* lto-cgraph.c (output_cgraph): Rename to ...
[official-gcc.git] / gcc / reload.c
blob201f4759ad5f5868c83579526ac7041661f9d447
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "function.h"
110 #include "params.h"
111 #include "target.h"
112 #include "ira.h"
114 /* True if X is a constant that can be forced into the constant pool.
115 MODE is the mode of the operand, or VOIDmode if not known. */
116 #define CONST_POOL_OK_P(MODE, X) \
117 ((MODE) != VOIDmode \
118 && CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (MODE, X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
125 static inline bool
126 small_register_class_p (reg_class_t rclass)
128 return (reg_class_size [(int) rclass] == 1
129 || (reg_class_size [(int) rclass] >= 1
130 && targetm.class_likely_spilled_p (rclass)));
134 /* All reloads of the current insn are recorded here. See reload.h for
135 comments. */
136 int n_reloads;
137 struct reload rld[MAX_RELOADS];
139 /* All the "earlyclobber" operands of the current insn
140 are recorded here. */
141 int n_earlyclobbers;
142 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
144 int reload_n_operands;
146 /* Replacing reloads.
148 If `replace_reloads' is nonzero, then as each reload is recorded
149 an entry is made for it in the table `replacements'.
150 Then later `subst_reloads' can look through that table and
151 perform all the replacements needed. */
153 /* Nonzero means record the places to replace. */
154 static int replace_reloads;
156 /* Each replacement is recorded with a structure like this. */
157 struct replacement
159 rtx *where; /* Location to store in */
160 int what; /* which reload this is for */
161 enum machine_mode mode; /* mode it must have */
164 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
166 /* Number of replacements currently recorded. */
167 static int n_replacements;
169 /* Used to track what is modified by an operand. */
170 struct decomposition
172 int reg_flag; /* Nonzero if referencing a register. */
173 int safe; /* Nonzero if this can't conflict with anything. */
174 rtx base; /* Base address for MEM. */
175 HOST_WIDE_INT start; /* Starting offset or register number. */
176 HOST_WIDE_INT end; /* Ending offset or register number. */
179 #ifdef SECONDARY_MEMORY_NEEDED
181 /* Save MEMs needed to copy from one class of registers to another. One MEM
182 is used per mode, but normally only one or two modes are ever used.
184 We keep two versions, before and after register elimination. The one
185 after register elimination is record separately for each operand. This
186 is done in case the address is not valid to be sure that we separately
187 reload each. */
189 static rtx secondary_memlocs[NUM_MACHINE_MODES];
190 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
191 static int secondary_memlocs_elim_used = 0;
192 #endif
194 /* The instruction we are doing reloads for;
195 so we can test whether a register dies in it. */
196 static rtx this_insn;
198 /* Nonzero if this instruction is a user-specified asm with operands. */
199 static int this_insn_is_asm;
201 /* If hard_regs_live_known is nonzero,
202 we can tell which hard regs are currently live,
203 at least enough to succeed in choosing dummy reloads. */
204 static int hard_regs_live_known;
206 /* Indexed by hard reg number,
207 element is nonnegative if hard reg has been spilled.
208 This vector is passed to `find_reloads' as an argument
209 and is not changed here. */
210 static short *static_reload_reg_p;
212 /* Set to 1 in subst_reg_equivs if it changes anything. */
213 static int subst_reg_equivs_changed;
215 /* On return from push_reload, holds the reload-number for the OUT
216 operand, which can be different for that from the input operand. */
217 static int output_reloadnum;
219 /* Compare two RTX's. */
220 #define MATCHES(x, y) \
221 (x == y || (x != 0 && (REG_P (x) \
222 ? REG_P (y) && REGNO (x) == REGNO (y) \
223 : rtx_equal_p (x, y) && ! side_effects_p (x))))
225 /* Indicates if two reloads purposes are for similar enough things that we
226 can merge their reloads. */
227 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
228 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
229 || ((when1) == (when2) && (op1) == (op2)) \
230 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
231 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
232 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
233 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
234 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
236 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
237 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
238 ((when1) != (when2) \
239 || ! ((op1) == (op2) \
240 || (when1) == RELOAD_FOR_INPUT \
241 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
242 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
244 /* If we are going to reload an address, compute the reload type to
245 use. */
246 #define ADDR_TYPE(type) \
247 ((type) == RELOAD_FOR_INPUT_ADDRESS \
248 ? RELOAD_FOR_INPADDR_ADDRESS \
249 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
250 ? RELOAD_FOR_OUTADDR_ADDRESS \
251 : (type)))
253 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
254 enum machine_mode, enum reload_type,
255 enum insn_code *, secondary_reload_info *);
256 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
257 int, unsigned int);
258 static void push_replacement (rtx *, int, enum machine_mode);
259 static void dup_replacements (rtx *, rtx *);
260 static void combine_reloads (void);
261 static int find_reusable_reload (rtx *, rtx, enum reg_class,
262 enum reload_type, int, int);
263 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
264 enum machine_mode, reg_class_t, int, int);
265 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
266 static struct decomposition decompose (rtx);
267 static int immune_p (rtx, rtx, struct decomposition);
268 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
269 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
270 int *);
271 static rtx make_memloc (rtx, int);
272 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
273 addr_space_t, rtx *);
274 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
275 int, enum reload_type, int, rtx);
276 static rtx subst_reg_equivs (rtx, rtx);
277 static rtx subst_indexed_address (rtx);
278 static void update_auto_inc_notes (rtx, int, int);
279 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
280 enum rtx_code, enum rtx_code, rtx *,
281 int, enum reload_type,int, rtx);
282 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
283 enum machine_mode, int,
284 enum reload_type, int);
285 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
286 int, rtx, int *);
287 static void copy_replacements_1 (rtx *, rtx *, int);
288 static int find_inc_amount (rtx, rtx);
289 static int refers_to_mem_for_reload_p (rtx);
290 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
291 rtx, rtx *);
293 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
294 list yet. */
296 static void
297 push_reg_equiv_alt_mem (int regno, rtx mem)
299 rtx it;
301 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
302 if (rtx_equal_p (XEXP (it, 0), mem))
303 return;
305 reg_equiv_alt_mem_list (regno)
306 = alloc_EXPR_LIST (REG_EQUIV, mem,
307 reg_equiv_alt_mem_list (regno));
310 /* Determine if any secondary reloads are needed for loading (if IN_P is
311 nonzero) or storing (if IN_P is zero) X to or from a reload register of
312 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
313 are needed, push them.
315 Return the reload number of the secondary reload we made, or -1 if
316 we didn't need one. *PICODE is set to the insn_code to use if we do
317 need a secondary reload. */
319 static int
320 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
321 enum reg_class reload_class,
322 enum machine_mode reload_mode, enum reload_type type,
323 enum insn_code *picode, secondary_reload_info *prev_sri)
325 enum reg_class rclass = NO_REGS;
326 enum reg_class scratch_class;
327 enum machine_mode mode = reload_mode;
328 enum insn_code icode = CODE_FOR_nothing;
329 enum insn_code t_icode = CODE_FOR_nothing;
330 enum reload_type secondary_type;
331 int s_reload, t_reload = -1;
332 const char *scratch_constraint;
333 char letter;
334 secondary_reload_info sri;
336 if (type == RELOAD_FOR_INPUT_ADDRESS
337 || type == RELOAD_FOR_OUTPUT_ADDRESS
338 || type == RELOAD_FOR_INPADDR_ADDRESS
339 || type == RELOAD_FOR_OUTADDR_ADDRESS)
340 secondary_type = type;
341 else
342 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
344 *picode = CODE_FOR_nothing;
346 /* If X is a paradoxical SUBREG, use the inner value to determine both the
347 mode and object being reloaded. */
348 if (paradoxical_subreg_p (x))
350 x = SUBREG_REG (x);
351 reload_mode = GET_MODE (x);
354 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
355 is still a pseudo-register by now, it *must* have an equivalent MEM
356 but we don't want to assume that), use that equivalent when seeing if
357 a secondary reload is needed since whether or not a reload is needed
358 might be sensitive to the form of the MEM. */
360 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
361 && reg_equiv_mem (REGNO (x)))
362 x = reg_equiv_mem (REGNO (x));
364 sri.icode = CODE_FOR_nothing;
365 sri.prev_sri = prev_sri;
366 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
367 reload_mode, &sri);
368 icode = (enum insn_code) sri.icode;
370 /* If we don't need any secondary registers, done. */
371 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
372 return -1;
374 if (rclass != NO_REGS)
375 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
376 reload_mode, type, &t_icode, &sri);
378 /* If we will be using an insn, the secondary reload is for a
379 scratch register. */
381 if (icode != CODE_FOR_nothing)
383 /* If IN_P is nonzero, the reload register will be the output in
384 operand 0. If IN_P is zero, the reload register will be the input
385 in operand 1. Outputs should have an initial "=", which we must
386 skip. */
388 /* ??? It would be useful to be able to handle only two, or more than
389 three, operands, but for now we can only handle the case of having
390 exactly three: output, input and one temp/scratch. */
391 gcc_assert (insn_data[(int) icode].n_operands == 3);
393 /* ??? We currently have no way to represent a reload that needs
394 an icode to reload from an intermediate tertiary reload register.
395 We should probably have a new field in struct reload to tag a
396 chain of scratch operand reloads onto. */
397 gcc_assert (rclass == NO_REGS);
399 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
400 gcc_assert (*scratch_constraint == '=');
401 scratch_constraint++;
402 if (*scratch_constraint == '&')
403 scratch_constraint++;
404 letter = *scratch_constraint;
405 scratch_class = (letter == 'r' ? GENERAL_REGS
406 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
407 scratch_constraint));
409 rclass = scratch_class;
410 mode = insn_data[(int) icode].operand[2].mode;
413 /* This case isn't valid, so fail. Reload is allowed to use the same
414 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415 in the case of a secondary register, we actually need two different
416 registers for correct code. We fail here to prevent the possibility of
417 silently generating incorrect code later.
419 The convention is that secondary input reloads are valid only if the
420 secondary_class is different from class. If you have such a case, you
421 can not use secondary reloads, you must work around the problem some
422 other way.
424 Allow this when a reload_in/out pattern is being used. I.e. assume
425 that the generated code handles this case. */
427 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
428 || t_icode != CODE_FOR_nothing);
430 /* See if we can reuse an existing secondary reload. */
431 for (s_reload = 0; s_reload < n_reloads; s_reload++)
432 if (rld[s_reload].secondary_p
433 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
434 || reg_class_subset_p (rld[s_reload].rclass, rclass))
435 && ((in_p && rld[s_reload].inmode == mode)
436 || (! in_p && rld[s_reload].outmode == mode))
437 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
438 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
439 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
440 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
441 && (small_register_class_p (rclass)
442 || targetm.small_register_classes_for_mode_p (VOIDmode))
443 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
444 opnum, rld[s_reload].opnum))
446 if (in_p)
447 rld[s_reload].inmode = mode;
448 if (! in_p)
449 rld[s_reload].outmode = mode;
451 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
452 rld[s_reload].rclass = rclass;
454 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
455 rld[s_reload].optional &= optional;
456 rld[s_reload].secondary_p = 1;
457 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
458 opnum, rld[s_reload].opnum))
459 rld[s_reload].when_needed = RELOAD_OTHER;
461 break;
464 if (s_reload == n_reloads)
466 #ifdef SECONDARY_MEMORY_NEEDED
467 /* If we need a memory location to copy between the two reload regs,
468 set it up now. Note that we do the input case before making
469 the reload and the output case after. This is due to the
470 way reloads are output. */
472 if (in_p && icode == CODE_FOR_nothing
473 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
475 get_secondary_mem (x, reload_mode, opnum, type);
477 /* We may have just added new reloads. Make sure we add
478 the new reload at the end. */
479 s_reload = n_reloads;
481 #endif
483 /* We need to make a new secondary reload for this register class. */
484 rld[s_reload].in = rld[s_reload].out = 0;
485 rld[s_reload].rclass = rclass;
487 rld[s_reload].inmode = in_p ? mode : VOIDmode;
488 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
489 rld[s_reload].reg_rtx = 0;
490 rld[s_reload].optional = optional;
491 rld[s_reload].inc = 0;
492 /* Maybe we could combine these, but it seems too tricky. */
493 rld[s_reload].nocombine = 1;
494 rld[s_reload].in_reg = 0;
495 rld[s_reload].out_reg = 0;
496 rld[s_reload].opnum = opnum;
497 rld[s_reload].when_needed = secondary_type;
498 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
499 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
500 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
501 rld[s_reload].secondary_out_icode
502 = ! in_p ? t_icode : CODE_FOR_nothing;
503 rld[s_reload].secondary_p = 1;
505 n_reloads++;
507 #ifdef SECONDARY_MEMORY_NEEDED
508 if (! in_p && icode == CODE_FOR_nothing
509 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
510 get_secondary_mem (x, mode, opnum, type);
511 #endif
514 *picode = icode;
515 return s_reload;
518 /* If a secondary reload is needed, return its class. If both an intermediate
519 register and a scratch register is needed, we return the class of the
520 intermediate register. */
521 reg_class_t
522 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
523 rtx x)
525 enum insn_code icode;
526 secondary_reload_info sri;
528 sri.icode = CODE_FOR_nothing;
529 sri.prev_sri = NULL;
530 rclass
531 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
532 icode = (enum insn_code) sri.icode;
534 /* If there are no secondary reloads at all, we return NO_REGS.
535 If an intermediate register is needed, we return its class. */
536 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
537 return rclass;
539 /* No intermediate register is needed, but we have a special reload
540 pattern, which we assume for now needs a scratch register. */
541 return scratch_reload_class (icode);
544 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
545 three operands, verify that operand 2 is an output operand, and return
546 its register class.
547 ??? We'd like to be able to handle any pattern with at least 2 operands,
548 for zero or more scratch registers, but that needs more infrastructure. */
549 enum reg_class
550 scratch_reload_class (enum insn_code icode)
552 const char *scratch_constraint;
553 char scratch_letter;
554 enum reg_class rclass;
556 gcc_assert (insn_data[(int) icode].n_operands == 3);
557 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
558 gcc_assert (*scratch_constraint == '=');
559 scratch_constraint++;
560 if (*scratch_constraint == '&')
561 scratch_constraint++;
562 scratch_letter = *scratch_constraint;
563 if (scratch_letter == 'r')
564 return GENERAL_REGS;
565 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
566 scratch_constraint);
567 gcc_assert (rclass != NO_REGS);
568 return rclass;
571 #ifdef SECONDARY_MEMORY_NEEDED
573 /* Return a memory location that will be used to copy X in mode MODE.
574 If we haven't already made a location for this mode in this insn,
575 call find_reloads_address on the location being returned. */
578 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
579 int opnum, enum reload_type type)
581 rtx loc;
582 int mem_valid;
584 /* By default, if MODE is narrower than a word, widen it to a word.
585 This is required because most machines that require these memory
586 locations do not support short load and stores from all registers
587 (e.g., FP registers). */
589 #ifdef SECONDARY_MEMORY_NEEDED_MODE
590 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
591 #else
592 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
593 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
594 #endif
596 /* If we already have made a MEM for this operand in MODE, return it. */
597 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
598 return secondary_memlocs_elim[(int) mode][opnum];
600 /* If this is the first time we've tried to get a MEM for this mode,
601 allocate a new one. `something_changed' in reload will get set
602 by noticing that the frame size has changed. */
604 if (secondary_memlocs[(int) mode] == 0)
606 #ifdef SECONDARY_MEMORY_NEEDED_RTX
607 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
608 #else
609 secondary_memlocs[(int) mode]
610 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
611 #endif
614 /* Get a version of the address doing any eliminations needed. If that
615 didn't give us a new MEM, make a new one if it isn't valid. */
617 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
618 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
619 MEM_ADDR_SPACE (loc));
621 if (! mem_valid && loc == secondary_memlocs[(int) mode])
622 loc = copy_rtx (loc);
624 /* The only time the call below will do anything is if the stack
625 offset is too large. In that case IND_LEVELS doesn't matter, so we
626 can just pass a zero. Adjust the type to be the address of the
627 corresponding object. If the address was valid, save the eliminated
628 address. If it wasn't valid, we need to make a reload each time, so
629 don't save it. */
631 if (! mem_valid)
633 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
634 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
635 : RELOAD_OTHER);
637 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
638 opnum, type, 0, 0);
641 secondary_memlocs_elim[(int) mode][opnum] = loc;
642 if (secondary_memlocs_elim_used <= (int)mode)
643 secondary_memlocs_elim_used = (int)mode + 1;
644 return loc;
647 /* Clear any secondary memory locations we've made. */
649 void
650 clear_secondary_mem (void)
652 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
654 #endif /* SECONDARY_MEMORY_NEEDED */
657 /* Find the largest class which has at least one register valid in
658 mode INNER, and which for every such register, that register number
659 plus N is also valid in OUTER (if in range) and is cheap to move
660 into REGNO. Such a class must exist. */
662 static enum reg_class
663 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
664 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
665 unsigned int dest_regno ATTRIBUTE_UNUSED)
667 int best_cost = -1;
668 int rclass;
669 int regno;
670 enum reg_class best_class = NO_REGS;
671 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
672 unsigned int best_size = 0;
673 int cost;
675 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
677 int bad = 0;
678 int good = 0;
679 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
680 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
682 if (HARD_REGNO_MODE_OK (regno, inner))
684 good = 1;
685 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
686 || ! HARD_REGNO_MODE_OK (regno + n, outer))
687 bad = 1;
691 if (bad || !good)
692 continue;
693 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
695 if ((reg_class_size[rclass] > best_size
696 && (best_cost < 0 || best_cost >= cost))
697 || best_cost > cost)
699 best_class = (enum reg_class) rclass;
700 best_size = reg_class_size[rclass];
701 best_cost = register_move_cost (outer, (enum reg_class) rclass,
702 dest_class);
706 gcc_assert (best_size != 0);
708 return best_class;
711 /* We are trying to reload a subreg of something that is not a register.
712 Find the largest class which has at least one register valid in
713 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
714 which we would eventually like to obtain the object. */
716 static enum reg_class
717 find_valid_class_1 (enum machine_mode outer ATTRIBUTE_UNUSED,
718 enum machine_mode mode ATTRIBUTE_UNUSED,
719 enum reg_class dest_class ATTRIBUTE_UNUSED)
721 int best_cost = -1;
722 int rclass;
723 int regno;
724 enum reg_class best_class = NO_REGS;
725 unsigned int best_size = 0;
726 int cost;
728 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
730 int bad = 0;
731 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
732 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
733 && !HARD_REGNO_MODE_OK (regno, mode))
734 bad = 1;
736 if (bad)
737 continue;
739 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
741 if ((reg_class_size[rclass] > best_size
742 && (best_cost < 0 || best_cost >= cost))
743 || best_cost > cost)
745 best_class = (enum reg_class) rclass;
746 best_size = reg_class_size[rclass];
747 best_cost = register_move_cost (outer, (enum reg_class) rclass,
748 dest_class);
752 gcc_assert (best_size != 0);
754 #ifdef LIMIT_RELOAD_CLASS
755 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
756 #endif
757 return best_class;
760 /* Return the number of a previously made reload that can be combined with
761 a new one, or n_reloads if none of the existing reloads can be used.
762 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
763 push_reload, they determine the kind of the new reload that we try to
764 combine. P_IN points to the corresponding value of IN, which can be
765 modified by this function.
766 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
768 static int
769 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
770 enum reload_type type, int opnum, int dont_share)
772 rtx in = *p_in;
773 int i;
774 /* We can't merge two reloads if the output of either one is
775 earlyclobbered. */
777 if (earlyclobber_operand_p (out))
778 return n_reloads;
780 /* We can use an existing reload if the class is right
781 and at least one of IN and OUT is a match
782 and the other is at worst neutral.
783 (A zero compared against anything is neutral.)
785 For targets with small register classes, don't use existing reloads
786 unless they are for the same thing since that can cause us to need
787 more reload registers than we otherwise would. */
789 for (i = 0; i < n_reloads; i++)
790 if ((reg_class_subset_p (rclass, rld[i].rclass)
791 || reg_class_subset_p (rld[i].rclass, rclass))
792 /* If the existing reload has a register, it must fit our class. */
793 && (rld[i].reg_rtx == 0
794 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
795 true_regnum (rld[i].reg_rtx)))
796 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
797 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
798 || (out != 0 && MATCHES (rld[i].out, out)
799 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
800 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
801 && (small_register_class_p (rclass)
802 || targetm.small_register_classes_for_mode_p (VOIDmode))
803 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
804 return i;
806 /* Reloading a plain reg for input can match a reload to postincrement
807 that reg, since the postincrement's value is the right value.
808 Likewise, it can match a preincrement reload, since we regard
809 the preincrementation as happening before any ref in this insn
810 to that register. */
811 for (i = 0; i < n_reloads; i++)
812 if ((reg_class_subset_p (rclass, rld[i].rclass)
813 || reg_class_subset_p (rld[i].rclass, rclass))
814 /* If the existing reload has a register, it must fit our
815 class. */
816 && (rld[i].reg_rtx == 0
817 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
818 true_regnum (rld[i].reg_rtx)))
819 && out == 0 && rld[i].out == 0 && rld[i].in != 0
820 && ((REG_P (in)
821 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
822 && MATCHES (XEXP (rld[i].in, 0), in))
823 || (REG_P (rld[i].in)
824 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
825 && MATCHES (XEXP (in, 0), rld[i].in)))
826 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
827 && (small_register_class_p (rclass)
828 || targetm.small_register_classes_for_mode_p (VOIDmode))
829 && MERGABLE_RELOADS (type, rld[i].when_needed,
830 opnum, rld[i].opnum))
832 /* Make sure reload_in ultimately has the increment,
833 not the plain register. */
834 if (REG_P (in))
835 *p_in = rld[i].in;
836 return i;
838 return n_reloads;
841 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
842 expression. MODE is the mode that X will be used in. OUTPUT is true if
843 the function is invoked for the output part of an enclosing reload. */
845 static bool
846 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
848 rtx inner;
850 /* Only SUBREGs are problematical. */
851 if (GET_CODE (x) != SUBREG)
852 return false;
854 inner = SUBREG_REG (x);
856 /* If INNER is a constant or PLUS, then INNER will need reloading. */
857 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
858 return true;
860 /* If INNER is not a hard register, then INNER will not need reloading. */
861 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
862 return false;
864 /* If INNER is not ok for MODE, then INNER will need reloading. */
865 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
866 return true;
868 /* If this is for an output, and the outer part is a word or smaller,
869 INNER is larger than a word and the number of registers in INNER is
870 not the same as the number of words in INNER, then INNER will need
871 reloading (with an in-out reload). */
872 return (output
873 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
874 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
875 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
876 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
879 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
880 requiring an extra reload register. The caller has already found that
881 IN contains some reference to REGNO, so check that we can produce the
882 new value in a single step. E.g. if we have
883 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
884 instruction that adds one to a register, this should succeed.
885 However, if we have something like
886 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
887 needs to be loaded into a register first, we need a separate reload
888 register.
889 Such PLUS reloads are generated by find_reload_address_part.
890 The out-of-range PLUS expressions are usually introduced in the instruction
891 patterns by register elimination and substituting pseudos without a home
892 by their function-invariant equivalences. */
893 static int
894 can_reload_into (rtx in, int regno, enum machine_mode mode)
896 rtx dst, test_insn;
897 int r = 0;
898 struct recog_data save_recog_data;
900 /* For matching constraints, we often get notional input reloads where
901 we want to use the original register as the reload register. I.e.
902 technically this is a non-optional input-output reload, but IN is
903 already a valid register, and has been chosen as the reload register.
904 Speed this up, since it trivially works. */
905 if (REG_P (in))
906 return 1;
908 /* To test MEMs properly, we'd have to take into account all the reloads
909 that are already scheduled, which can become quite complicated.
910 And since we've already handled address reloads for this MEM, it
911 should always succeed anyway. */
912 if (MEM_P (in))
913 return 1;
915 /* If we can make a simple SET insn that does the job, everything should
916 be fine. */
917 dst = gen_rtx_REG (mode, regno);
918 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
919 save_recog_data = recog_data;
920 if (recog_memoized (test_insn) >= 0)
922 extract_insn (test_insn);
923 r = constrain_operands (1);
925 recog_data = save_recog_data;
926 return r;
929 /* Record one reload that needs to be performed.
930 IN is an rtx saying where the data are to be found before this instruction.
931 OUT says where they must be stored after the instruction.
932 (IN is zero for data not read, and OUT is zero for data not written.)
933 INLOC and OUTLOC point to the places in the instructions where
934 IN and OUT were found.
935 If IN and OUT are both nonzero, it means the same register must be used
936 to reload both IN and OUT.
938 RCLASS is a register class required for the reloaded data.
939 INMODE is the machine mode that the instruction requires
940 for the reg that replaces IN and OUTMODE is likewise for OUT.
942 If IN is zero, then OUT's location and mode should be passed as
943 INLOC and INMODE.
945 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
947 OPTIONAL nonzero means this reload does not need to be performed:
948 it can be discarded if that is more convenient.
950 OPNUM and TYPE say what the purpose of this reload is.
952 The return value is the reload-number for this reload.
954 If both IN and OUT are nonzero, in some rare cases we might
955 want to make two separate reloads. (Actually we never do this now.)
956 Therefore, the reload-number for OUT is stored in
957 output_reloadnum when we return; the return value applies to IN.
958 Usually (presently always), when IN and OUT are nonzero,
959 the two reload-numbers are equal, but the caller should be careful to
960 distinguish them. */
963 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
964 enum reg_class rclass, enum machine_mode inmode,
965 enum machine_mode outmode, int strict_low, int optional,
966 int opnum, enum reload_type type)
968 int i;
969 int dont_share = 0;
970 int dont_remove_subreg = 0;
971 #ifdef LIMIT_RELOAD_CLASS
972 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
973 #endif
974 int secondary_in_reload = -1, secondary_out_reload = -1;
975 enum insn_code secondary_in_icode = CODE_FOR_nothing;
976 enum insn_code secondary_out_icode = CODE_FOR_nothing;
977 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
978 subreg_in_class = NO_REGS;
980 /* INMODE and/or OUTMODE could be VOIDmode if no mode
981 has been specified for the operand. In that case,
982 use the operand's mode as the mode to reload. */
983 if (inmode == VOIDmode && in != 0)
984 inmode = GET_MODE (in);
985 if (outmode == VOIDmode && out != 0)
986 outmode = GET_MODE (out);
988 /* If find_reloads and friends until now missed to replace a pseudo
989 with a constant of reg_equiv_constant something went wrong
990 beforehand.
991 Note that it can't simply be done here if we missed it earlier
992 since the constant might need to be pushed into the literal pool
993 and the resulting memref would probably need further
994 reloading. */
995 if (in != 0 && REG_P (in))
997 int regno = REGNO (in);
999 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1000 || reg_renumber[regno] >= 0
1001 || reg_equiv_constant (regno) == NULL_RTX);
1004 /* reg_equiv_constant only contains constants which are obviously
1005 not appropriate as destination. So if we would need to replace
1006 the destination pseudo with a constant we are in real
1007 trouble. */
1008 if (out != 0 && REG_P (out))
1010 int regno = REGNO (out);
1012 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1013 || reg_renumber[regno] >= 0
1014 || reg_equiv_constant (regno) == NULL_RTX);
1017 /* If we have a read-write operand with an address side-effect,
1018 change either IN or OUT so the side-effect happens only once. */
1019 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1020 switch (GET_CODE (XEXP (in, 0)))
1022 case POST_INC: case POST_DEC: case POST_MODIFY:
1023 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1024 break;
1026 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1027 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1028 break;
1030 default:
1031 break;
1034 /* If we are reloading a (SUBREG constant ...), really reload just the
1035 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1036 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1037 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1038 register is a pseudo, also reload the inside expression.
