcc_assert (!TREE_ADDRESSABLE (exp
));
7844 if (GET_MODE (op0
) == BLKmode
)
7845 emit_block_move (new_with_op0_mode
, op0
,
7846 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7847 (modifier
== EXPAND_STACK_PARM
7848 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7850 emit_move_insn (new_with_op0_mode
, op0
);
7855 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7861 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7862 something else, make sure we add the register to the constant and
7863 then to the other thing. This case can occur during strength
7864 reduction and doing it this way will produce better code if the
7865 frame pointer or argument pointer is eliminated.
7867 fold-const.c will ensure that the constant is always in the inner
7868 PLUS_EXPR, so the only case we need to do anything about is if
7869 sp, ap, or fp is our second argument, in which case we must swap
7870 the innermost first argument and our second argument. */
7872 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7873 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7874 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7875 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7876 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7877 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7879 tree t
= TREE_OPERAND (exp
, 1);
7881 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7882 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7885 /* If the result is to be ptr_mode and we are adding an integer to
7886 something, we might be forming a constant. So try to use
7887 plus_constant. If it produces a sum and we can't accept it,
7888 use force_operand. This allows P = &ARR[const] to generate
7889 efficient code on machines where a SYMBOL_REF is not a valid
7892 If this is an EXPAND_SUM call, always return the sum. */
7893 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7894 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7896 if (modifier
== EXPAND_STACK_PARM
)
7898 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7899 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7900 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7904 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7906 /* Use immed_double_const to ensure that the constant is
7907 truncated according to the mode of OP1, then sign extended
7908 to a HOST_WIDE_INT. Using the constant directly can result
7909 in non-canonical RTL in a 64x32 cross compile. */
7911 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7913 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7914 op1
= plus_constant (op1
, INTVAL (constant_part
));
7915 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7916 op1
= force_operand (op1
, target
);
7917 return REDUCE_BIT_FIELD (op1
);
7920 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7921 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7922 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7926 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7927 (modifier
== EXPAND_INITIALIZER
7928 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7929 if (! CONSTANT_P (op0
))
7931 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7932 VOIDmode
, modifier
);
7933 /* Return a PLUS if modifier says it's OK. */
7934 if (modifier
== EXPAND_SUM
7935 || modifier
== EXPAND_INITIALIZER
)
7936 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7939 /* Use immed_double_const to ensure that the constant is
7940 truncated according to the mode of OP1, then sign extended
7941 to a HOST_WIDE_INT. Using the constant directly can result
7942 in non-canonical RTL in a 64x32 cross compile. */
7944 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7946 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7947 op0
= plus_constant (op0
, INTVAL (constant_part
));
7948 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7949 op0
= force_operand (op0
, target
);
7950 return REDUCE_BIT_FIELD (op0
);
7954 /* No sense saving up arithmetic to be done
7955 if it's all in the wrong mode to form part of an address.
7956 And force_operand won't know whether to sign-extend or
7958 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7959 || mode
!= ptr_mode
)
7961 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7962 subtarget
, &op0
, &op1
, 0);
7963 if (op0
== const0_rtx
)
7965 if (op1
== const0_rtx
)
7970 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7971 subtarget
, &op0
, &op1
, modifier
);
7972 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7975 /* For initializers, we are allowed to return a MINUS of two
7976 symbolic constants. Here we handle all cases when both operands
7978 /* Handle difference of two symbolic constants,
7979 for the sake of an initializer. */
7980 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7981 && really_constant_p (TREE_OPERAND (exp
, 0))
7982 && really_constant_p (TREE_OPERAND (exp
, 1)))
7984 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7985 NULL_RTX
, &op0
, &op1
, modifier
);
7987 /* If the last operand is a CONST_INT, use plus_constant of
7988 the negated constant. Else make the MINUS. */
7989 if (GET_CODE (op1
) == CONST_INT
)
7990 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7992 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7995 /* No sense saving up arithmetic to be done
7996 if it's all in the wrong mode to form part of an address.
7997 And force_operand won't know whether to sign-extend or
7999 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8000 || mode
!= ptr_mode
)
8003 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8004 subtarget
, &op0
, &op1
, modifier
);
8006 /* Convert A - const to A + (-const). */
8007 if (GET_CODE (op1
) == CONST_INT
)
8009 op1
= negate_rtx (mode
, op1
);
8010 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8016 /* If first operand is constant, swap them.
