compiler: don't pass iota value to lowering pass
[official-gcc.git] / gcc / rtl.h
blob2370d6081614ba9e2f12d77e56cd7a4a876548cf
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 class predefined_function_abi;
41 /* Value used by some passes to "recognize" noop moves as valid
42 instructions. */
43 #define NOOP_MOVE_INSN_CODE INT_MAX
45 /* Register Transfer Language EXPRESSIONS CODES */
47 #define RTX_CODE enum rtx_code
48 enum rtx_code : unsigned {
50 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
51 #include "rtl.def" /* rtl expressions are documented here */
52 #undef DEF_RTL_EXPR
54 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
55 NUM_RTX_CODE.
56 Assumes default enum value assignment. */
58 /* The cast here, saves many elsewhere. */
59 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
61 /* Similar, but since generator files get more entries... */
62 #ifdef GENERATOR_FILE
63 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64 #endif
66 #define RTX_CODE_BITSIZE 8
68 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
70 enum rtx_class {
71 /* We check bit 0-1 of some rtx class codes in the predicates below. */
73 /* Bit 0 = comparison if 0, arithmetic is 1
74 Bit 1 = 1 if commutative. */
75 RTX_COMPARE, /* 0 */
76 RTX_COMM_COMPARE,
77 RTX_BIN_ARITH,
78 RTX_COMM_ARITH,
80 /* Must follow the four preceding values. */
81 RTX_UNARY, /* 4 */
83 RTX_EXTRA,
84 RTX_MATCH,
85 RTX_INSN,
87 /* Bit 0 = 1 if constant. */
88 RTX_OBJ, /* 8 */
89 RTX_CONST_OBJ,
91 RTX_TERNARY,
92 RTX_BITFIELD_OPS,
93 RTX_AUTOINC
96 #define RTX_OBJ_MASK (~1)
97 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98 #define RTX_COMPARE_MASK (~1)
99 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100 #define RTX_ARITHMETIC_MASK (~1)
101 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102 #define RTX_BINARY_MASK (~3)
103 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104 #define RTX_COMMUTATIVE_MASK (~2)
105 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
108 extern const unsigned char rtx_length[NUM_RTX_CODE];
109 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
111 extern const char * const rtx_name[NUM_RTX_CODE];
112 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
114 extern const char * const rtx_format[NUM_RTX_CODE];
115 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
117 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
120 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121 and NEXT_INSN fields). */
122 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
124 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125 extern const unsigned char rtx_next[NUM_RTX_CODE];
127 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
128 relative to which the offsets are calculated, as explained in rtl.def. */
129 struct addr_diff_vec_flags
131 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132 unsigned min_align: 8;
133 /* Flags: */
134 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
135 unsigned min_after_vec: 1; /* minimum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned max_after_vec: 1; /* maximum address target label is
138 after the ADDR_DIFF_VEC. */
139 unsigned min_after_base: 1; /* minimum address target label is
140 after BASE. */
141 unsigned max_after_base: 1; /* maximum address target label is
142 after BASE. */
143 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
145 unsigned : 2;
146 unsigned scale : 8;
149 /* Structure used to describe the attributes of a MEM. These are hashed
150 so MEMs that the same attributes share a data structure. This means
151 they cannot be modified in place. */
152 class GTY(()) mem_attrs
154 public:
155 mem_attrs ();
157 /* The expression that the MEM accesses, or null if not known.
158 This expression might be larger than the memory reference itself.
159 (In other words, the MEM might access only part of the object.) */
160 tree expr;
162 /* The offset of the memory reference from the start of EXPR.
163 Only valid if OFFSET_KNOWN_P. */
164 poly_int64 offset;
166 /* The size of the memory reference in bytes. Only valid if
167 SIZE_KNOWN_P. */
168 poly_int64 size;
170 /* The alias set of the memory reference. */
171 alias_set_type alias;
173 /* The alignment of the reference in bits. Always a multiple of
174 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
175 than the memory reference itself. */
176 unsigned int align;
178 /* The address space that the memory reference uses. */
179 unsigned char addrspace;
181 /* True if OFFSET is known. */
182 bool offset_known_p;
184 /* True if SIZE is known. */
185 bool size_known_p;
188 /* Structure used to describe the attributes of a REG in similar way as
189 mem_attrs does for MEM above. Note that the OFFSET field is calculated
190 in the same way as for mem_attrs, rather than in the same way as a
191 SUBREG_BYTE. For example, if a big-endian target stores a byte
192 object in the low part of a 4-byte register, the OFFSET field
193 will be -3 rather than 0. */
195 class GTY((for_user)) reg_attrs {
196 public:
197 tree decl; /* decl corresponding to REG. */
198 poly_int64 offset; /* Offset from start of DECL. */
201 /* Common union for an element of an rtx. */
203 union rtunion
205 int rt_int;
206 unsigned int rt_uint;
207 poly_uint16 rt_subreg;
208 const char *rt_str;
209 rtx rt_rtx;
210 rtvec rt_rtvec;
211 machine_mode rt_type;
212 addr_diff_vec_flags rt_addr_diff_vec_flags;
213 struct cselib_val *rt_cselib;
214 tree rt_tree;
215 basic_block rt_bb;
216 mem_attrs *rt_mem;
217 class constant_descriptor_rtx *rt_constant;
218 struct dw_cfi_node *rt_cfi;
221 /* Describes the properties of a REG. */
222 struct GTY(()) reg_info {
223 /* The value of REGNO. */
224 unsigned int regno;
226 /* The value of REG_NREGS. */
227 unsigned int nregs : 8;
228 unsigned int unused : 24;
230 /* The value of REG_ATTRS. */
231 reg_attrs *attrs;
234 /* This structure remembers the position of a SYMBOL_REF within an
235 object_block structure. A SYMBOL_REF only provides this information
236 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
237 struct GTY(()) block_symbol {
238 /* The usual SYMBOL_REF fields. */
239 rtunion GTY ((skip)) fld[2];
241 /* The block that contains this object. */
242 struct object_block *block;
244 /* The offset of this object from the start of its block. It is negative
245 if the symbol has not yet been assigned an offset. */
246 HOST_WIDE_INT offset;
249 /* Describes a group of objects that are to be placed together in such
250 a way that their relative positions are known. */
251 struct GTY((for_user)) object_block {
252 /* The section in which these objects should be placed. */
253 section *sect;
255 /* The alignment of the first object, measured in bits. */
256 unsigned int alignment;
258 /* The total size of the objects, measured in bytes. */
259 HOST_WIDE_INT size;
261 /* The SYMBOL_REFs for each object. The vector is sorted in
262 order of increasing offset and the following conditions will
263 hold for each element X:
265 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
266 !SYMBOL_REF_ANCHOR_P (X)
267 SYMBOL_REF_BLOCK (X) == [address of this structure]
268 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
269 vec<rtx, va_gc> *objects;
271 /* All the anchor SYMBOL_REFs used to address these objects, sorted
272 in order of increasing offset, and then increasing TLS model.
273 The following conditions will hold for each element X in this vector:
275 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
276 SYMBOL_REF_ANCHOR_P (X)
277 SYMBOL_REF_BLOCK (X) == [address of this structure]
278 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
279 vec<rtx, va_gc> *anchors;
282 struct GTY((variable_size)) hwivec_def {
283 HOST_WIDE_INT elem[1];
286 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
287 #define CWI_GET_NUM_ELEM(RTX) \
288 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
289 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
290 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
292 struct GTY((variable_size)) const_poly_int_def {
293 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
296 /* RTL expression ("rtx"). */
298 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
299 field for gengtype to recognize that inheritance is occurring,
300 so that all subclasses are redirected to the traversal hook for the
301 base class.
302 However, all of the fields are in the base class, and special-casing
303 is at work. Hence we use desc and tag of 0, generating a switch
304 statement of the form:
305 switch (0)
307 case 0: // all the work happens here
309 in order to work with the existing special-casing in gengtype. */
311 struct GTY((desc("0"), tag("0"),
312 chain_next ("RTX_NEXT (&%h)"),
313 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
314 /* The kind of value the expression has. */
315 ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE;
317 /* The kind of expression this is. */
318 ENUM_BITFIELD(rtx_code) code: RTX_CODE_BITSIZE;
320 /* 1 in a MEM if we should keep the alias set for this mem unchanged
321 when we access a component.
322 1 in a JUMP_INSN if it is a crossing jump.
323 1 in a CALL_INSN if it is a sibling call.
324 1 in a SET that is for a return.
325 In a CODE_LABEL, part of the two-bit alternate entry field.
326 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.cc.
327 1 in a VALUE is SP_BASED_VALUE_P in cselib.cc.
328 1 in a SUBREG generated by LRA for reload insns.
329 1 in a REG if this is a static chain register.
330 Dumped as "/j" in RTL dumps. */
331 unsigned int jump : 1;
332 /* In a CODE_LABEL, part of the two-bit alternate entry field.
333 1 in a MEM if it cannot trap.
334 1 in a CALL_INSN logically equivalent to
335 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
336 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.cc.
337 Dumped as "/c" in RTL dumps. */
338 unsigned int call : 1;
339 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
340 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
341 1 in a SYMBOL_REF if it addresses something in the per-function
342 constants pool.
343 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
344 1 in a NOTE, or EXPR_LIST for a const call.
345 1 in a JUMP_INSN of an annulling branch.
346 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.cc.
347 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.cc.
348 1 in a clobber temporarily created for LRA.
349 Dumped as "/u" in RTL dumps. */
350 unsigned int unchanging : 1;
351 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
352 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
353 if it has been deleted.
354 1 in a REG expression if corresponds to a variable declared by the user,
355 0 for an internally generated temporary.
356 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
357 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
358 non-local label.
359 In a SYMBOL_REF, this flag is used for machine-specific purposes.
360 In a PREFETCH, this flag indicates that it should be considered a
361 scheduling barrier.
362 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.cc.
363 Dumped as "/v" in RTL dumps. */
364 unsigned int volatil : 1;
365 /* 1 in a REG if the register is used only in exit code a loop.
366 1 in a SUBREG expression if was generated from a variable with a
367 promoted mode.
368 1 in a CODE_LABEL if the label is used for nonlocal gotos
369 and must not be deleted even if its count is zero.
370 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
371 together with the preceding insn. Valid only within sched.