1039 For machines that extend byte loads, do this for any SUBREG of a pseudo
1040 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1041 M2 is an integral mode that gets extended when loaded.
1042 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1043 where either M1 is not valid for R or M2 is wider than a word but we
1044 only need one register to store an M2-sized quantity in R.
1045 (However, if OUT is nonzero, we need to reload the reg *and*
1046 the subreg, so do nothing here, and let following statement handle it.)
1048 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1049 we can't handle it here because CONST_INT does not indicate a mode.
1051 Similarly, we must reload the inside expression if we have a
1052 STRICT_LOW_PART (presumably, in == out in this case).
1054 Also reload the inner expression if it does not require a secondary
1055 reload but the SUBREG does.
1057 Finally, reload the inner expression if it is a register that is in
1058 the class whose registers cannot be referenced in a different size
1059 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1060 cannot reload just the inside since we might end up with the wrong
1061 register class. But if it is inside a STRICT_LOW_PART, we have
1062 no choice, so we hope we do get the right register class there. */
1064 if (in != 0 && GET_CODE (in) == SUBREG
1065 && (subreg_lowpart_p (in) || strict_low)
1066 #ifdef CANNOT_CHANGE_MODE_CLASS
1067 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1068 #endif
1069 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1070 && (CONSTANT_P (SUBREG_REG (in))
1071 || GET_CODE (SUBREG_REG (in)) == PLUS
1072 || strict_low
1073 || (((REG_P (SUBREG_REG (in))
1074 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1075 || MEM_P (SUBREG_REG (in)))
1076 && ((GET_MODE_PRECISION (inmode)
1077 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1078 #ifdef LOAD_EXTEND_OP
1079 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1080 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1081 <= UNITS_PER_WORD)
1082 && (GET_MODE_PRECISION (inmode)
1083 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1084 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1085 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1086 #endif
1087 #ifdef WORD_REGISTER_OPERATIONS
1088 || ((GET_MODE_PRECISION (inmode)
1089 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1090 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1091 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1092 / UNITS_PER_WORD)))
1093 #endif
1095 || (REG_P (SUBREG_REG (in))
1096 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1097 /* The case where out is nonzero
1098 is handled differently in the following statement. */
1099 && (out == 0 || subreg_lowpart_p (in))
1100 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1101 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1102 > UNITS_PER_WORD)
1103 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1104 / UNITS_PER_WORD)
1105 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1106 [GET_MODE (SUBREG_REG (in))]))
1107 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1108 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1109 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1110 SUBREG_REG (in))
1111 == NO_REGS))
1112 #ifdef CANNOT_CHANGE_MODE_CLASS
1113 || (REG_P (SUBREG_REG (in))
1114 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1115 && REG_CANNOT_CHANGE_MODE_P
1116 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1117 #endif
1120 #ifdef LIMIT_RELOAD_CLASS
1121 in_subreg_loc = inloc;
1122 #endif
1123 inloc = &SUBREG_REG (in);
1124 in = *inloc;
1125 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1126 if (MEM_P (in))
1127 /* This is supposed to happen only for paradoxical subregs made by
1128 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1129 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1130 #endif
1131 inmode = GET_MODE (in);
1134 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1135 where M1 is not valid for R if it was not handled by the code above.
1137 Similar issue for (SUBREG constant ...) if it was not handled by the
1138 code above. This can happen if SUBREG_BYTE != 0.
1140 However, we must reload the inner reg *as well as* the subreg in
1141 that case. */
1143 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1145 if (REG_P (SUBREG_REG (in)))
1146 subreg_in_class
1147 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1148 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1149 GET_MODE (SUBREG_REG (in)),
1150 SUBREG_BYTE (in),
1151 GET_MODE (in)),
1152 REGNO (SUBREG_REG (in)));
1153 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1154 subreg_in_class = find_valid_class_1 (inmode,
1155 GET_MODE (SUBREG_REG (in)),
1156 rclass);
1158 /* This relies on the fact that emit_reload_insns outputs the
1159 instructions for input reloads of type RELOAD_OTHER in the same
1160 order as the reloads. Thus if the outer reload is also of type
1161 RELOAD_OTHER, we are guaranteed that this inner reload will be
1162 output before the outer reload. */
1163 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1164 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1165 dont_remove_subreg = 1;
1168 /* Similarly for paradoxical and problematical SUBREGs on the output.
1169 Note that there is no reason we need worry about the previous value
1170 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1171 entitled to clobber it all (except in the case of a word mode subreg
1172 or of a STRICT_LOW_PART, in that latter case the constraint should
1173 label it input-output.) */
1174 if (out != 0 && GET_CODE (out) == SUBREG
1175 && (subreg_lowpart_p (out) || strict_low)
1176 #ifdef CANNOT_CHANGE_MODE_CLASS
1177 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1178 #endif
1179 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1180 && (CONSTANT_P (SUBREG_REG (out))
1181 || strict_low
1182 || (((REG_P (SUBREG_REG (out))
1183 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1184 || MEM_P (SUBREG_REG (out)))
1185 && ((GET_MODE_PRECISION (outmode)
1186 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1187 #ifdef WORD_REGISTER_OPERATIONS
1188 || ((GET_MODE_PRECISION (outmode)
1189 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1190 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1191 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1192 / UNITS_PER_WORD)))
1193 #endif
1195 || (REG_P (SUBREG_REG (out))
1196 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1197 /* The case of a word mode subreg
1198 is handled differently in the following statement. */
1199 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1200 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1201 > UNITS_PER_WORD))
1202 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1203 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1204 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1205 SUBREG_REG (out))
1206 == NO_REGS))
1207 #ifdef CANNOT_CHANGE_MODE_CLASS
1208 || (REG_P (SUBREG_REG (out))
1209 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1210 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1211 GET_MODE (SUBREG_REG (out)),
1212 outmode))
1213 #endif
1216 #ifdef LIMIT_RELOAD_CLASS
1217 out_subreg_loc = outloc;
1218 #endif
1219 outloc = &SUBREG_REG (out);
1220 out = *outloc;
1221 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1222 gcc_assert (!MEM_P (out)
1223 || GET_MODE_SIZE (GET_MODE (out))
1224 <= GET_MODE_SIZE (outmode));
1225 #endif
1226 outmode = GET_MODE (out);
1229 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1230 where either M1 is not valid for R or M2 is wider than a word but we
1231 only need one register to store an M2-sized quantity in R.
1233 However, we must reload the inner reg *as well as* the subreg in
1234 that case and the inner reg is an in-out reload. */
1236 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1238 enum reg_class in_out_class
1239 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1240 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1241 GET_MODE (SUBREG_REG (out)),
1242 SUBREG_BYTE (out),
1243 GET_MODE (out)),
1244 REGNO (SUBREG_REG (out)));
1246 /* This relies on the fact that emit_reload_insns outputs the
1247 instructions for output reloads of type RELOAD_OTHER in reverse
1248 order of the reloads. Thus if the outer reload is also of type
1249 RELOAD_OTHER, we are guaranteed that this inner reload will be
1250 output after the outer reload. */
1251 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1252 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1253 0, 0, opnum, RELOAD_OTHER);
1254 dont_remove_subreg = 1;
1257 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1258 if (in != 0 && out != 0 && MEM_P (out)
1259 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1260 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1261 dont_share = 1;
1263 /* If IN is a SUBREG of a hard register, make a new REG. This
1264 simplifies some of the cases below. */
1266 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1267 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1268 && ! dont_remove_subreg)
1269 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1271 /* Similarly for OUT. */
1272 if (out != 0 && GET_CODE (out) == SUBREG
1273 && REG_P (SUBREG_REG (out))
1274 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1275 && ! dont_remove_subreg)
1276 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1278 /* Narrow down the class of register wanted if that is
1279 desirable on this machine for efficiency. */
1281 reg_class_t preferred_class = rclass;
1283 if (in != 0)
1284 preferred_class = targetm.preferred_reload_class (in, rclass);
1286 /* Output reloads may need analogous treatment, different in detail. */
1287 if (out != 0)
1288 preferred_class
1289 = targetm.preferred_output_reload_class (out, preferred_class);
1291 /* Discard what the target said if we cannot do it. */
1292 if (preferred_class != NO_REGS
1293 || (optional && type == RELOAD_FOR_OUTPUT))
1294 rclass = (enum reg_class) preferred_class;
1297 /* Make sure we use a class that can handle the actual pseudo
1298 inside any subreg. For example, on the 386, QImode regs
1299 can appear within SImode subregs. Although GENERAL_REGS
1300 can handle SImode, QImode needs a smaller class. */
1301 #ifdef LIMIT_RELOAD_CLASS
1302 if (in_subreg_loc)
1303 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1304 else if (in != 0 && GET_CODE (in) == SUBREG)
1305 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1307 if (out_subreg_loc)
1308 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1309 if (out != 0 && GET_CODE (out) == SUBREG)
1310 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1311 #endif
1313 /* Verify that this class is at least possible for the mode that
1314 is specified. */
1315 if (this_insn_is_asm)
1317 enum machine_mode mode;
1318 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1319 mode = inmode;
1320 else
1321 mode = outmode;
1322 if (mode == VOIDmode)
1324 error_for_asm (this_insn, "cannot reload integer constant "
1325 "operand in %<asm%>");
1326 mode = word_mode;
1327 if (in != 0)
1328 inmode = word_mode;
1329 if (out != 0)
1330 outmode = word_mode;
1332 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1333 if (HARD_REGNO_MODE_OK (i, mode)
1334 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1335 break;
1336 if (i == FIRST_PSEUDO_REGISTER)
1338 error_for_asm (this_insn, "impossible register constraint "
1339 "in %<asm%>");
1340 /* Avoid further trouble with this insn. */
1341 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1342 /* We used to continue here setting class to ALL_REGS, but it triggers
1343 sanity check on i386 for:
1344 void foo(long double d)
1346 asm("" :: "a" (d));
1348 Returning zero here ought to be safe as we take care in
1349 find_reloads to not process the reloads when instruction was
1350 replaced by USE. */
1352 return 0;
1356 /* Optional output reloads are always OK even if we have no register class,
1357 since the function of these reloads is only to have spill_reg_store etc.
1358 set, so that the storing insn can be deleted later. */
1359 gcc_assert (rclass != NO_REGS
1360 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1362 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1364 if (i == n_reloads)
1366 /* See if we need a secondary reload register to move between CLASS
1367 and IN or CLASS and OUT. Get the icode and push any required reloads
1368 needed for each of them if so. */
1370 if (in != 0)
1371 secondary_in_reload
1372 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1373 &secondary_in_icode, NULL);
1374 if (out != 0 && GET_CODE (out) != SCRATCH)
1375 secondary_out_reload
1376 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1377 type, &secondary_out_icode, NULL);
1379 /* We found no existing reload suitable for re-use.
1380 So add an additional reload. */
1382 #ifdef SECONDARY_MEMORY_NEEDED
1383 if (subreg_in_class == NO_REGS
1384 && in != 0
1385 && (REG_P (in)
1386 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1387 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1388 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1389 /* If a memory location is needed for the copy, make one. */
1390 if (subreg_in_class != NO_REGS
1391 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1392 get_secondary_mem (in, inmode, opnum, type);
1393 #endif
1395 i = n_reloads;
1396 rld[i].in = in;
1397 rld[i].out = out;
1398 rld[i].rclass = rclass;
1399 rld[i].inmode = inmode;
1400 rld[i].outmode = outmode;
1401 rld[i].reg_rtx = 0;
1402 rld[i].optional = optional;
1403 rld[i].inc = 0;
1404 rld[i].nocombine = 0;
1405 rld[i].in_reg = inloc ? *inloc : 0;
1406 rld[i].out_reg = outloc ? *outloc : 0;
1407 rld[i].opnum = opnum;
1408 rld[i].when_needed = type;
1409 rld[i].secondary_in_reload = secondary_in_reload;
1410 rld[i].secondary_out_reload = secondary_out_reload;
1411 rld[i].secondary_in_icode = secondary_in_icode;
1412 rld[i].secondary_out_icode = secondary_out_icode;
1413 rld[i].secondary_p = 0;
1415 n_reloads++;
1417 #ifdef SECONDARY_MEMORY_NEEDED
1418 if (out != 0
1419 && (REG_P (out)
1420 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1421 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1422 && SECONDARY_MEMORY_NEEDED (rclass,
1423 REGNO_REG_CLASS (reg_or_subregno (out)),
1424 outmode))
1425 get_secondary_mem (out, outmode, opnum, type);
1426 #endif
1428 else
1430 /* We are reusing an existing reload,
1431 but we may have additional information for it.
1432 For example, we may now have both IN and OUT
1433 while the old one may have just one of them. */
1435 /* The modes can be different. If they are, we want to reload in
1436 the larger mode, so that the value is valid for both modes. */
1437 if (inmode != VOIDmode
1438 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1439 rld[i].inmode = inmode;
1440 if (outmode != VOIDmode
1441 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1442 rld[i].outmode = outmode;
1443 if (in != 0)
1445 rtx in_reg = inloc ? *inloc : 0;
1446 /* If we merge reloads for two distinct rtl expressions that
1447 are identical in content, there might be duplicate address
1448 reloads. Remove the extra set now, so that if we later find
1449 that we can inherit this reload, we can get rid of the
1450 address reloads altogether.
1452 Do not do this if both reloads are optional since the result
1453 would be an optional reload which could potentially leave
1454 unresolved address replacements.
1456 It is not sufficient to call transfer_replacements since
1457 choose_reload_regs will remove the replacements for address
1458 reloads of inherited reloads which results in the same
1459 problem. */
1460 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1461 && ! (rld[i].optional && optional))
1463 /* We must keep the address reload with the lower operand
1464 number alive. */
1465 if (opnum > rld[i].opnum)
1467 remove_address_replacements (in);
1468 in = rld[i].in;
1469 in_reg = rld[i].in_reg;
1471 else
1472 remove_address_replacements (rld[i].in);
1474 /* When emitting reloads we don't necessarily look at the in-
1475 and outmode, but also directly at the operands (in and out).
1476 So we can't simply overwrite them with whatever we have found
1477 for this (to-be-merged) reload, we have to "merge" that too.
1478 Reusing another reload already verified that we deal with the
1479 same operands, just possibly in different modes. So we
1480 overwrite the operands only when the new mode is larger.
1481 See also PR33613. */
1482 if (!rld[i].in
1483 || GET_MODE_SIZE (GET_MODE (in))
1484 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1485 rld[i].in = in;
1486 if (!rld[i].in_reg
1487 || (in_reg
1488 && GET_MODE_SIZE (GET_MODE (in_reg))
1489 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1490 rld[i].in_reg = in_reg;
1492 if (out != 0)
1494 if (!rld[i].out
1495 || (out
1496 && GET_MODE_SIZE (GET_MODE (out))
1497 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1498 rld[i].out = out;
1499 if (outloc
1500 && (!rld[i].out_reg
1501 || GET_MODE_SIZE (GET_MODE (*outloc))
1502 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1503 rld[i].out_reg = *outloc;
1505 if (reg_class_subset_p (rclass, rld[i].rclass))
1506 rld[i].rclass = rclass;
1507 rld[i].optional &= optional;
1508 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1509 opnum, rld[i].opnum))
1510 rld[i].when_needed = RELOAD_OTHER;
1511 rld[i].opnum = MIN (rld[i].opnum, opnum);
1514 /* If the ostensible rtx being reloaded differs from the rtx found
1515 in the location to substitute, this reload is not safe to combine
1516 because we cannot reliably tell whether it appears in the insn. */
1518 if (in != 0 && in != *inloc)
1519 rld[i].nocombine = 1;
1521 #if 0
1522 /* This was replaced by changes in find_reloads_address_1 and the new
1523 function inc_for_reload, which go with a new meaning of reload_inc. */
1525 /* If this is an IN/OUT reload in an insn that sets the CC,
1526 it must be for an autoincrement. It doesn't work to store
1527 the incremented value after the insn because that would clobber the CC.
1528 So we must do the increment of the value reloaded from,
1529 increment it, store it back, then decrement again. */
1530 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1532 out = 0;
1533 rld[i].out = 0;
1534 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1535 /* If we did not find a nonzero amount-to-increment-by,
1536 that contradicts the belief that IN is being incremented
1537 in an address in this insn. */
1538 gcc_assert (rld[i].inc != 0);
1540 #endif
1542 /* If we will replace IN and OUT with the reload-reg,
1543 record where they are located so that substitution need
1544 not do a tree walk. */
1546 if (replace_reloads)
1548 if (inloc != 0)
1550 struct replacement *r = &replacements[n_replacements++];
1551 r->what = i;
1552 r->where = inloc;
1553 r->mode = inmode;
1555 if (outloc != 0 && outloc != inloc)
1557 struct replacement *r = &replacements[n_replacements++];
1558 r->what = i;
1559 r->where = outloc;
1560 r->mode = outmode;
1564 /* If this reload is just being introduced and it has both
1565 an incoming quantity and an outgoing quantity that are
1566 supposed to be made to match, see if either one of the two
1567 can serve as the place to reload into.
1569 If one of them is acceptable, set rld[i].reg_rtx
1570 to that one. */
1572 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1574 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1575 inmode, outmode,
1576 rld[i].rclass, i,
1577 earlyclobber_operand_p (out));
1579 /* If the outgoing register already contains the same value
1580 as the incoming one, we can dispense with loading it.
1581 The easiest way to tell the caller that is to give a phony
1582 value for the incoming operand (same as outgoing one). */
1583 if (rld[i].reg_rtx == out
1584 && (REG_P (in) || CONSTANT_P (in))
1585 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1586 static_reload_reg_p, i, inmode))
1587 rld[i].in = out;
1590 /* If this is an input reload and the operand contains a register that
1591 dies in this insn and is used nowhere else, see if it is the right class
1592 to be used for this reload. Use it if so. (This occurs most commonly
1593 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1594 this if it is also an output reload that mentions the register unless
1595 the output is a SUBREG that clobbers an entire register.
1597 Note that the operand might be one of the spill regs, if it is a
1598 pseudo reg and we are in a block where spilling has not taken place.
1599 But if there is no spilling in this block, that is OK.
1600 An explicitly used hard reg cannot be a spill reg. */
1602 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1604 rtx note;
1605 int regno;
1606 enum machine_mode rel_mode = inmode;
1608 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1609 rel_mode = outmode;
1611 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1612 if (REG_NOTE_KIND (note) == REG_DEAD
1613 && REG_P (XEXP (note, 0))
1614 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1615 && reg_mentioned_p (XEXP (note, 0), in)
1616 /* Check that a former pseudo is valid; see find_dummy_reload. */
1617 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1618 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1619 ORIGINAL_REGNO (XEXP (note, 0)))
1620 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1621 && ! refers_to_regno_for_reload_p (regno,
1622 end_hard_regno (rel_mode,
1623 regno),
1624 PATTERN (this_insn), inloc)
1625 /* If this is also an output reload, IN cannot be used as
1626 the reload register if it is set in this insn unless IN
1627 is also OUT. */
1628 && (out == 0 || in == out
1629 || ! hard_reg_set_here_p (regno,
1630 end_hard_regno (rel_mode, regno),
1631 PATTERN (this_insn)))
1632 /* ??? Why is this code so different from the previous?
1633 Is there any simple coherent way to describe the two together?
1634 What's going on here. */
1635 && (in != out
1636 || (GET_CODE (in) == SUBREG
1637 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1638 / UNITS_PER_WORD)
1639 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1640 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1641 /* Make sure the operand fits in the reg that dies. */
1642 && (GET_MODE_SIZE (rel_mode)
1643 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1644 && HARD_REGNO_MODE_OK (regno, inmode)
1645 && HARD_REGNO_MODE_OK (regno, outmode))
1647 unsigned int offs;
1648 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1649 hard_regno_nregs[regno][outmode]);
1651 for (offs = 0; offs < nregs; offs++)
1652 if (fixed_regs[regno + offs]
1653 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1654 regno + offs))
1655 break;
1657 if (offs == nregs
1658 && (! (refers_to_regno_for_reload_p
1659 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1660 || can_reload_into (in, regno, inmode)))
1662 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1663 break;
1668 if (out)
1669 output_reloadnum = i;
1671 return i;
1674 /* Record an additional place we must replace a value
1675 for which we have already recorded a reload.
1676 RELOADNUM is the value returned by push_reload
1677 when the reload was recorded.
1678 This is used in insn patterns that use match_dup. */
1680 static void
1681 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1683 if (replace_reloads)
1685 struct replacement *r = &replacements[n_replacements++];
1686 r->what = reloadnum;
1687 r->where = loc;
1688 r->mode = mode;
1692 /* Duplicate any replacement we have recorded to apply at
1693 location ORIG_LOC to also be performed at DUP_LOC.
1694 This is used in insn patterns that use match_dup. */
1696 static void
1697 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1699 int i, n = n_replacements;
1701 for (i = 0; i < n; i++)
1703 struct replacement *r = &replacements[i];
1704 if (r->where == orig_loc)
1705 push_replacement (dup_loc, r->what, r->mode);
1709 /* Transfer all replacements that used to be in reload FROM to be in
1710 reload TO. */
1712 void
1713 transfer_replacements (int to, int from)
1715 int i;
1717 for (i = 0; i < n_replacements; i++)
1718 if (replacements[i].what == from)
1719 replacements[i].what = to;
1722 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1723 or a subpart of it. If we have any replacements registered for IN_RTX,
1724 cancel the reloads that were supposed to load them.
1725 Return nonzero if we canceled any reloads. */
1727 remove_address_replacements (rtx in_rtx)
1729 int i, j;
1730 char reload_flags[MAX_RELOADS];
1731 int something_changed = 0;
1733 memset (reload_flags, 0, sizeof reload_flags);
1734 for (i = 0, j = 0; i < n_replacements; i++)
1736 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1737 reload_flags[replacements[i].what] |= 1;
1738 else
1740 replacements[j++] = replacements[i];
1741 reload_flags[replacements[i].what] |= 2;
1744 /* Note that the following store must be done before the recursive calls. */
1745 n_replacements = j;
1747 for (i = n_reloads - 1; i >= 0; i--)
1749 if (reload_flags[i] == 1)
1751 deallocate_reload_reg (i);
1752 remove_address_replacements (rld[i].in);
1753 rld[i].in = 0;
1754 something_changed = 1;
1757 return something_changed;
1760 /* If there is only one output reload, and it is not for an earlyclobber
1761 operand, try to combine it with a (logically unrelated) input reload
1762 to reduce the number of reload registers needed.
1764 This is safe if the input reload does not appear in
1765 the value being output-reloaded, because this implies
1766 it is not needed any more once the original insn completes.
1768 If that doesn't work, see we can use any of the registers that
1769 die in this insn as a reload register. We can if it is of the right
1770 class and does not appear in the value being output-reloaded. */
1772 static void
1773 combine_reloads (void)
1775 int i, regno;
1776 int output_reload = -1;
1777 int secondary_out = -1;
1778 rtx note;
1780 /* Find the output reload; return unless there is exactly one
1781 and that one is mandatory. */
1783 for (i = 0; i < n_reloads; i++)
1784 if (rld[i].out != 0)
1786 if (output_reload >= 0)
1787 return;
1788 output_reload = i;
1791 if (output_reload < 0 || rld[output_reload].optional)
1792 return;
1794 /* An input-output reload isn't combinable. */
1796 if (rld[output_reload].in != 0)
1797 return;
1799 /* If this reload is for an earlyclobber operand, we can't do anything. */
1800 if (earlyclobber_operand_p (rld[output_reload].out))
1801 return;
1803 /* If there is a reload for part of the address of this operand, we would
1804 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1805 its life to the point where doing this combine would not lower the
1806 number of spill registers needed. */
1807 for (i = 0; i < n_reloads; i++)
1808 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1809 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1810 && rld[i].opnum == rld[output_reload].opnum)
1811 return;
1813 /* Check each input reload; can we combine it? */
1815 for (i = 0; i < n_reloads; i++)
1816 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1817 /* Life span of this reload must not extend past main insn. */
1818 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1819 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1820 && rld[i].when_needed != RELOAD_OTHER
1821 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1822 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1823 [(int) rld[output_reload].outmode])
1824 && rld[i].inc == 0
1825 && rld[i].reg_rtx == 0
1826 #ifdef SECONDARY_MEMORY_NEEDED
1827 /* Don't combine two reloads with different secondary
1828 memory locations. */
1829 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1830 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1831 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1832 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1833 #endif
1834 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1835 ? (rld[i].rclass == rld[output_reload].rclass)
1836 : (reg_class_subset_p (rld[i].rclass,
1837 rld[output_reload].rclass)
1838 || reg_class_subset_p (rld[output_reload].rclass,
1839 rld[i].rclass)))
1840 && (MATCHES (rld[i].in, rld[output_reload].out)
1841 /* Args reversed because the first arg seems to be
1842 the one that we imagine being modified
1843 while the second is the one that might be affected. */
1844 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1845 rld[i].in)
1846 /* However, if the input is a register that appears inside
1847 the output, then we also can't share.
1848 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1849 If the same reload reg is used for both reg 69 and the
1850 result to be stored in memory, then that result
1851 will clobber the address of the memory ref. */
1852 && ! (REG_P (rld[i].in)
1853 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1854 rld[output_reload].out))))
1855 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1856 rld[i].when_needed != RELOAD_FOR_INPUT)
1857 && (reg_class_size[(int) rld[i].rclass]
1858 || targetm.small_register_classes_for_mode_p (VOIDmode))
1859 /* We will allow making things slightly worse by combining an
1860 input and an output, but no worse than that. */
1861 && (rld[i].when_needed == RELOAD_FOR_INPUT
1862 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1864 int j;
1866 /* We have found a reload to combine with! */
1867 rld[i].out = rld[output_reload].out;
1868 rld[i].out_reg = rld[output_reload].out_reg;
1869 rld[i].outmode = rld[output_reload].outmode;
1870 /* Mark the old output reload as inoperative. */
1871 rld[output_reload].out = 0;
1872 /* The combined reload is needed for the entire insn. */
1873 rld[i].when_needed = RELOAD_OTHER;
1874 /* If the output reload had a secondary reload, copy it. */
1875 if (rld[output_reload].secondary_out_reload != -1)
1877 rld[i].secondary_out_reload
1878 = rld[output_reload].secondary_out_reload;
1879 rld[i].secondary_out_icode
1880 = rld[output_reload].secondary_out_icode;
1883 #ifdef SECONDARY_MEMORY_NEEDED
1884 /* Copy any secondary MEM. */
1885 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1886 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1887 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1888 #endif
1889 /* If required, minimize the register class. */
1890 if (reg_class_subset_p (rld[output_reload].rclass,
1891 rld[i].rclass))
1892 rld[i].rclass = rld[output_reload].rclass;
1894 /* Transfer all replacements from the old reload to the combined. */
1895 for (j = 0; j < n_replacements; j++)
1896 if (replacements[j].what == output_reload)
1897 replacements[j].what = i;
1899 return;
1902 /* If this insn has only one operand that is modified or written (assumed
1903 to be the first), it must be the one corresponding to this reload. It
1904 is safe to use anything that dies in this insn for that output provided
1905 that it does not occur in the output (we already know it isn't an
1906 earlyclobber. If this is an asm insn, give up. */
1908 if (INSN_CODE (this_insn) == -1)
1909 return;
1911 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1912 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1913 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1914 return;
1916 /* See if some hard register that dies in this insn and is not used in
1917 the output is the right class. Only works if the register we pick
1918 up can fully hold our output reload. */
1919 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1920 if (REG_NOTE_KIND (note) == REG_DEAD
1921 && REG_P (XEXP (note, 0))
1922 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1923 rld[output_reload].out)
1924 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1925 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1926 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1927 regno)
1928 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1929 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1930 /* Ensure that a secondary or tertiary reload for this output
1931 won't want this register. */
1932 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1933 || (!(TEST_HARD_REG_BIT
1934 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1935 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1936 || !(TEST_HARD_REG_BIT
1937 (reg_class_contents[(int) rld[secondary_out].rclass],
1938 regno)))))
1939 && !fixed_regs[regno]
1940 /* Check that a former pseudo is valid; see find_dummy_reload. */
1941 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1942 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1943 ORIGINAL_REGNO (XEXP (note, 0)))
1944 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1946 rld[output_reload].reg_rtx
1947 = gen_rtx_REG (rld[output_reload].outmode, regno);
1948 return;
1952 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1953 See if one of IN and OUT is a register that may be used;
1954 this is desirable since a spill-register won't be needed.