8017 Thus the following special case checks need only
8018 check the second operand. */
8019 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
8021 tree t1
= TREE_OPERAND (exp
, 0);
8022 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
8023 TREE_OPERAND (exp
, 1) = t1
;
8026 /* Attempt to return something suitable for generating an
8027 indexed address, for machines that support that. */
8029 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8030 && host_integerp (TREE_OPERAND (exp
, 1), 0))
8032 tree exp1
= TREE_OPERAND (exp
, 1);
8034 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8038 op0
= force_operand (op0
, NULL_RTX
);
8040 op0
= copy_to_mode_reg (mode
, op0
);
8042 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8043 gen_int_mode (tree_low_cst (exp1
, 0),
8044 TYPE_MODE (TREE_TYPE (exp1
)))));
8047 if (modifier
== EXPAND_STACK_PARM
)
8050 /* Check for multiplying things that have been extended
8051 from a narrower type. If this machine supports multiplying
8052 in that narrower type with a result in the desired type,
8053 do it that way, and avoid the explicit type-conversion. */
8055 subexp0
= TREE_OPERAND (exp
, 0);
8056 subexp1
= TREE_OPERAND (exp
, 1);
8057 /* First, check if we have a multiplication of one signed and one
8058 unsigned operand. */
8059 if (TREE_CODE (subexp0
) == NOP_EXPR
8060 && TREE_CODE (subexp1
) == NOP_EXPR
8061 && TREE_CODE (type
) == INTEGER_TYPE
8062 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8063 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8064 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8065 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1
, 0))))
8066 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8067 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1
, 0)))))
8069 enum machine_mode innermode
8070 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0
, 0)));
8071 this_optab
= usmul_widen_optab
;
8072 if (mode
== GET_MODE_WIDER_MODE (innermode
))
8074 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
8076 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0))))
8077 expand_operands (TREE_OPERAND (subexp0
, 0),
8078 TREE_OPERAND (subexp1
, 0),
8079 NULL_RTX
, &op0
, &op1
, 0);
8081 expand_operands (TREE_OPERAND (subexp0
, 0),
8082 TREE_OPERAND (subexp1
, 0),
8083 NULL_RTX
, &op1
, &op0
, 0);
8089 /* Check for a multiplication with matching signedness. */
8090 else if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
8091 && TREE_CODE (type
) == INTEGER_TYPE
8092 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8093 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8094 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8095 && int_fits_type_p (TREE_OPERAND (exp
, 1),
8096 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8097 /* Don't use a widening multiply if a shift will do. */
8098 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8099 > HOST_BITS_PER_WIDE_INT
)
8100 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
8102 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
8103 && (TYPE_PRECISION (TREE_TYPE
8104 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8105 == TYPE_PRECISION (TREE_TYPE
8107 (TREE_OPERAND (exp
, 0), 0))))
8108 /* If both operands are extended, they must either both
8109 be zero-extended or both be sign-extended. */
8110 && (TYPE_UNSIGNED (TREE_TYPE
8111 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8112 == TYPE_UNSIGNED (TREE_TYPE
8114 (TREE_OPERAND (exp
, 0), 0)))))))
8116 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8117 enum machine_mode innermode
= TYPE_MODE (op0type
);
8118 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8119 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8120 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8122 if (mode
== GET_MODE_2XWIDER_MODE (innermode
))
8124 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
8126 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8127 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8128 TREE_OPERAND (exp
, 1),
8129 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8131 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8132 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
8133 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8136 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
8137 && innermode
== word_mode
)
8140 op0
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8141 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8142 op1
= convert_modes (innermode
, mode
,
8143 expand_normal (TREE_OPERAND (exp
, 1)),
8146 op1
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0));
8147 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8148 unsignedp
, OPTAB_LIB_WIDEN
);
8149 hipart
= gen_highpart (innermode
, temp
);
8150 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8154 emit_move_insn (hipart
, htem
);
8155 return REDUCE_BIT_FIELD (temp
);
8159 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8160 subtarget
, &op0
, &op1
, 0);
8161 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8163 case TRUNC_DIV_EXPR
:
8164 case FLOOR_DIV_EXPR
:
8166 case ROUND_DIV_EXPR
:
8167 case EXACT_DIV_EXPR
:
8168 if (modifier
== EXPAND_STACK_PARM
)
8170 /* Possible optimization: compute the dividend with EXPAND_SUM
8171 then if the divisor is constant can optimize the case
8172 where some terms of the dividend have coeffs divisible by it. */
8173 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8174 subtarget
, &op0
, &op1
, 0);
8175 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8180 case TRUNC_MOD_EXPR
:
8181 case FLOOR_MOD_EXPR
:
8183 case ROUND_MOD_EXPR
:
8184 if (modifier
== EXPAND_STACK_PARM
)
8186 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8187 subtarget
, &op0
, &op1
, 0);
8188 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8190 case FIX_ROUND_EXPR
:
8191 case FIX_FLOOR_EXPR
:
8193 gcc_unreachable (); /* Not used for C. */
8195 case FIX_TRUNC_EXPR
:
8196 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8197 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8198 target
= gen_reg_rtx (mode
);
8199 expand_fix (target
, op0
, unsignedp
);
8203 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8204 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8205 target
= gen_reg_rtx (mode
);
8206 /* expand_float can't figure out what to do if FROM has VOIDmode.
