1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Exp_Atag
; use Exp_Atag
;
32 with Exp_Ch2
; use Exp_Ch2
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Imgv
; use Exp_Imgv
;
38 with Exp_Pakd
; use Exp_Pakd
;
39 with Exp_Strm
; use Exp_Strm
;
40 with Exp_Tss
; use Exp_Tss
;
41 with Exp_Util
; use Exp_Util
;
42 with Fname
; use Fname
;
43 with Freeze
; use Freeze
;
44 with Gnatvsn
; use Gnatvsn
;
45 with Itypes
; use Itypes
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
49 with Nlists
; use Nlists
;
51 with Restrict
; use Restrict
;
52 with Rident
; use Rident
;
53 with Rtsfind
; use Rtsfind
;
55 with Sem_Aux
; use Sem_Aux
;
56 with Sem_Ch6
; use Sem_Ch6
;
57 with Sem_Ch7
; use Sem_Ch7
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Eval
; use Sem_Eval
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Util
; use Sem_Util
;
62 with Sinfo
; use Sinfo
;
63 with Snames
; use Snames
;
64 with Stand
; use Stand
;
65 with Stringt
; use Stringt
;
66 with Targparm
; use Targparm
;
67 with Tbuild
; use Tbuild
;
68 with Ttypes
; use Ttypes
;
69 with Uintp
; use Uintp
;
70 with Uname
; use Uname
;
71 with Validsw
; use Validsw
;
73 package body Exp_Attr
is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 function Build_Array_VS_Func
81 Nod
: Node_Id
) return Entity_Id
;
82 -- Build function to test Valid_Scalars for array type A_Type. Nod is the
83 -- Valid_Scalars attribute node, used to insert the function body, and the
84 -- value returned is the entity of the constructed function body. We do not
85 -- bother to generate a separate spec for this subprogram.
87 function Build_Record_VS_Func
89 Nod
: Node_Id
) return Entity_Id
;
90 -- Build function to test Valid_Scalars for record type A_Type. Nod is the
91 -- Valid_Scalars attribute node, used to insert the function body, and the
92 -- value returned is the entity of the constructed function body. We do not
93 -- bother to generate a separate spec for this subprogram.
95 procedure Compile_Stream_Body_In_Scope
100 -- The body for a stream subprogram may be generated outside of the scope
101 -- of the type. If the type is fully private, it may depend on the full
102 -- view of other types (e.g. indexes) that are currently private as well.
103 -- We install the declarations of the package in which the type is declared
104 -- before compiling the body in what is its proper environment. The Check
105 -- parameter indicates if checks are to be suppressed for the stream body.
106 -- We suppress checks for array/record reads, since the rule is that these
107 -- are like assignments, out of range values due to uninitialized storage,
108 -- or other invalid values do NOT cause a Constraint_Error to be raised.
109 -- If we are within an instance body all visibility has been established
110 -- already and there is no need to install the package.
112 -- This mechanism is now extended to the component types of the array type,
113 -- when the component type is not in scope and is private, to handle
114 -- properly the case when the full view has defaulted discriminants.
116 -- This special processing is ultimately caused by the fact that the
117 -- compiler lacks a well-defined phase when full views are visible
118 -- everywhere. Having such a separate pass would remove much of the
119 -- special-case code that shuffles partial and full views in the middle
120 -- of semantic analysis and expansion.
122 procedure Expand_Access_To_Protected_Op
126 -- An attribute reference to a protected subprogram is transformed into
127 -- a pair of pointers: one to the object, and one to the operations.
128 -- This expansion is performed for 'Access and for 'Unrestricted_Access.
130 procedure Expand_Fpt_Attribute
135 -- This procedure expands a call to a floating-point attribute function.
136 -- N is the attribute reference node, and Args is a list of arguments to
137 -- be passed to the function call. Pkg identifies the package containing
138 -- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
139 -- have already been converted to the floating-point type for which Pkg was
140 -- instantiated. The Nam argument is the relevant attribute processing
141 -- routine to be called. This is the same as the attribute name, except in
142 -- the Unaligned_Valid case.
144 procedure Expand_Fpt_Attribute_R
(N
: Node_Id
);
145 -- This procedure expands a call to a floating-point attribute function
146 -- that takes a single floating-point argument. The function to be called
147 -- is always the same as the attribute name.
149 procedure Expand_Fpt_Attribute_RI
(N
: Node_Id
);
150 -- This procedure expands a call to a floating-point attribute function
151 -- that takes one floating-point argument and one integer argument. The
152 -- function to be called is always the same as the attribute name.
154 procedure Expand_Fpt_Attribute_RR
(N
: Node_Id
);
155 -- This procedure expands a call to a floating-point attribute function
156 -- that takes two floating-point arguments. The function to be called
157 -- is always the same as the attribute name.
159 procedure Expand_Loop_Entry_Attribute
(N
: Node_Id
);
160 -- Handle the expansion of attribute 'Loop_Entry. As a result, the related
161 -- loop may be converted into a conditional block. See body for details.
163 procedure Expand_Min_Max_Attribute
(N
: Node_Id
);
164 -- Handle the expansion of attributes 'Max and 'Min, including expanding
165 -- then out if we are in Modify_Tree_For_C mode.
167 procedure Expand_Pred_Succ_Attribute
(N
: Node_Id
);
168 -- Handles expansion of Pred or Succ attributes for case of non-real
169 -- operand with overflow checking required.
171 procedure Expand_Update_Attribute
(N
: Node_Id
);
172 -- Handle the expansion of attribute Update
174 function Get_Index_Subtype
(N
: Node_Id
) return Entity_Id
;
175 -- Used for Last, Last, and Length, when the prefix is an array type.
176 -- Obtains the corresponding index subtype.
178 procedure Find_Fat_Info
180 Fat_Type
: out Entity_Id
;
181 Fat_Pkg
: out RE_Id
);
182 -- Given a floating-point type T, identifies the package containing the
183 -- attributes for this type (returned in Fat_Pkg), and the corresponding
184 -- type for which this package was instantiated from Fat_Gen. Error if T
185 -- is not a floating-point type.
187 function Find_Stream_Subprogram
189 Nam
: TSS_Name_Type
) return Entity_Id
;
190 -- Returns the stream-oriented subprogram attribute for Typ. For tagged
191 -- types, the corresponding primitive operation is looked up, else the
192 -- appropriate TSS from the type itself, or from its closest ancestor
193 -- defining it, is returned. In both cases, inheritance of representation
194 -- aspects is thus taken into account.
196 function Full_Base
(T
: Entity_Id
) return Entity_Id
;
197 -- The stream functions need to examine the underlying representation of
198 -- composite types. In some cases T may be non-private but its base type
199 -- is, in which case the function returns the corresponding full view.
201 function Get_Stream_Convert_Pragma
(T
: Entity_Id
) return Node_Id
;
202 -- Given a type, find a corresponding stream convert pragma that applies to
203 -- the implementation base type of this type (Typ). If found, return the
204 -- pragma node, otherwise return Empty if no pragma is found.
206 function Is_Constrained_Packed_Array
(Typ
: Entity_Id
) return Boolean;
207 -- Utility for array attributes, returns true on packed constrained
208 -- arrays, and on access to same.
210 function Is_Inline_Floating_Point_Attribute
(N
: Node_Id
) return Boolean;
211 -- Returns true iff the given node refers to an attribute call that
212 -- can be expanded directly by the back end and does not need front end
213 -- expansion. Typically used for rounding and truncation attributes that
214 -- appear directly inside a conversion to integer.
216 -------------------------
217 -- Build_Array_VS_Func --
218 -------------------------
220 function Build_Array_VS_Func
222 Nod
: Node_Id
) return Entity_Id
224 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
225 Func_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
226 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
227 Body_Stmts
: List_Id
;
228 Index_List
: List_Id
;
231 function Test_Component
return List_Id
;
232 -- Create one statement to test validity of one component designated by
233 -- a full set of indexes. Returns statement list containing test.
235 function Test_One_Dimension
(N
: Int
) return List_Id
;
236 -- Create loop to test one dimension of the array. The single statement
237 -- in the loop body tests the inner dimensions if any, or else the
238 -- single component. Note that this procedure is called recursively,
239 -- with N being the dimension to be initialized. A call with N greater
240 -- than the number of dimensions simply generates the component test,
241 -- terminating the recursion. Returns statement list containing tests.
247 function Test_Component
return List_Id
is
253 Make_Indexed_Component
(Loc
,
254 Prefix
=> Make_Identifier
(Loc
, Name_uA
),
255 Expressions
=> Index_List
);
257 if Is_Scalar_Type
(Comp_Type
) then
260 Anam
:= Name_Valid_Scalars
;
264 Make_If_Statement
(Loc
,
268 Make_Attribute_Reference
(Loc
,
269 Attribute_Name
=> Anam
,
271 Then_Statements
=> New_List
(
272 Make_Simple_Return_Statement
(Loc
,
273 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))));
276 ------------------------
277 -- Test_One_Dimension --
278 ------------------------
280 function Test_One_Dimension
(N
: Int
) return List_Id
is
284 -- If all dimensions dealt with, we simply test the component
286 if N
> Number_Dimensions
(A_Type
) then
287 return Test_Component
;
289 -- Here we generate the required loop
293 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
295 Append
(New_Occurrence_Of
(Index
, Loc
), Index_List
);
298 Make_Implicit_Loop_Statement
(Nod
,
301 Make_Iteration_Scheme
(Loc
,
302 Loop_Parameter_Specification
=>
303 Make_Loop_Parameter_Specification
(Loc
,
304 Defining_Identifier
=> Index
,
305 Discrete_Subtype_Definition
=>
306 Make_Attribute_Reference
(Loc
,
307 Prefix
=> Make_Identifier
(Loc
, Name_uA
),
308 Attribute_Name
=> Name_Range
,
309 Expressions
=> New_List
(
310 Make_Integer_Literal
(Loc
, N
))))),
311 Statements
=> Test_One_Dimension
(N
+ 1)),
312 Make_Simple_Return_Statement
(Loc
,
313 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
315 end Test_One_Dimension
;
317 -- Start of processing for Build_Array_VS_Func
320 Index_List
:= New_List
;
321 Body_Stmts
:= Test_One_Dimension
(1);
323 -- Parameter is always (A : A_Typ)
325 Formals
:= New_List
(
326 Make_Parameter_Specification
(Loc
,
327 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_uA
),
329 Out_Present
=> False,
330 Parameter_Type
=> New_Occurrence_Of
(A_Type
, Loc
)));
334 Set_Ekind
(Func_Id
, E_Function
);
335 Set_Is_Internal
(Func_Id
);
338 Make_Subprogram_Body
(Loc
,
340 Make_Function_Specification
(Loc
,
341 Defining_Unit_Name
=> Func_Id
,
342 Parameter_Specifications
=> Formals
,
344 New_Occurrence_Of
(Standard_Boolean
, Loc
)),
345 Declarations
=> New_List
,
346 Handled_Statement_Sequence
=>
347 Make_Handled_Sequence_Of_Statements
(Loc
,
348 Statements
=> Body_Stmts
)));
350 if not Debug_Generated_Code
then
351 Set_Debug_Info_Off
(Func_Id
);
354 Set_Is_Pure
(Func_Id
);
356 end Build_Array_VS_Func
;
358 --------------------------
359 -- Build_Record_VS_Func --
360 --------------------------
364 -- function _Valid_Scalars (X : T) return Boolean is
366 -- -- Check discriminants
368 -- if not X.D1'Valid_Scalars or else
369 -- not X.D2'Valid_Scalars or else
375 -- -- Check components
377 -- if not X.C1'Valid_Scalars or else
378 -- not X.C2'Valid_Scalars or else
384 -- -- Check variant part
388 -- if not X.C2'Valid_Scalars or else
389 -- not X.C3'Valid_Scalars or else
396 -- if not X.Cn'Valid_Scalars or else
404 -- end _Valid_Scalars;
406 function Build_Record_VS_Func
408 Nod
: Node_Id
) return Entity_Id
410 Loc
: constant Source_Ptr
:= Sloc
(R_Type
);
411 Func_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
412 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_X
);
414 function Make_VS_Case
417 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
;
418 -- Building block for variant valid scalars. Given a Component_List node
419 -- CL, it generates an 'if' followed by a 'case' statement that compares
420 -- all components of local temporaries named X and Y (that are declared
421 -- as formals at some upper level). E provides the Sloc to be used for
422 -- the generated code.
426 L
: List_Id
) return Node_Id
;
427 -- Building block for variant validate scalars. Given the list, L, of
428 -- components (or discriminants) L, it generates a return statement that
429 -- compares all components of local temporaries named X and Y (that are
430 -- declared as formals at some upper level). E provides the Sloc to be
431 -- used for the generated code.
437 -- <Make_VS_If on shared components>
440 -- when V1 => <Make_VS_Case> on subcomponents
442 -- when Vn => <Make_VS_Case> on subcomponents
445 function Make_VS_Case
448 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
450 Loc
: constant Source_Ptr
:= Sloc
(E
);
451 Result
: constant List_Id
:= New_List
;
456 Append_To
(Result
, Make_VS_If
(E
, Component_Items
(CL
)));
458 if No
(Variant_Part
(CL
)) then
462 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
468 Alt_List
:= New_List
;
469 while Present
(Variant
) loop
471 Make_Case_Statement_Alternative
(Loc
,
472 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
474 Make_VS_Case
(E
, Component_List
(Variant
), Discrs
)));
475 Next_Non_Pragma
(Variant
);
479 Make_Case_Statement
(Loc
,
481 Make_Selected_Component
(Loc
,
482 Prefix
=> Make_Identifier
(Loc
, Name_X
),
483 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
484 Alternatives
=> Alt_List
));
496 -- not X.C1'Valid_Scalars
498 -- not X.C2'Valid_Scalars
504 -- or a null statement if the list L is empty
508 L
: List_Id
) return Node_Id
510 Loc
: constant Source_Ptr
:= Sloc
(E
);
513 Field_Name
: Name_Id
;
518 return Make_Null_Statement
(Loc
);
523 C
:= First_Non_Pragma
(L
);
524 while Present
(C
) loop
525 Def_Id
:= Defining_Identifier
(C
);
526 Field_Name
:= Chars
(Def_Id
);
528 -- The tags need not be checked since they will always be valid
530 -- Note also that in the following, we use Make_Identifier for
531 -- the component names. Use of New_Occurrence_Of to identify
532 -- the components would be incorrect because wrong entities for
533 -- discriminants could be picked up in the private type case.
535 -- Don't bother with abstract parent in interface case
537 if Field_Name
= Name_uParent
538 and then Is_Interface
(Etype
(Def_Id
))
542 -- Don't bother with tag, always valid, and not scalar anyway
544 elsif Field_Name
= Name_uTag
then
547 -- Don't bother with component with no scalar components
549 elsif not Scalar_Part_Present
(Etype
(Def_Id
)) then
552 -- Normal case, generate Valid_Scalars attribute reference
555 Evolve_Or_Else
(Cond
,
558 Make_Attribute_Reference
(Loc
,
560 Make_Selected_Component
(Loc
,
562 Make_Identifier
(Loc
, Name_X
),
564 Make_Identifier
(Loc
, Field_Name
)),
565 Attribute_Name
=> Name_Valid_Scalars
)));
572 return Make_Null_Statement
(Loc
);
576 Make_Implicit_If_Statement
(E
,
578 Then_Statements
=> New_List
(
579 Make_Simple_Return_Statement
(Loc
,
581 New_Occurrence_Of
(Standard_False
, Loc
))));
588 Def
: constant Node_Id
:= Parent
(R_Type
);
589 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
590 Stmts
: constant List_Id
:= New_List
;
591 Pspecs
: constant List_Id
:= New_List
;
593 -- Start of processing for Build_Record_VS_Func
597 Make_Parameter_Specification
(Loc
,
598 Defining_Identifier
=> X
,
599 Parameter_Type
=> New_Occurrence_Of
(R_Type
, Loc
)));
602 Make_VS_If
(R_Type
, Discriminant_Specifications
(Def
)));
603 Append_List_To
(Stmts
, Make_VS_Case
(R_Type
, Comps
));
606 Make_Simple_Return_Statement
(Loc
,
607 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
610 Make_Subprogram_Body
(Loc
,
612 Make_Function_Specification
(Loc
,
613 Defining_Unit_Name
=> Func_Id
,
614 Parameter_Specifications
=> Pspecs
,
615 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
616 Declarations
=> New_List
,
617 Handled_Statement_Sequence
=>
618 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> Stmts
)),
619 Suppress
=> Discriminant_Check
);
621 if not Debug_Generated_Code
then
622 Set_Debug_Info_Off
(Func_Id
);
625 Set_Is_Pure
(Func_Id
);
627 end Build_Record_VS_Func
;
629 ----------------------------------
630 -- Compile_Stream_Body_In_Scope --
631 ----------------------------------
633 procedure Compile_Stream_Body_In_Scope
639 C_Type
: constant Entity_Id
:= Base_Type
(Component_Type
(Arr
));
640 Curr
: constant Entity_Id
:= Current_Scope
;
641 Install
: Boolean := False;
642 Scop
: Entity_Id
:= Scope
(Arr
);
646 and then not In_Open_Scopes
(Scop
)
647 and then Ekind
(Scop
) = E_Package
652 -- The component type may be private, in which case we install its
653 -- full view to compile the subprogram.
655 -- The component type may be private, in which case we install its
656 -- full view to compile the subprogram. We do not do this if the
657 -- type has a Stream_Convert pragma, which indicates that there are
658 -- special stream-processing operations for that type (for example
659 -- Unbounded_String and its wide varieties).
661 Scop
:= Scope
(C_Type
);
663 if Is_Private_Type
(C_Type
)
664 and then Present
(Full_View
(C_Type
))
665 and then not In_Open_Scopes
(Scop
)
666 and then Ekind
(Scop
) = E_Package
667 and then No
(Get_Stream_Convert_Pragma
(C_Type
))
673 -- If we are within an instance body, then all visibility has been
674 -- established already and there is no need to install the package.
676 if Install
and then not In_Instance_Body
then
678 Install_Visible_Declarations
(Scop
);
679 Install_Private_Declarations
(Scop
);
681 -- The entities in the package are now visible, but the generated
682 -- stream entity must appear in the current scope (usually an
683 -- enclosing stream function) so that itypes all have their proper
692 Insert_Action
(N
, Decl
);
694 Insert_Action
(N
, Decl
, Suppress
=> All_Checks
);
699 -- Remove extra copy of current scope, and package itself
702 End_Package_Scope
(Scop
);
704 end Compile_Stream_Body_In_Scope
;
706 -----------------------------------
707 -- Expand_Access_To_Protected_Op --
708 -----------------------------------
710 procedure Expand_Access_To_Protected_Op
715 -- The value of the attribute_reference is a record containing two
716 -- fields: an access to the protected object, and an access to the
717 -- subprogram itself. The prefix is a selected component.
719 Loc
: constant Source_Ptr
:= Sloc
(N
);
721 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
724 E_T
: constant Entity_Id
:= Equivalent_Type
(Btyp
);
725 Acc
: constant Entity_Id
:=
726 Etype
(Next_Component
(First_Component
(E_T
)));
730 -- Start of processing for Expand_Access_To_Protected_Op
733 -- Within the body of the protected type, the prefix designates a local
734 -- operation, and the object is the first parameter of the corresponding
735 -- protected body of the current enclosing operation.
737 if Is_Entity_Name
(Pref
) then
738 -- All indirect calls are external calls, so must do locking and
739 -- barrier reevaluation, even if the 'Access occurs within the
740 -- protected body. Hence the call to External_Subprogram, as opposed
741 -- to Protected_Body_Subprogram, below. See RM-9.5(5). This means
742 -- that indirect calls from within the same protected body will
743 -- deadlock, as allowed by RM-9.5.1(8,15,17).
745 Sub
:= New_Occurrence_Of
(External_Subprogram
(Entity
(Pref
)), Loc
);
747 -- Don't traverse the scopes when the attribute occurs within an init
748 -- proc, because we directly use the _init formal of the init proc in
751 Curr
:= Current_Scope
;
752 if not Is_Init_Proc
(Curr
) then
753 pragma Assert
(In_Open_Scopes
(Scope
(Entity
(Pref
))));
755 while Scope
(Curr
) /= Scope
(Entity
(Pref
)) loop
756 Curr
:= Scope
(Curr
);
760 -- In case of protected entries the first formal of its Protected_
761 -- Body_Subprogram is the address of the object.
763 if Ekind
(Curr
) = E_Entry
then
767 (Protected_Body_Subprogram
(Curr
)), Loc
);
769 -- If the current scope is an init proc, then use the address of the
770 -- _init formal as the object reference.
772 elsif Is_Init_Proc
(Curr
) then
774 Make_Attribute_Reference
(Loc
,
775 Prefix
=> New_Occurrence_Of
(First_Formal
(Curr
), Loc
),
776 Attribute_Name
=> Name_Address
);
778 -- In case of protected subprograms the first formal of its
779 -- Protected_Body_Subprogram is the object and we get its address.
783 Make_Attribute_Reference
(Loc
,
787 (Protected_Body_Subprogram
(Curr
)), Loc
),
788 Attribute_Name
=> Name_Address
);
791 -- Case where the prefix is not an entity name. Find the
792 -- version of the protected operation to be called from
793 -- outside the protected object.
799 (Entity
(Selector_Name
(Pref
))), Loc
);
802 Make_Attribute_Reference
(Loc
,
803 Prefix
=> Relocate_Node
(Prefix
(Pref
)),
804 Attribute_Name
=> Name_Address
);
808 Make_Attribute_Reference
(Loc
,
810 Attribute_Name
=> Name_Access
);
812 -- We set the type of the access reference to the already generated
813 -- access_to_subprogram type, and declare the reference analyzed, to
814 -- prevent further expansion when the enclosing aggregate is analyzed.
816 Set_Etype
(Sub_Ref
, Acc
);
817 Set_Analyzed
(Sub_Ref
);
821 Expressions
=> New_List
(Obj_Ref
, Sub_Ref
));
823 -- Sub_Ref has been marked as analyzed, but we still need to make sure
824 -- Sub is correctly frozen.
826 Freeze_Before
(N
, Entity
(Sub
));
829 Analyze_And_Resolve
(N
, E_T
);
831 -- For subsequent analysis, the node must retain its type. The backend
832 -- will replace it with the equivalent type where needed.
835 end Expand_Access_To_Protected_Op
;
837 --------------------------
838 -- Expand_Fpt_Attribute --
839 --------------------------
841 procedure Expand_Fpt_Attribute
847 Loc
: constant Source_Ptr
:= Sloc
(N
);
848 Typ
: constant Entity_Id
:= Etype
(N
);
852 -- The function name is the selected component Attr_xxx.yyy where
853 -- Attr_xxx is the package name, and yyy is the argument Nam.
855 -- Note: it would be more usual to have separate RE entries for each
856 -- of the entities in the Fat packages, but first they have identical
857 -- names (so we would have to have lots of renaming declarations to
858 -- meet the normal RE rule of separate names for all runtime entities),
859 -- and second there would be an awful lot of them.
862 Make_Selected_Component
(Loc
,
863 Prefix
=> New_Occurrence_Of
(RTE
(Pkg
), Loc
),
864 Selector_Name
=> Make_Identifier
(Loc
, Nam
));
866 -- The generated call is given the provided set of parameters, and then
867 -- wrapped in a conversion which converts the result to the target type
868 -- We use the base type as the target because a range check may be
872 Unchecked_Convert_To
(Base_Type
(Etype
(N
)),
873 Make_Function_Call
(Loc
,
875 Parameter_Associations
=> Args
)));
877 Analyze_And_Resolve
(N
, Typ
);
878 end Expand_Fpt_Attribute
;
880 ----------------------------
881 -- Expand_Fpt_Attribute_R --
882 ----------------------------
884 -- The single argument is converted to its root type to call the
885 -- appropriate runtime function, with the actual call being built
886 -- by Expand_Fpt_Attribute
888 procedure Expand_Fpt_Attribute_R
(N
: Node_Id
) is
889 E1
: constant Node_Id
:= First
(Expressions
(N
));
893 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
895 (N
, Pkg
, Attribute_Name
(N
),
896 New_List
(Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
))));
897 end Expand_Fpt_Attribute_R
;
899 -----------------------------
900 -- Expand_Fpt_Attribute_RI --
901 -----------------------------
903 -- The first argument is converted to its root type and the second
904 -- argument is converted to standard long long integer to call the
905 -- appropriate runtime function, with the actual call being built
906 -- by Expand_Fpt_Attribute
908 procedure Expand_Fpt_Attribute_RI
(N
: Node_Id
) is
909 E1
: constant Node_Id
:= First
(Expressions
(N
));
912 E2
: constant Node_Id
:= Next
(E1
);
914 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
916 (N
, Pkg
, Attribute_Name
(N
),
918 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
)),
919 Unchecked_Convert_To
(Standard_Integer
, Relocate_Node
(E2
))));
920 end Expand_Fpt_Attribute_RI
;
922 -----------------------------
923 -- Expand_Fpt_Attribute_RR --
924 -----------------------------
926 -- The two arguments are converted to their root types to call the
927 -- appropriate runtime function, with the actual call being built
928 -- by Expand_Fpt_Attribute
930 procedure Expand_Fpt_Attribute_RR
(N
: Node_Id
) is
931 E1
: constant Node_Id
:= First
(Expressions
(N
));
932 E2
: constant Node_Id
:= Next
(E1
);
937 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
939 (N
, Pkg
, Attribute_Name
(N
),
941 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
)),
942 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E2
))));
943 end Expand_Fpt_Attribute_RR
;
945 ---------------------------------
946 -- Expand_Loop_Entry_Attribute --
947 ---------------------------------
949 procedure Expand_Loop_Entry_Attribute
(N
: Node_Id
) is
950 procedure Build_Conditional_Block
954 If_Stmt
: out Node_Id
;
955 Blk_Stmt
: out Node_Id
);
956 -- Create a block Blk_Stmt with an empty declarative list and a single
957 -- loop Loop_Stmt. The block is encased in an if statement If_Stmt with
958 -- condition Cond. If_Stmt is Empty when there is no condition provided.
960 function Is_Array_Iteration
(N
: Node_Id
) return Boolean;
961 -- Determine whether loop statement N denotes an Ada 2012 iteration over
964 -----------------------------
965 -- Build_Conditional_Block --
966 -----------------------------
968 procedure Build_Conditional_Block
972 If_Stmt
: out Node_Id
;
973 Blk_Stmt
: out Node_Id
)
976 -- Do not reanalyze the original loop statement because it is simply
979 Set_Analyzed
(Loop_Stmt
);
982 Make_Block_Statement
(Loc
,
983 Declarations
=> New_List
,
984 Handled_Statement_Sequence
=>
985 Make_Handled_Sequence_Of_Statements
(Loc
,
986 Statements
=> New_List
(Loop_Stmt
)));
988 if Present
(Cond
) then
990 Make_If_Statement
(Loc
,
992 Then_Statements
=> New_List
(Blk_Stmt
));
996 end Build_Conditional_Block
;
998 ------------------------
999 -- Is_Array_Iteration --
1000 ------------------------
1002 function Is_Array_Iteration
(N
: Node_Id
) return Boolean is
1003 Stmt
: constant Node_Id
:= Original_Node
(N
);
1007 if Nkind
(Stmt
) = N_Loop_Statement
1008 and then Present
(Iteration_Scheme
(Stmt
))
1009 and then Present
(Iterator_Specification
(Iteration_Scheme
(Stmt
)))
1011 Iter
:= Iterator_Specification
(Iteration_Scheme
(Stmt
));
1014 Of_Present
(Iter
) and then Is_Array_Type
(Etype
(Name
(Iter
)));
1018 end Is_Array_Iteration
;
1022 Exprs
: constant List_Id
:= Expressions
(N
);
1023 Pref
: constant Node_Id
:= Prefix
(N
);
1024 Typ
: constant Entity_Id
:= Etype
(Pref
);
1027 CW_Temp
: Entity_Id
;
1030 Installed
: Boolean;
1032 Loop_Id
: Entity_Id
;
1033 Loop_Stmt
: Node_Id
;
1036 Temp_Decl
: Node_Id
;
1037 Temp_Id
: Entity_Id
;
1039 -- Start of processing for Expand_Loop_Entry_Attribute
1042 -- Step 1: Find the related loop
1044 -- The loop label variant of attribute 'Loop_Entry already has all the
1045 -- information in its expression.
1047 if Present
(Exprs
) then
1048 Loop_Id
:= Entity
(First
(Exprs
));
1049 Loop_Stmt
:= Label_Construct
(Parent
(Loop_Id
));
1051 -- Climb the parent chain to find the nearest enclosing loop. Skip all
1052 -- internally generated loops for quantified expressions and for
1053 -- element iterators over multidimensional arrays: pragma applies to
1058 while Present
(Loop_Stmt
) loop
1059 if Nkind
(Loop_Stmt
) = N_Loop_Statement
1060 and then Comes_From_Source
(Loop_Stmt
)
1065 Loop_Stmt
:= Parent
(Loop_Stmt
);
1068 Loop_Id
:= Entity
(Identifier
(Loop_Stmt
));
1071 Loc
:= Sloc
(Loop_Stmt
);
1073 -- Step 2: Transform the loop
1075 -- The loop has already been transformed during the expansion of a prior
1076 -- 'Loop_Entry attribute. Retrieve the declarative list of the block.
1078 if Has_Loop_Entry_Attributes
(Loop_Id
) then
1080 -- When the related loop name appears as the argument of attribute
1081 -- Loop_Entry, the corresponding label construct is the generated
1082 -- block statement. This is because the expander reuses the label.