372 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
373 from the target of a branch. Valid from reorg until end of compilation;
374 cleared before used.
376 The name of the field is historical. It used to be used in MEMs
377 to record whether the MEM accessed part of a structure.
378 Dumped as "/s" in RTL dumps. */
379 unsigned int in_struct : 1;
380 /* At the end of RTL generation, 1 if this rtx is used. This is used for
381 copying shared structure. See `unshare_all_rtl'.
382 In a REG, this is not needed for that purpose, and used instead
383 in `leaf_renumber_regs_insn'.
384 1 in a SYMBOL_REF, means that emit_library_call
385 has used it as the function.
386 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.cc.
387 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.cc. */
388 unsigned int used : 1;
389 /* 1 in an INSN or a SET if this rtx is related to the call frame,
390 either changing how we compute the frame address or saving and
391 restoring registers in the prologue and epilogue.
392 1 in a REG or MEM if it is a pointer.
393 1 in a SYMBOL_REF if it addresses something in the per-function
394 constant string pool.
395 1 in a VALUE is VALUE_CHANGED in var-tracking.cc.
396 Dumped as "/f" in RTL dumps. */
397 unsigned frame_related : 1;
398 /* 1 in a REG or PARALLEL that is the current function's return value.
399 1 in a SYMBOL_REF for a weak symbol.
400 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
401 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.cc.
402 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.cc.
403 Dumped as "/i" in RTL dumps. */
404 unsigned return_val : 1;
406 union {
407 /* The final union field is aligned to 64 bits on LP64 hosts,
408 giving a 32-bit gap after the fields above. We optimize the
409 layout for that case and use the gap for extra code-specific
410 information. */
412 /* The ORIGINAL_REGNO of a REG. */
413 unsigned int original_regno;
415 /* The INSN_UID of an RTX_INSN-class code. */
416 int insn_uid;
418 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
419 unsigned int symbol_ref_flags;
421 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
422 enum var_init_status var_location_status;
424 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
425 HOST_WIDE_INTs in the hwivec_def. */
426 unsigned int num_elem;
428 /* Information about a CONST_VECTOR. */
429 struct
431 /* The value of CONST_VECTOR_NPATTERNS. */
432 unsigned int npatterns : 16;
434 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
435 unsigned int nelts_per_pattern : 8;
437 /* For future expansion. */
438 unsigned int unused : 8;
439 } const_vector;
440 } GTY ((skip)) u2;
442 /* The first element of the operands of this rtx.
443 The number of operands and their types are controlled
444 by the `code' field, according to rtl.def. */
445 union u {
446 rtunion fld[1];
447 HOST_WIDE_INT hwint[1];
448 struct reg_info reg;
449 struct block_symbol block_sym;
450 struct real_value rv;
451 struct fixed_value fv;
452 struct hwivec_def hwiv;
453 struct const_poly_int_def cpi;
454 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
457 /* A node for constructing singly-linked lists of rtx. */
459 struct GTY(()) rtx_expr_list : public rtx_def
461 private:
462 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
464 public:
465 /* Get next in list. */
466 rtx_expr_list *next () const;
468 /* Get at the underlying rtx. */
469 rtx element () const;
472 template <>
473 template <>
474 inline bool
475 is_a_helper <rtx_expr_list *>::test (rtx rt)
477 return rt->code == EXPR_LIST;
480 struct GTY(()) rtx_insn_list : public rtx_def
482 private:
483 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
485 This is an instance of:
487 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
489 i.e. a node for constructing singly-linked lists of rtx_insn *, where
490 the list is "external" to the insn (as opposed to the doubly-linked
491 list embedded within rtx_insn itself). */
493 public:
494 /* Get next in list. */
495 rtx_insn_list *next () const;
497 /* Get at the underlying instruction. */
498 rtx_insn *insn () const;
502 template <>
503 template <>
504 inline bool
505 is_a_helper <rtx_insn_list *>::test (rtx rt)
507 return rt->code == INSN_LIST;
510 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
511 typically (but not always) of rtx_insn *, used in the late passes. */
513 struct GTY(()) rtx_sequence : public rtx_def
515 private:
516 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
518 public:
519 /* Get number of elements in sequence. */
520 int len () const;
522 /* Get i-th element of the sequence. */
523 rtx element (int index) const;
525 /* Get i-th element of the sequence, with a checked cast to
526 rtx_insn *. */
527 rtx_insn *insn (int index) const;
530 template <>
531 template <>
532 inline bool
533 is_a_helper <rtx_sequence *>::test (rtx rt)
535 return rt->code == SEQUENCE;
538 template <>
539 template <>
540 inline bool
541 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
543 return rt->code == SEQUENCE;
546 struct GTY(()) rtx_insn : public rtx_def
548 public:
549 /* No extra fields, but adds the invariant:
551 (INSN_P (X)
552 || NOTE_P (X)
553 || JUMP_TABLE_DATA_P (X)
554 || BARRIER_P (X)
555 || LABEL_P (X))
557 i.e. that we must be able to use the following:
558 INSN_UID ()
559 NEXT_INSN ()
560 PREV_INSN ()
561 i.e. we have an rtx that has an INSN_UID field and can be part of
562 a linked list of insns.
565 /* Returns true if this insn has been deleted. */
567 bool deleted () const { return volatil; }
569 /* Mark this insn as deleted. */
571 void set_deleted () { volatil = true; }
573 /* Mark this insn as not deleted. */
575 void set_undeleted () { volatil = false; }
578 /* Subclasses of rtx_insn. */
580 struct GTY(()) rtx_debug_insn : public rtx_insn
582 /* No extra fields, but adds the invariant:
583 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
584 i.e. an annotation for tracking variable assignments.
586 This is an instance of:
587 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
588 from rtl.def. */
591 struct GTY(()) rtx_nonjump_insn : public rtx_insn
593 /* No extra fields, but adds the invariant:
594 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
595 i.e an instruction that cannot jump.
597 This is an instance of:
598 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
599 from rtl.def. */
602 struct GTY(()) rtx_jump_insn : public rtx_insn
604 public:
605 /* No extra fields, but adds the invariant:
606 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
607 i.e. an instruction that can possibly jump.
609 This is an instance of:
610 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
611 from rtl.def. */
613 /* Returns jump target of this instruction. The returned value is not
614 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
615 expression. Also, when the code label is marked "deleted", it is
616 replaced by a NOTE. In some cases the value is NULL_RTX. */
618 inline rtx jump_label () const;
620 /* Returns jump target cast to rtx_code_label *. */
622 inline rtx_code_label *jump_target () const;
624 /* Set jump target. */
626 inline void set_jump_target (rtx_code_label *);
629 struct GTY(()) rtx_call_insn : public rtx_insn
631 /* No extra fields, but adds the invariant:
632 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
633 i.e. an instruction that can possibly call a subroutine
634 but which will not change which instruction comes next
635 in the current function.
637 This is an instance of:
638 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
639 from rtl.def. */
642 struct GTY(()) rtx_jump_table_data : public rtx_insn
644 /* No extra fields, but adds the invariant:
645 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
646 i.e. a data for a jump table, considered an instruction for
647 historical reasons.
649 This is an instance of:
650 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
651 from rtl.def. */
653 /* This can be either:
655 (a) a table of absolute jumps, in which case PATTERN (this) is an
656 ADDR_VEC with arg 0 a vector of labels, or
658 (b) a table of relative jumps (e.g. for -fPIC), in which case
659 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
660 arg 1 the vector of labels.
662 This method gets the underlying vec. */
664 inline rtvec get_labels () const;
665 inline scalar_int_mode get_data_mode () const;
668 struct GTY(()) rtx_barrier : public rtx_insn
670 /* No extra fields, but adds the invariant:
671 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
672 i.e. a marker that indicates that control will not flow through.
674 This is an instance of:
675 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
676 from rtl.def. */
679 struct GTY(()) rtx_code_label : public rtx_insn
681 /* No extra fields, but adds the invariant:
682 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
683 i.e. a label in the assembler.
685 This is an instance of:
686 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
687 from rtl.def. */
690 struct GTY(()) rtx_note : public rtx_insn
692 /* No extra fields, but adds the invariant:
693 NOTE_P(X) aka (GET_CODE (X) == NOTE)
694 i.e. a note about the corresponding source code.
696 This is an instance of:
697 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
698 from rtl.def. */
701 /* The size in bytes of an rtx header (code, mode and flags). */
702 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
704 /* The size in bytes of an rtx with code CODE. */
705 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
707 #define NULL_RTX (rtx) 0
709 /* The "next" and "previous" RTX, relative to this one. */
711 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
712 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
714 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
716 #define RTX_PREV(X) ((INSN_P (X) \
717 || NOTE_P (X) \
718 || JUMP_TABLE_DATA_P (X) \
719 || BARRIER_P (X) \
720 || LABEL_P (X)) \
721 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
722 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
723 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
725 /* Define macros to access the `code' field of the rtx. */
727 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
728 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
730 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
731 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
733 /* RTL vector. These appear inside RTX's when there is a need
734 for a variable number of things. The principle use is inside
735 PARALLEL expressions. */
737 struct GTY(()) rtvec_def {
738 int num_elem; /* number of elements */
739 rtx GTY ((length ("%h.num_elem"))) elem[1];
742 #define NULL_RTVEC (rtvec) 0
744 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
745 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
747 /* Predicate yielding nonzero iff X is an rtx for a register. */
748 #define REG_P(X) (GET_CODE (X) == REG)
750 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
751 #define MEM_P(X) (GET_CODE (X) == MEM)
753 #if TARGET_SUPPORTS_WIDE_INT
755 /* Match CONST_*s that can represent compile-time constant integers. */
756 #define CASE_CONST_SCALAR_INT \
757 case CONST_INT: \
758 case CONST_WIDE_INT
760 /* Match CONST_*s for which pointer equality corresponds to value
761 equality. */
762 #define CASE_CONST_UNIQUE \
763 case CONST_INT: \
764 case CONST_WIDE_INT: \
765 case CONST_POLY_INT: \
766 case CONST_DOUBLE: \
767 case CONST_FIXED
769 /* Match all CONST_* rtxes. */
770 #define CASE_CONST_ANY \
771 case CONST_INT: \
772 case CONST_WIDE_INT: \
773 case CONST_POLY_INT: \
774 case CONST_DOUBLE: \
775 case CONST_FIXED: \
776 case CONST_VECTOR
778 #else
780 /* Match CONST_*s that can represent compile-time constant integers. */
781 #define CASE_CONST_SCALAR_INT \
782 case CONST_INT: \
783 case CONST_DOUBLE
785 /* Match CONST_*s for which pointer equality corresponds to value
786 equality. */
787 #define CASE_CONST_UNIQUE \
788 case CONST_INT: \
789 case CONST_DOUBLE: \
790 case CONST_FIXED
792 /* Match all CONST_* rtxes. */
793 #define CASE_CONST_ANY \
794 case CONST_INT: \
795 case CONST_DOUBLE: \
796 case CONST_FIXED: \
797 case CONST_VECTOR
798 #endif
800 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
801 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
803 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
804 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
806 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
807 integer. */
808 #define CONST_POLY_INT_P(X) \
809 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
811 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
812 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
814 /* Predicate yielding true iff X is an rtx for a double-int
815 or floating point constant. */
816 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
818 /* Predicate yielding true iff X is an rtx for a double-int. */
819 #define CONST_DOUBLE_AS_INT_P(X) \
820 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
822 /* Predicate yielding true iff X is an rtx for a integer const. */
823 #if TARGET_SUPPORTS_WIDE_INT
824 #define CONST_SCALAR_INT_P(X) \
825 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
826 #else
827 #define CONST_SCALAR_INT_P(X) \
828 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
829 #endif
831 /* Predicate yielding true iff X is an rtx for a double-int. */
832 #define CONST_DOUBLE_AS_FLOAT_P(X) \
833 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
835 /* Predicate yielding nonzero iff X is an rtx for a constant vector. */
836 #define CONST_VECTOR_P(X) (GET_CODE (X) == CONST_VECTOR)
838 /* Predicate yielding nonzero iff X is a label insn. */
839 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
841 /* Predicate yielding nonzero iff X is a jump insn. */
842 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
844 /* Predicate yielding nonzero iff X is a call insn. */
845 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
847 /* 1 if RTX is a call_insn for a fake call.
