PR middle-end/77674
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob5897454d427c1315fd7b114ed0275f569bc372c9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Unblocked_Exit_Count : Nat := 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range (R_Copy : Node_Id);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment (N : Node_Id) is
92 Lhs : constant Node_Id := Name (N);
93 Rhs : constant Node_Id := Expression (N);
94 T1 : Entity_Id;
95 T2 : Entity_Id;
96 Decl : Node_Id;
98 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
102 procedure Kill_Lhs;
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
109 (Opnd : Node_Id;
110 Opnd_Type : in out Entity_Id);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
120 begin
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted (N) then
125 return;
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name (N) then
130 declare
131 Ent : constant Entity_Id := Entity (N);
133 begin
134 if Ekind (Ent) = E_In_Parameter then
135 Error_Msg_N
136 ("assignment to IN mode parameter not allowed", N);
137 return;
139 -- Renamings of protected private components are turned into
140 -- constants when compiling a protected function. In the case
141 -- of single protected types, the private component appears
142 -- directly.
144 elsif (Is_Prival (Ent)
145 and then
146 (Ekind (Current_Scope) = E_Function
147 or else Ekind (Enclosing_Dynamic_Scope
148 (Current_Scope)) = E_Function))
149 or else
150 (Ekind (Ent) = E_Component
151 and then Is_Protected_Type (Scope (Ent)))
152 then
153 Error_Msg_N
154 ("protected function cannot modify protected object", N);
155 return;
157 elsif Ekind (Ent) = E_Loop_Parameter then
158 Error_Msg_N ("assignment to loop parameter not allowed", N);
159 return;
160 end if;
161 end;
163 -- For indexed components, test prefix if it is in array. We do not
164 -- want to recurse for cases where the prefix is a pointer, since we
165 -- may get a message confusing the pointer and what it references.
167 elsif Nkind (N) = N_Indexed_Component
168 and then Is_Array_Type (Etype (Prefix (N)))
169 then
170 Diagnose_Non_Variable_Lhs (Prefix (N));
171 return;
173 -- Another special case for assignment to discriminant
175 elsif Nkind (N) = N_Selected_Component then
176 if Present (Entity (Selector_Name (N)))
177 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
178 then
179 Error_Msg_N ("assignment to discriminant not allowed", N);
180 return;
182 -- For selection from record, diagnose prefix, but note that again
183 -- we only do this for a record, not e.g. for a pointer.
185 elsif Is_Record_Type (Etype (Prefix (N))) then
186 Diagnose_Non_Variable_Lhs (Prefix (N));
187 return;
188 end if;
189 end if;
191 -- If we fall through, we have no special message to issue
193 Error_Msg_N ("left hand side of assignment must be a variable", N);
194 end Diagnose_Non_Variable_Lhs;
196 --------------
197 -- Kill_Lhs --
198 --------------
200 procedure Kill_Lhs is
201 begin
202 if Is_Entity_Name (Lhs) then
203 declare
204 Ent : constant Entity_Id := Entity (Lhs);
205 begin
206 if Present (Ent) then
207 Kill_Current_Values (Ent);
208 end if;
209 end;
210 end if;
211 end Kill_Lhs;
213 -------------------------
214 -- Set_Assignment_Type --
215 -------------------------
217 procedure Set_Assignment_Type
218 (Opnd : Node_Id;
219 Opnd_Type : in out Entity_Id)
221 begin
222 Require_Entity (Opnd);
224 -- If the assignment operand is an in-out or out parameter, then we
225 -- get the actual subtype (needed for the unconstrained case). If the
226 -- operand is the actual in an entry declaration, then within the
227 -- accept statement it is replaced with a local renaming, which may
228 -- also have an actual subtype.
230 if Is_Entity_Name (Opnd)
231 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
232 or else Ekind_In (Entity (Opnd),
233 E_In_Out_Parameter,
234 E_Generic_In_Out_Parameter)
235 or else
236 (Ekind (Entity (Opnd)) = E_Variable
237 and then Nkind (Parent (Entity (Opnd))) =
238 N_Object_Renaming_Declaration
239 and then Nkind (Parent (Parent (Entity (Opnd)))) =
240 N_Accept_Statement))
241 then
242 Opnd_Type := Get_Actual_Subtype (Opnd);
244 -- If assignment operand is a component reference, then we get the
245 -- actual subtype of the component for the unconstrained case.
247 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
248 and then not Is_Unchecked_Union (Opnd_Type)
249 then
250 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
252 if Present (Decl) then
253 Insert_Action (N, Decl);
254 Mark_Rewrite_Insertion (Decl);
255 Analyze (Decl);
256 Opnd_Type := Defining_Identifier (Decl);
257 Set_Etype (Opnd, Opnd_Type);
258 Freeze_Itype (Opnd_Type, N);
260 elsif Is_Constrained (Etype (Opnd)) then
261 Opnd_Type := Etype (Opnd);
262 end if;
264 -- For slice, use the constrained subtype created for the slice
266 elsif Nkind (Opnd) = N_Slice then
267 Opnd_Type := Etype (Opnd);
268 end if;
269 end Set_Assignment_Type;
271 -- Local variables
273 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
275 -- Start of processing for Analyze_Assignment
277 begin
278 Mark_Coextensions (N, Rhs);
280 -- Analyze the target of the assignment first in case the expression
281 -- contains references to Ghost entities. The checks that verify the
282 -- proper use of a Ghost entity need to know the enclosing context.
284 Analyze (Lhs);
286 -- An assignment statement is Ghost when the left hand side denotes a
287 -- Ghost entity. Set the mode now to ensure that any nodes generated
288 -- during analysis and expansion are properly marked as Ghost.
290 Set_Ghost_Mode (N);
291 Analyze (Rhs);
293 -- Ensure that we never do an assignment on a variable marked as
294 -- as Safe_To_Reevaluate.
296 pragma Assert (not Is_Entity_Name (Lhs)
297 or else Ekind (Entity (Lhs)) /= E_Variable
298 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
300 -- Start type analysis for assignment
302 T1 := Etype (Lhs);
304 -- In the most general case, both Lhs and Rhs can be overloaded, and we
305 -- must compute the intersection of the possible types on each side.
307 if Is_Overloaded (Lhs) then
308 declare
309 I : Interp_Index;
310 It : Interp;
312 begin
313 T1 := Any_Type;
314 Get_First_Interp (Lhs, I, It);
316 while Present (It.Typ) loop
318 -- An indexed component with generalized indexing is always
319 -- overloaded with the corresponding dereference. Discard the
320 -- interpretation that yields a reference type, which is not
321 -- assignable.
323 if Nkind (Lhs) = N_Indexed_Component
324 and then Present (Generalized_Indexing (Lhs))
325 and then Has_Implicit_Dereference (It.Typ)
326 then
327 null;
329 elsif Has_Compatible_Type (Rhs, It.Typ) then
330 if T1 /= Any_Type then
332 -- An explicit dereference is overloaded if the prefix
333 -- is. Try to remove the ambiguity on the prefix, the
334 -- error will be posted there if the ambiguity is real.
336 if Nkind (Lhs) = N_Explicit_Dereference then
337 declare
338 PI : Interp_Index;
339 PI1 : Interp_Index := 0;
340 PIt : Interp;
341 Found : Boolean;
343 begin
344 Found := False;
345 Get_First_Interp (Prefix (Lhs), PI, PIt);
347 while Present (PIt.Typ) loop
348 if Is_Access_Type (PIt.Typ)
349 and then Has_Compatible_Type
350 (Rhs, Designated_Type (PIt.Typ))
351 then
352 if Found then
353 PIt :=
354 Disambiguate (Prefix (Lhs),
355 PI1, PI, Any_Type);
357 if PIt = No_Interp then
358 Error_Msg_N
359 ("ambiguous left-hand side"
360 & " in assignment", Lhs);
361 exit;
362 else
363 Resolve (Prefix (Lhs), PIt.Typ);
364 end if;
366 exit;
367 else
368 Found := True;
369 PI1 := PI;
370 end if;
371 end if;
373 Get_Next_Interp (PI, PIt);
374 end loop;
375 end;
377 else
378 Error_Msg_N
379 ("ambiguous left-hand side in assignment", Lhs);
380 exit;
381 end if;
382 else
383 T1 := It.Typ;
384 end if;
385 end if;
387 Get_Next_Interp (I, It);
388 end loop;
389 end;
391 if T1 = Any_Type then
392 Error_Msg_N
393 ("no valid types for left-hand side for assignment", Lhs);
394 Kill_Lhs;
395 Ghost_Mode := Save_Ghost_Mode;
396 return;
397 end if;
398 end if;
400 -- The resulting assignment type is T1, so now we will resolve the left
401 -- hand side of the assignment using this determined type.
403 Resolve (Lhs, T1);
405 -- Cases where Lhs is not a variable
407 -- Cases where Lhs is not a variable. In an instance or an inlined body
408 -- no need for further check because assignment was legal in template.
410 if In_Inlined_Body then
411 null;
413 elsif not Is_Variable (Lhs) then
415 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
416 -- protected object.
418 declare
419 Ent : Entity_Id;
420 S : Entity_Id;
422 begin
423 if Ada_Version >= Ada_2005 then
425 -- Handle chains of renamings
427 Ent := Lhs;
428 while Nkind (Ent) in N_Has_Entity
429 and then Present (Entity (Ent))
430 and then Present (Renamed_Object (Entity (Ent)))
431 loop
432 Ent := Renamed_Object (Entity (Ent));
433 end loop;
435 if (Nkind (Ent) = N_Attribute_Reference
436 and then Attribute_Name (Ent) = Name_Priority)
438 -- Renamings of the attribute Priority applied to protected
439 -- objects have been previously expanded into calls to the
440 -- Get_Ceiling run-time subprogram.
442 or else Is_Expanded_Priority_Attribute (Ent)
443 then
444 -- The enclosing subprogram cannot be a protected function
446 S := Current_Scope;
447 while not (Is_Subprogram (S)
448 and then Convention (S) = Convention_Protected)
449 and then S /= Standard_Standard
450 loop
451 S := Scope (S);
452 end loop;
454 if Ekind (S) = E_Function
455 and then Convention (S) = Convention_Protected
456 then
457 Error_Msg_N
458 ("protected function cannot modify protected object",
459 Lhs);
460 end if;
462 -- Changes of the ceiling priority of the protected object
463 -- are only effective if the Ceiling_Locking policy is in
464 -- effect (AARM D.5.2 (5/2)).
466 if Locking_Policy /= 'C' then
467 Error_Msg_N ("assignment to the attribute PRIORITY has " &
468 "no effect??", Lhs);
469 Error_Msg_N ("\since no Locking_Policy has been " &
470 "specified??", Lhs);
471 end if;
473 Ghost_Mode := Save_Ghost_Mode;
474 return;
475 end if;
476 end if;
477 end;
479 Diagnose_Non_Variable_Lhs (Lhs);
480 Ghost_Mode := Save_Ghost_Mode;
481 return;
483 -- Error of assigning to limited type. We do however allow this in
484 -- certain cases where the front end generates the assignments.
486 elsif Is_Limited_Type (T1)
487 and then not Assignment_OK (Lhs)
488 and then not Assignment_OK (Original_Node (Lhs))
489 then
490 -- CPP constructors can only be called in declarations
492 if Is_CPP_Constructor_Call (Rhs) then
493 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
494 else
495 Error_Msg_N
496 ("left hand of assignment must not be limited type", Lhs);
497 Explain_Limited_Type (T1, Lhs);
498 end if;
500 Ghost_Mode := Save_Ghost_Mode;
501 return;
503 -- A class-wide type may be a limited view. This illegal case is not
504 -- caught by previous checks.
506 elsif Ekind (T1) = E_Class_Wide_Type
507 and then From_Limited_With (T1)
508 then
509 Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
510 return;
512 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
513 -- abstract. This is only checked when the assignment Comes_From_Source,
514 -- because in some cases the expander generates such assignments (such
515 -- in the _assign operation for an abstract type).
517 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
518 Error_Msg_N
519 ("target of assignment operation must not be abstract", Lhs);
520 end if;
522 -- Resolution may have updated the subtype, in case the left-hand side
523 -- is a private protected component. Use the correct subtype to avoid
524 -- scoping issues in the back-end.
526 T1 := Etype (Lhs);
528 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
529 -- type. For example:
531 -- limited with P;
532 -- package Pkg is
533 -- type Acc is access P.T;
534 -- end Pkg;
536 -- with Pkg; use Acc;
537 -- procedure Example is
538 -- A, B : Acc;
539 -- begin
540 -- A.all := B.all; -- ERROR
541 -- end Example;
543 if Nkind (Lhs) = N_Explicit_Dereference
544 and then Ekind (T1) = E_Incomplete_Type
545 then
546 Error_Msg_N ("invalid use of incomplete type", Lhs);
547 Kill_Lhs;
548 Ghost_Mode := Save_Ghost_Mode;
549 return;
550 end if;
552 -- Now we can complete the resolution of the right hand side
554 Set_Assignment_Type (Lhs, T1);
555 Resolve (Rhs, T1);
557 -- This is the point at which we check for an unset reference
559 Check_Unset_Reference (Rhs);
560 Check_Unprotected_Access (Lhs, Rhs);
562 -- Remaining steps are skipped if Rhs was syntactically in error
564 if Rhs = Error then
565 Kill_Lhs;
566 Ghost_Mode := Save_Ghost_Mode;
567 return;
568 end if;
570 T2 := Etype (Rhs);
572 if not Covers (T1, T2) then
573 Wrong_Type (Rhs, Etype (Lhs));
574 Kill_Lhs;
575 Ghost_Mode := Save_Ghost_Mode;
576 return;
577 end if;
579 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
580 -- types, use the non-limited view if available
582 if Nkind (Rhs) = N_Explicit_Dereference
583 and then Is_Tagged_Type (T2)
584 and then Has_Non_Limited_View (T2)
585 then
586 T2 := Non_Limited_View (T2);
587 end if;
589 Set_Assignment_Type (Rhs, T2);
591 if Total_Errors_Detected /= 0 then
592 if No (T1) then
593 T1 := Any_Type;
594 end if;
596 if No (T2) then
597 T2 := Any_Type;
598 end if;
599 end if;
601 if T1 = Any_Type or else T2 = Any_Type then
602 Kill_Lhs;
603 Ghost_Mode := Save_Ghost_Mode;
604 return;
605 end if;
607 -- If the rhs is class-wide or dynamically tagged, then require the lhs
608 -- to be class-wide. The case where the rhs is a dynamically tagged call
609 -- to a dispatching operation with a controlling access result is
610 -- excluded from this check, since the target has an access type (and
611 -- no tag propagation occurs in that case).