8207 So give it the correct mode. With -O, cse will optimize this. */
8208 if (GET_MODE (op0
) == VOIDmode
)
8209 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
8211 expand_float (target
, op0
,
8212 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8216 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8217 if (modifier
== EXPAND_STACK_PARM
)
8219 temp
= expand_unop (mode
,
8220 optab_for_tree_code (NEGATE_EXPR
, type
),
8223 return REDUCE_BIT_FIELD (temp
);
8226 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8227 if (modifier
== EXPAND_STACK_PARM
)
8230 /* ABS_EXPR is not valid for complex arguments. */
8231 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8232 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8234 /* Unsigned abs is simply the operand. Testing here means we don't
8235 risk generating incorrect code below. */
8236 if (TYPE_UNSIGNED (type
))
8239 return expand_abs (mode
, op0
, target
, unsignedp
,
8240 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
8244 target
= original_target
;
8246 || modifier
== EXPAND_STACK_PARM
8247 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8248 || GET_MODE (target
) != mode
8250 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8251 target
= gen_reg_rtx (mode
);
8252 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8253 target
, &op0
, &op1
, 0);
8255 /* First try to do it with a special MIN or MAX instruction.
8256 If that does not win, use a conditional jump to select the proper
8258 this_optab
= optab_for_tree_code (code
, type
);
8259 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8264 /* At this point, a MEM target is no longer useful; we will get better
8267 if (! REG_P (target
))
8268 target
= gen_reg_rtx (mode
);
8270 /* If op1 was placed in target, swap op0 and op1. */
8271 if (target
!= op0
&& target
== op1
)
8278 /* We generate better code and avoid problems with op1 mentioning
8279 target by forcing op1 into a pseudo if it isn't a constant. */
8280 if (! CONSTANT_P (op1
))
8281 op1
= force_reg (mode
, op1
);
8284 enum rtx_code comparison_code
;
8287 if (code
== MAX_EXPR
)
8288 comparison_code
= unsignedp
? GEU
: GE
;
8290 comparison_code
= unsignedp
? LEU
: LE
;
8292 /* Canonicalize to comparisons against 0. */
8293 if (op1
== const1_rtx
)
8295 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8296 or (a != 0 ? a : 1) for unsigned.
8297 For MIN we are safe converting (a <= 1 ? a : 1)
8298 into (a <= 0 ? a : 1) */
8299 cmpop1
= const0_rtx
;
8300 if (code
== MAX_EXPR
)
8301 comparison_code
= unsignedp
? NE
: GT
;
8303 if (op1
== constm1_rtx
&& !unsignedp
)
8305 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8306 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8307 cmpop1
= const0_rtx
;
8308 if (code
== MIN_EXPR
)
8309 comparison_code
= LT
;
8311 #ifdef HAVE_conditional_move
8312 /* Use a conditional move if possible. */
8313 if (can_conditionally_move_p (mode
))
8317 /* ??? Same problem as in expmed.c: emit_conditional_move
8318 forces a stack adjustment via compare_from_rtx, and we
8319 lose the stack adjustment if the sequence we are about
8320 to create is discarded. */
8321 do_pending_stack_adjust ();
8325 /* Try to emit the conditional move. */
8326 insn
= emit_conditional_move (target
, comparison_code
,
8331 /* If we could do the conditional move, emit the sequence,
8335 rtx seq
= get_insns ();
8341 /* Otherwise discard the sequence and fall back to code with
8347 emit_move_insn (target
, op0
);
8349 temp
= gen_label_rtx ();
8350 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8351 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
8353 emit_move_insn (target
, op1
);
8358 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8359 if (modifier
== EXPAND_STACK_PARM
)
8361 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8365 /* ??? Can optimize bitwise operations with one arg constant.