1955 If so, return the register rtx that proves acceptable.
1957 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1958 RCLASS is the register class required for the reload.
1960 If FOR_REAL is >= 0, it is the number of the reload,
1961 and in some cases when it can be discovered that OUT doesn't need
1962 to be computed, clear out rld[FOR_REAL].out.
1964 If FOR_REAL is -1, this should not be done, because this call
1965 is just to see if a register can be found, not to find and install it.
1967 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1968 puts an additional constraint on being able to use IN for OUT since
1969 IN must not appear elsewhere in the insn (it is assumed that IN itself
1970 is safe from the earlyclobber). */
1972 static rtx
1973 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1974 enum machine_mode inmode, enum machine_mode outmode,
1975 reg_class_t rclass, int for_real, int earlyclobber)
1977 rtx in = real_in;
1978 rtx out = real_out;
1979 int in_offset = 0;
1980 int out_offset = 0;
1981 rtx value = 0;
1983 /* If operands exceed a word, we can't use either of them
1984 unless they have the same size. */
1985 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1986 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1987 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1988 return 0;
1990 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1991 respectively refers to a hard register. */
1993 /* Find the inside of any subregs. */
1994 while (GET_CODE (out) == SUBREG)
1996 if (REG_P (SUBREG_REG (out))
1997 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1998 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1999 GET_MODE (SUBREG_REG (out)),
2000 SUBREG_BYTE (out),
2001 GET_MODE (out));
2002 out = SUBREG_REG (out);
2004 while (GET_CODE (in) == SUBREG)
2006 if (REG_P (SUBREG_REG (in))
2007 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2008 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2009 GET_MODE (SUBREG_REG (in)),
2010 SUBREG_BYTE (in),
2011 GET_MODE (in));
2012 in = SUBREG_REG (in);
2015 /* Narrow down the reg class, the same way push_reload will;
2016 otherwise we might find a dummy now, but push_reload won't. */
2018 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2019 if (preferred_class != NO_REGS)
2020 rclass = (enum reg_class) preferred_class;
2023 /* See if OUT will do. */
2024 if (REG_P (out)
2025 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2027 unsigned int regno = REGNO (out) + out_offset;
2028 unsigned int nwords = hard_regno_nregs[regno][outmode];
2029 rtx saved_rtx;
2031 /* When we consider whether the insn uses OUT,
2032 ignore references within IN. They don't prevent us
2033 from copying IN into OUT, because those refs would
2034 move into the insn that reloads IN.
2036 However, we only ignore IN in its role as this reload.
2037 If the insn uses IN elsewhere and it contains OUT,
2038 that counts. We can't be sure it's the "same" operand
2039 so it might not go through this reload. */
2040 saved_rtx = *inloc;
2041 *inloc = const0_rtx;
2043 if (regno < FIRST_PSEUDO_REGISTER
2044 && HARD_REGNO_MODE_OK (regno, outmode)
2045 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2046 PATTERN (this_insn), outloc))
2048 unsigned int i;
2050 for (i = 0; i < nwords; i++)
2051 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2052 regno + i))
2053 break;
2055 if (i == nwords)
2057 if (REG_P (real_out))
2058 value = real_out;
2059 else
2060 value = gen_rtx_REG (outmode, regno);
2064 *inloc = saved_rtx;
2067 /* Consider using IN if OUT was not acceptable
2068 or if OUT dies in this insn (like the quotient in a divmod insn).
2069 We can't use IN unless it is dies in this insn,
2070 which means we must know accurately which hard regs are live.
2071 Also, the result can't go in IN if IN is used within OUT,
2072 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2073 if (hard_regs_live_known
2074 && REG_P (in)
2075 && REGNO (in) < FIRST_PSEUDO_REGISTER
2076 && (value == 0
2077 || find_reg_note (this_insn, REG_UNUSED, real_out))
2078 && find_reg_note (this_insn, REG_DEAD, real_in)
2079 && !fixed_regs[REGNO (in)]
2080 && HARD_REGNO_MODE_OK (REGNO (in),
2081 /* The only case where out and real_out might
2082 have different modes is where real_out
2083 is a subreg, and in that case, out
2084 has a real mode. */
2085 (GET_MODE (out) != VOIDmode
2086 ? GET_MODE (out) : outmode))
2087 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2088 /* However only do this if we can be sure that this input
2089 operand doesn't correspond with an uninitialized pseudo.
2090 global can assign some hardreg to it that is the same as
2091 the one assigned to a different, also live pseudo (as it
2092 can ignore the conflict). We must never introduce writes
2093 to such hardregs, as they would clobber the other live
2094 pseudo. See PR 20973. */
2095 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2096 ORIGINAL_REGNO (in))
2097 /* Similarly, only do this if we can be sure that the death
2098 note is still valid. global can assign some hardreg to
2099 the pseudo referenced in the note and simultaneously a
2100 subword of this hardreg to a different, also live pseudo,
2101 because only another subword of the hardreg is actually
2102 used in the insn. This cannot happen if the pseudo has
2103 been assigned exactly one hardreg. See PR 33732. */
2104 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2106 unsigned int regno = REGNO (in) + in_offset;
2107 unsigned int nwords = hard_regno_nregs[regno][inmode];
2109 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2110 && ! hard_reg_set_here_p (regno, regno + nwords,
2111 PATTERN (this_insn))
2112 && (! earlyclobber
2113 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2114 PATTERN (this_insn), inloc)))
2116 unsigned int i;
2118 for (i = 0; i < nwords; i++)
2119 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2120 regno + i))
2121 break;
2123 if (i == nwords)
2125 /* If we were going to use OUT as the reload reg
2126 and changed our mind, it means OUT is a dummy that
2127 dies here. So don't bother copying value to it. */
2128 if (for_real >= 0 && value == real_out)
2129 rld[for_real].out = 0;
2130 if (REG_P (real_in))
2131 value = real_in;
2132 else
2133 value = gen_rtx_REG (inmode, regno);
2138 return value;
2141 /* This page contains subroutines used mainly for determining
2142 whether the IN or an OUT of a reload can serve as the
2143 reload register. */
2145 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2148 earlyclobber_operand_p (rtx x)
2150 int i;
2152 for (i = 0; i < n_earlyclobbers; i++)
2153 if (reload_earlyclobbers[i] == x)
2154 return 1;
2156 return 0;
2159 /* Return 1 if expression X alters a hard reg in the range
2160 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2161 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2162 X should be the body of an instruction. */
2164 static int
2165 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2167 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2169 rtx op0 = SET_DEST (x);
2171 while (GET_CODE (op0) == SUBREG)
2172 op0 = SUBREG_REG (op0);
2173 if (REG_P (op0))
2175 unsigned int r = REGNO (op0);
2177 /* See if this reg overlaps range under consideration. */
2178 if (r < end_regno
2179 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2180 return 1;
2183 else if (GET_CODE (x) == PARALLEL)
2185 int i = XVECLEN (x, 0) - 1;
2187 for (; i >= 0; i--)
2188 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2189 return 1;
2192 return 0;
2195 /* Return 1 if ADDR is a valid memory address for mode MODE
2196 in address space AS, and check that each pseudo reg has the
2197 proper kind of hard reg. */
2200 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2201 rtx addr, addr_space_t as)
2203 #ifdef GO_IF_LEGITIMATE_ADDRESS
2204 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2205 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2206 return 0;
2208 win:
2209 return 1;
2210 #else
2211 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2212 #endif
2215 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2216 if they are the same hard reg, and has special hacks for
2217 autoincrement and autodecrement.
2218 This is specifically intended for find_reloads to use
2219 in determining whether two operands match.
2220 X is the operand whose number is the lower of the two.
2222 The value is 2 if Y contains a pre-increment that matches
2223 a non-incrementing address in X. */
2225 /* ??? To be completely correct, we should arrange to pass
2226 for X the output operand and for Y the input operand.
2227 For now, we assume that the output operand has the lower number
2228 because that is natural in (SET output (... input ...)). */
2231 operands_match_p (rtx x, rtx y)
2233 int i;
2234 RTX_CODE code = GET_CODE (x);
2235 const char *fmt;
2236 int success_2;
2238 if (x == y)
2239 return 1;
2240 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2241 && (REG_P (y) || (GET_CODE (y) == SUBREG
2242 && REG_P (SUBREG_REG (y)))))
2244 int j;
2246 if (code == SUBREG)
2248 i = REGNO (SUBREG_REG (x));
2249 if (i >= FIRST_PSEUDO_REGISTER)
2250 goto slow;
2251 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2252 GET_MODE (SUBREG_REG (x)),
2253 SUBREG_BYTE (x),
2254 GET_MODE (x));
2256 else
2257 i = REGNO (x);
2259 if (GET_CODE (y) == SUBREG)
2261 j = REGNO (SUBREG_REG (y));
2262 if (j >= FIRST_PSEUDO_REGISTER)
2263 goto slow;
2264 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2265 GET_MODE (SUBREG_REG (y)),
2266 SUBREG_BYTE (y),
2267 GET_MODE (y));
2269 else
2270 j = REGNO (y);
2272 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2273 multiple hard register group of scalar integer registers, so that
2274 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2275 register. */
2276 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2277 && SCALAR_INT_MODE_P (GET_MODE (x))
2278 && i < FIRST_PSEUDO_REGISTER)
2279 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2280 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2281 && SCALAR_INT_MODE_P (GET_MODE (y))
2282 && j < FIRST_PSEUDO_REGISTER)
2283 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2285 return i == j;
2287 /* If two operands must match, because they are really a single
2288 operand of an assembler insn, then two postincrements are invalid
2289 because the assembler insn would increment only once.
2290 On the other hand, a postincrement matches ordinary indexing
2291 if the postincrement is the output operand. */
2292 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2293 return operands_match_p (XEXP (x, 0), y);
2294 /* Two preincrements are invalid
2295 because the assembler insn would increment only once.
2296 On the other hand, a preincrement matches ordinary indexing
2297 if the preincrement is the input operand.
2298 In this case, return 2, since some callers need to do special
2299 things when this happens. */
2300 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2301 || GET_CODE (y) == PRE_MODIFY)
2302 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2304 slow:
2306 /* Now we have disposed of all the cases in which different rtx codes
2307 can match. */
2308 if (code != GET_CODE (y))
2309 return 0;
2311 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2312 if (GET_MODE (x) != GET_MODE (y))
2313 return 0;
2315 /* MEMs referring to different address space are not equivalent. */
2316 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2317 return 0;
2319 switch (code)
2321 case CONST_INT:
2322 case CONST_DOUBLE:
2323 case CONST_FIXED:
2324 return 0;
2326 case LABEL_REF:
2327 return XEXP (x, 0) == XEXP (y, 0);
2328 case SYMBOL_REF:
2329 return XSTR (x, 0) == XSTR (y, 0);
2331 default:
2332 break;
2335 /* Compare the elements. If any pair of corresponding elements
2336 fail to match, return 0 for the whole things. */
2338 success_2 = 0;
2339 fmt = GET_RTX_FORMAT (code);
2340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2342 int val, j;
2343 switch (fmt[i])
2345 case 'w':
2346 if (XWINT (x, i) != XWINT (y, i))
2347 return 0;
2348 break;
2350 case 'i':
2351 if (XINT (x, i) != XINT (y, i))
2352 return 0;
2353 break;
2355 case 'e':
2356 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2357 if (val == 0)
2358 return 0;
2359 /* If any subexpression returns 2,
2360 we should return 2 if we are successful. */
2361 if (val == 2)
2362 success_2 = 1;
2363 break;
2365 case '0':
2366 break;
2368 case 'E':
2369 if (XVECLEN (x, i) != XVECLEN (y, i))
2370 return 0;
2371 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2373 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2374 if (val == 0)
2375 return 0;
2376 if (val == 2)
2377 success_2 = 1;
2379 break;
2381 /* It is believed that rtx's at this level will never
2382 contain anything but integers and other rtx's,
2383 except for within LABEL_REFs and SYMBOL_REFs. */
2384 default:
2385 gcc_unreachable ();
2388 return 1 + success_2;
2391 /* Describe the range of registers or memory referenced by X.
2392 If X is a register, set REG_FLAG and put the first register
2393 number into START and the last plus one into END.
2394 If X is a memory reference, put a base address into BASE
2395 and a range of integer offsets into START and END.
2396 If X is pushing on the stack, we can assume it causes no trouble,
2397 so we set the SAFE field. */
2399 static struct decomposition
2400 decompose (rtx x)
2402 struct decomposition val;
2403 int all_const = 0;
2405 memset (&val, 0, sizeof (val));
2407 switch (GET_CODE (x))
2409 case MEM:
2411 rtx base = NULL_RTX, offset = 0;
2412 rtx addr = XEXP (x, 0);
2414 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2415 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2417 val.base = XEXP (addr, 0);
2418 val.start = -GET_MODE_SIZE (GET_MODE (x));
2419 val.end = GET_MODE_SIZE (GET_MODE (x));
2420 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2421 return val;
2424 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2426 if (GET_CODE (XEXP (addr, 1)) == PLUS
2427 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2428 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2430 val.base = XEXP (addr, 0);
2431 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2432 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2433 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2434 return val;
2438 if (GET_CODE (addr) == CONST)
2440 addr = XEXP (addr, 0);
2441 all_const = 1;
2443 if (GET_CODE (addr) == PLUS)
2445 if (CONSTANT_P (XEXP (addr, 0)))
2447 base = XEXP (addr, 1);
2448 offset = XEXP (addr, 0);
2450 else if (CONSTANT_P (XEXP (addr, 1)))
2452 base = XEXP (addr, 0);
2453 offset = XEXP (addr, 1);
2457 if (offset == 0)
2459 base = addr;
2460 offset = const0_rtx;
2462 if (GET_CODE (offset) == CONST)
2463 offset = XEXP (offset, 0);
2464 if (GET_CODE (offset) == PLUS)
2466 if (CONST_INT_P (XEXP (offset, 0)))
2468 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2469 offset = XEXP (offset, 0);
2471 else if (CONST_INT_P (XEXP (offset, 1)))
2473 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2474 offset = XEXP (offset, 1);
2476 else
2478 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2479 offset = const0_rtx;
2482 else if (!CONST_INT_P (offset))
2484 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2485 offset = const0_rtx;
2488 if (all_const && GET_CODE (base) == PLUS)
2489 base = gen_rtx_CONST (GET_MODE (base), base);
2491 gcc_assert (CONST_INT_P (offset));
2493 val.start = INTVAL (offset);
2494 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2495 val.base = base;
2497 break;
2499 case REG:
2500 val.reg_flag = 1;
2501 val.start = true_regnum (x);
2502 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2504 /* A pseudo with no hard reg. */
2505 val.start = REGNO (x);
2506 val.end = val.start + 1;
2508 else
2509 /* A hard reg. */
2510 val.end = end_hard_regno (GET_MODE (x), val.start);
2511 break;
2513 case SUBREG:
2514 if (!REG_P (SUBREG_REG (x)))
2515 /* This could be more precise, but it's good enough. */
2516 return decompose (SUBREG_REG (x));
2517 val.reg_flag = 1;
2518 val.start = true_regnum (x);
2519 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2520 return decompose (SUBREG_REG (x));
2521 else
2522 /* A hard reg. */
2523 val.end = val.start + subreg_nregs (x);
2524 break;
2526 case SCRATCH:
2527 /* This hasn't been assigned yet, so it can't conflict yet. */
2528 val.safe = 1;
2529 break;
2531 default:
2532 gcc_assert (CONSTANT_P (x));
2533 val.safe = 1;
2534 break;
2536 return val;
2539 /* Return 1 if altering Y will not modify the value of X.
2540 Y is also described by YDATA, which should be decompose (Y). */
2542 static int
2543 immune_p (rtx x, rtx y, struct decomposition ydata)
2545 struct decomposition xdata;
2547 if (ydata.reg_flag)
2548 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2549 if (ydata.safe)
2550 return 1;
2552 gcc_assert (MEM_P (y));
2553 /* If Y is memory and X is not, Y can't affect X. */
2554 if (!MEM_P (x))
2555 return 1;
2557 xdata = decompose (x);
2559 if (! rtx_equal_p (xdata.base, ydata.base))
2561 /* If bases are distinct symbolic constants, there is no overlap. */
2562 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2563 return 1;
2564 /* Constants and stack slots never overlap. */
2565 if (CONSTANT_P (xdata.base)
2566 && (ydata.base == frame_pointer_rtx
2567 || ydata.base == hard_frame_pointer_rtx
2568 || ydata.base == stack_pointer_rtx))
2569 return 1;
2570 if (CONSTANT_P (ydata.base)
2571 && (xdata.base == frame_pointer_rtx
2572 || xdata.base == hard_frame_pointer_rtx
2573 || xdata.base == stack_pointer_rtx))
2574 return 1;
2575 /* If either base is variable, we don't know anything. */
2576 return 0;
2579 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2582 /* Similar, but calls decompose. */
2585 safe_from_earlyclobber (rtx op, rtx clobber)
2587 struct decomposition early_data;
2589 early_data = decompose (clobber);
2590 return immune_p (op, clobber, early_data);
2593 /* Main entry point of this file: search the body of INSN
2594 for values that need reloading and record them with push_reload.
2595 REPLACE nonzero means record also where the values occur
2596 so that subst_reloads can be used.
2598 IND_LEVELS says how many levels of indirection are supported by this
2599 machine; a value of zero means that a memory reference is not a valid
2600 memory address.
2602 LIVE_KNOWN says we have valid information about which hard
2603 regs are live at each point in the program; this is true when
2604 we are called from global_alloc but false when stupid register
2605 allocation has been done.
2607 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2608 which is nonnegative if the reg has been commandeered for reloading into.
2609 It is copied into STATIC_RELOAD_REG_P and referenced from there
2610 by various subroutines.
2612 Return TRUE if some operands need to be changed, because of swapping
2613 commutative operands, reg_equiv_address substitution, or whatever. */
2616 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2617 short *reload_reg_p)
2619 int insn_code_number;
2620 int i, j;
2621 int noperands;
2622 /* These start out as the constraints for the insn
2623 and they are chewed up as we consider alternatives. */
2624 const char *constraints[MAX_RECOG_OPERANDS];
2625 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2626 a register. */
2627 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2628 char pref_or_nothing[MAX_RECOG_OPERANDS];
2629 /* Nonzero for a MEM operand whose entire address needs a reload.
2630 May be -1 to indicate the entire address may or may not need a reload. */
2631 int address_reloaded[MAX_RECOG_OPERANDS];
2632 /* Nonzero for an address operand that needs to be completely reloaded.
2633 May be -1 to indicate the entire operand may or may not need a reload. */
2634 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2635 /* Value of enum reload_type to use for operand. */
2636 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2637 /* Value of enum reload_type to use within address of operand. */
2638 enum reload_type address_type[MAX_RECOG_OPERANDS];
2639 /* Save the usage of each operand. */
2640 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2641 int no_input_reloads = 0, no_output_reloads = 0;
2642 int n_alternatives;
2643 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2644 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2645 char this_alternative_win[MAX_RECOG_OPERANDS];
2646 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2647 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2648 int this_alternative_matches[MAX_RECOG_OPERANDS];
2649 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2650 int this_alternative_number;
2651 int goal_alternative_number = 0;
2652 int operand_reloadnum[MAX_RECOG_OPERANDS];
2653 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2654 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2655 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2656 char goal_alternative_win[MAX_RECOG_OPERANDS];
2657 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2658 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2659 int goal_alternative_swapped;
2660 int best;
2661 int commutative;
2662 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2663 rtx substed_operand[MAX_RECOG_OPERANDS];
2664 rtx body = PATTERN (insn);
2665 rtx set = single_set (insn);
2666 int goal_earlyclobber = 0, this_earlyclobber;
2667 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2668 int retval = 0;
2670 this_insn = insn;
2671 n_reloads = 0;
2672 n_replacements = 0;
2673 n_earlyclobbers = 0;
2674 replace_reloads = replace;
2675 hard_regs_live_known = live_known;
2676 static_reload_reg_p = reload_reg_p;
2678 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2679 neither are insns that SET cc0. Insns that use CC0 are not allowed
2680 to have any input reloads. */
2681 if (JUMP_P (insn) || CALL_P (insn))
2682 no_output_reloads = 1;
2684 #ifdef HAVE_cc0
2685 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2686 no_input_reloads = 1;
2687 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2688 no_output_reloads = 1;
2689 #endif
2691 #ifdef SECONDARY_MEMORY_NEEDED
2692 /* The eliminated forms of any secondary memory locations are per-insn, so
2693 clear them out here. */
2695 if (secondary_memlocs_elim_used)
2697 memset (secondary_memlocs_elim, 0,
2698 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2699 secondary_memlocs_elim_used = 0;
2701 #endif
2703 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2704 is cheap to move between them. If it is not, there may not be an insn
2705 to do the copy, so we may need a reload. */
2706 if (GET_CODE (body) == SET
2707 && REG_P (SET_DEST (body))
2708 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2709 && REG_P (SET_SRC (body))
2710 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2711 && register_move_cost (GET_MODE (SET_SRC (body)),
2712 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2713 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2714 return 0;
2716 extract_insn (insn);
2718 noperands = reload_n_operands = recog_data.n_operands;
2719 n_alternatives = recog_data.n_alternatives;
2721 /* Just return "no reloads" if insn has no operands with constraints. */
2722 if (noperands == 0 || n_alternatives == 0)
2723 return 0;
2725 insn_code_number = INSN_CODE (insn);
2726 this_insn_is_asm = insn_code_number < 0;
2728 memcpy (operand_mode, recog_data.operand_mode,
2729 noperands * sizeof (enum machine_mode));
2730 memcpy (constraints, recog_data.constraints,
2731 noperands * sizeof (const char *));
2733 commutative = -1;
2735 /* If we will need to know, later, whether some pair of operands
2736 are the same, we must compare them now and save the result.
2737 Reloading the base and index registers will clobber them
2738 and afterward they will fail to match. */
2740 for (i = 0; i < noperands; i++)
2742 const char *p;
2743 int c;
2744 char *end;
2746 substed_operand[i] = recog_data.operand[i];
2747 p = constraints[i];
2749 modified[i] = RELOAD_READ;
2751 /* Scan this operand's constraint to see if it is an output operand,
2752 an in-out operand, is commutative, or should match another. */
2754 while ((c = *p))
2756 p += CONSTRAINT_LEN (c, p);
2757 switch (c)
2759 case '=':
2760 modified[i] = RELOAD_WRITE;
2761 break;
2762 case '+':
2763 modified[i] = RELOAD_READ_WRITE;
2764 break;
2765 case '%':
2767 /* The last operand should not be marked commutative. */
2768 gcc_assert (i != noperands - 1);
2770 /* We currently only support one commutative pair of
2771 operands. Some existing asm code currently uses more
2772 than one pair. Previously, that would usually work,
2773 but sometimes it would crash the compiler. We
2774 continue supporting that case as well as we can by
2775 silently ignoring all but the first pair. In the
2776 future we may handle it correctly. */
2777 if (commutative < 0)
2778 commutative = i;
2779 else
2780 gcc_assert (this_insn_is_asm);
2782 break;
2783 /* Use of ISDIGIT is tempting here, but it may get expensive because
2784 of locale support we don't want. */
2785 case '0': case '1': case '2': case '3': case '4':
2786 case '5': case '6': case '7': case '8': case '9':
2788 c = strtoul (p - 1, &end, 10);
2789 p = end;
2791 operands_match[c][i]
2792 = operands_match_p (recog_data.operand[c],
2793 recog_data.operand[i]);
2795 /* An operand may not match itself. */
2796 gcc_assert (c != i);
2798 /* If C can be commuted with C+1, and C might need to match I,
2799 then C+1 might also need to match I. */
2800 if (commutative >= 0)
2802 if (c == commutative || c == commutative + 1)
2804 int other = c + (c == commutative ? 1 : -1);
2805 operands_match[other][i]
2806 = operands_match_p (recog_data.operand[other],
2807 recog_data.operand[i]);
2809 if (i == commutative || i == commutative + 1)
2811 int other = i + (i == commutative ? 1 : -1);
2812 operands_match[c][other]
2813 = operands_match_p (recog_data.operand[c],
2814 recog_data.operand[other]);
2816 /* Note that C is supposed to be less than I.
2817 No need to consider altering both C and I because in
2818 that case we would alter one into the other. */
2825 /* Examine each operand that is a memory reference or memory address
2826 and reload parts of the addresses into index registers.
2827 Also here any references to pseudo regs that didn't get hard regs
2828 but are equivalent to constants get replaced in the insn itself
2829 with those constants. Nobody will ever see them again.