1084 if Nkind
(Loop_Stmt
) = N_Block_Statement
then
1085 Decls
:= Declarations
(Loop_Stmt
);
1087 -- In all other cases, the loop must appear in the handled sequence
1088 -- of statements of the generated block.
1092 (Nkind
(Parent
(Loop_Stmt
)) = N_Handled_Sequence_Of_Statements
1094 Nkind
(Parent
(Parent
(Loop_Stmt
))) = N_Block_Statement
);
1096 Decls
:= Declarations
(Parent
(Parent
(Loop_Stmt
)));
1101 -- Transform the loop into a conditional block
1104 Set_Has_Loop_Entry_Attributes
(Loop_Id
);
1105 Scheme
:= Iteration_Scheme
(Loop_Stmt
);
1107 -- Infinite loops are transformed into:
1110 -- Temp1 : constant <type of Pref1> := <Pref1>;
1112 -- TempN : constant <type of PrefN> := <PrefN>;
1115 -- <original source statements with attribute rewrites>
1120 Build_Conditional_Block
(Loc
,
1122 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1128 -- While loops are transformed into:
1130 -- function Fnn return Boolean is
1132 -- <condition actions>
1133 -- return <condition>;
1138 -- Temp1 : constant <type of Pref1> := <Pref1>;
1140 -- TempN : constant <type of PrefN> := <PrefN>;
1143 -- <original source statements with attribute rewrites>
1144 -- exit when not Fnn;
1149 -- Note that loops over iterators and containers are already
1150 -- converted into while loops.
1152 elsif Present
(Condition
(Scheme
)) then
1154 Func_Decl
: Node_Id
;
1155 Func_Id
: Entity_Id
;
1159 -- Wrap the condition of the while loop in a Boolean function.
1160 -- This avoids the duplication of the same code which may lead
1161 -- to gigi issues with respect to multiple declaration of the
1162 -- same entity in the presence of side effects or checks. Note
1163 -- that the condition actions must also be relocated to the
1164 -- wrapping function.
1167 -- <condition actions>
1168 -- return <condition>;
1170 if Present
(Condition_Actions
(Scheme
)) then
1171 Stmts
:= Condition_Actions
(Scheme
);
1177 Make_Simple_Return_Statement
(Loc
,
1178 Expression
=> Relocate_Node
(Condition
(Scheme
))));
1181 -- function Fnn return Boolean is
1186 Func_Id
:= Make_Temporary
(Loc
, 'F');
1188 Make_Subprogram_Body
(Loc
,
1190 Make_Function_Specification
(Loc
,
1191 Defining_Unit_Name
=> Func_Id
,
1192 Result_Definition
=>
1193 New_Occurrence_Of
(Standard_Boolean
, Loc
)),
1194 Declarations
=> Empty_List
,
1195 Handled_Statement_Sequence
=>
1196 Make_Handled_Sequence_Of_Statements
(Loc
,
1197 Statements
=> Stmts
));
1199 -- The function is inserted before the related loop. Make sure
1200 -- to analyze it in the context of the loop's enclosing scope.
1202 Push_Scope
(Scope
(Loop_Id
));
1203 Insert_Action
(Loop_Stmt
, Func_Decl
);
1206 -- Transform the original while loop into an infinite loop
1207 -- where the last statement checks the negated condition. This
1208 -- placement ensures that the condition will not be evaluated
1209 -- twice on the first iteration.
1211 Set_Iteration_Scheme
(Loop_Stmt
, Empty
);
1215 -- exit when not Fnn;
1217 Append_To
(Statements
(Loop_Stmt
),
1218 Make_Exit_Statement
(Loc
,
1222 Make_Function_Call
(Loc
,
1223 Name
=> New_Occurrence_Of
(Func_Id
, Loc
)))));
1225 Build_Conditional_Block
(Loc
,
1227 Make_Function_Call
(Loc
,
1228 Name
=> New_Occurrence_Of
(Func_Id
, Loc
)),
1229 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1234 -- Ada 2012 iteration over an array is transformed into:
1236 -- if <Array_Nam>'Length (1) > 0
1237 -- and then <Array_Nam>'Length (N) > 0
1240 -- Temp1 : constant <type of Pref1> := <Pref1>;
1242 -- TempN : constant <type of PrefN> := <PrefN>;
1244 -- for X in ... loop -- multiple loops depending on dims
1245 -- <original source statements with attribute rewrites>
1250 elsif Is_Array_Iteration
(Loop_Stmt
) then
1252 Array_Nam
: constant Entity_Id
:=
1253 Entity
(Name
(Iterator_Specification
1254 (Iteration_Scheme
(Original_Node
(Loop_Stmt
)))));
1255 Num_Dims
: constant Pos
:=
1256 Number_Dimensions
(Etype
(Array_Nam
));
1257 Cond
: Node_Id
:= Empty
;
1261 -- Generate a check which determines whether all dimensions of
1262 -- the array are non-null.
1264 for Dim
in 1 .. Num_Dims
loop
1268 Make_Attribute_Reference
(Loc
,
1269 Prefix
=> New_Occurrence_Of
(Array_Nam
, Loc
),
1270 Attribute_Name
=> Name_Length
,
1271 Expressions
=> New_List
(
1272 Make_Integer_Literal
(Loc
, Dim
))),
1274 Make_Integer_Literal
(Loc
, 0));
1282 Right_Opnd
=> Check
);
1286 Build_Conditional_Block
(Loc
,
1288 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1293 -- For loops are transformed into:
1295 -- if <Low> <= <High> then
1297 -- Temp1 : constant <type of Pref1> := <Pref1>;
1299 -- TempN : constant <type of PrefN> := <PrefN>;
1301 -- for <Def_Id> in <Low> .. <High> loop
1302 -- <original source statements with attribute rewrites>
1307 elsif Present
(Loop_Parameter_Specification
(Scheme
)) then
1309 Loop_Spec
: constant Node_Id
:=
1310 Loop_Parameter_Specification
(Scheme
);
1315 Subt_Def
:= Discrete_Subtype_Definition
(Loop_Spec
);
1317 -- When the loop iterates over a subtype indication with a
1318 -- range, use the low and high bounds of the subtype itself.
1320 if Nkind
(Subt_Def
) = N_Subtype_Indication
then
1321 Subt_Def
:= Scalar_Range
(Etype
(Subt_Def
));
1324 pragma Assert
(Nkind
(Subt_Def
) = N_Range
);
1331 Left_Opnd
=> New_Copy_Tree
(Low_Bound
(Subt_Def
)),
1332 Right_Opnd
=> New_Copy_Tree
(High_Bound
(Subt_Def
)));
1334 Build_Conditional_Block
(Loc
,
1336 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1342 Decls
:= Declarations
(Blk
);
1345 -- Step 3: Create a constant to capture the value of the prefix at the
1346 -- entry point into the loop.
1348 Temp_Id
:= Make_Temporary
(Loc
, 'P');
1350 -- Preserve the tag of the prefix by offering a specific view of the
1351 -- class-wide version of the prefix.
1353 if Is_Tagged_Type
(Typ
) then
1356 -- CW_Temp : constant Typ'Class := Typ'Class (Pref);
1358 CW_Temp
:= Make_Temporary
(Loc
, 'T');
1359 CW_Typ
:= Class_Wide_Type
(Typ
);
1362 Make_Object_Declaration
(Loc
,
1363 Defining_Identifier
=> CW_Temp
,
1364 Constant_Present
=> True,
1365 Object_Definition
=> New_Occurrence_Of
(CW_Typ
, Loc
),
1367 Convert_To
(CW_Typ
, Relocate_Node
(Pref
)));
1368 Append_To
(Decls
, CW_Decl
);
1371 -- Temp : Typ renames Typ (CW_Temp);
1374 Make_Object_Renaming_Declaration
(Loc
,
1375 Defining_Identifier
=> Temp_Id
,
1376 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
1378 Convert_To
(Typ
, New_Occurrence_Of
(CW_Temp
, Loc
)));
1379 Append_To
(Decls
, Temp_Decl
);
1387 -- Temp : constant Typ := Pref;
1390 Make_Object_Declaration
(Loc
,
1391 Defining_Identifier
=> Temp_Id
,
1392 Constant_Present
=> True,
1393 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1394 Expression
=> Relocate_Node
(Pref
));
1395 Append_To
(Decls
, Temp_Decl
);
1398 -- Step 4: Analyze all bits
1400 Installed
:= Current_Scope
= Scope
(Loop_Id
);
1402 -- Depending on the pracement of attribute 'Loop_Entry relative to the
1403 -- associated loop, ensure the proper visibility for analysis.
1405 if not Installed
then
1406 Push_Scope
(Scope
(Loop_Id
));
1409 -- The analysis of the conditional block takes care of the constant
1412 if Present
(Result
) then
1413 Rewrite
(Loop_Stmt
, Result
);
1414 Analyze
(Loop_Stmt
);
1416 -- The conditional block was analyzed when a previous 'Loop_Entry was
1417 -- expanded. There is no point in reanalyzing the block, simply analyze
1418 -- the declaration of the constant.
1421 if Present
(CW_Decl
) then
1425 Analyze
(Temp_Decl
);
1428 Rewrite
(N
, New_Occurrence_Of
(Temp_Id
, Loc
));
1431 if not Installed
then
1434 end Expand_Loop_Entry_Attribute
;
1436 ------------------------------
1437 -- Expand_Min_Max_Attribute --
1438 ------------------------------
1440 procedure Expand_Min_Max_Attribute
(N
: Node_Id
) is
1442 -- Min and Max are handled by the back end (except that static cases
1443 -- have already been evaluated during semantic processing, although the
1444 -- back end should not count on this). The one bit of special processing
1445 -- required in the normal case is that these two attributes typically
1446 -- generate conditionals in the code, so check the relevant restriction.
1448 Check_Restriction
(No_Implicit_Conditionals
, N
);
1450 -- In Modify_Tree_For_C mode, we rewrite as an if expression
1452 if Modify_Tree_For_C
then
1454 Loc
: constant Source_Ptr
:= Sloc
(N
);
1455 Typ
: constant Entity_Id
:= Etype
(N
);
1456 Expr
: constant Node_Id
:= First
(Expressions
(N
));
1457 Left
: constant Node_Id
:= Relocate_Node
(Expr
);
1458 Right
: constant Node_Id
:= Relocate_Node
(Next
(Expr
));
1460 function Make_Compare
(Left
, Right
: Node_Id
) return Node_Id
;
1461 -- Returns Left >= Right for Max, Left <= Right for Min
1467 function Make_Compare
(Left
, Right
: Node_Id
) return Node_Id
is
1469 if Attribute_Name
(N
) = Name_Max
then
1473 Right_Opnd
=> Right
);
1478 Right_Opnd
=> Right
);
1482 -- Start of processing for Min_Max
1485 -- If both Left and Right are side effect free, then we can just
1486 -- use Duplicate_Expr to duplicate the references and return
1488 -- (if Left >=|<= Right then Left else Right)
1490 if Side_Effect_Free
(Left
) and then Side_Effect_Free
(Right
) then
1492 Make_If_Expression
(Loc
,
1493 Expressions
=> New_List
(
1494 Make_Compare
(Left
, Right
),
1495 Duplicate_Subexpr_No_Checks
(Left
),
1496 Duplicate_Subexpr_No_Checks
(Right
))));
1498 -- Otherwise we generate declarations to capture the values.
1500 -- The translation is
1503 -- T1 : constant typ := Left;
1504 -- T2 : constant typ := Right;
1506 -- (if T1 >=|<= T2 then T1 else T2)
1511 T1
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Left
);
1512 T2
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Right
);
1516 Make_Expression_With_Actions
(Loc
,
1517 Actions
=> New_List
(
1518 Make_Object_Declaration
(Loc
,
1519 Defining_Identifier
=> T1
,
1520 Constant_Present
=> True,
1521 Object_Definition
=>
1522 New_Occurrence_Of
(Etype
(Left
), Loc
),
1523 Expression
=> Relocate_Node
(Left
)),
1525 Make_Object_Declaration
(Loc
,
1526 Defining_Identifier
=> T2
,
1527 Constant_Present
=> True,
1528 Object_Definition
=>
1529 New_Occurrence_Of
(Etype
(Right
), Loc
),
1530 Expression
=> Relocate_Node
(Right
))),
1533 Make_If_Expression
(Loc
,
1534 Expressions
=> New_List
(
1536 (New_Occurrence_Of
(T1
, Loc
),
1537 New_Occurrence_Of
(T2
, Loc
)),
1538 New_Occurrence_Of
(T1
, Loc
),
1539 New_Occurrence_Of
(T2
, Loc
)))));
1543 Analyze_And_Resolve
(N
, Typ
);
1546 end Expand_Min_Max_Attribute
;
1548 ----------------------------------
1549 -- Expand_N_Attribute_Reference --
1550 ----------------------------------
1552 procedure Expand_N_Attribute_Reference
(N
: Node_Id
) is
1553 Loc
: constant Source_Ptr
:= Sloc
(N
);
1554 Typ
: constant Entity_Id
:= Etype
(N
);
1555 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
1556 Pref
: constant Node_Id
:= Prefix
(N
);
1557 Ptyp
: constant Entity_Id
:= Etype
(Pref
);
1558 Exprs
: constant List_Id
:= Expressions
(N
);
1559 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attribute_Name
(N
));
1561 procedure Rewrite_Stream_Proc_Call
(Pname
: Entity_Id
);
1562 -- Rewrites a stream attribute for Read, Write or Output with the
1563 -- procedure call. Pname is the entity for the procedure to call.
1565 ------------------------------
1566 -- Rewrite_Stream_Proc_Call --
1567 ------------------------------
1569 procedure Rewrite_Stream_Proc_Call
(Pname
: Entity_Id
) is
1570 Item
: constant Node_Id
:= Next
(First
(Exprs
));
1571 Formal
: constant Entity_Id
:= Next_Formal
(First_Formal
(Pname
));
1572 Formal_Typ
: constant Entity_Id
:= Etype
(Formal
);
1573 Is_Written
: constant Boolean := (Ekind
(Formal
) /= E_In_Parameter
);
1576 -- The expansion depends on Item, the second actual, which is
1577 -- the object being streamed in or out.
1579 -- If the item is a component of a packed array type, and
1580 -- a conversion is needed on exit, we introduce a temporary to
1581 -- hold the value, because otherwise the packed reference will
1582 -- not be properly expanded.
1584 if Nkind
(Item
) = N_Indexed_Component
1585 and then Is_Packed
(Base_Type
(Etype
(Prefix
(Item
))))
1586 and then Base_Type
(Etype
(Item
)) /= Base_Type
(Formal_Typ
)
1590 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
1596 Make_Object_Declaration
(Loc
,
1597 Defining_Identifier
=> Temp
,
1598 Object_Definition
=>
1599 New_Occurrence_Of
(Formal_Typ
, Loc
));
1600 Set_Etype
(Temp
, Formal_Typ
);
1603 Make_Assignment_Statement
(Loc
,
1604 Name
=> New_Copy_Tree
(Item
),
1606 Unchecked_Convert_To
1607 (Etype
(Item
), New_Occurrence_Of
(Temp
, Loc
)));
1609 Rewrite
(Item
, New_Occurrence_Of
(Temp
, Loc
));
1613 Make_Procedure_Call_Statement
(Loc
,
1614 Name
=> New_Occurrence_Of
(Pname
, Loc
),
1615 Parameter_Associations
=> Exprs
),
1618 Rewrite
(N
, Make_Null_Statement
(Loc
));
1623 -- For the class-wide dispatching cases, and for cases in which
1624 -- the base type of the second argument matches the base type of
1625 -- the corresponding formal parameter (that is to say the stream
1626 -- operation is not inherited), we are all set, and can use the
1627 -- argument unchanged.
1629 -- For all other cases we do an unchecked conversion of the second
1630 -- parameter to the type of the formal of the procedure we are
1631 -- calling. This deals with the private type cases, and with going
1632 -- to the root type as required in elementary type case.
1634 if not Is_Class_Wide_Type
(Entity
(Pref
))
1635 and then not Is_Class_Wide_Type
(Etype
(Item
))
1636 and then Base_Type
(Etype
(Item
)) /= Base_Type
(Formal_Typ
)
1639 Unchecked_Convert_To
(Formal_Typ
, Relocate_Node
(Item
)));
1641 -- For untagged derived types set Assignment_OK, to prevent
1642 -- copies from being created when the unchecked conversion
1643 -- is expanded (which would happen in Remove_Side_Effects
1644 -- if Expand_N_Unchecked_Conversion were allowed to call
1645 -- Force_Evaluation). The copy could violate Ada semantics in
1646 -- cases such as an actual that is an out parameter. Note that
1647 -- this approach is also used in exp_ch7 for calls to controlled
1648 -- type operations to prevent problems with actuals wrapped in
1649 -- unchecked conversions.
1651 if Is_Untagged_Derivation
(Etype
(Expression
(Item
))) then
1652 Set_Assignment_OK
(Item
);
1656 -- The stream operation to call may be a renaming created by an
1657 -- attribute definition clause, and may not be frozen yet. Ensure
1658 -- that it has the necessary extra formals.
1660 if not Is_Frozen
(Pname
) then
1661 Create_Extra_Formals
(Pname
);
1664 -- And now rewrite the call
1667 Make_Procedure_Call_Statement
(Loc
,
1668 Name
=> New_Occurrence_Of
(Pname
, Loc
),
1669 Parameter_Associations
=> Exprs
));
1672 end Rewrite_Stream_Proc_Call
;
1674 -- Start of processing for Expand_N_Attribute_Reference
1677 -- Do required validity checking, if enabled. Do not apply check to
1678 -- output parameters of an Asm instruction, since the value of this
1679 -- is not set till after the attribute has been elaborated, and do
1680 -- not apply the check to the arguments of a 'Read or 'Input attribute
1681 -- reference since the scalar argument is an OUT scalar.
1683 if Validity_Checks_On
and then Validity_Check_Operands
1684 and then Id
/= Attribute_Asm_Output
1685 and then Id
/= Attribute_Read
1686 and then Id
/= Attribute_Input
1691 Expr
:= First
(Expressions
(N
));
1692 while Present
(Expr
) loop
1693 Ensure_Valid
(Expr
);
1699 -- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
1700 -- place function, then a temporary return object needs to be created
1701 -- and access to it must be passed to the function. Currently we limit
1702 -- such functions to those with inherently limited result subtypes, but
1703 -- eventually we plan to expand the functions that are treated as
1704 -- build-in-place to include other composite result types.
1706 if Ada_Version
>= Ada_2005
1707 and then Is_Build_In_Place_Function_Call
(Pref
)
1709 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
1712 -- If prefix is a protected type name, this is a reference to the
1713 -- current instance of the type. For a component definition, nothing
1714 -- to do (expansion will occur in the init proc). In other contexts,
1715 -- rewrite into reference to current instance.
1717 if Is_Protected_Self_Reference
(Pref
)
1719 (Nkind_In
(Parent
(N
), N_Index_Or_Discriminant_Constraint
,
1720 N_Discriminant_Association
)
1721 and then Nkind
(Parent
(Parent
(Parent
(Parent
(N
))))) =
1722 N_Component_Definition
)
1724 -- No action needed for these attributes since the current instance
1725 -- will be rewritten to be the name of the _object parameter
1726 -- associated with the enclosing protected subprogram (see below).
1728 and then Id
/= Attribute_Access
1729 and then Id
/= Attribute_Unchecked_Access
1730 and then Id
/= Attribute_Unrestricted_Access
1732 Rewrite
(Pref
, Concurrent_Ref
(Pref
));
1736 -- Remaining processing depends on specific attribute
1738 -- Note: individual sections of the following case statement are
1739 -- allowed to assume there is no code after the case statement, and
1740 -- are legitimately allowed to execute return statements if they have
1741 -- nothing more to do.
1745 -- Attributes related to Ada 2012 iterators
1747 when Attribute_Constant_Indexing |
1748 Attribute_Default_Iterator |
1749 Attribute_Implicit_Dereference |
1750 Attribute_Iterable |
1751 Attribute_Iterator_Element |
1752 Attribute_Variable_Indexing
=>
1755 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
1756 -- were already rejected by the parser. Thus they shouldn't appear here.
1758 when Internal_Attribute_Id
=>
1759 raise Program_Error
;
1765 when Attribute_Access |
1766 Attribute_Unchecked_Access |
1767 Attribute_Unrestricted_Access
=>
1769 Access_Cases
: declare
1770 Ref_Object
: constant Node_Id
:= Get_Referenced_Object
(Pref
);
1771 Btyp_DDT
: Entity_Id
;
1773 function Enclosing_Object
(N
: Node_Id
) return Node_Id
;
1774 -- If N denotes a compound name (selected component, indexed
1775 -- component, or slice), returns the name of the outermost such
1776 -- enclosing object. Otherwise returns N. If the object is a
1777 -- renaming, then the renamed object is returned.
1779 ----------------------
1780 -- Enclosing_Object --
1781 ----------------------
1783 function Enclosing_Object
(N
: Node_Id
) return Node_Id
is
1788 while Nkind_In
(Obj_Name
, N_Selected_Component
,
1789 N_Indexed_Component
,
1792 Obj_Name
:= Prefix
(Obj_Name
);
1795 return Get_Referenced_Object
(Obj_Name
);
1796 end Enclosing_Object
;
1798 -- Local declarations
1800 Enc_Object
: constant Node_Id
:= Enclosing_Object
(Ref_Object
);
1802 -- Start of processing for Access_Cases
1805 Btyp_DDT
:= Designated_Type
(Btyp
);
1807 -- Handle designated types that come from the limited view
1809 if From_Limited_With
(Btyp_DDT
)
1810 and then Has_Non_Limited_View
(Btyp_DDT
)
1812 Btyp_DDT
:= Non_Limited_View
(Btyp_DDT
);
1815 -- In order to improve the text of error messages, the designated
1816 -- type of access-to-subprogram itypes is set by the semantics as
1817 -- the associated subprogram entity (see sem_attr). Now we replace
1818 -- such node with the proper E_Subprogram_Type itype.
1820 if Id
= Attribute_Unrestricted_Access
1821 and then Is_Subprogram
(Directly_Designated_Type
(Typ
))
1823 -- The following conditions ensure that this special management
1824 -- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
1825 -- At this stage other cases in which the designated type is
1826 -- still a subprogram (instead of an E_Subprogram_Type) are
1827 -- wrong because the semantics must have overridden the type of
1828 -- the node with the type imposed by the context.
1830 if Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
1831 and then Etype
(Parent
(N
)) = RTE
(RE_Prim_Ptr
)
1833 Set_Etype
(N
, RTE
(RE_Prim_Ptr
));
1837 Subp
: constant Entity_Id
:=
1838 Directly_Designated_Type
(Typ
);
1840 Extra
: Entity_Id
:= Empty
;
1841 New_Formal
: Entity_Id
;
1842 Old_Formal
: Entity_Id
:= First_Formal
(Subp
);
1843 Subp_Typ
: Entity_Id
;
1846 Subp_Typ
:= Create_Itype
(E_Subprogram_Type
, N
);
1847 Set_Etype
(Subp_Typ
, Etype
(Subp
));
1848 Set_Returns_By_Ref
(Subp_Typ
, Returns_By_Ref
(Subp
));
1850 if Present
(Old_Formal
) then
1851 New_Formal
:= New_Copy
(Old_Formal
);
1852 Set_First_Entity
(Subp_Typ
, New_Formal
);
1855 Set_Scope
(New_Formal
, Subp_Typ
);
1856 Etyp
:= Etype
(New_Formal
);
1858 -- Handle itypes. There is no need to duplicate
1859 -- here the itypes associated with record types
1860 -- (i.e the implicit full view of private types).
1863 and then Ekind
(Base_Type
(Etyp
)) /= E_Record_Type
1865 Extra
:= New_Copy
(Etyp
);
1866 Set_Parent
(Extra
, New_Formal
);
1867 Set_Etype
(New_Formal
, Extra
);
1868 Set_Scope
(Extra
, Subp_Typ
);
1871 Extra
:= New_Formal
;
1872 Next_Formal
(Old_Formal
);
1873 exit when No
(Old_Formal
);
1875 Set_Next_Entity
(New_Formal
,
1876 New_Copy
(Old_Formal
));
1877 Next_Entity
(New_Formal
);
1880 Set_Next_Entity
(New_Formal
, Empty
);
1881 Set_Last_Entity
(Subp_Typ
, Extra
);
1884 -- Now that the explicit formals have been duplicated,
1885 -- any extra formals needed by the subprogram must be
1888 if Present
(Extra
) then
1889 Set_Extra_Formal
(Extra
, Empty
);
1892 Create_Extra_Formals
(Subp_Typ
);
1893 Set_Directly_Designated_Type
(Typ
, Subp_Typ
);
1898 if Is_Access_Protected_Subprogram_Type
(Btyp
) then
1899 Expand_Access_To_Protected_Op
(N
, Pref
, Typ
);
1901 -- If prefix is a type name, this is a reference to the current
1902 -- instance of the type, within its initialization procedure.
1904 elsif Is_Entity_Name
(Pref
)
1905 and then Is_Type
(Entity
(Pref
))
1912 -- If the current instance name denotes a task type, then
1913 -- the access attribute is rewritten to be the name of the
1914 -- "_task" parameter associated with the task type's task
1915 -- procedure. An unchecked conversion is applied to ensure
1916 -- a type match in cases of expander-generated calls (e.g.
1919 if Is_Task_Type
(Entity
(Pref
)) then
1921 First_Entity
(Get_Task_Body_Procedure
(Entity
(Pref
)));
1922 while Present
(Formal
) loop
1923 exit when Chars
(Formal
) = Name_uTask
;
1924 Next_Entity
(Formal
);
1927 pragma Assert
(Present
(Formal
));
1930 Unchecked_Convert_To
(Typ
,
1931 New_Occurrence_Of
(Formal
, Loc
)));
1934 elsif Is_Protected_Type
(Entity
(Pref
)) then
1936 -- No action needed for current instance located in a
1937 -- component definition (expansion will occur in the
1940 if Is_Protected_Type
(Current_Scope
) then
1943 -- If the current instance reference is located in a
1944 -- protected subprogram or entry then rewrite the access
1945 -- attribute to be the name of the "_object" parameter.
1946 -- An unchecked conversion is applied to ensure a type
1947 -- match in cases of expander-generated calls (e.g. init
1950 -- The code may be nested in a block, so find enclosing
1951 -- scope that is a protected operation.
1958 Subp
:= Current_Scope
;
1959 while Ekind_In
(Subp
, E_Loop
, E_Block
) loop
1960 Subp
:= Scope
(Subp
);
1965 (Protected_Body_Subprogram
(Subp
));
1967 -- For a protected subprogram the _Object parameter
1968 -- is the protected record, so we create an access
1969 -- to it. The _Object parameter of an entry is an
1972 if Ekind
(Subp
) = E_Entry
then
1974 Unchecked_Convert_To
(Typ
,
1975 New_Occurrence_Of
(Formal
, Loc
)));
1980 Unchecked_Convert_To
(Typ
,
1981 Make_Attribute_Reference
(Loc
,
1982 Attribute_Name
=> Name_Unrestricted_Access
,
1984 New_Occurrence_Of
(Formal
, Loc
))));
1985 Analyze_And_Resolve
(N
);
1990 -- The expression must appear in a default expression,
1991 -- (which in the initialization procedure is the right-hand
1992 -- side of an assignment), and not in a discriminant
1997 while Present
(Par
) loop
1998 exit when Nkind
(Par
) = N_Assignment_Statement
;
2000 if Nkind
(Par
) = N_Component_Declaration
then
2004 Par
:= Parent
(Par
);
2007 if Present
(Par
) then
2009 Make_Attribute_Reference
(Loc
,
2010 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2011 Attribute_Name
=> Attribute_Name
(N
)));
2013 Analyze_And_Resolve
(N
, Typ
);
2018 -- If the prefix of an Access attribute is a dereference of an
2019 -- access parameter (or a renaming of such a dereference, or a
2020 -- subcomponent of such a dereference) and the context is a
2021 -- general access type (including the type of an object or
2022 -- component with an access_definition, but not the anonymous
2023 -- type of an access parameter or access discriminant), then
2024 -- apply an accessibility check to the access parameter. We used
2025 -- to rewrite the access parameter as a type conversion, but that
2026 -- could only be done if the immediate prefix of the Access
2027 -- attribute was the dereference, and didn't handle cases where
2028 -- the attribute is applied to a subcomponent of the dereference,
2029 -- since there's generally no available, appropriate access type
2030 -- to convert to in that case. The attribute is passed as the
2031 -- point to insert the check, because the access parameter may
2032 -- come from a renaming, possibly in a different scope, and the
2033 -- check must be associated with the attribute itself.
2035 elsif Id
= Attribute_Access
2036 and then Nkind
(Enc_Object
) = N_Explicit_Dereference
2037 and then Is_Entity_Name
(Prefix
(Enc_Object
))
2038 and then (Ekind
(Btyp
) = E_General_Access_Type
2039 or else Is_Local_Anonymous_Access
(Btyp
))
2040 and then Ekind
(Entity
(Prefix
(Enc_Object
))) in Formal_Kind
2041 and then Ekind
(Etype
(Entity
(Prefix
(Enc_Object
))))
2042 = E_Anonymous_Access_Type
2043 and then Present
(Extra_Accessibility
2044 (Entity
(Prefix
(Enc_Object
))))
2046 Apply_Accessibility_Check
(Prefix
(Enc_Object
), Typ
, N
);
2048 -- Ada 2005 (AI-251): If the designated type is an interface we
2049 -- add an implicit conversion to force the displacement of the
2050 -- pointer to reference the secondary dispatch table.