613 if (Is_Class_Wide_Type (T2)
614 or else (Is_Dynamically_Tagged (Rhs)
615 and then not Is_Access_Type (T1)))
616 and then not Is_Class_Wide_Type (T1)
617 then
618 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
620 elsif Is_Class_Wide_Type (T1)
621 and then not Is_Class_Wide_Type (T2)
622 and then not Is_Tag_Indeterminate (Rhs)
623 and then not Is_Dynamically_Tagged (Rhs)
624 then
625 Error_Msg_N ("dynamically tagged expression required!", Rhs);
626 end if;
628 -- Propagate the tag from a class-wide target to the rhs when the rhs
629 -- is a tag-indeterminate call.
631 if Is_Tag_Indeterminate (Rhs) then
632 if Is_Class_Wide_Type (T1) then
633 Propagate_Tag (Lhs, Rhs);
635 elsif Nkind (Rhs) = N_Function_Call
636 and then Is_Entity_Name (Name (Rhs))
637 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
638 then
639 Error_Msg_N
640 ("call to abstract function must be dispatching", Name (Rhs));
642 elsif Nkind (Rhs) = N_Qualified_Expression
643 and then Nkind (Expression (Rhs)) = N_Function_Call
644 and then Is_Entity_Name (Name (Expression (Rhs)))
645 and then
646 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
647 then
648 Error_Msg_N
649 ("call to abstract function must be dispatching",
650 Name (Expression (Rhs)));
651 end if;
652 end if;
654 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
655 -- apply an implicit conversion of the rhs to that type to force
656 -- appropriate static and run-time accessibility checks. This applies
657 -- as well to anonymous access-to-subprogram types that are component
658 -- subtypes or formal parameters.
660 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
661 if Is_Local_Anonymous_Access (T1)
662 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
664 -- Handle assignment to an Ada 2012 stand-alone object
665 -- of an anonymous access type.
667 or else (Ekind (T1) = E_Anonymous_Access_Type
668 and then Nkind (Associated_Node_For_Itype (T1)) =
669 N_Object_Declaration)
671 then
672 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
673 Analyze_And_Resolve (Rhs, T1);
674 end if;
675 end if;
677 -- Ada 2005 (AI-231): Assignment to not null variable
679 if Ada_Version >= Ada_2005
680 and then Can_Never_Be_Null (T1)
681 and then not Assignment_OK (Lhs)
682 then
683 -- Case where we know the right hand side is null
685 if Known_Null (Rhs) then
686 Apply_Compile_Time_Constraint_Error
687 (N => Rhs,
688 Msg =>
689 "(Ada 2005) null not allowed in null-excluding objects??",
690 Reason => CE_Null_Not_Allowed);
692 -- We still mark this as a possible modification, that's necessary
693 -- to reset Is_True_Constant, and desirable for xref purposes.
695 Note_Possible_Modification (Lhs, Sure => True);
696 Ghost_Mode := Save_Ghost_Mode;
697 return;
699 -- If we know the right hand side is non-null, then we convert to the
700 -- target type, since we don't need a run time check in that case.
702 elsif not Can_Never_Be_Null (T2) then
703 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
704 Analyze_And_Resolve (Rhs, T1);
705 end if;
706 end if;
708 if Is_Scalar_Type (T1) then
709 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
711 -- For array types, verify that lengths match. If the right hand side
712 -- is a function call that has been inlined, the assignment has been
713 -- rewritten as a block, and the constraint check will be applied to the
714 -- assignment within the block.
716 elsif Is_Array_Type (T1)
717 and then (Nkind (Rhs) /= N_Type_Conversion
718 or else Is_Constrained (Etype (Rhs)))
719 and then (Nkind (Rhs) /= N_Function_Call
720 or else Nkind (N) /= N_Block_Statement)
721 then
722 -- Assignment verifies that the length of the Lsh and Rhs are equal,
723 -- but of course the indexes do not have to match. If the right-hand
724 -- side is a type conversion to an unconstrained type, a length check
725 -- is performed on the expression itself during expansion. In rare
726 -- cases, the redundant length check is computed on an index type
727 -- with a different representation, triggering incorrect code in the
728 -- back end.
730 Apply_Length_Check (Rhs, Etype (Lhs));
732 else
733 -- Discriminant checks are applied in the course of expansion
735 null;
736 end if;
738 -- Note: modifications of the Lhs may only be recorded after
739 -- checks have been applied.
741 Note_Possible_Modification (Lhs, Sure => True);
743 -- ??? a real accessibility check is needed when ???
745 -- Post warning for redundant assignment or variable to itself
747 if Warn_On_Redundant_Constructs
749 -- We only warn for source constructs
751 and then Comes_From_Source (N)
753 -- Where the object is the same on both sides
755 and then Same_Object (Lhs, Original_Node (Rhs))
757 -- But exclude the case where the right side was an operation that
758 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
759 -- don't want to warn in such a case, since it is reasonable to write
760 -- such expressions especially when K is defined symbolically in some
761 -- other package.
763 and then Nkind (Original_Node (Rhs)) not in N_Op
764 then
765 if Nkind (Lhs) in N_Has_Entity then
766 Error_Msg_NE -- CODEFIX
767 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
768 else
769 Error_Msg_N -- CODEFIX
770 ("?r?useless assignment of object to itself!", N);
771 end if;
772 end if;
774 -- Check for non-allowed composite assignment
776 if not Support_Composite_Assign_On_Target
777 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
778 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
779 then
780 Error_Msg_CRT ("composite assignment", N);
781 end if;
783 -- Check elaboration warning for left side if not in elab code
785 if not In_Subprogram_Or_Concurrent_Unit then
786 Check_Elab_Assign (Lhs);
787 end if;
789 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
790 -- assignment is a source assignment in the extended main source unit.
791 -- We are not interested in any reference information outside this
792 -- context, or in compiler generated assignment statements.
794 if Comes_From_Source (N)
795 and then In_Extended_Main_Source_Unit (Lhs)
796 then
797 Set_Referenced_Modified (Lhs, Out_Param => False);
798 end if;
800 -- RM 7.3.2 (12/3): An assignment to a view conversion (from a type
801 -- to one of its ancestors) requires an invariant check. Apply check
802 -- only if expression comes from source, otherwise it will be applied
803 -- when value is assigned to source entity.
805 if Nkind (Lhs) = N_Type_Conversion
806 and then Has_Invariants (Etype (Expression (Lhs)))
807 and then Comes_From_Source (Expression (Lhs))
808 then
809 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
810 end if;
812 -- Final step. If left side is an entity, then we may be able to reset
813 -- the current tracked values to new safe values. We only have something
814 -- to do if the left side is an entity name, and expansion has not
815 -- modified the node into something other than an assignment, and of
816 -- course we only capture values if it is safe to do so.
818 if Is_Entity_Name (Lhs)
819 and then Nkind (N) = N_Assignment_Statement
820 then
821 declare
822 Ent : constant Entity_Id := Entity (Lhs);
824 begin
825 if Safe_To_Capture_Value (N, Ent) then
827 -- If simple variable on left side, warn if this assignment
828 -- blots out another one (rendering it useless). We only do
829 -- this for source assignments, otherwise we can generate bogus
830 -- warnings when an assignment is rewritten as another
831 -- assignment, and gets tied up with itself.
833 -- There may have been a previous reference to a component of
834 -- the variable, which in general removes the Last_Assignment
835 -- field of the variable to indicate a relevant use of the
836 -- previous assignment. However, if the assignment is to a
837 -- subcomponent the reference may not have registered, because
838 -- it is not possible to determine whether the context is an
839 -- assignment. In those cases we generate a Deferred_Reference,
840 -- to be used at the end of compilation to generate the right
841 -- kind of reference, and we suppress a potential warning for
842 -- a useless assignment, which might be premature. This may
843 -- lose a warning in rare cases, but seems preferable to a
844 -- misleading warning.
846 if Warn_On_Modified_Unread
847 and then Is_Assignable (Ent)
848 and then Comes_From_Source (N)
849 and then In_Extended_Main_Source_Unit (Ent)
850 and then not Has_Deferred_Reference (Ent)
851 then
852 Warn_On_Useless_Assignment (Ent, N);
853 end if;
855 -- If we are assigning an access type and the left side is an
856 -- entity, then make sure that the Is_Known_[Non_]Null flags
857 -- properly reflect the state of the entity after assignment.
859 if Is_Access_Type (T1) then
860 if Known_Non_Null (Rhs) then
861 Set_Is_Known_Non_Null (Ent, True);
863 elsif Known_Null (Rhs)
864 and then not Can_Never_Be_Null (Ent)
865 then
866 Set_Is_Known_Null (Ent, True);
868 else
869 Set_Is_Known_Null (Ent, False);
871 if not Can_Never_Be_Null (Ent) then
872 Set_Is_Known_Non_Null (Ent, False);
873 end if;
874 end if;
876 -- For discrete types, we may be able to set the current value
877 -- if the value is known at compile time.
879 elsif Is_Discrete_Type (T1)
880 and then Compile_Time_Known_Value (Rhs)
881 then
882 Set_Current_Value (Ent, Rhs);
883 else
884 Set_Current_Value (Ent, Empty);
885 end if;
887 -- If not safe to capture values, kill them
889 else
890 Kill_Lhs;
891 end if;
892 end;
893 end if;
895 -- If assigning to an object in whole or in part, note location of
896 -- assignment in case no one references value. We only do this for
897 -- source assignments, otherwise we can generate bogus warnings when an
898 -- assignment is rewritten as another assignment, and gets tied up with
899 -- itself.
901 declare
902 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
903 begin
904 if Present (Ent)
905 and then Safe_To_Capture_Value (N, Ent)
906 and then Nkind (N) = N_Assignment_Statement
907 and then Warn_On_Modified_Unread
908 and then Is_Assignable (Ent)
909 and then Comes_From_Source (N)
910 and then In_Extended_Main_Source_Unit (Ent)
911 then
912 Set_Last_Assignment (Ent, Lhs);
913 end if;
914 end;
916 Analyze_Dimension (N);
917 Ghost_Mode := Save_Ghost_Mode;
918 end Analyze_Assignment;
920 -----------------------------
921 -- Analyze_Block_Statement --
922 -----------------------------
924 procedure Analyze_Block_Statement (N : Node_Id) is
925 procedure Install_Return_Entities (Scop : Entity_Id);
926 -- Install all entities of return statement scope Scop in the visibility
927 -- chain except for the return object since its entity is reused in a
928 -- renaming.
930 -----------------------------
931 -- Install_Return_Entities --
932 -----------------------------
934 procedure Install_Return_Entities (Scop : Entity_Id) is
935 Id : Entity_Id;
937 begin
938 Id := First_Entity (Scop);
939 while Present (Id) loop
941 -- Do not install the return object
943 if not Ekind_In (Id, E_Constant, E_Variable)
944 or else not Is_Return_Object (Id)
945 then
946 Install_Entity (Id);
947 end if;
949 Next_Entity (Id);
950 end loop;
951 end Install_Return_Entities;
953 -- Local constants and variables
955 Decls : constant List_Id := Declarations (N);
956 Id : constant Node_Id := Identifier (N);
957 HSS : constant Node_Id := Handled_Statement_Sequence (N);
959 Is_BIP_Return_Statement : Boolean;
961 -- Start of processing for Analyze_Block_Statement
963 begin
964 -- In SPARK mode, we reject block statements. Note that the case of
965 -- block statements generated by the expander is fine.
967 if Nkind (Original_Node (N)) = N_Block_Statement then
968 Check_SPARK_05_Restriction ("block statement is not allowed", N);
969 end if;
971 -- If no handled statement sequence is present, things are really messed
972 -- up, and we just return immediately (defence against previous errors).
974 if No (HSS) then
975 Check_Error_Detected;
976 return;
977 end if;
979 -- Detect whether the block is actually a rewritten return statement of
980 -- a build-in-place function.
982 Is_BIP_Return_Statement :=
983 Present (Id)
984 and then Present (Entity (Id))
985 and then Ekind (Entity (Id)) = E_Return_Statement
986 and then Is_Build_In_Place_Function
987 (Return_Applies_To (Entity (Id)));
989 -- Normal processing with HSS present
991 declare
992 EH : constant List_Id := Exception_Handlers (HSS);
993 Ent : Entity_Id := Empty;
994 S : Entity_Id;
996 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
997 -- Recursively save value of this global, will be restored on exit
999 begin
1000 -- Initialize unblocked exit count for statements of begin block
1001 -- plus one for each exception handler that is present.
1003 Unblocked_Exit_Count := 1;
1005 if Present (EH) then
1006 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
1007 end if;
1009 -- If a label is present analyze it and mark it as referenced
1011 if Present (Id) then
1012 Analyze (Id);
1013 Ent := Entity (Id);
1015 -- An error defense. If we have an identifier, but no entity, then
1016 -- something is wrong. If previous errors, then just remove the
1017 -- identifier and continue, otherwise raise an exception.
1019 if No (Ent) then
1020 Check_Error_Detected;
1021 Set_Identifier (N, Empty);
1023 else
1024 Set_Ekind (Ent, E_Block);
1025 Generate_Reference (Ent, N, ' ');
1026 Generate_Definition (Ent);
1028 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1029 Set_Label_Construct (Parent (Ent), N);
1030 end if;
1031 end if;
1032 end if;
1034 -- If no entity set, create a label entity
1036 if No (Ent) then
1037 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1038 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1039 Set_Parent (Ent, N);
1040 end if;
1042 Set_Etype (Ent, Standard_Void_Type);
1043 Set_Block_Node (Ent, Identifier (N));
1044 Push_Scope (Ent);
1046 -- The block served as an extended return statement. Ensure that any
1047 -- entities created during the analysis and expansion of the return
1048 -- object declaration are once again visible.