848 CALL_INSN use "used" flag to indicate it's a fake call. */
849 #define FAKE_CALL_P(RTX) \
850 (RTL_FLAG_CHECK1 ("FAKE_CALL_P", (RTX), CALL_INSN)->used)
852 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
853 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
855 /* Predicate yielding nonzero iff X is a debug note/insn. */
856 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
858 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
859 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
861 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
862 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
863 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
864 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
865 /* Nonzero if DEBUG_INSN_P may possibly hold. */
866 #define MAY_HAVE_DEBUG_INSNS \
867 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
869 /* Predicate yielding nonzero iff X is a real insn. */
870 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
872 /* Predicate yielding nonzero iff X is a note insn. */
873 #define NOTE_P(X) (GET_CODE (X) == NOTE)
875 /* Predicate yielding nonzero iff X is a barrier insn. */
876 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
878 /* Predicate yielding nonzero iff X is a data for a jump table. */
879 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
881 /* Predicate yielding nonzero iff RTX is a subreg. */
882 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
884 /* Predicate yielding true iff RTX is a symbol ref. */
885 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
887 template <>
888 template <>
889 inline bool
890 is_a_helper <rtx_insn *>::test (rtx rt)
892 return (INSN_P (rt)
893 || NOTE_P (rt)
894 || JUMP_TABLE_DATA_P (rt)
895 || BARRIER_P (rt)
896 || LABEL_P (rt));
899 template <>
900 template <>
901 inline bool
902 is_a_helper <const rtx_insn *>::test (const_rtx rt)
904 return (INSN_P (rt)
905 || NOTE_P (rt)
906 || JUMP_TABLE_DATA_P (rt)
907 || BARRIER_P (rt)
908 || LABEL_P (rt));
911 template <>
912 template <>
913 inline bool
914 is_a_helper <rtx_debug_insn *>::test (rtx rt)
916 return DEBUG_INSN_P (rt);
919 template <>
920 template <>
921 inline bool
922 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
924 return NONJUMP_INSN_P (rt);
927 template <>
928 template <>
929 inline bool
930 is_a_helper <rtx_jump_insn *>::test (rtx rt)
932 return JUMP_P (rt);
935 template <>
936 template <>
937 inline bool
938 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
940 return JUMP_P (insn);
943 template <>
944 template <>
945 inline bool
946 is_a_helper <rtx_call_insn *>::test (rtx rt)
948 return CALL_P (rt);
951 template <>
952 template <>
953 inline bool
954 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
956 return CALL_P (insn);
959 template <>
960 template <>
961 inline bool
962 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
964 return JUMP_TABLE_DATA_P (rt);
967 template <>
968 template <>
969 inline bool
970 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
972 return JUMP_TABLE_DATA_P (insn);
975 template <>
976 template <>
977 inline bool
978 is_a_helper <rtx_barrier *>::test (rtx rt)
980 return BARRIER_P (rt);
983 template <>
984 template <>
985 inline bool
986 is_a_helper <rtx_code_label *>::test (rtx rt)
988 return LABEL_P (rt);
991 template <>
992 template <>
993 inline bool
994 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
996 return LABEL_P (insn);
999 template <>
1000 template <>
1001 inline bool
1002 is_a_helper <rtx_note *>::test (rtx rt)
1004 return NOTE_P (rt);
1007 template <>
1008 template <>
1009 inline bool
1010 is_a_helper <rtx_note *>::test (rtx_insn *insn)
1012 return NOTE_P (insn);
1015 /* Predicate yielding nonzero iff X is a return or simple_return. */
1016 #define ANY_RETURN_P(X) \
1017 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1019 /* 1 if X is a unary operator. */
1021 #define UNARY_P(X) \
1022 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1024 /* 1 if X is a binary operator. */
1026 #define BINARY_P(X) \
1027 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1029 /* 1 if X is an arithmetic operator. */
1031 #define ARITHMETIC_P(X) \
1032 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1033 == RTX_ARITHMETIC_RESULT)
1035 /* 1 if X is an arithmetic operator. */
1037 #define COMMUTATIVE_ARITH_P(X) \
1038 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1040 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1041 These two are sometimes selected together because it is possible to
1042 swap the two operands. */
1044 #define SWAPPABLE_OPERANDS_P(X) \
1045 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1046 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1047 | (1 << RTX_COMPARE)))
1049 /* 1 if X is a non-commutative operator. */
1051 #define NON_COMMUTATIVE_P(X) \
1052 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1053 == RTX_NON_COMMUTATIVE_RESULT)
1055 /* 1 if X is a commutative operator on integers. */
1057 #define COMMUTATIVE_P(X) \
1058 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1059 == RTX_COMMUTATIVE_RESULT)
1061 /* 1 if X is a relational operator. */
1063 #define COMPARISON_P(X) \
1064 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1066 /* 1 if X is a constant value that is an integer. */
1068 #define CONSTANT_P(X) \
1069 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1071 /* 1 if X is a LABEL_REF. */
1072 #define LABEL_REF_P(X) \
1073 (GET_CODE (X) == LABEL_REF)
1075 /* 1 if X can be used to represent an object. */
1076 #define OBJECT_P(X) \
1077 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1079 /* General accessor macros for accessing the fields of an rtx. */
1081 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1082 /* The bit with a star outside the statement expr and an & inside is
1083 so that N can be evaluated only once. */
1084 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1085 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1086 const enum rtx_code _code = GET_CODE (_rtx); \
1087 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1088 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1089 __FUNCTION__); \
1090 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1091 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1092 __FUNCTION__); \
1093 &_rtx->u.fld[_n]; }))
1095 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1096 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1097 const enum rtx_code _code = GET_CODE (_rtx); \
1098 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1099 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1100 __FUNCTION__); \
1101 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1102 && GET_RTX_FORMAT (_code)[_n] != C2) \
1103 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1104 __FUNCTION__); \
1105 &_rtx->u.fld[_n]; }))
1107 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1108 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1109 if (GET_CODE (_rtx) != (C)) \
1110 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1111 __FUNCTION__); \
1112 &_rtx->u.fld[_n]; }))
1114 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1115 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1116 const enum rtx_code _code = GET_CODE (_rtx); \
1117 if (_code != (C1) && _code != (C2)) \
1118 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1119 __FUNCTION__); \
1120 &_rtx->u.fld[_n]; }))
1122 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1123 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1124 const enum rtx_code _code = GET_CODE (_rtx); \
1125 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1126 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1127 __LINE__, __FUNCTION__); \
1128 &_rtx->u.fld[_n]; }))
1130 #define RTVEC_ELT(RTVEC, I) __extension__ \
1131 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1132 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1133 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1134 __FUNCTION__); \
1135 &_rtvec->elem[_i]; }))
1137 #define XWINT(RTX, N) __extension__ \
1138 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1139 const enum rtx_code _code = GET_CODE (_rtx); \
1140 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1141 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1142 __FUNCTION__); \
1143 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1144 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1145 __FUNCTION__); \
1146 &_rtx->u.hwint[_n]; }))
1148 #define CWI_ELT(RTX, I) __extension__ \
1149 (*({ __typeof (RTX) const _cwi = (RTX); \
1150 int _max = CWI_GET_NUM_ELEM (_cwi); \
1151 const int _i = (I); \
1152 if (_i < 0 || _i >= _max) \
1153 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1154 __FUNCTION__); \
1155 &_cwi->u.hwiv.elem[_i]; }))
1157 #define XCWINT(RTX, N, C) __extension__ \
1158 (*({ __typeof (RTX) const _rtx = (RTX); \
1159 if (GET_CODE (_rtx) != (C)) \
1160 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1161 __FUNCTION__); \
1162 &_rtx->u.hwint[N]; }))
1164 #define XCMWINT(RTX, N, C, M) __extension__ \
1165 (*({ __typeof (RTX) const _rtx = (RTX); \
1166 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1167 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1168 __LINE__, __FUNCTION__); \
1169 &_rtx->u.hwint[N]; }))
1171 #define XCNMPRV(RTX, C, M) __extension__ \
1172 ({ __typeof (RTX) const _rtx = (RTX); \
1173 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1174 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1175 __LINE__, __FUNCTION__); \
1176 &_rtx->u.rv; })
1178 #define XCNMPFV(RTX, C, M) __extension__ \
1179 ({ __typeof (RTX) const _rtx = (RTX); \
1180 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1181 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1182 __LINE__, __FUNCTION__); \
1183 &_rtx->u.fv; })
1185 #define REG_CHECK(RTX) __extension__ \
1186 ({ __typeof (RTX) const _rtx = (RTX); \
1187 if (GET_CODE (_rtx) != REG) \
1188 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1189 __FUNCTION__); \
1190 &_rtx->u.reg; })
1192 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1193 ({ __typeof (RTX) const _symbol = (RTX); \
1194 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1195 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1196 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1197 __FUNCTION__); \
1198 &_symbol->u.block_sym; })
1200 #define HWIVEC_CHECK(RTX,C) __extension__ \
1201 ({ __typeof (RTX) const _symbol = (RTX); \
1202 RTL_CHECKC1 (_symbol, 0, C); \
1203 &_symbol->u.hwiv; })
1205 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1206 const char *)
1207 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1208 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1209 const char *)
1210 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1211 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1212 int, const char *)
1213 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1214 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1215 int, const char *)
1216 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1217 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1218 const char *, int, const char *)
1219 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1220 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1221 enum rtx_code, const char *, int,
1222 const char *)
1223 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1224 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1225 bool, const char *, int, const char *)
1226 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1227 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1228 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1229 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1230 const char *)
1231 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1232 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1233 const char *)
1234 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1236 #else /* not ENABLE_RTL_CHECKING */
1238 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1239 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1240 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1241 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1242 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1243 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1244 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1245 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1246 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1247 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1248 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1249 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1250 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1251 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1252 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1253 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1255 #endif
1257 /* General accessor macros for accessing the flags of an rtx. */
1259 /* Access an individual rtx flag, with no checking of any kind. */
1260 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1262 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1263 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1264 ({ __typeof (RTX) const _rtx = (RTX); \