2052 elsif Is_Interface
(Btyp_DDT
)
2053 and then (Comes_From_Source
(N
)
2054 or else Comes_From_Source
(Ref_Object
)
2055 or else (Nkind
(Ref_Object
) in N_Has_Chars
2056 and then Chars
(Ref_Object
) = Name_uInit
))
2058 if Nkind
(Ref_Object
) /= N_Explicit_Dereference
then
2060 -- No implicit conversion required if types match, or if
2061 -- the prefix is the class_wide_type of the interface. In
2062 -- either case passing an object of the interface type has
2063 -- already set the pointer correctly.
2065 if Btyp_DDT
= Etype
(Ref_Object
)
2066 or else (Is_Class_Wide_Type
(Etype
(Ref_Object
))
2068 Class_Wide_Type
(Btyp_DDT
) = Etype
(Ref_Object
))
2073 Rewrite
(Prefix
(N
),
2074 Convert_To
(Btyp_DDT
,
2075 New_Copy_Tree
(Prefix
(N
))));
2077 Analyze_And_Resolve
(Prefix
(N
), Btyp_DDT
);
2080 -- When the object is an explicit dereference, convert the
2081 -- dereference's prefix.
2085 Obj_DDT
: constant Entity_Id
:=
2087 (Directly_Designated_Type
2088 (Etype
(Prefix
(Ref_Object
))));
2090 -- No implicit conversion required if designated types
2091 -- match, or if we have an unrestricted access.
2093 if Obj_DDT
/= Btyp_DDT
2094 and then Id
/= Attribute_Unrestricted_Access
2095 and then not (Is_Class_Wide_Type
(Obj_DDT
)
2096 and then Etype
(Obj_DDT
) = Btyp_DDT
)
2100 New_Copy_Tree
(Prefix
(Ref_Object
))));
2101 Analyze_And_Resolve
(N
, Typ
);
2112 -- Transforms 'Adjacent into a call to the floating-point attribute
2113 -- function Adjacent in Fat_xxx (where xxx is the root type)
2115 when Attribute_Adjacent
=>
2116 Expand_Fpt_Attribute_RR
(N
);
2122 when Attribute_Address
=> Address
: declare
2123 Task_Proc
: Entity_Id
;
2126 -- If the prefix is a task or a task type, the useful address is that
2127 -- of the procedure for the task body, i.e. the actual program unit.
2128 -- We replace the original entity with that of the procedure.
2130 if Is_Entity_Name
(Pref
)
2131 and then Is_Task_Type
(Entity
(Pref
))
2133 Task_Proc
:= Next_Entity
(Root_Type
(Ptyp
));
2135 while Present
(Task_Proc
) loop
2136 exit when Ekind
(Task_Proc
) = E_Procedure
2137 and then Etype
(First_Formal
(Task_Proc
)) =
2138 Corresponding_Record_Type
(Ptyp
);
2139 Next_Entity
(Task_Proc
);
2142 if Present
(Task_Proc
) then
2143 Set_Entity
(Pref
, Task_Proc
);
2144 Set_Etype
(Pref
, Etype
(Task_Proc
));
2147 -- Similarly, the address of a protected operation is the address
2148 -- of the corresponding protected body, regardless of the protected
2149 -- object from which it is selected.
2151 elsif Nkind
(Pref
) = N_Selected_Component
2152 and then Is_Subprogram
(Entity
(Selector_Name
(Pref
)))
2153 and then Is_Protected_Type
(Scope
(Entity
(Selector_Name
(Pref
))))
2157 External_Subprogram
(Entity
(Selector_Name
(Pref
))), Loc
));
2159 elsif Nkind
(Pref
) = N_Explicit_Dereference
2160 and then Ekind
(Ptyp
) = E_Subprogram_Type
2161 and then Convention
(Ptyp
) = Convention_Protected
2163 -- The prefix is be a dereference of an access_to_protected_
2164 -- subprogram. The desired address is the second component of
2165 -- the record that represents the access.
2168 Addr
: constant Entity_Id
:= Etype
(N
);
2169 Ptr
: constant Node_Id
:= Prefix
(Pref
);
2170 T
: constant Entity_Id
:=
2171 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
2175 Unchecked_Convert_To
(Addr
,
2176 Make_Selected_Component
(Loc
,
2177 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
2178 Selector_Name
=> New_Occurrence_Of
(
2179 Next_Entity
(First_Entity
(T
)), Loc
))));
2181 Analyze_And_Resolve
(N
, Addr
);
2184 -- Ada 2005 (AI-251): Class-wide interface objects are always
2185 -- "displaced" to reference the tag associated with the interface
2186 -- type. In order to obtain the real address of such objects we
2187 -- generate a call to a run-time subprogram that returns the base
2188 -- address of the object.
2190 -- This processing is not needed in the VM case, where dispatching
2191 -- issues are taken care of by the virtual machine.
2193 elsif Is_Class_Wide_Type
(Ptyp
)
2194 and then Is_Interface
(Ptyp
)
2195 and then Tagged_Type_Expansion
2196 and then not (Nkind
(Pref
) in N_Has_Entity
2197 and then Is_Subprogram
(Entity
(Pref
)))
2200 Make_Function_Call
(Loc
,
2201 Name
=> New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
2202 Parameter_Associations
=> New_List
(
2203 Relocate_Node
(N
))));
2208 -- Deal with packed array reference, other cases are handled by
2211 if Involves_Packed_Array_Reference
(Pref
) then
2212 Expand_Packed_Address_Reference
(N
);
2220 when Attribute_Alignment
=> Alignment
: declare
2224 -- For class-wide types, X'Class'Alignment is transformed into a
2225 -- direct reference to the Alignment of the class type, so that the
2226 -- back end does not have to deal with the X'Class'Alignment
2229 if Is_Entity_Name
(Pref
)
2230 and then Is_Class_Wide_Type
(Entity
(Pref
))
2232 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
2235 -- For x'Alignment applied to an object of a class wide type,
2236 -- transform X'Alignment into a call to the predefined primitive
2237 -- operation _Alignment applied to X.
2239 elsif Is_Class_Wide_Type
(Ptyp
) then
2241 Make_Attribute_Reference
(Loc
,
2243 Attribute_Name
=> Name_Tag
);
2245 New_Node
:= Build_Get_Alignment
(Loc
, New_Node
);
2247 -- Case where the context is a specific integer type with which
2248 -- the original attribute was compatible. The function has a
2249 -- specific type as well, so to preserve the compatibility we
2250 -- must convert explicitly.
2252 if Typ
/= Standard_Integer
then
2253 New_Node
:= Convert_To
(Typ
, New_Node
);
2256 Rewrite
(N
, New_Node
);
2257 Analyze_And_Resolve
(N
, Typ
);
2260 -- For all other cases, we just have to deal with the case of
2261 -- the fact that the result can be universal.
2264 Apply_Universal_Integer_Attribute_Checks
(N
);
2272 -- We compute this if a packed array reference was present, otherwise we
2273 -- leave the computation up to the back end.
2275 when Attribute_Bit
=>
2276 if Involves_Packed_Array_Reference
(Pref
) then
2277 Expand_Packed_Bit_Reference
(N
);
2279 Apply_Universal_Integer_Attribute_Checks
(N
);
2286 -- We compute this if a component clause was present, otherwise we leave
2287 -- the computation up to the back end, since we don't know what layout
2290 -- Note that the attribute can apply to a naked record component
2291 -- in generated code (i.e. the prefix is an identifier that
2292 -- references the component or discriminant entity).
2294 when Attribute_Bit_Position
=> Bit_Position
: declare
2298 if Nkind
(Pref
) = N_Identifier
then
2299 CE
:= Entity
(Pref
);
2301 CE
:= Entity
(Selector_Name
(Pref
));
2304 if Known_Static_Component_Bit_Offset
(CE
) then
2306 Make_Integer_Literal
(Loc
,
2307 Intval
=> Component_Bit_Offset
(CE
)));
2308 Analyze_And_Resolve
(N
, Typ
);
2311 Apply_Universal_Integer_Attribute_Checks
(N
);
2319 -- A reference to P'Body_Version or P'Version is expanded to
2322 -- pragma Import (C, Vnn, "uuuuT");
2324 -- Get_Version_String (Vnn)
2326 -- where uuuu is the unit name (dots replaced by double underscore)
2327 -- and T is B for the cases of Body_Version, or Version applied to a
2328 -- subprogram acting as its own spec, and S for Version applied to a
2329 -- subprogram spec or package. This sequence of code references the
2330 -- unsigned constant created in the main program by the binder.
2332 -- A special exception occurs for Standard, where the string returned
2333 -- is a copy of the library string in gnatvsn.ads.
2335 when Attribute_Body_Version | Attribute_Version
=> Version
: declare
2336 E
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
2341 -- If not library unit, get to containing library unit
2343 Pent
:= Entity
(Pref
);
2344 while Pent
/= Standard_Standard
2345 and then Scope
(Pent
) /= Standard_Standard
2346 and then not Is_Child_Unit
(Pent
)
2348 Pent
:= Scope
(Pent
);
2351 -- Special case Standard and Standard.ASCII
2353 if Pent
= Standard_Standard
or else Pent
= Standard_ASCII
then
2355 Make_String_Literal
(Loc
,
2356 Strval
=> Verbose_Library_Version
));
2361 -- Build required string constant
2363 Get_Name_String
(Get_Unit_Name
(Pent
));
2366 for J
in 1 .. Name_Len
- 2 loop
2367 if Name_Buffer
(J
) = '.' then
2368 Store_String_Chars
("__");
2370 Store_String_Char
(Get_Char_Code
(Name_Buffer
(J
)));
2374 -- Case of subprogram acting as its own spec, always use body
2376 if Nkind
(Declaration_Node
(Pent
)) in N_Subprogram_Specification
2377 and then Nkind
(Parent
(Declaration_Node
(Pent
))) =
2379 and then Acts_As_Spec
(Parent
(Declaration_Node
(Pent
)))
2381 Store_String_Chars
("B");
2383 -- Case of no body present, always use spec
2385 elsif not Unit_Requires_Body
(Pent
) then
2386 Store_String_Chars
("S");
2388 -- Otherwise use B for Body_Version, S for spec
2390 elsif Id
= Attribute_Body_Version
then
2391 Store_String_Chars
("B");
2393 Store_String_Chars
("S");
2397 Lib
.Version_Referenced
(S
);
2399 -- Insert the object declaration
2401 Insert_Actions
(N
, New_List
(
2402 Make_Object_Declaration
(Loc
,
2403 Defining_Identifier
=> E
,
2404 Object_Definition
=>
2405 New_Occurrence_Of
(RTE
(RE_Unsigned
), Loc
))));
2407 -- Set entity as imported with correct external name
2409 Set_Is_Imported
(E
);
2410 Set_Interface_Name
(E
, Make_String_Literal
(Loc
, S
));
2412 -- Set entity as internal to ensure proper Sprint output of its
2413 -- implicit importation.
2415 Set_Is_Internal
(E
);
2417 -- And now rewrite original reference
2420 Make_Function_Call
(Loc
,
2421 Name
=> New_Occurrence_Of
(RTE
(RE_Get_Version_String
), Loc
),
2422 Parameter_Associations
=> New_List
(
2423 New_Occurrence_Of
(E
, Loc
))));
2426 Analyze_And_Resolve
(N
, RTE
(RE_Version_String
));
2433 -- Transforms 'Ceiling into a call to the floating-point attribute
2434 -- function Ceiling in Fat_xxx (where xxx is the root type)
2436 when Attribute_Ceiling
=>
2437 Expand_Fpt_Attribute_R
(N
);
2443 -- Transforms 'Callable attribute into a call to the Callable function
2445 when Attribute_Callable
=> Callable
:
2447 -- We have an object of a task interface class-wide type as a prefix
2448 -- to Callable. Generate:
2449 -- callable (Task_Id (Pref._disp_get_task_id));
2451 if Ada_Version
>= Ada_2005
2452 and then Ekind
(Ptyp
) = E_Class_Wide_Type
2453 and then Is_Interface
(Ptyp
)
2454 and then Is_Task_Interface
(Ptyp
)
2457 Make_Function_Call
(Loc
,
2459 New_Occurrence_Of
(RTE
(RE_Callable
), Loc
),
2460 Parameter_Associations
=> New_List
(
2461 Make_Unchecked_Type_Conversion
(Loc
,
2463 New_Occurrence_Of
(RTE
(RO_ST_Task_Id
), Loc
),
2465 Make_Selected_Component
(Loc
,
2467 New_Copy_Tree
(Pref
),
2469 Make_Identifier
(Loc
, Name_uDisp_Get_Task_Id
))))));
2473 Build_Call_With_Task
(Pref
, RTE
(RE_Callable
)));
2476 Analyze_And_Resolve
(N
, Standard_Boolean
);
2483 -- Transforms 'Caller attribute into a call to either the
2484 -- Task_Entry_Caller or the Protected_Entry_Caller function.
2486 when Attribute_Caller
=> Caller
: declare
2487 Id_Kind
: constant Entity_Id
:= RTE
(RO_AT_Task_Id
);
2488 Ent
: constant Entity_Id
:= Entity
(Pref
);
2489 Conctype
: constant Entity_Id
:= Scope
(Ent
);
2490 Nest_Depth
: Integer := 0;
2497 if Is_Protected_Type
(Conctype
) then
2498 case Corresponding_Runtime_Package
(Conctype
) is
2499 when System_Tasking_Protected_Objects_Entries
=>
2502 (RTE
(RE_Protected_Entry_Caller
), Loc
);
2504 when System_Tasking_Protected_Objects_Single_Entry
=>
2507 (RTE
(RE_Protected_Single_Entry_Caller
), Loc
);
2510 raise Program_Error
;
2514 Unchecked_Convert_To
(Id_Kind
,
2515 Make_Function_Call
(Loc
,
2517 Parameter_Associations
=> New_List
(
2519 (Find_Protection_Object
(Current_Scope
), Loc
)))));
2524 -- Determine the nesting depth of the E'Caller attribute, that
2525 -- is, how many accept statements are nested within the accept
2526 -- statement for E at the point of E'Caller. The runtime uses
2527 -- this depth to find the specified entry call.
2529 for J
in reverse 0 .. Scope_Stack
.Last
loop
2530 S
:= Scope_Stack
.Table
(J
).Entity
;
2532 -- We should not reach the scope of the entry, as it should
2533 -- already have been checked in Sem_Attr that this attribute
2534 -- reference is within a matching accept statement.
2536 pragma Assert
(S
/= Conctype
);
2541 elsif Is_Entry
(S
) then
2542 Nest_Depth
:= Nest_Depth
+ 1;
2547 Unchecked_Convert_To
(Id_Kind
,
2548 Make_Function_Call
(Loc
,
2550 New_Occurrence_Of
(RTE
(RE_Task_Entry_Caller
), Loc
),
2551 Parameter_Associations
=> New_List
(
2552 Make_Integer_Literal
(Loc
,
2553 Intval
=> Int
(Nest_Depth
))))));
2556 Analyze_And_Resolve
(N
, Id_Kind
);
2563 -- Transforms 'Compose into a call to the floating-point attribute
2564 -- function Compose in Fat_xxx (where xxx is the root type)
2566 -- Note: we strictly should have special code here to deal with the
2567 -- case of absurdly negative arguments (less than Integer'First)
2568 -- which will return a (signed) zero value, but it hardly seems
2569 -- worth the effort. Absurdly large positive arguments will raise
2570 -- constraint error which is fine.
2572 when Attribute_Compose
=>
2573 Expand_Fpt_Attribute_RI
(N
);
2579 when Attribute_Constrained
=> Constrained
: declare
2580 Formal_Ent
: constant Entity_Id
:= Param_Entity
(Pref
);
2582 function Is_Constrained_Aliased_View
(Obj
: Node_Id
) return Boolean;
2583 -- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
2584 -- view of an aliased object whose subtype is constrained.
2586 ---------------------------------
2587 -- Is_Constrained_Aliased_View --
2588 ---------------------------------
2590 function Is_Constrained_Aliased_View
(Obj
: Node_Id
) return Boolean is
2594 if Is_Entity_Name
(Obj
) then
2597 if Present
(Renamed_Object
(E
)) then
2598 return Is_Constrained_Aliased_View
(Renamed_Object
(E
));
2600 return Is_Aliased
(E
) and then Is_Constrained
(Etype
(E
));
2604 return Is_Aliased_View
(Obj
)
2606 (Is_Constrained
(Etype
(Obj
))
2608 (Nkind
(Obj
) = N_Explicit_Dereference
2610 not Object_Type_Has_Constrained_Partial_View
2611 (Typ
=> Base_Type
(Etype
(Obj
)),
2612 Scop
=> Current_Scope
)));
2614 end Is_Constrained_Aliased_View
;
2616 -- Start of processing for Constrained
2619 -- Reference to a parameter where the value is passed as an extra
2620 -- actual, corresponding to the extra formal referenced by the
2621 -- Extra_Constrained field of the corresponding formal. If this
2622 -- is an entry in-parameter, it is replaced by a constant renaming
2623 -- for which Extra_Constrained is never created.
2625 if Present
(Formal_Ent
)
2626 and then Ekind
(Formal_Ent
) /= E_Constant
2627 and then Present
(Extra_Constrained
(Formal_Ent
))
2631 (Extra_Constrained
(Formal_Ent
), Sloc
(N
)));
2633 -- For variables with a Extra_Constrained field, we use the
2634 -- corresponding entity.
2636 elsif Nkind
(Pref
) = N_Identifier
2637 and then Ekind
(Entity
(Pref
)) = E_Variable
2638 and then Present
(Extra_Constrained
(Entity
(Pref
)))
2642 (Extra_Constrained
(Entity
(Pref
)), Sloc
(N
)));
2644 -- For all other entity names, we can tell at compile time
2646 elsif Is_Entity_Name
(Pref
) then
2648 Ent
: constant Entity_Id
:= Entity
(Pref
);
2652 -- (RM J.4) obsolescent cases
2654 if Is_Type
(Ent
) then
2658 if Is_Private_Type
(Ent
) then
2659 Res
:= not Has_Discriminants
(Ent
)
2660 or else Is_Constrained
(Ent
);
2662 -- It not a private type, must be a generic actual type
2663 -- that corresponded to a private type. We know that this
2664 -- correspondence holds, since otherwise the reference
2665 -- within the generic template would have been illegal.
2668 if Is_Composite_Type
(Underlying_Type
(Ent
)) then
2669 Res
:= Is_Constrained
(Ent
);
2675 -- If the prefix is not a variable or is aliased, then
2676 -- definitely true; if it's a formal parameter without an
2677 -- associated extra formal, then treat it as constrained.
2679 -- Ada 2005 (AI-363): An aliased prefix must be known to be
2680 -- constrained in order to set the attribute to True.
2682 elsif not Is_Variable
(Pref
)
2683 or else Present
(Formal_Ent
)
2684 or else (Ada_Version
< Ada_2005
2685 and then Is_Aliased_View
(Pref
))
2686 or else (Ada_Version
>= Ada_2005
2687 and then Is_Constrained_Aliased_View
(Pref
))
2691 -- Variable case, look at type to see if it is constrained.
2692 -- Note that the one case where this is not accurate (the
2693 -- procedure formal case), has been handled above.
2695 -- We use the Underlying_Type here (and below) in case the
2696 -- type is private without discriminants, but the full type
2697 -- has discriminants. This case is illegal, but we generate it
2698 -- internally for passing to the Extra_Constrained parameter.
2701 -- In Ada 2012, test for case of a limited tagged type, in
2702 -- which case the attribute is always required to return
2703 -- True. The underlying type is tested, to make sure we also
2704 -- return True for cases where there is an unconstrained
2705 -- object with an untagged limited partial view which has
2706 -- defaulted discriminants (such objects always produce a
2707 -- False in earlier versions of Ada). (Ada 2012: AI05-0214)
2709 Res
:= Is_Constrained
(Underlying_Type
(Etype
(Ent
)))
2711 (Ada_Version
>= Ada_2012
2712 and then Is_Tagged_Type
(Underlying_Type
(Ptyp
))
2713 and then Is_Limited_Type
(Ptyp
));
2716 Rewrite
(N
, New_Occurrence_Of
(Boolean_Literals
(Res
), Loc
));
2719 -- Prefix is not an entity name. These are also cases where we can
2720 -- always tell at compile time by looking at the form and type of the
2721 -- prefix. If an explicit dereference of an object with constrained
2722 -- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
2723 -- underlying type is a limited tagged type, then Constrained is
2724 -- required to always return True (Ada 2012: AI05-0214).
2730 not Is_Variable
(Pref
)
2732 (Nkind
(Pref
) = N_Explicit_Dereference
2734 not Object_Type_Has_Constrained_Partial_View
2735 (Typ
=> Base_Type
(Ptyp
),
2736 Scop
=> Current_Scope
))
2737 or else Is_Constrained
(Underlying_Type
(Ptyp
))
2738 or else (Ada_Version
>= Ada_2012
2739 and then Is_Tagged_Type
(Underlying_Type
(Ptyp
))
2740 and then Is_Limited_Type
(Ptyp
))),
2744 Analyze_And_Resolve
(N
, Standard_Boolean
);
2751 -- Transforms 'Copy_Sign into a call to the floating-point attribute
2752 -- function Copy_Sign in Fat_xxx (where xxx is the root type)
2754 when Attribute_Copy_Sign
=>
2755 Expand_Fpt_Attribute_RR
(N
);
2761 -- Transforms 'Count attribute into a call to the Count function
2763 when Attribute_Count
=> Count
: declare
2765 Conctyp
: Entity_Id
;
2767 Entry_Id
: Entity_Id
;
2772 -- If the prefix is a member of an entry family, retrieve both
2773 -- entry name and index. For a simple entry there is no index.
2775 if Nkind
(Pref
) = N_Indexed_Component
then
2776 Entnam
:= Prefix
(Pref
);
2777 Index
:= First
(Expressions
(Pref
));
2783 Entry_Id
:= Entity
(Entnam
);
2785 -- Find the concurrent type in which this attribute is referenced
2786 -- (there had better be one).
2788 Conctyp
:= Current_Scope
;
2789 while not Is_Concurrent_Type
(Conctyp
) loop
2790 Conctyp
:= Scope
(Conctyp
);
2795 if Is_Protected_Type
(Conctyp
) then
2796 case Corresponding_Runtime_Package
(Conctyp
) is
2797 when System_Tasking_Protected_Objects_Entries
=>
2798 Name
:= New_Occurrence_Of
(RTE
(RE_Protected_Count
), Loc
);
2801 Make_Function_Call
(Loc
,
2803 Parameter_Associations
=> New_List
(
2805 (Find_Protection_Object
(Current_Scope
), Loc
),
2806 Entry_Index_Expression
2807 (Loc
, Entry_Id
, Index
, Scope
(Entry_Id
))));
2809 when System_Tasking_Protected_Objects_Single_Entry
=>
2811 New_Occurrence_Of
(RTE
(RE_Protected_Count_Entry
), Loc
);
2814 Make_Function_Call
(Loc
,
2816 Parameter_Associations
=> New_List
(
2818 (Find_Protection_Object
(Current_Scope
), Loc
)));
2821 raise Program_Error
;
2828 Make_Function_Call
(Loc
,
2829 Name
=> New_Occurrence_Of
(RTE
(RE_Task_Count
), Loc
),
2830 Parameter_Associations
=> New_List
(
2831 Entry_Index_Expression
(Loc
,
2832 Entry_Id
, Index
, Scope
(Entry_Id
))));
2835 -- The call returns type Natural but the context is universal integer
2836 -- so any integer type is allowed. The attribute was already resolved
2837 -- so its Etype is the required result type. If the base type of the
2838 -- context type is other than Standard.Integer we put in a conversion
2839 -- to the required type. This can be a normal typed conversion since
2840 -- both input and output types of the conversion are integer types
2842 if Base_Type
(Typ
) /= Base_Type
(Standard_Integer
) then
2843 Rewrite
(N
, Convert_To
(Typ
, Call
));
2848 Analyze_And_Resolve
(N
, Typ
);
2851 ---------------------
2852 -- Descriptor_Size --
2853 ---------------------
2855 when Attribute_Descriptor_Size
=>
2857 -- Attribute Descriptor_Size is handled by the back end when applied
2858 -- to an unconstrained array type.
2860 if Is_Array_Type
(Ptyp
)
2861 and then not Is_Constrained
(Ptyp
)
2863 Apply_Universal_Integer_Attribute_Checks
(N
);
2865 -- For any other type, the descriptor size is 0 because there is no
2866 -- actual descriptor, but the result is not formally static.
2869 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
2871 Set_Is_Static_Expression
(N
, False);
2878 -- This processing is shared by Elab_Spec
2880 -- What we do is to insert the following declarations
2883 -- pragma Import (C, enn, "name___elabb/s");
2885 -- and then the Elab_Body/Spec attribute is replaced by a reference
2886 -- to this defining identifier.
2888 when Attribute_Elab_Body |
2889 Attribute_Elab_Spec
=>
2891 -- Leave attribute unexpanded in CodePeer mode: the gnat2scil
2892 -- back-end knows how to handle these attributes directly.
2894 if CodePeer_Mode
then
2899 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E');
2903 procedure Make_Elab_String
(Nod
: Node_Id
);
2904 -- Given Nod, an identifier, or a selected component, put the
2905 -- image into the current string literal, with double underline
2906 -- between components.
2908 ----------------------
2909 -- Make_Elab_String --
2910 ----------------------
2912 procedure Make_Elab_String
(Nod
: Node_Id
) is
2914 if Nkind
(Nod
) = N_Selected_Component
then
2915 Make_Elab_String
(Prefix
(Nod
));
2916 Store_String_Char
('_');
2917 Store_String_Char
('_');
2918 Get_Name_String
(Chars
(Selector_Name
(Nod
)));
2921 pragma Assert
(Nkind
(Nod
) = N_Identifier
);
2922 Get_Name_String
(Chars
(Nod
));
2925 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
2926 end Make_Elab_String
;
2928 -- Start of processing for Elab_Body/Elab_Spec
2931 -- First we need to prepare the string literal for the name of
2932 -- the elaboration routine to be referenced.
2935 Make_Elab_String
(Pref
);
2936 Store_String_Chars
("___elab");
2937 Lang
:= Make_Identifier
(Loc
, Name_C
);
2939 if Id
= Attribute_Elab_Body
then
2940 Store_String_Char
('b');
2942 Store_String_Char
('s');
2947 Insert_Actions
(N
, New_List
(
2948 Make_Subprogram_Declaration
(Loc
,
2950 Make_Procedure_Specification
(Loc
,
2951 Defining_Unit_Name
=> Ent
)),
2954 Chars
=> Name_Import
,
2955 Pragma_Argument_Associations
=> New_List
(
2956 Make_Pragma_Argument_Association
(Loc
, Expression
=> Lang
),
2958 Make_Pragma_Argument_Association
(Loc
,
2959 Expression
=> Make_Identifier
(Loc
, Chars
(Ent
))),
2961 Make_Pragma_Argument_Association
(Loc
,
2962 Expression
=> Make_String_Literal
(Loc
, Str
))))));
2964 Set_Entity
(N
, Ent
);
2965 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
2968 --------------------
2969 -- Elab_Subp_Body --
2970 --------------------
2972 -- Always ignored. In CodePeer mode, gnat2scil knows how to handle
2973 -- this attribute directly, and if we are not in CodePeer mode it is
2974 -- entirely ignored ???
2976 when Attribute_Elab_Subp_Body
=>
2983 -- Elaborated is always True for preelaborated units, predefined units,
2984 -- pure units and units which have Elaborate_Body pragmas. These units
2985 -- have no elaboration entity.
2987 -- Note: The Elaborated attribute is never passed to the back end
2989 when Attribute_Elaborated
=> Elaborated
: declare
2990 Ent
: constant Entity_Id
:= Entity
(Pref
);
2993 if Present
(Elaboration_Entity
(Ent
)) then
2997 New_Occurrence_Of
(Elaboration_Entity
(Ent
), Loc
),
2999 Make_Integer_Literal
(Loc
, Uint_0
)));
3000 Analyze_And_Resolve
(N
, Typ
);
3002 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
3010 when Attribute_Enum_Rep
=> Enum_Rep
: declare
3014 -- Get the expression, which is X for Enum_Type'Enum_Rep (X) or
3017 if Is_Non_Empty_List
(Exprs
) then
3018 Expr
:= First
(Exprs
);
3023 -- If the expression is an enumeration literal, it is replaced by the
3026 if Nkind
(Expr
) in N_Has_Entity
3027 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
3030 Make_Integer_Literal
(Loc
, Enumeration_Rep
(Entity
(Expr
))));
3032 -- If this is a renaming of a literal, recover the representation
3033 -- of the original. If it renames an expression there is nothing to
3036 elsif Nkind
(Expr
) in N_Has_Entity
3037 and then Ekind
(Entity
(Expr
)) = E_Constant
3038 and then Present
(Renamed_Object
(Entity
(Expr
)))
3039 and then Is_Entity_Name
(Renamed_Object
(Entity
(Expr
)))
3040 and then Ekind
(Entity
(Renamed_Object
(Entity
(Expr
)))) =
3041 E_Enumeration_Literal
3044 Make_Integer_Literal
(Loc
,
3045 Enumeration_Rep
(Entity
(Renamed_Object
(Entity
(Expr
))))));
3047 -- If not constant-folded above, Enum_Type'Enum_Rep (X) or
3048 -- X'Enum_Rep expands to
3052 -- This is simply a direct conversion from the enumeration type to
3053 -- the target integer type, which is treated by the back end as a
3054 -- normal integer conversion, treating the enumeration type as an
3055 -- integer, which is exactly what we want. We set Conversion_OK to
3056 -- make sure that the analyzer does not complain about what otherwise
3057 -- might be an illegal conversion.