8366 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8367 and (a bitwise1 b) bitwise2 b (etc)
8368 but that is probably not worth while. */
8370 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8371 boolean values when we want in all cases to compute both of them. In
8372 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8373 as actual zero-or-1 values and then bitwise anding. In cases where
8374 there cannot be any side effects, better code would be made by
8375 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8376 how to recognize those cases. */
8378 case TRUTH_AND_EXPR
:
8379 code
= BIT_AND_EXPR
;
8384 code
= BIT_IOR_EXPR
;
8388 case TRUTH_XOR_EXPR
:
8389 code
= BIT_XOR_EXPR
;
8397 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8399 if (modifier
== EXPAND_STACK_PARM
)
8401 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8402 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8405 /* Could determine the answer when only additive constants differ. Also,
8406 the addition of one can be handled by changing the condition. */
8413 case UNORDERED_EXPR
:
8421 temp
= do_store_flag (exp
,
8422 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8423 tmode
!= VOIDmode
? tmode
: mode
, 0);
8427 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8428 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8430 && REG_P (original_target
)
8431 && (GET_MODE (original_target
)
8432 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8434 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8437 /* If temp is constant, we can just compute the result. */
8438 if (GET_CODE (temp
) == CONST_INT
)
8440 if (INTVAL (temp
) != 0)
8441 emit_move_insn (target
, const1_rtx
);
8443 emit_move_insn (target
, const0_rtx
);
8448 if (temp
!= original_target
)
8450 enum machine_mode mode1
= GET_MODE (temp
);
8451 if (mode1
== VOIDmode
)
8452 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8454 temp
= copy_to_mode_reg (mode1
, temp
);
8457 op1
= gen_label_rtx ();
8458 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8459 GET_MODE (temp
), unsignedp
, op1
);
8460 emit_move_insn (temp
, const1_rtx
);
8465 /* If no set-flag instruction, must generate a conditional store
8466 into a temporary variable. Drop through and handle this
8471 || modifier
== EXPAND_STACK_PARM
8472 || ! safe_from_p (target
, exp
, 1)
8473 /* Make sure we don't have a hard reg (such as function's return
8474 value) live across basic blocks, if not optimizing. */
8475 || (!optimize
&& REG_P (target
)
8476 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8477 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8480 emit_move_insn (target
, const0_rtx
);
8482 op1
= gen_label_rtx ();
8483 jumpifnot (exp
, op1
);
8486 emit_move_insn (target
, const1_rtx
);
8489 return ignore
? const0_rtx
: target
;
8491 case TRUTH_NOT_EXPR
:
8492 if (modifier
== EXPAND_STACK_PARM
)
8494 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8495 /* The parser is careful to generate TRUTH_NOT_EXPR
8496 only with operands that are always zero or one. */
8497 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8498 target
, 1, OPTAB_LIB_WIDEN
);
8502 case STATEMENT_LIST
:
8504 tree_stmt_iterator iter
;
8506 gcc_assert (ignore
);
8508 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8509 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8514 /* A COND_EXPR with its type being VOID_TYPE represents a
8515 conditional jump and is handled in
8516 expand_gimple_cond_expr. */
8517 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8519 /* Note that COND_EXPRs whose type is a structure or union
8520 are required to be constructed to contain assignments of
8521 a temporary variable, so that we can evaluate them here
8522 for side effect only. If type is void, we must do likewise. */
8524 gcc_assert (!TREE_ADDRESSABLE (type
)
8526 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8527 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8529 /* If we are not to produce a result, we have no target. Otherwise,
8530 if a target was specified use it; it will not be used as an
8531 intermediate target unless it is safe. If no target, use a
8534 if (modifier
!= EXPAND_STACK_PARM
8536 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8537 && GET_MODE (original_target
) == mode
8538 #ifdef HAVE_conditional_move
8539 && (! can_conditionally_move_p (mode
)
8540 || REG_P (original_target
))
8542 && !MEM_P (original_target
))
8543 temp
= original_target
;
8545 temp
= assign_temp (type
, 0, 0, 1);
8547 do_pending_stack_adjust ();
8549 op0
= gen_label_rtx ();
8550 op1
= gen_label_rtx ();
8551 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8552 store_expr (TREE_OPERAND (exp
, 1), temp
,
8553 modifier
== EXPAND_STACK_PARM
);
8555 emit_jump_insn (gen_jump (op1
));
8558 store_expr (TREE_OPERAND (exp
, 2), temp
,
8559 modifier
== EXPAND_STACK_PARM
);
8566 target
= expand_vec_cond_expr (exp
, target
);
8571 tree lhs
= TREE_OPERAND (exp
, 0);
8572 tree rhs
= TREE_OPERAND (exp
, 1);
8574 gcc_assert (ignore
);
8576 /* Check for |= or &= of a bitfield of size one into another bitfield
8577 of size 1. In this case, (unless we need the result of the
8578 assignment) we can do this more efficiently with a
8579 test followed by an assignment, if necessary.