1265 if (GET_CODE (_rtx) != C1) \
1266 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1267 __FUNCTION__); \
1268 _rtx; })
1270 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1271 ({ __typeof (RTX) const _rtx = (RTX); \
1272 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1273 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1274 __FUNCTION__); \
1275 _rtx; })
1277 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1278 ({ __typeof (RTX) const _rtx = (RTX); \
1279 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1280 && GET_CODE (_rtx) != C3) \
1281 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1282 __FUNCTION__); \
1283 _rtx; })
1285 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1286 ({ __typeof (RTX) const _rtx = (RTX); \
1287 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1288 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1289 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1290 __FUNCTION__); \
1291 _rtx; })
1293 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1294 ({ __typeof (RTX) const _rtx = (RTX); \
1295 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1296 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1297 && GET_CODE (_rtx) != C5) \
1298 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1299 __FUNCTION__); \
1300 _rtx; })
1302 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1303 __extension__ \
1304 ({ __typeof (RTX) const _rtx = (RTX); \
1305 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1306 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1307 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1308 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1309 __FUNCTION__); \
1310 _rtx; })
1312 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1313 __extension__ \
1314 ({ __typeof (RTX) const _rtx = (RTX); \
1315 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1316 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1317 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1318 && GET_CODE (_rtx) != C7) \
1319 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1320 __FUNCTION__); \
1321 _rtx; })
1323 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1324 __extension__ \
1325 ({ __typeof (RTX) const _rtx = (RTX); \
1326 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1327 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1328 __FUNCTION__); \
1329 _rtx; })
1331 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1332 int, const char *)
1333 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1336 #else /* not ENABLE_RTL_FLAG_CHECKING */
1338 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1339 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1340 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1341 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1342 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1343 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1344 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1345 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1346 #endif
1348 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1349 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1350 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1351 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1352 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1353 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1354 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1355 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1356 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1357 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1359 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1360 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1362 /* These are like XINT, etc. except that they expect a '0' field instead
1363 of the normal type code. */
1365 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1366 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1367 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1368 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1369 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1370 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1371 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1372 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1373 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1374 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1375 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1376 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1378 /* Access a '0' field with any type. */
1379 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1381 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1382 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1383 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1384 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1385 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1386 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1387 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1388 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1389 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1390 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1391 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1393 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1394 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1396 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1397 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1400 /* Methods of rtx_expr_list. */
1402 inline rtx_expr_list *rtx_expr_list::next () const
1404 rtx tmp = XEXP (this, 1);
1405 return safe_as_a <rtx_expr_list *> (tmp);
1408 inline rtx rtx_expr_list::element () const
1410 return XEXP (this, 0);
1413 /* Methods of rtx_insn_list. */
1415 inline rtx_insn_list *rtx_insn_list::next () const
1417 rtx tmp = XEXP (this, 1);
1418 return safe_as_a <rtx_insn_list *> (tmp);
1421 inline rtx_insn *rtx_insn_list::insn () const
1423 rtx tmp = XEXP (this, 0);
1424 return safe_as_a <rtx_insn *> (tmp);
1427 /* Methods of rtx_sequence. */
1429 inline int rtx_sequence::len () const
1431 return XVECLEN (this, 0);
1434 inline rtx rtx_sequence::element (int index) const
1436 return XVECEXP (this, 0, index);
1439 inline rtx_insn *rtx_sequence::insn (int index) const
1441 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1444 /* ACCESS MACROS for particular fields of insns. */
1446 /* Holds a unique number for each insn.
1447 These are not necessarily sequentially increasing. */
1448 inline int INSN_UID (const_rtx insn)
1450 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1451 (insn))->u2.insn_uid;
1453 inline int& INSN_UID (rtx insn)
1455 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1456 (insn))->u2.insn_uid;
1459 /* Chain insns together in sequence. */
1461 /* For now these are split in two: an rvalue form:
1462 PREV_INSN/NEXT_INSN
1463 and an lvalue form:
1464 SET_NEXT_INSN/SET_PREV_INSN. */
1466 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1468 rtx prev = XEXP (insn, 0);
1469 return safe_as_a <rtx_insn *> (prev);
1472 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1474 return XEXP (insn, 0);
1477 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1479 rtx next = XEXP (insn, 1);
1480 return safe_as_a <rtx_insn *> (next);
1483 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1485 return XEXP (insn, 1);
1488 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1490 return XBBDEF (insn, 2);
1493 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1495 return XBBDEF (insn, 2);
1498 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1500 BLOCK_FOR_INSN (insn) = bb;
1503 /* The body of an insn. */
1504 inline rtx PATTERN (const_rtx insn)
1506 return XEXP (insn, 3);
1509 inline rtx& PATTERN (rtx insn)
1511 return XEXP (insn, 3);
1514 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1516 return XUINT (insn, 4);
1519 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1521 return XUINT (insn, 4);
1524 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1526 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1529 /* LOCATION of an RTX if relevant. */
1530 #define RTL_LOCATION(X) (INSN_P (X) ? \
1531 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1532 : UNKNOWN_LOCATION)
1534 /* Code number of instruction, from when it was recognized.
1535 -1 means this instruction has not been recognized yet. */
1536 #define INSN_CODE(INSN) XINT (INSN, 5)
1538 inline rtvec rtx_jump_table_data::get_labels () const
1540 rtx pat = PATTERN (this);
1541 if (GET_CODE (pat) == ADDR_VEC)
1542 return XVEC (pat, 0);
1543 else
1544 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1547 /* Return the mode of the data in the table, which is always a scalar
1548 integer. */
1550 inline scalar_int_mode
1551 rtx_jump_table_data::get_data_mode () const
1553 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1556 /* If LABEL is followed by a jump table, return the table, otherwise
1557 return null. */
1559 inline rtx_jump_table_data *
1560 jump_table_for_label (const rtx_code_label *label)
1562 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1565 #define RTX_FRAME_RELATED_P(RTX) \
1566 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1567 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1569 /* 1 if JUMP RTX is a crossing jump. */
1570 #define CROSSING_JUMP_P(RTX) \
1571 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1573 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1574 TREE_READONLY. */
1575 #define RTL_CONST_CALL_P(RTX) \
1576 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1578 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1579 DECL_PURE_P. */
1580 #define RTL_PURE_CALL_P(RTX) \
1581 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1583 /* 1 if RTX is a call to a const or pure function. */
1584 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1585 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1587 /* 1 if RTX is a call to a looping const or pure function. Built from
1588 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1589 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1590 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1592 /* 1 if RTX is a call_insn for a sibling call. */
1593 #define SIBLING_CALL_P(RTX) \
1594 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1596 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1597 #define INSN_ANNULLED_BRANCH_P(RTX) \
1598 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1600 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1601 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1602 executed if the branch is taken. For annulled branches with this bit
1603 clear, the insn should be executed only if the branch is not taken. */
1604 #define INSN_FROM_TARGET_P(RTX) \
1605 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1606 CALL_INSN)->in_struct)
1608 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1609 See the comments for ADDR_DIFF_VEC in rtl.def. */
1610 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1612 /* In a VALUE, the value cselib has assigned to RTX.
1613 This is a "struct cselib_val", see cselib.h. */
1614 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1616 /* Holds a list of notes on what this insn does to various REGs.
1617 It is a chain of EXPR_LIST rtx's, where the second operand is the
1618 chain pointer and the first operand is the REG being described.
1619 The mode field of the EXPR_LIST contains not a real machine mode
1620 but a value from enum reg_note. */
1621 #define REG_NOTES(INSN) XEXP(INSN, 6)
1623 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1624 question. */
1625 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1627 enum reg_note
1629 #define DEF_REG_NOTE(NAME) NAME,
1630 #include "reg-notes.def"
1631 #undef DEF_REG_NOTE
1632 REG_NOTE_MAX
1635 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1636 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1637 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1638 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1640 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1642 extern const char * const reg_note_name[];
1643 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1645 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1646 USE, CLOBBER and SET expressions.
1647 USE expressions list the registers filled with arguments that
1648 are passed to the function.
1649 CLOBBER expressions document the registers explicitly clobbered
1650 by this CALL_INSN.
1651 SET expressions say that the return value of the call (the SET_DEST)
1652 is equivalent to a value available before the call (the SET_SRC).
1653 This kind of SET is used when the return value is predictable in
1654 advance. It is purely an optimisation hint; unlike USEs and CLOBBERs,
1655 it does not affect register liveness.
1657 Pseudo registers cannot be mentioned in this list. */
1658 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1660 /* The label-number of a code-label. The assembler label
1661 is made from `L' and the label-number printed in decimal.