3060 Rewrite
(N
, OK_Convert_To
(Typ
, Relocate_Node
(Expr
)));
3064 Analyze_And_Resolve
(N
, Typ
);
3071 when Attribute_Enum_Val
=> Enum_Val
: declare
3073 Btyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
3076 -- X'Enum_Val (Y) expands to
3078 -- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
3081 Expr
:= Unchecked_Convert_To
(Ptyp
, First
(Exprs
));
3084 Make_Raise_Constraint_Error
(Loc
,
3088 Make_Function_Call
(Loc
,
3090 New_Occurrence_Of
(TSS
(Btyp
, TSS_Rep_To_Pos
), Loc
),
3091 Parameter_Associations
=> New_List
(
3092 Relocate_Node
(Duplicate_Subexpr
(Expr
)),
3093 New_Occurrence_Of
(Standard_False
, Loc
))),
3095 Right_Opnd
=> Make_Integer_Literal
(Loc
, -1)),
3096 Reason
=> CE_Range_Check_Failed
));
3099 Analyze_And_Resolve
(N
, Ptyp
);
3106 -- Transforms 'Exponent into a call to the floating-point attribute
3107 -- function Exponent in Fat_xxx (where xxx is the root type)
3109 when Attribute_Exponent
=>
3110 Expand_Fpt_Attribute_R
(N
);
3116 -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
3118 when Attribute_External_Tag
=> External_Tag
:
3121 Make_Function_Call
(Loc
,
3122 Name
=> New_Occurrence_Of
(RTE
(RE_External_Tag
), Loc
),
3123 Parameter_Associations
=> New_List
(
3124 Make_Attribute_Reference
(Loc
,
3125 Attribute_Name
=> Name_Tag
,
3126 Prefix
=> Prefix
(N
)))));
3128 Analyze_And_Resolve
(N
, Standard_String
);
3135 when Attribute_First
=>
3137 -- If the prefix type is a constrained packed array type which
3138 -- already has a Packed_Array_Impl_Type representation defined, then
3139 -- replace this attribute with a direct reference to 'First of the
3140 -- appropriate index subtype (since otherwise the back end will try
3141 -- to give us the value of 'First for this implementation type).
3143 if Is_Constrained_Packed_Array
(Ptyp
) then
3145 Make_Attribute_Reference
(Loc
,
3146 Attribute_Name
=> Name_First
,
3148 New_Occurrence_Of
(Get_Index_Subtype
(N
), Loc
)));
3149 Analyze_And_Resolve
(N
, Typ
);
3151 -- For access type, apply access check as needed
3153 elsif Is_Access_Type
(Ptyp
) then
3154 Apply_Access_Check
(N
);
3156 -- For scalar type, if low bound is a reference to an entity, just
3157 -- replace with a direct reference. Note that we can only have a
3158 -- reference to a constant entity at this stage, anything else would
3159 -- have already been rewritten.
3161 elsif Is_Scalar_Type
(Ptyp
) then
3163 Lo
: constant Node_Id
:= Type_Low_Bound
(Ptyp
);
3165 if Is_Entity_Name
(Lo
) then
3166 Rewrite
(N
, New_Occurrence_Of
(Entity
(Lo
), Loc
));
3175 -- Compute this if component clause was present, otherwise we leave the
3176 -- computation to be completed in the back-end, since we don't know what
3177 -- layout will be chosen.
3179 when Attribute_First_Bit
=> First_Bit_Attr
: declare
3180 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
3183 -- In Ada 2005 (or later) if we have the non-default bit order, then
3184 -- we return the original value as given in the component clause
3185 -- (RM 2005 13.5.2(3/2)).
3187 if Present
(Component_Clause
(CE
))
3188 and then Ada_Version
>= Ada_2005
3189 and then Reverse_Bit_Order
(Scope
(CE
))
3192 Make_Integer_Literal
(Loc
,
3193 Intval
=> Expr_Value
(First_Bit
(Component_Clause
(CE
)))));
3194 Analyze_And_Resolve
(N
, Typ
);
3196 -- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
3197 -- rewrite with normalized value if we know it statically.
3199 elsif Known_Static_Component_Bit_Offset
(CE
) then
3201 Make_Integer_Literal
(Loc
,
3202 Component_Bit_Offset
(CE
) mod System_Storage_Unit
));
3203 Analyze_And_Resolve
(N
, Typ
);
3205 -- Otherwise left to back end, just do universal integer checks
3208 Apply_Universal_Integer_Attribute_Checks
(N
);
3218 -- fixtype'Fixed_Value (integer-value)
3222 -- fixtype(integer-value)
3224 -- We do all the required analysis of the conversion here, because we do
3225 -- not want this to go through the fixed-point conversion circuits. Note
3226 -- that the back end always treats fixed-point as equivalent to the
3227 -- corresponding integer type anyway.
3229 when Attribute_Fixed_Value
=> Fixed_Value
:
3232 Make_Type_Conversion
(Loc
,
3233 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Pref
), Loc
),
3234 Expression
=> Relocate_Node
(First
(Exprs
))));
3235 Set_Etype
(N
, Entity
(Pref
));
3238 -- Note: it might appear that a properly analyzed unchecked conversion
3239 -- would be just fine here, but that's not the case, since the full
3240 -- range checks performed by the following call are critical.
3242 Apply_Type_Conversion_Checks
(N
);
3249 -- Transforms 'Floor into a call to the floating-point attribute
3250 -- function Floor in Fat_xxx (where xxx is the root type)
3252 when Attribute_Floor
=>
3253 Expand_Fpt_Attribute_R
(N
);
3259 -- For the fixed-point type Typ:
3265 -- Result_Type (System.Fore (Universal_Real (Type'First)),
3266 -- Universal_Real (Type'Last))
3268 -- Note that we know that the type is a non-static subtype, or Fore
3269 -- would have itself been computed dynamically in Eval_Attribute.
3271 when Attribute_Fore
=> Fore
: begin
3274 Make_Function_Call
(Loc
,
3275 Name
=> New_Occurrence_Of
(RTE
(RE_Fore
), Loc
),
3277 Parameter_Associations
=> New_List
(
3278 Convert_To
(Universal_Real
,
3279 Make_Attribute_Reference
(Loc
,
3280 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
3281 Attribute_Name
=> Name_First
)),
3283 Convert_To
(Universal_Real
,
3284 Make_Attribute_Reference
(Loc
,
3285 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
3286 Attribute_Name
=> Name_Last
))))));
3288 Analyze_And_Resolve
(N
, Typ
);
3295 -- Transforms 'Fraction into a call to the floating-point attribute
3296 -- function Fraction in Fat_xxx (where xxx is the root type)
3298 when Attribute_Fraction
=>
3299 Expand_Fpt_Attribute_R
(N
);
3305 when Attribute_From_Any
=> From_Any
: declare
3306 P_Type
: constant Entity_Id
:= Etype
(Pref
);
3307 Decls
: constant List_Id
:= New_List
;
3310 Build_From_Any_Call
(P_Type
,
3311 Relocate_Node
(First
(Exprs
)),
3313 Insert_Actions
(N
, Decls
);
3314 Analyze_And_Resolve
(N
, P_Type
);
3317 ----------------------
3318 -- Has_Same_Storage --
3319 ----------------------
3321 when Attribute_Has_Same_Storage
=> Has_Same_Storage
: declare
3322 Loc
: constant Source_Ptr
:= Sloc
(N
);
3324 X
: constant Node_Id
:= Prefix
(N
);
3325 Y
: constant Node_Id
:= First
(Expressions
(N
));
3328 X_Addr
, Y_Addr
: Node_Id
;
3329 -- Rhe expressions for their addresses
3331 X_Size
, Y_Size
: Node_Id
;
3332 -- Rhe expressions for their sizes
3335 -- The attribute is expanded as:
3337 -- (X'address = Y'address)
3338 -- and then (X'Size = Y'Size)
3340 -- If both arguments have the same Etype the second conjunct can be
3344 Make_Attribute_Reference
(Loc
,
3345 Attribute_Name
=> Name_Address
,
3346 Prefix
=> New_Copy_Tree
(X
));
3349 Make_Attribute_Reference
(Loc
,
3350 Attribute_Name
=> Name_Address
,
3351 Prefix
=> New_Copy_Tree
(Y
));
3354 Make_Attribute_Reference
(Loc
,
3355 Attribute_Name
=> Name_Size
,
3356 Prefix
=> New_Copy_Tree
(X
));
3359 Make_Attribute_Reference
(Loc
,
3360 Attribute_Name
=> Name_Size
,
3361 Prefix
=> New_Copy_Tree
(Y
));
3363 if Etype
(X
) = Etype
(Y
) then
3366 Left_Opnd
=> X_Addr
,
3367 Right_Opnd
=> Y_Addr
)));
3373 Left_Opnd
=> X_Addr
,
3374 Right_Opnd
=> Y_Addr
),
3377 Left_Opnd
=> X_Size
,
3378 Right_Opnd
=> Y_Size
)));
3381 Analyze_And_Resolve
(N
, Standard_Boolean
);
3382 end Has_Same_Storage
;
3388 -- For an exception returns a reference to the exception data:
3389 -- Exception_Id!(Prefix'Reference)
3391 -- For a task it returns a reference to the _task_id component of
3392 -- corresponding record:
3394 -- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
3396 -- in Ada.Task_Identification
3398 when Attribute_Identity
=> Identity
: declare
3399 Id_Kind
: Entity_Id
;
3402 if Ptyp
= Standard_Exception_Type
then
3403 Id_Kind
:= RTE
(RE_Exception_Id
);
3405 if Present
(Renamed_Object
(Entity
(Pref
))) then
3406 Set_Entity
(Pref
, Renamed_Object
(Entity
(Pref
)));
3410 Unchecked_Convert_To
(Id_Kind
, Make_Reference
(Loc
, Pref
)));
3412 Id_Kind
:= RTE
(RO_AT_Task_Id
);
3414 -- If the prefix is a task interface, the Task_Id is obtained
3415 -- dynamically through a dispatching call, as for other task
3416 -- attributes applied to interfaces.
3418 if Ada_Version
>= Ada_2005
3419 and then Ekind
(Ptyp
) = E_Class_Wide_Type
3420 and then Is_Interface
(Ptyp
)
3421 and then Is_Task_Interface
(Ptyp
)
3424 Unchecked_Convert_To
(Id_Kind
,
3425 Make_Selected_Component
(Loc
,
3427 New_Copy_Tree
(Pref
),
3429 Make_Identifier
(Loc
, Name_uDisp_Get_Task_Id
))));
3433 Unchecked_Convert_To
(Id_Kind
, Concurrent_Ref
(Pref
)));
3437 Analyze_And_Resolve
(N
, Id_Kind
);
3444 -- Image attribute is handled in separate unit Exp_Imgv
3446 when Attribute_Image
=>
3447 Exp_Imgv
.Expand_Image_Attribute
(N
);
3453 -- X'Img is expanded to typ'Image (X), where typ is the type of X
3455 when Attribute_Img
=> Img
:
3458 Make_Attribute_Reference
(Loc
,
3459 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
3460 Attribute_Name
=> Name_Image
,
3461 Expressions
=> New_List
(Relocate_Node
(Pref
))));
3463 Analyze_And_Resolve
(N
, Standard_String
);
3470 when Attribute_Input
=> Input
: declare
3471 P_Type
: constant Entity_Id
:= Entity
(Pref
);
3472 B_Type
: constant Entity_Id
:= Base_Type
(P_Type
);
3473 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
3474 Strm
: constant Node_Id
:= First
(Exprs
);
3482 Cntrl
: Node_Id
:= Empty
;
3483 -- Value for controlling argument in call. Always Empty except in
3484 -- the dispatching (class-wide type) case, where it is a reference
3485 -- to the dummy object initialized to the right internal tag.
3487 procedure Freeze_Stream_Subprogram
(F
: Entity_Id
);
3488 -- The expansion of the attribute reference may generate a call to
3489 -- a user-defined stream subprogram that is frozen by the call. This
3490 -- can lead to access-before-elaboration problem if the reference
3491 -- appears in an object declaration and the subprogram body has not
3492 -- been seen. The freezing of the subprogram requires special code
3493 -- because it appears in an expanded context where expressions do
3494 -- not freeze their constituents.
3496 ------------------------------
3497 -- Freeze_Stream_Subprogram --
3498 ------------------------------
3500 procedure Freeze_Stream_Subprogram
(F
: Entity_Id
) is
3501 Decl
: constant Node_Id
:= Unit_Declaration_Node
(F
);
3505 -- If this is user-defined subprogram, the corresponding
3506 -- stream function appears as a renaming-as-body, and the
3507 -- user subprogram must be retrieved by tree traversal.
3510 and then Nkind
(Decl
) = N_Subprogram_Declaration
3511 and then Present
(Corresponding_Body
(Decl
))
3513 Bod
:= Corresponding_Body
(Decl
);
3515 if Nkind
(Unit_Declaration_Node
(Bod
)) =
3516 N_Subprogram_Renaming_Declaration
3518 Set_Is_Frozen
(Entity
(Name
(Unit_Declaration_Node
(Bod
))));
3521 end Freeze_Stream_Subprogram
;
3523 -- Start of processing for Input
3526 -- If no underlying type, we have an error that will be diagnosed
3527 -- elsewhere, so here we just completely ignore the expansion.
3533 -- Stream operations can appear in user code even if the restriction
3534 -- No_Streams is active (for example, when instantiating a predefined
3535 -- container). In that case rewrite the attribute as a Raise to
3536 -- prevent any run-time use.
3538 if Restriction_Active
(No_Streams
) then
3540 Make_Raise_Program_Error
(Sloc
(N
),
3541 Reason
=> PE_Stream_Operation_Not_Allowed
));
3542 Set_Etype
(N
, B_Type
);
3546 -- If there is a TSS for Input, just call it
3548 Fname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Input
);
3550 if Present
(Fname
) then
3554 -- If there is a Stream_Convert pragma, use it, we rewrite
3556 -- sourcetyp'Input (stream)
3560 -- sourcetyp (streamread (strmtyp'Input (stream)));
3562 -- where streamread is the given Read function that converts an
3563 -- argument of type strmtyp to type sourcetyp or a type from which
3564 -- it is derived (extra conversion required for the derived case).
3566 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
3568 if Present
(Prag
) then
3569 Arg2
:= Next
(First
(Pragma_Argument_Associations
(Prag
)));
3570 Rfunc
:= Entity
(Expression
(Arg2
));
3574 Make_Function_Call
(Loc
,
3575 Name
=> New_Occurrence_Of
(Rfunc
, Loc
),
3576 Parameter_Associations
=> New_List
(
3577 Make_Attribute_Reference
(Loc
,
3580 (Etype
(First_Formal
(Rfunc
)), Loc
),
3581 Attribute_Name
=> Name_Input
,
3582 Expressions
=> Exprs
)))));
3584 Analyze_And_Resolve
(N
, B_Type
);
3589 elsif Is_Elementary_Type
(U_Type
) then
3591 -- A special case arises if we have a defined _Read routine,
3592 -- since in this case we are required to call this routine.
3594 if Present
(TSS
(Base_Type
(U_Type
), TSS_Stream_Read
)) then
3595 Build_Record_Or_Elementary_Input_Function
3596 (Loc
, U_Type
, Decl
, Fname
);
3597 Insert_Action
(N
, Decl
);
3599 -- For normal cases, we call the I_xxx routine directly
3602 Rewrite
(N
, Build_Elementary_Input_Call
(N
));
3603 Analyze_And_Resolve
(N
, P_Type
);
3609 elsif Is_Array_Type
(U_Type
) then
3610 Build_Array_Input_Function
(Loc
, U_Type
, Decl
, Fname
);
3611 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
3613 -- Dispatching case with class-wide type
3615 elsif Is_Class_Wide_Type
(P_Type
) then
3617 -- No need to do anything else compiling under restriction
3618 -- No_Dispatching_Calls. During the semantic analysis we
3619 -- already notified such violation.
3621 if Restriction_Active
(No_Dispatching_Calls
) then
3626 Rtyp
: constant Entity_Id
:= Root_Type
(P_Type
);
3630 -- Read the internal tag (RM 13.13.2(34)) and use it to
3631 -- initialize a dummy tag value:
3633 -- Descendant_Tag (String'Input (Strm), P_Type);
3635 -- This value is used only to provide a controlling
3636 -- argument for the eventual _Input call. Descendant_Tag is
3637 -- called rather than Internal_Tag to ensure that we have a
3638 -- tag for a type that is descended from the prefix type and
3639 -- declared at the same accessibility level (the exception
3640 -- Tag_Error will be raised otherwise). The level check is
3641 -- required for Ada 2005 because tagged types can be
3642 -- extended in nested scopes (AI-344).
3644 -- Note: we used to generate an explicit declaration of a
3645 -- constant Ada.Tags.Tag object, and use an occurrence of
3646 -- this constant in Cntrl, but this caused a secondary stack
3650 Make_Function_Call
(Loc
,
3652 New_Occurrence_Of
(RTE
(RE_Descendant_Tag
), Loc
),
3653 Parameter_Associations
=> New_List
(
3654 Make_Attribute_Reference
(Loc
,
3656 New_Occurrence_Of
(Standard_String
, Loc
),
3657 Attribute_Name
=> Name_Input
,
3658 Expressions
=> New_List
(
3659 Relocate_Node
(Duplicate_Subexpr
(Strm
)))),
3660 Make_Attribute_Reference
(Loc
,
3661 Prefix
=> New_Occurrence_Of
(P_Type
, Loc
),
3662 Attribute_Name
=> Name_Tag
)));
3663 Set_Etype
(Expr
, RTE
(RE_Tag
));
3665 -- Now we need to get the entity for the call, and construct
3666 -- a function call node, where we preset a reference to Dnn
3667 -- as the controlling argument (doing an unchecked convert
3668 -- to the class-wide tagged type to make it look like a real
3671 Fname
:= Find_Prim_Op
(Rtyp
, TSS_Stream_Input
);
3672 Cntrl
:= Unchecked_Convert_To
(P_Type
, Expr
);
3673 Set_Etype
(Cntrl
, P_Type
);
3674 Set_Parent
(Cntrl
, N
);
3677 -- For tagged types, use the primitive Input function
3679 elsif Is_Tagged_Type
(U_Type
) then
3680 Fname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Input
);
3682 -- All other record type cases, including protected records. The
3683 -- latter only arise for expander generated code for handling
3684 -- shared passive partition access.
3688 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
3690 -- Ada 2005 (AI-216): Program_Error is raised executing default
3691 -- implementation of the Input attribute of an unchecked union
3692 -- type if the type lacks default discriminant values.
3694 if Is_Unchecked_Union
(Base_Type
(U_Type
))
3695 and then No
(Discriminant_Constraint
(U_Type
))
3698 Make_Raise_Program_Error
(Loc
,
3699 Reason
=> PE_Unchecked_Union_Restriction
));
3704 -- Build the type's Input function, passing the subtype rather
3705 -- than its base type, because checks are needed in the case of
3706 -- constrained discriminants (see Ada 2012 AI05-0192).
3708 Build_Record_Or_Elementary_Input_Function
3709 (Loc
, U_Type
, Decl
, Fname
);
3710 Insert_Action
(N
, Decl
);
3712 if Nkind
(Parent
(N
)) = N_Object_Declaration
3713 and then Is_Record_Type
(U_Type
)
3715 -- The stream function may contain calls to user-defined
3716 -- Read procedures for individual components.
3723 Comp
:= First_Component
(U_Type
);
3724 while Present
(Comp
) loop
3726 Find_Stream_Subprogram
3727 (Etype
(Comp
), TSS_Stream_Read
);
3729 if Present
(Func
) then
3730 Freeze_Stream_Subprogram
(Func
);
3733 Next_Component
(Comp
);
3740 -- If we fall through, Fname is the function to be called. The result
3741 -- is obtained by calling the appropriate function, then converting
3742 -- the result. The conversion does a subtype check.
3745 Make_Function_Call
(Loc
,
3746 Name
=> New_Occurrence_Of
(Fname
, Loc
),
3747 Parameter_Associations
=> New_List
(
3748 Relocate_Node
(Strm
)));
3750 Set_Controlling_Argument
(Call
, Cntrl
);
3751 Rewrite
(N
, Unchecked_Convert_To
(P_Type
, Call
));
3752 Analyze_And_Resolve
(N
, P_Type
);
3754 if Nkind
(Parent
(N
)) = N_Object_Declaration
then
3755 Freeze_Stream_Subprogram
(Fname
);
3765 -- inttype'Fixed_Value (fixed-value)
3769 -- inttype(integer-value))
3771 -- we do all the required analysis of the conversion here, because we do
3772 -- not want this to go through the fixed-point conversion circuits. Note
3773 -- that the back end always treats fixed-point as equivalent to the
3774 -- corresponding integer type anyway.
3776 when Attribute_Integer_Value
=> Integer_Value
:
3779 Make_Type_Conversion
(Loc
,
3780 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Pref
), Loc
),
3781 Expression
=> Relocate_Node
(First
(Exprs
))));
3782 Set_Etype
(N
, Entity
(Pref
));
3785 -- Note: it might appear that a properly analyzed unchecked conversion
3786 -- would be just fine here, but that's not the case, since the full
3787 -- range checks performed by the following call are critical.
3789 Apply_Type_Conversion_Checks
(N
);
3796 when Attribute_Invalid_Value
=>
3797 Rewrite
(N
, Get_Simple_Init_Val
(Ptyp
, N
));
3803 when Attribute_Last
=>
3805 -- If the prefix type is a constrained packed array type which
3806 -- already has a Packed_Array_Impl_Type representation defined, then
3807 -- replace this attribute with a direct reference to 'Last of the
3808 -- appropriate index subtype (since otherwise the back end will try
3809 -- to give us the value of 'Last for this implementation type).
3811 if Is_Constrained_Packed_Array
(Ptyp
) then
3813 Make_Attribute_Reference
(Loc
,
3814 Attribute_Name
=> Name_Last
,
3815 Prefix
=> New_Occurrence_Of
(Get_Index_Subtype
(N
), Loc
)));
3816 Analyze_And_Resolve
(N
, Typ
);
3818 -- For access type, apply access check as needed
3820 elsif Is_Access_Type
(Ptyp
) then
3821 Apply_Access_Check
(N
);
3823 -- For scalar type, if low bound is a reference to an entity, just
3824 -- replace with a direct reference. Note that we can only have a
3825 -- reference to a constant entity at this stage, anything else would
3826 -- have already been rewritten.
3828 elsif Is_Scalar_Type
(Ptyp
) then
3830 Hi
: constant Node_Id
:= Type_High_Bound
(Ptyp
);
3832 if Is_Entity_Name
(Hi
) then
3833 Rewrite
(N
, New_Occurrence_Of
(Entity
(Hi
), Loc
));
3842 -- We compute this if a component clause was present, otherwise we leave
3843 -- the computation up to the back end, since we don't know what layout
3846 when Attribute_Last_Bit
=> Last_Bit_Attr
: declare
3847 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
3850 -- In Ada 2005 (or later) if we have the non-default bit order, then
3851 -- we return the original value as given in the component clause
3852 -- (RM 2005 13.5.2(3/2)).
3854 if Present
(Component_Clause
(CE
))
3855 and then Ada_Version
>= Ada_2005
3856 and then Reverse_Bit_Order
(Scope
(CE
))
3859 Make_Integer_Literal
(Loc
,
3860 Intval
=> Expr_Value
(Last_Bit
(Component_Clause
(CE
)))));
3861 Analyze_And_Resolve
(N
, Typ
);
3863 -- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
3864 -- rewrite with normalized value if we know it statically.
3866 elsif Known_Static_Component_Bit_Offset
(CE
)
3867 and then Known_Static_Esize
(CE
)
3870 Make_Integer_Literal
(Loc
,
3871 Intval
=> (Component_Bit_Offset
(CE
) mod System_Storage_Unit
)
3873 Analyze_And_Resolve
(N
, Typ
);
3875 -- Otherwise leave to back end, just apply universal integer checks
3878 Apply_Universal_Integer_Attribute_Checks
(N
);
3886 -- Transforms 'Leading_Part into a call to the floating-point attribute
3887 -- function Leading_Part in Fat_xxx (where xxx is the root type)
3889 -- Note: strictly, we should generate special case code to deal with
3890 -- absurdly large positive arguments (greater than Integer'Last), which
3891 -- result in returning the first argument unchanged, but it hardly seems
3892 -- worth the effort. We raise constraint error for absurdly negative
3893 -- arguments which is fine.
3895 when Attribute_Leading_Part
=>
3896 Expand_Fpt_Attribute_RI
(N
);
3902 when Attribute_Length
=> Length
: declare
3907 -- Processing for packed array types
3909 if Is_Array_Type
(Ptyp
) and then Is_Packed
(Ptyp
) then
3910 Ityp
:= Get_Index_Subtype
(N
);
3912 -- If the index type, Ityp, is an enumeration type with holes,
3913 -- then we calculate X'Length explicitly using
3916 -- (0, Ityp'Pos (X'Last (N)) -
3917 -- Ityp'Pos (X'First (N)) + 1);
3919 -- Since the bounds in the template are the representation values
3920 -- and the back end would get the wrong value.
3922 if Is_Enumeration_Type
(Ityp
)
3923 and then Present
(Enum_Pos_To_Rep
(Base_Type
(Ityp
)))
3928 Xnum
:= Expr_Value
(First
(Expressions
(N
)));
3932 Make_Attribute_Reference
(Loc
,
3933 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
3934 Attribute_Name
=> Name_Max
,
3935 Expressions
=> New_List
3936 (Make_Integer_Literal
(Loc
, 0),
3940 Make_Op_Subtract
(Loc
,
3942 Make_Attribute_Reference
(Loc
,
3943 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3944 Attribute_Name
=> Name_Pos
,
3946 Expressions
=> New_List
(
3947 Make_Attribute_Reference
(Loc
,
3948 Prefix
=> Duplicate_Subexpr
(Pref
),
3949 Attribute_Name
=> Name_Last
,
3950 Expressions
=> New_List
(
3951 Make_Integer_Literal
(Loc
, Xnum
))))),
3954 Make_Attribute_Reference
(Loc
,
3955 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3956 Attribute_Name
=> Name_Pos
,
3958 Expressions
=> New_List
(
3959 Make_Attribute_Reference
(Loc
,
3961 Duplicate_Subexpr_No_Checks
(Pref
),
3962 Attribute_Name
=> Name_First
,
3963 Expressions
=> New_List
(
3964 Make_Integer_Literal
(Loc
, Xnum
)))))),
3966 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
3968 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
3971 -- If the prefix type is a constrained packed array type which
3972 -- already has a Packed_Array_Impl_Type representation defined,
3973 -- then replace this attribute with a reference to 'Range_Length
3974 -- of the appropriate index subtype (since otherwise the
3975 -- back end will try to give us the value of 'Length for
3976 -- this implementation type).s
3978 elsif Is_Constrained
(Ptyp
) then
3980 Make_Attribute_Reference
(Loc
,
3981 Attribute_Name
=> Name_Range_Length
,
3982 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
)));
3983 Analyze_And_Resolve
(N
, Typ
);
3988 elsif Is_Access_Type
(Ptyp
) then
3989 Apply_Access_Check
(N
);
3991 -- If the designated type is a packed array type, then we convert
3992 -- the reference to:
3995 -- xtyp'Pos (Pref'Last (Expr)) -
3996 -- xtyp'Pos (Pref'First (Expr)));
3998 -- This is a bit complex, but it is the easiest thing to do that
3999 -- works in all cases including enum types with holes xtyp here
4000 -- is the appropriate index type.
4003 Dtyp
: constant Entity_Id
:= Designated_Type
(Ptyp
);
4007 if Is_Array_Type
(Dtyp
) and then Is_Packed
(Dtyp
) then
4008 Xtyp
:= Get_Index_Subtype
(N
);
4011 Make_Attribute_Reference
(Loc
,
4012 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
4013 Attribute_Name
=> Name_Max
,
4014 Expressions
=> New_List
(
4015 Make_Integer_Literal
(Loc
, 0),
4018 Make_Integer_Literal
(Loc
, 1),
4019 Make_Op_Subtract
(Loc
,
4021 Make_Attribute_Reference
(Loc
,
4022 Prefix
=> New_Occurrence_Of
(Xtyp
, Loc
),
4023 Attribute_Name
=> Name_Pos
,
4024 Expressions
=> New_List
(
4025 Make_Attribute_Reference
(Loc
,
4026 Prefix
=> Duplicate_Subexpr
(Pref
),
4027 Attribute_Name
=> Name_Last
,
4029 New_Copy_List
(Exprs
)))),
4032 Make_Attribute_Reference
(Loc
,
4033 Prefix
=> New_Occurrence_Of
(Xtyp
, Loc
),
4034 Attribute_Name
=> Name_Pos
,
4035 Expressions
=> New_List
(
4036 Make_Attribute_Reference
(Loc
,
4038 Duplicate_Subexpr_No_Checks
(Pref
),
4039 Attribute_Name
=> Name_First
,
4041 New_Copy_List
(Exprs
)))))))));
4043 Analyze_And_Resolve
(N
, Typ
);
4047 -- Otherwise leave it to the back end
4050 Apply_Universal_Integer_Attribute_Checks
(N
);
4054 -- Attribute Loop_Entry is replaced with a reference to a constant value
4055 -- which captures the prefix at the entry point of the related loop. The
4056 -- loop itself may be transformed into a conditional block.