1050 if Is_BIP_Return_Statement then
1051 Install_Return_Entities (Ent);
1052 end if;
1054 if Present (Decls) then
1055 Analyze_Declarations (Decls);
1056 Check_Completion;
1057 Inspect_Deferred_Constant_Completion (Decls);
1058 end if;
1060 Analyze (HSS);
1061 Process_End_Label (HSS, 'e', Ent);
1063 -- If exception handlers are present, then we indicate that enclosing
1064 -- scopes contain a block with handlers. We only need to mark non-
1065 -- generic scopes.
1067 if Present (EH) then
1068 S := Scope (Ent);
1069 loop
1070 Set_Has_Nested_Block_With_Handler (S);
1071 exit when Is_Overloadable (S)
1072 or else Ekind (S) = E_Package
1073 or else Is_Generic_Unit (S);
1074 S := Scope (S);
1075 end loop;
1076 end if;
1078 Check_References (Ent);
1079 End_Scope;
1081 if Unblocked_Exit_Count = 0 then
1082 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1083 Check_Unreachable_Code (N);
1084 else
1085 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1086 end if;
1087 end;
1088 end Analyze_Block_Statement;
1090 --------------------------------
1091 -- Analyze_Compound_Statement --
1092 --------------------------------
1094 procedure Analyze_Compound_Statement (N : Node_Id) is
1095 begin
1096 Analyze_List (Actions (N));
1097 end Analyze_Compound_Statement;
1099 ----------------------------
1100 -- Analyze_Case_Statement --
1101 ----------------------------
1103 procedure Analyze_Case_Statement (N : Node_Id) is
1104 Exp : Node_Id;
1105 Exp_Type : Entity_Id;
1106 Exp_Btype : Entity_Id;
1107 Last_Choice : Nat;
1109 Others_Present : Boolean;
1110 -- Indicates if Others was present
1112 pragma Warnings (Off, Last_Choice);
1113 -- Don't care about assigned value
1115 Statements_Analyzed : Boolean := False;
1116 -- Set True if at least some statement sequences get analyzed. If False
1117 -- on exit, means we had a serious error that prevented full analysis of
1118 -- the case statement, and as a result it is not a good idea to output
1119 -- warning messages about unreachable code.
1121 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1122 -- Recursively save value of this global, will be restored on exit
1124 procedure Non_Static_Choice_Error (Choice : Node_Id);
1125 -- Error routine invoked by the generic instantiation below when the
1126 -- case statement has a non static choice.
1128 procedure Process_Statements (Alternative : Node_Id);
1129 -- Analyzes the statements associated with a case alternative. Needed
1130 -- by instantiation below.
1132 package Analyze_Case_Choices is new
1133 Generic_Analyze_Choices
1134 (Process_Associated_Node => Process_Statements);
1135 use Analyze_Case_Choices;
1136 -- Instantiation of the generic choice analysis package
1138 package Check_Case_Choices is new
1139 Generic_Check_Choices
1140 (Process_Empty_Choice => No_OP,
1141 Process_Non_Static_Choice => Non_Static_Choice_Error,
1142 Process_Associated_Node => No_OP);
1143 use Check_Case_Choices;
1144 -- Instantiation of the generic choice processing package
1146 -----------------------------
1147 -- Non_Static_Choice_Error --
1148 -----------------------------
1150 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1151 begin
1152 Flag_Non_Static_Expr
1153 ("choice given in case statement is not static!", Choice);
1154 end Non_Static_Choice_Error;
1156 ------------------------
1157 -- Process_Statements --
1158 ------------------------
1160 procedure Process_Statements (Alternative : Node_Id) is
1161 Choices : constant List_Id := Discrete_Choices (Alternative);
1162 Ent : Entity_Id;
1164 begin
1165 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1166 Statements_Analyzed := True;
1168 -- An interesting optimization. If the case statement expression
1169 -- is a simple entity, then we can set the current value within an
1170 -- alternative if the alternative has one possible value.
1172 -- case N is
1173 -- when 1 => alpha
1174 -- when 2 | 3 => beta
1175 -- when others => gamma
1177 -- Here we know that N is initially 1 within alpha, but for beta and
1178 -- gamma, we do not know anything more about the initial value.
1180 if Is_Entity_Name (Exp) then
1181 Ent := Entity (Exp);
1183 if Ekind_In (Ent, E_Variable,
1184 E_In_Out_Parameter,
1185 E_Out_Parameter)
1186 then
1187 if List_Length (Choices) = 1
1188 and then Nkind (First (Choices)) in N_Subexpr
1189 and then Compile_Time_Known_Value (First (Choices))
1190 then
1191 Set_Current_Value (Entity (Exp), First (Choices));
1192 end if;
1194 Analyze_Statements (Statements (Alternative));
1196 -- After analyzing the case, set the current value to empty
1197 -- since we won't know what it is for the next alternative
1198 -- (unless reset by this same circuit), or after the case.
1200 Set_Current_Value (Entity (Exp), Empty);
1201 return;
1202 end if;
1203 end if;
1205 -- Case where expression is not an entity name of a variable
1207 Analyze_Statements (Statements (Alternative));
1208 end Process_Statements;
1210 -- Start of processing for Analyze_Case_Statement
1212 begin
1213 Unblocked_Exit_Count := 0;
1214 Exp := Expression (N);
1215 Analyze (Exp);
1217 -- The expression must be of any discrete type. In rare cases, the
1218 -- expander constructs a case statement whose expression has a private
1219 -- type whose full view is discrete. This can happen when generating
1220 -- a stream operation for a variant type after the type is frozen,
1221 -- when the partial of view of the type of the discriminant is private.
1222 -- In that case, use the full view to analyze case alternatives.
1224 if not Is_Overloaded (Exp)
1225 and then not Comes_From_Source (N)
1226 and then Is_Private_Type (Etype (Exp))
1227 and then Present (Full_View (Etype (Exp)))
1228 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1229 then
1230 Resolve (Exp, Etype (Exp));
1231 Exp_Type := Full_View (Etype (Exp));
1233 else
1234 Analyze_And_Resolve (Exp, Any_Discrete);
1235 Exp_Type := Etype (Exp);
1236 end if;
1238 Check_Unset_Reference (Exp);
1239 Exp_Btype := Base_Type (Exp_Type);
1241 -- The expression must be of a discrete type which must be determinable
1242 -- independently of the context in which the expression occurs, but
1243 -- using the fact that the expression must be of a discrete type.
1244 -- Moreover, the type this expression must not be a character literal
1245 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1247 -- If error already reported by Resolve, nothing more to do
1249 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1250 return;
1252 elsif Exp_Btype = Any_Character then
1253 Error_Msg_N
1254 ("character literal as case expression is ambiguous", Exp);
1255 return;
1257 elsif Ada_Version = Ada_83
1258 and then (Is_Generic_Type (Exp_Btype)
1259 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1260 then
1261 Error_Msg_N
1262 ("(Ada 83) case expression cannot be of a generic type", Exp);
1263 return;
1264 end if;
1266 -- If the case expression is a formal object of mode in out, then treat
1267 -- it as having a nonstatic subtype by forcing use of the base type
1268 -- (which has to get passed to Check_Case_Choices below). Also use base
1269 -- type when the case expression is parenthesized.
1271 if Paren_Count (Exp) > 0
1272 or else (Is_Entity_Name (Exp)
1273 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1274 then
1275 Exp_Type := Exp_Btype;
1276 end if;
1278 -- Call instantiated procedures to analyzwe and check discrete choices
1280 Analyze_Choices (Alternatives (N), Exp_Type);
1281 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1283 -- Case statement with single OTHERS alternative not allowed in SPARK
1285 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1286 Check_SPARK_05_Restriction
1287 ("OTHERS as unique case alternative is not allowed", N);
1288 end if;
1290 if Exp_Type = Universal_Integer and then not Others_Present then
1291 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1292 end if;
1294 -- If all our exits were blocked by unconditional transfers of control,
1295 -- then the entire CASE statement acts as an unconditional transfer of
1296 -- control, so treat it like one, and check unreachable code. Skip this
1297 -- test if we had serious errors preventing any statement analysis.
1299 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1300 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1301 Check_Unreachable_Code (N);
1302 else
1303 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1304 end if;
1306 -- If the expander is active it will detect the case of a statically
1307 -- determined single alternative and remove warnings for the case, but
1308 -- if we are not doing expansion, that circuit won't be active. Here we
1309 -- duplicate the effect of removing warnings in the same way, so that
1310 -- we will get the same set of warnings in -gnatc mode.
1312 if not Expander_Active
1313 and then Compile_Time_Known_Value (Expression (N))
1314 and then Serious_Errors_Detected = 0
1315 then
1316 declare
1317 Chosen : constant Node_Id := Find_Static_Alternative (N);
1318 Alt : Node_Id;
1320 begin
1321 Alt := First (Alternatives (N));
1322 while Present (Alt) loop
1323 if Alt /= Chosen then
1324 Remove_Warning_Messages (Statements (Alt));
1325 end if;
1327 Next (Alt);
1328 end loop;
1329 end;
1330 end if;
1331 end Analyze_Case_Statement;
1333 ----------------------------
1334 -- Analyze_Exit_Statement --
1335 ----------------------------
1337 -- If the exit includes a name, it must be the name of a currently open
1338 -- loop. Otherwise there must be an innermost open loop on the stack, to
1339 -- which the statement implicitly refers.
1341 -- Additionally, in SPARK mode:
1343 -- The exit can only name the closest enclosing loop;
1345 -- An exit with a when clause must be directly contained in a loop;
1347 -- An exit without a when clause must be directly contained in an
1348 -- if-statement with no elsif or else, which is itself directly contained
1349 -- in a loop. The exit must be the last statement in the if-statement.
1351 procedure Analyze_Exit_Statement (N : Node_Id) is
1352 Target : constant Node_Id := Name (N);
1353 Cond : constant Node_Id := Condition (N);
1354 Scope_Id : Entity_Id;
1355 U_Name : Entity_Id;
1356 Kind : Entity_Kind;
1358 begin
1359 if No (Cond) then
1360 Check_Unreachable_Code (N);
1361 end if;
1363 if Present (Target) then
1364 Analyze (Target);
1365 U_Name := Entity (Target);
1367 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1368 Error_Msg_N ("invalid loop name in exit statement", N);
1369 return;
1371 else
1372 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1373 Check_SPARK_05_Restriction
1374 ("exit label must name the closest enclosing loop", N);
1375 end if;
1377 Set_Has_Exit (U_Name);
1378 end if;
1380 else
1381 U_Name := Empty;
1382 end if;
1384 for J in reverse 0 .. Scope_Stack.Last loop
1385 Scope_Id := Scope_Stack.Table (J).Entity;
1386 Kind := Ekind (Scope_Id);
1388 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1389 Set_Has_Exit (Scope_Id);
1390 exit;
1392 elsif Kind = E_Block
1393 or else Kind = E_Loop
1394 or else Kind = E_Return_Statement
1395 then
1396 null;
1398 else
1399 Error_Msg_N
1400 ("cannot exit from program unit or accept statement", N);
1401 return;
1402 end if;
1403 end loop;
1405 -- Verify that if present the condition is a Boolean expression
1407 if Present (Cond) then
1408 Analyze_And_Resolve (Cond, Any_Boolean);
1409 Check_Unset_Reference (Cond);
1410 end if;
1412 -- In SPARK mode, verify that the exit statement respects the SPARK
1413 -- restrictions.
1415 if Present (Cond) then
1416 if Nkind (Parent (N)) /= N_Loop_Statement then
1417 Check_SPARK_05_Restriction
1418 ("exit with when clause must be directly in loop", N);
1419 end if;
1421 else
1422 if Nkind (Parent (N)) /= N_If_Statement then
1423 if Nkind (Parent (N)) = N_Elsif_Part then
1424 Check_SPARK_05_Restriction
1425 ("exit must be in IF without ELSIF", N);
1426 else
1427 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1428 end if;
1430 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1431 Check_SPARK_05_Restriction
1432 ("exit must be in IF directly in loop", N);
1434 -- First test the presence of ELSE, so that an exit in an ELSE leads
1435 -- to an error mentioning the ELSE.
1437 elsif Present (Else_Statements (Parent (N))) then
1438 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1440 -- An exit in an ELSIF does not reach here, as it would have been
1441 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1443 elsif Present (Elsif_Parts (Parent (N))) then
1444 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1445 end if;
1446 end if;
1448 -- Chain exit statement to associated loop entity
1450 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1451 Set_First_Exit_Statement (Scope_Id, N);
1453 -- Since the exit may take us out of a loop, any previous assignment
1454 -- statement is not useless, so clear last assignment indications. It
1455 -- is OK to keep other current values, since if the exit statement
1456 -- does not exit, then the current values are still valid.
1458 Kill_Current_Values (Last_Assignment_Only => True);
1459 end Analyze_Exit_Statement;
1461 ----------------------------
1462 -- Analyze_Goto_Statement --
1463 ----------------------------
1465 procedure Analyze_Goto_Statement (N : Node_Id) is
1466 Label : constant Node_Id := Name (N);
1467 Scope_Id : Entity_Id;
1468 Label_Scope : Entity_Id;
1469 Label_Ent : Entity_Id;
1471 begin
1472 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1474 -- Actual semantic checks
1476 Check_Unreachable_Code (N);
1477 Kill_Current_Values (Last_Assignment_Only => True);
1479 Analyze (Label);
1480 Label_Ent := Entity (Label);
1482 -- Ignore previous error
1484 if Label_Ent = Any_Id then
1485 Check_Error_Detected;
1486 return;
1488 -- We just have a label as the target of a goto
1490 elsif Ekind (Label_Ent) /= E_Label then
1491 Error_Msg_N ("target of goto statement must be a label", Label);
1492 return;
1494 -- Check that the target of the goto is reachable according to Ada
1495 -- scoping rules. Note: the special gotos we generate for optimizing
1496 -- local handling of exceptions would violate these rules, but we mark
1497 -- such gotos as analyzed when built, so this code is never entered.