1662 Label numbers are unique in a compilation. */
1663 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1665 /* In a NOTE that is a line number, this is a string for the file name that the
1666 line is in. We use the same field to record block numbers temporarily in
1667 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1668 between ints and pointers if we use a different macro for the block number.)
1671 /* Opaque data. */
1672 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1673 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1674 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1675 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1676 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1677 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1678 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1679 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1680 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1681 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1683 /* In a NOTE that is a line number, this is the line number.
1684 Other kinds of NOTEs are identified by negative numbers here. */
1685 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1687 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1688 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1689 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1691 /* Nonzero if INSN is a debug nonbind marker note,
1692 for which NOTE_MARKER_LOCATION can be used. */
1693 #define NOTE_MARKER_P(INSN) \
1694 (NOTE_P (INSN) && \
1695 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1696 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1698 /* Variable declaration and the location of a variable. */
1699 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1700 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1702 /* Initialization status of the variable in the location. Status
1703 can be unknown, uninitialized or initialized. See enumeration
1704 type below. */
1705 #define PAT_VAR_LOCATION_STATUS(PAT) \
1706 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1707 ->u2.var_location_status)
1709 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1710 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1711 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1712 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1713 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1714 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1715 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1717 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1718 location/value tracking annotation. */
1719 #define DEBUG_BIND_INSN_P(INSN) \
1720 (DEBUG_INSN_P (INSN) \
1721 && (GET_CODE (PATTERN (INSN)) \
1722 == VAR_LOCATION))
1723 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1724 source location marker. */
1725 #define DEBUG_MARKER_INSN_P(INSN) \
1726 (DEBUG_INSN_P (INSN) \
1727 && (GET_CODE (PATTERN (INSN)) \
1728 != VAR_LOCATION))
1729 /* Evaluate to the marker kind. */
1730 #define INSN_DEBUG_MARKER_KIND(INSN) \
1731 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1732 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1733 ? NOTE_INSN_BEGIN_STMT \
1734 : GET_MODE (PATTERN (INSN)) == BLKmode \
1735 ? NOTE_INSN_INLINE_ENTRY \
1736 : (enum insn_note)-1) \
1737 : (enum insn_note)-1)
1738 /* Create patterns for debug markers. These and the above abstract
1739 the representation, so that it's easier to get rid of the abuse of
1740 the mode to hold the marker kind. Other marker types are
1741 envisioned, so a single bit flag won't do; maybe separate RTL codes
1742 wouldn't be a problem. */
1743 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1744 gen_rtx_DEBUG_MARKER (VOIDmode)
1745 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1746 gen_rtx_DEBUG_MARKER (BLKmode)
1748 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1749 #define INSN_VAR_LOCATION(INSN) \
1750 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1751 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1752 #define INSN_VAR_LOCATION_PTR(INSN) \
1753 (&PATTERN (INSN))
1755 /* Accessors for a tree-expanded var location debug insn. */
1756 #define INSN_VAR_LOCATION_DECL(INSN) \
1757 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1758 #define INSN_VAR_LOCATION_LOC(INSN) \
1759 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1760 #define INSN_VAR_LOCATION_STATUS(INSN) \
1761 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1763 /* Expand to the RTL that denotes an unknown variable location in a
1764 DEBUG_INSN. */
1765 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1767 /* Determine whether X is such an unknown location. */
1768 #define VAR_LOC_UNKNOWN_P(X) \
1769 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1771 /* 1 if RTX is emitted after a call, but it should take effect before
1772 the call returns. */
1773 #define NOTE_DURING_CALL_P(RTX) \
1774 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1776 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1777 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1779 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1780 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1782 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1783 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1785 /* Codes that appear in the NOTE_KIND field for kinds of notes
1786 that are not line numbers. These codes are all negative.
1788 Notice that we do not try to use zero here for any of
1789 the special note codes because sometimes the source line
1790 actually can be zero! This happens (for example) when we
1791 are generating code for the per-translation-unit constructor
1792 and destructor routines for some C++ translation unit. */
1794 enum insn_note
1796 #define DEF_INSN_NOTE(NAME) NAME,
1797 #include "insn-notes.def"
1798 #undef DEF_INSN_NOTE
1800 NOTE_INSN_MAX
1803 /* Names for NOTE insn's other than line numbers. */
1805 extern const char * const note_insn_name[NOTE_INSN_MAX];
1806 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1807 (note_insn_name[(NOTE_CODE)])
1809 /* The name of a label, in case it corresponds to an explicit label
1810 in the input source code. */
1811 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1813 /* In jump.cc, each label contains a count of the number
1814 of LABEL_REFs that point at it, so unused labels can be deleted. */
1815 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1817 /* Labels carry a two-bit field composed of the ->jump and ->call
1818 bits. This field indicates whether the label is an alternate
1819 entry point, and if so, what kind. */
1820 enum label_kind
1822 LABEL_NORMAL = 0, /* ordinary label */
1823 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1824 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1825 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1828 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1830 /* Retrieve the kind of LABEL. */
1831 #define LABEL_KIND(LABEL) __extension__ \
1832 ({ __typeof (LABEL) const _label = (LABEL); \
1833 if (! LABEL_P (_label)) \
1834 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1835 __FUNCTION__); \
1836 (enum label_kind) ((_label->jump << 1) | _label->call); })
1838 /* Set the kind of LABEL. */
1839 #define SET_LABEL_KIND(LABEL, KIND) do { \
1840 __typeof (LABEL) const _label = (LABEL); \
1841 const unsigned int _kind = (KIND); \
1842 if (! LABEL_P (_label)) \
1843 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1844 __FUNCTION__); \
1845 _label->jump = ((_kind >> 1) & 1); \
1846 _label->call = (_kind & 1); \
1847 } while (0)
1849 #else
1851 /* Retrieve the kind of LABEL. */
1852 #define LABEL_KIND(LABEL) \
1853 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1855 /* Set the kind of LABEL. */
1856 #define SET_LABEL_KIND(LABEL, KIND) do { \
1857 rtx const _label = (LABEL); \
1858 const unsigned int _kind = (KIND); \
1859 _label->jump = ((_kind >> 1) & 1); \
1860 _label->call = (_kind & 1); \
1861 } while (0)
1863 #endif /* rtl flag checking */
1865 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1867 /* In jump.cc, each JUMP_INSN can point to a label that it can jump to,
1868 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1869 be decremented and possibly the label can be deleted. */
1870 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1872 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1874 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1877 /* Methods of rtx_jump_insn. */
1879 inline rtx rtx_jump_insn::jump_label () const
1881 return JUMP_LABEL (this);
1884 inline rtx_code_label *rtx_jump_insn::jump_target () const
1886 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1889 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1891 JUMP_LABEL (this) = target;
1894 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1895 goes through all the LABEL_REFs that jump to that label. The chain
1896 eventually winds up at the CODE_LABEL: it is circular. */
1897 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1899 /* Get the label that a LABEL_REF references. */
1900 inline rtx_insn *
1901 label_ref_label (const_rtx ref)
1903 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1906 /* Set the label that LABEL_REF ref refers to. */
1908 inline void
1909 set_label_ref_label (rtx ref, rtx_insn *label)
1911 XCEXP (ref, 0, LABEL_REF) = label;
1914 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1915 be used on RHS. Use SET_REGNO to change the value. */
1916 #define REGNO(RTX) (rhs_regno(RTX))
1917 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1919 /* Return the number of consecutive registers in a REG. This is always
1920 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1921 hard registers. */
1922 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1924 /* ORIGINAL_REGNO holds the number the register originally had; for a
1925 pseudo register turned into a hard reg this will hold the old pseudo
1926 register number. */
1927 #define ORIGINAL_REGNO(RTX) \
1928 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1930 /* Force the REGNO macro to only be used on the lhs. */
1931 inline unsigned int
1932 rhs_regno (const_rtx x)
1934 return REG_CHECK (x)->regno;
1937 /* Return the final register in REG X plus one. */
1938 inline unsigned int
1939 END_REGNO (const_rtx x)
1941 return REGNO (x) + REG_NREGS (x);
1944 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1945 bypassing the df machinery. */
1946 inline void
1947 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1949 reg_info *reg = REG_CHECK (x);
1950 reg->regno = regno;
1951 reg->nregs = nregs;
1954 /* 1 if RTX is a reg or parallel that is the current function's return
1955 value. */
1956 #define REG_FUNCTION_VALUE_P(RTX) \
1957 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1959 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1960 #define REG_USERVAR_P(RTX) \
1961 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1963 /* 1 if RTX is a reg that holds a pointer value. */
1964 #define REG_POINTER(RTX) \
1965 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1967 /* 1 if RTX is a mem that holds a pointer value. */
1968 #define MEM_POINTER(RTX) \
1969 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1971 /* 1 if the given register REG corresponds to a hard register. */
1972 #define HARD_REGISTER_P(REG) HARD_REGISTER_NUM_P (REGNO (REG))
1974 /* 1 if the given register number REG_NO corresponds to a hard register. */
1975 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1977 /* 1 if the given register REG corresponds to a virtual register. */
1978 #define VIRTUAL_REGISTER_P(REG) VIRTUAL_REGISTER_NUM_P (REGNO (REG))
1980 /* 1 if the given register number REG_NO corresponds to a virtual register. */
1981 #define VIRTUAL_REGISTER_NUM_P(REG_NO) \
1982 IN_RANGE (REG_NO, FIRST_VIRTUAL_REGISTER, LAST_VIRTUAL_REGISTER)
1984 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1985 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1986 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1988 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1989 elements actually needed to represent the constant.
1990 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1991 significant HOST_WIDE_INT. */
1992 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1993 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1994 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1996 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1997 individual coefficients, in the form of a trailing_wide_ints structure. */
1998 #define CONST_POLY_INT_COEFFS(RTX) \
1999 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
2000 CONST_POLY_INT)->u.cpi.coeffs)
2002 /* For a CONST_DOUBLE:
2003 #if TARGET_SUPPORTS_WIDE_INT == 0
2004 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
2005 low-order word and ..._HIGH the high-order.