4058 when Attribute_Loop_Entry
=>
4059 Expand_Loop_Entry_Attribute
(N
);
4065 -- Transforms 'Machine into a call to the floating-point attribute
4066 -- function Machine in Fat_xxx (where xxx is the root type).
4067 -- Expansion is avoided for cases the back end can handle directly.
4069 when Attribute_Machine
=>
4070 if not Is_Inline_Floating_Point_Attribute
(N
) then
4071 Expand_Fpt_Attribute_R
(N
);
4074 ----------------------
4075 -- Machine_Rounding --
4076 ----------------------
4078 -- Transforms 'Machine_Rounding into a call to the floating-point
4079 -- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
4080 -- type). Expansion is avoided for cases the back end can handle
4083 when Attribute_Machine_Rounding
=>
4084 if not Is_Inline_Floating_Point_Attribute
(N
) then
4085 Expand_Fpt_Attribute_R
(N
);
4092 -- Machine_Size is equivalent to Object_Size, so transform it into
4093 -- Object_Size and that way the back end never sees Machine_Size.
4095 when Attribute_Machine_Size
=>
4097 Make_Attribute_Reference
(Loc
,
4098 Prefix
=> Prefix
(N
),
4099 Attribute_Name
=> Name_Object_Size
));
4101 Analyze_And_Resolve
(N
, Typ
);
4107 -- The only case that can get this far is the dynamic case of the old
4108 -- Ada 83 Mantissa attribute for the fixed-point case. For this case,
4115 -- ityp (System.Mantissa.Mantissa_Value
4116 -- (Integer'Integer_Value (typ'First),
4117 -- Integer'Integer_Value (typ'Last)));
4119 when Attribute_Mantissa
=> Mantissa
: begin
4122 Make_Function_Call
(Loc
,
4123 Name
=> New_Occurrence_Of
(RTE
(RE_Mantissa_Value
), Loc
),
4125 Parameter_Associations
=> New_List
(
4127 Make_Attribute_Reference
(Loc
,
4128 Prefix
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
4129 Attribute_Name
=> Name_Integer_Value
,
4130 Expressions
=> New_List
(
4132 Make_Attribute_Reference
(Loc
,
4133 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
4134 Attribute_Name
=> Name_First
))),
4136 Make_Attribute_Reference
(Loc
,
4137 Prefix
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
4138 Attribute_Name
=> Name_Integer_Value
,
4139 Expressions
=> New_List
(
4141 Make_Attribute_Reference
(Loc
,
4142 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
4143 Attribute_Name
=> Name_Last
)))))));
4145 Analyze_And_Resolve
(N
, Typ
);
4152 when Attribute_Max
=>
4153 Expand_Min_Max_Attribute
(N
);
4155 ----------------------------------
4156 -- Max_Size_In_Storage_Elements --
4157 ----------------------------------
4159 when Attribute_Max_Size_In_Storage_Elements
=> declare
4160 Typ
: constant Entity_Id
:= Etype
(N
);
4163 Conversion_Added
: Boolean := False;
4164 -- A flag which tracks whether the original attribute has been
4165 -- wrapped inside a type conversion.
4168 -- If the prefix is X'Class, we transform it into a direct reference
4169 -- to the class-wide type, because the back end must not see a 'Class
4170 -- reference. See also 'Size.
4172 if Is_Entity_Name
(Pref
)
4173 and then Is_Class_Wide_Type
(Entity
(Pref
))
4175 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
4179 Apply_Universal_Integer_Attribute_Checks
(N
);
4181 -- The universal integer check may sometimes add a type conversion,
4182 -- retrieve the original attribute reference from the expression.
4186 if Nkind
(Attr
) = N_Type_Conversion
then
4187 Attr
:= Expression
(Attr
);
4188 Conversion_Added
:= True;
4191 pragma Assert
(Nkind
(Attr
) = N_Attribute_Reference
);
4193 -- Heap-allocated controlled objects contain two extra pointers which
4194 -- are not part of the actual type. Transform the attribute reference
4195 -- into a runtime expression to add the size of the hidden header.
4197 if Needs_Finalization
(Ptyp
)
4198 and then not Header_Size_Added
(Attr
)
4200 Set_Header_Size_Added
(Attr
);
4203 -- P'Max_Size_In_Storage_Elements +
4204 -- Universal_Integer
4205 -- (Header_Size_With_Padding (Ptyp'Alignment))
4209 Left_Opnd
=> Relocate_Node
(Attr
),
4211 Convert_To
(Universal_Integer
,
4212 Make_Function_Call
(Loc
,
4215 (RTE
(RE_Header_Size_With_Padding
), Loc
),
4217 Parameter_Associations
=> New_List
(
4218 Make_Attribute_Reference
(Loc
,
4220 New_Occurrence_Of
(Ptyp
, Loc
),
4221 Attribute_Name
=> Name_Alignment
))))));
4223 -- Add a conversion to the target type
4225 if not Conversion_Added
then
4227 Make_Type_Conversion
(Loc
,
4228 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
4229 Expression
=> Relocate_Node
(Attr
)));
4237 --------------------
4238 -- Mechanism_Code --
4239 --------------------
4241 when Attribute_Mechanism_Code
=>
4243 -- We must replace the prefix i the renamed case
4245 if Is_Entity_Name
(Pref
)
4246 and then Present
(Alias
(Entity
(Pref
)))
4248 Set_Renamed_Subprogram
(Pref
, Alias
(Entity
(Pref
)));
4255 when Attribute_Min
=>
4256 Expand_Min_Max_Attribute
(N
);
4262 when Attribute_Mod
=> Mod_Case
: declare
4263 Arg
: constant Node_Id
:= Relocate_Node
(First
(Exprs
));
4264 Hi
: constant Node_Id
:= Type_High_Bound
(Etype
(Arg
));
4265 Modv
: constant Uint
:= Modulus
(Btyp
);
4269 -- This is not so simple. The issue is what type to use for the
4270 -- computation of the modular value.
4272 -- The easy case is when the modulus value is within the bounds
4273 -- of the signed integer type of the argument. In this case we can
4274 -- just do the computation in that signed integer type, and then
4275 -- do an ordinary conversion to the target type.
4277 if Modv
<= Expr_Value
(Hi
) then
4282 Right_Opnd
=> Make_Integer_Literal
(Loc
, Modv
))));
4284 -- Here we know that the modulus is larger than type'Last of the
4285 -- integer type. There are two cases to consider:
4287 -- a) The integer value is non-negative. In this case, it is
4288 -- returned as the result (since it is less than the modulus).
4290 -- b) The integer value is negative. In this case, we know that the
4291 -- result is modulus + value, where the value might be as small as
4292 -- -modulus. The trouble is what type do we use to do the subtract.
4293 -- No type will do, since modulus can be as big as 2**64, and no
4294 -- integer type accommodates this value. Let's do bit of algebra
4297 -- = modulus - (-value)
4298 -- = (modulus - 1) - (-value - 1)
4300 -- Now modulus - 1 is certainly in range of the modular type.
4301 -- -value is in the range 1 .. modulus, so -value -1 is in the
4302 -- range 0 .. modulus-1 which is in range of the modular type.
4303 -- Furthermore, (-value - 1) can be expressed as -(value + 1)
4304 -- which we can compute using the integer base type.
4306 -- Once this is done we analyze the if expression without range
4307 -- checks, because we know everything is in range, and we want
4308 -- to prevent spurious warnings on either branch.
4312 Make_If_Expression
(Loc
,
4313 Expressions
=> New_List
(
4315 Left_Opnd
=> Duplicate_Subexpr
(Arg
),
4316 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
4319 Duplicate_Subexpr_No_Checks
(Arg
)),
4321 Make_Op_Subtract
(Loc
,
4323 Make_Integer_Literal
(Loc
,
4324 Intval
=> Modv
- 1),
4330 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Arg
),
4332 Make_Integer_Literal
(Loc
,
4333 Intval
=> 1))))))));
4337 Analyze_And_Resolve
(N
, Btyp
, Suppress
=> All_Checks
);
4344 -- Transforms 'Model into a call to the floating-point attribute
4345 -- function Model in Fat_xxx (where xxx is the root type).
4346 -- Expansion is avoided for cases the back end can handle directly.
4348 when Attribute_Model
=>
4349 if not Is_Inline_Floating_Point_Attribute
(N
) then
4350 Expand_Fpt_Attribute_R
(N
);
4357 -- The processing for Object_Size shares the processing for Size
4363 when Attribute_Old
=> Old
: declare
4364 Typ
: constant Entity_Id
:= Etype
(N
);
4365 CW_Temp
: Entity_Id
;
4372 -- Generating C code we don't need to expand this attribute when
4373 -- we are analyzing the internally built nested postconditions
4374 -- procedure since it will be expanded inline (and later it will
4375 -- be removed by Expand_N_Subprogram_Body). It this expansion is
4376 -- performed in such case then the compiler generates unreferenced
4377 -- extra temporaries.
4379 if Modify_Tree_For_C
4380 and then Chars
(Current_Scope
) = Name_uPostconditions
4385 -- Climb the parent chain looking for subprogram _Postconditions
4388 while Present
(Subp
) loop
4389 exit when Nkind
(Subp
) = N_Subprogram_Body
4390 and then Chars
(Defining_Entity
(Subp
)) = Name_uPostconditions
;
4392 -- If assertions are disabled, no need to create the declaration
4393 -- that preserves the value. The postcondition pragma in which
4394 -- 'Old appears will be checked or disabled according to the
4395 -- current policy in effect.
4397 if Nkind
(Subp
) = N_Pragma
and then not Is_Checked
(Subp
) then
4401 Subp
:= Parent
(Subp
);
4404 -- 'Old can only appear in a postcondition, the generated body of
4405 -- _Postconditions must be in the tree (or inlined if we are
4406 -- generating C code).
4410 or else (Modify_Tree_For_C
and then In_Inlined_Body
));
4412 Temp
:= Make_Temporary
(Loc
, 'T', Pref
);
4414 -- Set the entity kind now in order to mark the temporary as a
4415 -- handler of attribute 'Old's prefix.
4417 Set_Ekind
(Temp
, E_Constant
);
4418 Set_Stores_Attribute_Old_Prefix
(Temp
);
4420 -- Push the scope of the related subprogram where _Postcondition
4421 -- resides as this ensures that the object will be analyzed in the
4424 if Present
(Subp
) then
4425 Push_Scope
(Scope
(Defining_Entity
(Subp
)));
4427 -- No need to push the scope when generating C code since the
4428 -- _Postcondition procedure has been inlined.
4430 else pragma Assert
(Modify_Tree_For_C
);
4431 pragma Assert
(In_Inlined_Body
);
4435 -- Locate the insertion place of the internal temporary that saves
4438 if Present
(Subp
) then
4441 -- Generating C, the postcondition procedure has been inlined and the
4442 -- temporary is added before the first declaration of the enclosing
4445 else pragma Assert
(Modify_Tree_For_C
);
4447 while Nkind
(Ins_Nod
) /= N_Subprogram_Body
loop
4448 Ins_Nod
:= Parent
(Ins_Nod
);
4451 Ins_Nod
:= First
(Declarations
(Ins_Nod
));
4454 -- Preserve the tag of the prefix by offering a specific view of the
4455 -- class-wide version of the prefix.
4457 if Is_Tagged_Type
(Typ
) then
4460 -- CW_Temp : constant Typ'Class := Typ'Class (Pref);
4462 CW_Temp
:= Make_Temporary
(Loc
, 'T');
4463 CW_Typ
:= Class_Wide_Type
(Typ
);
4465 Insert_Before_And_Analyze
(Ins_Nod
,
4466 Make_Object_Declaration
(Loc
,
4467 Defining_Identifier
=> CW_Temp
,
4468 Constant_Present
=> True,
4469 Object_Definition
=> New_Occurrence_Of
(CW_Typ
, Loc
),
4471 Convert_To
(CW_Typ
, Relocate_Node
(Pref
))));
4474 -- Temp : Typ renames Typ (CW_Temp);
4476 Insert_Before_And_Analyze
(Ins_Nod
,
4477 Make_Object_Renaming_Declaration
(Loc
,
4478 Defining_Identifier
=> Temp
,
4479 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
4481 Convert_To
(Typ
, New_Occurrence_Of
(CW_Temp
, Loc
))));
4487 -- Temp : constant Typ := Pref;
4489 Insert_Before_And_Analyze
(Ins_Nod
,
4490 Make_Object_Declaration
(Loc
,
4491 Defining_Identifier
=> Temp
,
4492 Constant_Present
=> True,
4493 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
4494 Expression
=> Relocate_Node
(Pref
)));
4497 if Present
(Subp
) then
4501 -- Ensure that the prefix of attribute 'Old is valid. The check must
4502 -- be inserted after the expansion of the attribute has taken place
4503 -- to reflect the new placement of the prefix.
4505 if Validity_Checks_On
and then Validity_Check_Operands
then
4506 Ensure_Valid
(Pref
);
4509 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4512 ----------------------
4513 -- Overlaps_Storage --
4514 ----------------------
4516 when Attribute_Overlaps_Storage
=> Overlaps_Storage
: declare
4517 Loc
: constant Source_Ptr
:= Sloc
(N
);
4519 X
: constant Node_Id
:= Prefix
(N
);
4520 Y
: constant Node_Id
:= First
(Expressions
(N
));
4523 X_Addr
, Y_Addr
: Node_Id
;
4524 -- the expressions for their integer addresses
4526 X_Size
, Y_Size
: Node_Id
;
4527 -- the expressions for their sizes
4532 -- Attribute expands into:
4534 -- if X'Address < Y'address then
4535 -- (X'address + X'Size - 1) >= Y'address
4537 -- (Y'address + Y'size - 1) >= X'Address
4540 -- with the proper address operations. We convert addresses to
4541 -- integer addresses to use predefined arithmetic. The size is
4542 -- expressed in storage units. We add copies of X_Addr and Y_Addr
4543 -- to prevent the appearance of the same node in two places in
4547 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
4548 Make_Attribute_Reference
(Loc
,
4549 Attribute_Name
=> Name_Address
,
4550 Prefix
=> New_Copy_Tree
(X
)));
4553 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
4554 Make_Attribute_Reference
(Loc
,
4555 Attribute_Name
=> Name_Address
,
4556 Prefix
=> New_Copy_Tree
(Y
)));
4559 Make_Op_Divide
(Loc
,
4561 Make_Attribute_Reference
(Loc
,
4562 Attribute_Name
=> Name_Size
,
4563 Prefix
=> New_Copy_Tree
(X
)),
4565 Make_Integer_Literal
(Loc
, System_Storage_Unit
));
4568 Make_Op_Divide
(Loc
,
4570 Make_Attribute_Reference
(Loc
,
4571 Attribute_Name
=> Name_Size
,
4572 Prefix
=> New_Copy_Tree
(Y
)),
4574 Make_Integer_Literal
(Loc
, System_Storage_Unit
));
4578 Left_Opnd
=> X_Addr
,
4579 Right_Opnd
=> Y_Addr
);
4582 Make_If_Expression
(Loc
, New_List
(
4588 Left_Opnd
=> New_Copy_Tree
(X_Addr
),
4590 Make_Op_Subtract
(Loc
,
4591 Left_Opnd
=> X_Size
,
4592 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))),
4593 Right_Opnd
=> Y_Addr
),
4598 Left_Opnd
=> New_Copy_Tree
(Y_Addr
),
4600 Make_Op_Subtract
(Loc
,
4601 Left_Opnd
=> Y_Size
,
4602 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))),
4603 Right_Opnd
=> X_Addr
))));
4605 Analyze_And_Resolve
(N
, Standard_Boolean
);
4606 end Overlaps_Storage
;
4612 when Attribute_Output
=> Output
: declare
4613 P_Type
: constant Entity_Id
:= Entity
(Pref
);
4614 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
4622 -- If no underlying type, we have an error that will be diagnosed
4623 -- elsewhere, so here we just completely ignore the expansion.
4629 -- Stream operations can appear in user code even if the restriction
4630 -- No_Streams is active (for example, when instantiating a predefined
4631 -- container). In that case rewrite the attribute as a Raise to
4632 -- prevent any run-time use.
4634 if Restriction_Active
(No_Streams
) then
4636 Make_Raise_Program_Error
(Sloc
(N
),
4637 Reason
=> PE_Stream_Operation_Not_Allowed
));
4638 Set_Etype
(N
, Standard_Void_Type
);
4642 -- If TSS for Output is present, just call it
4644 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Output
);
4646 if Present
(Pname
) then
4650 -- If there is a Stream_Convert pragma, use it, we rewrite
4652 -- sourcetyp'Output (stream, Item)
4656 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
4658 -- where strmwrite is the given Write function that converts an
4659 -- argument of type sourcetyp or a type acctyp, from which it is
4660 -- derived to type strmtyp. The conversion to acttyp is required
4661 -- for the derived case.
4663 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
4665 if Present
(Prag
) then
4667 Next
(Next
(First
(Pragma_Argument_Associations
(Prag
))));
4668 Wfunc
:= Entity
(Expression
(Arg3
));
4671 Make_Attribute_Reference
(Loc
,
4672 Prefix
=> New_Occurrence_Of
(Etype
(Wfunc
), Loc
),
4673 Attribute_Name
=> Name_Output
,
4674 Expressions
=> New_List
(
4675 Relocate_Node
(First
(Exprs
)),
4676 Make_Function_Call
(Loc
,
4677 Name
=> New_Occurrence_Of
(Wfunc
, Loc
),
4678 Parameter_Associations
=> New_List
(
4679 OK_Convert_To
(Etype
(First_Formal
(Wfunc
)),
4680 Relocate_Node
(Next
(First
(Exprs
)))))))));
4685 -- For elementary types, we call the W_xxx routine directly. Note
4686 -- that the effect of Write and Output is identical for the case
4687 -- of an elementary type (there are no discriminants or bounds).
4689 elsif Is_Elementary_Type
(U_Type
) then
4691 -- A special case arises if we have a defined _Write routine,
4692 -- since in this case we are required to call this routine.
4694 if Present
(TSS
(Base_Type
(U_Type
), TSS_Stream_Write
)) then
4695 Build_Record_Or_Elementary_Output_Procedure
4696 (Loc
, U_Type
, Decl
, Pname
);
4697 Insert_Action
(N
, Decl
);
4699 -- For normal cases, we call the W_xxx routine directly
4702 Rewrite
(N
, Build_Elementary_Write_Call
(N
));
4709 elsif Is_Array_Type
(U_Type
) then
4710 Build_Array_Output_Procedure
(Loc
, U_Type
, Decl
, Pname
);
4711 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
4713 -- Class-wide case, first output external tag, then dispatch
4714 -- to the appropriate primitive Output function (RM 13.13.2(31)).
4716 elsif Is_Class_Wide_Type
(P_Type
) then
4718 -- No need to do anything else compiling under restriction
4719 -- No_Dispatching_Calls. During the semantic analysis we
4720 -- already notified such violation.
4722 if Restriction_Active
(No_Dispatching_Calls
) then
4727 Strm
: constant Node_Id
:= First
(Exprs
);
4728 Item
: constant Node_Id
:= Next
(Strm
);
4731 -- Ada 2005 (AI-344): Check that the accessibility level
4732 -- of the type of the output object is not deeper than
4733 -- that of the attribute's prefix type.
4735 -- if Get_Access_Level (Item'Tag)
4736 -- /= Get_Access_Level (P_Type'Tag)
4741 -- String'Output (Strm, External_Tag (Item'Tag));
4743 -- We cannot figure out a practical way to implement this
4744 -- accessibility check on virtual machines, so we omit it.
4746 if Ada_Version
>= Ada_2005
4747 and then Tagged_Type_Expansion
4750 Make_Implicit_If_Statement
(N
,
4754 Build_Get_Access_Level
(Loc
,
4755 Make_Attribute_Reference
(Loc
,
4758 Duplicate_Subexpr
(Item
,
4760 Attribute_Name
=> Name_Tag
)),
4763 Make_Integer_Literal
(Loc
,
4764 Type_Access_Level
(P_Type
))),
4767 New_List
(Make_Raise_Statement
(Loc
,
4769 RTE
(RE_Tag_Error
), Loc
)))));
4773 Make_Attribute_Reference
(Loc
,
4774 Prefix
=> New_Occurrence_Of
(Standard_String
, Loc
),
4775 Attribute_Name
=> Name_Output
,
4776 Expressions
=> New_List
(
4777 Relocate_Node
(Duplicate_Subexpr
(Strm
)),
4778 Make_Function_Call
(Loc
,
4780 New_Occurrence_Of
(RTE
(RE_External_Tag
), Loc
),
4781 Parameter_Associations
=> New_List
(
4782 Make_Attribute_Reference
(Loc
,
4785 (Duplicate_Subexpr
(Item
, Name_Req
=> True)),
4786 Attribute_Name
=> Name_Tag
))))));
4789 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Output
);
4791 -- Tagged type case, use the primitive Output function
4793 elsif Is_Tagged_Type
(U_Type
) then
4794 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Output
);
4796 -- All other record type cases, including protected records.
4797 -- The latter only arise for expander generated code for
4798 -- handling shared passive partition access.
4802 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
4804 -- Ada 2005 (AI-216): Program_Error is raised when executing
4805 -- the default implementation of the Output attribute of an
4806 -- unchecked union type if the type lacks default discriminant
4809 if Is_Unchecked_Union
(Base_Type
(U_Type
))
4810 and then No
(Discriminant_Constraint
(U_Type
))
4813 Make_Raise_Program_Error
(Loc
,
4814 Reason
=> PE_Unchecked_Union_Restriction
));
4819 Build_Record_Or_Elementary_Output_Procedure
4820 (Loc
, Base_Type
(U_Type
), Decl
, Pname
);
4821 Insert_Action
(N
, Decl
);
4825 -- If we fall through, Pname is the name of the procedure to call
4827 Rewrite_Stream_Proc_Call
(Pname
);
4834 -- For enumeration types with a standard representation, Pos is
4835 -- handled by the back end.
4837 -- For enumeration types, with a non-standard representation we generate
4838 -- a call to the _Rep_To_Pos function created when the type was frozen.
4839 -- The call has the form
4841 -- _rep_to_pos (expr, flag)
4843 -- The parameter flag is True if range checks are enabled, causing
4844 -- Program_Error to be raised if the expression has an invalid
4845 -- representation, and False if range checks are suppressed.
4847 -- For integer types, Pos is equivalent to a simple integer
4848 -- conversion and we rewrite it as such
4850 when Attribute_Pos
=> Pos
:
4852 Etyp
: Entity_Id
:= Base_Type
(Entity
(Pref
));
4855 -- Deal with zero/non-zero boolean values
4857 if Is_Boolean_Type
(Etyp
) then
4858 Adjust_Condition
(First
(Exprs
));
4859 Etyp
:= Standard_Boolean
;
4860 Set_Prefix
(N
, New_Occurrence_Of
(Standard_Boolean
, Loc
));
4863 -- Case of enumeration type
4865 if Is_Enumeration_Type
(Etyp
) then
4867 -- Non-standard enumeration type (generate call)
4869 if Present
(Enum_Pos_To_Rep
(Etyp
)) then
4870 Append_To
(Exprs
, Rep_To_Pos_Flag
(Etyp
, Loc
));
4873 Make_Function_Call
(Loc
,
4875 New_Occurrence_Of
(TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
4876 Parameter_Associations
=> Exprs
)));
4878 Analyze_And_Resolve
(N
, Typ
);
4880 -- Standard enumeration type (do universal integer check)
4883 Apply_Universal_Integer_Attribute_Checks
(N
);
4886 -- Deal with integer types (replace by conversion)
4888 elsif Is_Integer_Type
(Etyp
) then
4889 Rewrite
(N
, Convert_To
(Typ
, First
(Exprs
)));
4890 Analyze_And_Resolve
(N
, Typ
);
4899 -- We compute this if a component clause was present, otherwise we leave
4900 -- the computation up to the back end, since we don't know what layout
4903 when Attribute_Position
=> Position_Attr
:
4905 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
4908 if Present
(Component_Clause
(CE
)) then
4910 -- In Ada 2005 (or later) if we have the non-default bit order,
4911 -- then we return the original value as given in the component
4912 -- clause (RM 2005 13.5.2(2/2)).
4914 if Ada_Version
>= Ada_2005
4915 and then Reverse_Bit_Order
(Scope
(CE
))
4918 Make_Integer_Literal
(Loc
,
4919 Intval
=> Expr_Value
(Position
(Component_Clause
(CE
)))));
4921 -- Otherwise (Ada 83 or 95, or default bit order specified in
4922 -- later Ada version), return the normalized value.
4926 Make_Integer_Literal
(Loc
,
4927 Intval
=> Component_Bit_Offset
(CE
) / System_Storage_Unit
));
4930 Analyze_And_Resolve
(N
, Typ
);
4932 -- If back end is doing things, just apply universal integer checks
4935 Apply_Universal_Integer_Attribute_Checks
(N
);
4943 -- 1. Deal with enumeration types with holes.
4944 -- 2. For floating-point, generate call to attribute function.
4945 -- 3. For other cases, deal with constraint checking.
4947 when Attribute_Pred
=> Pred
:
4949 Etyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
4953 -- For enumeration types with non-standard representations, we
4954 -- expand typ'Pred (x) into
4956 -- Pos_To_Rep (Rep_To_Pos (x) - 1)
4958 -- If the representation is contiguous, we compute instead
4959 -- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
4960 -- The conversion function Enum_Pos_To_Rep is defined on the
4961 -- base type, not the subtype, so we have to use the base type
4962 -- explicitly for this and other enumeration attributes.
4964 if Is_Enumeration_Type
(Ptyp
)
4965 and then Present
(Enum_Pos_To_Rep
(Etyp
))
4967 if Has_Contiguous_Rep
(Etyp
) then
4969 Unchecked_Convert_To
(Ptyp
,
4972 Make_Integer_Literal
(Loc
,
4973 Enumeration_Rep
(First_Literal
(Ptyp
))),
4975 Make_Function_Call
(Loc
,
4978 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
4980 Parameter_Associations
=>
4982 Unchecked_Convert_To
(Ptyp
,
4983 Make_Op_Subtract
(Loc
,
4985 Unchecked_Convert_To
(Standard_Integer
,
4986 Relocate_Node
(First
(Exprs
))),
4988 Make_Integer_Literal
(Loc
, 1))),
4989 Rep_To_Pos_Flag
(Ptyp
, Loc
))))));
4992 -- Add Boolean parameter True, to request program errror if
4993 -- we have a bad representation on our hands. If checks are
4994 -- suppressed, then add False instead
4996 Append_To
(Exprs
, Rep_To_Pos_Flag
(Ptyp
, Loc
));
4998 Make_Indexed_Component
(Loc
,
5001 (Enum_Pos_To_Rep
(Etyp
), Loc
),
5002 Expressions
=> New_List
(
5003 Make_Op_Subtract
(Loc
,
5005 Make_Function_Call
(Loc
,
5008 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
5009 Parameter_Associations
=> Exprs
),
5010 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
5013 Analyze_And_Resolve
(N
, Typ
);
5015 -- For floating-point, we transform 'Pred into a call to the Pred
5016 -- floating-point attribute function in Fat_xxx (xxx is root type).
5017 -- Note that this function takes care of the overflow case.
5019 elsif Is_Floating_Point_Type
(Ptyp
) then
5020 Expand_Fpt_Attribute_R
(N
);
5021 Analyze_And_Resolve
(N
, Typ
);
5023 -- For modular types, nothing to do (no overflow, since wraps)
5025 elsif Is_Modular_Integer_Type
(Ptyp
) then
5028 -- For other types, if argument is marked as needing a range check or
5029 -- overflow checking is enabled, we must generate a check.
5031 elsif not Overflow_Checks_Suppressed
(Ptyp
)
5032 or else Do_Range_Check
(First
(Exprs
))
5034 Set_Do_Range_Check
(First
(Exprs
), False);
5035 Expand_Pred_Succ_Attribute
(N
);
5043 -- Ada 2005 (AI-327): Dynamic ceiling priorities
5045 -- We rewrite X'Priority as the following run-time call:
5047 -- Get_Ceiling (X._Object)
5049 -- Note that although X'Priority is notionally an object, it is quite
5050 -- deliberately not defined as an aliased object in the RM. This means
5051 -- that it works fine to rewrite it as a call, without having to worry
5052 -- about complications that would other arise from X'Priority'Access,
5053 -- which is illegal, because of the lack of aliasing.