1499 elsif not Reachable (Label_Ent) then
1500 Error_Msg_N ("target of goto statement is not reachable", Label);
1501 return;
1502 end if;
1504 -- Here if goto passes initial validity checks
1506 Label_Scope := Enclosing_Scope (Label_Ent);
1508 for J in reverse 0 .. Scope_Stack.Last loop
1509 Scope_Id := Scope_Stack.Table (J).Entity;
1511 if Label_Scope = Scope_Id
1512 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1513 then
1514 if Scope_Id /= Label_Scope then
1515 Error_Msg_N
1516 ("cannot exit from program unit or accept statement", N);
1517 end if;
1519 return;
1520 end if;
1521 end loop;
1523 raise Program_Error;
1524 end Analyze_Goto_Statement;
1526 --------------------------
1527 -- Analyze_If_Statement --
1528 --------------------------
1530 -- A special complication arises in the analysis of if statements
1532 -- The expander has circuitry to completely delete code that it can tell
1533 -- will not be executed (as a result of compile time known conditions). In
1534 -- the analyzer, we ensure that code that will be deleted in this manner
1535 -- is analyzed but not expanded. This is obviously more efficient, but
1536 -- more significantly, difficulties arise if code is expanded and then
1537 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1538 -- generated in deleted code must be frozen from start, because the nodes
1539 -- on which they depend will not be available at the freeze point.
1541 procedure Analyze_If_Statement (N : Node_Id) is
1542 E : Node_Id;
1544 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1545 -- Recursively save value of this global, will be restored on exit
1547 Save_In_Deleted_Code : Boolean;
1549 Del : Boolean := False;
1550 -- This flag gets set True if a True condition has been found, which
1551 -- means that remaining ELSE/ELSIF parts are deleted.
1553 procedure Analyze_Cond_Then (Cnode : Node_Id);
1554 -- This is applied to either the N_If_Statement node itself or to an
1555 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1556 -- statements associated with it.
1558 -----------------------
1559 -- Analyze_Cond_Then --
1560 -----------------------
1562 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1563 Cond : constant Node_Id := Condition (Cnode);
1564 Tstm : constant List_Id := Then_Statements (Cnode);
1566 begin
1567 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1568 Analyze_And_Resolve (Cond, Any_Boolean);
1569 Check_Unset_Reference (Cond);
1570 Set_Current_Value_Condition (Cnode);
1572 -- If already deleting, then just analyze then statements
1574 if Del then
1575 Analyze_Statements (Tstm);
1577 -- Compile time known value, not deleting yet
1579 elsif Compile_Time_Known_Value (Cond) then
1580 Save_In_Deleted_Code := In_Deleted_Code;
1582 -- If condition is True, then analyze the THEN statements and set
1583 -- no expansion for ELSE and ELSIF parts.
1585 if Is_True (Expr_Value (Cond)) then
1586 Analyze_Statements (Tstm);
1587 Del := True;
1588 Expander_Mode_Save_And_Set (False);
1589 In_Deleted_Code := True;
1591 -- If condition is False, analyze THEN with expansion off
1593 else -- Is_False (Expr_Value (Cond))
1594 Expander_Mode_Save_And_Set (False);
1595 In_Deleted_Code := True;
1596 Analyze_Statements (Tstm);
1597 Expander_Mode_Restore;
1598 In_Deleted_Code := Save_In_Deleted_Code;
1599 end if;
1601 -- Not known at compile time, not deleting, normal analysis
1603 else
1604 Analyze_Statements (Tstm);
1605 end if;
1606 end Analyze_Cond_Then;
1608 -- Start of processing for Analyze_If_Statement
1610 begin
1611 -- Initialize exit count for else statements. If there is no else part,
1612 -- this count will stay non-zero reflecting the fact that the uncovered
1613 -- else case is an unblocked exit.
1615 Unblocked_Exit_Count := 1;
1616 Analyze_Cond_Then (N);
1618 -- Now to analyze the elsif parts if any are present
1620 if Present (Elsif_Parts (N)) then
1621 E := First (Elsif_Parts (N));
1622 while Present (E) loop
1623 Analyze_Cond_Then (E);
1624 Next (E);
1625 end loop;
1626 end if;
1628 if Present (Else_Statements (N)) then
1629 Analyze_Statements (Else_Statements (N));
1630 end if;
1632 -- If all our exits were blocked by unconditional transfers of control,
1633 -- then the entire IF statement acts as an unconditional transfer of
1634 -- control, so treat it like one, and check unreachable code.
1636 if Unblocked_Exit_Count = 0 then
1637 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1638 Check_Unreachable_Code (N);
1639 else
1640 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1641 end if;
1643 if Del then
1644 Expander_Mode_Restore;
1645 In_Deleted_Code := Save_In_Deleted_Code;
1646 end if;
1648 if not Expander_Active
1649 and then Compile_Time_Known_Value (Condition (N))
1650 and then Serious_Errors_Detected = 0
1651 then
1652 if Is_True (Expr_Value (Condition (N))) then
1653 Remove_Warning_Messages (Else_Statements (N));
1655 if Present (Elsif_Parts (N)) then
1656 E := First (Elsif_Parts (N));
1657 while Present (E) loop
1658 Remove_Warning_Messages (Then_Statements (E));
1659 Next (E);
1660 end loop;
1661 end if;
1663 else
1664 Remove_Warning_Messages (Then_Statements (N));
1665 end if;
1666 end if;
1668 -- Warn on redundant if statement that has no effect
1670 -- Note, we could also check empty ELSIF parts ???
1672 if Warn_On_Redundant_Constructs
1674 -- If statement must be from source
1676 and then Comes_From_Source (N)
1678 -- Condition must not have obvious side effect
1680 and then Has_No_Obvious_Side_Effects (Condition (N))
1682 -- No elsif parts of else part
1684 and then No (Elsif_Parts (N))
1685 and then No (Else_Statements (N))
1687 -- Then must be a single null statement
1689 and then List_Length (Then_Statements (N)) = 1
1690 then
1691 -- Go to original node, since we may have rewritten something as
1692 -- a null statement (e.g. a case we could figure the outcome of).
1694 declare
1695 T : constant Node_Id := First (Then_Statements (N));
1696 S : constant Node_Id := Original_Node (T);
1698 begin
1699 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1700 Error_Msg_N ("if statement has no effect?r?", N);
1701 end if;
1702 end;
1703 end if;
1704 end Analyze_If_Statement;
1706 ----------------------------------------
1707 -- Analyze_Implicit_Label_Declaration --
1708 ----------------------------------------
1710 -- An implicit label declaration is generated in the innermost enclosing
1711 -- declarative part. This is done for labels, and block and loop names.
1713 -- Note: any changes in this routine may need to be reflected in
1714 -- Analyze_Label_Entity.
1716 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1717 Id : constant Node_Id := Defining_Identifier (N);
1718 begin
1719 Enter_Name (Id);
1720 Set_Ekind (Id, E_Label);
1721 Set_Etype (Id, Standard_Void_Type);
1722 Set_Enclosing_Scope (Id, Current_Scope);
1723 end Analyze_Implicit_Label_Declaration;
1725 ------------------------------
1726 -- Analyze_Iteration_Scheme --
1727 ------------------------------
1729 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1730 Cond : Node_Id;
1731 Iter_Spec : Node_Id;
1732 Loop_Spec : Node_Id;
1734 begin
1735 -- For an infinite loop, there is no iteration scheme
1737 if No (N) then
1738 return;
1739 end if;
1741 Cond := Condition (N);
1742 Iter_Spec := Iterator_Specification (N);
1743 Loop_Spec := Loop_Parameter_Specification (N);
1745 if Present (Cond) then
1746 Analyze_And_Resolve (Cond, Any_Boolean);
1747 Check_Unset_Reference (Cond);
1748 Set_Current_Value_Condition (N);
1750 elsif Present (Iter_Spec) then
1751 Analyze_Iterator_Specification (Iter_Spec);
1753 else
1754 Analyze_Loop_Parameter_Specification (Loop_Spec);
1755 end if;
1756 end Analyze_Iteration_Scheme;
1758 ------------------------------------
1759 -- Analyze_Iterator_Specification --
1760 ------------------------------------
1762 procedure Analyze_Iterator_Specification (N : Node_Id) is
1763 procedure Check_Reverse_Iteration (Typ : Entity_Id);
1764 -- For an iteration over a container, if the loop carries the Reverse
1765 -- indicator, verify that the container type has an Iterate aspect that
1766 -- implements the reversible iterator interface.
1768 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1769 -- For containers with Iterator and related aspects, the cursor is
1770 -- obtained by locating an entity with the proper name in the scope
1771 -- of the type.
1773 -----------------------------
1774 -- Check_Reverse_Iteration --
1775 -----------------------------
1777 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
1778 begin
1779 if Reverse_Present (N)
1780 and then not Is_Array_Type (Typ)
1781 and then not Is_Reversible_Iterator (Typ)
1782 then
1783 Error_Msg_NE
1784 ("container type does not support reverse iteration", N, Typ);
1785 end if;
1786 end Check_Reverse_Iteration;
1788 ---------------------
1789 -- Get_Cursor_Type --
1790 ---------------------
1792 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
1793 Ent : Entity_Id;
1795 begin
1796 -- If iterator type is derived, the cursor is declared in the scope
1797 -- of the parent type.
1799 if Is_Derived_Type (Typ) then
1800 Ent := First_Entity (Scope (Etype (Typ)));
1801 else
1802 Ent := First_Entity (Scope (Typ));
1803 end if;
1805 while Present (Ent) loop
1806 exit when Chars (Ent) = Name_Cursor;
1807 Next_Entity (Ent);
1808 end loop;
1810 if No (Ent) then
1811 return Any_Type;
1812 end if;
1814 -- The cursor is the target of generated assignments in the
1815 -- loop, and cannot have a limited type.
1817 if Is_Limited_Type (Etype (Ent)) then
1818 Error_Msg_N ("cursor type cannot be limited", N);
1819 end if;
1821 return Etype (Ent);
1822 end Get_Cursor_Type;
1824 -- Local variables
1826 Def_Id : constant Node_Id := Defining_Identifier (N);
1827 Iter_Name : constant Node_Id := Name (N);
1828 Loc : constant Source_Ptr := Sloc (N);
1829 Subt : constant Node_Id := Subtype_Indication (N);
1831 Bas : Entity_Id;
1832 Typ : Entity_Id;
1834 -- Start of processing for Analyze_Iterator_Specification
1836 begin
1837 Enter_Name (Def_Id);
1839 -- AI12-0151 specifies that when the subtype indication is present, it
1840 -- must statically match the type of the array or container element.
1841 -- To simplify this check, we introduce a subtype declaration with the
1842 -- given subtype indication when it carries a constraint, and rewrite
1843 -- the original as a reference to the created subtype entity.
1845 if Present (Subt) then
1846 if Nkind (Subt) = N_Subtype_Indication then
1847 declare
1848 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
1849 Decl : constant Node_Id :=
1850 Make_Subtype_Declaration (Loc,
1851 Defining_Identifier => S,
1852 Subtype_Indication => New_Copy_Tree (Subt));
1853 begin
1854 Insert_Before (Parent (Parent (N)), Decl);
1855 Analyze (Decl);
1856 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
1857 end;
1858 else
1859 Analyze (Subt);
1860 end if;
1862 -- Save entity of subtype indication for subsequent check
1864 Bas := Entity (Subt);
1865 end if;
1867 Preanalyze_Range (Iter_Name);
1869 -- Set the kind of the loop variable, which is not visible within
1870 -- the iterator name.
1872 Set_Ekind (Def_Id, E_Variable);
1874 -- Provide a link between the iterator variable and the container, for
1875 -- subsequent use in cross-reference and modification information.
1877 if Of_Present (N) then
1878 Set_Related_Expression (Def_Id, Iter_Name);
1880 -- For a container, the iterator is specified through the aspect
1882 if not Is_Array_Type (Etype (Iter_Name)) then
1883 declare
1884 Iterator : constant Entity_Id :=
1885 Find_Value_Of_Aspect
1886 (Etype (Iter_Name), Aspect_Default_Iterator);
1888 I : Interp_Index;
1889 It : Interp;
1891 begin
1892 if No (Iterator) then
1893 null; -- error reported below.
1895 elsif not Is_Overloaded (Iterator) then
1896 Check_Reverse_Iteration (Etype (Iterator));
1898 -- If Iterator is overloaded, use reversible iterator if
1899 -- one is available.
1901 elsif Is_Overloaded (Iterator) then
1902 Get_First_Interp (Iterator, I, It);
1903 while Present (It.Nam) loop
1904 if Ekind (It.Nam) = E_Function
1905 and then Is_Reversible_Iterator (Etype (It.Nam))
1906 then
1907 Set_Etype (Iterator, It.Typ);
1908 Set_Entity (Iterator, It.Nam);
1909 exit;
1910 end if;
1912 Get_Next_Interp (I, It);
1913 end loop;
1915 Check_Reverse_Iteration (Etype (Iterator));
1916 end if;
1917 end;
1918 end if;
1919 end if;
1921 -- If the domain of iteration is an expression, create a declaration for
1922 -- it, so that finalization actions are introduced outside of the loop.
1923 -- The declaration must be a renaming because the body of the loop may
1924 -- assign to elements.
1926 if not Is_Entity_Name (Iter_Name)
1928 -- When the context is a quantified expression, the renaming
1929 -- declaration is delayed until the expansion phase if we are
1930 -- doing expansion.
1932 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1933 or else Operating_Mode = Check_Semantics)
1935 -- Do not perform this expansion for ASIS and when expansion is
1936 -- disabled, where the temporary may hide the transformation of a
1937 -- selected component into a prefixed function call, and references
1938 -- need to see the original expression.
1940 and then Expander_Active
1941 then
1942 declare
1943 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1944 Decl : Node_Id;
1945 Act_S : Node_Id;
1947 begin
1949 -- If the domain of iteration is an array component that depends
1950 -- on a discriminant, create actual subtype for it. Pre-analysis
1951 -- does not generate the actual subtype of a selected component.
1953 if Nkind (Iter_Name) = N_Selected_Component
1954 and then Is_Array_Type (Etype (Iter_Name))
1955 then
1956 Act_S :=
1957 Build_Actual_Subtype_Of_Component
1958 (Etype (Selector_Name (Iter_Name)), Iter_Name);
1959 Insert_Action (N, Act_S);
1961 if Present (Act_S) then
1962 Typ := Defining_Identifier (Act_S);
1963 else
1964 Typ := Etype (Iter_Name);
1965 end if;
1967 else
1968 Typ := Etype (Iter_Name);
1970 -- Verify that the expression produces an iterator
1972 if not Of_Present (N) and then not Is_Iterator (Typ)
1973 and then not Is_Array_Type (Typ)
1974 and then No (Find_Aspect (Typ, Aspect_Iterable))
1975 then
1976 Error_Msg_N
1977 ("expect object that implements iterator interface",
1978 Iter_Name);
1979 end if;
1980 end if;
1982 -- Protect against malformed iterator
1984 if Typ = Any_Type then
1985 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1986 return;
1987 end if;
1989 if not Of_Present (N) then
1990 Check_Reverse_Iteration (Typ);
1991 end if;
1993 -- The name in the renaming declaration may be a function call.