2006 #endif
2007 For a float, there is a REAL_VALUE_TYPE structure, and
2008 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
2009 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
2010 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
2011 #define CONST_DOUBLE_REAL_VALUE(r) \
2012 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
2014 #define CONST_FIXED_VALUE(r) \
2015 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
2016 #define CONST_FIXED_VALUE_HIGH(r) \
2017 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
2018 #define CONST_FIXED_VALUE_LOW(r) \
2019 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2021 /* For a CONST_VECTOR, return element #n. */
2022 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2024 /* See rtl.texi for a description of these macros. */
2025 #define CONST_VECTOR_NPATTERNS(RTX) \
2026 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2027 ->u2.const_vector.npatterns)
2029 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2030 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2031 ->u2.const_vector.nelts_per_pattern)
2033 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2034 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2036 #define CONST_VECTOR_STEPPED_P(RTX) \
2037 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2039 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2041 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2043 inline unsigned int
2044 const_vector_encoded_nelts (const_rtx x)
2046 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2049 /* For a CONST_VECTOR, return the number of elements in a vector. */
2050 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2052 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2053 SUBREG_BYTE extracts the byte-number. */
2055 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2056 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2058 /* in rtlanal.cc */
2059 /* Return the right cost to give to an operation
2060 to make the cost of the corresponding register-to-register instruction
2061 N times that of a fast register-to-register instruction. */
2062 #define COSTS_N_INSNS(N) ((N) * 4)
2064 /* Maximum cost of an rtl expression. This value has the special meaning
2065 not to use an rtx with this cost under any circumstances. */
2066 #define MAX_COST INT_MAX
2068 /* Return true if CODE always has VOIDmode. */
2070 inline bool
2071 always_void_p (enum rtx_code code)
2073 return code == SET;
2076 /* A structure to hold all available cost information about an rtl
2077 expression. */
2078 struct full_rtx_costs
2080 int speed;
2081 int size;
2084 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2085 inline void
2086 init_costs_to_max (struct full_rtx_costs *c)
2088 c->speed = MAX_COST;
2089 c->size = MAX_COST;
2092 /* Initialize a full_rtx_costs structure C to zero cost. */
2093 inline void
2094 init_costs_to_zero (struct full_rtx_costs *c)
2096 c->speed = 0;
2097 c->size = 0;
2100 /* Compare two full_rtx_costs structures A and B, returning true
2101 if A < B when optimizing for speed. */
2102 inline bool
2103 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2104 bool speed)
2106 if (speed)
2107 return (a->speed < b->speed
2108 || (a->speed == b->speed && a->size < b->size));
2109 else
2110 return (a->size < b->size
2111 || (a->size == b->size && a->speed < b->speed));
2114 /* Increase both members of the full_rtx_costs structure C by the
2115 cost of N insns. */
2116 inline void
2117 costs_add_n_insns (struct full_rtx_costs *c, int n)
2119 c->speed += COSTS_N_INSNS (n);
2120 c->size += COSTS_N_INSNS (n);
2123 /* Describes the shape of a subreg:
2125 inner_mode == the mode of the SUBREG_REG
2126 offset == the SUBREG_BYTE
2127 outer_mode == the mode of the SUBREG itself. */
2128 class subreg_shape {
2129 public:
2130 subreg_shape (machine_mode, poly_uint16, machine_mode);
2131 bool operator == (const subreg_shape &) const;
2132 bool operator != (const subreg_shape &) const;
2133 unsigned HOST_WIDE_INT unique_id () const;
2135 machine_mode inner_mode;
2136 poly_uint16 offset;
2137 machine_mode outer_mode;
2140 inline
2141 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2142 poly_uint16 offset_in,
2143 machine_mode outer_mode_in)
2144 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2147 inline bool
2148 subreg_shape::operator == (const subreg_shape &other) const
2150 return (inner_mode == other.inner_mode
2151 && known_eq (offset, other.offset)
2152 && outer_mode == other.outer_mode);
2155 inline bool
2156 subreg_shape::operator != (const subreg_shape &other) const
2158 return !operator == (other);
2161 /* Return an integer that uniquely identifies this shape. Structures
2162 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2163 current mode is anywhere near being 65536 bytes in size, so the
2164 id comfortably fits in an int. */
2166 inline unsigned HOST_WIDE_INT
2167 subreg_shape::unique_id () const
2169 { STATIC_ASSERT (MAX_MACHINE_MODE <= (1 << MACHINE_MODE_BITSIZE)); }
2170 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2171 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2172 int res = (int) inner_mode + ((int) outer_mode << 8);
2173 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2174 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2175 return res;
2178 /* Return the shape of a SUBREG rtx. */
2180 inline subreg_shape
2181 shape_of_subreg (const_rtx x)
2183 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2184 SUBREG_BYTE (x), GET_MODE (x));
2187 /* Information about an address. This structure is supposed to be able
2188 to represent all supported target addresses. Please extend it if it
2189 is not yet general enough. */
2190 struct address_info {
2191 /* The mode of the value being addressed, or VOIDmode if this is
2192 a load-address operation with no known address mode. */
2193 machine_mode mode;
2195 /* The address space. */
2196 addr_space_t as;
2198 /* True if this is an RTX_AUTOINC address. */
2199 bool autoinc_p;
2201 /* A pointer to the top-level address. */
2202 rtx *outer;
2204 /* A pointer to the inner address, after all address mutations
2205 have been stripped from the top-level address. It can be one
2206 of the following:
2208 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2210 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2211 points to the step value, depending on whether the step is variable
2212 or constant respectively. SEGMENT is null.
2214 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2215 with null fields evaluating to 0. */
2216 rtx *inner;
2218 /* Components that make up *INNER. Each one may be null or nonnull.
2219 When nonnull, their meanings are as follows:
2221 - *SEGMENT is the "segment" of memory to which the address refers.
2222 This value is entirely target-specific and is only called a "segment"
2223 because that's its most typical use. It contains exactly one UNSPEC,
2224 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2225 reloading.
2227 - *BASE is a variable expression representing a base address.
2228 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2230 - *INDEX is a variable expression representing an index value.
2231 It may be a scaled expression, such as a MULT. It has exactly
2232 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2234 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2235 unmutated RTX_CONST_OBJ. */
2236 rtx *segment;
2237 rtx *base;
2238 rtx *index;
2239 rtx *disp;
2241 rtx *segment_term;
2242 rtx *base_term;
2243 rtx *index_term;
2244 rtx *disp_term;
2246 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2247 of BASE_TERM, otherwise it is null. */
2248 rtx *base_term2;
2250 /* ADDRESS if this structure describes an address operand, MEM if
2251 it describes a MEM address. */
2252 enum rtx_code addr_outer_code;
2254 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2255 enum rtx_code base_outer_code;
2258 /* This is used to bundle an rtx and a mode together so that the pair
2259 can be used with the wi:: routines. If we ever put modes into rtx
2260 integer constants, this should go away and then just pass an rtx in. */
2261 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2263 namespace wi
2265 template <>
2266 struct int_traits <rtx_mode_t>
2268 static const enum precision_type precision_type = VAR_PRECISION;
2269 static const bool host_dependent_precision = false;
2270 /* This ought to be true, except for the special case that BImode
2271 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2272 static const bool is_sign_extended = false;
2273 static const bool needs_write_val_arg = false;
2274 static unsigned int get_precision (const rtx_mode_t &);
2275 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2276 const rtx_mode_t &);
2280 inline unsigned int
2281 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2283 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2286 inline wi::storage_ref
2287 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2288 unsigned int precision,
2289 const rtx_mode_t &x)
2291 gcc_checking_assert (precision == get_precision (x));
2292 switch (GET_CODE (x.first))
2294 case CONST_INT:
2295 if (precision < HOST_BITS_PER_WIDE_INT)
2296 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2297 targets is 1 rather than -1. */
2298 gcc_checking_assert (INTVAL (x.first)
2299 == sext_hwi (INTVAL (x.first), precision)
2300 || (x.second == BImode && INTVAL (x.first) == 1));
2302 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2304 case CONST_WIDE_INT:
2305 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2306 CONST_WIDE_INT_NUNITS (x.first), precision);
2308 #if TARGET_SUPPORTS_WIDE_INT == 0
2309 case CONST_DOUBLE:
2310 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2311 #endif
2313 default:
2314 gcc_unreachable ();
2318 namespace wi
2320 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2321 wide_int min_value (machine_mode, signop);
2322 wide_int max_value (machine_mode, signop);
2325 inline wi::hwi_with_prec
2326 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2328 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2331 /* Produce the smallest number that is represented in MODE. The precision
2332 is taken from MODE and the sign from SGN. */
2333 inline wide_int
2334 wi::min_value (machine_mode mode, signop sgn)
2336 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2339 /* Produce the largest number that is represented in MODE. The precision
2340 is taken from MODE and the sign from SGN. */
2341 inline wide_int
2342 wi::max_value (machine_mode mode, signop sgn)
2344 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2347 namespace wi
2349 typedef poly_int<NUM_POLY_INT_COEFFS,
2350 generic_wide_int <wide_int_ref_storage <false, false> > >
2351 rtx_to_poly_wide_ref;
2352 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2355 /* Return the value of a CONST_POLY_INT in its native precision. */
2357 inline wi::rtx_to_poly_wide_ref
2358 const_poly_int_value (const_rtx x)
2360 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2361 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2362 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2363 return res;
2366 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2367 can then be extracted using wi::to_poly_wide. */
2369 inline bool
2370 poly_int_rtx_p (const_rtx x)
2372 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2375 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2376 MODE is the mode of X. */
2378 inline wi::rtx_to_poly_wide_ref
2379 wi::to_poly_wide (const_rtx x, machine_mode mode)
2381 if (CONST_POLY_INT_P (x))
2382 return const_poly_int_value (x);
2383 return rtx_mode_t (const_cast<rtx> (x), mode);
2386 /* Return the value of X as a poly_int64. */
2388 inline poly_int64
2389 rtx_to_poly_int64 (const_rtx x)
2391 if (CONST_POLY_INT_P (x))
2393 poly_int64 res;
2394 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2395 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2396 return res;
2398 return INTVAL (x);
2401 /* Return true if arbitrary value X is an integer constant that can
2402 be represented as a poly_int64. Store the value in *RES if so,
2403 otherwise leave it unmodified. */
2405 inline bool
2406 poly_int_rtx_p (const_rtx x, poly_int64 *res)
2408 if (CONST_INT_P (x))
2410 *res = INTVAL (x);
2411 return true;
2413 if (CONST_POLY_INT_P (x))
2415 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2416 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2417 return false;
2418 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2419 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2420 return true;
2422 return false;
2425 extern void init_rtlanal (void);
2426 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2427 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2428 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2429 struct full_rtx_costs *);
2430 extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
2431 unsigned int, unsigned int);
2432 extern rtx native_decode_rtx (machine_mode, const vec<target_unit> &,
2433 unsigned int);
2434 extern rtx native_decode_vector_rtx (machine_mode, const vec<target_unit> &,
2435 unsigned int, unsigned int, unsigned int);
2436 extern poly_uint64 subreg_lsb (const_rtx);
2437 extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64);
2438 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2439 poly_uint64);
2440 extern bool read_modify_subreg_p (const_rtx);
2442 /* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
2443 bit offset at which the subreg begins (counting from the least significant
2444 bit of the operand). */
2446 inline poly_uint64
2447 subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
2448 poly_uint64 subreg_byte)
2450 return subreg_size_lsb (GET_MODE_SIZE (outer_mode),
2451 GET_MODE_SIZE (inner_mode), subreg_byte);
2454 /* Return the subreg byte offset for a subreg whose outer mode is
2455 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2456 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2457 the inner value. This is the inverse of subreg_lsb_1 (which converts
2458 byte offsets to bit shifts). */
2460 inline poly_uint64
2461 subreg_offset_from_lsb (machine_mode outer_mode,
2462 machine_mode inner_mode,
2463 poly_uint64 lsb_shift)
2465 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2466 GET_MODE_SIZE (inner_mode), lsb_shift);
2469 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2470 poly_uint64, machine_mode);
2471 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2472 poly_uint64, machine_mode);
2473 extern unsigned int subreg_regno (const_rtx);
2474 extern int simplify_subreg_regno (unsigned int, machine_mode,
2475 poly_uint64, machine_mode);
2476 extern int lowpart_subreg_regno (unsigned int, machine_mode,
2477 machine_mode);
2478 extern unsigned int subreg_nregs (const_rtx);
2479 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2480 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2481 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2482 extern bool constant_pool_constant_p (rtx);
2483 extern bool truncated_to_mode (machine_mode, const_rtx);
2484 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2485 extern void split_double (rtx, rtx *, rtx *);
2486 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2487 extern void decompose_address (struct address_info *, rtx *,
2488 machine_mode, addr_space_t, enum rtx_code);
2489 extern void decompose_lea_address (struct address_info *, rtx *);
2490 extern void decompose_mem_address (struct address_info *, rtx);
2491 extern void update_address (struct address_info *);
2492 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2493 extern enum rtx_code get_index_code (const struct address_info *);
2495 /* 1 if RTX is a subreg containing a reg that is already known to be
2496 sign- or zero-extended from the mode of the subreg to the mode of
2497 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2498 extension.