2831 Finally, set up the preferred classes of each operand. */
2833 for (i = 0; i < noperands; i++)
2835 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2837 address_reloaded[i] = 0;
2838 address_operand_reloaded[i] = 0;
2839 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2840 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2841 : RELOAD_OTHER);
2842 address_type[i]
2843 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2844 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2845 : RELOAD_OTHER);
2847 if (*constraints[i] == 0)
2848 /* Ignore things like match_operator operands. */
2850 else if (constraints[i][0] == 'p'
2851 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2853 address_operand_reloaded[i]
2854 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2855 recog_data.operand[i],
2856 recog_data.operand_loc[i],
2857 i, operand_type[i], ind_levels, insn);
2859 /* If we now have a simple operand where we used to have a
2860 PLUS or MULT, re-recognize and try again. */
2861 if ((OBJECT_P (*recog_data.operand_loc[i])
2862 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2863 && (GET_CODE (recog_data.operand[i]) == MULT
2864 || GET_CODE (recog_data.operand[i]) == PLUS))
2866 INSN_CODE (insn) = -1;
2867 retval = find_reloads (insn, replace, ind_levels, live_known,
2868 reload_reg_p);
2869 return retval;
2872 recog_data.operand[i] = *recog_data.operand_loc[i];
2873 substed_operand[i] = recog_data.operand[i];
2875 /* Address operands are reloaded in their existing mode,
2876 no matter what is specified in the machine description. */
2877 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2879 /* If the address is a single CONST_INT pick address mode
2880 instead otherwise we will later not know in which mode
2881 the reload should be performed. */
2882 if (operand_mode[i] == VOIDmode)
2883 operand_mode[i] = Pmode;
2886 else if (code == MEM)
2888 address_reloaded[i]
2889 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2890 recog_data.operand_loc[i],
2891 XEXP (recog_data.operand[i], 0),
2892 &XEXP (recog_data.operand[i], 0),
2893 i, address_type[i], ind_levels, insn);
2894 recog_data.operand[i] = *recog_data.operand_loc[i];
2895 substed_operand[i] = recog_data.operand[i];
2897 else if (code == SUBREG)
2899 rtx reg = SUBREG_REG (recog_data.operand[i]);
2900 rtx op
2901 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2902 ind_levels,
2903 set != 0
2904 && &SET_DEST (set) == recog_data.operand_loc[i],
2905 insn,
2906 &address_reloaded[i]);
2908 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2909 that didn't get a hard register, emit a USE with a REG_EQUAL
2910 note in front so that we might inherit a previous, possibly
2911 wider reload. */
2913 if (replace
2914 && MEM_P (op)
2915 && REG_P (reg)
2916 && (GET_MODE_SIZE (GET_MODE (reg))
2917 >= GET_MODE_SIZE (GET_MODE (op)))
2918 && reg_equiv_constant (REGNO (reg)) == 0)
2919 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2920 insn),
2921 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2923 substed_operand[i] = recog_data.operand[i] = op;
2925 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2926 /* We can get a PLUS as an "operand" as a result of register
2927 elimination. See eliminate_regs and gen_reload. We handle
2928 a unary operator by reloading the operand. */
2929 substed_operand[i] = recog_data.operand[i]
2930 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2931 ind_levels, 0, insn,
2932 &address_reloaded[i]);
2933 else if (code == REG)
2935 /* This is equivalent to calling find_reloads_toplev.
2936 The code is duplicated for speed.
2937 When we find a pseudo always equivalent to a constant,
2938 we replace it by the constant. We must be sure, however,
2939 that we don't try to replace it in the insn in which it
2940 is being set. */
2941 int regno = REGNO (recog_data.operand[i]);
2942 if (reg_equiv_constant (regno) != 0
2943 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2945 /* Record the existing mode so that the check if constants are
2946 allowed will work when operand_mode isn't specified. */
2948 if (operand_mode[i] == VOIDmode)
2949 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2951 substed_operand[i] = recog_data.operand[i]
2952 = reg_equiv_constant (regno);
2954 if (reg_equiv_memory_loc (regno) != 0
2955 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2956 /* We need not give a valid is_set_dest argument since the case
2957 of a constant equivalence was checked above. */
2958 substed_operand[i] = recog_data.operand[i]
2959 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2960 ind_levels, 0, insn,
2961 &address_reloaded[i]);
2963 /* If the operand is still a register (we didn't replace it with an
2964 equivalent), get the preferred class to reload it into. */
2965 code = GET_CODE (recog_data.operand[i]);
2966 preferred_class[i]
2967 = ((code == REG && REGNO (recog_data.operand[i])
2968 >= FIRST_PSEUDO_REGISTER)
2969 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2970 : NO_REGS);
2971 pref_or_nothing[i]
2972 = (code == REG
2973 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2974 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2977 /* If this is simply a copy from operand 1 to operand 0, merge the
2978 preferred classes for the operands. */
2979 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2980 && recog_data.operand[1] == SET_SRC (set))
2982 preferred_class[0] = preferred_class[1]
2983 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2984 pref_or_nothing[0] |= pref_or_nothing[1];
2985 pref_or_nothing[1] |= pref_or_nothing[0];
2988 /* Now see what we need for pseudo-regs that didn't get hard regs
2989 or got the wrong kind of hard reg. For this, we must consider
2990 all the operands together against the register constraints. */
2992 best = MAX_RECOG_OPERANDS * 2 + 600;
2994 goal_alternative_swapped = 0;
2996 /* The constraints are made of several alternatives.
2997 Each operand's constraint looks like foo,bar,... with commas
2998 separating the alternatives. The first alternatives for all
2999 operands go together, the second alternatives go together, etc.
3001 First loop over alternatives. */
3003 for (this_alternative_number = 0;
3004 this_alternative_number < n_alternatives;
3005 this_alternative_number++)
3007 int swapped;
3009 if (!recog_data.alternative_enabled_p[this_alternative_number])
3011 int i;
3013 for (i = 0; i < recog_data.n_operands; i++)
3014 constraints[i] = skip_alternative (constraints[i]);
3016 continue;
3019 /* If insn is commutative (it's safe to exchange a certain pair
3020 of operands) then we need to try each alternative twice, the
3021 second time matching those two operands as if we had
3022 exchanged them. To do this, really exchange them in
3023 operands. */
3024 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3026 /* Loop over operands for one constraint alternative. */
3027 /* LOSERS counts those that don't fit this alternative
3028 and would require loading. */
3029 int losers = 0;
3030 /* BAD is set to 1 if it some operand can't fit this alternative
3031 even after reloading. */
3032 int bad = 0;
3033 /* REJECT is a count of how undesirable this alternative says it is
3034 if any reloading is required. If the alternative matches exactly
3035 then REJECT is ignored, but otherwise it gets this much
3036 counted against it in addition to the reloading needed. Each
3037 ? counts three times here since we want the disparaging caused by
3038 a bad register class to only count 1/3 as much. */
3039 int reject = 0;
3041 if (swapped)
3043 enum reg_class tclass;
3044 int t;
3046 recog_data.operand[commutative] = substed_operand[commutative + 1];
3047 recog_data.operand[commutative + 1] = substed_operand[commutative];
3048 /* Swap the duplicates too. */
3049 for (i = 0; i < recog_data.n_dups; i++)
3050 if (recog_data.dup_num[i] == commutative
3051 || recog_data.dup_num[i] == commutative + 1)
3052 *recog_data.dup_loc[i]
3053 = recog_data.operand[(int) recog_data.dup_num[i]];
3055 tclass = preferred_class[commutative];
3056 preferred_class[commutative] = preferred_class[commutative + 1];
3057 preferred_class[commutative + 1] = tclass;
3059 t = pref_or_nothing[commutative];
3060 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3061 pref_or_nothing[commutative + 1] = t;
3063 t = address_reloaded[commutative];
3064 address_reloaded[commutative] = address_reloaded[commutative + 1];
3065 address_reloaded[commutative + 1] = t;
3068 this_earlyclobber = 0;
3070 for (i = 0; i < noperands; i++)
3072 const char *p = constraints[i];
3073 char *end;
3074 int len;
3075 int win = 0;
3076 int did_match = 0;
3077 /* 0 => this operand can be reloaded somehow for this alternative. */
3078 int badop = 1;
3079 /* 0 => this operand can be reloaded if the alternative allows regs. */
3080 int winreg = 0;
3081 int c;
3082 int m;
3083 rtx operand = recog_data.operand[i];
3084 int offset = 0;
3085 /* Nonzero means this is a MEM that must be reloaded into a reg
3086 regardless of what the constraint says. */
3087 int force_reload = 0;
3088 int offmemok = 0;
3089 /* Nonzero if a constant forced into memory would be OK for this
3090 operand. */
3091 int constmemok = 0;
3092 int earlyclobber = 0;
3094 /* If the predicate accepts a unary operator, it means that
3095 we need to reload the operand, but do not do this for
3096 match_operator and friends. */
3097 if (UNARY_P (operand) && *p != 0)
3098 operand = XEXP (operand, 0);
3100 /* If the operand is a SUBREG, extract
3101 the REG or MEM (or maybe even a constant) within.
3102 (Constants can occur as a result of reg_equiv_constant.) */
3104 while (GET_CODE (operand) == SUBREG)
3106 /* Offset only matters when operand is a REG and
3107 it is a hard reg. This is because it is passed
3108 to reg_fits_class_p if it is a REG and all pseudos
3109 return 0 from that function. */
3110 if (REG_P (SUBREG_REG (operand))
3111 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3113 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3114 GET_MODE (SUBREG_REG (operand)),
3115 SUBREG_BYTE (operand),
3116 GET_MODE (operand)) < 0)
3117 force_reload = 1;
3118 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3119 GET_MODE (SUBREG_REG (operand)),
3120 SUBREG_BYTE (operand),
3121 GET_MODE (operand));
3123 operand = SUBREG_REG (operand);
3124 /* Force reload if this is a constant or PLUS or if there may
3125 be a problem accessing OPERAND in the outer mode. */
3126 if (CONSTANT_P (operand)
3127 || GET_CODE (operand) == PLUS
3128 /* We must force a reload of paradoxical SUBREGs
3129 of a MEM because the alignment of the inner value
3130 may not be enough to do the outer reference. On
3131 big-endian machines, it may also reference outside
3132 the object.
3134 On machines that extend byte operations and we have a
3135 SUBREG where both the inner and outer modes are no wider
3136 than a word and the inner mode is narrower, is integral,
3137 and gets extended when loaded from memory, combine.c has
3138 made assumptions about the behavior of the machine in such
3139 register access. If the data is, in fact, in memory we
3140 must always load using the size assumed to be in the
3141 register and let the insn do the different-sized
3142 accesses.
3144 This is doubly true if WORD_REGISTER_OPERATIONS. In
3145 this case eliminate_regs has left non-paradoxical
3146 subregs for push_reload to see. Make sure it does
3147 by forcing the reload.
3149 ??? When is it right at this stage to have a subreg
3150 of a mem that is _not_ to be handled specially? IMO
3151 those should have been reduced to just a mem. */
3152 || ((MEM_P (operand)
3153 || (REG_P (operand)
3154 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3155 #ifndef WORD_REGISTER_OPERATIONS
3156 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3157 < BIGGEST_ALIGNMENT)
3158 && (GET_MODE_SIZE (operand_mode[i])
3159 > GET_MODE_SIZE (GET_MODE (operand))))
3160 || BYTES_BIG_ENDIAN
3161 #ifdef LOAD_EXTEND_OP
3162 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3163 && (GET_MODE_SIZE (GET_MODE (operand))
3164 <= UNITS_PER_WORD)
3165 && (GET_MODE_SIZE (operand_mode[i])
3166 > GET_MODE_SIZE (GET_MODE (operand)))
3167 && INTEGRAL_MODE_P (GET_MODE (operand))
3168 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3169 #endif
3171 #endif
3174 force_reload = 1;
3177 this_alternative[i] = NO_REGS;
3178 this_alternative_win[i] = 0;
3179 this_alternative_match_win[i] = 0;
3180 this_alternative_offmemok[i] = 0;
3181 this_alternative_earlyclobber[i] = 0;
3182 this_alternative_matches[i] = -1;
3184 /* An empty constraint or empty alternative
3185 allows anything which matched the pattern. */
3186 if (*p == 0 || *p == ',')
3187 win = 1, badop = 0;
3189 /* Scan this alternative's specs for this operand;
3190 set WIN if the operand fits any letter in this alternative.
3191 Otherwise, clear BADOP if this operand could
3192 fit some letter after reloads,
3193 or set WINREG if this operand could fit after reloads
3194 provided the constraint allows some registers. */
3197 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3199 case '\0':
3200 len = 0;
3201 break;
3202 case ',':
3203 c = '\0';
3204 break;
3206 case '=': case '+': case '*':
3207 break;
3209 case '%':
3210 /* We only support one commutative marker, the first
3211 one. We already set commutative above. */
3212 break;
3214 case '?':
3215 reject += 6;
3216 break;
3218 case '!':
3219 reject = 600;
3220 break;
3222 case '#':
3223 /* Ignore rest of this alternative as far as
3224 reloading is concerned. */
3226 p++;
3227 while (*p && *p != ',');
3228 len = 0;
3229 break;
3231 case '0': case '1': case '2': case '3': case '4':
3232 case '5': case '6': case '7': case '8': case '9':
3233 m = strtoul (p, &end, 10);
3234 p = end;
3235 len = 0;
3237 this_alternative_matches[i] = m;
3238 /* We are supposed to match a previous operand.
3239 If we do, we win if that one did.
3240 If we do not, count both of the operands as losers.
3241 (This is too conservative, since most of the time
3242 only a single reload insn will be needed to make
3243 the two operands win. As a result, this alternative
3244 may be rejected when it is actually desirable.) */
3245 if ((swapped && (m != commutative || i != commutative + 1))
3246 /* If we are matching as if two operands were swapped,
3247 also pretend that operands_match had been computed
3248 with swapped.
3249 But if I is the second of those and C is the first,
3250 don't exchange them, because operands_match is valid
3251 only on one side of its diagonal. */
3252 ? (operands_match
3253 [(m == commutative || m == commutative + 1)
3254 ? 2 * commutative + 1 - m : m]
3255 [(i == commutative || i == commutative + 1)
3256 ? 2 * commutative + 1 - i : i])
3257 : operands_match[m][i])
3259 /* If we are matching a non-offsettable address where an
3260 offsettable address was expected, then we must reject
3261 this combination, because we can't reload it. */
3262 if (this_alternative_offmemok[m]
3263 && MEM_P (recog_data.operand[m])
3264 && this_alternative[m] == NO_REGS
3265 && ! this_alternative_win[m])
3266 bad = 1;
3268 did_match = this_alternative_win[m];
3270 else
3272 /* Operands don't match. */
3273 rtx value;
3274 int loc1, loc2;
3275 /* Retroactively mark the operand we had to match
3276 as a loser, if it wasn't already. */
3277 if (this_alternative_win[m])
3278 losers++;
3279 this_alternative_win[m] = 0;
3280 if (this_alternative[m] == NO_REGS)
3281 bad = 1;
3282 /* But count the pair only once in the total badness of
3283 this alternative, if the pair can be a dummy reload.
3284 The pointers in operand_loc are not swapped; swap
3285 them by hand if necessary. */
3286 if (swapped && i == commutative)
3287 loc1 = commutative + 1;
3288 else if (swapped && i == commutative + 1)
3289 loc1 = commutative;
3290 else
3291 loc1 = i;
3292 if (swapped && m == commutative)
3293 loc2 = commutative + 1;
3294 else if (swapped && m == commutative + 1)
3295 loc2 = commutative;
3296 else
3297 loc2 = m;
3298 value
3299 = find_dummy_reload (recog_data.operand[i],
3300 recog_data.operand[m],
3301 recog_data.operand_loc[loc1],
3302 recog_data.operand_loc[loc2],
3303 operand_mode[i], operand_mode[m],
3304 this_alternative[m], -1,
3305 this_alternative_earlyclobber[m]);
3307 if (value != 0)
3308 losers--;
3310 /* This can be fixed with reloads if the operand
3311 we are supposed to match can be fixed with reloads. */
3312 badop = 0;
3313 this_alternative[i] = this_alternative[m];
3315 /* If we have to reload this operand and some previous
3316 operand also had to match the same thing as this
3317 operand, we don't know how to do that. So reject this
3318 alternative. */
3319 if (! did_match || force_reload)
3320 for (j = 0; j < i; j++)
3321 if (this_alternative_matches[j]
3322 == this_alternative_matches[i])
3323 badop = 1;
3324 break;
3326 case 'p':
3327 /* All necessary reloads for an address_operand
3328 were handled in find_reloads_address. */
3329 this_alternative[i]
3330 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3331 ADDRESS, SCRATCH);
3332 win = 1;
3333 badop = 0;
3334 break;
3336 case TARGET_MEM_CONSTRAINT:
3337 if (force_reload)
3338 break;
3339 if (MEM_P (operand)
3340 || (REG_P (operand)
3341 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3342 && reg_renumber[REGNO (operand)] < 0))
3343 win = 1;
3344 if (CONST_POOL_OK_P (operand_mode[i], operand))
3345 badop = 0;
3346 constmemok = 1;
3347 break;
3349 case '<':
3350 if (MEM_P (operand)
3351 && ! address_reloaded[i]
3352 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3353 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3354 win = 1;
3355 break;
3357 case '>':
3358 if (MEM_P (operand)
3359 && ! address_reloaded[i]
3360 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3361 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3362 win = 1;
3363 break;
3365 /* Memory operand whose address is not offsettable. */
3366 case 'V':
3367 if (force_reload)
3368 break;
3369 if (MEM_P (operand)
3370 && ! (ind_levels ? offsettable_memref_p (operand)
3371 : offsettable_nonstrict_memref_p (operand))
3372 /* Certain mem addresses will become offsettable
3373 after they themselves are reloaded. This is important;
3374 we don't want our own handling of unoffsettables
3375 to override the handling of reg_equiv_address. */
3376 && !(REG_P (XEXP (operand, 0))
3377 && (ind_levels == 0
3378 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3379 win = 1;
3380 break;
3382 /* Memory operand whose address is offsettable. */
3383 case 'o':
3384 if (force_reload)
3385 break;
3386 if ((MEM_P (operand)
3387 /* If IND_LEVELS, find_reloads_address won't reload a
3388 pseudo that didn't get a hard reg, so we have to
3389 reject that case. */
3390 && ((ind_levels ? offsettable_memref_p (operand)
3391 : offsettable_nonstrict_memref_p (operand))
3392 /* A reloaded address is offsettable because it is now
3393 just a simple register indirect. */
3394 || address_reloaded[i] == 1))
3395 || (REG_P (operand)
3396 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3397 && reg_renumber[REGNO (operand)] < 0
3398 /* If reg_equiv_address is nonzero, we will be
3399 loading it into a register; hence it will be
3400 offsettable, but we cannot say that reg_equiv_mem
3401 is offsettable without checking. */
3402 && ((reg_equiv_mem (REGNO (operand)) != 0
3403 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3404 || (reg_equiv_address (REGNO (operand)) != 0))))
3405 win = 1;
3406 if (CONST_POOL_OK_P (operand_mode[i], operand)
3407 || MEM_P (operand))
3408 badop = 0;
3409 constmemok = 1;
3410 offmemok = 1;
3411 break;
3413 case '&':
3414 /* Output operand that is stored before the need for the
3415 input operands (and their index registers) is over. */
3416 earlyclobber = 1, this_earlyclobber = 1;
3417 break;
3419 case 'E':
3420 case 'F':
3421 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3422 || (GET_CODE (operand) == CONST_VECTOR
3423 && (GET_MODE_CLASS (GET_MODE (operand))
3424 == MODE_VECTOR_FLOAT)))
3425 win = 1;
3426 break;
3428 case 'G':
3429 case 'H':
3430 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3431 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3432 win = 1;
3433 break;
3435 case 's':
3436 if (CONST_INT_P (operand) || CONST_DOUBLE_AS_INT_P (operand))
3437 break;
3438 case 'i':
3439 if (CONSTANT_P (operand)
3440 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3441 win = 1;
3442 break;
3444 case 'n':
3445 if (CONST_INT_P (operand) || CONST_DOUBLE_AS_INT_P (operand))
3446 win = 1;
3447 break;
3449 case 'I':
3450 case 'J':
3451 case 'K':
3452 case 'L':
3453 case 'M':
3454 case 'N':
3455 case 'O':
3456 case 'P':
3457 if (CONST_INT_P (operand)
3458 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3459 win = 1;
3460 break;
3462 case 'X':
3463 force_reload = 0;
3464 win = 1;
3465 break;
3467 case 'g':
3468 if (! force_reload
3469 /* A PLUS is never a valid operand, but reload can make
3470 it from a register when eliminating registers. */
3471 && GET_CODE (operand) != PLUS
3472 /* A SCRATCH is not a valid operand. */
3473 && GET_CODE (operand) != SCRATCH
3474 && (! CONSTANT_P (operand)
3475 || ! flag_pic
3476 || LEGITIMATE_PIC_OPERAND_P (operand))
3477 && (GENERAL_REGS == ALL_REGS
3478 || !REG_P (operand)
3479 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3480 && reg_renumber[REGNO (operand)] < 0)))
3481 win = 1;
3482 /* Drop through into 'r' case. */
3484 case 'r':
3485 this_alternative[i]
3486 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3487 goto reg;
3489 default:
3490 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3492 #ifdef EXTRA_CONSTRAINT_STR
3493 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3495 if (force_reload)
3496 break;
3497 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3498 win = 1;
3499 /* If the address was already reloaded,
3500 we win as well. */
3501 else if (MEM_P (operand)
3502 && address_reloaded[i] == 1)
3503 win = 1;
3504 /* Likewise if the address will be reloaded because
3505 reg_equiv_address is nonzero. For reg_equiv_mem
3506 we have to check. */
3507 else if (REG_P (operand)
3508 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3509 && reg_renumber[REGNO (operand)] < 0
3510 && ((reg_equiv_mem (REGNO (operand)) != 0
3511 && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3512 || (reg_equiv_address (REGNO (operand)) != 0)))
3513 win = 1;
3515 /* If we didn't already win, we can reload
3516 constants via force_const_mem, and other
3517 MEMs by reloading the address like for 'o'. */
3518 if (CONST_POOL_OK_P (operand_mode[i], operand)
3519 || MEM_P (operand))
3520 badop = 0;
3521 constmemok = 1;
3522 offmemok = 1;
3523 break;
3525 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3527 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3528 win = 1;
3530 /* If we didn't already win, we can reload
3531 the address into a base register. */
3532 this_alternative[i]
3533 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3534 ADDRESS, SCRATCH);
3535 badop = 0;
3536 break;
3539 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3540 win = 1;
3541 #endif
3542 break;
3545 this_alternative[i]
3546 = (reg_class_subunion
3547 [this_alternative[i]]
3548 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3549 reg:
3550 if (GET_MODE (operand) == BLKmode)
3551 break;
3552 winreg = 1;
3553 if (REG_P (operand)
3554 && reg_fits_class_p (operand, this_alternative[i],
3555 offset, GET_MODE (recog_data.operand[i])))
3556 win = 1;
3557 break;
3559 while ((p += len), c);
3561 if (swapped == (commutative >= 0 ? 1 : 0))
3562 constraints[i] = p;
3564 /* If this operand could be handled with a reg,
3565 and some reg is allowed, then this operand can be handled. */
3566 if (winreg && this_alternative[i] != NO_REGS
3567 && (win || !class_only_fixed_regs[this_alternative[i]]))
3568 badop = 0;
3570 /* Record which operands fit this alternative. */
3571 this_alternative_earlyclobber[i] = earlyclobber;
3572 if (win && ! force_reload)
3573 this_alternative_win[i] = 1;
3574 else if (did_match && ! force_reload)
3575 this_alternative_match_win[i] = 1;
3576 else
3578 int const_to_mem = 0;
3580 this_alternative_offmemok[i] = offmemok;
3581 losers++;
3582 if (badop)
3583 bad = 1;
3584 /* Alternative loses if it has no regs for a reg operand. */
3585 if (REG_P (operand)
3586 && this_alternative[i] == NO_REGS
3587 && this_alternative_matches[i] < 0)
3588 bad = 1;
3590 /* If this is a constant that is reloaded into the desired
3591 class by copying it to memory first, count that as another
3592 reload. This is consistent with other code and is
3593 required to avoid choosing another alternative when
3594 the constant is moved into memory by this function on
3595 an early reload pass. Note that the test here is
3596 precisely the same as in the code below that calls
3597 force_const_mem. */
3598 if (CONST_POOL_OK_P (operand_mode[i], operand)
3599 && ((targetm.preferred_reload_class (operand,
3600 this_alternative[i])
3601 == NO_REGS)
3602 || no_input_reloads))
3604 const_to_mem = 1;
3605 if (this_alternative[i] != NO_REGS)
3606 losers++;
3609 /* Alternative loses if it requires a type of reload not
3610 permitted for this insn. We can always reload SCRATCH
3611 and objects with a REG_UNUSED note. */
3612 if (GET_CODE (operand) != SCRATCH
3613 && modified[i] != RELOAD_READ && no_output_reloads
3614 && ! find_reg_note (insn, REG_UNUSED, operand))
3615 bad = 1;
3616 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3617 && ! const_to_mem)
3618 bad = 1;
3620 /* If we can't reload this value at all, reject this
3621 alternative. Note that we could also lose due to
3622 LIMIT_RELOAD_CLASS, but we don't check that
3623 here. */
3625 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3627 if (targetm.preferred_reload_class (operand,
3628 this_alternative[i])
3629 == NO_REGS)
3630 reject = 600;
3632 if (operand_type[i] == RELOAD_FOR_OUTPUT
3633 && (targetm.preferred_output_reload_class (operand,
3634 this_alternative[i])
3635 == NO_REGS))
3636 reject = 600;
3639 /* We prefer to reload pseudos over reloading other things,
3640 since such reloads may be able to be eliminated later.
3641 If we are reloading a SCRATCH, we won't be generating any
3642 insns, just using a register, so it is also preferred.
3643 So bump REJECT in other cases. Don't do this in the
3644 case where we are forcing a constant into memory and
3645 it will then win since we don't want to have a different
3646 alternative match then. */
3647 if (! (REG_P (operand)
3648 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3649 && GET_CODE (operand) != SCRATCH
3650 && ! (const_to_mem && constmemok))
3651 reject += 2;
3653 /* Input reloads can be inherited more often than output
3654 reloads can be removed, so penalize output reloads. */
3655 if (operand_type[i] != RELOAD_FOR_INPUT
3656 && GET_CODE (operand) != SCRATCH)
3657 reject++;
3660 /* If this operand is a pseudo register that didn't get
3661 a hard reg and this alternative accepts some
3662 register, see if the class that we want is a subset
3663 of the preferred class for this register. If not,
3664 but it intersects that class, use the preferred class
3665 instead. If it does not intersect the preferred
3666 class, show that usage of this alternative should be
3667 discouraged; it will be discouraged more still if the
3668 register is `preferred or nothing'. We do this
3669 because it increases the chance of reusing our spill
3670 register in a later insn and avoiding a pair of
3671 memory stores and loads.
3673 Don't bother with this if this alternative will
3674 accept this operand.
3676 Don't do this for a multiword operand, since it is
3677 only a small win and has the risk of requiring more
3678 spill registers, which could cause a large loss.