1994 -- Indicate that it does not come from source, to suppress
1995 -- spurious warnings on renamings of parameterless functions,
1996 -- a common enough idiom in user-defined iterators.
1998 Decl :=
1999 Make_Object_Renaming_Declaration (Loc,
2000 Defining_Identifier => Id,
2001 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2002 Name =>
2003 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
2005 Insert_Actions (Parent (Parent (N)), New_List (Decl));
2006 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
2007 Set_Etype (Id, Typ);
2008 Set_Etype (Name (N), Typ);
2009 end;
2011 -- Container is an entity or an array with uncontrolled components, or
2012 -- else it is a container iterator given by a function call, typically
2013 -- called Iterate in the case of predefined containers, even though
2014 -- Iterate is not a reserved name. What matters is that the return type
2015 -- of the function is an iterator type.
2017 elsif Is_Entity_Name (Iter_Name) then
2018 Analyze (Iter_Name);
2020 if Nkind (Iter_Name) = N_Function_Call then
2021 declare
2022 C : constant Node_Id := Name (Iter_Name);
2023 I : Interp_Index;
2024 It : Interp;
2026 begin
2027 if not Is_Overloaded (Iter_Name) then
2028 Resolve (Iter_Name, Etype (C));
2030 else
2031 Get_First_Interp (C, I, It);
2032 while It.Typ /= Empty loop
2033 if Reverse_Present (N) then
2034 if Is_Reversible_Iterator (It.Typ) then
2035 Resolve (Iter_Name, It.Typ);
2036 exit;
2037 end if;
2039 elsif Is_Iterator (It.Typ) then
2040 Resolve (Iter_Name, It.Typ);
2041 exit;
2042 end if;
2044 Get_Next_Interp (I, It);
2045 end loop;
2046 end if;
2047 end;
2049 -- Domain of iteration is not overloaded
2051 else
2052 Resolve (Iter_Name, Etype (Iter_Name));
2053 end if;
2055 if not Of_Present (N) then
2056 Check_Reverse_Iteration (Etype (Iter_Name));
2057 end if;
2058 end if;
2060 -- Get base type of container, for proper retrieval of Cursor type
2061 -- and primitive operations.
2063 Typ := Base_Type (Etype (Iter_Name));
2065 if Is_Array_Type (Typ) then
2066 if Of_Present (N) then
2067 Set_Etype (Def_Id, Component_Type (Typ));
2069 -- The loop variable is aliased if the array components are
2070 -- aliased.
2072 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2074 -- AI12-0047 stipulates that the domain (array or container)
2075 -- cannot be a component that depends on a discriminant if the
2076 -- enclosing object is mutable, to prevent a modification of the
2077 -- dowmain of iteration in the course of an iteration.
2079 -- If the object is an expression it has been captured in a
2080 -- temporary, so examine original node.
2082 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2083 and then Is_Dependent_Component_Of_Mutable_Object
2084 (Original_Node (Iter_Name))
2085 then
2086 Error_Msg_N
2087 ("iterable name cannot be a discriminant-dependent "
2088 & "component of a mutable object", N);
2089 end if;
2091 if Present (Subt)
2092 and then
2093 (Base_Type (Bas) /= Base_Type (Component_Type (Typ))
2094 or else
2095 not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
2096 then
2097 Error_Msg_N
2098 ("subtype indication does not match component type", Subt);
2099 end if;
2101 -- Here we have a missing Range attribute
2103 else
2104 Error_Msg_N
2105 ("missing Range attribute in iteration over an array", N);
2107 -- In Ada 2012 mode, this may be an attempt at an iterator
2109 if Ada_Version >= Ada_2012 then
2110 Error_Msg_NE
2111 ("\if& is meant to designate an element of the array, use OF",
2112 N, Def_Id);
2113 end if;
2115 -- Prevent cascaded errors
2117 Set_Ekind (Def_Id, E_Loop_Parameter);
2118 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2119 end if;
2121 -- Check for type error in iterator
2123 elsif Typ = Any_Type then
2124 return;
2126 -- Iteration over a container
2128 else
2129 Set_Ekind (Def_Id, E_Loop_Parameter);
2130 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2132 -- OF present
2134 if Of_Present (N) then
2135 if Has_Aspect (Typ, Aspect_Iterable) then
2136 declare
2137 Elt : constant Entity_Id :=
2138 Get_Iterable_Type_Primitive (Typ, Name_Element);
2139 begin
2140 if No (Elt) then
2141 Error_Msg_N
2142 ("missing Element primitive for iteration", N);
2143 else
2144 Set_Etype (Def_Id, Etype (Elt));
2145 end if;
2146 end;
2148 -- For a predefined container, The type of the loop variable is
2149 -- the Iterator_Element aspect of the container type.
2151 else
2152 declare
2153 Element : constant Entity_Id :=
2154 Find_Value_Of_Aspect
2155 (Typ, Aspect_Iterator_Element);
2156 Iterator : constant Entity_Id :=
2157 Find_Value_Of_Aspect
2158 (Typ, Aspect_Default_Iterator);
2159 Orig_Iter_Name : constant Node_Id :=
2160 Original_Node (Iter_Name);
2161 Cursor_Type : Entity_Id;
2163 begin
2164 if No (Element) then
2165 Error_Msg_NE ("cannot iterate over&", N, Typ);
2166 return;
2168 else
2169 Set_Etype (Def_Id, Entity (Element));
2170 Cursor_Type := Get_Cursor_Type (Typ);
2171 pragma Assert (Present (Cursor_Type));
2173 -- If subtype indication was given, verify that it covers
2174 -- the element type of the container.
2176 if Present (Subt)
2177 and then (not Covers (Bas, Etype (Def_Id))
2178 or else not Subtypes_Statically_Match
2179 (Bas, Etype (Def_Id)))
2180 then
2181 Error_Msg_N
2182 ("subtype indication does not match element type",
2183 Subt);
2184 end if;
2186 -- If the container has a variable indexing aspect, the
2187 -- element is a variable and is modifiable in the loop.
2189 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2190 Set_Ekind (Def_Id, E_Variable);
2191 end if;
2193 -- If the container is a constant, iterating over it
2194 -- requires a Constant_Indexing operation.
2196 if not Is_Variable (Iter_Name)
2197 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2198 then
2199 Error_Msg_N
2200 ("iteration over constant container require "
2201 & "constant_indexing aspect", N);
2203 -- The Iterate function may have an in_out parameter,
2204 -- and a constant container is thus illegal.
2206 elsif Present (Iterator)
2207 and then Ekind (Entity (Iterator)) = E_Function
2208 and then Ekind (First_Formal (Entity (Iterator))) /=
2209 E_In_Parameter
2210 and then not Is_Variable (Iter_Name)
2211 then
2212 Error_Msg_N ("variable container expected", N);
2213 end if;
2215 -- Detect a case where the iterator denotes a component
2216 -- of a mutable object which depends on a discriminant.
2217 -- Note that the iterator may denote a function call in
2218 -- qualified form, in which case this check should not
2219 -- be performed.
2221 if Nkind (Orig_Iter_Name) = N_Selected_Component
2222 and then
2223 Present (Entity (Selector_Name (Orig_Iter_Name)))
2224 and then Ekind_In
2225 (Entity (Selector_Name (Orig_Iter_Name)),
2226 E_Component,
2227 E_Discriminant)
2228 and then Is_Dependent_Component_Of_Mutable_Object
2229 (Orig_Iter_Name)
2230 then
2231 Error_Msg_N
2232 ("container cannot be a discriminant-dependent "
2233 & "component of a mutable object", N);
2234 end if;
2235 end if;
2236 end;
2237 end if;
2239 -- IN iterator, domain is a range, or a call to Iterate function
2241 else
2242 -- For an iteration of the form IN, the name must denote an
2243 -- iterator, typically the result of a call to Iterate. Give a
2244 -- useful error message when the name is a container by itself.
2246 -- The type may be a formal container type, which has to have
2247 -- an Iterable aspect detailing the required primitives.
2249 if Is_Entity_Name (Original_Node (Name (N)))
2250 and then not Is_Iterator (Typ)
2251 then
2252 if Has_Aspect (Typ, Aspect_Iterable) then
2253 null;
2255 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2256 Error_Msg_NE
2257 ("cannot iterate over&", Name (N), Typ);
2258 else
2259 Error_Msg_N
2260 ("name must be an iterator, not a container", Name (N));
2261 end if;
2263 if Has_Aspect (Typ, Aspect_Iterable) then
2264 null;
2265 else
2266 Error_Msg_NE
2267 ("\to iterate directly over the elements of a container, "
2268 & "write `of &`", Name (N), Original_Node (Name (N)));
2270 -- No point in continuing analysis of iterator spec
2272 return;
2273 end if;
2274 end if;
2276 -- If the name is a call (typically prefixed) to some Iterate
2277 -- function, it has been rewritten as an object declaration.
2278 -- If that object is a selected component, verify that it is not
2279 -- a component of an unconstrained mutable object.
2281 if Nkind (Iter_Name) = N_Identifier
2282 or else (not Expander_Active and Comes_From_Source (Iter_Name))
2283 then
2284 declare
2285 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2286 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2287 Obj : Node_Id;
2289 begin
2290 if Iter_Kind = N_Selected_Component then
2291 Obj := Prefix (Orig_Node);
2293 elsif Iter_Kind = N_Function_Call then
2294 Obj := First_Actual (Orig_Node);
2296 -- If neither, the name comes from source
2298 else
2299 Obj := Iter_Name;
2300 end if;
2302 if Nkind (Obj) = N_Selected_Component
2303 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2304 then
2305 Error_Msg_N
2306 ("container cannot be a discriminant-dependent "
2307 & "component of a mutable object", N);
2308 end if;
2309 end;
2310 end if;
2312 -- The result type of Iterate function is the classwide type of
2313 -- the interface parent. We need the specific Cursor type defined
2314 -- in the container package. We obtain it by name for a predefined
2315 -- container, or through the Iterable aspect for a formal one.
2317 if Has_Aspect (Typ, Aspect_Iterable) then
2318 Set_Etype (Def_Id,
2319 Get_Cursor_Type
2320 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2321 Typ));
2323 else
2324 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2325 Check_Reverse_Iteration (Etype (Iter_Name));
2326 end if;
2328 end if;
2329 end if;
2330 end Analyze_Iterator_Specification;
2332 -------------------
2333 -- Analyze_Label --
2334 -------------------
2336 -- Note: the semantic work required for analyzing labels (setting them as
2337 -- reachable) was done in a prepass through the statements in the block,
2338 -- so that forward gotos would be properly handled. See Analyze_Statements
2339 -- for further details. The only processing required here is to deal with
2340 -- optimizations that depend on an assumption of sequential control flow,
2341 -- since of course the occurrence of a label breaks this assumption.
2343 procedure Analyze_Label (N : Node_Id) is
2344 pragma Warnings (Off, N);
2345 begin
2346 Kill_Current_Values;
2347 end Analyze_Label;
2349 --------------------------
2350 -- Analyze_Label_Entity --
2351 --------------------------
2353 procedure Analyze_Label_Entity (E : Entity_Id) is
2354 begin
2355 Set_Ekind (E, E_Label);
2356 Set_Etype (E, Standard_Void_Type);
2357 Set_Enclosing_Scope (E, Current_Scope);
2358 Set_Reachable (E, True);
2359 end Analyze_Label_Entity;
2361 ------------------------------------------
2362 -- Analyze_Loop_Parameter_Specification --
2363 ------------------------------------------
2365 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2366 Loop_Nod : constant Node_Id := Parent (Parent (N));
2368 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2369 -- If the bounds are given by a 'Range reference on a function call
2370 -- that returns a controlled array, introduce an explicit declaration
2371 -- to capture the bounds, so that the function result can be finalized
2372 -- in timely fashion.
2374 procedure Check_Predicate_Use (T : Entity_Id);
2375 -- Diagnose Attempt to iterate through non-static predicate. Note that
2376 -- a type with inherited predicates may have both static and dynamic
2377 -- forms. In this case it is not sufficent to check the static predicate
2378 -- function only, look for a dynamic predicate aspect as well.
2380 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2381 -- N is the node for an arbitrary construct. This function searches the
2382 -- construct N to see if any expressions within it contain function
2383 -- calls that use the secondary stack, returning True if any such call
2384 -- is found, and False otherwise.
2386 procedure Process_Bounds (R : Node_Id);
2387 -- If the iteration is given by a range, create temporaries and
2388 -- assignment statements block to capture the bounds and perform
2389 -- required finalization actions in case a bound includes a function
2390 -- call that uses the temporary stack. We first pre-analyze a copy of
2391 -- the range in order to determine the expected type, and analyze and
2392 -- resolve the original bounds.
2394 --------------------------------------
2395 -- Check_Controlled_Array_Attribute --
2396 --------------------------------------
2398 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2399 begin
2400 if Nkind (DS) = N_Attribute_Reference
2401 and then Is_Entity_Name (Prefix (DS))
2402 and then Ekind (Entity (Prefix (DS))) = E_Function
2403 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2404 and then
2405 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2406 and then Expander_Active
2407 then
2408 declare
2409 Loc : constant Source_Ptr := Sloc (N);
2410 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2411 Indx : constant Entity_Id :=
2412 Base_Type (Etype (First_Index (Arr)));
2413 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2414 Decl : Node_Id;
2416 begin
2417 Decl :=
2418 Make_Subtype_Declaration (Loc,
2419 Defining_Identifier => Subt,
2420 Subtype_Indication =>
2421 Make_Subtype_Indication (Loc,
2422 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2423 Constraint =>
2424 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2425 Insert_Before (Loop_Nod, Decl);
2426 Analyze (Decl);
2428 Rewrite (DS,
2429 Make_Attribute_Reference (Loc,
2430 Prefix => New_Occurrence_Of (Subt, Loc),
2431 Attribute_Name => Attribute_Name (DS)));
2433 Analyze (DS);
2434 end;
2435 end if;
2436 end Check_Controlled_Array_Attribute;
2438 -------------------------
2439 -- Check_Predicate_Use --
2440 -------------------------
2442 procedure Check_Predicate_Use (T : Entity_Id) is
2443 begin
2444 -- A predicated subtype is illegal in loops and related constructs
2445 -- if the predicate is not static, or if it is a non-static subtype
2446 -- of a statically predicated subtype.