5055 when Attribute_Priority
=>
5058 Conctyp
: Entity_Id
;
5059 Object_Parm
: Node_Id
;
5061 RT_Subprg_Name
: Node_Id
;
5064 -- Look for the enclosing concurrent type
5066 Conctyp
:= Current_Scope
;
5067 while not Is_Concurrent_Type
(Conctyp
) loop
5068 Conctyp
:= Scope
(Conctyp
);
5071 pragma Assert
(Is_Protected_Type
(Conctyp
));
5073 -- Generate the actual of the call
5075 Subprg
:= Current_Scope
;
5076 while not Present
(Protected_Body_Subprogram
(Subprg
)) loop
5077 Subprg
:= Scope
(Subprg
);
5080 -- Use of 'Priority inside protected entries and barriers (in
5081 -- both cases the type of the first formal of their expanded
5082 -- subprogram is Address)
5084 if Etype
(First_Entity
(Protected_Body_Subprogram
(Subprg
))) =
5088 New_Itype
: Entity_Id
;
5091 -- In the expansion of protected entries the type of the
5092 -- first formal of the Protected_Body_Subprogram is an
5093 -- Address. In order to reference the _object component
5096 -- type T is access p__ptTV;
5099 New_Itype
:= Create_Itype
(E_Access_Type
, N
);
5100 Set_Etype
(New_Itype
, New_Itype
);
5101 Set_Directly_Designated_Type
(New_Itype
,
5102 Corresponding_Record_Type
(Conctyp
));
5103 Freeze_Itype
(New_Itype
, N
);
5106 -- T!(O)._object'unchecked_access
5109 Make_Attribute_Reference
(Loc
,
5111 Make_Selected_Component
(Loc
,
5113 Unchecked_Convert_To
(New_Itype
,
5116 (Protected_Body_Subprogram
(Subprg
)),
5119 Make_Identifier
(Loc
, Name_uObject
)),
5120 Attribute_Name
=> Name_Unchecked_Access
);
5123 -- Use of 'Priority inside a protected subprogram
5127 Make_Attribute_Reference
(Loc
,
5129 Make_Selected_Component
(Loc
,
5130 Prefix
=> New_Occurrence_Of
5132 (Protected_Body_Subprogram
(Subprg
)),
5134 Selector_Name
=> Make_Identifier
(Loc
, Name_uObject
)),
5135 Attribute_Name
=> Name_Unchecked_Access
);
5138 -- Select the appropriate run-time subprogram
5140 if Number_Entries
(Conctyp
) = 0 then
5142 New_Occurrence_Of
(RTE
(RE_Get_Ceiling
), Loc
);
5145 New_Occurrence_Of
(RTE
(RO_PE_Get_Ceiling
), Loc
);
5149 Make_Function_Call
(Loc
,
5150 Name
=> RT_Subprg_Name
,
5151 Parameter_Associations
=> New_List
(Object_Parm
));
5155 -- Avoid the generation of extra checks on the pointer to the
5156 -- protected object.
5158 Analyze_And_Resolve
(N
, Typ
, Suppress
=> Access_Check
);
5165 when Attribute_Range_Length
=> Range_Length
: begin
5167 -- The only special processing required is for the case where
5168 -- Range_Length is applied to an enumeration type with holes.
5169 -- In this case we transform
5175 -- X'Pos (X'Last) - X'Pos (X'First) + 1
5177 -- So that the result reflects the proper Pos values instead
5178 -- of the underlying representations.
5180 if Is_Enumeration_Type
(Ptyp
)
5181 and then Has_Non_Standard_Rep
(Ptyp
)
5186 Make_Op_Subtract
(Loc
,
5188 Make_Attribute_Reference
(Loc
,
5189 Attribute_Name
=> Name_Pos
,
5190 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
5191 Expressions
=> New_List
(
5192 Make_Attribute_Reference
(Loc
,
5193 Attribute_Name
=> Name_Last
,
5194 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
)))),
5197 Make_Attribute_Reference
(Loc
,
5198 Attribute_Name
=> Name_Pos
,
5199 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
5200 Expressions
=> New_List
(
5201 Make_Attribute_Reference
(Loc
,
5202 Attribute_Name
=> Name_First
,
5203 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
))))),
5205 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
5207 Analyze_And_Resolve
(N
, Typ
);
5209 -- For all other cases, the attribute is handled by the back end, but
5210 -- we need to deal with the case of the range check on a universal
5214 Apply_Universal_Integer_Attribute_Checks
(N
);
5222 when Attribute_Read
=> Read
: declare
5223 P_Type
: constant Entity_Id
:= Entity
(Pref
);
5224 B_Type
: constant Entity_Id
:= Base_Type
(P_Type
);
5225 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
5235 -- If no underlying type, we have an error that will be diagnosed
5236 -- elsewhere, so here we just completely ignore the expansion.
5242 -- Stream operations can appear in user code even if the restriction
5243 -- No_Streams is active (for example, when instantiating a predefined
5244 -- container). In that case rewrite the attribute as a Raise to
5245 -- prevent any run-time use.
5247 if Restriction_Active
(No_Streams
) then
5249 Make_Raise_Program_Error
(Sloc
(N
),
5250 Reason
=> PE_Stream_Operation_Not_Allowed
));
5251 Set_Etype
(N
, B_Type
);
5255 -- The simple case, if there is a TSS for Read, just call it
5257 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Read
);
5259 if Present
(Pname
) then
5263 -- If there is a Stream_Convert pragma, use it, we rewrite
5265 -- sourcetyp'Read (stream, Item)
5269 -- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
5271 -- where strmread is the given Read function that converts an
5272 -- argument of type strmtyp to type sourcetyp or a type from which
5273 -- it is derived. The conversion to sourcetyp is required in the
5276 -- A special case arises if Item is a type conversion in which
5277 -- case, we have to expand to:
5279 -- Itemx := typex (strmread (strmtyp'Input (Stream)));
5281 -- where Itemx is the expression of the type conversion (i.e.
5282 -- the actual object), and typex is the type of Itemx.
5284 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
5286 if Present
(Prag
) then
5287 Arg2
:= Next
(First
(Pragma_Argument_Associations
(Prag
)));
5288 Rfunc
:= Entity
(Expression
(Arg2
));
5289 Lhs
:= Relocate_Node
(Next
(First
(Exprs
)));
5291 OK_Convert_To
(B_Type
,
5292 Make_Function_Call
(Loc
,
5293 Name
=> New_Occurrence_Of
(Rfunc
, Loc
),
5294 Parameter_Associations
=> New_List
(
5295 Make_Attribute_Reference
(Loc
,
5298 (Etype
(First_Formal
(Rfunc
)), Loc
),
5299 Attribute_Name
=> Name_Input
,
5300 Expressions
=> New_List
(
5301 Relocate_Node
(First
(Exprs
)))))));
5303 if Nkind
(Lhs
) = N_Type_Conversion
then
5304 Lhs
:= Expression
(Lhs
);
5305 Rhs
:= Convert_To
(Etype
(Lhs
), Rhs
);
5309 Make_Assignment_Statement
(Loc
,
5311 Expression
=> Rhs
));
5312 Set_Assignment_OK
(Lhs
);
5316 -- For elementary types, we call the I_xxx routine using the first
5317 -- parameter and then assign the result into the second parameter.
5318 -- We set Assignment_OK to deal with the conversion case.
5320 elsif Is_Elementary_Type
(U_Type
) then
5326 Lhs
:= Relocate_Node
(Next
(First
(Exprs
)));
5327 Rhs
:= Build_Elementary_Input_Call
(N
);
5329 if Nkind
(Lhs
) = N_Type_Conversion
then
5330 Lhs
:= Expression
(Lhs
);
5331 Rhs
:= Convert_To
(Etype
(Lhs
), Rhs
);
5334 Set_Assignment_OK
(Lhs
);
5337 Make_Assignment_Statement
(Loc
,
5339 Expression
=> Rhs
));
5347 elsif Is_Array_Type
(U_Type
) then
5348 Build_Array_Read_Procedure
(N
, U_Type
, Decl
, Pname
);
5349 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
5351 -- Tagged type case, use the primitive Read function. Note that
5352 -- this will dispatch in the class-wide case which is what we want
5354 elsif Is_Tagged_Type
(U_Type
) then
5355 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Read
);
5357 -- All other record type cases, including protected records. The
5358 -- latter only arise for expander generated code for handling
5359 -- shared passive partition access.
5363 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
5365 -- Ada 2005 (AI-216): Program_Error is raised when executing
5366 -- the default implementation of the Read attribute of an
5367 -- Unchecked_Union type.
5369 if Is_Unchecked_Union
(Base_Type
(U_Type
)) then
5371 Make_Raise_Program_Error
(Loc
,
5372 Reason
=> PE_Unchecked_Union_Restriction
));
5375 if Has_Discriminants
(U_Type
)
5377 (Discriminant_Default_Value
(First_Discriminant
(U_Type
)))
5379 Build_Mutable_Record_Read_Procedure
5380 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
5382 Build_Record_Read_Procedure
5383 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
5386 -- Suppress checks, uninitialized or otherwise invalid
5387 -- data does not cause constraint errors to be raised for
5388 -- a complete record read.
5390 Insert_Action
(N
, Decl
, All_Checks
);
5394 Rewrite_Stream_Proc_Call
(Pname
);
5401 -- Ref is identical to To_Address, see To_Address for processing
5407 -- Transforms 'Remainder into a call to the floating-point attribute
5408 -- function Remainder in Fat_xxx (where xxx is the root type)
5410 when Attribute_Remainder
=>
5411 Expand_Fpt_Attribute_RR
(N
);
5417 -- Transform 'Result into reference to _Result formal. At the point
5418 -- where a legal 'Result attribute is expanded, we know that we are in
5419 -- the context of a _Postcondition function with a _Result parameter.
5421 when Attribute_Result
=>
5422 Rewrite
(N
, Make_Identifier
(Loc
, Chars
=> Name_uResult
));
5423 Analyze_And_Resolve
(N
, Typ
);
5429 -- The handling of the Round attribute is quite delicate. The processing
5430 -- in Sem_Attr introduced a conversion to universal real, reflecting the
5431 -- semantics of Round, but we do not want anything to do with universal
5432 -- real at runtime, since this corresponds to using floating-point
5435 -- What we have now is that the Etype of the Round attribute correctly
5436 -- indicates the final result type. The operand of the Round is the
5437 -- conversion to universal real, described above, and the operand of
5438 -- this conversion is the actual operand of Round, which may be the
5439 -- special case of a fixed point multiplication or division (Etype =
5442 -- The exapander will expand first the operand of the conversion, then
5443 -- the conversion, and finally the round attribute itself, since we
5444 -- always work inside out. But we cannot simply process naively in this
5445 -- order. In the semantic world where universal fixed and real really
5446 -- exist and have infinite precision, there is no problem, but in the
5447 -- implementation world, where universal real is a floating-point type,
5448 -- we would get the wrong result.
5450 -- So the approach is as follows. First, when expanding a multiply or
5451 -- divide whose type is universal fixed, we do nothing at all, instead
5452 -- deferring the operation till later.
5454 -- The actual processing is done in Expand_N_Type_Conversion which
5455 -- handles the special case of Round by looking at its parent to see if
5456 -- it is a Round attribute, and if it is, handling the conversion (or
5457 -- its fixed multiply/divide child) in an appropriate manner.
5459 -- This means that by the time we get to expanding the Round attribute
5460 -- itself, the Round is nothing more than a type conversion (and will
5461 -- often be a null type conversion), so we just replace it with the
5462 -- appropriate conversion operation.
5464 when Attribute_Round
=>
5466 Convert_To
(Etype
(N
), Relocate_Node
(First
(Exprs
))));
5467 Analyze_And_Resolve
(N
);
5473 -- Transforms 'Rounding into a call to the floating-point attribute
5474 -- function Rounding in Fat_xxx (where xxx is the root type)
5475 -- Expansion is avoided for cases the back end can handle directly.
5477 when Attribute_Rounding
=>
5478 if not Is_Inline_Floating_Point_Attribute
(N
) then
5479 Expand_Fpt_Attribute_R
(N
);
5486 -- Transforms 'Scaling into a call to the floating-point attribute
5487 -- function Scaling in Fat_xxx (where xxx is the root type)
5489 when Attribute_Scaling
=>
5490 Expand_Fpt_Attribute_RI
(N
);
5492 -------------------------
5493 -- Simple_Storage_Pool --
5494 -------------------------
5496 when Attribute_Simple_Storage_Pool
=>
5498 Make_Type_Conversion
(Loc
,
5499 Subtype_Mark
=> New_Occurrence_Of
(Etype
(N
), Loc
),
5500 Expression
=> New_Occurrence_Of
(Entity
(N
), Loc
)));
5501 Analyze_And_Resolve
(N
, Typ
);
5507 when Attribute_Size |
5508 Attribute_Object_Size |
5509 Attribute_Value_Size |
5510 Attribute_VADS_Size
=> Size
:
5517 -- Processing for VADS_Size case. Note that this processing removes
5518 -- all traces of VADS_Size from the tree, and completes all required
5519 -- processing for VADS_Size by translating the attribute reference
5520 -- to an appropriate Size or Object_Size reference.
5522 if Id
= Attribute_VADS_Size
5523 or else (Use_VADS_Size
and then Id
= Attribute_Size
)
5525 -- If the size is specified, then we simply use the specified
5526 -- size. This applies to both types and objects. The size of an
5527 -- object can be specified in the following ways:
5529 -- An explicit size object is given for an object
5530 -- A component size is specified for an indexed component
5531 -- A component clause is specified for a selected component
5532 -- The object is a component of a packed composite object
5534 -- If the size is specified, then VADS_Size of an object
5536 if (Is_Entity_Name
(Pref
)
5537 and then Present
(Size_Clause
(Entity
(Pref
))))
5539 (Nkind
(Pref
) = N_Component_Clause
5540 and then (Present
(Component_Clause
5541 (Entity
(Selector_Name
(Pref
))))
5542 or else Is_Packed
(Etype
(Prefix
(Pref
)))))
5544 (Nkind
(Pref
) = N_Indexed_Component
5545 and then (Component_Size
(Etype
(Prefix
(Pref
))) /= 0
5546 or else Is_Packed
(Etype
(Prefix
(Pref
)))))
5548 Set_Attribute_Name
(N
, Name_Size
);
5550 -- Otherwise if we have an object rather than a type, then the
5551 -- VADS_Size attribute applies to the type of the object, rather
5552 -- than the object itself. This is one of the respects in which
5553 -- VADS_Size differs from Size.
5556 if (not Is_Entity_Name
(Pref
)
5557 or else not Is_Type
(Entity
(Pref
)))
5558 and then (Is_Scalar_Type
(Ptyp
) or else Is_Constrained
(Ptyp
))
5560 Rewrite
(Pref
, New_Occurrence_Of
(Ptyp
, Loc
));
5563 -- For a scalar type for which no size was explicitly given,
5564 -- VADS_Size means Object_Size. This is the other respect in
5565 -- which VADS_Size differs from Size.
5567 if Is_Scalar_Type
(Ptyp
) and then No
(Size_Clause
(Ptyp
)) then
5568 Set_Attribute_Name
(N
, Name_Object_Size
);
5570 -- In all other cases, Size and VADS_Size are the sane
5573 Set_Attribute_Name
(N
, Name_Size
);
5578 -- If the prefix is X'Class, we transform it into a direct reference
5579 -- to the class-wide type, because the back end must not see a 'Class
5582 if Is_Entity_Name
(Pref
)
5583 and then Is_Class_Wide_Type
(Entity
(Pref
))
5585 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
5588 -- For X'Size applied to an object of a class-wide type, transform
5589 -- X'Size into a call to the primitive operation _Size applied to X.
5591 elsif Is_Class_Wide_Type
(Ptyp
) then
5593 -- No need to do anything else compiling under restriction
5594 -- No_Dispatching_Calls. During the semantic analysis we
5595 -- already noted this restriction violation.
5597 if Restriction_Active
(No_Dispatching_Calls
) then
5602 Make_Function_Call
(Loc
,
5603 Name
=> New_Occurrence_Of
5604 (Find_Prim_Op
(Ptyp
, Name_uSize
), Loc
),
5605 Parameter_Associations
=> New_List
(Pref
));
5607 if Typ
/= Standard_Long_Long_Integer
then
5609 -- The context is a specific integer type with which the
5610 -- original attribute was compatible. The function has a
5611 -- specific type as well, so to preserve the compatibility
5612 -- we must convert explicitly.
5614 New_Node
:= Convert_To
(Typ
, New_Node
);
5617 Rewrite
(N
, New_Node
);
5618 Analyze_And_Resolve
(N
, Typ
);
5621 -- Case of known RM_Size of a type
5623 elsif (Id
= Attribute_Size
or else Id
= Attribute_Value_Size
)
5624 and then Is_Entity_Name
(Pref
)
5625 and then Is_Type
(Entity
(Pref
))
5626 and then Known_Static_RM_Size
(Entity
(Pref
))
5628 Siz
:= RM_Size
(Entity
(Pref
));
5630 -- Case of known Esize of a type
5632 elsif Id
= Attribute_Object_Size
5633 and then Is_Entity_Name
(Pref
)
5634 and then Is_Type
(Entity
(Pref
))
5635 and then Known_Static_Esize
(Entity
(Pref
))
5637 Siz
:= Esize
(Entity
(Pref
));
5639 -- Case of known size of object
5641 elsif Id
= Attribute_Size
5642 and then Is_Entity_Name
(Pref
)
5643 and then Is_Object
(Entity
(Pref
))
5644 and then Known_Esize
(Entity
(Pref
))
5645 and then Known_Static_Esize
(Entity
(Pref
))
5647 Siz
:= Esize
(Entity
(Pref
));
5649 -- For an array component, we can do Size in the front end
5650 -- if the component_size of the array is set.
5652 elsif Nkind
(Pref
) = N_Indexed_Component
then
5653 Siz
:= Component_Size
(Etype
(Prefix
(Pref
)));
5655 -- For a record component, we can do Size in the front end if there
5656 -- is a component clause, or if the record is packed and the
5657 -- component's size is known at compile time.
5659 elsif Nkind
(Pref
) = N_Selected_Component
then
5661 Rec
: constant Entity_Id
:= Etype
(Prefix
(Pref
));
5662 Comp
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
5665 if Present
(Component_Clause
(Comp
)) then
5666 Siz
:= Esize
(Comp
);
5668 elsif Is_Packed
(Rec
) then
5669 Siz
:= RM_Size
(Ptyp
);
5672 Apply_Universal_Integer_Attribute_Checks
(N
);
5677 -- All other cases are handled by the back end
5680 Apply_Universal_Integer_Attribute_Checks
(N
);
5682 -- If Size is applied to a formal parameter that is of a packed
5683 -- array subtype, then apply Size to the actual subtype.
5685 if Is_Entity_Name
(Pref
)
5686 and then Is_Formal
(Entity
(Pref
))
5687 and then Is_Array_Type
(Ptyp
)
5688 and then Is_Packed
(Ptyp
)
5691 Make_Attribute_Reference
(Loc
,
5693 New_Occurrence_Of
(Get_Actual_Subtype
(Pref
), Loc
),
5694 Attribute_Name
=> Name_Size
));
5695 Analyze_And_Resolve
(N
, Typ
);
5698 -- If Size applies to a dereference of an access to unconstrained
5699 -- packed array, the back end needs to see its unconstrained
5700 -- nominal type, but also a hint to the actual constrained type.
5702 if Nkind
(Pref
) = N_Explicit_Dereference
5703 and then Is_Array_Type
(Ptyp
)
5704 and then not Is_Constrained
(Ptyp
)
5705 and then Is_Packed
(Ptyp
)
5707 Set_Actual_Designated_Subtype
(Pref
,
5708 Get_Actual_Subtype
(Pref
));
5714 -- Common processing for record and array component case
5716 if Siz
/= No_Uint
and then Siz
/= 0 then
5718 CS
: constant Boolean := Comes_From_Source
(N
);
5721 Rewrite
(N
, Make_Integer_Literal
(Loc
, Siz
));
5723 -- This integer literal is not a static expression. We do not
5724 -- call Analyze_And_Resolve here, because this would activate
5725 -- the circuit for deciding that a static value was out of
5726 -- range, and we don't want that.
5728 -- So just manually set the type, mark the expression as non-
5729 -- static, and then ensure that the result is checked properly
5730 -- if the attribute comes from source (if it was internally
5731 -- generated, we never need a constraint check).
5734 Set_Is_Static_Expression
(N
, False);
5737 Apply_Constraint_Check
(N
, Typ
);
5747 when Attribute_Storage_Pool
=>
5749 Make_Type_Conversion
(Loc
,
5750 Subtype_Mark
=> New_Occurrence_Of
(Etype
(N
), Loc
),
5751 Expression
=> New_Occurrence_Of
(Entity
(N
), Loc
)));
5752 Analyze_And_Resolve
(N
, Typ
);
5758 when Attribute_Storage_Size
=> Storage_Size
: declare
5759 Alloc_Op
: Entity_Id
:= Empty
;
5763 -- Access type case, always go to the root type
5765 -- The case of access types results in a value of zero for the case
5766 -- where no storage size attribute clause has been given. If a
5767 -- storage size has been given, then the attribute is converted
5768 -- to a reference to the variable used to hold this value.
5770 if Is_Access_Type
(Ptyp
) then
5771 if Present
(Storage_Size_Variable
(Root_Type
(Ptyp
))) then
5773 Make_Attribute_Reference
(Loc
,
5774 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
5775 Attribute_Name
=> Name_Max
,
5776 Expressions
=> New_List
(
5777 Make_Integer_Literal
(Loc
, 0),
5780 (Storage_Size_Variable
(Root_Type
(Ptyp
)), Loc
)))));
5782 elsif Present
(Associated_Storage_Pool
(Root_Type
(Ptyp
))) then
5784 -- If the access type is associated with a simple storage pool
5785 -- object, then attempt to locate the optional Storage_Size
5786 -- function of the simple storage pool type. If not found,
5787 -- then the result will default to zero.
5789 if Present
(Get_Rep_Pragma
(Root_Type
(Ptyp
),
5790 Name_Simple_Storage_Pool_Type
))
5793 Pool_Type
: constant Entity_Id
:=
5794 Base_Type
(Etype
(Entity
(N
)));
5797 Alloc_Op
:= Get_Name_Entity_Id
(Name_Storage_Size
);
5798 while Present
(Alloc_Op
) loop
5799 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
5800 and then Present
(First_Formal
(Alloc_Op
))
5801 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
5806 Alloc_Op
:= Homonym
(Alloc_Op
);
5810 -- In the normal Storage_Pool case, retrieve the primitive
5811 -- function associated with the pool type.
5816 (Etype
(Associated_Storage_Pool
(Root_Type
(Ptyp
))),
5817 Attribute_Name
(N
));
5820 -- If Storage_Size wasn't found (can only occur in the simple
5821 -- storage pool case), then simply use zero for the result.
5823 if not Present
(Alloc_Op
) then
5824 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
5826 -- Otherwise, rewrite the allocator as a call to pool type's
5827 -- Storage_Size function.
5832 Make_Function_Call
(Loc
,
5834 New_Occurrence_Of
(Alloc_Op
, Loc
),
5836 Parameter_Associations
=> New_List
(
5838 (Associated_Storage_Pool
5839 (Root_Type
(Ptyp
)), Loc
)))));
5843 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
5846 Analyze_And_Resolve
(N
, Typ
);
5848 -- For tasks, we retrieve the size directly from the TCB. The
5849 -- size may depend on a discriminant of the type, and therefore
5850 -- can be a per-object expression, so type-level information is
5851 -- not sufficient in general. There are four cases to consider:
5853 -- a) If the attribute appears within a task body, the designated
5854 -- TCB is obtained by a call to Self.
5856 -- b) If the prefix of the attribute is the name of a task object,
5857 -- the designated TCB is the one stored in the corresponding record.
5859 -- c) If the prefix is a task type, the size is obtained from the
5860 -- size variable created for each task type
5862 -- d) If no Storage_Size was specified for the type, there is no
5863 -- size variable, and the value is a system-specific default.
5866 if In_Open_Scopes
(Ptyp
) then
5868 -- Storage_Size (Self)
5872 Make_Function_Call
(Loc
,
5874 New_Occurrence_Of
(RTE
(RE_Storage_Size
), Loc
),
5875 Parameter_Associations
=>
5877 Make_Function_Call
(Loc
,
5879 New_Occurrence_Of
(RTE
(RE_Self
), Loc
))))));
5881 elsif not Is_Entity_Name
(Pref
)
5882 or else not Is_Type
(Entity
(Pref
))
5884 -- Storage_Size (Rec (Obj).Size)
5888 Make_Function_Call
(Loc
,
5890 New_Occurrence_Of
(RTE
(RE_Storage_Size
), Loc
),
5891 Parameter_Associations
=>
5893 Make_Selected_Component
(Loc
,
5895 Unchecked_Convert_To
(
5896 Corresponding_Record_Type
(Ptyp
),
5897 New_Copy_Tree
(Pref
)),
5899 Make_Identifier
(Loc
, Name_uTask_Id
))))));
5901 elsif Present
(Storage_Size_Variable
(Ptyp
)) then
5903 -- Static Storage_Size pragma given for type: retrieve value
5904 -- from its allocated storage variable.
5908 Make_Function_Call
(Loc
,
5909 Name
=> New_Occurrence_Of
(
5910 RTE
(RE_Adjust_Storage_Size
), Loc
),
5911 Parameter_Associations
=>
5914 Storage_Size_Variable
(Ptyp
), Loc
)))));
5916 -- Get system default
5920 Make_Function_Call
(Loc
,
5923 RTE
(RE_Default_Stack_Size
), Loc
))));
5926 Analyze_And_Resolve
(N
, Typ
);
5934 when Attribute_Stream_Size
=>
5936 Make_Integer_Literal
(Loc
, Intval
=> Get_Stream_Size
(Ptyp
)));
5937 Analyze_And_Resolve
(N
, Typ
);
5943 -- 1. Deal with enumeration types with holes.
5944 -- 2. For floating-point, generate call to attribute function.
5945 -- 3. For other cases, deal with constraint checking.
5947 when Attribute_Succ
=> Succ
: declare
5948 Etyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
5952 -- For enumeration types with non-standard representations, we
5953 -- expand typ'Succ (x) into
5955 -- Pos_To_Rep (Rep_To_Pos (x) + 1)
5957 -- If the representation is contiguous, we compute instead
5958 -- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
5960 if Is_Enumeration_Type
(Ptyp
)
5961 and then Present
(Enum_Pos_To_Rep
(Etyp
))
5963 if Has_Contiguous_Rep
(Etyp
) then
5965 Unchecked_Convert_To
(Ptyp
,
5968 Make_Integer_Literal
(Loc
,
5969 Enumeration_Rep
(First_Literal
(Ptyp
))),
5971 Make_Function_Call
(Loc
,
5974 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
5976 Parameter_Associations
=>
5978 Unchecked_Convert_To
(Ptyp
,
5981 Unchecked_Convert_To
(Standard_Integer
,
5982 Relocate_Node
(First
(Exprs
))),
5984 Make_Integer_Literal
(Loc
, 1))),
5985 Rep_To_Pos_Flag
(Ptyp
, Loc
))))));
5987 -- Add Boolean parameter True, to request program errror if
5988 -- we have a bad representation on our hands. Add False if
5989 -- checks are suppressed.
5991 Append_To
(Exprs
, Rep_To_Pos_Flag
(Ptyp
, Loc
));
5993 Make_Indexed_Component
(Loc
,
5996 (Enum_Pos_To_Rep
(Etyp
), Loc
),
5997 Expressions
=> New_List
(
6000 Make_Function_Call
(Loc
,
6003 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
6004 Parameter_Associations
=> Exprs
),
6005 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
6008 Analyze_And_Resolve
(N
, Typ
);
6010 -- For floating-point, we transform 'Succ into a call to the Succ
6011 -- floating-point attribute function in Fat_xxx (xxx is root type)
6013 elsif Is_Floating_Point_Type
(Ptyp
) then
6014 Expand_Fpt_Attribute_R
(N
);
6015 Analyze_And_Resolve
(N
, Typ
);
6017 -- For modular types, nothing to do (no overflow, since wraps)
6019 elsif Is_Modular_Integer_Type
(Ptyp
) then
6022 -- For other types, if argument is marked as needing a range check or
6023 -- overflow checking is enabled, we must generate a check.
6025 elsif not Overflow_Checks_Suppressed
(Ptyp
)
6026 or else Do_Range_Check
(First
(Exprs
))
6028 Set_Do_Range_Check
(First
(Exprs
), False);
6029 Expand_Pred_Succ_Attribute
(N
);
6037 -- Transforms X'Tag into a direct reference to the tag of X
6039 when Attribute_Tag
=> Tag
: declare
6041 Prefix_Is_Type
: Boolean;
6044 if Is_Entity_Name
(Pref
) and then Is_Type
(Entity
(Pref
)) then
6045 Ttyp
:= Entity
(Pref
);
6046 Prefix_Is_Type
:= True;
6049 Prefix_Is_Type
:= False;
6052 if Is_Class_Wide_Type
(Ttyp
) then
6053 Ttyp
:= Root_Type
(Ttyp
);
6056 Ttyp
:= Underlying_Type
(Ttyp
);
6058 -- Ada 2005: The type may be a synchronized tagged type, in which
6059 -- case the tag information is stored in the corresponding record.
6061 if Is_Concurrent_Type
(Ttyp
) then
6062 Ttyp
:= Corresponding_Record_Type
(Ttyp
);
6065 if Prefix_Is_Type
then
6067 -- For VMs we leave the type attribute unexpanded because
6068 -- there's not a dispatching table to reference.
6070 if Tagged_Type_Expansion
then
6072 Unchecked_Convert_To
(RTE
(RE_Tag
),
6074 (Node
(First_Elmt
(Access_Disp_Table
(Ttyp
))), Loc
)));
6075 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
6078 -- Ada 2005 (AI-251): The use of 'Tag in the sources always
6079 -- references the primary tag of the actual object. If 'Tag is
6080 -- applied to class-wide interface objects we generate code that
6081 -- displaces "this" to reference the base of the object.
6083 elsif Comes_From_Source
(N
)
6084 and then Is_Class_Wide_Type
(Etype
(Prefix
(N
)))
6085 and then Is_Interface
(Etype
(Prefix
(N
)))
6088 -- (To_Tag_Ptr (Prefix'Address)).all
6090 -- Note that Prefix'Address is recursively expanded into a call
6091 -- to Base_Address (Obj.Tag)
6093 -- Not needed for VM targets, since all handled by the VM
6095 if Tagged_Type_Expansion
then
6097 Make_Explicit_Dereference
(Loc
,
6098 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6099 Make_Attribute_Reference
(Loc
,
6100 Prefix
=> Relocate_Node
(Pref
),
6101 Attribute_Name
=> Name_Address
))));
6102 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
6107 Make_Selected_Component
(Loc
,
6108 Prefix
=> Relocate_Node
(Pref
),
6110 New_Occurrence_Of
(First_Tag_Component
(Ttyp
), Loc
)));
6111 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
6119 -- Transforms 'Terminated attribute into a call to Terminated function
6121 when Attribute_Terminated
=> Terminated
:
6123 -- The prefix of Terminated is of a task interface class-wide type.