3680 Don't do this if the preferred class has only one
3681 register because we might otherwise exhaust the
3682 class. */
3684 if (! win && ! did_match
3685 && this_alternative[i] != NO_REGS
3686 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3687 && reg_class_size [(int) preferred_class[i]] > 0
3688 && ! small_register_class_p (preferred_class[i]))
3690 if (! reg_class_subset_p (this_alternative[i],
3691 preferred_class[i]))
3693 /* Since we don't have a way of forming the intersection,
3694 we just do something special if the preferred class
3695 is a subset of the class we have; that's the most
3696 common case anyway. */
3697 if (reg_class_subset_p (preferred_class[i],
3698 this_alternative[i]))
3699 this_alternative[i] = preferred_class[i];
3700 else
3701 reject += (2 + 2 * pref_or_nothing[i]);
3706 /* Now see if any output operands that are marked "earlyclobber"
3707 in this alternative conflict with any input operands
3708 or any memory addresses. */
3710 for (i = 0; i < noperands; i++)
3711 if (this_alternative_earlyclobber[i]
3712 && (this_alternative_win[i] || this_alternative_match_win[i]))
3714 struct decomposition early_data;
3716 early_data = decompose (recog_data.operand[i]);
3718 gcc_assert (modified[i] != RELOAD_READ);
3720 if (this_alternative[i] == NO_REGS)
3722 this_alternative_earlyclobber[i] = 0;
3723 gcc_assert (this_insn_is_asm);
3724 error_for_asm (this_insn,
3725 "%<&%> constraint used with no register class");
3728 for (j = 0; j < noperands; j++)
3729 /* Is this an input operand or a memory ref? */
3730 if ((MEM_P (recog_data.operand[j])
3731 || modified[j] != RELOAD_WRITE)
3732 && j != i
3733 /* Ignore things like match_operator operands. */
3734 && !recog_data.is_operator[j]
3735 /* Don't count an input operand that is constrained to match
3736 the early clobber operand. */
3737 && ! (this_alternative_matches[j] == i
3738 && rtx_equal_p (recog_data.operand[i],
3739 recog_data.operand[j]))
3740 /* Is it altered by storing the earlyclobber operand? */
3741 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3742 early_data))
3744 /* If the output is in a non-empty few-regs class,
3745 it's costly to reload it, so reload the input instead. */
3746 if (small_register_class_p (this_alternative[i])
3747 && (REG_P (recog_data.operand[j])
3748 || GET_CODE (recog_data.operand[j]) == SUBREG))
3750 losers++;
3751 this_alternative_win[j] = 0;
3752 this_alternative_match_win[j] = 0;
3754 else
3755 break;
3757 /* If an earlyclobber operand conflicts with something,
3758 it must be reloaded, so request this and count the cost. */
3759 if (j != noperands)
3761 losers++;
3762 this_alternative_win[i] = 0;
3763 this_alternative_match_win[j] = 0;
3764 for (j = 0; j < noperands; j++)
3765 if (this_alternative_matches[j] == i
3766 && this_alternative_match_win[j])
3768 this_alternative_win[j] = 0;
3769 this_alternative_match_win[j] = 0;
3770 losers++;
3775 /* If one alternative accepts all the operands, no reload required,
3776 choose that alternative; don't consider the remaining ones. */
3777 if (losers == 0)
3779 /* Unswap these so that they are never swapped at `finish'. */
3780 if (swapped)
3782 recog_data.operand[commutative] = substed_operand[commutative];
3783 recog_data.operand[commutative + 1]
3784 = substed_operand[commutative + 1];
3786 for (i = 0; i < noperands; i++)
3788 goal_alternative_win[i] = this_alternative_win[i];
3789 goal_alternative_match_win[i] = this_alternative_match_win[i];
3790 goal_alternative[i] = this_alternative[i];
3791 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3792 goal_alternative_matches[i] = this_alternative_matches[i];
3793 goal_alternative_earlyclobber[i]
3794 = this_alternative_earlyclobber[i];
3796 goal_alternative_number = this_alternative_number;
3797 goal_alternative_swapped = swapped;
3798 goal_earlyclobber = this_earlyclobber;
3799 goto finish;
3802 /* REJECT, set by the ! and ? constraint characters and when a register
3803 would be reloaded into a non-preferred class, discourages the use of
3804 this alternative for a reload goal. REJECT is incremented by six
3805 for each ? and two for each non-preferred class. */
3806 losers = losers * 6 + reject;
3808 /* If this alternative can be made to work by reloading,
3809 and it needs less reloading than the others checked so far,
3810 record it as the chosen goal for reloading. */
3811 if (! bad)
3813 if (best > losers)
3815 for (i = 0; i < noperands; i++)
3817 goal_alternative[i] = this_alternative[i];
3818 goal_alternative_win[i] = this_alternative_win[i];
3819 goal_alternative_match_win[i]
3820 = this_alternative_match_win[i];
3821 goal_alternative_offmemok[i]
3822 = this_alternative_offmemok[i];
3823 goal_alternative_matches[i] = this_alternative_matches[i];
3824 goal_alternative_earlyclobber[i]
3825 = this_alternative_earlyclobber[i];
3827 goal_alternative_swapped = swapped;
3828 best = losers;
3829 goal_alternative_number = this_alternative_number;
3830 goal_earlyclobber = this_earlyclobber;
3834 if (swapped)
3836 enum reg_class tclass;
3837 int t;
3839 /* If the commutative operands have been swapped, swap
3840 them back in order to check the next alternative. */
3841 recog_data.operand[commutative] = substed_operand[commutative];
3842 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3843 /* Unswap the duplicates too. */
3844 for (i = 0; i < recog_data.n_dups; i++)
3845 if (recog_data.dup_num[i] == commutative
3846 || recog_data.dup_num[i] == commutative + 1)
3847 *recog_data.dup_loc[i]
3848 = recog_data.operand[(int) recog_data.dup_num[i]];
3850 /* Unswap the operand related information as well. */
3851 tclass = preferred_class[commutative];
3852 preferred_class[commutative] = preferred_class[commutative + 1];
3853 preferred_class[commutative + 1] = tclass;
3855 t = pref_or_nothing[commutative];
3856 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3857 pref_or_nothing[commutative + 1] = t;
3859 t = address_reloaded[commutative];
3860 address_reloaded[commutative] = address_reloaded[commutative + 1];
3861 address_reloaded[commutative + 1] = t;
3866 /* The operands don't meet the constraints.
3867 goal_alternative describes the alternative
3868 that we could reach by reloading the fewest operands.
3869 Reload so as to fit it. */
3871 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3873 /* No alternative works with reloads?? */
3874 if (insn_code_number >= 0)
3875 fatal_insn ("unable to generate reloads for:", insn);
3876 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3877 /* Avoid further trouble with this insn. */
3878 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3879 n_reloads = 0;
3880 return 0;
3883 /* Jump to `finish' from above if all operands are valid already.
3884 In that case, goal_alternative_win is all 1. */
3885 finish:
3887 /* Right now, for any pair of operands I and J that are required to match,
3888 with I < J,
3889 goal_alternative_matches[J] is I.
3890 Set up goal_alternative_matched as the inverse function:
3891 goal_alternative_matched[I] = J. */
3893 for (i = 0; i < noperands; i++)
3894 goal_alternative_matched[i] = -1;
3896 for (i = 0; i < noperands; i++)
3897 if (! goal_alternative_win[i]
3898 && goal_alternative_matches[i] >= 0)
3899 goal_alternative_matched[goal_alternative_matches[i]] = i;
3901 for (i = 0; i < noperands; i++)
3902 goal_alternative_win[i] |= goal_alternative_match_win[i];
3904 /* If the best alternative is with operands 1 and 2 swapped,
3905 consider them swapped before reporting the reloads. Update the
3906 operand numbers of any reloads already pushed. */
3908 if (goal_alternative_swapped)
3910 rtx tem;
3912 tem = substed_operand[commutative];
3913 substed_operand[commutative] = substed_operand[commutative + 1];
3914 substed_operand[commutative + 1] = tem;
3915 tem = recog_data.operand[commutative];
3916 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3917 recog_data.operand[commutative + 1] = tem;
3918 tem = *recog_data.operand_loc[commutative];
3919 *recog_data.operand_loc[commutative]
3920 = *recog_data.operand_loc[commutative + 1];
3921 *recog_data.operand_loc[commutative + 1] = tem;
3923 for (i = 0; i < n_reloads; i++)
3925 if (rld[i].opnum == commutative)
3926 rld[i].opnum = commutative + 1;
3927 else if (rld[i].opnum == commutative + 1)
3928 rld[i].opnum = commutative;
3932 for (i = 0; i < noperands; i++)
3934 operand_reloadnum[i] = -1;
3936 /* If this is an earlyclobber operand, we need to widen the scope.
3937 The reload must remain valid from the start of the insn being
3938 reloaded until after the operand is stored into its destination.
3939 We approximate this with RELOAD_OTHER even though we know that we
3940 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3942 One special case that is worth checking is when we have an
3943 output that is earlyclobber but isn't used past the insn (typically
3944 a SCRATCH). In this case, we only need have the reload live
3945 through the insn itself, but not for any of our input or output
3946 reloads.
3947 But we must not accidentally narrow the scope of an existing
3948 RELOAD_OTHER reload - leave these alone.
3950 In any case, anything needed to address this operand can remain
3951 however they were previously categorized. */
3953 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3954 operand_type[i]
3955 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3956 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3959 /* Any constants that aren't allowed and can't be reloaded
3960 into registers are here changed into memory references. */
3961 for (i = 0; i < noperands; i++)
3962 if (! goal_alternative_win[i])
3964 rtx op = recog_data.operand[i];
3965 rtx subreg = NULL_RTX;
3966 rtx plus = NULL_RTX;
3967 enum machine_mode mode = operand_mode[i];
3969 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3970 push_reload so we have to let them pass here. */
3971 if (GET_CODE (op) == SUBREG)
3973 subreg = op;
3974 op = SUBREG_REG (op);
3975 mode = GET_MODE (op);
3978 if (GET_CODE (op) == PLUS)
3980 plus = op;
3981 op = XEXP (op, 1);
3984 if (CONST_POOL_OK_P (mode, op)
3985 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3986 == NO_REGS)
3987 || no_input_reloads))
3989 int this_address_reloaded;
3990 rtx tem = force_const_mem (mode, op);
3992 /* If we stripped a SUBREG or a PLUS above add it back. */
3993 if (plus != NULL_RTX)
3994 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3996 if (subreg != NULL_RTX)
3997 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3999 this_address_reloaded = 0;
4000 substed_operand[i] = recog_data.operand[i]
4001 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
4002 0, insn, &this_address_reloaded);
4004 /* If the alternative accepts constant pool refs directly
4005 there will be no reload needed at all. */
4006 if (plus == NULL_RTX
4007 && subreg == NULL_RTX
4008 && alternative_allows_const_pool_ref (this_address_reloaded == 0
4009 ? substed_operand[i]
4010 : NULL,
4011 recog_data.constraints[i],
4012 goal_alternative_number))
4013 goal_alternative_win[i] = 1;
4017 /* Record the values of the earlyclobber operands for the caller. */
4018 if (goal_earlyclobber)
4019 for (i = 0; i < noperands; i++)
4020 if (goal_alternative_earlyclobber[i])
4021 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4023 /* Now record reloads for all the operands that need them. */
4024 for (i = 0; i < noperands; i++)
4025 if (! goal_alternative_win[i])
4027 /* Operands that match previous ones have already been handled. */
4028 if (goal_alternative_matches[i] >= 0)
4030 /* Handle an operand with a nonoffsettable address
4031 appearing where an offsettable address will do
4032 by reloading the address into a base register.
4034 ??? We can also do this when the operand is a register and
4035 reg_equiv_mem is not offsettable, but this is a bit tricky,
4036 so we don't bother with it. It may not be worth doing. */
4037 else if (goal_alternative_matched[i] == -1
4038 && goal_alternative_offmemok[i]
4039 && MEM_P (recog_data.operand[i]))
4041 /* If the address to be reloaded is a VOIDmode constant,
4042 use the default address mode as mode of the reload register,
4043 as would have been done by find_reloads_address. */
4044 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4045 enum machine_mode address_mode;
4047 address_mode = get_address_mode (recog_data.operand[i]);
4048 operand_reloadnum[i]
4049 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4050 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4051 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4052 address_mode,
4053 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4054 rld[operand_reloadnum[i]].inc
4055 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4057 /* If this operand is an output, we will have made any
4058 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4059 now we are treating part of the operand as an input, so
4060 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4062 if (modified[i] == RELOAD_WRITE)
4064 for (j = 0; j < n_reloads; j++)
4066 if (rld[j].opnum == i)
4068 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4069 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4070 else if (rld[j].when_needed
4071 == RELOAD_FOR_OUTADDR_ADDRESS)
4072 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4077 else if (goal_alternative_matched[i] == -1)
4079 operand_reloadnum[i]
4080 = push_reload ((modified[i] != RELOAD_WRITE
4081 ? recog_data.operand[i] : 0),
4082 (modified[i] != RELOAD_READ
4083 ? recog_data.operand[i] : 0),
4084 (modified[i] != RELOAD_WRITE
4085 ? recog_data.operand_loc[i] : 0),
4086 (modified[i] != RELOAD_READ
4087 ? recog_data.operand_loc[i] : 0),
4088 (enum reg_class) goal_alternative[i],
4089 (modified[i] == RELOAD_WRITE
4090 ? VOIDmode : operand_mode[i]),
4091 (modified[i] == RELOAD_READ
4092 ? VOIDmode : operand_mode[i]),
4093 (insn_code_number < 0 ? 0
4094 : insn_data[insn_code_number].operand[i].strict_low),
4095 0, i, operand_type[i]);
4097 /* In a matching pair of operands, one must be input only
4098 and the other must be output only.
4099 Pass the input operand as IN and the other as OUT. */
4100 else if (modified[i] == RELOAD_READ
4101 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4103 operand_reloadnum[i]
4104 = push_reload (recog_data.operand[i],
4105 recog_data.operand[goal_alternative_matched[i]],
4106 recog_data.operand_loc[i],
4107 recog_data.operand_loc[goal_alternative_matched[i]],
4108 (enum reg_class) goal_alternative[i],
4109 operand_mode[i],
4110 operand_mode[goal_alternative_matched[i]],
4111 0, 0, i, RELOAD_OTHER);
4112 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4114 else if (modified[i] == RELOAD_WRITE
4115 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4117 operand_reloadnum[goal_alternative_matched[i]]
4118 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4119 recog_data.operand[i],
4120 recog_data.operand_loc[goal_alternative_matched[i]],
4121 recog_data.operand_loc[i],
4122 (enum reg_class) goal_alternative[i],
4123 operand_mode[goal_alternative_matched[i]],
4124 operand_mode[i],
4125 0, 0, i, RELOAD_OTHER);
4126 operand_reloadnum[i] = output_reloadnum;
4128 else
4130 gcc_assert (insn_code_number < 0);
4131 error_for_asm (insn, "inconsistent operand constraints "
4132 "in an %<asm%>");
4133 /* Avoid further trouble with this insn. */
4134 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4135 n_reloads = 0;
4136 return 0;
4139 else if (goal_alternative_matched[i] < 0
4140 && goal_alternative_matches[i] < 0
4141 && address_operand_reloaded[i] != 1
4142 && optimize)
4144 /* For each non-matching operand that's a MEM or a pseudo-register
4145 that didn't get a hard register, make an optional reload.
4146 This may get done even if the insn needs no reloads otherwise. */
4148 rtx operand = recog_data.operand[i];
4150 while (GET_CODE (operand) == SUBREG)
4151 operand = SUBREG_REG (operand);
4152 if ((MEM_P (operand)
4153 || (REG_P (operand)
4154 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4155 /* If this is only for an output, the optional reload would not
4156 actually cause us to use a register now, just note that
4157 something is stored here. */
4158 && (goal_alternative[i] != NO_REGS
4159 || modified[i] == RELOAD_WRITE)
4160 && ! no_input_reloads
4161 /* An optional output reload might allow to delete INSN later.
4162 We mustn't make in-out reloads on insns that are not permitted
4163 output reloads.
4164 If this is an asm, we can't delete it; we must not even call
4165 push_reload for an optional output reload in this case,
4166 because we can't be sure that the constraint allows a register,
4167 and push_reload verifies the constraints for asms. */
4168 && (modified[i] == RELOAD_READ
4169 || (! no_output_reloads && ! this_insn_is_asm)))
4170 operand_reloadnum[i]
4171 = push_reload ((modified[i] != RELOAD_WRITE
4172 ? recog_data.operand[i] : 0),
4173 (modified[i] != RELOAD_READ
4174 ? recog_data.operand[i] : 0),
4175 (modified[i] != RELOAD_WRITE
4176 ? recog_data.operand_loc[i] : 0),
4177 (modified[i] != RELOAD_READ
4178 ? recog_data.operand_loc[i] : 0),
4179 (enum reg_class) goal_alternative[i],
4180 (modified[i] == RELOAD_WRITE
4181 ? VOIDmode : operand_mode[i]),
4182 (modified[i] == RELOAD_READ
4183 ? VOIDmode : operand_mode[i]),
4184 (insn_code_number < 0 ? 0
4185 : insn_data[insn_code_number].operand[i].strict_low),
4186 1, i, operand_type[i]);
4187 /* If a memory reference remains (either as a MEM or a pseudo that
4188 did not get a hard register), yet we can't make an optional
4189 reload, check if this is actually a pseudo register reference;
4190 we then need to emit a USE and/or a CLOBBER so that reload
4191 inheritance will do the right thing. */
4192 else if (replace
4193 && (MEM_P (operand)
4194 || (REG_P (operand)
4195 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4196 && reg_renumber [REGNO (operand)] < 0)))
4198 operand = *recog_data.operand_loc[i];
4200 while (GET_CODE (operand) == SUBREG)
4201 operand = SUBREG_REG (operand);
4202 if (REG_P (operand))
4204 if (modified[i] != RELOAD_WRITE)
4205 /* We mark the USE with QImode so that we recognize
4206 it as one that can be safely deleted at the end
4207 of reload. */
4208 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4209 insn), QImode);
4210 if (modified[i] != RELOAD_READ)
4211 emit_insn_after (gen_clobber (operand), insn);
4215 else if (goal_alternative_matches[i] >= 0
4216 && goal_alternative_win[goal_alternative_matches[i]]
4217 && modified[i] == RELOAD_READ
4218 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4219 && ! no_input_reloads && ! no_output_reloads
4220 && optimize)
4222 /* Similarly, make an optional reload for a pair of matching
4223 objects that are in MEM or a pseudo that didn't get a hard reg. */
4225 rtx operand = recog_data.operand[i];
4227 while (GET_CODE (operand) == SUBREG)
4228 operand = SUBREG_REG (operand);
4229 if ((MEM_P (operand)
4230 || (REG_P (operand)
4231 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4232 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4233 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4234 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4235 recog_data.operand[i],
4236 recog_data.operand_loc[goal_alternative_matches[i]],
4237 recog_data.operand_loc[i],
4238 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4239 operand_mode[goal_alternative_matches[i]],
4240 operand_mode[i],
4241 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4244 /* Perform whatever substitutions on the operands we are supposed
4245 to make due to commutativity or replacement of registers
4246 with equivalent constants or memory slots. */
4248 for (i = 0; i < noperands; i++)
4250 /* We only do this on the last pass through reload, because it is
4251 possible for some data (like reg_equiv_address) to be changed during
4252 later passes. Moreover, we lose the opportunity to get a useful
4253 reload_{in,out}_reg when we do these replacements. */
4255 if (replace)
4257 rtx substitution = substed_operand[i];
4259 *recog_data.operand_loc[i] = substitution;
4261 /* If we're replacing an operand with a LABEL_REF, we need to
4262 make sure that there's a REG_LABEL_OPERAND note attached to
4263 this instruction. */
4264 if (GET_CODE (substitution) == LABEL_REF
4265 && !find_reg_note (insn, REG_LABEL_OPERAND,
4266 XEXP (substitution, 0))
4267 /* For a JUMP_P, if it was a branch target it must have
4268 already been recorded as such. */
4269 && (!JUMP_P (insn)
4270 || !label_is_jump_target_p (XEXP (substitution, 0),
4271 insn)))
4273 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4274 if (LABEL_P (XEXP (substitution, 0)))
4275 ++LABEL_NUSES (XEXP (substitution, 0));
4279 else
4280 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4283 /* If this insn pattern contains any MATCH_DUP's, make sure that
4284 they will be substituted if the operands they match are substituted.
4285 Also do now any substitutions we already did on the operands.
4287 Don't do this if we aren't making replacements because we might be
4288 propagating things allocated by frame pointer elimination into places
4289 it doesn't expect. */
4291 if (insn_code_number >= 0 && replace)
4292 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4294 int opno = recog_data.dup_num[i];
4295 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4296 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4299 #if 0
4300 /* This loses because reloading of prior insns can invalidate the equivalence
4301 (or at least find_equiv_reg isn't smart enough to find it any more),
4302 causing this insn to need more reload regs than it needed before.
4303 It may be too late to make the reload regs available.
4304 Now this optimization is done safely in choose_reload_regs. */
4306 /* For each reload of a reg into some other class of reg,
4307 search for an existing equivalent reg (same value now) in the right class.
4308 We can use it as long as we don't need to change its contents. */
4309 for (i = 0; i < n_reloads; i++)
4310 if (rld[i].reg_rtx == 0
4311 && rld[i].in != 0
4312 && REG_P (rld[i].in)
4313 && rld[i].out == 0)
4315 rld[i].reg_rtx
4316 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4317 static_reload_reg_p, 0, rld[i].inmode);
4318 /* Prevent generation of insn to load the value
4319 because the one we found already has the value. */
4320 if (rld[i].reg_rtx)
4321 rld[i].in = rld[i].reg_rtx;
4323 #endif
4325 /* If we detected error and replaced asm instruction by USE, forget about the
4326 reloads. */
4327 if (GET_CODE (PATTERN (insn)) == USE
4328 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4329 n_reloads = 0;
4331 /* Perhaps an output reload can be combined with another
4332 to reduce needs by one. */
4333 if (!goal_earlyclobber)
4334 combine_reloads ();
4336 /* If we have a pair of reloads for parts of an address, they are reloading
4337 the same object, the operands themselves were not reloaded, and they
4338 are for two operands that are supposed to match, merge the reloads and
4339 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4341 for (i = 0; i < n_reloads; i++)
4343 int k;
4345 for (j = i + 1; j < n_reloads; j++)
4346 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4347 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4348 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4349 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4350 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4351 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4352 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4353 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4354 && rtx_equal_p (rld[i].in, rld[j].in)
4355 && (operand_reloadnum[rld[i].opnum] < 0
4356 || rld[operand_reloadnum[rld[i].opnum]].optional)
4357 && (operand_reloadnum[rld[j].opnum] < 0
4358 || rld[operand_reloadnum[rld[j].opnum]].optional)
4359 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4360 || (goal_alternative_matches[rld[j].opnum]
4361 == rld[i].opnum)))
4363 for (k = 0; k < n_replacements; k++)
4364 if (replacements[k].what == j)
4365 replacements[k].what = i;
4367 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4368 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4369 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4370 else
4371 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4372 rld[j].in = 0;
4376 /* Scan all the reloads and update their type.
4377 If a reload is for the address of an operand and we didn't reload
4378 that operand, change the type. Similarly, change the operand number
4379 of a reload when two operands match. If a reload is optional, treat it
4380 as though the operand isn't reloaded.
4382 ??? This latter case is somewhat odd because if we do the optional
4383 reload, it means the object is hanging around. Thus we need only
4384 do the address reload if the optional reload was NOT done.
4386 Change secondary reloads to be the address type of their operand, not
4387 the normal type.
4389 If an operand's reload is now RELOAD_OTHER, change any
4390 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4391 RELOAD_FOR_OTHER_ADDRESS. */
4393 for (i = 0; i < n_reloads; i++)
4395 if (rld[i].secondary_p
4396 && rld[i].when_needed == operand_type[rld[i].opnum])
4397 rld[i].when_needed = address_type[rld[i].opnum];
4399 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4400 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4401 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4402 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4403 && (operand_reloadnum[rld[i].opnum] < 0
4404 || rld[operand_reloadnum[rld[i].opnum]].optional))
4406 /* If we have a secondary reload to go along with this reload,
4407 change its type to RELOAD_FOR_OPADDR_ADDR. */
4409 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4410 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4411 && rld[i].secondary_in_reload != -1)
4413 int secondary_in_reload = rld[i].secondary_in_reload;
4415 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4417 /* If there's a tertiary reload we have to change it also. */
4418 if (secondary_in_reload > 0
4419 && rld[secondary_in_reload].secondary_in_reload != -1)
4420 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4421 = RELOAD_FOR_OPADDR_ADDR;
4424 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4425 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4426 && rld[i].secondary_out_reload != -1)
4428 int secondary_out_reload = rld[i].secondary_out_reload;
4430 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4432 /* If there's a tertiary reload we have to change it also. */
4433 if (secondary_out_reload
4434 && rld[secondary_out_reload].secondary_out_reload != -1)
4435 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4436 = RELOAD_FOR_OPADDR_ADDR;
4439 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4440 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4441 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4442 else
4443 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4446 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4447 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4448 && operand_reloadnum[rld[i].opnum] >= 0
4449 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4450 == RELOAD_OTHER))
4451 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4453 if (goal_alternative_matches[rld[i].opnum] >= 0)
4454 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4457 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4458 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4459 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4461 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4462 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4463 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4464 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4465 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4466 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4467 This is complicated by the fact that a single operand can have more
4468 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4469 choose_reload_regs without affecting code quality, and cases that
4470 actually fail are extremely rare, so it turns out to be better to fix
4471 the problem here by not generating cases that choose_reload_regs will
4472 fail for. */
4473 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4474 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4475 a single operand.
4476 We can reduce the register pressure by exploiting that a
4477 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4478 does not conflict with any of them, if it is only used for the first of
4479 the RELOAD_FOR_X_ADDRESS reloads. */
4481 int first_op_addr_num = -2;
4482 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4483 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4484 int need_change = 0;
4485 /* We use last_op_addr_reload and the contents of the above arrays
4486 first as flags - -2 means no instance encountered, -1 means exactly
4487 one instance encountered.