2448 if Is_Discrete_Type (T)
2449 and then Has_Predicates (T)
2450 and then (not Has_Static_Predicate (T)
2451 or else not Is_Static_Subtype (T)
2452 or else Has_Dynamic_Predicate_Aspect (T))
2453 then
2454 -- Seems a confusing message for the case of a static predicate
2455 -- with a non-static subtype???
2457 Bad_Predicated_Subtype_Use
2458 ("cannot use subtype& with non-static predicate for loop "
2459 & "iteration", Discrete_Subtype_Definition (N),
2460 T, Suggest_Static => True);
2462 elsif Inside_A_Generic and then Is_Generic_Formal (T) then
2463 Set_No_Dynamic_Predicate_On_Actual (T);
2464 end if;
2465 end Check_Predicate_Use;
2467 ------------------------------------
2468 -- Has_Call_Using_Secondary_Stack --
2469 ------------------------------------
2471 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2473 function Check_Call (N : Node_Id) return Traverse_Result;
2474 -- Check if N is a function call which uses the secondary stack
2476 ----------------
2477 -- Check_Call --
2478 ----------------
2480 function Check_Call (N : Node_Id) return Traverse_Result is
2481 Nam : Node_Id;
2482 Subp : Entity_Id;
2483 Return_Typ : Entity_Id;
2485 begin
2486 if Nkind (N) = N_Function_Call then
2487 Nam := Name (N);
2489 -- Call using access to subprogram with explicit dereference
2491 if Nkind (Nam) = N_Explicit_Dereference then
2492 Subp := Etype (Nam);
2494 -- Call using a selected component notation or Ada 2005 object
2495 -- operation notation
2497 elsif Nkind (Nam) = N_Selected_Component then
2498 Subp := Entity (Selector_Name (Nam));
2500 -- Common case
2502 else
2503 Subp := Entity (Nam);
2504 end if;
2506 Return_Typ := Etype (Subp);
2508 if Is_Composite_Type (Return_Typ)
2509 and then not Is_Constrained (Return_Typ)
2510 then
2511 return Abandon;
2513 elsif Sec_Stack_Needed_For_Return (Subp) then
2514 return Abandon;
2515 end if;
2516 end if;
2518 -- Continue traversing the tree
2520 return OK;
2521 end Check_Call;
2523 function Check_Calls is new Traverse_Func (Check_Call);
2525 -- Start of processing for Has_Call_Using_Secondary_Stack
2527 begin
2528 return Check_Calls (N) = Abandon;
2529 end Has_Call_Using_Secondary_Stack;
2531 --------------------
2532 -- Process_Bounds --
2533 --------------------
2535 procedure Process_Bounds (R : Node_Id) is
2536 Loc : constant Source_Ptr := Sloc (N);
2538 function One_Bound
2539 (Original_Bound : Node_Id;
2540 Analyzed_Bound : Node_Id;
2541 Typ : Entity_Id) return Node_Id;
2542 -- Capture value of bound and return captured value
2544 ---------------
2545 -- One_Bound --
2546 ---------------
2548 function One_Bound
2549 (Original_Bound : Node_Id;
2550 Analyzed_Bound : Node_Id;
2551 Typ : Entity_Id) return Node_Id
2553 Assign : Node_Id;
2554 Decl : Node_Id;
2555 Id : Entity_Id;
2557 begin
2558 -- If the bound is a constant or an object, no need for a separate
2559 -- declaration. If the bound is the result of previous expansion
2560 -- it is already analyzed and should not be modified. Note that
2561 -- the Bound will be resolved later, if needed, as part of the
2562 -- call to Make_Index (literal bounds may need to be resolved to
2563 -- type Integer).
2565 if Analyzed (Original_Bound) then
2566 return Original_Bound;
2568 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2569 N_Character_Literal)
2570 or else Is_Entity_Name (Analyzed_Bound)
2571 then
2572 Analyze_And_Resolve (Original_Bound, Typ);
2573 return Original_Bound;
2574 end if;
2576 -- Normally, the best approach is simply to generate a constant
2577 -- declaration that captures the bound. However, there is a nasty
2578 -- case where this is wrong. If the bound is complex, and has a
2579 -- possible use of the secondary stack, we need to generate a
2580 -- separate assignment statement to ensure the creation of a block
2581 -- which will release the secondary stack.
2583 -- We prefer the constant declaration, since it leaves us with a
2584 -- proper trace of the value, useful in optimizations that get rid
2585 -- of junk range checks.
2587 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2588 Analyze_And_Resolve (Original_Bound, Typ);
2590 -- Ensure that the bound is valid. This check should not be
2591 -- generated when the range belongs to a quantified expression
2592 -- as the construct is still not expanded into its final form.
2594 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2595 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2596 then
2597 Ensure_Valid (Original_Bound);
2598 end if;
2600 Force_Evaluation (Original_Bound);
2601 return Original_Bound;
2602 end if;
2604 Id := Make_Temporary (Loc, 'R', Original_Bound);
2606 -- Here we make a declaration with a separate assignment
2607 -- statement, and insert before loop header.
2609 Decl :=
2610 Make_Object_Declaration (Loc,
2611 Defining_Identifier => Id,
2612 Object_Definition => New_Occurrence_Of (Typ, Loc));
2614 Assign :=
2615 Make_Assignment_Statement (Loc,
2616 Name => New_Occurrence_Of (Id, Loc),
2617 Expression => Relocate_Node (Original_Bound));
2619 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2621 -- Now that this temporary variable is initialized we decorate it
2622 -- as safe-to-reevaluate to inform to the backend that no further
2623 -- asignment will be issued and hence it can be handled as side
2624 -- effect free. Note that this decoration must be done when the
2625 -- assignment has been analyzed because otherwise it will be
2626 -- rejected (see Analyze_Assignment).
2628 Set_Is_Safe_To_Reevaluate (Id);
2630 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2632 if Nkind (Assign) = N_Assignment_Statement then
2633 return Expression (Assign);
2634 else
2635 return Original_Bound;
2636 end if;
2637 end One_Bound;
2639 Hi : constant Node_Id := High_Bound (R);
2640 Lo : constant Node_Id := Low_Bound (R);
2641 R_Copy : constant Node_Id := New_Copy_Tree (R);
2642 New_Hi : Node_Id;
2643 New_Lo : Node_Id;
2644 Typ : Entity_Id;
2646 -- Start of processing for Process_Bounds
2648 begin
2649 Set_Parent (R_Copy, Parent (R));
2650 Preanalyze_Range (R_Copy);
2651 Typ := Etype (R_Copy);
2653 -- If the type of the discrete range is Universal_Integer, then the
2654 -- bound's type must be resolved to Integer, and any object used to
2655 -- hold the bound must also have type Integer, unless the literal
2656 -- bounds are constant-folded expressions with a user-defined type.
2658 if Typ = Universal_Integer then
2659 if Nkind (Lo) = N_Integer_Literal
2660 and then Present (Etype (Lo))
2661 and then Scope (Etype (Lo)) /= Standard_Standard
2662 then
2663 Typ := Etype (Lo);
2665 elsif Nkind (Hi) = N_Integer_Literal
2666 and then Present (Etype (Hi))
2667 and then Scope (Etype (Hi)) /= Standard_Standard
2668 then
2669 Typ := Etype (Hi);
2671 else
2672 Typ := Standard_Integer;
2673 end if;
2674 end if;
2676 Set_Etype (R, Typ);
2678 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2679 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2681 -- Propagate staticness to loop range itself, in case the
2682 -- corresponding subtype is static.
2684 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2685 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2686 end if;
2688 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2689 Rewrite (High_Bound (R), New_Copy (New_Hi));
2690 end if;
2691 end Process_Bounds;
2693 -- Local variables
2695 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2696 Id : constant Entity_Id := Defining_Identifier (N);
2698 DS_Copy : Node_Id;
2700 -- Start of processing for Analyze_Loop_Parameter_Specification
2702 begin
2703 Enter_Name (Id);
2705 -- We always consider the loop variable to be referenced, since the loop
2706 -- may be used just for counting purposes.
2708 Generate_Reference (Id, N, ' ');
2710 -- Check for the case of loop variable hiding a local variable (used
2711 -- later on to give a nice warning if the hidden variable is never
2712 -- assigned).
2714 declare
2715 H : constant Entity_Id := Homonym (Id);
2716 begin
2717 if Present (H)
2718 and then Ekind (H) = E_Variable
2719 and then Is_Discrete_Type (Etype (H))
2720 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2721 then
2722 Set_Hiding_Loop_Variable (H, Id);
2723 end if;
2724 end;
2726 -- Loop parameter specification must include subtype mark in SPARK
2728 if Nkind (DS) = N_Range then
2729 Check_SPARK_05_Restriction
2730 ("loop parameter specification must include subtype mark", N);
2731 end if;
2733 -- Analyze the subtype definition and create temporaries for the bounds.
2734 -- Do not evaluate the range when preanalyzing a quantified expression
2735 -- because bounds expressed as function calls with side effects will be
2736 -- incorrectly replicated.
2738 if Nkind (DS) = N_Range
2739 and then Expander_Active
2740 and then Nkind (Parent (N)) /= N_Quantified_Expression
2741 then
2742 Process_Bounds (DS);
2744 -- Either the expander not active or the range of iteration is a subtype
2745 -- indication, an entity, or a function call that yields an aggregate or
2746 -- a container.
2748 else
2749 DS_Copy := New_Copy_Tree (DS);
2750 Set_Parent (DS_Copy, Parent (DS));
2751 Preanalyze_Range (DS_Copy);
2753 -- Ada 2012: If the domain of iteration is:
2755 -- a) a function call,
2756 -- b) an identifier that is not a type,
2757 -- c) an attribute reference 'Old (within a postcondition),
2758 -- d) an unchecked conversion or a qualified expression with
2759 -- the proper iterator type.
2761 -- then it is an iteration over a container. It was classified as
2762 -- a loop specification by the parser, and must be rewritten now
2763 -- to activate container iteration. The last case will occur within
2764 -- an expanded inlined call, where the expansion wraps an actual in
2765 -- an unchecked conversion when needed. The expression of the
2766 -- conversion is always an object.
2768 if Nkind (DS_Copy) = N_Function_Call
2770 or else (Is_Entity_Name (DS_Copy)
2771 and then not Is_Type (Entity (DS_Copy)))
2773 or else (Nkind (DS_Copy) = N_Attribute_Reference
2774 and then Nam_In (Attribute_Name (DS_Copy),
2775 Name_Loop_Entry, Name_Old))
2777 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
2779 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
2780 or else (Nkind (DS_Copy) = N_Qualified_Expression
2781 and then Is_Iterator (Etype (DS_Copy)))
2782 then
2783 -- This is an iterator specification. Rewrite it as such and
2784 -- analyze it to capture function calls that may require
2785 -- finalization actions.
2787 declare
2788 I_Spec : constant Node_Id :=
2789 Make_Iterator_Specification (Sloc (N),
2790 Defining_Identifier => Relocate_Node (Id),
2791 Name => DS_Copy,
2792 Subtype_Indication => Empty,
2793 Reverse_Present => Reverse_Present (N));
2794 Scheme : constant Node_Id := Parent (N);
2796 begin
2797 Set_Iterator_Specification (Scheme, I_Spec);
2798 Set_Loop_Parameter_Specification (Scheme, Empty);
2799 Analyze_Iterator_Specification (I_Spec);
2801 -- In a generic context, analyze the original domain of
2802 -- iteration, for name capture.
2804 if not Expander_Active then
2805 Analyze (DS);
2806 end if;
2808 -- Set kind of loop parameter, which may be used in the
2809 -- subsequent analysis of the condition in a quantified
2810 -- expression.
2812 Set_Ekind (Id, E_Loop_Parameter);
2813 return;
2814 end;
2816 -- Domain of iteration is not a function call, and is side-effect
2817 -- free.
2819 else
2820 -- A quantified expression that appears in a pre/post condition
2821 -- is pre-analyzed several times. If the range is given by an
2822 -- attribute reference it is rewritten as a range, and this is
2823 -- done even with expansion disabled. If the type is already set
2824 -- do not reanalyze, because a range with static bounds may be
2825 -- typed Integer by default.
2827 if Nkind (Parent (N)) = N_Quantified_Expression
2828 and then Present (Etype (DS))
2829 then
2830 null;
2831 else
2832 Analyze (DS);
2833 end if;
2834 end if;
2835 end if;
2837 if DS = Error then
2838 return;
2839 end if;
2841 -- Some additional checks if we are iterating through a type
2843 if Is_Entity_Name (DS)
2844 and then Present (Entity (DS))
2845 and then Is_Type (Entity (DS))
2846 then
2847 -- The subtype indication may denote the completion of an incomplete
2848 -- type declaration.
2850 if Ekind (Entity (DS)) = E_Incomplete_Type then
2851 Set_Entity (DS, Get_Full_View (Entity (DS)));
2852 Set_Etype (DS, Entity (DS));
2853 end if;
2855 Check_Predicate_Use (Entity (DS));
2856 end if;
2858 -- Error if not discrete type
2860 if not Is_Discrete_Type (Etype (DS)) then
2861 Wrong_Type (DS, Any_Discrete);
2862 Set_Etype (DS, Any_Type);
2863 end if;
2865 Check_Controlled_Array_Attribute (DS);
2867 if Nkind (DS) = N_Subtype_Indication then
2868 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
2869 end if;
2871 Make_Index (DS, N, In_Iter_Schm => True);
2872 Set_Ekind (Id, E_Loop_Parameter);
2874 -- A quantified expression which appears in a pre- or post-condition may
2875 -- be analyzed multiple times. The analysis of the range creates several
2876 -- itypes which reside in different scopes depending on whether the pre-
2877 -- or post-condition has been expanded. Update the type of the loop
2878 -- variable to reflect the proper itype at each stage of analysis.