6125 -- terminated (Task_Id (Pref._disp_get_task_id));
6127 if Ada_Version
>= Ada_2005
6128 and then Ekind
(Ptyp
) = E_Class_Wide_Type
6129 and then Is_Interface
(Ptyp
)
6130 and then Is_Task_Interface
(Ptyp
)
6133 Make_Function_Call
(Loc
,
6135 New_Occurrence_Of
(RTE
(RE_Terminated
), Loc
),
6136 Parameter_Associations
=> New_List
(
6137 Make_Unchecked_Type_Conversion
(Loc
,
6139 New_Occurrence_Of
(RTE
(RO_ST_Task_Id
), Loc
),
6141 Make_Selected_Component
(Loc
,
6143 New_Copy_Tree
(Pref
),
6145 Make_Identifier
(Loc
, Name_uDisp_Get_Task_Id
))))));
6147 elsif Restricted_Profile
then
6149 Build_Call_With_Task
(Pref
, RTE
(RE_Restricted_Terminated
)));
6153 Build_Call_With_Task
(Pref
, RTE
(RE_Terminated
)));
6156 Analyze_And_Resolve
(N
, Standard_Boolean
);
6163 -- Transforms System'To_Address (X) and System.Address'Ref (X) into
6164 -- unchecked conversion from (integral) type of X to type address.
6166 when Attribute_To_Address | Attribute_Ref
=>
6168 Unchecked_Convert_To
(RTE
(RE_Address
),
6169 Relocate_Node
(First
(Exprs
))));
6170 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
6176 when Attribute_To_Any
=> To_Any
: declare
6177 P_Type
: constant Entity_Id
:= Etype
(Pref
);
6178 Decls
: constant List_Id
:= New_List
;
6184 Relocate_Node
(First
(Exprs
))), Decls
));
6185 Insert_Actions
(N
, Decls
);
6186 Analyze_And_Resolve
(N
, RTE
(RE_Any
));
6193 -- Transforms 'Truncation into a call to the floating-point attribute
6194 -- function Truncation in Fat_xxx (where xxx is the root type).
6195 -- Expansion is avoided for cases the back end can handle directly.
6197 when Attribute_Truncation
=>
6198 if not Is_Inline_Floating_Point_Attribute
(N
) then
6199 Expand_Fpt_Attribute_R
(N
);
6206 when Attribute_TypeCode
=> TypeCode
: declare
6207 P_Type
: constant Entity_Id
:= Etype
(Pref
);
6208 Decls
: constant List_Id
:= New_List
;
6210 Rewrite
(N
, Build_TypeCode_Call
(Loc
, P_Type
, Decls
));
6211 Insert_Actions
(N
, Decls
);
6212 Analyze_And_Resolve
(N
, RTE
(RE_TypeCode
));
6215 -----------------------
6216 -- Unbiased_Rounding --
6217 -----------------------
6219 -- Transforms 'Unbiased_Rounding into a call to the floating-point
6220 -- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
6221 -- root type). Expansion is avoided for cases the back end can handle
6224 when Attribute_Unbiased_Rounding
=>
6225 if not Is_Inline_Floating_Point_Attribute
(N
) then
6226 Expand_Fpt_Attribute_R
(N
);
6233 when Attribute_Update
=>
6234 Expand_Update_Attribute
(N
);
6240 -- The processing for VADS_Size is shared with Size
6246 -- For enumeration types with a standard representation, and for all
6247 -- other types, Val is handled by the back end. For enumeration types
6248 -- with a non-standard representation we use the _Pos_To_Rep array that
6249 -- was created when the type was frozen.
6251 when Attribute_Val
=> Val
: declare
6252 Etyp
: constant Entity_Id
:= Base_Type
(Entity
(Pref
));
6255 if Is_Enumeration_Type
(Etyp
)
6256 and then Present
(Enum_Pos_To_Rep
(Etyp
))
6258 if Has_Contiguous_Rep
(Etyp
) then
6260 Rep_Node
: constant Node_Id
:=
6261 Unchecked_Convert_To
(Etyp
,
6264 Make_Integer_Literal
(Loc
,
6265 Enumeration_Rep
(First_Literal
(Etyp
))),
6267 (Convert_To
(Standard_Integer
,
6268 Relocate_Node
(First
(Exprs
))))));
6272 Unchecked_Convert_To
(Etyp
,
6275 Make_Integer_Literal
(Loc
,
6276 Enumeration_Rep
(First_Literal
(Etyp
))),
6278 Make_Function_Call
(Loc
,
6281 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
6282 Parameter_Associations
=> New_List
(
6284 Rep_To_Pos_Flag
(Etyp
, Loc
))))));
6289 Make_Indexed_Component
(Loc
,
6290 Prefix
=> New_Occurrence_Of
(Enum_Pos_To_Rep
(Etyp
), Loc
),
6291 Expressions
=> New_List
(
6292 Convert_To
(Standard_Integer
,
6293 Relocate_Node
(First
(Exprs
))))));
6296 Analyze_And_Resolve
(N
, Typ
);
6298 -- If the argument is marked as requiring a range check then generate
6301 elsif Do_Range_Check
(First
(Exprs
)) then
6302 Generate_Range_Check
(First
(Exprs
), Etyp
, CE_Range_Check_Failed
);
6310 -- The code for valid is dependent on the particular types involved.
6311 -- See separate sections below for the generated code in each case.
6313 when Attribute_Valid
=> Valid
: declare
6314 Btyp
: Entity_Id
:= Base_Type
(Ptyp
);
6317 Save_Validity_Checks_On
: constant Boolean := Validity_Checks_On
;
6318 -- Save the validity checking mode. We always turn off validity
6319 -- checking during process of 'Valid since this is one place
6320 -- where we do not want the implicit validity checks to intefere
6321 -- with the explicit validity check that the programmer is doing.
6323 function Make_Range_Test
return Node_Id
;
6324 -- Build the code for a range test of the form
6325 -- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
6327 ---------------------
6328 -- Make_Range_Test --
6329 ---------------------
6331 function Make_Range_Test
return Node_Id
is
6332 Temp
: constant Node_Id
:= Duplicate_Subexpr
(Pref
);
6335 -- The value whose validity is being checked has been captured in
6336 -- an object declaration. We certainly don't want this object to
6337 -- appear valid because the declaration initializes it.
6339 if Is_Entity_Name
(Temp
) then
6340 Set_Is_Known_Valid
(Entity
(Temp
), False);
6346 Unchecked_Convert_To
(Btyp
, Temp
),
6350 Unchecked_Convert_To
(Btyp
,
6351 Make_Attribute_Reference
(Loc
,
6352 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
6353 Attribute_Name
=> Name_First
)),
6355 Unchecked_Convert_To
(Btyp
,
6356 Make_Attribute_Reference
(Loc
,
6357 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
6358 Attribute_Name
=> Name_Last
))));
6359 end Make_Range_Test
;
6361 -- Start of processing for Attribute_Valid
6364 -- Do not expand sourced code 'Valid reference in CodePeer mode,
6365 -- will be handled by the back-end directly.
6367 if CodePeer_Mode
and then Comes_From_Source
(N
) then
6371 -- Turn off validity checks. We do not want any implicit validity
6372 -- checks to intefere with the explicit check from the attribute
6374 Validity_Checks_On
:= False;
6376 -- Retrieve the base type. Handle the case where the base type is a
6377 -- private enumeration type.
6379 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
6380 Btyp
:= Full_View
(Btyp
);
6383 -- Floating-point case. This case is handled by the Valid attribute
6384 -- code in the floating-point attribute run-time library.
6386 if Is_Floating_Point_Type
(Ptyp
) then
6387 Float_Valid
: declare
6391 function Get_Fat_Entity
(Nam
: Name_Id
) return Entity_Id
;
6392 -- Return entity for Pkg.Nam
6394 --------------------
6395 -- Get_Fat_Entity --
6396 --------------------
6398 function Get_Fat_Entity
(Nam
: Name_Id
) return Entity_Id
is
6399 Exp_Name
: constant Node_Id
:=
6400 Make_Selected_Component
(Loc
,
6401 Prefix
=> New_Occurrence_Of
(RTE
(Pkg
), Loc
),
6402 Selector_Name
=> Make_Identifier
(Loc
, Nam
));
6404 Find_Selected_Component
(Exp_Name
);
6405 return Entity
(Exp_Name
);
6408 -- Start of processing for Float_Valid
6411 -- The C and AAMP back-ends handle Valid for fpt types
6413 if Generate_C_Code
or else Float_Rep
(Btyp
) = AAMP
then
6414 Analyze_And_Resolve
(Pref
, Ptyp
);
6415 Set_Etype
(N
, Standard_Boolean
);
6419 Find_Fat_Info
(Ptyp
, Ftp
, Pkg
);
6421 -- If the prefix is a reverse SSO component, or is possibly
6422 -- unaligned, first create a temporary copy that is in
6423 -- native SSO, and properly aligned. Make it Volatile to
6424 -- prevent folding in the back-end. Note that we use an
6425 -- intermediate constrained string type to initialize the
6426 -- temporary, as the value at hand might be invalid, and in
6427 -- that case it cannot be copied using a floating point
6430 if In_Reverse_Storage_Order_Object
(Pref
)
6431 or else Is_Possibly_Unaligned_Object
(Pref
)
6434 Temp
: constant Entity_Id
:=
6435 Make_Temporary
(Loc
, 'F');
6437 Fat_S
: constant Entity_Id
:=
6438 Get_Fat_Entity
(Name_S
);
6439 -- Constrained string subtype of appropriate size
6441 Fat_P
: constant Entity_Id
:=
6442 Get_Fat_Entity
(Name_P
);
6445 Decl
: constant Node_Id
:=
6446 Make_Object_Declaration
(Loc
,
6447 Defining_Identifier
=> Temp
,
6448 Aliased_Present
=> True,
6449 Object_Definition
=>
6450 New_Occurrence_Of
(Ptyp
, Loc
));
6453 Set_Aspect_Specifications
(Decl
, New_List
(
6454 Make_Aspect_Specification
(Loc
,
6456 Make_Identifier
(Loc
, Name_Volatile
))));
6462 Make_Assignment_Statement
(Loc
,
6464 Make_Explicit_Dereference
(Loc
,
6466 Unchecked_Convert_To
(Fat_P
,
6467 Make_Attribute_Reference
(Loc
,
6469 New_Occurrence_Of
(Temp
, Loc
),
6471 Name_Unrestricted_Access
))),
6473 Unchecked_Convert_To
(Fat_S
,
6474 Relocate_Node
(Pref
)))),
6476 Suppress
=> All_Checks
);
6478 Rewrite
(Pref
, New_Occurrence_Of
(Temp
, Loc
));
6482 -- We now have an object of the proper endianness and
6483 -- alignment, and can construct a Valid attribute.
6485 -- We make sure the prefix of this valid attribute is
6486 -- marked as not coming from source, to avoid losing
6487 -- warnings from 'Valid looking like a possible update.
6489 Set_Comes_From_Source
(Pref
, False);
6491 Expand_Fpt_Attribute
6492 (N
, Pkg
, Name_Valid
,
6494 Make_Attribute_Reference
(Loc
,
6495 Prefix
=> Unchecked_Convert_To
(Ftp
, Pref
),
6496 Attribute_Name
=> Name_Unrestricted_Access
)));
6499 -- One more task, we still need a range check. Required
6500 -- only if we have a constraint, since the Valid routine
6501 -- catches infinities properly (infinities are never valid).
6503 -- The way we do the range check is simply to create the
6504 -- expression: Valid (N) and then Base_Type(Pref) in Typ.
6506 if not Subtypes_Statically_Match
(Ptyp
, Btyp
) then
6509 Left_Opnd
=> Relocate_Node
(N
),
6512 Left_Opnd
=> Convert_To
(Btyp
, Pref
),
6513 Right_Opnd
=> New_Occurrence_Of
(Ptyp
, Loc
))));
6517 -- Enumeration type with holes
6519 -- For enumeration types with holes, the Pos value constructed by
6520 -- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
6521 -- second argument of False returns minus one for an invalid value,
6522 -- and the non-negative pos value for a valid value, so the
6523 -- expansion of X'Valid is simply:
6525 -- type(X)'Pos (X) >= 0
6527 -- We can't quite generate it that way because of the requirement
6528 -- for the non-standard second argument of False in the resulting
6529 -- rep_to_pos call, so we have to explicitly create:
6531 -- _rep_to_pos (X, False) >= 0
6533 -- If we have an enumeration subtype, we also check that the
6534 -- value is in range:
6536 -- _rep_to_pos (X, False) >= 0
6538 -- (X >= type(X)'First and then type(X)'Last <= X)
6540 elsif Is_Enumeration_Type
(Ptyp
)
6541 and then Present
(Enum_Pos_To_Rep
(Btyp
))
6546 Make_Function_Call
(Loc
,
6548 New_Occurrence_Of
(TSS
(Btyp
, TSS_Rep_To_Pos
), Loc
),
6549 Parameter_Associations
=> New_List
(
6551 New_Occurrence_Of
(Standard_False
, Loc
))),
6552 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
6556 (Type_Low_Bound
(Ptyp
) /= Type_Low_Bound
(Btyp
)
6558 Type_High_Bound
(Ptyp
) /= Type_High_Bound
(Btyp
))
6560 -- The call to Make_Range_Test will create declarations
6561 -- that need a proper insertion point, but Pref is now
6562 -- attached to a node with no ancestor. Attach to tree
6563 -- even if it is to be rewritten below.
6565 Set_Parent
(Tst
, Parent
(N
));
6569 Left_Opnd
=> Make_Range_Test
,
6575 -- Fortran convention booleans
6577 -- For the very special case of Fortran convention booleans, the
6578 -- value is always valid, since it is an integer with the semantics
6579 -- that non-zero is true, and any value is permissible.
6581 elsif Is_Boolean_Type
(Ptyp
)
6582 and then Convention
(Ptyp
) = Convention_Fortran
6584 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6586 -- For biased representations, we will be doing an unchecked
6587 -- conversion without unbiasing the result. That means that the range
6588 -- test has to take this into account, and the proper form of the
6591 -- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
6593 elsif Has_Biased_Representation
(Ptyp
) then
6594 Btyp
:= RTE
(RE_Unsigned_32
);
6598 Unchecked_Convert_To
(Btyp
, Duplicate_Subexpr
(Pref
)),
6600 Unchecked_Convert_To
(Btyp
,
6601 Make_Attribute_Reference
(Loc
,
6602 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
6603 Attribute_Name
=> Name_Range_Length
))));
6605 -- For all other scalar types, what we want logically is a
6608 -- X in type(X)'First .. type(X)'Last
6610 -- But that's precisely what won't work because of possible
6611 -- unwanted optimization (and indeed the basic motivation for
6612 -- the Valid attribute is exactly that this test does not work).
6613 -- What will work is:
6615 -- Btyp!(X) >= Btyp!(type(X)'First)
6617 -- Btyp!(X) <= Btyp!(type(X)'Last)
6619 -- where Btyp is an integer type large enough to cover the full
6620 -- range of possible stored values (i.e. it is chosen on the basis
6621 -- of the size of the type, not the range of the values). We write
6622 -- this as two tests, rather than a range check, so that static
6623 -- evaluation will easily remove either or both of the checks if
6624 -- they can be -statically determined to be true (this happens
6625 -- when the type of X is static and the range extends to the full
6626 -- range of stored values).
6628 -- Unsigned types. Note: it is safe to consider only whether the
6629 -- subtype is unsigned, since we will in that case be doing all
6630 -- unsigned comparisons based on the subtype range. Since we use the
6631 -- actual subtype object size, this is appropriate.
6633 -- For example, if we have
6635 -- subtype x is integer range 1 .. 200;
6636 -- for x'Object_Size use 8;
6638 -- Now the base type is signed, but objects of this type are bits
6639 -- unsigned, and doing an unsigned test of the range 1 to 200 is
6640 -- correct, even though a value greater than 127 looks signed to a
6641 -- signed comparison.
6643 elsif Is_Unsigned_Type
(Ptyp
) then
6644 if Esize
(Ptyp
) <= 32 then
6645 Btyp
:= RTE
(RE_Unsigned_32
);
6647 Btyp
:= RTE
(RE_Unsigned_64
);
6650 Rewrite
(N
, Make_Range_Test
);
6655 if Esize
(Ptyp
) <= Esize
(Standard_Integer
) then
6656 Btyp
:= Standard_Integer
;
6658 Btyp
:= Universal_Integer
;
6661 Rewrite
(N
, Make_Range_Test
);
6664 -- If a predicate is present, then we do the predicate test, even if
6665 -- within the predicate function (infinite recursion is warned about
6666 -- in Sem_Attr in that case).
6669 Pred_Func
: constant Entity_Id
:= Predicate_Function
(Ptyp
);
6672 if Present
(Pred_Func
) then
6675 Left_Opnd
=> Relocate_Node
(N
),
6676 Right_Opnd
=> Make_Predicate_Call
(Ptyp
, Pref
)));
6680 Analyze_And_Resolve
(N
, Standard_Boolean
);
6681 Validity_Checks_On
:= Save_Validity_Checks_On
;
6688 when Attribute_Valid_Scalars
=> Valid_Scalars
: declare
6692 if Present
(Underlying_Type
(Ptyp
)) then
6693 Ftyp
:= Underlying_Type
(Ptyp
);
6698 -- Replace by True if no scalar parts
6700 if not Scalar_Part_Present
(Ftyp
) then
6701 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6703 -- For scalar types, Valid_Scalars is the same as Valid
6705 elsif Is_Scalar_Type
(Ftyp
) then
6707 Make_Attribute_Reference
(Loc
,
6708 Attribute_Name
=> Name_Valid
,
6711 -- For array types, we construct a function that determines if there
6712 -- are any non-valid scalar subcomponents, and call the function.
6713 -- We only do this for arrays whose component type needs checking
6715 elsif Is_Array_Type
(Ftyp
)
6716 and then Scalar_Part_Present
(Component_Type
(Ftyp
))
6719 Make_Function_Call
(Loc
,
6721 New_Occurrence_Of
(Build_Array_VS_Func
(Ftyp
, N
), Loc
),
6722 Parameter_Associations
=> New_List
(Pref
)));
6724 -- For record types, we construct a function that determines if there
6725 -- are any non-valid scalar subcomponents, and call the function.
6727 elsif Is_Record_Type
(Ftyp
)
6728 and then Nkind
(Type_Definition
(Declaration_Node
(Ftyp
))) =
6732 Make_Function_Call
(Loc
,
6734 New_Occurrence_Of
(Build_Record_VS_Func
(Ftyp
, N
), Loc
),
6735 Parameter_Associations
=> New_List
(Pref
)));
6737 -- Other record types or types with discriminants
6739 elsif Is_Record_Type
(Ftyp
) or else Has_Discriminants
(Ptyp
) then
6741 -- Build expression with list of equality tests
6749 X
:= New_Occurrence_Of
(Standard_True
, Loc
);
6750 C
:= First_Component_Or_Discriminant
(Ptyp
);
6751 while Present
(C
) loop
6752 if not Scalar_Part_Present
(Etype
(C
)) then
6754 elsif Is_Scalar_Type
(Etype
(C
)) then
6757 A
:= Name_Valid_Scalars
;
6764 Make_Attribute_Reference
(Loc
,
6765 Attribute_Name
=> A
,
6767 Make_Selected_Component
(Loc
,
6769 Duplicate_Subexpr
(Pref
, Name_Req
=> True),
6771 New_Occurrence_Of
(C
, Loc
))));
6773 Next_Component_Or_Discriminant
(C
);
6779 -- For all other types, result is True
6782 Rewrite
(N
, New_Occurrence_Of
(Standard_Boolean
, Loc
));
6785 -- Result is always boolean, but never static
6787 Analyze_And_Resolve
(N
, Standard_Boolean
);
6788 Set_Is_Static_Expression
(N
, False);
6795 -- Value attribute is handled in separate unit Exp_Imgv
6797 when Attribute_Value
=>
6798 Exp_Imgv
.Expand_Value_Attribute
(N
);
6804 -- The processing for Value_Size shares the processing for Size
6810 -- The processing for Version shares the processing for Body_Version
6816 -- Wide_Image attribute is handled in separate unit Exp_Imgv
6818 when Attribute_Wide_Image
=>
6819 Exp_Imgv
.Expand_Wide_Image_Attribute
(N
);
6821 ---------------------
6822 -- Wide_Wide_Image --
6823 ---------------------
6825 -- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
6827 when Attribute_Wide_Wide_Image
=>
6828 Exp_Imgv
.Expand_Wide_Wide_Image_Attribute
(N
);
6834 -- We expand typ'Wide_Value (X) into
6837 -- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
6839 -- Wide_String_To_String is a runtime function that converts its wide
6840 -- string argument to String, converting any non-translatable characters
6841 -- into appropriate escape sequences. This preserves the required
6842 -- semantics of Wide_Value in all cases, and results in a very simple
6843 -- implementation approach.
6845 -- Note: for this approach to be fully standard compliant for the cases
6846 -- where typ is Wide_Character and Wide_Wide_Character, the encoding
6847 -- method must cover the entire character range (e.g. UTF-8). But that
6848 -- is a reasonable requirement when dealing with encoded character
6849 -- sequences. Presumably if one of the restrictive encoding mechanisms
6850 -- is in use such as Shift-JIS, then characters that cannot be
6851 -- represented using this encoding will not appear in any case.
6853 when Attribute_Wide_Value
=> Wide_Value
:
6856 Make_Attribute_Reference
(Loc
,
6858 Attribute_Name
=> Name_Value
,
6860 Expressions
=> New_List
(
6861 Make_Function_Call
(Loc
,
6863 New_Occurrence_Of
(RTE
(RE_Wide_String_To_String
), Loc
),
6865 Parameter_Associations
=> New_List
(
6866 Relocate_Node
(First
(Exprs
)),
6867 Make_Integer_Literal
(Loc
,
6868 Intval
=> Int
(Wide_Character_Encoding_Method
)))))));
6870 Analyze_And_Resolve
(N
, Typ
);
6873 ---------------------
6874 -- Wide_Wide_Value --
6875 ---------------------
6877 -- We expand typ'Wide_Value_Value (X) into
6880 -- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
6882 -- Wide_Wide_String_To_String is a runtime function that converts its
6883 -- wide string argument to String, converting any non-translatable
6884 -- characters into appropriate escape sequences. This preserves the
6885 -- required semantics of Wide_Wide_Value in all cases, and results in a
6886 -- very simple implementation approach.
6888 -- It's not quite right where typ = Wide_Wide_Character, because the
6889 -- encoding method may not cover the whole character type ???
6891 when Attribute_Wide_Wide_Value
=> Wide_Wide_Value
:
6894 Make_Attribute_Reference
(Loc
,
6896 Attribute_Name
=> Name_Value
,
6898 Expressions
=> New_List
(
6899 Make_Function_Call
(Loc
,
6902 (RTE
(RE_Wide_Wide_String_To_String
), Loc
),
6904 Parameter_Associations
=> New_List
(
6905 Relocate_Node
(First
(Exprs
)),
6906 Make_Integer_Literal
(Loc
,
6907 Intval
=> Int
(Wide_Character_Encoding_Method
)))))));
6909 Analyze_And_Resolve
(N
, Typ
);
6910 end Wide_Wide_Value
;
6912 ---------------------
6913 -- Wide_Wide_Width --
6914 ---------------------
6916 -- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
6918 when Attribute_Wide_Wide_Width
=>
6919 Exp_Imgv
.Expand_Width_Attribute
(N
, Wide_Wide
);
6925 -- Wide_Width attribute is handled in separate unit Exp_Imgv
6927 when Attribute_Wide_Width
=>
6928 Exp_Imgv
.Expand_Width_Attribute
(N
, Wide
);
6934 -- Width attribute is handled in separate unit Exp_Imgv
6936 when Attribute_Width
=>
6937 Exp_Imgv
.Expand_Width_Attribute
(N
, Normal
);
6943 when Attribute_Write
=> Write
: declare
6944 P_Type
: constant Entity_Id
:= Entity
(Pref
);
6945 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
6953 -- If no underlying type, we have an error that will be diagnosed
6954 -- elsewhere, so here we just completely ignore the expansion.
6960 -- Stream operations can appear in user code even if the restriction
6961 -- No_Streams is active (for example, when instantiating a predefined
6962 -- container). In that case rewrite the attribute as a Raise to
6963 -- prevent any run-time use.
6965 if Restriction_Active
(No_Streams
) then
6967 Make_Raise_Program_Error
(Sloc
(N
),
6968 Reason
=> PE_Stream_Operation_Not_Allowed
));
6969 Set_Etype
(N
, U_Type
);
6973 -- The simple case, if there is a TSS for Write, just call it
6975 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Write
);
6977 if Present
(Pname
) then
6981 -- If there is a Stream_Convert pragma, use it, we rewrite
6983 -- sourcetyp'Output (stream, Item)
6987 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
6989 -- where strmwrite is the given Write function that converts an
6990 -- argument of type sourcetyp or a type acctyp, from which it is
6991 -- derived to type strmtyp. The conversion to acttyp is required
6992 -- for the derived case.
6994 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
6996 if Present
(Prag
) then
6998 Next
(Next
(First
(Pragma_Argument_Associations
(Prag
))));
6999 Wfunc
:= Entity
(Expression
(Arg3
));
7002 Make_Attribute_Reference
(Loc
,
7003 Prefix
=> New_Occurrence_Of
(Etype
(Wfunc
), Loc
),
7004 Attribute_Name
=> Name_Output
,
7005 Expressions
=> New_List
(
7006 Relocate_Node
(First
(Exprs
)),
7007 Make_Function_Call
(Loc
,
7008 Name
=> New_Occurrence_Of
(Wfunc
, Loc
),
7009 Parameter_Associations
=> New_List
(
7010 OK_Convert_To
(Etype
(First_Formal
(Wfunc
)),
7011 Relocate_Node
(Next
(First
(Exprs
)))))))));
7016 -- For elementary types, we call the W_xxx routine directly
7018 elsif Is_Elementary_Type
(U_Type
) then
7019 Rewrite
(N
, Build_Elementary_Write_Call
(N
));
7025 elsif Is_Array_Type
(U_Type
) then
7026 Build_Array_Write_Procedure
(N
, U_Type
, Decl
, Pname
);
7027 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
7029 -- Tagged type case, use the primitive Write function. Note that
7030 -- this will dispatch in the class-wide case which is what we want
7032 elsif Is_Tagged_Type
(U_Type
) then
7033 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Write
);
7035 -- All other record type cases, including protected records.
7036 -- The latter only arise for expander generated code for
7037 -- handling shared passive partition access.
7041 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
7043 -- Ada 2005 (AI-216): Program_Error is raised when executing
7044 -- the default implementation of the Write attribute of an
7045 -- Unchecked_Union type. However, if the 'Write reference is
7046 -- within the generated Output stream procedure, Write outputs
7047 -- the components, and the default values of the discriminant
7048 -- are streamed by the Output procedure itself.
7050 if Is_Unchecked_Union
(Base_Type
(U_Type
))
7051 and not Is_TSS
(Current_Scope
, TSS_Stream_Output
)
7054 Make_Raise_Program_Error
(Loc
,
7055 Reason
=> PE_Unchecked_Union_Restriction
));
7058 if Has_Discriminants
(U_Type
)
7060 (Discriminant_Default_Value
(First_Discriminant
(U_Type
)))
7062 Build_Mutable_Record_Write_Procedure
7063 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
7065 Build_Record_Write_Procedure
7066 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
7069 Insert_Action
(N
, Decl
);
7073 -- If we fall through, Pname is the procedure to be called
7075 Rewrite_Stream_Proc_Call
(Pname
);
7078 -- Component_Size is handled by the back end, unless the component size
7079 -- is known at compile time, which is always true in the packed array
7080 -- case. It is important that the packed array case is handled in the
7081 -- front end (see Eval_Attribute) since the back end would otherwise get
7082 -- confused by the equivalent packed array type.
7084 when Attribute_Component_Size
=>
7087 -- The following attributes are handled by the back end (except that
7088 -- static cases have already been evaluated during semantic processing,
7089 -- but in any case the back end should not count on this).
7091 -- The back end also handles the non-class-wide cases of Size
7093 when Attribute_Bit_Order |
7094 Attribute_Code_Address |
7095 Attribute_Definite |
7097 Attribute_Null_Parameter |
7098 Attribute_Passed_By_Reference |
7099 Attribute_Pool_Address |
7100 Attribute_Scalar_Storage_Order
=>
7103 -- The following attributes are also handled by the back end, but return
7104 -- a universal integer result, so may need a conversion for checking
7105 -- that the result is in range.