4488 If more than one instance has been encountered, we store the reload
4489 number of the first reload of the kind in question; reload numbers
4490 are known to be non-negative. */
4491 for (i = 0; i < noperands; i++)
4492 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4493 for (i = n_reloads - 1; i >= 0; i--)
4495 switch (rld[i].when_needed)
4497 case RELOAD_FOR_OPERAND_ADDRESS:
4498 if (++first_op_addr_num >= 0)
4500 first_op_addr_num = i;
4501 need_change = 1;
4503 break;
4504 case RELOAD_FOR_INPUT_ADDRESS:
4505 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4507 first_inpaddr_num[rld[i].opnum] = i;
4508 need_change = 1;
4510 break;
4511 case RELOAD_FOR_OUTPUT_ADDRESS:
4512 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4514 first_outpaddr_num[rld[i].opnum] = i;
4515 need_change = 1;
4517 break;
4518 default:
4519 break;
4523 if (need_change)
4525 for (i = 0; i < n_reloads; i++)
4527 int first_num;
4528 enum reload_type type;
4530 switch (rld[i].when_needed)
4532 case RELOAD_FOR_OPADDR_ADDR:
4533 first_num = first_op_addr_num;
4534 type = RELOAD_FOR_OPERAND_ADDRESS;
4535 break;
4536 case RELOAD_FOR_INPADDR_ADDRESS:
4537 first_num = first_inpaddr_num[rld[i].opnum];
4538 type = RELOAD_FOR_INPUT_ADDRESS;
4539 break;
4540 case RELOAD_FOR_OUTADDR_ADDRESS:
4541 first_num = first_outpaddr_num[rld[i].opnum];
4542 type = RELOAD_FOR_OUTPUT_ADDRESS;
4543 break;
4544 default:
4545 continue;
4547 if (first_num < 0)
4548 continue;
4549 else if (i > first_num)
4550 rld[i].when_needed = type;
4551 else
4553 /* Check if the only TYPE reload that uses reload I is
4554 reload FIRST_NUM. */
4555 for (j = n_reloads - 1; j > first_num; j--)
4557 if (rld[j].when_needed == type
4558 && (rld[i].secondary_p
4559 ? rld[j].secondary_in_reload == i
4560 : reg_mentioned_p (rld[i].in, rld[j].in)))
4562 rld[i].when_needed = type;
4563 break;
4571 /* See if we have any reloads that are now allowed to be merged
4572 because we've changed when the reload is needed to
4573 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4574 check for the most common cases. */
4576 for (i = 0; i < n_reloads; i++)
4577 if (rld[i].in != 0 && rld[i].out == 0
4578 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4579 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4580 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4581 for (j = 0; j < n_reloads; j++)
4582 if (i != j && rld[j].in != 0 && rld[j].out == 0
4583 && rld[j].when_needed == rld[i].when_needed
4584 && MATCHES (rld[i].in, rld[j].in)
4585 && rld[i].rclass == rld[j].rclass
4586 && !rld[i].nocombine && !rld[j].nocombine
4587 && rld[i].reg_rtx == rld[j].reg_rtx)
4589 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4590 transfer_replacements (i, j);
4591 rld[j].in = 0;
4594 #ifdef HAVE_cc0
4595 /* If we made any reloads for addresses, see if they violate a
4596 "no input reloads" requirement for this insn. But loads that we
4597 do after the insn (such as for output addresses) are fine. */
4598 if (no_input_reloads)
4599 for (i = 0; i < n_reloads; i++)
4600 gcc_assert (rld[i].in == 0
4601 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4602 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4603 #endif
4605 /* Compute reload_mode and reload_nregs. */
4606 for (i = 0; i < n_reloads; i++)
4608 rld[i].mode
4609 = (rld[i].inmode == VOIDmode
4610 || (GET_MODE_SIZE (rld[i].outmode)
4611 > GET_MODE_SIZE (rld[i].inmode)))
4612 ? rld[i].outmode : rld[i].inmode;
4614 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4617 /* Special case a simple move with an input reload and a
4618 destination of a hard reg, if the hard reg is ok, use it. */
4619 for (i = 0; i < n_reloads; i++)
4620 if (rld[i].when_needed == RELOAD_FOR_INPUT
4621 && GET_CODE (PATTERN (insn)) == SET
4622 && REG_P (SET_DEST (PATTERN (insn)))
4623 && (SET_SRC (PATTERN (insn)) == rld[i].in
4624 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4625 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4627 rtx dest = SET_DEST (PATTERN (insn));
4628 unsigned int regno = REGNO (dest);
4630 if (regno < FIRST_PSEUDO_REGISTER
4631 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4632 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4634 int nr = hard_regno_nregs[regno][rld[i].mode];
4635 int ok = 1, nri;
4637 for (nri = 1; nri < nr; nri ++)
4638 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4639 ok = 0;
4641 if (ok)
4642 rld[i].reg_rtx = dest;
4646 return retval;
4649 /* Return true if alternative number ALTNUM in constraint-string
4650 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4651 MEM gives the reference if it didn't need any reloads, otherwise it
4652 is null. */
4654 static bool
4655 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4656 const char *constraint, int altnum)
4658 int c;
4660 /* Skip alternatives before the one requested. */
4661 while (altnum > 0)
4663 while (*constraint++ != ',')
4665 altnum--;
4667 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4668 If one of them is present, this alternative accepts the result of
4669 passing a constant-pool reference through find_reloads_toplev.
4671 The same is true of extra memory constraints if the address
4672 was reloaded into a register. However, the target may elect
4673 to disallow the original constant address, forcing it to be
4674 reloaded into a register instead. */
4675 for (; (c = *constraint) && c != ',' && c != '#';
4676 constraint += CONSTRAINT_LEN (c, constraint))
4678 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4679 return true;
4680 #ifdef EXTRA_CONSTRAINT_STR
4681 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4682 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4683 return true;
4684 #endif
4686 return false;
4689 /* Scan X for memory references and scan the addresses for reloading.
4690 Also checks for references to "constant" regs that we want to eliminate
4691 and replaces them with the values they stand for.
4692 We may alter X destructively if it contains a reference to such.
4693 If X is just a constant reg, we return the equivalent value
4694 instead of X.
4696 IND_LEVELS says how many levels of indirect addressing this machine
4697 supports.
4699 OPNUM and TYPE identify the purpose of the reload.
4701 IS_SET_DEST is true if X is the destination of a SET, which is not
4702 appropriate to be replaced by a constant.
4704 INSN, if nonzero, is the insn in which we do the reload. It is used
4705 to determine if we may generate output reloads, and where to put USEs
4706 for pseudos that we have to replace with stack slots.
4708 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4709 result of find_reloads_address. */
4711 static rtx
4712 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4713 int ind_levels, int is_set_dest, rtx insn,
4714 int *address_reloaded)
4716 RTX_CODE code = GET_CODE (x);
4718 const char *fmt = GET_RTX_FORMAT (code);
4719 int i;
4720 int copied;
4722 if (code == REG)
4724 /* This code is duplicated for speed in find_reloads. */
4725 int regno = REGNO (x);
4726 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4727 x = reg_equiv_constant (regno);
4728 #if 0
4729 /* This creates (subreg (mem...)) which would cause an unnecessary
4730 reload of the mem. */
4731 else if (reg_equiv_mem (regno) != 0)
4732 x = reg_equiv_mem (regno);
4733 #endif
4734 else if (reg_equiv_memory_loc (regno)
4735 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4737 rtx mem = make_memloc (x, regno);
4738 if (reg_equiv_address (regno)
4739 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4741 /* If this is not a toplevel operand, find_reloads doesn't see
4742 this substitution. We have to emit a USE of the pseudo so
4743 that delete_output_reload can see it. */
4744 if (replace_reloads && recog_data.operand[opnum] != x)
4745 /* We mark the USE with QImode so that we recognize it
4746 as one that can be safely deleted at the end of
4747 reload. */
4748 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4749 QImode);
4750 x = mem;
4751 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4752 opnum, type, ind_levels, insn);
4753 if (!rtx_equal_p (x, mem))
4754 push_reg_equiv_alt_mem (regno, x);
4755 if (address_reloaded)
4756 *address_reloaded = i;
4759 return x;
4761 if (code == MEM)
4763 rtx tem = x;
4765 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4766 opnum, type, ind_levels, insn);
4767 if (address_reloaded)
4768 *address_reloaded = i;
4770 return tem;
4773 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4775 /* Check for SUBREG containing a REG that's equivalent to a
4776 constant. If the constant has a known value, truncate it
4777 right now. Similarly if we are extracting a single-word of a
4778 multi-word constant. If the constant is symbolic, allow it
4779 to be substituted normally. push_reload will strip the
4780 subreg later. The constant must not be VOIDmode, because we
4781 will lose the mode of the register (this should never happen
4782 because one of the cases above should handle it). */
4784 int regno = REGNO (SUBREG_REG (x));
4785 rtx tem;
4787 if (regno >= FIRST_PSEUDO_REGISTER
4788 && reg_renumber[regno] < 0
4789 && reg_equiv_constant (regno) != 0)
4791 tem =
4792 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4793 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4794 gcc_assert (tem);
4795 if (CONSTANT_P (tem)
4796 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4798 tem = force_const_mem (GET_MODE (x), tem);
4799 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4800 &XEXP (tem, 0), opnum, type,
4801 ind_levels, insn);
4802 if (address_reloaded)
4803 *address_reloaded = i;
4805 return tem;
4808 /* If the subreg contains a reg that will be converted to a mem,
4809 convert the subreg to a narrower memref now.
4810 Otherwise, we would get (subreg (mem ...) ...),
4811 which would force reload of the mem.
4813 We also need to do this if there is an equivalent MEM that is
4814 not offsettable. In that case, alter_subreg would produce an
4815 invalid address on big-endian machines.
4817 For machines that extend byte loads, we must not reload using
4818 a wider mode if we have a paradoxical SUBREG. find_reloads will
4819 force a reload in that case. So we should not do anything here. */
4821 if (regno >= FIRST_PSEUDO_REGISTER
4822 #ifdef LOAD_EXTEND_OP
4823 && !paradoxical_subreg_p (x)
4824 #endif
4825 && (reg_equiv_address (regno) != 0
4826 || (reg_equiv_mem (regno) != 0
4827 && (! strict_memory_address_addr_space_p
4828 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
4829 MEM_ADDR_SPACE (reg_equiv_mem (regno)))
4830 || ! offsettable_memref_p (reg_equiv_mem (regno))
4831 || num_not_at_initial_offset))))
4832 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4833 insn, address_reloaded);
4836 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4838 if (fmt[i] == 'e')
4840 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4841 ind_levels, is_set_dest, insn,
4842 address_reloaded);
4843 /* If we have replaced a reg with it's equivalent memory loc -
4844 that can still be handled here e.g. if it's in a paradoxical
4845 subreg - we must make the change in a copy, rather than using
4846 a destructive change. This way, find_reloads can still elect
4847 not to do the change. */
4848 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4850 x = shallow_copy_rtx (x);
4851 copied = 1;
4853 XEXP (x, i) = new_part;
4856 return x;
4859 /* Return a mem ref for the memory equivalent of reg REGNO.
4860 This mem ref is not shared with anything. */
4862 static rtx
4863 make_memloc (rtx ad, int regno)
4865 /* We must rerun eliminate_regs, in case the elimination
4866 offsets have changed. */
4867 rtx tem
4868 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4871 /* If TEM might contain a pseudo, we must copy it to avoid
4872 modifying it when we do the substitution for the reload. */
4873 if (rtx_varies_p (tem, 0))
4874 tem = copy_rtx (tem);
4876 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4877 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4879 /* Copy the result if it's still the same as the equivalence, to avoid
4880 modifying it when we do the substitution for the reload. */
4881 if (tem == reg_equiv_memory_loc (regno))
4882 tem = copy_rtx (tem);
4883 return tem;
4886 /* Returns true if AD could be turned into a valid memory reference
4887 to mode MODE in address space AS by reloading the part pointed to
4888 by PART into a register. */
4890 static int
4891 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4892 addr_space_t as, rtx *part)
4894 int retv;
4895 rtx tem = *part;
4896 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4898 *part = reg;
4899 retv = memory_address_addr_space_p (mode, ad, as);
4900 *part = tem;
4902 return retv;
4905 /* Record all reloads needed for handling memory address AD
4906 which appears in *LOC in a memory reference to mode MODE
4907 which itself is found in location *MEMREFLOC.
4908 Note that we take shortcuts assuming that no multi-reg machine mode
4909 occurs as part of an address.
4911 OPNUM and TYPE specify the purpose of this reload.
4913 IND_LEVELS says how many levels of indirect addressing this machine
4914 supports.
4916 INSN, if nonzero, is the insn in which we do the reload. It is used
4917 to determine if we may generate output reloads, and where to put USEs
4918 for pseudos that we have to replace with stack slots.
4920 Value is one if this address is reloaded or replaced as a whole; it is
4921 zero if the top level of this address was not reloaded or replaced, and
4922 it is -1 if it may or may not have been reloaded or replaced.
4924 Note that there is no verification that the address will be valid after
4925 this routine does its work. Instead, we rely on the fact that the address
4926 was valid when reload started. So we need only undo things that reload
4927 could have broken. These are wrong register types, pseudos not allocated
4928 to a hard register, and frame pointer elimination. */
4930 static int
4931 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4932 rtx *loc, int opnum, enum reload_type type,
4933 int ind_levels, rtx insn)
4935 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4936 : ADDR_SPACE_GENERIC;
4937 int regno;
4938 int removed_and = 0;
4939 int op_index;
4940 rtx tem;
4942 /* If the address is a register, see if it is a legitimate address and
4943 reload if not. We first handle the cases where we need not reload
4944 or where we must reload in a non-standard way. */
4946 if (REG_P (ad))
4948 regno = REGNO (ad);
4950 if (reg_equiv_constant (regno) != 0)
4952 find_reloads_address_part (reg_equiv_constant (regno), loc,
4953 base_reg_class (mode, as, MEM, SCRATCH),
4954 GET_MODE (ad), opnum, type, ind_levels);
4955 return 1;
4958 tem = reg_equiv_memory_loc (regno);
4959 if (tem != 0)
4961 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4963 tem = make_memloc (ad, regno);
4964 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4965 XEXP (tem, 0),
4966 MEM_ADDR_SPACE (tem)))
4968 rtx orig = tem;
4970 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4971 &XEXP (tem, 0), opnum,
4972 ADDR_TYPE (type), ind_levels, insn);
4973 if (!rtx_equal_p (tem, orig))
4974 push_reg_equiv_alt_mem (regno, tem);
4976 /* We can avoid a reload if the register's equivalent memory
4977 expression is valid as an indirect memory address.
4978 But not all addresses are valid in a mem used as an indirect
4979 address: only reg or reg+constant. */
4981 if (ind_levels > 0
4982 && strict_memory_address_addr_space_p (mode, tem, as)
4983 && (REG_P (XEXP (tem, 0))
4984 || (GET_CODE (XEXP (tem, 0)) == PLUS
4985 && REG_P (XEXP (XEXP (tem, 0), 0))
4986 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4988 /* TEM is not the same as what we'll be replacing the
4989 pseudo with after reload, put a USE in front of INSN
4990 in the final reload pass. */
4991 if (replace_reloads
4992 && num_not_at_initial_offset
4993 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4995 *loc = tem;
4996 /* We mark the USE with QImode so that we
4997 recognize it as one that can be safely
4998 deleted at the end of reload. */
4999 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
5000 insn), QImode);
5002 /* This doesn't really count as replacing the address
5003 as a whole, since it is still a memory access. */
5005 return 0;
5007 ad = tem;
5011 /* The only remaining case where we can avoid a reload is if this is a
5012 hard register that is valid as a base register and which is not the
5013 subject of a CLOBBER in this insn. */
5015 else if (regno < FIRST_PSEUDO_REGISTER
5016 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
5017 && ! regno_clobbered_p (regno, this_insn, mode, 0))
5018 return 0;
5020 /* If we do not have one of the cases above, we must do the reload. */
5021 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
5022 base_reg_class (mode, as, MEM, SCRATCH),
5023 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5024 return 1;
5027 if (strict_memory_address_addr_space_p (mode, ad, as))
5029 /* The address appears valid, so reloads are not needed.
5030 But the address may contain an eliminable register.
5031 This can happen because a machine with indirect addressing
5032 may consider a pseudo register by itself a valid address even when
5033 it has failed to get a hard reg.
5034 So do a tree-walk to find and eliminate all such regs. */
5036 /* But first quickly dispose of a common case. */
5037 if (GET_CODE (ad) == PLUS
5038 && CONST_INT_P (XEXP (ad, 1))
5039 && REG_P (XEXP (ad, 0))
5040 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5041 return 0;
5043 subst_reg_equivs_changed = 0;
5044 *loc = subst_reg_equivs (ad, insn);
5046 if (! subst_reg_equivs_changed)
5047 return 0;
5049 /* Check result for validity after substitution. */
5050 if (strict_memory_address_addr_space_p (mode, ad, as))
5051 return 0;
5054 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5057 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5059 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5060 ind_levels, win);
5062 break;
5063 win:
5064 *memrefloc = copy_rtx (*memrefloc);
5065 XEXP (*memrefloc, 0) = ad;
5066 move_replacements (&ad, &XEXP (*memrefloc, 0));
5067 return -1;
5069 while (0);
5070 #endif
5072 /* The address is not valid. We have to figure out why. First see if
5073 we have an outer AND and remove it if so. Then analyze what's inside. */
5075 if (GET_CODE (ad) == AND)
5077 removed_and = 1;
5078 loc = &XEXP (ad, 0);
5079 ad = *loc;
5082 /* One possibility for why the address is invalid is that it is itself
5083 a MEM. This can happen when the frame pointer is being eliminated, a
5084 pseudo is not allocated to a hard register, and the offset between the
5085 frame and stack pointers is not its initial value. In that case the
5086 pseudo will have been replaced by a MEM referring to the
5087 stack pointer. */
5088 if (MEM_P (ad))
5090 /* First ensure that the address in this MEM is valid. Then, unless
5091 indirect addresses are valid, reload the MEM into a register. */
5092 tem = ad;
5093 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5094 opnum, ADDR_TYPE (type),
5095 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5097 /* If tem was changed, then we must create a new memory reference to
5098 hold it and store it back into memrefloc. */
5099 if (tem != ad && memrefloc)
5101 *memrefloc = copy_rtx (*memrefloc);
5102 copy_replacements (tem, XEXP (*memrefloc, 0));
5103 loc = &XEXP (*memrefloc, 0);
5104 if (removed_and)
5105 loc = &XEXP (*loc, 0);
5108 /* Check similar cases as for indirect addresses as above except
5109 that we can allow pseudos and a MEM since they should have been
5110 taken care of above. */
5112 if (ind_levels == 0
5113 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5114 || MEM_P (XEXP (tem, 0))
5115 || ! (REG_P (XEXP (tem, 0))
5116 || (GET_CODE (XEXP (tem, 0)) == PLUS
5117 && REG_P (XEXP (XEXP (tem, 0), 0))
5118 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5120 /* Must use TEM here, not AD, since it is the one that will
5121 have any subexpressions reloaded, if needed. */
5122 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5123 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5124 VOIDmode, 0,
5125 0, opnum, type);
5126 return ! removed_and;
5128 else
5129 return 0;
5132 /* If we have address of a stack slot but it's not valid because the
5133 displacement is too large, compute the sum in a register.
5134 Handle all base registers here, not just fp/ap/sp, because on some
5135 targets (namely SH) we can also get too large displacements from
5136 big-endian corrections. */
5137 else if (GET_CODE (ad) == PLUS
5138 && REG_P (XEXP (ad, 0))
5139 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5140 && CONST_INT_P (XEXP (ad, 1))
5141 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5142 CONST_INT)
5143 /* Similarly, if we were to reload the base register and the
5144 mem+offset address is still invalid, then we want to reload
5145 the whole address, not just the base register. */
5146 || ! maybe_memory_address_addr_space_p
5147 (mode, ad, as, &(XEXP (ad, 0)))))
5150 /* Unshare the MEM rtx so we can safely alter it. */
5151 if (memrefloc)
5153 *memrefloc = copy_rtx (*memrefloc);
5154 loc = &XEXP (*memrefloc, 0);
5155 if (removed_and)
5156 loc = &XEXP (*loc, 0);
5159 if (double_reg_address_ok
5160 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5161 PLUS, CONST_INT))
5163 /* Unshare the sum as well. */
5164 *loc = ad = copy_rtx (ad);
5166 /* Reload the displacement into an index reg.
5167 We assume the frame pointer or arg pointer is a base reg. */
5168 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5169 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5170 type, ind_levels);
5171 return 0;
5173 else
5175 /* If the sum of two regs is not necessarily valid,
5176 reload the sum into a base reg.
5177 That will at least work. */
5178 find_reloads_address_part (ad, loc,
5179 base_reg_class (mode, as, MEM, SCRATCH),
5180 GET_MODE (ad), opnum, type, ind_levels);
5182 return ! removed_and;
5185 /* If we have an indexed stack slot, there are three possible reasons why
5186 it might be invalid: The index might need to be reloaded, the address
5187 might have been made by frame pointer elimination and hence have a
5188 constant out of range, or both reasons might apply.
5190 We can easily check for an index needing reload, but even if that is the
5191 case, we might also have an invalid constant. To avoid making the
5192 conservative assumption and requiring two reloads, we see if this address
5193 is valid when not interpreted strictly. If it is, the only problem is
5194 that the index needs a reload and find_reloads_address_1 will take care
5195 of it.
5197 Handle all base registers here, not just fp/ap/sp, because on some
5198 targets (namely SPARC) we can also get invalid addresses from preventive
5199 subreg big-endian corrections made by find_reloads_toplev. We
5200 can also get expressions involving LO_SUM (rather than PLUS) from
5201 find_reloads_subreg_address.
5203 If we decide to do something, it must be that `double_reg_address_ok'
5204 is true. We generate a reload of the base register + constant and
5205 rework the sum so that the reload register will be added to the index.
5206 This is safe because we know the address isn't shared.
5208 We check for the base register as both the first and second operand of
5209 the innermost PLUS and/or LO_SUM. */
5211 for (op_index = 0; op_index < 2; ++op_index)
5213 rtx operand, addend;
5214 enum rtx_code inner_code;
5216 if (GET_CODE (ad) != PLUS)
5217 continue;
5219 inner_code = GET_CODE (XEXP (ad, 0));
5220 if (!(GET_CODE (ad) == PLUS
5221 && CONST_INT_P (XEXP (ad, 1))
5222 && (inner_code == PLUS || inner_code == LO_SUM)))
5223 continue;
5225 operand = XEXP (XEXP (ad, 0), op_index);
5226 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5227 continue;
5229 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5231 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5232 GET_CODE (addend))
5233 || operand == frame_pointer_rtx
5234 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5235 || operand == hard_frame_pointer_rtx
5236 #endif
5237 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5238 || operand == arg_pointer_rtx
5239 #endif
5240 || operand == stack_pointer_rtx)
5241 && ! maybe_memory_address_addr_space_p
5242 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5244 rtx offset_reg;
5245 enum reg_class cls;
5247 offset_reg = plus_constant (GET_MODE (ad), operand,
5248 INTVAL (XEXP (ad, 1)));
5250 /* Form the adjusted address. */
5251 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5252 ad = gen_rtx_PLUS (GET_MODE (ad),
5253 op_index == 0 ? offset_reg : addend,
5254 op_index == 0 ? addend : offset_reg);
5255 else
5256 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5257 op_index == 0 ? offset_reg : addend,
5258 op_index == 0 ? addend : offset_reg);
5259 *loc = ad;
5261 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5262 find_reloads_address_part (XEXP (ad, op_index),
5263 &XEXP (ad, op_index), cls,
5264 GET_MODE (ad), opnum, type, ind_levels);
5265 find_reloads_address_1 (mode, as,
5266 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5267 GET_CODE (XEXP (ad, op_index)),
5268 &XEXP (ad, 1 - op_index), opnum,
5269 type, 0, insn);
5271 return 0;
5275 /* See if address becomes valid when an eliminable register
5276 in a sum is replaced. */
5278 tem = ad;
5279 if (GET_CODE (ad) == PLUS)
5280 tem = subst_indexed_address (ad);
5281 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5283 /* Ok, we win that way. Replace any additional eliminable
5284 registers. */
5286 subst_reg_equivs_changed = 0;
5287 tem = subst_reg_equivs (tem, insn);
5289 /* Make sure that didn't make the address invalid again. */
5291 if (! subst_reg_equivs_changed
5292 || strict_memory_address_addr_space_p (mode, tem, as))
5294 *loc = tem;
5295 return 0;
5299 /* If constants aren't valid addresses, reload the constant address
5300 into a register. */
5301 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5303 enum machine_mode address_mode = GET_MODE (ad);
5304 if (address_mode == VOIDmode)
5305 address_mode = targetm.addr_space.address_mode (as);
5307 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5308 Unshare it so we can safely alter it. */
5309 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5310 && CONSTANT_POOL_ADDRESS_P (ad))
5312 *memrefloc = copy_rtx (*memrefloc);
5313 loc = &XEXP (*memrefloc, 0);
5314 if (removed_and)
5315 loc = &XEXP (*loc, 0);
5318 find_reloads_address_part (ad, loc,
5319 base_reg_class (mode, as, MEM, SCRATCH),
5320 address_mode, opnum, type, ind_levels);
5321 return ! removed_and;
5324 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5325 opnum, type, ind_levels, insn);
5328 /* Find all pseudo regs appearing in AD
5329 that are eliminable in favor of equivalent values
5330 and do not have hard regs; replace them by their equivalents.
5331 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5332 front of it for pseudos that we have to replace with stack slots. */
5334 static rtx
5335 subst_reg_equivs (rtx ad, rtx insn)
5337 RTX_CODE code = GET_CODE (ad);
5338 int i;
5339 const char *fmt;
5341 switch (code)
5343 case HIGH:
5344 case CONST_INT:
5345 case CONST:
5346 case CONST_DOUBLE:
5347 case CONST_FIXED:
5348 case CONST_VECTOR:
5349 case SYMBOL_REF:
5350 case LABEL_REF:
5351 case PC:
5352 case CC0:
5353 return ad;
5355 case REG:
5357 int regno = REGNO (ad);
5359 if (reg_equiv_constant (regno) != 0)
5361 subst_reg_equivs_changed = 1;
5362 return reg_equiv_constant (regno);
5364 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5366 rtx mem = make_memloc (ad, regno);
5367 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5369 subst_reg_equivs_changed = 1;
5370 /* We mark the USE with QImode so that we recognize it
5371 as one that can be safely deleted at the end of
5372 reload. */
5373 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5374 QImode);
5375 return mem;
5379 return ad;
5381 case PLUS:
5382 /* Quickly dispose of a common case. */
5383 if (XEXP (ad, 0) == frame_pointer_rtx
5384 && CONST_INT_P (XEXP (ad, 1)))
5385 return ad;
5386 break;
5388 default:
5389 break;
5392 fmt = GET_RTX_FORMAT (code);
5393 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5394 if (fmt[i] == 'e')
5395 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5396 return ad;
5399 /* Compute the sum of X and Y, making canonicalizations assumed in an
5400 address, namely: sum constant integers, surround the sum of two
5401 constants with a CONST, put the constant as the second operand, and
5402 group the constant on the outermost sum.
5404 This routine assumes both inputs are already in canonical form. */
5407 form_sum (enum machine_mode mode, rtx x, rtx y)
5409 rtx tem;
5411 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5412 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5414 if (CONST_INT_P (x))
5415 return plus_constant (mode, y, INTVAL (x));
5416 else if (CONST_INT_P (y))
5417 return plus_constant (mode, x, INTVAL (y));
5418 else if (CONSTANT_P (x))
5419 tem = x, x = y, y = tem;
5421 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5422 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5424 /* Note that if the operands of Y are specified in the opposite
5425 order in the recursive calls below, infinite recursion will occur. */
5426 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5427 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5429 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5430 constant will have been placed second. */
5431 if (CONSTANT_P (x) && CONSTANT_P (y))
5433 if (GET_CODE (x) == CONST)
5434 x = XEXP (x, 0);
5435 if (GET_CODE (y) == CONST)
5436 y = XEXP (y, 0);
5438 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5441 return gen_rtx_PLUS (mode, x, y);
5444 /* If ADDR is a sum containing a pseudo register that should be
5445 replaced with a constant (from reg_equiv_constant),
5446 return the result of doing so, and also apply the associative
5447 law so that the result is more likely to be a valid address.
5448 (But it is not guaranteed to be one.)
5450 Note that at most one register is replaced, even if more are
5451 replaceable. Also, we try to put the result into a canonical form
5452 so it is more likely to be a valid address.
5454 In all other cases, return ADDR. */
5456 static rtx
5457 subst_indexed_address (rtx addr)
5459 rtx op0 = 0, op1 = 0, op2 = 0;
5460 rtx tem;
5461 int regno;
5463 if (GET_CODE (addr) == PLUS)
5465 /* Try to find a register to replace. */
5466 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5467 if (REG_P (op0)
5468 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5469 && reg_renumber[regno] < 0
5470 && reg_equiv_constant (regno) != 0)
5471 op0 = reg_equiv_constant (regno);
5472 else if (REG_P (op1)
5473 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5474 && reg_renumber[regno] < 0
5475 && reg_equiv_constant (regno) != 0)
5476 op1 = reg_equiv_constant (regno);
5477 else if (GET_CODE (op0) == PLUS
5478 && (tem = subst_indexed_address (op0)) != op0)
5479 op0 = tem;
5480 else if (GET_CODE (op1) == PLUS
5481 && (tem = subst_indexed_address (op1)) != op1)
5482 op1 = tem;
5483 else
5484 return addr;
5486 /* Pick out up to three things to add. */
5487 if (GET_CODE (op1) == PLUS)
5488 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5489 else if (GET_CODE (op0) == PLUS)
5490 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5492 /* Compute the sum. */
5493 if (op2 != 0)
5494 op1 = form_sum (GET_MODE (addr), op1, op2);
5495 if (op1 != 0)
5496 op0 = form_sum (GET_MODE (addr), op0, op1);
5498 return op0;
5500 return addr;
5503 /* Update the REG_INC notes for an insn. It updates all REG_INC
5504 notes for the instruction which refer to REGNO the to refer
5505 to the reload number.