2880 if No (Etype (Id))
2881 or else Etype (Id) = Any_Type
2882 or else
2883 (Present (Etype (Id))
2884 and then Is_Itype (Etype (Id))
2885 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2886 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2887 N_Quantified_Expression)
2888 then
2889 Set_Etype (Id, Etype (DS));
2890 end if;
2892 -- Treat a range as an implicit reference to the type, to inhibit
2893 -- spurious warnings.
2895 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2896 Set_Is_Known_Valid (Id, True);
2898 -- The loop is not a declarative part, so the loop variable must be
2899 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2900 -- expression because the freeze node will not be inserted into the
2901 -- tree due to flag Is_Spec_Expression being set.
2903 if Nkind (Parent (N)) /= N_Quantified_Expression then
2904 declare
2905 Flist : constant List_Id := Freeze_Entity (Id, N);
2906 begin
2907 if Is_Non_Empty_List (Flist) then
2908 Insert_Actions (N, Flist);
2909 end if;
2910 end;
2911 end if;
2913 -- Case where we have a range or a subtype, get type bounds
2915 if Nkind_In (DS, N_Range, N_Subtype_Indication)
2916 and then not Error_Posted (DS)
2917 and then Etype (DS) /= Any_Type
2918 and then Is_Discrete_Type (Etype (DS))
2919 then
2920 declare
2921 L : Node_Id;
2922 H : Node_Id;
2924 begin
2925 if Nkind (DS) = N_Range then
2926 L := Low_Bound (DS);
2927 H := High_Bound (DS);
2928 else
2929 L :=
2930 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2931 H :=
2932 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2933 end if;
2935 -- Check for null or possibly null range and issue warning. We
2936 -- suppress such messages in generic templates and instances,
2937 -- because in practice they tend to be dubious in these cases. The
2938 -- check applies as well to rewritten array element loops where a
2939 -- null range may be detected statically.
2941 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2943 -- Suppress the warning if inside a generic template or
2944 -- instance, since in practice they tend to be dubious in these
2945 -- cases since they can result from intended parameterization.
2947 if not Inside_A_Generic and then not In_Instance then
2949 -- Specialize msg if invalid values could make the loop
2950 -- non-null after all.
2952 if Compile_Time_Compare
2953 (L, H, Assume_Valid => False) = GT
2954 then
2955 -- Since we know the range of the loop is null, set the
2956 -- appropriate flag to remove the loop entirely during
2957 -- expansion.
2959 Set_Is_Null_Loop (Loop_Nod);
2961 if Comes_From_Source (N) then
2962 Error_Msg_N
2963 ("??loop range is null, loop will not execute", DS);
2964 end if;
2966 -- Here is where the loop could execute because of
2967 -- invalid values, so issue appropriate message and in
2968 -- this case we do not set the Is_Null_Loop flag since
2969 -- the loop may execute.
2971 elsif Comes_From_Source (N) then
2972 Error_Msg_N
2973 ("??loop range may be null, loop may not execute",
2974 DS);
2975 Error_Msg_N
2976 ("??can only execute if invalid values are present",
2977 DS);
2978 end if;
2979 end if;
2981 -- In either case, suppress warnings in the body of the loop,
2982 -- since it is likely that these warnings will be inappropriate
2983 -- if the loop never actually executes, which is likely.
2985 Set_Suppress_Loop_Warnings (Loop_Nod);
2987 -- The other case for a warning is a reverse loop where the
2988 -- upper bound is the integer literal zero or one, and the
2989 -- lower bound may exceed this value.
2991 -- For example, we have
2993 -- for J in reverse N .. 1 loop
2995 -- In practice, this is very likely to be a case of reversing
2996 -- the bounds incorrectly in the range.
2998 elsif Reverse_Present (N)
2999 and then Nkind (Original_Node (H)) = N_Integer_Literal
3000 and then
3001 (Intval (Original_Node (H)) = Uint_0
3002 or else
3003 Intval (Original_Node (H)) = Uint_1)
3004 then
3005 -- Lower bound may in fact be known and known not to exceed
3006 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
3008 if Compile_Time_Known_Value (L)
3009 and then Expr_Value (L) <= Expr_Value (H)
3010 then
3011 null;
3013 -- Otherwise warning is warranted
3015 else
3016 Error_Msg_N ("??loop range may be null", DS);
3017 Error_Msg_N ("\??bounds may be wrong way round", DS);
3018 end if;
3019 end if;
3021 -- Check if either bound is known to be outside the range of the
3022 -- loop parameter type, this is e.g. the case of a loop from
3023 -- 20..X where the type is 1..19.
3025 -- Such a loop is dubious since either it raises CE or it executes
3026 -- zero times, and that cannot be useful!
3028 if Etype (DS) /= Any_Type
3029 and then not Error_Posted (DS)
3030 and then Nkind (DS) = N_Subtype_Indication
3031 and then Nkind (Constraint (DS)) = N_Range_Constraint
3032 then
3033 declare
3034 LLo : constant Node_Id :=
3035 Low_Bound (Range_Expression (Constraint (DS)));
3036 LHi : constant Node_Id :=
3037 High_Bound (Range_Expression (Constraint (DS)));
3039 Bad_Bound : Node_Id := Empty;
3040 -- Suspicious loop bound
3042 begin
3043 -- At this stage L, H are the bounds of the type, and LLo
3044 -- Lhi are the low bound and high bound of the loop.
3046 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3047 or else
3048 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3049 then
3050 Bad_Bound := LLo;
3051 end if;
3053 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3054 or else
3055 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3056 then
3057 Bad_Bound := LHi;
3058 end if;
3060 if Present (Bad_Bound) then
3061 Error_Msg_N
3062 ("suspicious loop bound out of range of "
3063 & "loop subtype??", Bad_Bound);
3064 Error_Msg_N
3065 ("\loop executes zero times or raises "
3066 & "Constraint_Error??", Bad_Bound);
3067 end if;
3068 end;
3069 end if;
3071 -- This declare block is about warnings, if we get an exception while
3072 -- testing for warnings, we simply abandon the attempt silently. This
3073 -- most likely occurs as the result of a previous error, but might
3074 -- just be an obscure case we have missed. In either case, not giving
3075 -- the warning is perfectly acceptable.
3077 exception
3078 when others => null;
3079 end;
3080 end if;
3082 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3083 -- This check is relevant only when SPARK_Mode is on as it is not a
3084 -- standard Ada legality check.
3086 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3087 Error_Msg_N ("loop parameter cannot be volatile", Id);
3088 end if;
3089 end Analyze_Loop_Parameter_Specification;
3091 ----------------------------
3092 -- Analyze_Loop_Statement --
3093 ----------------------------
3095 procedure Analyze_Loop_Statement (N : Node_Id) is
3097 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
3098 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3099 -- container iteration.
3101 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
3102 -- Determine whether loop statement N has been wrapped in a block to
3103 -- capture finalization actions that may be generated for container
3104 -- iterators. Prevents infinite recursion when block is analyzed.
3105 -- Routine is a noop if loop is single statement within source block.
3107 ---------------------------
3108 -- Is_Container_Iterator --
3109 ---------------------------
3111 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
3112 begin
3113 -- Infinite loop
3115 if No (Iter) then
3116 return False;
3118 -- While loop
3120 elsif Present (Condition (Iter)) then
3121 return False;
3123 -- for Def_Id in [reverse] Name loop
3124 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3126 elsif Present (Iterator_Specification (Iter)) then
3127 declare
3128 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
3129 Nam_Copy : Node_Id;
3131 begin
3132 Nam_Copy := New_Copy_Tree (Nam);
3133 Set_Parent (Nam_Copy, Parent (Nam));
3134 Preanalyze_Range (Nam_Copy);
3136 -- The only two options here are iteration over a container or
3137 -- an array.
3139 return not Is_Array_Type (Etype (Nam_Copy));
3140 end;
3142 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3144 else
3145 declare
3146 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
3147 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
3148 DS_Copy : Node_Id;
3150 begin
3151 DS_Copy := New_Copy_Tree (DS);
3152 Set_Parent (DS_Copy, Parent (DS));
3153 Preanalyze_Range (DS_Copy);
3155 -- Check for a call to Iterate () or an expression with
3156 -- an iterator type.
3158 return
3159 (Nkind (DS_Copy) = N_Function_Call
3160 and then Needs_Finalization (Etype (DS_Copy)))
3161 or else Is_Iterator (Etype (DS_Copy));
3162 end;
3163 end if;
3164 end Is_Container_Iterator;
3166 -------------------------
3167 -- Is_Wrapped_In_Block --
3168 -------------------------
3170 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
3171 HSS : Node_Id;
3172 Stat : Node_Id;
3174 begin
3176 -- Check if current scope is a block that is not a transient block.
3178 if Ekind (Current_Scope) /= E_Block
3179 or else No (Block_Node (Current_Scope))
3180 then
3181 return False;
3183 else
3184 HSS :=
3185 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
3187 -- Skip leading pragmas that may be introduced for invariant and
3188 -- predicate checks.
3190 Stat := First (Statements (HSS));
3191 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
3192 Stat := Next (Stat);
3193 end loop;
3195 return Stat = N and then No (Next (Stat));
3196 end if;
3197 end Is_Wrapped_In_Block;
3199 -- Local declarations
3201 Id : constant Node_Id := Identifier (N);
3202 Iter : constant Node_Id := Iteration_Scheme (N);
3203 Loc : constant Source_Ptr := Sloc (N);
3204 Ent : Entity_Id;
3205 Stmt : Node_Id;
3207 -- Start of processing for Analyze_Loop_Statement
3209 begin
3210 if Present (Id) then
3212 -- Make name visible, e.g. for use in exit statements. Loop labels
3213 -- are always considered to be referenced.
3215 Analyze (Id);
3216 Ent := Entity (Id);
3218 -- Guard against serious error (typically, a scope mismatch when
3219 -- semantic analysis is requested) by creating loop entity to
3220 -- continue analysis.
3222 if No (Ent) then
3223 if Total_Errors_Detected /= 0 then
3224 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3225 else
3226 raise Program_Error;
3227 end if;
3229 -- Verify that the loop name is hot hidden by an unrelated
3230 -- declaration in an inner scope.
3232 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3233 Error_Msg_Sloc := Sloc (Ent);
3234 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3236 if Present (Homonym (Ent))
3237 and then Ekind (Homonym (Ent)) = E_Label
3238 then
3239 Set_Entity (Id, Ent);
3240 Set_Ekind (Ent, E_Loop);
3241 end if;
3243 else
3244 Generate_Reference (Ent, N, ' ');
3245 Generate_Definition (Ent);
3247 -- If we found a label, mark its type. If not, ignore it, since it
3248 -- means we have a conflicting declaration, which would already
3249 -- have been diagnosed at declaration time. Set Label_Construct
3250 -- of the implicit label declaration, which is not created by the
3251 -- parser for generic units.
3253 if Ekind (Ent) = E_Label then
3254 Set_Ekind (Ent, E_Loop);
3256 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3257 Set_Label_Construct (Parent (Ent), N);
3258 end if;
3259 end if;
3260 end if;
3262 -- Case of no identifier present. Create one and attach it to the
3263 -- loop statement for use as a scope and as a reference for later
3264 -- expansions. Indicate that the label does not come from source,
3265 -- and attach it to the loop statement so it is part of the tree,
3266 -- even without a full declaration.
3268 else
3269 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3270 Set_Etype (Ent, Standard_Void_Type);
3271 Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
3272 Set_Parent (Ent, N);
3273 Set_Has_Created_Identifier (N);
3274 end if;
3276 -- Iteration over a container in Ada 2012 involves the creation of a
3277 -- controlled iterator object. Wrap the loop in a block to ensure the
3278 -- timely finalization of the iterator and release of container locks.
3279 -- The same applies to the use of secondary stack when obtaining an
3280 -- iterator.
3282 if Ada_Version >= Ada_2012
3283 and then Is_Container_Iterator (Iter)
3284 and then not Is_Wrapped_In_Block (N)
3285 then
3286 declare
3287 Block_Nod : Node_Id;
3288 Block_Id : Entity_Id;
3290 begin
3291 Block_Nod :=
3292 Make_Block_Statement (Loc,
3293 Declarations => New_List,
3294 Handled_Statement_Sequence =>
3295 Make_Handled_Sequence_Of_Statements (Loc,
3296 Statements => New_List (Relocate_Node (N))));
3298 Add_Block_Identifier (Block_Nod, Block_Id);
3300 -- The expansion of iterator loops generates an iterator in order
3301 -- to traverse the elements of a container:
3303 -- Iter : <iterator type> := Iterate (Container)'reference;
3305 -- The iterator is controlled and returned on the secondary stack.
3306 -- The analysis of the call to Iterate establishes a transient
3307 -- scope to deal with the secondary stack management, but never
3308 -- really creates a physical block as this would kill the iterator
3309 -- too early (see Wrap_Transient_Declaration). To address this
3310 -- case, mark the generated block as needing secondary stack
3311 -- management.
3313 Set_Uses_Sec_Stack (Block_Id);
3315 Rewrite (N, Block_Nod);
3316 Analyze (N);
3317 return;
3318 end;
3319 end if;
3321 -- Kill current values on entry to loop, since statements in the body of
3322 -- the loop may have been executed before the loop is entered. Similarly
3323 -- we kill values after the loop, since we do not know that the body of
3324 -- the loop was executed.
3326 Kill_Current_Values;
3327 Push_Scope (Ent);
3328 Analyze_Iteration_Scheme (Iter);
3330 -- Check for following case which merits a warning if the type E of is
3331 -- a multi-dimensional array (and no explicit subscript ranges present).