8581 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8582 things change so we do, this code should be enhanced to
8584 if (TREE_CODE (lhs
) == COMPONENT_REF
8585 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8586 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8587 && TREE_OPERAND (rhs
, 0) == lhs
8588 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8589 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8590 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8592 rtx label
= gen_label_rtx ();
8593 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
8594 do_jump (TREE_OPERAND (rhs
, 1),
8597 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
));
8598 do_pending_stack_adjust ();
8603 expand_assignment (lhs
, rhs
);
8609 if (!TREE_OPERAND (exp
, 0))
8610 expand_null_return ();
8612 expand_return (TREE_OPERAND (exp
, 0));
8616 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8619 /* Get the rtx code of the operands. */
8620 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8621 op1
= expand_normal (TREE_OPERAND (exp
, 1));
8624 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8626 /* Move the real (op0) and imaginary (op1) parts to their location. */
8627 write_complex_part (target
, op0
, false);
8628 write_complex_part (target
, op1
, true);
8633 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8634 return read_complex_part (op0
, false);
8637 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8638 return read_complex_part (op0
, true);
8641 expand_resx_expr (exp
);
8644 case TRY_CATCH_EXPR
:
8646 case EH_FILTER_EXPR
:
8647 case TRY_FINALLY_EXPR
:
8648 /* Lowered by tree-eh.c. */
8651 case WITH_CLEANUP_EXPR
:
8652 case CLEANUP_POINT_EXPR
:
8654 case CASE_LABEL_EXPR
:
8660 case PREINCREMENT_EXPR
:
8661 case PREDECREMENT_EXPR
:
8662 case POSTINCREMENT_EXPR
:
8663 case POSTDECREMENT_EXPR
:
8666 case TRUTH_ANDIF_EXPR
:
8667 case TRUTH_ORIF_EXPR
:
8668 /* Lowered by gimplify.c. */
8672 return get_exception_pointer (cfun
);
8675 return get_exception_filter (cfun
);
8678 /* Function descriptors are not valid except for as
8679 initialization constants, and should not be expanded. */
8687 expand_label (TREE_OPERAND (exp
, 0));
8691 expand_asm_expr (exp
);
8694 case WITH_SIZE_EXPR
:
8695 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8696 have pulled out the size to use in whatever context it needed. */
8697 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8700 case REALIGN_LOAD_EXPR
:
8702 tree oprnd0
= TREE_OPERAND (exp
, 0);
8703 tree oprnd1
= TREE_OPERAND (exp
, 1);
8704 tree oprnd2
= TREE_OPERAND (exp
, 2);
8707 this_optab
= optab_for_tree_code (code
, type
);
8708 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8709 op2
= expand_normal (oprnd2
);
8710 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8718 tree oprnd0
= TREE_OPERAND (exp
, 0);
8719 tree oprnd1
= TREE_OPERAND (exp
, 1);
8720 tree oprnd2
= TREE_OPERAND (exp
, 2);
8723 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8724 op2
= expand_normal (oprnd2
);
8725 target
= expand_widen_pattern_expr (exp
, op0
, op1
, op2
,
8730 case WIDEN_SUM_EXPR
:
8732 tree oprnd0
= TREE_OPERAND (exp
, 0);
8733 tree oprnd1
= TREE_OPERAND (exp
, 1);
8735 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8736 target
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, op1
,
8741 case REDUC_MAX_EXPR
:
8742 case REDUC_MIN_EXPR
:
8743 case REDUC_PLUS_EXPR
:
8745 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8746 this_optab
= optab_for_tree_code (code
, type
);
8747 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8752 case VEC_LSHIFT_EXPR
:
8753 case VEC_RSHIFT_EXPR
:
8755 target
= expand_vec_shift_expr (exp
, target
);
8760 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8764 /* Here to do an ordinary binary operator. */
8766 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8767 subtarget
, &op0
, &op1
, 0);
8769 this_optab
= optab_for_tree_code (code
, type
);
8771 if (modifier
== EXPAND_STACK_PARM
)
8773 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8774 unsignedp
, OPTAB_LIB_WIDEN
);
8776 return REDUCE_BIT_FIELD (temp
);
8778 #undef REDUCE_BIT_FIELD
8780 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8781 signedness of TYPE), possibly returning the result in TARGET. */
8783 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8785 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8786 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8788 if (TYPE_UNSIGNED (type
))
8791 if (prec
< HOST_BITS_PER_WIDE_INT
)
8792 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8795 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8796 ((unsigned HOST_WIDE_INT
) 1
8797 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8799 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8803 tree count
= build_int_cst (NULL_TREE
,
8804 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8805 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8806 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8810 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8811 when applied to the address of EXP produces an address known to be
8812 aligned more than BIGGEST_ALIGNMENT. */
8815 is_aligning_offset (tree offset
, tree exp
)
8817 /* Strip off any conversions. */
8818 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8819 || TREE_CODE (offset
) == NOP_EXPR
8820 || TREE_CODE (offset
) == CONVERT_EXPR
)
8821 offset
= TREE_OPERAND (offset
, 0);
8823 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8824 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8825 if (TREE_CODE (offset
) != BIT_AND_EXPR
8826 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8827 || compare_tree_int (TREE_OPERAND (offset
, 1),
8828 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8829 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8832 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8833 It must be NEGATE_EXPR. Then strip any more conversions. */
8834 offset
= TREE_OPERAND (offset
, 0);
8835 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8836 || TREE_CODE (offset
) == NOP_EXPR
8837 || TREE_CODE (offset
) == CONVERT_EXPR
)
8838 offset
= TREE_OPERAND (offset
, 0);
8840 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8843 offset
= TREE_OPERAND (offset
, 0);
8844 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8845 || TREE_CODE (offset
) == NOP_EXPR
8846 || TREE_CODE (offset
) == CONVERT_EXPR
)
8847 offset
= TREE_OPERAND (offset
, 0);
8849 /* This must now be the address of EXP. */