2500 When used as a LHS, is means that this extension must be done
2501 when assigning to SUBREG_REG. */
2503 #define SUBREG_PROMOTED_VAR_P(RTX) \
2504 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2506 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2507 this gives the necessary extensions:
2508 0 - signed (SPR_SIGNED)
2509 1 - normal unsigned (SPR_UNSIGNED)
2510 2 - value is both sign and unsign extended for mode
2511 (SPR_SIGNED_AND_UNSIGNED).
2512 -1 - pointer unsigned, which most often can be handled like unsigned
2513 extension, except for generating instructions where we need to
2514 emit special code (ptr_extend insns) on some architectures
2515 (SPR_POINTER). */
2517 const int SRP_POINTER = -1;
2518 const int SRP_SIGNED = 0;
2519 const int SRP_UNSIGNED = 1;
2520 const int SRP_SIGNED_AND_UNSIGNED = 2;
2522 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2523 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2524 do { \
2525 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2526 (RTX), SUBREG); \
2527 switch (VAL) \
2529 case SRP_POINTER: \
2530 _rtx->volatil = 0; \
2531 _rtx->unchanging = 0; \
2532 break; \
2533 case SRP_SIGNED: \
2534 _rtx->volatil = 0; \
2535 _rtx->unchanging = 1; \
2536 break; \
2537 case SRP_UNSIGNED: \
2538 _rtx->volatil = 1; \
2539 _rtx->unchanging = 0; \
2540 break; \
2541 case SRP_SIGNED_AND_UNSIGNED: \
2542 _rtx->volatil = 1; \
2543 _rtx->unchanging = 1; \
2544 break; \
2546 } while (0)
2548 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2549 including SRP_SIGNED_AND_UNSIGNED if promoted for
2550 both signed and unsigned. */
2551 #define SUBREG_PROMOTED_GET(RTX) \
2552 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2553 + (RTX)->unchanging - 1)
2555 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2556 #define SUBREG_PROMOTED_SIGN(RTX) \
2557 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2558 : (RTX)->unchanging - 1)
2560 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2561 for SIGNED type. */
2562 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2563 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2565 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2566 for UNSIGNED type. */
2567 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2568 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2570 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2571 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2572 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2573 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2574 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2576 /* True if the REG is the static chain register for some CALL_INSN. */
2577 #define STATIC_CHAIN_REG_P(RTX) \
2578 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2580 /* True if the subreg was generated by LRA for reload insns. Such
2581 subregs are valid only during LRA. */
2582 #define LRA_SUBREG_P(RTX) \
2583 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2585 /* Access various components of an ASM_OPERANDS rtx. */
2587 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2588 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2589 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2590 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2591 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2592 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2593 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2594 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2595 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2596 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2597 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2598 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2599 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2600 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2601 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2602 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2603 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2604 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2606 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2607 #define MEM_READONLY_P(RTX) \
2608 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2610 /* 1 if RTX is a mem and we should keep the alias set for this mem
2611 unchanged when we access a component. Set to 1, or example, when we
2612 are already in a non-addressable component of an aggregate. */
2613 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2614 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2616 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2617 #define MEM_VOLATILE_P(RTX) \
2618 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2619 ASM_INPUT)->volatil)
2621 /* 1 if RTX is a mem that cannot trap. */
2622 #define MEM_NOTRAP_P(RTX) \
2623 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2625 /* The memory attribute block. We provide access macros for each value
2626 in the block and provide defaults if none specified. */
2627 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2629 /* The register attribute block. We provide access macros for each value
2630 in the block and provide defaults if none specified. */
2631 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2633 #ifndef GENERATOR_FILE
2634 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2635 set, and may alias anything. Otherwise, the MEM can only alias
2636 MEMs in a conflicting alias set. This value is set in a
2637 language-dependent manner in the front-end, and should not be
2638 altered in the back-end. These set numbers are tested with
2639 alias_sets_conflict_p. */
2640 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2642 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2643 refer to part of a DECL. It may also be a COMPONENT_REF. */
2644 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2646 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2647 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2649 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2650 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2652 /* For a MEM rtx, the address space. */
2653 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2655 /* For a MEM rtx, true if its MEM_SIZE is known. */
2656 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2658 /* For a MEM rtx, the size in bytes of the MEM. */
2659 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2661 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2662 mode as a default when STRICT_ALIGNMENT, but not if not. */
2663 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2664 #else
2665 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2666 #endif
2668 /* For a REG rtx, the decl it is known to refer to, if it is known to
2669 refer to part of a DECL. */
2670 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2672 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2673 HOST_WIDE_INT. */
2674 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2676 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2677 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2678 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2679 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2680 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2681 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2682 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2683 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2685 /* 1 if RTX is a label_ref for a nonlocal label. */
2686 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2687 REG_LABEL_TARGET note. */
2688 #define LABEL_REF_NONLOCAL_P(RTX) \
2689 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2691 /* 1 if RTX is a code_label that should always be considered to be needed. */
2692 #define LABEL_PRESERVE_P(RTX) \
2693 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2695 /* During sched, 1 if RTX is an insn that must be scheduled together
2696 with the preceding insn. */
2697 #define SCHED_GROUP_P(RTX) \
2698 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2699 JUMP_INSN, CALL_INSN)->in_struct)
2701 /* For a SET rtx, SET_DEST is the place that is set
2702 and SET_SRC is the value it is set to. */
2703 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2704 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2705 #define SET_IS_RETURN_P(RTX) \
2706 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2708 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2709 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2710 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2712 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2713 conditionally executing the code on, COND_EXEC_CODE is the code
2714 to execute if the condition is true. */
2715 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2716 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2718 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2719 constants pool. */
2720 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2721 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2723 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2724 tree constant pool. This information is private to varasm.cc. */
2725 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2726 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2727 (RTX), SYMBOL_REF)->frame_related)
2729 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2730 #define SYMBOL_REF_FLAG(RTX) \
2731 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2733 /* 1 if RTX is a symbol_ref that has been the library function in
2734 emit_library_call. */
2735 #define SYMBOL_REF_USED(RTX) \
2736 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2738 /* 1 if RTX is a symbol_ref for a weak symbol. */
2739 #define SYMBOL_REF_WEAK(RTX) \
2740 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2742 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2743 SYMBOL_REF_CONSTANT. */
2744 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2746 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2747 pool symbol. */
2748 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2749 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2751 /* The tree (decl or constant) associated with the symbol, or null. */
2752 #define SYMBOL_REF_DECL(RTX) \
2753 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2755 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2756 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2757 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2759 /* The rtx constant pool entry for a symbol, or null. */
2760 #define SYMBOL_REF_CONSTANT(RTX) \
2761 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2763 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2764 information derivable from the tree decl associated with this symbol.