5507 INSN is the insn for which any REG_INC notes need updating.
5509 REGNO is the register number which has been reloaded.
5511 RELOADNUM is the reload number. */
5513 static void
5514 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5515 int reloadnum ATTRIBUTE_UNUSED)
5517 #ifdef AUTO_INC_DEC
5518 rtx link;
5520 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5521 if (REG_NOTE_KIND (link) == REG_INC
5522 && (int) REGNO (XEXP (link, 0)) == regno)
5523 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5524 #endif
5527 /* Record the pseudo registers we must reload into hard registers in a
5528 subexpression of a would-be memory address, X referring to a value
5529 in mode MODE. (This function is not called if the address we find
5530 is strictly valid.)
5532 CONTEXT = 1 means we are considering regs as index regs,
5533 = 0 means we are considering them as base regs.
5534 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5535 or an autoinc code.
5536 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5537 is the code of the index part of the address. Otherwise, pass SCRATCH
5538 for this argument.
5539 OPNUM and TYPE specify the purpose of any reloads made.
5541 IND_LEVELS says how many levels of indirect addressing are
5542 supported at this point in the address.
5544 INSN, if nonzero, is the insn in which we do the reload. It is used
5545 to determine if we may generate output reloads.
5547 We return nonzero if X, as a whole, is reloaded or replaced. */
5549 /* Note that we take shortcuts assuming that no multi-reg machine mode
5550 occurs as part of an address.
5551 Also, this is not fully machine-customizable; it works for machines
5552 such as VAXen and 68000's and 32000's, but other possible machines
5553 could have addressing modes that this does not handle right.
5554 If you add push_reload calls here, you need to make sure gen_reload
5555 handles those cases gracefully. */
5557 static int
5558 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5559 rtx x, int context,
5560 enum rtx_code outer_code, enum rtx_code index_code,
5561 rtx *loc, int opnum, enum reload_type type,
5562 int ind_levels, rtx insn)
5564 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5565 ((CONTEXT) == 0 \
5566 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5567 : REGNO_OK_FOR_INDEX_P (REGNO))
5569 enum reg_class context_reg_class;
5570 RTX_CODE code = GET_CODE (x);
5572 if (context == 1)
5573 context_reg_class = INDEX_REG_CLASS;
5574 else
5575 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5577 switch (code)
5579 case PLUS:
5581 rtx orig_op0 = XEXP (x, 0);
5582 rtx orig_op1 = XEXP (x, 1);
5583 RTX_CODE code0 = GET_CODE (orig_op0);
5584 RTX_CODE code1 = GET_CODE (orig_op1);
5585 rtx op0 = orig_op0;
5586 rtx op1 = orig_op1;
5588 if (GET_CODE (op0) == SUBREG)
5590 op0 = SUBREG_REG (op0);
5591 code0 = GET_CODE (op0);
5592 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5593 op0 = gen_rtx_REG (word_mode,
5594 (REGNO (op0) +
5595 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5596 GET_MODE (SUBREG_REG (orig_op0)),
5597 SUBREG_BYTE (orig_op0),
5598 GET_MODE (orig_op0))));
5601 if (GET_CODE (op1) == SUBREG)
5603 op1 = SUBREG_REG (op1);
5604 code1 = GET_CODE (op1);
5605 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5606 /* ??? Why is this given op1's mode and above for
5607 ??? op0 SUBREGs we use word_mode? */
5608 op1 = gen_rtx_REG (GET_MODE (op1),
5609 (REGNO (op1) +
5610 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5611 GET_MODE (SUBREG_REG (orig_op1)),
5612 SUBREG_BYTE (orig_op1),
5613 GET_MODE (orig_op1))));
5615 /* Plus in the index register may be created only as a result of
5616 register rematerialization for expression like &localvar*4. Reload it.
5617 It may be possible to combine the displacement on the outer level,
5618 but it is probably not worthwhile to do so. */
5619 if (context == 1)
5621 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5622 opnum, ADDR_TYPE (type), ind_levels, insn);
5623 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5624 context_reg_class,
5625 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5626 return 1;
5629 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5630 || code0 == ZERO_EXTEND || code1 == MEM)
5632 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5633 &XEXP (x, 0), opnum, type, ind_levels,
5634 insn);
5635 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5636 &XEXP (x, 1), opnum, type, ind_levels,
5637 insn);
5640 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5641 || code1 == ZERO_EXTEND || code0 == MEM)
5643 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5644 &XEXP (x, 0), opnum, type, ind_levels,
5645 insn);
5646 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5647 &XEXP (x, 1), opnum, type, ind_levels,
5648 insn);
5651 else if (code0 == CONST_INT || code0 == CONST
5652 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5653 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5654 &XEXP (x, 1), opnum, type, ind_levels,
5655 insn);
5657 else if (code1 == CONST_INT || code1 == CONST
5658 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5659 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5660 &XEXP (x, 0), opnum, type, ind_levels,
5661 insn);
5663 else if (code0 == REG && code1 == REG)
5665 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5666 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5667 return 0;
5668 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5669 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5670 return 0;
5671 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5672 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5673 &XEXP (x, 1), opnum, type, ind_levels,
5674 insn);
5675 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5676 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5677 &XEXP (x, 0), opnum, type, ind_levels,
5678 insn);
5679 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5680 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5681 &XEXP (x, 0), opnum, type, ind_levels,
5682 insn);
5683 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5684 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5685 &XEXP (x, 1), opnum, type, ind_levels,
5686 insn);
5687 else
5689 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5690 &XEXP (x, 0), opnum, type, ind_levels,
5691 insn);
5692 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5693 &XEXP (x, 1), opnum, type, ind_levels,
5694 insn);
5698 else if (code0 == REG)
5700 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5701 &XEXP (x, 0), opnum, type, ind_levels,
5702 insn);
5703 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5704 &XEXP (x, 1), opnum, type, ind_levels,
5705 insn);
5708 else if (code1 == REG)
5710 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5711 &XEXP (x, 1), opnum, type, ind_levels,
5712 insn);
5713 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5714 &XEXP (x, 0), opnum, type, ind_levels,
5715 insn);
5719 return 0;
5721 case POST_MODIFY:
5722 case PRE_MODIFY:
5724 rtx op0 = XEXP (x, 0);
5725 rtx op1 = XEXP (x, 1);
5726 enum rtx_code index_code;
5727 int regno;
5728 int reloadnum;
5730 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5731 return 0;
5733 /* Currently, we only support {PRE,POST}_MODIFY constructs
5734 where a base register is {inc,dec}remented by the contents
5735 of another register or by a constant value. Thus, these
5736 operands must match. */
5737 gcc_assert (op0 == XEXP (op1, 0));
5739 /* Require index register (or constant). Let's just handle the
5740 register case in the meantime... If the target allows
5741 auto-modify by a constant then we could try replacing a pseudo
5742 register with its equivalent constant where applicable.
5744 We also handle the case where the register was eliminated
5745 resulting in a PLUS subexpression.
5747 If we later decide to reload the whole PRE_MODIFY or
5748 POST_MODIFY, inc_for_reload might clobber the reload register
5749 before reading the index. The index register might therefore
5750 need to live longer than a TYPE reload normally would, so be
5751 conservative and class it as RELOAD_OTHER. */
5752 if ((REG_P (XEXP (op1, 1))
5753 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5754 || GET_CODE (XEXP (op1, 1)) == PLUS)
5755 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5756 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5757 ind_levels, insn);
5759 gcc_assert (REG_P (XEXP (op1, 0)));
5761 regno = REGNO (XEXP (op1, 0));
5762 index_code = GET_CODE (XEXP (op1, 1));
5764 /* A register that is incremented cannot be constant! */
5765 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5766 || reg_equiv_constant (regno) == 0);
5768 /* Handle a register that is equivalent to a memory location
5769 which cannot be addressed directly. */
5770 if (reg_equiv_memory_loc (regno) != 0
5771 && (reg_equiv_address (regno) != 0
5772 || num_not_at_initial_offset))
5774 rtx tem = make_memloc (XEXP (x, 0), regno);
5776 if (reg_equiv_address (regno)
5777 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5779 rtx orig = tem;
5781 /* First reload the memory location's address.
5782 We can't use ADDR_TYPE (type) here, because we need to
5783 write back the value after reading it, hence we actually
5784 need two registers. */
5785 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5786 &XEXP (tem, 0), opnum,
5787 RELOAD_OTHER,
5788 ind_levels, insn);
5790 if (!rtx_equal_p (tem, orig))
5791 push_reg_equiv_alt_mem (regno, tem);
5793 /* Then reload the memory location into a base
5794 register. */
5795 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5796 &XEXP (op1, 0),
5797 base_reg_class (mode, as,
5798 code, index_code),
5799 GET_MODE (x), GET_MODE (x), 0,
5800 0, opnum, RELOAD_OTHER);
5802 update_auto_inc_notes (this_insn, regno, reloadnum);
5803 return 0;
5807 if (reg_renumber[regno] >= 0)
5808 regno = reg_renumber[regno];
5810 /* We require a base register here... */
5811 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5813 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5814 &XEXP (op1, 0), &XEXP (x, 0),
5815 base_reg_class (mode, as,
5816 code, index_code),
5817 GET_MODE (x), GET_MODE (x), 0, 0,
5818 opnum, RELOAD_OTHER);
5820 update_auto_inc_notes (this_insn, regno, reloadnum);
5821 return 0;
5824 return 0;
5826 case POST_INC:
5827 case POST_DEC:
5828 case PRE_INC:
5829 case PRE_DEC:
5830 if (REG_P (XEXP (x, 0)))
5832 int regno = REGNO (XEXP (x, 0));
5833 int value = 0;
5834 rtx x_orig = x;
5836 /* A register that is incremented cannot be constant! */
5837 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5838 || reg_equiv_constant (regno) == 0);
5840 /* Handle a register that is equivalent to a memory location
5841 which cannot be addressed directly. */
5842 if (reg_equiv_memory_loc (regno) != 0
5843 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5845 rtx tem = make_memloc (XEXP (x, 0), regno);
5846 if (reg_equiv_address (regno)
5847 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5849 rtx orig = tem;
5851 /* First reload the memory location's address.
5852 We can't use ADDR_TYPE (type) here, because we need to
5853 write back the value after reading it, hence we actually
5854 need two registers. */
5855 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5856 &XEXP (tem, 0), opnum, type,
5857 ind_levels, insn);
5858 if (!rtx_equal_p (tem, orig))
5859 push_reg_equiv_alt_mem (regno, tem);
5860 /* Put this inside a new increment-expression. */
5861 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5862 /* Proceed to reload that, as if it contained a register. */
5866 /* If we have a hard register that is ok in this incdec context,
5867 don't make a reload. If the register isn't nice enough for
5868 autoincdec, we can reload it. But, if an autoincrement of a
5869 register that we here verified as playing nice, still outside
5870 isn't "valid", it must be that no autoincrement is "valid".
5871 If that is true and something made an autoincrement anyway,
5872 this must be a special context where one is allowed.
5873 (For example, a "push" instruction.)
5874 We can't improve this address, so leave it alone. */
5876 /* Otherwise, reload the autoincrement into a suitable hard reg
5877 and record how much to increment by. */
5879 if (reg_renumber[regno] >= 0)
5880 regno = reg_renumber[regno];
5881 if (regno >= FIRST_PSEUDO_REGISTER
5882 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5883 index_code))
5885 int reloadnum;
5887 /* If we can output the register afterwards, do so, this
5888 saves the extra update.
5889 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5890 CALL_INSN - and it does not set CC0.
5891 But don't do this if we cannot directly address the
5892 memory location, since this will make it harder to
5893 reuse address reloads, and increases register pressure.
5894 Also don't do this if we can probably update x directly. */
5895 rtx equiv = (MEM_P (XEXP (x, 0))
5896 ? XEXP (x, 0)
5897 : reg_equiv_mem (regno));
5898 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5899 if (insn && NONJUMP_INSN_P (insn) && equiv
5900 && memory_operand (equiv, GET_MODE (equiv))
5901 #ifdef HAVE_cc0
5902 && ! sets_cc0_p (PATTERN (insn))
5903 #endif
5904 && ! (icode != CODE_FOR_nothing
5905 && insn_operand_matches (icode, 0, equiv)
5906 && insn_operand_matches (icode, 1, equiv)))
5908 /* We use the original pseudo for loc, so that
5909 emit_reload_insns() knows which pseudo this
5910 reload refers to and updates the pseudo rtx, not
5911 its equivalent memory location, as well as the
5912 corresponding entry in reg_last_reload_reg. */
5913 loc = &XEXP (x_orig, 0);
5914 x = XEXP (x, 0);
5915 reloadnum
5916 = push_reload (x, x, loc, loc,
5917 context_reg_class,
5918 GET_MODE (x), GET_MODE (x), 0, 0,
5919 opnum, RELOAD_OTHER);
5921 else
5923 reloadnum
5924 = push_reload (x, x, loc, (rtx*) 0,
5925 context_reg_class,
5926 GET_MODE (x), GET_MODE (x), 0, 0,
5927 opnum, type);
5928 rld[reloadnum].inc
5929 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5931 value = 1;
5934 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5935 reloadnum);
5937 return value;
5939 return 0;
5941 case TRUNCATE:
5942 case SIGN_EXTEND:
5943 case ZERO_EXTEND:
5944 /* Look for parts to reload in the inner expression and reload them
5945 too, in addition to this operation. Reloading all inner parts in
5946 addition to this one shouldn't be necessary, but at this point,
5947 we don't know if we can possibly omit any part that *can* be
5948 reloaded. Targets that are better off reloading just either part
5949 (or perhaps even a different part of an outer expression), should
5950 define LEGITIMIZE_RELOAD_ADDRESS. */
5951 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5952 context, code, SCRATCH, &XEXP (x, 0), opnum,
5953 type, ind_levels, insn);
5954 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5955 context_reg_class,
5956 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5957 return 1;
5959 case MEM:
5960 /* This is probably the result of a substitution, by eliminate_regs, of
5961 an equivalent address for a pseudo that was not allocated to a hard
5962 register. Verify that the specified address is valid and reload it
5963 into a register.
5965 Since we know we are going to reload this item, don't decrement for
5966 the indirection level.
5968 Note that this is actually conservative: it would be slightly more
5969 efficient to use the value of SPILL_INDIRECT_LEVELS from
5970 reload1.c here. */
5972 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5973 opnum, ADDR_TYPE (type), ind_levels, insn);
5974 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5975 context_reg_class,
5976 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5977 return 1;
5979 case REG:
5981 int regno = REGNO (x);
5983 if (reg_equiv_constant (regno) != 0)
5985 find_reloads_address_part (reg_equiv_constant (regno), loc,
5986 context_reg_class,
5987 GET_MODE (x), opnum, type, ind_levels);
5988 return 1;
5991 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5992 that feeds this insn. */
5993 if (reg_equiv_mem (regno) != 0)
5995 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5996 context_reg_class,
5997 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5998 return 1;
6000 #endif
6002 if (reg_equiv_memory_loc (regno)
6003 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
6005 rtx tem = make_memloc (x, regno);
6006 if (reg_equiv_address (regno) != 0
6007 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6009 x = tem;
6010 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
6011 &XEXP (x, 0), opnum, ADDR_TYPE (type),
6012 ind_levels, insn);
6013 if (!rtx_equal_p (x, tem))
6014 push_reg_equiv_alt_mem (regno, x);
6018 if (reg_renumber[regno] >= 0)
6019 regno = reg_renumber[regno];
6021 if (regno >= FIRST_PSEUDO_REGISTER
6022 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6023 index_code))
6025 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6026 context_reg_class,
6027 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6028 return 1;
6031 /* If a register appearing in an address is the subject of a CLOBBER
6032 in this insn, reload it into some other register to be safe.
6033 The CLOBBER is supposed to make the register unavailable
6034 from before this insn to after it. */
6035 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6037 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6038 context_reg_class,
6039 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6040 return 1;
6043 return 0;
6045 case SUBREG:
6046 if (REG_P (SUBREG_REG (x)))
6048 /* If this is a SUBREG of a hard register and the resulting register
6049 is of the wrong class, reload the whole SUBREG. This avoids
6050 needless copies if SUBREG_REG is multi-word. */
6051 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6053 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6055 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6056 index_code))
6058 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6059 context_reg_class,
6060 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6061 return 1;
6064 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6065 is larger than the class size, then reload the whole SUBREG. */
6066 else
6068 enum reg_class rclass = context_reg_class;
6069 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6070 > reg_class_size[(int) rclass])
6072 x = find_reloads_subreg_address (x, 0, opnum,
6073 ADDR_TYPE (type),
6074 ind_levels, insn, NULL);
6075 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6076 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6077 return 1;
6081 break;
6083 default:
6084 break;
6088 const char *fmt = GET_RTX_FORMAT (code);
6089 int i;
6091 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6093 if (fmt[i] == 'e')
6094 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6095 we get here. */
6096 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6097 code, SCRATCH, &XEXP (x, i),
6098 opnum, type, ind_levels, insn);
6102 #undef REG_OK_FOR_CONTEXT
6103 return 0;
6106 /* X, which is found at *LOC, is a part of an address that needs to be
6107 reloaded into a register of class RCLASS. If X is a constant, or if
6108 X is a PLUS that contains a constant, check that the constant is a
6109 legitimate operand and that we are supposed to be able to load
6110 it into the register.
6112 If not, force the constant into memory and reload the MEM instead.
6114 MODE is the mode to use, in case X is an integer constant.
6116 OPNUM and TYPE describe the purpose of any reloads made.
6118 IND_LEVELS says how many levels of indirect addressing this machine
6119 supports. */
6121 static void
6122 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6123 enum machine_mode mode, int opnum,
6124 enum reload_type type, int ind_levels)
6126 if (CONSTANT_P (x)
6127 && (!targetm.legitimate_constant_p (mode, x)
6128 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6130 x = force_const_mem (mode, x);
6131 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6132 opnum, type, ind_levels, 0);
6135 else if (GET_CODE (x) == PLUS
6136 && CONSTANT_P (XEXP (x, 1))
6137 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6138 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6139 == NO_REGS))
6141 rtx tem;
6143 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6144 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6145 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6146 opnum, type, ind_levels, 0);
6149 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6150 mode, VOIDmode, 0, 0, opnum, type);
6153 /* X, a subreg of a pseudo, is a part of an address that needs to be
6154 reloaded.
6156 If the pseudo is equivalent to a memory location that cannot be directly
6157 addressed, make the necessary address reloads.
6159 If address reloads have been necessary, or if the address is changed
6160 by register elimination, return the rtx of the memory location;
6161 otherwise, return X.
6163 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6164 memory location.
6166 OPNUM and TYPE identify the purpose of the reload.
6168 IND_LEVELS says how many levels of indirect addressing are
6169 supported at this point in the address.
6171 INSN, if nonzero, is the insn in which we do the reload. It is used
6172 to determine where to put USEs for pseudos that we have to replace with
6173 stack slots. */
6175 static rtx
6176 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6177 enum reload_type type, int ind_levels, rtx insn,
6178 int *address_reloaded)
6180 int regno = REGNO (SUBREG_REG (x));
6181 int reloaded = 0;
6183 if (reg_equiv_memory_loc (regno))
6185 /* If the address is not directly addressable, or if the address is not
6186 offsettable, then it must be replaced. */
6187 if (! force_replace
6188 && (reg_equiv_address (regno)
6189 || ! offsettable_memref_p (reg_equiv_mem (regno))))
6190 force_replace = 1;
6192 if (force_replace || num_not_at_initial_offset)
6194 rtx tem = make_memloc (SUBREG_REG (x), regno);
6196 /* If the address changes because of register elimination, then
6197 it must be replaced. */
6198 if (force_replace
6199 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6201 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6202 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6203 int offset;
6204 rtx orig = tem;
6206 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6207 hold the correct (negative) byte offset. */
6208 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6209 offset = inner_size - outer_size;
6210 else
6211 offset = SUBREG_BYTE (x);
6213 XEXP (tem, 0) = plus_constant (GET_MODE (XEXP (tem, 0)),
6214 XEXP (tem, 0), offset);
6215 PUT_MODE (tem, GET_MODE (x));
6216 if (MEM_OFFSET_KNOWN_P (tem))
6217 set_mem_offset (tem, MEM_OFFSET (tem) + offset);
6218 if (MEM_SIZE_KNOWN_P (tem)
6219 && MEM_SIZE (tem) != (HOST_WIDE_INT) outer_size)
6220 set_mem_size (tem, outer_size);
6222 /* If this was a paradoxical subreg that we replaced, the
6223 resulting memory must be sufficiently aligned to allow
6224 us to widen the mode of the memory. */
6225 if (outer_size > inner_size)
6227 rtx base;
6229 base = XEXP (tem, 0);
6230 if (GET_CODE (base) == PLUS)
6232 if (CONST_INT_P (XEXP (base, 1))
6233 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6234 return x;
6235 base = XEXP (base, 0);
6237 if (!REG_P (base)
6238 || (REGNO_POINTER_ALIGN (REGNO (base))
6239 < outer_size * BITS_PER_UNIT))
6240 return x;
6243 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6244 XEXP (tem, 0), &XEXP (tem, 0),
6245 opnum, type, ind_levels, insn);
6246 /* ??? Do we need to handle nonzero offsets somehow? */
6247 if (!offset && !rtx_equal_p (tem, orig))
6248 push_reg_equiv_alt_mem (regno, tem);
6250 /* For some processors an address may be valid in the
6251 original mode but not in a smaller mode. For
6252 example, ARM accepts a scaled index register in
6253 SImode but not in HImode. Note that this is only
6254 a problem if the address in reg_equiv_mem is already
6255 invalid in the new mode; other cases would be fixed
6256 by find_reloads_address as usual.
6258 ??? We attempt to handle such cases here by doing an
6259 additional reload of the full address after the
6260 usual processing by find_reloads_address. Note that
6261 this may not work in the general case, but it seems
6262 to cover the cases where this situation currently
6263 occurs. A more general fix might be to reload the
6264 *value* instead of the address, but this would not
6265 be expected by the callers of this routine as-is.
6267 If find_reloads_address already completed replaced
6268 the address, there is nothing further to do. */
6269 if (reloaded == 0
6270 && reg_equiv_mem (regno) != 0
6271 && !strict_memory_address_addr_space_p
6272 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6273 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6275 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6276 base_reg_class (GET_MODE (tem),
6277 MEM_ADDR_SPACE (tem),
6278 MEM, SCRATCH),
6279 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6280 opnum, type);
6281 reloaded = 1;
6283 /* If this is not a toplevel operand, find_reloads doesn't see
6284 this substitution. We have to emit a USE of the pseudo so
6285 that delete_output_reload can see it. */
6286 if (replace_reloads && recog_data.operand[opnum] != x)
6287 /* We mark the USE with QImode so that we recognize it
6288 as one that can be safely deleted at the end of
6289 reload. */
6290 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6291 SUBREG_REG (x)),
6292 insn), QImode);
6293 x = tem;
6297 if (address_reloaded)
6298 *address_reloaded = reloaded;
6300 return x;
6303 /* Substitute into the current INSN the registers into which we have reloaded
6304 the things that need reloading. The array `replacements'
6305 contains the locations of all pointers that must be changed
6306 and says what to replace them with.
6308 Return the rtx that X translates into; usually X, but modified. */
6310 void
6311 subst_reloads (rtx insn)
6313 int i;
6315 for (i = 0; i < n_replacements; i++)
6317 struct replacement *r = &replacements[i];
6318 rtx reloadreg = rld[r->what].reg_rtx;
6319 if (reloadreg)
6321 #ifdef DEBUG_RELOAD
6322 /* This checking takes a very long time on some platforms
6323 causing the gcc.c-torture/compile/limits-fnargs.c test
6324 to time out during testing. See PR 31850.
6326 Internal consistency test. Check that we don't modify
6327 anything in the equivalence arrays. Whenever something from
6328 those arrays needs to be reloaded, it must be unshared before
6329 being substituted into; the equivalence must not be modified.
6330 Otherwise, if the equivalence is used after that, it will
6331 have been modified, and the thing substituted (probably a
6332 register) is likely overwritten and not a usable equivalence. */
6333 int check_regno;
6335 for (check_regno = 0; check_regno < max_regno; check_regno++)
6337 #define CHECK_MODF(ARRAY) \
6338 gcc_assert (!VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY \
6339 || !loc_mentioned_in_p (r->where, \
6340 VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY))
6342 CHECK_MODF (equiv_constant);
6343 CHECK_MODF (equiv_memory_loc);
6344 CHECK_MODF (equiv_address);
6345 CHECK_MODF (equiv_mem);
6346 #undef CHECK_MODF
6348 #endif /* DEBUG_RELOAD */
6350 /* If we're replacing a LABEL_REF with a register, there must
6351 already be an indication (to e.g. flow) which label this
6352 register refers to. */
6353 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6354 || !JUMP_P (insn)
6355 || find_reg_note (insn,
6356 REG_LABEL_OPERAND,
6357 XEXP (*r->where, 0))
6358 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6360 /* Encapsulate RELOADREG so its machine mode matches what
6361 used to be there. Note that gen_lowpart_common will
6362 do the wrong thing if RELOADREG is multi-word. RELOADREG
6363 will always be a REG here. */
6364 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6365 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6367 *r->where = reloadreg;
6369 /* If reload got no reg and isn't optional, something's wrong. */
6370 else
6371 gcc_assert (rld[r->what].optional);
6375 /* Make a copy of any replacements being done into X and move those
6376 copies to locations in Y, a copy of X. */
6378 void
6379 copy_replacements (rtx x, rtx y)
6381 copy_replacements_1 (&x, &y, n_replacements);
6384 static void
6385 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6387 int i, j;
6388 rtx x, y;
6389 struct replacement *r;
6390 enum rtx_code code;
6391 const char *fmt;
6393 for (j = 0; j < orig_replacements; j++)
6394 if (replacements[j].where == px)
6396 r = &replacements[n_replacements++];
6397 r->where = py;
6398 r->what = replacements[j].what;
6399 r->mode = replacements[j].mode;
6402 x = *px;
6403 y = *py;
6404 code = GET_CODE (x);
6405 fmt = GET_RTX_FORMAT (code);
6407 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6409 if (fmt[i] == 'e')
6410 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6411 else if (fmt[i] == 'E')
6412 for (j = XVECLEN (x, i); --j >= 0; )
6413 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6414 orig_replacements);
6418 /* Change any replacements being done to *X to be done to *Y. */
6420 void
6421 move_replacements (rtx *x, rtx *y)
6423 int i;
6425 for (i = 0; i < n_replacements; i++)
6426 if (replacements[i].where == x)
6427 replacements[i].where = y;
6430 /* If LOC was scheduled to be replaced by something, return the replacement.