7107 when Attribute_Aft |
7108 Attribute_Max_Alignment_For_Allocation
=>
7109 Apply_Universal_Integer_Attribute_Checks
(N
);
7111 -- The following attributes should not appear at this stage, since they
7112 -- have already been handled by the analyzer (and properly rewritten
7113 -- with corresponding values or entities to represent the right values)
7115 when Attribute_Abort_Signal |
7116 Attribute_Address_Size |
7117 Attribute_Atomic_Always_Lock_Free |
7120 Attribute_Compiler_Version |
7121 Attribute_Default_Bit_Order |
7122 Attribute_Default_Scalar_Storage_Order |
7129 Attribute_Fast_Math |
7130 Attribute_First_Valid |
7131 Attribute_Has_Access_Values |
7132 Attribute_Has_Discriminants |
7133 Attribute_Has_Tagged_Values |
7135 Attribute_Last_Valid |
7136 Attribute_Library_Level |
7137 Attribute_Lock_Free |
7138 Attribute_Machine_Emax |
7139 Attribute_Machine_Emin |
7140 Attribute_Machine_Mantissa |
7141 Attribute_Machine_Overflows |
7142 Attribute_Machine_Radix |
7143 Attribute_Machine_Rounds |
7144 Attribute_Maximum_Alignment |
7145 Attribute_Model_Emin |
7146 Attribute_Model_Epsilon |
7147 Attribute_Model_Mantissa |
7148 Attribute_Model_Small |
7150 Attribute_Partition_ID |
7152 Attribute_Restriction_Set |
7153 Attribute_Safe_Emax |
7154 Attribute_Safe_First |
7155 Attribute_Safe_Large |
7156 Attribute_Safe_Last |
7157 Attribute_Safe_Small |
7159 Attribute_Signed_Zeros |
7161 Attribute_Storage_Unit |
7162 Attribute_Stub_Type |
7163 Attribute_System_Allocator_Alignment |
7164 Attribute_Target_Name |
7165 Attribute_Type_Class |
7166 Attribute_Type_Key |
7167 Attribute_Unconstrained_Array |
7168 Attribute_Universal_Literal_String |
7169 Attribute_Wchar_T_Size |
7170 Attribute_Word_Size
=>
7171 raise Program_Error
;
7173 -- The Asm_Input and Asm_Output attributes are not expanded at this
7174 -- stage, but will be eliminated in the expansion of the Asm call, see
7175 -- Exp_Intr for details. So the back end will never see these either.
7177 when Attribute_Asm_Input |
7178 Attribute_Asm_Output
=>
7182 -- Note: as mentioned earlier, individual sections of the above case
7183 -- statement assume there is no code after the case statement, and are
7184 -- legitimately allowed to execute return statements if they have nothing
7185 -- more to do, so DO NOT add code at this point.
7188 when RE_Not_Available
=>
7190 end Expand_N_Attribute_Reference
;
7192 --------------------------------
7193 -- Expand_Pred_Succ_Attribute --
7194 --------------------------------
7196 -- For typ'Pred (exp), we generate the check
7198 -- [constraint_error when exp = typ'Base'First]
7200 -- Similarly, for typ'Succ (exp), we generate the check
7202 -- [constraint_error when exp = typ'Base'Last]
7204 -- These checks are not generated for modular types, since the proper
7205 -- semantics for Succ and Pred on modular types is to wrap, not raise CE.
7206 -- We also suppress these checks if we are the right side of an assignment
7207 -- statement or the expression of an object declaration, where the flag
7208 -- Suppress_Assignment_Checks is set for the assignment/declaration.
7210 procedure Expand_Pred_Succ_Attribute
(N
: Node_Id
) is
7211 Loc
: constant Source_Ptr
:= Sloc
(N
);
7212 P
: constant Node_Id
:= Parent
(N
);
7216 if Attribute_Name
(N
) = Name_Pred
then
7222 if not Nkind_In
(P
, N_Assignment_Statement
, N_Object_Declaration
)
7223 or else not Suppress_Assignment_Checks
(P
)
7226 Make_Raise_Constraint_Error
(Loc
,
7230 Duplicate_Subexpr_Move_Checks
(First
(Expressions
(N
))),
7232 Make_Attribute_Reference
(Loc
,
7234 New_Occurrence_Of
(Base_Type
(Etype
(Prefix
(N
))), Loc
),
7235 Attribute_Name
=> Cnam
)),
7236 Reason
=> CE_Overflow_Check_Failed
));
7238 end Expand_Pred_Succ_Attribute
;
7240 -----------------------------
7241 -- Expand_Update_Attribute --
7242 -----------------------------
7244 procedure Expand_Update_Attribute
(N
: Node_Id
) is
7245 procedure Process_Component_Or_Element_Update
7250 -- Generate the statements necessary to update a single component or an
7251 -- element of the prefix. The code is inserted before the attribute N.
7252 -- Temp denotes the entity of the anonymous object created to reflect
7253 -- the changes in values. Comp is the component/index expression to be
7254 -- updated. Expr is an expression yielding the new value of Comp. Typ
7255 -- is the type of the prefix of attribute Update.
7257 procedure Process_Range_Update
7262 -- Generate the statements necessary to update a slice of the prefix.
7263 -- The code is inserted before the attribute N. Temp denotes the entity
7264 -- of the anonymous object created to reflect the changes in values.
7265 -- Comp is range of the slice to be updated. Expr is an expression
7266 -- yielding the new value of Comp. Typ is the type of the prefix of
7267 -- attribute Update.
7269 -----------------------------------------
7270 -- Process_Component_Or_Element_Update --
7271 -----------------------------------------
7273 procedure Process_Component_Or_Element_Update
7279 Loc
: constant Source_Ptr
:= Sloc
(Comp
);
7284 -- An array element may be modified by the following relations
7285 -- depending on the number of dimensions:
7287 -- 1 => Expr -- one dimensional update
7288 -- (1, ..., N) => Expr -- multi dimensional update
7290 -- The above forms are converted in assignment statements where the
7291 -- left hand side is an indexed component:
7293 -- Temp (1) := Expr; -- one dimensional update
7294 -- Temp (1, ..., N) := Expr; -- multi dimensional update
7296 if Is_Array_Type
(Typ
) then
7298 -- The index expressions of a multi dimensional array update
7299 -- appear as an aggregate.
7301 if Nkind
(Comp
) = N_Aggregate
then
7302 Exprs
:= New_Copy_List_Tree
(Expressions
(Comp
));
7304 Exprs
:= New_List
(Relocate_Node
(Comp
));
7308 Make_Indexed_Component
(Loc
,
7309 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
7310 Expressions
=> Exprs
);
7312 -- A record component update appears in the following form:
7316 -- The above relation is transformed into an assignment statement
7317 -- where the left hand side is a selected component:
7319 -- Temp.Comp := Expr;
7321 else pragma Assert
(Is_Record_Type
(Typ
));
7323 Make_Selected_Component
(Loc
,
7324 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
7325 Selector_Name
=> Relocate_Node
(Comp
));
7329 Make_Assignment_Statement
(Loc
,
7331 Expression
=> Relocate_Node
(Expr
)));
7332 end Process_Component_Or_Element_Update
;
7334 --------------------------
7335 -- Process_Range_Update --
7336 --------------------------
7338 procedure Process_Range_Update
7344 Index_Typ
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
7345 Loc
: constant Source_Ptr
:= Sloc
(Comp
);
7349 -- A range update appears as
7351 -- (Low .. High => Expr)
7353 -- The above construct is transformed into a loop that iterates over
7354 -- the given range and modifies the corresponding array values to the
7357 -- for Index in Low .. High loop
7358 -- Temp (<Index_Typ> (Index)) := Expr;
7361 Index
:= Make_Temporary
(Loc
, 'I');
7364 Make_Loop_Statement
(Loc
,
7366 Make_Iteration_Scheme
(Loc
,
7367 Loop_Parameter_Specification
=>
7368 Make_Loop_Parameter_Specification
(Loc
,
7369 Defining_Identifier
=> Index
,
7370 Discrete_Subtype_Definition
=> Relocate_Node
(Comp
))),
7372 Statements
=> New_List
(
7373 Make_Assignment_Statement
(Loc
,
7375 Make_Indexed_Component
(Loc
,
7376 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
7377 Expressions
=> New_List
(
7378 Convert_To
(Index_Typ
,
7379 New_Occurrence_Of
(Index
, Loc
)))),
7380 Expression
=> Relocate_Node
(Expr
))),
7382 End_Label
=> Empty
));
7383 end Process_Range_Update
;
7387 Aggr
: constant Node_Id
:= First
(Expressions
(N
));
7388 Loc
: constant Source_Ptr
:= Sloc
(N
);
7389 Pref
: constant Node_Id
:= Prefix
(N
);
7390 Typ
: constant Entity_Id
:= Etype
(Pref
);
7393 CW_Temp
: Entity_Id
;
7398 -- Start of processing for Expand_Update_Attribute
7401 -- Create the anonymous object to store the value of the prefix and
7402 -- capture subsequent changes in value.
7404 Temp
:= Make_Temporary
(Loc
, 'T', Pref
);
7406 -- Preserve the tag of the prefix by offering a specific view of the
7407 -- class-wide version of the prefix.
7409 if Is_Tagged_Type
(Typ
) then
7412 -- CW_Temp : Typ'Class := Typ'Class (Pref);
7414 CW_Temp
:= Make_Temporary
(Loc
, 'T');
7415 CW_Typ
:= Class_Wide_Type
(Typ
);
7418 Make_Object_Declaration
(Loc
,
7419 Defining_Identifier
=> CW_Temp
,
7420 Object_Definition
=> New_Occurrence_Of
(CW_Typ
, Loc
),
7422 Convert_To
(CW_Typ
, Relocate_Node
(Pref
))));
7425 -- Temp : Typ renames Typ (CW_Temp);
7428 Make_Object_Renaming_Declaration
(Loc
,
7429 Defining_Identifier
=> Temp
,
7430 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
7432 Convert_To
(Typ
, New_Occurrence_Of
(CW_Temp
, Loc
))));
7438 -- Temp : Typ := Pref;
7441 Make_Object_Declaration
(Loc
,
7442 Defining_Identifier
=> Temp
,
7443 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
7444 Expression
=> Relocate_Node
(Pref
)));
7447 -- Process the update aggregate
7449 Assoc
:= First
(Component_Associations
(Aggr
));
7450 while Present
(Assoc
) loop
7451 Comp
:= First
(Choices
(Assoc
));
7452 Expr
:= Expression
(Assoc
);
7453 while Present
(Comp
) loop
7454 if Nkind
(Comp
) = N_Range
then
7455 Process_Range_Update
(Temp
, Comp
, Expr
, Typ
);
7457 Process_Component_Or_Element_Update
(Temp
, Comp
, Expr
, Typ
);
7466 -- The attribute is replaced by a reference to the anonymous object
7468 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
7470 end Expand_Update_Attribute
;
7476 procedure Find_Fat_Info
7478 Fat_Type
: out Entity_Id
;
7479 Fat_Pkg
: out RE_Id
)
7481 Rtyp
: constant Entity_Id
:= Root_Type
(T
);
7484 -- All we do is use the root type (historically this dealt with
7485 -- VAX-float .. to be cleaned up further later ???)
7489 if Fat_Type
= Standard_Short_Float
then
7490 Fat_Pkg
:= RE_Attr_Short_Float
;
7492 elsif Fat_Type
= Standard_Float
then
7493 Fat_Pkg
:= RE_Attr_Float
;
7495 elsif Fat_Type
= Standard_Long_Float
then
7496 Fat_Pkg
:= RE_Attr_Long_Float
;
7498 elsif Fat_Type
= Standard_Long_Long_Float
then
7499 Fat_Pkg
:= RE_Attr_Long_Long_Float
;
7501 -- Universal real (which is its own root type) is treated as being
7502 -- equivalent to Standard.Long_Long_Float, since it is defined to
7503 -- have the same precision as the longest Float type.
7505 elsif Fat_Type
= Universal_Real
then
7506 Fat_Type
:= Standard_Long_Long_Float
;
7507 Fat_Pkg
:= RE_Attr_Long_Long_Float
;
7510 raise Program_Error
;
7514 ----------------------------
7515 -- Find_Stream_Subprogram --
7516 ----------------------------
7518 function Find_Stream_Subprogram
7520 Nam
: TSS_Name_Type
) return Entity_Id
7522 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
7523 Ent
: constant Entity_Id
:= TSS
(Typ
, Nam
);
7525 function Is_Available
(Entity
: RE_Id
) return Boolean;
7526 pragma Inline
(Is_Available
);
7527 -- Function to check whether the specified run-time call is available
7528 -- in the run time used. In the case of a configurable run time, it
7529 -- is normal that some subprograms are not there.
7531 -- I don't understand this routine at all, why is this not just a
7532 -- call to RTE_Available? And if for some reason we need a different
7533 -- routine with different semantics, why is not in Rtsfind ???
7539 function Is_Available
(Entity
: RE_Id
) return Boolean is
7541 -- Assume that the unit will always be available when using a
7542 -- "normal" (not configurable) run time.
7544 return not Configurable_Run_Time_Mode
or else RTE_Available
(Entity
);
7547 -- Start of processing for Find_Stream_Subprogram
7550 if Present
(Ent
) then
7554 -- Stream attributes for strings are expanded into library calls. The
7555 -- following checks are disabled when the run-time is not available or
7556 -- when compiling predefined types due to bootstrap issues. As a result,
7557 -- the compiler will generate in-place stream routines for string types
7558 -- that appear in GNAT's library, but will generate calls via rtsfind
7559 -- to library routines for user code.
7561 -- Note: In the case of using a configurable run time, it is very likely
7562 -- that stream routines for string types are not present (they require
7563 -- file system support). In this case, the specific stream routines for
7564 -- strings are not used, relying on the regular stream mechanism
7565 -- instead. That is why we include the test Is_Available when dealing
7566 -- with these cases.
7568 if not Is_Predefined_File_Name
(Unit_File_Name
(Current_Sem_Unit
)) then
7569 -- Storage_Array as defined in package System.Storage_Elements
7571 if Is_RTE
(Base_Typ
, RE_Storage_Array
) then
7573 -- Case of No_Stream_Optimizations restriction active
7575 if Restriction_Active
(No_Stream_Optimizations
) then
7576 if Nam
= TSS_Stream_Input
7577 and then Is_Available
(RE_Storage_Array_Input
)
7579 return RTE
(RE_Storage_Array_Input
);
7581 elsif Nam
= TSS_Stream_Output
7582 and then Is_Available
(RE_Storage_Array_Output
)
7584 return RTE
(RE_Storage_Array_Output
);
7586 elsif Nam
= TSS_Stream_Read
7587 and then Is_Available
(RE_Storage_Array_Read
)
7589 return RTE
(RE_Storage_Array_Read
);
7591 elsif Nam
= TSS_Stream_Write
7592 and then Is_Available
(RE_Storage_Array_Write
)
7594 return RTE
(RE_Storage_Array_Write
);
7596 elsif Nam
/= TSS_Stream_Input
and then
7597 Nam
/= TSS_Stream_Output
and then
7598 Nam
/= TSS_Stream_Read
and then
7599 Nam
/= TSS_Stream_Write
7601 raise Program_Error
;
7604 -- Restriction No_Stream_Optimizations is not set, so we can go
7605 -- ahead and optimize using the block IO forms of the routines.
7608 if Nam
= TSS_Stream_Input
7609 and then Is_Available
(RE_Storage_Array_Input_Blk_IO
)
7611 return RTE
(RE_Storage_Array_Input_Blk_IO
);
7613 elsif Nam
= TSS_Stream_Output
7614 and then Is_Available
(RE_Storage_Array_Output_Blk_IO
)
7616 return RTE
(RE_Storage_Array_Output_Blk_IO
);
7618 elsif Nam
= TSS_Stream_Read
7619 and then Is_Available
(RE_Storage_Array_Read_Blk_IO
)
7621 return RTE
(RE_Storage_Array_Read_Blk_IO
);
7623 elsif Nam
= TSS_Stream_Write
7624 and then Is_Available
(RE_Storage_Array_Write_Blk_IO
)
7626 return RTE
(RE_Storage_Array_Write_Blk_IO
);
7628 elsif Nam
/= TSS_Stream_Input
and then
7629 Nam
/= TSS_Stream_Output
and then
7630 Nam
/= TSS_Stream_Read
and then
7631 Nam
/= TSS_Stream_Write
7633 raise Program_Error
;
7637 -- Stream_Element_Array as defined in package Ada.Streams
7639 elsif Is_RTE
(Base_Typ
, RE_Stream_Element_Array
) then
7641 -- Case of No_Stream_Optimizations restriction active
7643 if Restriction_Active
(No_Stream_Optimizations
) then
7644 if Nam
= TSS_Stream_Input
7645 and then Is_Available
(RE_Stream_Element_Array_Input
)
7647 return RTE
(RE_Stream_Element_Array_Input
);
7649 elsif Nam
= TSS_Stream_Output
7650 and then Is_Available
(RE_Stream_Element_Array_Output
)
7652 return RTE
(RE_Stream_Element_Array_Output
);
7654 elsif Nam
= TSS_Stream_Read
7655 and then Is_Available
(RE_Stream_Element_Array_Read
)
7657 return RTE
(RE_Stream_Element_Array_Read
);
7659 elsif Nam
= TSS_Stream_Write
7660 and then Is_Available
(RE_Stream_Element_Array_Write
)
7662 return RTE
(RE_Stream_Element_Array_Write
);
7664 elsif Nam
/= TSS_Stream_Input
and then
7665 Nam
/= TSS_Stream_Output
and then
7666 Nam
/= TSS_Stream_Read
and then
7667 Nam
/= TSS_Stream_Write
7669 raise Program_Error
;
7672 -- Restriction No_Stream_Optimizations is not set, so we can go
7673 -- ahead and optimize using the block IO forms of the routines.
7676 if Nam
= TSS_Stream_Input
7677 and then Is_Available
(RE_Stream_Element_Array_Input_Blk_IO
)
7679 return RTE
(RE_Stream_Element_Array_Input_Blk_IO
);
7681 elsif Nam
= TSS_Stream_Output
7682 and then Is_Available
(RE_Stream_Element_Array_Output_Blk_IO
)
7684 return RTE
(RE_Stream_Element_Array_Output_Blk_IO
);
7686 elsif Nam
= TSS_Stream_Read
7687 and then Is_Available
(RE_Stream_Element_Array_Read_Blk_IO
)
7689 return RTE
(RE_Stream_Element_Array_Read_Blk_IO
);
7691 elsif Nam
= TSS_Stream_Write
7692 and then Is_Available
(RE_Stream_Element_Array_Write_Blk_IO
)
7694 return RTE
(RE_Stream_Element_Array_Write_Blk_IO
);
7696 elsif Nam
/= TSS_Stream_Input
and then
7697 Nam
/= TSS_Stream_Output
and then
7698 Nam
/= TSS_Stream_Read
and then
7699 Nam
/= TSS_Stream_Write
7701 raise Program_Error
;
7705 -- String as defined in package Ada
7707 elsif Base_Typ
= Standard_String
then
7709 -- Case of No_Stream_Optimizations restriction active
7711 if Restriction_Active
(No_Stream_Optimizations
) then
7712 if Nam
= TSS_Stream_Input
7713 and then Is_Available
(RE_String_Input
)
7715 return RTE
(RE_String_Input
);
7717 elsif Nam
= TSS_Stream_Output
7718 and then Is_Available
(RE_String_Output
)
7720 return RTE
(RE_String_Output
);
7722 elsif Nam
= TSS_Stream_Read
7723 and then Is_Available
(RE_String_Read
)
7725 return RTE
(RE_String_Read
);
7727 elsif Nam
= TSS_Stream_Write
7728 and then Is_Available
(RE_String_Write
)
7730 return RTE
(RE_String_Write
);
7732 elsif Nam
/= TSS_Stream_Input
and then
7733 Nam
/= TSS_Stream_Output
and then
7734 Nam
/= TSS_Stream_Read
and then
7735 Nam
/= TSS_Stream_Write
7737 raise Program_Error
;
7740 -- Restriction No_Stream_Optimizations is not set, so we can go
7741 -- ahead and optimize using the block IO forms of the routines.
7744 if Nam
= TSS_Stream_Input
7745 and then Is_Available
(RE_String_Input_Blk_IO
)
7747 return RTE
(RE_String_Input_Blk_IO
);
7749 elsif Nam
= TSS_Stream_Output
7750 and then Is_Available
(RE_String_Output_Blk_IO
)
7752 return RTE
(RE_String_Output_Blk_IO
);
7754 elsif Nam
= TSS_Stream_Read
7755 and then Is_Available
(RE_String_Read_Blk_IO
)
7757 return RTE
(RE_String_Read_Blk_IO
);
7759 elsif Nam
= TSS_Stream_Write
7760 and then Is_Available
(RE_String_Write_Blk_IO
)
7762 return RTE
(RE_String_Write_Blk_IO
);
7764 elsif Nam
/= TSS_Stream_Input
and then
7765 Nam
/= TSS_Stream_Output
and then
7766 Nam
/= TSS_Stream_Read
and then
7767 Nam
/= TSS_Stream_Write
7769 raise Program_Error
;
7773 -- Wide_String as defined in package Ada
7775 elsif Base_Typ
= Standard_Wide_String
then
7777 -- Case of No_Stream_Optimizations restriction active
7779 if Restriction_Active
(No_Stream_Optimizations
) then
7780 if Nam
= TSS_Stream_Input
7781 and then Is_Available
(RE_Wide_String_Input
)
7783 return RTE
(RE_Wide_String_Input
);
7785 elsif Nam
= TSS_Stream_Output
7786 and then Is_Available
(RE_Wide_String_Output
)
7788 return RTE
(RE_Wide_String_Output
);
7790 elsif Nam
= TSS_Stream_Read
7791 and then Is_Available
(RE_Wide_String_Read
)
7793 return RTE
(RE_Wide_String_Read
);
7795 elsif Nam
= TSS_Stream_Write
7796 and then Is_Available
(RE_Wide_String_Write
)
7798 return RTE
(RE_Wide_String_Write
);
7800 elsif Nam
/= TSS_Stream_Input
and then
7801 Nam
/= TSS_Stream_Output
and then
7802 Nam
/= TSS_Stream_Read
and then
7803 Nam
/= TSS_Stream_Write
7805 raise Program_Error
;
7808 -- Restriction No_Stream_Optimizations is not set, so we can go
7809 -- ahead and optimize using the block IO forms of the routines.
7812 if Nam
= TSS_Stream_Input
7813 and then Is_Available
(RE_Wide_String_Input_Blk_IO
)
7815 return RTE
(RE_Wide_String_Input_Blk_IO
);
7817 elsif Nam
= TSS_Stream_Output
7818 and then Is_Available
(RE_Wide_String_Output_Blk_IO
)
7820 return RTE
(RE_Wide_String_Output_Blk_IO
);
7822 elsif Nam
= TSS_Stream_Read
7823 and then Is_Available
(RE_Wide_String_Read_Blk_IO
)
7825 return RTE
(RE_Wide_String_Read_Blk_IO
);
7827 elsif Nam
= TSS_Stream_Write
7828 and then Is_Available
(RE_Wide_String_Write_Blk_IO
)
7830 return RTE
(RE_Wide_String_Write_Blk_IO
);
7832 elsif Nam
/= TSS_Stream_Input
and then
7833 Nam
/= TSS_Stream_Output
and then
7834 Nam
/= TSS_Stream_Read
and then
7835 Nam
/= TSS_Stream_Write
7837 raise Program_Error
;
7841 -- Wide_Wide_String as defined in package Ada
7843 elsif Base_Typ
= Standard_Wide_Wide_String
then
7845 -- Case of No_Stream_Optimizations restriction active
7847 if Restriction_Active
(No_Stream_Optimizations
) then
7848 if Nam
= TSS_Stream_Input
7849 and then Is_Available
(RE_Wide_Wide_String_Input
)
7851 return RTE
(RE_Wide_Wide_String_Input
);
7853 elsif Nam
= TSS_Stream_Output
7854 and then Is_Available
(RE_Wide_Wide_String_Output
)
7856 return RTE
(RE_Wide_Wide_String_Output
);
7858 elsif Nam
= TSS_Stream_Read
7859 and then Is_Available
(RE_Wide_Wide_String_Read
)
7861 return RTE
(RE_Wide_Wide_String_Read
);
7863 elsif Nam
= TSS_Stream_Write
7864 and then Is_Available
(RE_Wide_Wide_String_Write
)
7866 return RTE
(RE_Wide_Wide_String_Write
);
7868 elsif Nam
/= TSS_Stream_Input
and then
7869 Nam
/= TSS_Stream_Output
and then
7870 Nam
/= TSS_Stream_Read
and then
7871 Nam
/= TSS_Stream_Write
7873 raise Program_Error
;
7876 -- Restriction No_Stream_Optimizations is not set, so we can go
7877 -- ahead and optimize using the block IO forms of the routines.
7880 if Nam
= TSS_Stream_Input
7881 and then Is_Available
(RE_Wide_Wide_String_Input_Blk_IO
)
7883 return RTE
(RE_Wide_Wide_String_Input_Blk_IO
);
7885 elsif Nam
= TSS_Stream_Output
7886 and then Is_Available
(RE_Wide_Wide_String_Output_Blk_IO
)
7888 return RTE
(RE_Wide_Wide_String_Output_Blk_IO
);
7890 elsif Nam
= TSS_Stream_Read
7891 and then Is_Available
(RE_Wide_Wide_String_Read_Blk_IO
)
7893 return RTE
(RE_Wide_Wide_String_Read_Blk_IO
);
7895 elsif Nam
= TSS_Stream_Write
7896 and then Is_Available
(RE_Wide_Wide_String_Write_Blk_IO
)
7898 return RTE
(RE_Wide_Wide_String_Write_Blk_IO
);
7900 elsif Nam
/= TSS_Stream_Input
and then
7901 Nam
/= TSS_Stream_Output
and then
7902 Nam
/= TSS_Stream_Read
and then
7903 Nam
/= TSS_Stream_Write
7905 raise Program_Error
;
7911 if Is_Tagged_Type
(Typ
) and then Is_Derived_Type
(Typ
) then
7912 return Find_Prim_Op
(Typ
, Nam
);
7914 return Find_Inherited_TSS
(Typ
, Nam
);
7916 end Find_Stream_Subprogram
;
7922 function Full_Base
(T
: Entity_Id
) return Entity_Id
is
7926 BT
:= Base_Type
(T
);
7928 if Is_Private_Type
(BT
)
7929 and then Present
(Full_View
(BT
))
7931 BT
:= Full_View
(BT
);
7937 -----------------------
7938 -- Get_Index_Subtype --
7939 -----------------------
7941 function Get_Index_Subtype
(N
: Node_Id
) return Node_Id
is
7942 P_Type
: Entity_Id
:= Etype
(Prefix
(N
));
7947 if Is_Access_Type
(P_Type
) then
7948 P_Type
:= Designated_Type
(P_Type
);
7951 if No
(Expressions
(N
)) then
7954 J
:= UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
7957 Indx
:= First_Index
(P_Type
);
7963 return Etype
(Indx
);
7964 end Get_Index_Subtype
;
7966 -------------------------------
7967 -- Get_Stream_Convert_Pragma --
7968 -------------------------------
7970 function Get_Stream_Convert_Pragma
(T
: Entity_Id
) return Node_Id
is
7975 -- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
7976 -- that a stream convert pragma for a tagged type is not inherited from
7977 -- its parent. Probably what is wrong here is that it is basically
7978 -- incorrect to consider a stream convert pragma to be a representation
7979 -- pragma at all ???
7981 N
:= First_Rep_Item
(Implementation_Base_Type
(T
));
7982 while Present
(N
) loop
7983 if Nkind
(N
) = N_Pragma
7984 and then Pragma_Name
(N
) = Name_Stream_Convert
7986 -- For tagged types this pragma is not inherited, so we
7987 -- must verify that it is defined for the given type and
7991 Entity
(Expression
(First
(Pragma_Argument_Associations
(N
))));
7993 if not Is_Tagged_Type
(T
)
7995 or else (Is_Private_Type
(Typ
) and then T
= Full_View
(Typ
))
8005 end Get_Stream_Convert_Pragma
;
8007 ---------------------------------
8008 -- Is_Constrained_Packed_Array --
8009 ---------------------------------
8011 function Is_Constrained_Packed_Array
(Typ
: Entity_Id
) return Boolean is
8012 Arr
: Entity_Id
:= Typ
;
8015 if Is_Access_Type
(Arr
) then
8016 Arr
:= Designated_Type
(Arr
);
8019 return Is_Array_Type
(Arr
)
8020 and then Is_Constrained
(Arr
)
8021 and then Present
(Packed_Array_Impl_Type
(Arr
));
8022 end Is_Constrained_Packed_Array
;
8024 ----------------------------------------
8025 -- Is_Inline_Floating_Point_Attribute --
8026 ----------------------------------------
8028 function Is_Inline_Floating_Point_Attribute
(N
: Node_Id
) return Boolean is
8029 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attribute_Name
(N
));
8031 function Is_GCC_Target
return Boolean;
8032 -- Return True if we are using a GCC target/back-end
8033 -- ??? Note: the implementation is kludgy/fragile
8039 function Is_GCC_Target
return Boolean is
8041 return not CodePeer_Mode
8042 and then not AAMP_On_Target
8043 and then not Generate_C_Code
;
8046 -- Start of processing for Is_Inline_Floating_Point_Attribute
8049 -- Machine and Model can be expanded by the GCC and AAMP back ends only
8051 if Id
= Attribute_Machine
or else Id
= Attribute_Model
then
8052 return Is_GCC_Target
or else AAMP_On_Target
;
8054 -- Remaining cases handled by all back ends are Rounding and Truncation
8055 -- when appearing as the operand of a conversion to some integer type.
8057 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
8058 or else not Is_Integer_Type
(Etype
(Parent
(N
)))
8063 -- Here we are in the integer conversion context
8065 -- Very probably we should also recognize the cases of Machine_Rounding
8066 -- and unbiased rounding in this conversion context, but the back end is
8067 -- not yet prepared to handle these cases ???
8069 return Id
= Attribute_Rounding
or else Id
= Attribute_Truncation
;
8070 end Is_Inline_Floating_Point_Attribute
;