8850 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8853 /* Return the tree node if an ARG corresponds to a string constant or zero
8854 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8855 in bytes within the string that ARG is accessing. The type of the
8856 offset will be `sizetype'. */
8859 string_constant (tree arg
, tree
*ptr_offset
)
8864 if (TREE_CODE (arg
) == ADDR_EXPR
)
8866 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8868 *ptr_offset
= size_zero_node
;
8869 return TREE_OPERAND (arg
, 0);
8871 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8873 array
= TREE_OPERAND (arg
, 0);
8874 offset
= size_zero_node
;
8876 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8878 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8879 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8880 if (TREE_CODE (array
) != STRING_CST
8881 && TREE_CODE (array
) != VAR_DECL
)
8887 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8889 tree arg0
= TREE_OPERAND (arg
, 0);
8890 tree arg1
= TREE_OPERAND (arg
, 1);
8895 if (TREE_CODE (arg0
) == ADDR_EXPR
8896 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8897 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8899 array
= TREE_OPERAND (arg0
, 0);
8902 else if (TREE_CODE (arg1
) == ADDR_EXPR
8903 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8904 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8906 array
= TREE_OPERAND (arg1
, 0);
8915 if (TREE_CODE (array
) == STRING_CST
)
8917 *ptr_offset
= fold_convert (sizetype
, offset
);
8920 else if (TREE_CODE (array
) == VAR_DECL
)
8924 /* Variables initialized to string literals can be handled too. */
8925 if (DECL_INITIAL (array
) == NULL_TREE
8926 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8929 /* If they are read-only, non-volatile and bind locally. */
8930 if (! TREE_READONLY (array
)
8931 || TREE_SIDE_EFFECTS (array
)
8932 || ! targetm
.binds_local_p (array
))
8935 /* Avoid const char foo[4] = "abcde"; */
8936 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8937 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8938 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8939 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8942 /* If variable is bigger than the string literal, OFFSET must be constant
8943 and inside of the bounds of the string literal. */
8944 offset
= fold_convert (sizetype
, offset
);
8945 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8946 && (! host_integerp (offset
, 1)
8947 || compare_tree_int (offset
, length
) >= 0))
8950 *ptr_offset
= offset
;
8951 return DECL_INITIAL (array
);
8957 /* Generate code to calculate EXP using a store-flag instruction
8958 and return an rtx for the result. EXP is either a comparison
8959 or a TRUTH_NOT_EXPR whose operand is a comparison.
8961 If TARGET is nonzero, store the result there if convenient.
8963 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8966 Return zero if there is no suitable set-flag instruction
8967 available on this machine.
8969 Once expand_expr has been called on the arguments of the comparison,
8970 we are committed to doing the store flag, since it is not safe to
8971 re-evaluate the expression. We emit the store-flag insn by calling
8972 emit_store_flag, but only expand the arguments if we have a reason
8973 to believe that emit_store_flag will be successful. If we think that
8974 it will, but it isn't, we have to simulate the store-flag with a
8975 set/jump/set sequence. */
8978 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8981 tree arg0
, arg1
, type
;
8983 enum machine_mode operand_mode
;
8987 enum insn_code icode
;
8988 rtx subtarget
= target
;
8991 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8992 result at the end. We can't simply invert the test since it would
8993 have already been inverted if it were valid. This case occurs for
8994 some floating-point comparisons. */
8996 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8997 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8999 arg0
= TREE_OPERAND (exp
, 0);
9000 arg1
= TREE_OPERAND (exp
, 1);
9002 /* Don't crash if the comparison was erroneous. */
9003 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9006 type
= TREE_TYPE (arg0
);
9007 operand_mode
= TYPE_MODE (type
);
9008 unsignedp
= TYPE_UNSIGNED (type
);
9010 /* We won't bother with BLKmode store-flag operations because it would mean
9011 passing a lot of information to emit_store_flag. */
9012 if (operand_mode
== BLKmode
)
9015 /* We won't bother with store-flag operations involving function pointers
9016 when function pointers must be canonicalized before comparisons. */
9017 #ifdef HAVE_canonicalize_funcptr_for_compare
9018 if (HAVE_canonicalize_funcptr_for_compare
9019 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
9020 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
9022 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
9023 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
9024 == FUNCTION_TYPE
))))
9031 /* Get the rtx comparison code to use. We know that EXP is a comparison
9032 operation of some type. Some comparisons against 1 and -1 can be
9033 converted to comparisons with zero. Do so here so that the tests
9034 below will be aware that we have a comparison with zero. These
9035 tests will not catch constants in the first operand, but constants
9036 are rarely passed as the first operand. */
9038 switch (TREE_CODE (exp
))
9047 if (integer_onep (arg1
))
9048 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
9050 code
= unsignedp
? LTU
: LT
;
9053 if (! unsignedp
&& integer_all_onesp (arg1
))
9054 arg1
= integer_zero_node
, code
= LT
;
9056 code
= unsignedp
? LEU
: LE
;
9059 if (! unsignedp
&& integer_all_onesp (arg1
))
9060 arg1
= integer_zero_node
, code
= GE
;
9062 code
= unsignedp
? GTU
: GT
;
9065 if (integer_onep (arg1
))
9066 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
9068 code
= unsignedp
? GEU
: GE
;
9071 case UNORDERED_EXPR
:
9100 /* Put a constant second. */
9101 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
9103 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
9104 code
= swap_condition (code
);
9107 /* If this is an equality or inequality test of a single bit, we can
9108 do this by shifting the bit being tested to the low-order bit and
9109 masking the result with the constant 1. If the condition was EQ,
9110 we xor it with 1. This does not require an scc insn and is faster
9111 than an scc insn even if we have it.