6431 Otherwise, return *LOC. */
6434 find_replacement (rtx *loc)
6436 struct replacement *r;
6438 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6440 rtx reloadreg = rld[r->what].reg_rtx;
6442 if (reloadreg && r->where == loc)
6444 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6445 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6447 return reloadreg;
6449 else if (reloadreg && GET_CODE (*loc) == SUBREG
6450 && r->where == &SUBREG_REG (*loc))
6452 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6453 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6455 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6456 GET_MODE (SUBREG_REG (*loc)),
6457 SUBREG_BYTE (*loc));
6461 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6462 what's inside and make a new rtl if so. */
6463 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6464 || GET_CODE (*loc) == MULT)
6466 rtx x = find_replacement (&XEXP (*loc, 0));
6467 rtx y = find_replacement (&XEXP (*loc, 1));
6469 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6470 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6473 return *loc;
6476 /* Return nonzero if register in range [REGNO, ENDREGNO)
6477 appears either explicitly or implicitly in X
6478 other than being stored into (except for earlyclobber operands).
6480 References contained within the substructure at LOC do not count.
6481 LOC may be zero, meaning don't ignore anything.
6483 This is similar to refers_to_regno_p in rtlanal.c except that we
6484 look at equivalences for pseudos that didn't get hard registers. */
6486 static int
6487 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6488 rtx x, rtx *loc)
6490 int i;
6491 unsigned int r;
6492 RTX_CODE code;
6493 const char *fmt;
6495 if (x == 0)
6496 return 0;
6498 repeat:
6499 code = GET_CODE (x);
6501 switch (code)
6503 case REG:
6504 r = REGNO (x);
6506 /* If this is a pseudo, a hard register must not have been allocated.
6507 X must therefore either be a constant or be in memory. */
6508 if (r >= FIRST_PSEUDO_REGISTER)
6510 if (reg_equiv_memory_loc (r))
6511 return refers_to_regno_for_reload_p (regno, endregno,
6512 reg_equiv_memory_loc (r),
6513 (rtx*) 0);
6515 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6516 return 0;
6519 return (endregno > r
6520 && regno < r + (r < FIRST_PSEUDO_REGISTER
6521 ? hard_regno_nregs[r][GET_MODE (x)]
6522 : 1));
6524 case SUBREG:
6525 /* If this is a SUBREG of a hard reg, we can see exactly which
6526 registers are being modified. Otherwise, handle normally. */
6527 if (REG_P (SUBREG_REG (x))
6528 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6530 unsigned int inner_regno = subreg_regno (x);
6531 unsigned int inner_endregno
6532 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6533 ? subreg_nregs (x) : 1);
6535 return endregno > inner_regno && regno < inner_endregno;
6537 break;
6539 case CLOBBER:
6540 case SET:
6541 if (&SET_DEST (x) != loc
6542 /* Note setting a SUBREG counts as referring to the REG it is in for
6543 a pseudo but not for hard registers since we can
6544 treat each word individually. */
6545 && ((GET_CODE (SET_DEST (x)) == SUBREG
6546 && loc != &SUBREG_REG (SET_DEST (x))
6547 && REG_P (SUBREG_REG (SET_DEST (x)))
6548 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6549 && refers_to_regno_for_reload_p (regno, endregno,
6550 SUBREG_REG (SET_DEST (x)),
6551 loc))
6552 /* If the output is an earlyclobber operand, this is
6553 a conflict. */
6554 || ((!REG_P (SET_DEST (x))
6555 || earlyclobber_operand_p (SET_DEST (x)))
6556 && refers_to_regno_for_reload_p (regno, endregno,
6557 SET_DEST (x), loc))))
6558 return 1;
6560 if (code == CLOBBER || loc == &SET_SRC (x))
6561 return 0;
6562 x = SET_SRC (x);
6563 goto repeat;
6565 default:
6566 break;
6569 /* X does not match, so try its subexpressions. */
6571 fmt = GET_RTX_FORMAT (code);
6572 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6574 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6576 if (i == 0)
6578 x = XEXP (x, 0);
6579 goto repeat;
6581 else
6582 if (refers_to_regno_for_reload_p (regno, endregno,
6583 XEXP (x, i), loc))
6584 return 1;
6586 else if (fmt[i] == 'E')
6588 int j;
6589 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6590 if (loc != &XVECEXP (x, i, j)
6591 && refers_to_regno_for_reload_p (regno, endregno,
6592 XVECEXP (x, i, j), loc))
6593 return 1;
6596 return 0;
6599 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6600 we check if any register number in X conflicts with the relevant register
6601 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6602 contains a MEM (we don't bother checking for memory addresses that can't
6603 conflict because we expect this to be a rare case.
6605 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6606 that we look at equivalences for pseudos that didn't get hard registers. */
6609 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6611 int regno, endregno;
6613 /* Overly conservative. */
6614 if (GET_CODE (x) == STRICT_LOW_PART
6615 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6616 x = XEXP (x, 0);
6618 /* If either argument is a constant, then modifying X can not affect IN. */
6619 if (CONSTANT_P (x) || CONSTANT_P (in))
6620 return 0;
6621 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6622 return refers_to_mem_for_reload_p (in);
6623 else if (GET_CODE (x) == SUBREG)
6625 regno = REGNO (SUBREG_REG (x));
6626 if (regno < FIRST_PSEUDO_REGISTER)
6627 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6628 GET_MODE (SUBREG_REG (x)),
6629 SUBREG_BYTE (x),
6630 GET_MODE (x));
6631 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6632 ? subreg_nregs (x) : 1);
6634 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6636 else if (REG_P (x))
6638 regno = REGNO (x);
6640 /* If this is a pseudo, it must not have been assigned a hard register.
6641 Therefore, it must either be in memory or be a constant. */
6643 if (regno >= FIRST_PSEUDO_REGISTER)
6645 if (reg_equiv_memory_loc (regno))
6646 return refers_to_mem_for_reload_p (in);
6647 gcc_assert (reg_equiv_constant (regno));
6648 return 0;
6651 endregno = END_HARD_REGNO (x);
6653 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6655 else if (MEM_P (x))
6656 return refers_to_mem_for_reload_p (in);
6657 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6658 || GET_CODE (x) == CC0)
6659 return reg_mentioned_p (x, in);
6660 else
6662 gcc_assert (GET_CODE (x) == PLUS);
6664 /* We actually want to know if X is mentioned somewhere inside IN.
6665 We must not say that (plus (sp) (const_int 124)) is in
6666 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6667 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6668 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6669 while (MEM_P (in))
6670 in = XEXP (in, 0);
6671 if (REG_P (in))
6672 return 0;
6673 else if (GET_CODE (in) == PLUS)
6674 return (rtx_equal_p (x, in)
6675 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6676 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6677 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6678 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6681 gcc_unreachable ();
6684 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6685 registers. */
6687 static int
6688 refers_to_mem_for_reload_p (rtx x)
6690 const char *fmt;
6691 int i;
6693 if (MEM_P (x))
6694 return 1;
6696 if (REG_P (x))
6697 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6698 && reg_equiv_memory_loc (REGNO (x)));
6700 fmt = GET_RTX_FORMAT (GET_CODE (x));
6701 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6702 if (fmt[i] == 'e'
6703 && (MEM_P (XEXP (x, i))
6704 || refers_to_mem_for_reload_p (XEXP (x, i))))
6705 return 1;
6707 return 0;
6710 /* Check the insns before INSN to see if there is a suitable register
6711 containing the same value as GOAL.
6712 If OTHER is -1, look for a register in class RCLASS.
6713 Otherwise, just see if register number OTHER shares GOAL's value.
6715 Return an rtx for the register found, or zero if none is found.
6717 If RELOAD_REG_P is (short *)1,
6718 we reject any hard reg that appears in reload_reg_rtx
6719 because such a hard reg is also needed coming into this insn.
6721 If RELOAD_REG_P is any other nonzero value,
6722 it is a vector indexed by hard reg number
6723 and we reject any hard reg whose element in the vector is nonnegative
6724 as well as any that appears in reload_reg_rtx.
6726 If GOAL is zero, then GOALREG is a register number; we look
6727 for an equivalent for that register.
6729 MODE is the machine mode of the value we want an equivalence for.
6730 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6732 This function is used by jump.c as well as in the reload pass.
6734 If GOAL is the sum of the stack pointer and a constant, we treat it
6735 as if it were a constant except that sp is required to be unchanging. */
6738 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6739 short *reload_reg_p, int goalreg, enum machine_mode mode)
6741 rtx p = insn;
6742 rtx goaltry, valtry, value, where;
6743 rtx pat;
6744 int regno = -1;
6745 int valueno;
6746 int goal_mem = 0;
6747 int goal_const = 0;
6748 int goal_mem_addr_varies = 0;
6749 int need_stable_sp = 0;
6750 int nregs;
6751 int valuenregs;
6752 int num = 0;
6754 if (goal == 0)
6755 regno = goalreg;
6756 else if (REG_P (goal))
6757 regno = REGNO (goal);
6758 else if (MEM_P (goal))
6760 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6761 if (MEM_VOLATILE_P (goal))
6762 return 0;
6763 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6764 return 0;
6765 /* An address with side effects must be reexecuted. */
6766 switch (code)
6768 case POST_INC:
6769 case PRE_INC:
6770 case POST_DEC:
6771 case PRE_DEC:
6772 case POST_MODIFY:
6773 case PRE_MODIFY:
6774 return 0;
6775 default:
6776 break;
6778 goal_mem = 1;
6780 else if (CONSTANT_P (goal))
6781 goal_const = 1;
6782 else if (GET_CODE (goal) == PLUS
6783 && XEXP (goal, 0) == stack_pointer_rtx
6784 && CONSTANT_P (XEXP (goal, 1)))
6785 goal_const = need_stable_sp = 1;
6786 else if (GET_CODE (goal) == PLUS
6787 && XEXP (goal, 0) == frame_pointer_rtx
6788 && CONSTANT_P (XEXP (goal, 1)))
6789 goal_const = 1;
6790 else
6791 return 0;
6793 num = 0;
6794 /* Scan insns back from INSN, looking for one that copies
6795 a value into or out of GOAL.
6796 Stop and give up if we reach a label. */
6798 while (1)
6800 p = PREV_INSN (p);
6801 if (p && DEBUG_INSN_P (p))
6802 continue;
6803 num++;
6804 if (p == 0 || LABEL_P (p)
6805 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6806 return 0;
6808 /* Don't reuse register contents from before a setjmp-type
6809 function call; on the second return (from the longjmp) it
6810 might have been clobbered by a later reuse. It doesn't
6811 seem worthwhile to actually go and see if it is actually
6812 reused even if that information would be readily available;
6813 just don't reuse it across the setjmp call. */
6814 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6815 return 0;
6817 if (NONJUMP_INSN_P (p)
6818 /* If we don't want spill regs ... */
6819 && (! (reload_reg_p != 0
6820 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6821 /* ... then ignore insns introduced by reload; they aren't
6822 useful and can cause results in reload_as_needed to be
6823 different from what they were when calculating the need for
6824 spills. If we notice an input-reload insn here, we will
6825 reject it below, but it might hide a usable equivalent.
6826 That makes bad code. It may even fail: perhaps no reg was
6827 spilled for this insn because it was assumed we would find
6828 that equivalent. */
6829 || INSN_UID (p) < reload_first_uid))
6831 rtx tem;
6832 pat = single_set (p);
6834 /* First check for something that sets some reg equal to GOAL. */
6835 if (pat != 0
6836 && ((regno >= 0
6837 && true_regnum (SET_SRC (pat)) == regno
6838 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6840 (regno >= 0
6841 && true_regnum (SET_DEST (pat)) == regno
6842 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6844 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6845 /* When looking for stack pointer + const,
6846 make sure we don't use a stack adjust. */
6847 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6848 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6849 || (goal_mem
6850 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6851 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6852 || (goal_mem
6853 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6854 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6855 /* If we are looking for a constant,
6856 and something equivalent to that constant was copied
6857 into a reg, we can use that reg. */
6858 || (goal_const && REG_NOTES (p) != 0
6859 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6860 && ((rtx_equal_p (XEXP (tem, 0), goal)
6861 && (valueno
6862 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6863 || (REG_P (SET_DEST (pat))
6864 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6865 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6866 && CONST_INT_P (goal)
6867 && 0 != (goaltry
6868 = operand_subword (XEXP (tem, 0), 0, 0,
6869 VOIDmode))
6870 && rtx_equal_p (goal, goaltry)
6871 && (valtry
6872 = operand_subword (SET_DEST (pat), 0, 0,
6873 VOIDmode))
6874 && (valueno = true_regnum (valtry)) >= 0)))
6875 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6876 NULL_RTX))
6877 && REG_P (SET_DEST (pat))
6878 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6879 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6880 && CONST_INT_P (goal)
6881 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6882 VOIDmode))
6883 && rtx_equal_p (goal, goaltry)
6884 && (valtry
6885 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6886 && (valueno = true_regnum (valtry)) >= 0)))
6888 if (other >= 0)
6890 if (valueno != other)
6891 continue;
6893 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6894 continue;
6895 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6896 mode, valueno))
6897 continue;
6898 value = valtry;
6899 where = p;
6900 break;
6905 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6906 (or copying VALUE into GOAL, if GOAL is also a register).
6907 Now verify that VALUE is really valid. */
6909 /* VALUENO is the register number of VALUE; a hard register. */
6911 /* Don't try to re-use something that is killed in this insn. We want
6912 to be able to trust REG_UNUSED notes. */
6913 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6914 return 0;
6916 /* If we propose to get the value from the stack pointer or if GOAL is
6917 a MEM based on the stack pointer, we need a stable SP. */
6918 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6919 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6920 goal)))
6921 need_stable_sp = 1;
6923 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6924 if (GET_MODE (value) != mode)
6925 return 0;
6927 /* Reject VALUE if it was loaded from GOAL
6928 and is also a register that appears in the address of GOAL. */
6930 if (goal_mem && value == SET_DEST (single_set (where))
6931 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6932 goal, (rtx*) 0))
6933 return 0;
6935 /* Reject registers that overlap GOAL. */
6937 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6938 nregs = hard_regno_nregs[regno][mode];
6939 else
6940 nregs = 1;
6941 valuenregs = hard_regno_nregs[valueno][mode];
6943 if (!goal_mem && !goal_const
6944 && regno + nregs > valueno && regno < valueno + valuenregs)
6945 return 0;
6947 /* Reject VALUE if it is one of the regs reserved for reloads.
6948 Reload1 knows how to reuse them anyway, and it would get
6949 confused if we allocated one without its knowledge.
6950 (Now that insns introduced by reload are ignored above,
6951 this case shouldn't happen, but I'm not positive.) */
6953 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6955 int i;
6956 for (i = 0; i < valuenregs; ++i)
6957 if (reload_reg_p[valueno + i] >= 0)
6958 return 0;
6961 /* Reject VALUE if it is a register being used for an input reload
6962 even if it is not one of those reserved. */
6964 if (reload_reg_p != 0)
6966 int i;
6967 for (i = 0; i < n_reloads; i++)
6968 if (rld[i].reg_rtx != 0 && rld[i].in)
6970 int regno1 = REGNO (rld[i].reg_rtx);
6971 int nregs1 = hard_regno_nregs[regno1]
6972 [GET_MODE (rld[i].reg_rtx)];
6973 if (regno1 < valueno + valuenregs
6974 && regno1 + nregs1 > valueno)
6975 return 0;
6979 if (goal_mem)
6980 /* We must treat frame pointer as varying here,
6981 since it can vary--in a nonlocal goto as generated by expand_goto. */
6982 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6984 /* Now verify that the values of GOAL and VALUE remain unaltered
6985 until INSN is reached. */
6987 p = insn;
6988 while (1)
6990 p = PREV_INSN (p);
6991 if (p == where)
6992 return value;
6994 /* Don't trust the conversion past a function call
6995 if either of the two is in a call-clobbered register, or memory. */
6996 if (CALL_P (p))
6998 int i;
7000 if (goal_mem || need_stable_sp)
7001 return 0;
7003 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
7004 for (i = 0; i < nregs; ++i)
7005 if (call_used_regs[regno + i]
7006 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
7007 return 0;
7009 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
7010 for (i = 0; i < valuenregs; ++i)
7011 if (call_used_regs[valueno + i]
7012 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
7013 return 0;
7016 if (INSN_P (p))
7018 pat = PATTERN (p);
7020 /* Watch out for unspec_volatile, and volatile asms. */
7021 if (volatile_insn_p (pat))
7022 return 0;
7024 /* If this insn P stores in either GOAL or VALUE, return 0.
7025 If GOAL is a memory ref and this insn writes memory, return 0.
7026 If GOAL is a memory ref and its address is not constant,
7027 and this insn P changes a register used in GOAL, return 0. */
7029 if (GET_CODE (pat) == COND_EXEC)
7030 pat = COND_EXEC_CODE (pat);
7031 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7033 rtx dest = SET_DEST (pat);
7034 while (GET_CODE (dest) == SUBREG
7035 || GET_CODE (dest) == ZERO_EXTRACT
7036 || GET_CODE (dest) == STRICT_LOW_PART)
7037 dest = XEXP (dest, 0);
7038 if (REG_P (dest))
7040 int xregno = REGNO (dest);
7041 int xnregs;
7042 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7043 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7044 else
7045 xnregs = 1;
7046 if (xregno < regno + nregs && xregno + xnregs > regno)
7047 return 0;
7048 if (xregno < valueno + valuenregs
7049 && xregno + xnregs > valueno)
7050 return 0;
7051 if (goal_mem_addr_varies
7052 && reg_overlap_mentioned_for_reload_p (dest, goal))
7053 return 0;
7054 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7055 return 0;
7057 else if (goal_mem && MEM_P (dest)
7058 && ! push_operand (dest, GET_MODE (dest)))
7059 return 0;
7060 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7061 && reg_equiv_memory_loc (regno) != 0)
7062 return 0;
7063 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7064 return 0;
7066 else if (GET_CODE (pat) == PARALLEL)
7068 int i;
7069 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7071 rtx v1 = XVECEXP (pat, 0, i);
7072 if (GET_CODE (v1) == COND_EXEC)
7073 v1 = COND_EXEC_CODE (v1);
7074 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7076 rtx dest = SET_DEST (v1);
7077 while (GET_CODE (dest) == SUBREG
7078 || GET_CODE (dest) == ZERO_EXTRACT
7079 || GET_CODE (dest) == STRICT_LOW_PART)
7080 dest = XEXP (dest, 0);
7081 if (REG_P (dest))
7083 int xregno = REGNO (dest);
7084 int xnregs;
7085 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7086 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7087 else
7088 xnregs = 1;
7089 if (xregno < regno + nregs
7090 && xregno + xnregs > regno)
7091 return 0;
7092 if (xregno < valueno + valuenregs
7093 && xregno + xnregs > valueno)
7094 return 0;
7095 if (goal_mem_addr_varies
7096 && reg_overlap_mentioned_for_reload_p (dest,
7097 goal))
7098 return 0;
7099 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7100 return 0;
7102 else if (goal_mem && MEM_P (dest)
7103 && ! push_operand (dest, GET_MODE (dest)))
7104 return 0;
7105 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7106 && reg_equiv_memory_loc (regno) != 0)
7107 return 0;
7108 else if (need_stable_sp
7109 && push_operand (dest, GET_MODE (dest)))
7110 return 0;
7115 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7117 rtx link;
7119 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7120 link = XEXP (link, 1))
7122 pat = XEXP (link, 0);
7123 if (GET_CODE (pat) == CLOBBER)
7125 rtx dest = SET_DEST (pat);
7127 if (REG_P (dest))
7129 int xregno = REGNO (dest);
7130 int xnregs
7131 = hard_regno_nregs[xregno][GET_MODE (dest)];
7133 if (xregno < regno + nregs
7134 && xregno + xnregs > regno)
7135 return 0;
7136 else if (xregno < valueno + valuenregs
7137 && xregno + xnregs > valueno)
7138 return 0;
7139 else if (goal_mem_addr_varies
7140 && reg_overlap_mentioned_for_reload_p (dest,
7141 goal))
7142 return 0;
7145 else if (goal_mem && MEM_P (dest)
7146 && ! push_operand (dest, GET_MODE (dest)))
7147 return 0;
7148 else if (need_stable_sp
7149 && push_operand (dest, GET_MODE (dest)))
7150 return 0;
7155 #ifdef AUTO_INC_DEC
7156 /* If this insn auto-increments or auto-decrements
7157 either regno or valueno, return 0 now.
7158 If GOAL is a memory ref and its address is not constant,
7159 and this insn P increments a register used in GOAL, return 0. */
7161 rtx link;
7163 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7164 if (REG_NOTE_KIND (link) == REG_INC
7165 && REG_P (XEXP (link, 0)))
7167 int incno = REGNO (XEXP (link, 0));
7168 if (incno < regno + nregs && incno >= regno)
7169 return 0;
7170 if (incno < valueno + valuenregs && incno >= valueno)
7171 return 0;
7172 if (goal_mem_addr_varies
7173 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7174 goal))
7175 return 0;
7178 #endif
7183 /* Find a place where INCED appears in an increment or decrement operator
7184 within X, and return the amount INCED is incremented or decremented by.
7185 The value is always positive. */
7187 static int
7188 find_inc_amount (rtx x, rtx inced)
7190 enum rtx_code code = GET_CODE (x);
7191 const char *fmt;
7192 int i;
7194 if (code == MEM)
7196 rtx addr = XEXP (x, 0);
7197 if ((GET_CODE (addr) == PRE_DEC
7198 || GET_CODE (addr) == POST_DEC
7199 || GET_CODE (addr) == PRE_INC
7200 || GET_CODE (addr) == POST_INC)
7201 && XEXP (addr, 0) == inced)
7202 return GET_MODE_SIZE (GET_MODE (x));
7203 else if ((GET_CODE (addr) == PRE_MODIFY
7204 || GET_CODE (addr) == POST_MODIFY)
7205 && GET_CODE (XEXP (addr, 1)) == PLUS
7206 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7207 && XEXP (addr, 0) == inced
7208 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7210 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7211 return i < 0 ? -i : i;
7215 fmt = GET_RTX_FORMAT (code);
7216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7218 if (fmt[i] == 'e')
7220 int tem = find_inc_amount (XEXP (x, i), inced);
7221 if (tem != 0)
7222 return tem;
7224 if (fmt[i] == 'E')
7226 int j;
7227 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7229 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7230 if (tem != 0)
7231 return tem;
7236 return 0;
7239 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7240 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7242 #ifdef AUTO_INC_DEC
7243 static int
7244 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7245 rtx insn)
7247 rtx link;
7249 gcc_assert (insn);
7251 if (! INSN_P (insn))
7252 return 0;
7254 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7255 if (REG_NOTE_KIND (link) == REG_INC)
7257 unsigned int test = (int) REGNO (XEXP (link, 0));
7258 if (test >= regno && test < endregno)
7259 return 1;
7261 return 0;
7263 #else
7265 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7267 #endif
7269 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7270 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7271 REG_INC. REGNO must refer to a hard register. */
7274 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7275 int sets)
7277 unsigned int nregs, endregno;
7279 /* regno must be a hard register. */
7280 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7282 nregs = hard_regno_nregs[regno][mode];
7283 endregno = regno + nregs;
7285 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7286 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7287 && REG_P (XEXP (PATTERN (insn), 0)))
7289 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7291 return test >= regno && test < endregno;
7294 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7295 return 1;
7297 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7299 int i = XVECLEN (PATTERN (insn), 0) - 1;
7301 for (; i >= 0; i--)
7303 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7304 if ((GET_CODE (elt) == CLOBBER
7305 || (sets == 1 && GET_CODE (elt) == SET))
7306 && REG_P (XEXP (elt, 0)))
7308 unsigned int test = REGNO (XEXP (elt, 0));
7310 if (test >= regno && test < endregno)
7311 return 1;
7313 if (sets == 2
7314 && reg_inc_found_and_valid_p (regno, endregno, elt))
7315 return 1;
7319 return 0;
7322 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7324 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7326 int regno;
7328 if (GET_MODE (reloadreg) == mode)
7329 return reloadreg;
7331 regno = REGNO (reloadreg);
7333 if (REG_WORDS_BIG_ENDIAN)
7334 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7335 - (int) hard_regno_nregs[regno][mode];
7337 return gen_rtx_REG (mode, regno);
7340 static const char *const reload_when_needed_name[] =
7342 "RELOAD_FOR_INPUT",
7343 "RELOAD_FOR_OUTPUT",
7344 "RELOAD_FOR_INSN",
7345 "RELOAD_FOR_INPUT_ADDRESS",
7346 "RELOAD_FOR_INPADDR_ADDRESS",
7347 "RELOAD_FOR_OUTPUT_ADDRESS",
7348 "RELOAD_FOR_OUTADDR_ADDRESS",
7349 "RELOAD_FOR_OPERAND_ADDRESS",
7350 "RELOAD_FOR_OPADDR_ADDR",
7351 "RELOAD_OTHER",
7352 "RELOAD_FOR_OTHER_ADDRESS"
7355 /* These functions are used to print the variables set by 'find_reloads' */
7357 DEBUG_FUNCTION void
7358 debug_reload_to_stream (FILE *f)
7360 int r;
7361 const char *prefix;
7363 if (! f)
7364 f = stderr;
7365 for (r = 0; r < n_reloads; r++)
7367 fprintf (f, "Reload %d: ", r);
7369 if (rld[r].in != 0)
7371 fprintf (f, "reload_in (%s) = ",
7372 GET_MODE_NAME (rld[r].inmode));
7373 print_inline_rtx (f, rld[r].in, 24);
7374 fprintf (f, "\n\t");
7377 if (rld[r].out != 0)
7379 fprintf (f, "reload_out (%s) = ",
7380 GET_MODE_NAME (rld[r].outmode));
7381 print_inline_rtx (f, rld[r].out, 24);
7382 fprintf (f, "\n\t");
7385 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7387 fprintf (f, "%s (opnum = %d)",
7388 reload_when_needed_name[(int) rld[r].when_needed],
7389 rld[r].opnum);
7391 if (rld[r].optional)
7392 fprintf (f, ", optional");
7394 if (rld[r].nongroup)
7395 fprintf (f, ", nongroup");
7397 if (rld[r].inc != 0)
7398 fprintf (f, ", inc by %d", rld[r].inc);
7400 if (rld[r].nocombine)
7401 fprintf (f, ", can't combine");
7403 if (rld[r].secondary_p)
7404 fprintf (f, ", secondary_reload_p");
7406 if (rld[r].in_reg != 0)
7408 fprintf (f, "\n\treload_in_reg: ");
7409 print_inline_rtx (f, rld[r].in_reg, 24);
7412 if (rld[r].out_reg != 0)
7414 fprintf (f, "\n\treload_out_reg: ");
7415 print_inline_rtx (f, rld[r].out_reg, 24);
7418 if (rld[r].reg_rtx != 0)
7420 fprintf (f, "\n\treload_reg_rtx: ");
7421 print_inline_rtx (f, rld[r].reg_rtx, 24);
7424 prefix = "\n\t";
7425 if (rld[r].secondary_in_reload != -1)
7427 fprintf (f, "%ssecondary_in_reload = %d",
7428 prefix, rld[r].secondary_in_reload);
7429 prefix = ", ";
7432 if (rld[r].secondary_out_reload != -1)
7433 fprintf (f, "%ssecondary_out_reload = %d\n",
7434 prefix, rld[r].secondary_out_reload);
7436 prefix = "\n\t";
7437 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7439 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7440 insn_data[rld[r].secondary_in_icode].name);
7441 prefix = ", ";
7444 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7445 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7446 insn_data[rld[r].secondary_out_icode].name);
7448 fprintf (f, "\n");
7452 DEBUG_FUNCTION void
7453 debug_reload (void)
7455 debug_reload_to_stream (stderr);