3333 -- for J in E'Range
3334 -- for K in E'Range
3336 if Present (Iter)
3337 and then Present (Loop_Parameter_Specification (Iter))
3338 then
3339 declare
3340 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3341 DSD : constant Node_Id :=
3342 Original_Node (Discrete_Subtype_Definition (LPS));
3343 begin
3344 if Nkind (DSD) = N_Attribute_Reference
3345 and then Attribute_Name (DSD) = Name_Range
3346 and then No (Expressions (DSD))
3347 then
3348 declare
3349 Typ : constant Entity_Id := Etype (Prefix (DSD));
3350 begin
3351 if Is_Array_Type (Typ)
3352 and then Number_Dimensions (Typ) > 1
3353 and then Nkind (Parent (N)) = N_Loop_Statement
3354 and then Present (Iteration_Scheme (Parent (N)))
3355 then
3356 declare
3357 OIter : constant Node_Id :=
3358 Iteration_Scheme (Parent (N));
3359 OLPS : constant Node_Id :=
3360 Loop_Parameter_Specification (OIter);
3361 ODSD : constant Node_Id :=
3362 Original_Node (Discrete_Subtype_Definition (OLPS));
3363 begin
3364 if Nkind (ODSD) = N_Attribute_Reference
3365 and then Attribute_Name (ODSD) = Name_Range
3366 and then No (Expressions (ODSD))
3367 and then Etype (Prefix (ODSD)) = Typ
3368 then
3369 Error_Msg_Sloc := Sloc (ODSD);
3370 Error_Msg_N
3371 ("inner range same as outer range#??", DSD);
3372 end if;
3373 end;
3374 end if;
3375 end;
3376 end if;
3377 end;
3378 end if;
3380 -- Analyze the statements of the body except in the case of an Ada 2012
3381 -- iterator with the expander active. In this case the expander will do
3382 -- a rewrite of the loop into a while loop. We will then analyze the
3383 -- loop body when we analyze this while loop.
3385 -- We need to do this delay because if the container is for indefinite
3386 -- types the actual subtype of the components will only be determined
3387 -- when the cursor declaration is analyzed.
3389 -- If the expander is not active then we want to analyze the loop body
3390 -- now even in the Ada 2012 iterator case, since the rewriting will not
3391 -- be done. Insert the loop variable in the current scope, if not done
3392 -- when analysing the iteration scheme. Set its kind properly to detect
3393 -- improper uses in the loop body.
3395 -- In GNATprove mode, we do one of the above depending on the kind of
3396 -- loop. If it is an iterator over an array, then we do not analyze the
3397 -- loop now. We will analyze it after it has been rewritten by the
3398 -- special SPARK expansion which is activated in GNATprove mode. We need
3399 -- to do this so that other expansions that should occur in GNATprove
3400 -- mode take into account the specificities of the rewritten loop, in
3401 -- particular the introduction of a renaming (which needs to be
3402 -- expanded).
3404 -- In other cases in GNATprove mode then we want to analyze the loop
3405 -- body now, since no rewriting will occur.
3407 if Present (Iter)
3408 and then Present (Iterator_Specification (Iter))
3409 then
3410 if GNATprove_Mode
3411 and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
3412 then
3413 null;
3415 elsif not Expander_Active then
3416 declare
3417 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3418 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3420 begin
3421 if Scope (Id) /= Current_Scope then
3422 Enter_Name (Id);
3423 end if;
3425 -- In an element iterator, The loop parameter is a variable if
3426 -- the domain of iteration (container or array) is a variable.
3428 if not Of_Present (I_Spec)
3429 or else not Is_Variable (Name (I_Spec))
3430 then
3431 Set_Ekind (Id, E_Loop_Parameter);
3432 end if;
3433 end;
3435 Analyze_Statements (Statements (N));
3436 end if;
3438 else
3440 -- Pre-Ada2012 for-loops and while loops.
3442 Analyze_Statements (Statements (N));
3443 end if;
3445 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3446 -- the loop is transformed into a conditional block. Retrieve the loop.
3448 Stmt := N;
3450 if Subject_To_Loop_Entry_Attributes (Stmt) then
3451 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3452 end if;
3454 -- Finish up processing for the loop. We kill all current values, since
3455 -- in general we don't know if the statements in the loop have been
3456 -- executed. We could do a bit better than this with a loop that we
3457 -- know will execute at least once, but it's not worth the trouble and
3458 -- the front end is not in the business of flow tracing.
3460 Process_End_Label (Stmt, 'e', Ent);
3461 End_Scope;
3462 Kill_Current_Values;
3464 -- Check for infinite loop. Skip check for generated code, since it
3465 -- justs waste time and makes debugging the routine called harder.
3467 -- Note that we have to wait till the body of the loop is fully analyzed
3468 -- before making this call, since Check_Infinite_Loop_Warning relies on
3469 -- being able to use semantic visibility information to find references.
3471 if Comes_From_Source (Stmt) then
3472 Check_Infinite_Loop_Warning (Stmt);
3473 end if;
3475 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3476 -- contains no EXIT statements within the body of the loop.
3478 if No (Iter) and then not Has_Exit (Ent) then
3479 Check_Unreachable_Code (Stmt);
3480 end if;
3481 end Analyze_Loop_Statement;
3483 ----------------------------
3484 -- Analyze_Null_Statement --
3485 ----------------------------
3487 -- Note: the semantics of the null statement is implemented by a single
3488 -- null statement, too bad everything isn't as simple as this.
3490 procedure Analyze_Null_Statement (N : Node_Id) is
3491 pragma Warnings (Off, N);
3492 begin
3493 null;
3494 end Analyze_Null_Statement;
3496 ------------------------
3497 -- Analyze_Statements --
3498 ------------------------
3500 procedure Analyze_Statements (L : List_Id) is
3501 S : Node_Id;
3502 Lab : Entity_Id;
3504 begin
3505 -- The labels declared in the statement list are reachable from
3506 -- statements in the list. We do this as a prepass so that any goto
3507 -- statement will be properly flagged if its target is not reachable.
3508 -- This is not required, but is nice behavior.
3510 S := First (L);
3511 while Present (S) loop
3512 if Nkind (S) = N_Label then
3513 Analyze (Identifier (S));
3514 Lab := Entity (Identifier (S));
3516 -- If we found a label mark it as reachable
3518 if Ekind (Lab) = E_Label then
3519 Generate_Definition (Lab);
3520 Set_Reachable (Lab);
3522 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3523 Set_Label_Construct (Parent (Lab), S);
3524 end if;
3526 -- If we failed to find a label, it means the implicit declaration
3527 -- of the label was hidden. A for-loop parameter can do this to
3528 -- a label with the same name inside the loop, since the implicit
3529 -- label declaration is in the innermost enclosing body or block
3530 -- statement.
3532 else
3533 Error_Msg_Sloc := Sloc (Lab);
3534 Error_Msg_N
3535 ("implicit label declaration for & is hidden#",
3536 Identifier (S));
3537 end if;
3538 end if;
3540 Next (S);
3541 end loop;
3543 -- Perform semantic analysis on all statements
3545 Conditional_Statements_Begin;
3547 S := First (L);
3548 while Present (S) loop
3549 Analyze (S);
3551 -- Remove dimension in all statements
3553 Remove_Dimension_In_Statement (S);
3554 Next (S);
3555 end loop;
3557 Conditional_Statements_End;
3559 -- Make labels unreachable. Visibility is not sufficient, because labels
3560 -- in one if-branch for example are not reachable from the other branch,
3561 -- even though their declarations are in the enclosing declarative part.
3563 S := First (L);
3564 while Present (S) loop
3565 if Nkind (S) = N_Label then
3566 Set_Reachable (Entity (Identifier (S)), False);
3567 end if;
3569 Next (S);
3570 end loop;
3571 end Analyze_Statements;
3573 ----------------------------
3574 -- Check_Unreachable_Code --
3575 ----------------------------
3577 procedure Check_Unreachable_Code (N : Node_Id) is
3578 Error_Node : Node_Id;
3579 P : Node_Id;
3581 begin
3582 if Is_List_Member (N) and then Comes_From_Source (N) then
3583 declare
3584 Nxt : Node_Id;
3586 begin
3587 Nxt := Original_Node (Next (N));
3589 -- Skip past pragmas
3591 while Nkind (Nxt) = N_Pragma loop
3592 Nxt := Original_Node (Next (Nxt));
3593 end loop;
3595 -- If a label follows us, then we never have dead code, since
3596 -- someone could branch to the label, so we just ignore it, unless
3597 -- we are in formal mode where goto statements are not allowed.
3599 if Nkind (Nxt) = N_Label
3600 and then not Restriction_Check_Required (SPARK_05)
3601 then
3602 return;
3604 -- Otherwise see if we have a real statement following us
3606 elsif Present (Nxt)
3607 and then Comes_From_Source (Nxt)
3608 and then Is_Statement (Nxt)
3609 then
3610 -- Special very annoying exception. If we have a return that
3611 -- follows a raise, then we allow it without a warning, since
3612 -- the Ada RM annoyingly requires a useless return here.
3614 if Nkind (Original_Node (N)) /= N_Raise_Statement
3615 or else Nkind (Nxt) /= N_Simple_Return_Statement
3616 then
3617 -- The rather strange shenanigans with the warning message
3618 -- here reflects the fact that Kill_Dead_Code is very good
3619 -- at removing warnings in deleted code, and this is one
3620 -- warning we would prefer NOT to have removed.
3622 Error_Node := Nxt;
3624 -- If we have unreachable code, analyze and remove the
3625 -- unreachable code, since it is useless and we don't
3626 -- want to generate junk warnings.
3628 -- We skip this step if we are not in code generation mode
3629 -- or CodePeer mode.
3631 -- This is the one case where we remove dead code in the
3632 -- semantics as opposed to the expander, and we do not want
3633 -- to remove code if we are not in code generation mode,
3634 -- since this messes up the ASIS trees or loses useful
3635 -- information in the CodePeer tree.
3637 -- Note that one might react by moving the whole circuit to
3638 -- exp_ch5, but then we lose the warning in -gnatc mode.
3640 if Operating_Mode = Generate_Code
3641 and then not CodePeer_Mode
3642 then
3643 loop
3644 Nxt := Next (N);
3646 -- Quit deleting when we have nothing more to delete
3647 -- or if we hit a label (since someone could transfer
3648 -- control to a label, so we should not delete it).
3650 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3652 -- Statement/declaration is to be deleted
3654 Analyze (Nxt);
3655 Remove (Nxt);
3656 Kill_Dead_Code (Nxt);
3657 end loop;
3658 end if;
3660 -- Now issue the warning (or error in formal mode)
3662 if Restriction_Check_Required (SPARK_05) then
3663 Check_SPARK_05_Restriction
3664 ("unreachable code is not allowed", Error_Node);
3665 else
3666 Error_Msg ("??unreachable code!", Sloc (Error_Node));
3667 end if;
3668 end if;
3670 -- If the unconditional transfer of control instruction is the
3671 -- last statement of a sequence, then see if our parent is one of
3672 -- the constructs for which we count unblocked exits, and if so,
3673 -- adjust the count.
3675 else
3676 P := Parent (N);
3678 -- Statements in THEN part or ELSE part of IF statement
3680 if Nkind (P) = N_If_Statement then
3681 null;
3683 -- Statements in ELSIF part of an IF statement
3685 elsif Nkind (P) = N_Elsif_Part then
3686 P := Parent (P);
3687 pragma Assert (Nkind (P) = N_If_Statement);
3689 -- Statements in CASE statement alternative
3691 elsif Nkind (P) = N_Case_Statement_Alternative then
3692 P := Parent (P);
3693 pragma Assert (Nkind (P) = N_Case_Statement);
3695 -- Statements in body of block
3697 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3698 and then Nkind (Parent (P)) = N_Block_Statement
3699 then
3700 -- The original loop is now placed inside a block statement
3701 -- due to the expansion of attribute 'Loop_Entry. Return as
3702 -- this is not a "real" block for the purposes of exit
3703 -- counting.
3705 if Nkind (N) = N_Loop_Statement
3706 and then Subject_To_Loop_Entry_Attributes (N)
3707 then
3708 return;
3709 end if;
3711 -- Statements in exception handler in a block
3713 elsif Nkind (P) = N_Exception_Handler
3714 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3715 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3716 then
3717 null;
3719 -- None of these cases, so return
3721 else
3722 return;
3723 end if;
3725 -- This was one of the cases we are looking for (i.e. the
3726 -- parent construct was IF, CASE or block) so decrement count.
3728 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3729 end if;
3730 end;
3731 end if;
3732 end Check_Unreachable_Code;
3734 ----------------------
3735 -- Preanalyze_Range --
3736 ----------------------
3738 procedure Preanalyze_Range (R_Copy : Node_Id) is
3739 Save_Analysis : constant Boolean := Full_Analysis;
3740 Typ : Entity_Id;
3742 begin
3743 Full_Analysis := False;
3744 Expander_Mode_Save_And_Set (False);
3746 Analyze (R_Copy);
3748 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3750 -- Apply preference rules for range of predefined integer types, or
3751 -- diagnose true ambiguity.
3753 declare
3754 I : Interp_Index;
3755 It : Interp;
3756 Found : Entity_Id := Empty;
3758 begin
3759 Get_First_Interp (R_Copy, I, It);
3760 while Present (It.Typ) loop
3761 if Is_Discrete_Type (It.Typ) then
3762 if No (Found) then
3763 Found := It.Typ;
3764 else
3765 if Scope (Found) = Standard_Standard then
3766 null;
3768 elsif Scope (It.Typ) = Standard_Standard then
3769 Found := It.Typ;
3771 else
3772 -- Both of them are user-defined
3774 Error_Msg_N
3775 ("ambiguous bounds in range of iteration", R_Copy);
3776 Error_Msg_N ("\possible interpretations:", R_Copy);
3777 Error_Msg_NE ("\\} ", R_Copy, Found);
3778 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3779 exit;
3780 end if;
3781 end if;
3782 end if;
3784 Get_Next_Interp (I, It);
3785 end loop;
3786 end;
3787 end if;
3789 -- Subtype mark in iteration scheme
3791 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3792 null;
3794 -- Expression in range, or Ada 2012 iterator
3796 elsif Nkind (R_Copy) in N_Subexpr then
3797 Resolve (R_Copy);
3798 Typ := Etype (R_Copy);
3800 if Is_Discrete_Type (Typ) then
3801 null;
3803 -- Check that the resulting object is an iterable container
3805 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3806 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3807 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3808 then
3809 null;
3811 -- The expression may yield an implicit reference to an iterable
3812 -- container. Insert explicit dereference so that proper type is
3813 -- visible in the loop.
3815 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3816 declare
3817 Disc : Entity_Id;
3819 begin
3820 Disc := First_Discriminant (Typ);
3821 while Present (Disc) loop
3822 if Has_Implicit_Dereference (Disc) then
3823 Build_Explicit_Dereference (R_Copy, Disc);
3824 exit;
3825 end if;
3827 Next_Discriminant (Disc);
3828 end loop;
3829 end;
3831 end if;
3832 end if;
3834 Expander_Mode_Restore;
3835 Full_Analysis := Save_Analysis;
3836 end Preanalyze_Range;
3838 end Sem_Ch5;