9113 The code to make this transformation was moved into fold_single_bit_test,
9114 so we just call into the folder and expand its result. */
9116 if ((code
== NE
|| code
== EQ
)
9117 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
9118 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
9120 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
9121 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
9123 target
, VOIDmode
, EXPAND_NORMAL
);
9126 /* Now see if we are likely to be able to do this. Return if not. */
9127 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
9130 icode
= setcc_gen_code
[(int) code
];
9131 if (icode
== CODE_FOR_nothing
9132 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
9134 /* We can only do this if it is one of the special cases that
9135 can be handled without an scc insn. */
9136 if ((code
== LT
&& integer_zerop (arg1
))
9137 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
9139 else if (! only_cheap
&& (code
== NE
|| code
== EQ
)
9140 && TREE_CODE (type
) != REAL_TYPE
9141 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
9142 != CODE_FOR_nothing
)
9143 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
9144 != CODE_FOR_nothing
)))
9150 if (! get_subtarget (target
)
9151 || GET_MODE (subtarget
) != operand_mode
)
9154 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
9157 target
= gen_reg_rtx (mode
);
9159 result
= emit_store_flag (target
, code
, op0
, op1
,
9160 operand_mode
, unsignedp
, 1);
9165 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
9166 result
, 0, OPTAB_LIB_WIDEN
);
9170 /* If this failed, we have to do this with set/compare/jump/set code. */
9172 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
9173 target
= gen_reg_rtx (GET_MODE (target
));
9175 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
9176 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
9177 operand_mode
, NULL_RTX
);
9178 if (GET_CODE (result
) == CONST_INT
)
9179 return (((result
== const0_rtx
&& ! invert
)
9180 || (result
!= const0_rtx
&& invert
))
9181 ? const0_rtx
: const1_rtx
);
9183 /* The code of RESULT may not match CODE if compare_from_rtx
9184 decided to swap its operands and reverse the original code.
9186 We know that compare_from_rtx returns either a CONST_INT or
9187 a new comparison code, so it is safe to just extract the
9188 code from RESULT. */
9189 code
= GET_CODE (result
);
9191 label
= gen_label_rtx ();
9192 gcc_assert (bcc_gen_fctn
[(int) code
]);
9194 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
9195 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
9202 /* Stubs in case we haven't got a casesi insn. */
9204 # define HAVE_casesi 0
9205 # define gen_casesi(a, b, c, d, e) (0)
9206 # define CODE_FOR_casesi CODE_FOR_nothing
9209 /* If the machine does not have a case insn that compares the bounds,
9210 this means extra overhead for dispatch tables, which raises the
9211 threshold for using them. */
9212 #ifndef CASE_VALUES_THRESHOLD
9213 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9214 #endif /* CASE_VALUES_THRESHOLD */
9217 case_values_threshold (void)
9219 return CASE_VALUES_THRESHOLD
;
9222 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9223 0 otherwise (i.e. if there is no casesi instruction). */
9225 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
9226 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
9228 enum machine_mode index_mode
= SImode
;
9229 int index_bits
= GET_MODE_BITSIZE (index_mode
);
9230 rtx op1
, op2
, index
;
9231 enum machine_mode op_mode
;
9236 /* Convert the index to SImode. */
9237 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
9239 enum machine_mode omode
= TYPE_MODE (index_type
);
9240 rtx rangertx
= expand_normal (range
);
9242 /* We must handle the endpoints in the original mode. */
9243 index_expr
= build2 (MINUS_EXPR
, index_type
,
9244 index_expr
, minval
);
9245 minval
= integer_zero_node
;
9246 index
= expand_normal (index_expr
);
9247 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
9248 omode
, 1, default_label
);
9249 /* Now we can safely truncate. */
9250 index
= convert_to_mode (index_mode
, index
, 0);
9254 if (TYPE_MODE (index_type
) != index_mode
)
9256 index_type
= lang_hooks
.types
.type_for_size (index_bits
, 0);
9257 index_expr
= fold_convert (index_type
, index_expr
);
9260 index
= expand_normal (index_expr
);
9263 do_pending_stack_adjust ();
9265 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
9266 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
9268 index
= copy_to_mode_reg (op_mode
, index
);
9270 op1
= expand_normal (minval
);
9272 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
9273 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
9274 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
9275 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
9277 op1
= copy_to_mode_reg (op_mode
, op1
);
9279 op2
= expand_normal (range
);
9281 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
9282 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
9283 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
9284 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
9286 op2
= copy_to_mode_reg (op_mode
, op2
);
9288 emit_jump_insn (gen_casesi (index
, op1
, op2
,
9289 table_label
, default_label
));
9293 /* Attempt to generate a tablejump instruction; same concept. */
9294 #ifndef HAVE_tablejump
9295 #define HAVE_tablejump 0
9296 #define gen_tablejump(x, y) (0)
9299 /* Subroutine of the next function.
9301 INDEX is the value being switched on, with the lowest value
9302 in the table already subtracted.
9303 MODE is its expected mode (needed if INDEX is constant).
9304 RANGE is the length of the jump table.
9305 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9307 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9308 index value is out of range. */
9311 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
9316 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
9317 cfun
->max_jumptable_ents
= INTVAL (range
);
9319 /* Do an unsigned comparison (in the proper mode) between the index
9320 expression and the value which represents the length of the range.
9321 Since we just finished subtracting the lower bound of the range
9322 from the index expression, this comparison allows us to simultaneously
9323 check that the original index expression value is both greater than
9324 or equal to the minimum value of the range and less than or equal to
9325 the maximum value of the range. */
9327 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
9330 /* If index is in range, it must fit in Pmode.
9331 Convert to Pmode so we can index with it. */
9333 index
= convert_to_mode (Pmode
, index
, 1);
9335 /* Don't let a MEM slip through, because then INDEX that comes
9336 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9337 and break_out_memory_refs will go to work on it and mess it up. */
9338 #ifdef PIC_CASE_VECTOR_ADDRESS
9339 if (flag_pic
&& !REG_P (index
))
9340 index
= copy_to_mode_reg (Pmode
, index
);
9343 /* If flag_force_addr were to affect this address
9344 it could interfere with the tricky assumptions made
9345 about addresses that contain label-refs,
9346 which may be valid only very near the tablejump itself. */
9347 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9348 GET_MODE_SIZE, because this indicates how large insns are. The other
9349 uses should all be Pmode, because they are addresses. This code
9350 could fail if addresses and insns are not the same size. */
9351 index
= gen_rtx_PLUS (Pmode
,
9352 gen_rtx_MULT (Pmode
, index
,
9353 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
9354 gen_rtx_LABEL_REF (Pmode
, table_label
));
9355 #ifdef PIC_CASE_VECTOR_ADDRESS
9357 index
= PIC_CASE_VECTOR_ADDRESS (index
);
9360 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
9361 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
9362 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
9363 convert_move (temp
, vector
, 0);
9365 emit_jump_insn (gen_tablejump (temp
, table_label
));
9367 /* If we are generating PIC code or if the table is PC-relative, the
9368 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9369 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
9374 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
9375 rtx table_label
, rtx default_label
)
9379 if (! HAVE_tablejump
)
9382 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
9383 fold_convert (index_type
, index_expr
),
9384 fold_convert (index_type
, minval
));
9385 index
= expand_normal (index_expr
);
9386 do_pending_stack_adjust ();
9388 do_tablejump (index
, TYPE_MODE (index_type
),
9389 convert_modes (TYPE_MODE (index_type
),
9390 TYPE_MODE (TREE_TYPE (range
)),
9391 expand_normal (range
),
9392 TYPE_UNSIGNED (TREE_TYPE (range
))),
9393 table_label
, default_label
);
9397 /* Nonzero if the mode is a valid vector mode for this architecture.
9398 This returns nonzero even if there is no hardware support for the
9399 vector mode, but we can emulate with narrower modes. */
9402 vector_mode_valid_p (enum machine_mode mode
)
9404 enum mode_class
class = GET_MODE_CLASS (mode
);
9405 enum machine_mode innermode
;
9407 /* Doh! What's going on? */
9408 if (class != MODE_VECTOR_INT
9409 && class != MODE_VECTOR_FLOAT
)
9412 /* Hardware support. Woo hoo! */
9413 if (targetm
.vector_mode_supported_p (mode
))
9416 innermode
= GET_MODE_INNER (mode
);
9418 /* We should probably return 1 if requesting V4DI and we have no DI,
9419 but we have V2DI, but this is probably very unlikely. */
9421 /* If we have support for the inner mode, we can safely emulate it.
9422 We may not have V2DI, but me can emulate with a pair of DIs. */
9423 return targetm
.scalar_mode_supported_p (innermode
);
9426 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9428 const_vector_from_tree (tree exp
)
9433 enum machine_mode inner
, mode
;
9435 mode
= TYPE_MODE (TREE_TYPE (exp
));
9437 if (initializer_zerop (exp
))
9438 return CONST0_RTX (mode
);
9440 units
= GET_MODE_NUNITS (mode
);
9441 inner
= GET_MODE_INNER (mode
);
9443 v
= rtvec_alloc (units
);
9445 link
= TREE_VECTOR_CST_ELTS (exp
);
9446 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9448 elt
= TREE_VALUE (link
);
9450 if (TREE_CODE (elt
) == REAL_CST
)
9451 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9454 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9455 TREE_INT_CST_HIGH (elt
),
9459 /* Initialize remaining elements to 0. */
9460 for (; i
< units
; ++i
)
9461 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9463 return gen_rtx_CONST_VECTOR (mode
, v
);
9465 #include "gt-expr.h"