2765 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2766 decl. In some cases this is a bug. But beyond that, it's nice to cache
2767 this information to avoid recomputing it. Finally, this allows space for
2768 the target to store more than one bit of information, as with
2769 SYMBOL_REF_FLAG. */
2770 #define SYMBOL_REF_FLAGS(RTX) \
2771 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2772 ->u2.symbol_ref_flags)
2774 /* These flags are common enough to be defined for all targets. They
2775 are computed by the default version of targetm.encode_section_info. */
2777 /* Set if this symbol is a function. */
2778 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2779 #define SYMBOL_REF_FUNCTION_P(RTX) \
2780 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2781 /* Set if targetm.binds_local_p is true. */
2782 #define SYMBOL_FLAG_LOCAL (1 << 1)
2783 #define SYMBOL_REF_LOCAL_P(RTX) \
2784 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2785 /* Set if targetm.in_small_data_p is true. */
2786 #define SYMBOL_FLAG_SMALL (1 << 2)
2787 #define SYMBOL_REF_SMALL_P(RTX) \
2788 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2789 /* The three-bit field at [5:3] is true for TLS variables; use
2790 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2791 #define SYMBOL_FLAG_TLS_SHIFT 3
2792 #define SYMBOL_REF_TLS_MODEL(RTX) \
2793 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2794 /* Set if this symbol is not defined in this translation unit. */
2795 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2796 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2797 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2798 /* Set if this symbol has a block_symbol structure associated with it. */
2799 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2800 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2801 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2802 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2803 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2804 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2805 #define SYMBOL_REF_ANCHOR_P(RTX) \
2806 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2808 /* Subsequent bits are available for the target to use. */
2809 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2810 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2812 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2813 structure to which the symbol belongs, or NULL if it has not been
2814 assigned a block. */
2815 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2817 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2818 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2819 RTX has not yet been assigned to a block, or it has not been given an
2820 offset within that block. */
2821 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2823 /* True if RTX is flagged to be a scheduling barrier. */
2824 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2825 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2827 /* Indicate whether the machine has any sort of auto increment addressing.
2828 If not, we can avoid checking for REG_INC notes. */
2830 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2831 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2832 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2833 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2834 #define AUTO_INC_DEC 1
2835 #else
2836 #define AUTO_INC_DEC 0
2837 #endif
2839 /* Define a macro to look for REG_INC notes,
2840 but save time on machines where they never exist. */
2842 #if AUTO_INC_DEC
2843 #define FIND_REG_INC_NOTE(INSN, REG) \
2844 ((REG) != NULL_RTX && REG_P ((REG)) \
2845 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2846 : find_reg_note ((INSN), REG_INC, (REG)))
2847 #else
2848 #define FIND_REG_INC_NOTE(INSN, REG) 0
2849 #endif
2851 #ifndef HAVE_PRE_INCREMENT
2852 #define HAVE_PRE_INCREMENT 0
2853 #endif
2855 #ifndef HAVE_PRE_DECREMENT
2856 #define HAVE_PRE_DECREMENT 0
2857 #endif
2859 #ifndef HAVE_POST_INCREMENT
2860 #define HAVE_POST_INCREMENT 0
2861 #endif
2863 #ifndef HAVE_POST_DECREMENT
2864 #define HAVE_POST_DECREMENT 0
2865 #endif
2867 #ifndef HAVE_POST_MODIFY_DISP
2868 #define HAVE_POST_MODIFY_DISP 0
2869 #endif
2871 #ifndef HAVE_POST_MODIFY_REG
2872 #define HAVE_POST_MODIFY_REG 0
2873 #endif
2875 #ifndef HAVE_PRE_MODIFY_DISP
2876 #define HAVE_PRE_MODIFY_DISP 0
2877 #endif
2879 #ifndef HAVE_PRE_MODIFY_REG
2880 #define HAVE_PRE_MODIFY_REG 0
2881 #endif
2884 /* Some architectures do not have complete pre/post increment/decrement
2885 instruction sets, or only move some modes efficiently. These macros
2886 allow us to tune autoincrement generation. */
2888 #ifndef USE_LOAD_POST_INCREMENT
2889 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2890 #endif
2892 #ifndef USE_LOAD_POST_DECREMENT
2893 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2894 #endif
2896 #ifndef USE_LOAD_PRE_INCREMENT
2897 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2898 #endif
2900 #ifndef USE_LOAD_PRE_DECREMENT
2901 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2902 #endif
2904 #ifndef USE_STORE_POST_INCREMENT
2905 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2906 #endif
2908 #ifndef USE_STORE_POST_DECREMENT
2909 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2910 #endif
2912 #ifndef USE_STORE_PRE_INCREMENT
2913 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2914 #endif
2916 #ifndef USE_STORE_PRE_DECREMENT
2917 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2918 #endif
2920 /* Nonzero when we are generating CONCATs. */
2921 extern int generating_concat_p;
2923 /* Nonzero when we are expanding trees to RTL. */
2924 extern int currently_expanding_to_rtl;
2926 /* Generally useful functions. */
2928 #ifndef GENERATOR_FILE
2929 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2930 rather than size. */
2932 inline int
2933 set_rtx_cost (rtx x, bool speed_p)
2935 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2938 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2940 inline void
2941 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2943 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2946 /* Return the cost of moving X into a register, relative to the cost
2947 of a register move. SPEED_P is true if optimizing for speed rather
2948 than size. */
2950 inline int
2951 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2953 return rtx_cost (x, mode, SET, 1, speed_p);
2956 /* Like set_src_cost, but return both the speed and size costs in C. */
2958 inline void
2959 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2961 get_full_rtx_cost (x, mode, SET, 1, c);
2963 #endif
2965 /* A convenience macro to validate the arguments of a zero_extract
2966 expression. It determines whether SIZE lies inclusively within
2967 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2968 and the sum lies inclusively within [1, RANGE]. RANGE must be
2969 >= 1, but SIZE and POS may be negative. */
2970 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2971 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2972 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2973 - (unsigned HOST_WIDE_INT)(POS)))
2975 /* In explow.cc */
2976 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2977 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2978 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2979 extern HOST_WIDE_INT get_stack_check_protect (void);
2981 /* In rtl.cc */
2982 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2983 inline rtx
2984 rtx_init (rtx rt, RTX_CODE code)
2986 memset (rt, 0, RTX_HDR_SIZE);
2987 PUT_CODE (rt, code);
2988 return rt;
2990 #define rtx_alloca(code) \
2991 rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
2992 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2993 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2994 #define const_wide_int_alloc(NWORDS) \
2995 rtx_alloc_v (CONST_WIDE_INT, \
2996 (sizeof (struct hwivec_def) \
2997 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2999 extern rtvec rtvec_alloc (size_t);
3000 extern rtvec shallow_copy_rtvec (rtvec);
3001 extern bool shared_const_p (const_rtx);
3002 extern rtx copy_rtx (rtx);
3003 extern enum rtx_code classify_insn (rtx);
3004 extern void dump_rtx_statistics (void);
3006 /* In emit-rtl.cc */
3007 extern rtx copy_rtx_if_shared (rtx);
3009 /* In rtl.cc */
3010 extern unsigned int rtx_size (const_rtx);
3011 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
3013 typedef bool (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3014 rtx *, rtx *);
3015 extern bool rtx_equal_p (const_rtx, const_rtx,
3016 rtx_equal_p_callback_function = NULL);
3018 extern bool rtvec_all_equal_p (const_rtvec);
3019 extern bool rtvec_series_p (rtvec, int);
3021 /* Return true if X is a vector constant with a duplicated element value. */
3023 inline bool
3024 const_vec_duplicate_p (const_rtx x)
3026 return (GET_CODE (x) == CONST_VECTOR
3027 && CONST_VECTOR_NPATTERNS (x) == 1
3028 && CONST_VECTOR_DUPLICATE_P (x));
3031 /* Return true if X is a vector constant with a duplicated element value.
3032 Store the duplicated element in *ELT if so. */
3034 template <typename T>
3035 inline bool
3036 const_vec_duplicate_p (T x, T *elt)
3038 if (const_vec_duplicate_p (x))
3040 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
3041 return true;
3043 return false;
3046 /* Return true if X is a vector with a duplicated element value, either
3047 constant or nonconstant. Store the duplicated element in *ELT if so. */
3049 template <typename T>
3050 inline bool
3051 vec_duplicate_p (T x, T *elt)
3053 if (GET_CODE (x) == VEC_DUPLICATE
3054 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3056 *elt = XEXP (x, 0);
3057 return true;
3059 return const_vec_duplicate_p (x, elt);
3062 /* If X is a vector constant with a duplicated element value, return that
3063 element value, otherwise return X. */
3065 template <typename T>
3066 inline T
3067 unwrap_const_vec_duplicate (T x)
3069 if (const_vec_duplicate_p (x))
3070 x = CONST_VECTOR_ELT (x, 0);
3071 return x;
3074 /* In emit-rtl.cc. */
3075 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3076 extern rtx const_vector_elt (const_rtx, unsigned int);
3077 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3079 /* Return true if X is an integer constant vector that contains a linear
3080 series of the form:
3082 { B, B + S, B + 2 * S, B + 3 * S, ... }
3084 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3086 inline bool
3087 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3089 if (GET_CODE (x) == CONST_VECTOR
3090 && CONST_VECTOR_NPATTERNS (x) == 1
3091 && !CONST_VECTOR_DUPLICATE_P (x))
3092 return const_vec_series_p_1 (x, base_out, step_out);
3093 return false;
3096 /* Return true if X is a vector that contains a linear series of the
3097 form:
3099 { B, B + S, B + 2 * S, B + 3 * S, ... }
3101 where B and S are constant or nonconstant. Store B and S in
3102 *BASE_OUT and *STEP_OUT on sucess. */
3104 inline bool
3105 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3107 if (GET_CODE (x) == VEC_SERIES)
3109 *base_out = XEXP (x, 0);
3110 *step_out = XEXP (x, 1);
3111 return true;
3113 return const_vec_series_p (x, base_out, step_out);
3116 /* Return true if CONST_VECTORs X and Y, which are known to have the same mode,
3117 also have the same encoding. This means that they are equal whenever their
3118 operands are equal. */
3120 inline bool
3121 same_vector_encodings_p (const_rtx x, const_rtx y)
3123 /* Don't be fussy about the encoding of constant-length vectors,
3124 since XVECEXP (X, 0) and XVECEXP (Y, 0) list all the elements anyway. */
3125 if (poly_uint64 (CONST_VECTOR_NUNITS (x)).is_constant ())
3126 return true;
3128 return (CONST_VECTOR_NPATTERNS (x) == CONST_VECTOR_NPATTERNS (y)
3129 && (CONST_VECTOR_NELTS_PER_PATTERN (x)
3130 == CONST_VECTOR_NELTS_PER_PATTERN (y)));
3133 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3135 inline scalar_int_mode
3136 subreg_unpromoted_mode (rtx x)
3138 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3139 return as_a <scalar_int_mode> (GET_MODE (x));
3142 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3144 inline scalar_int_mode
3145 subreg_promoted_mode (rtx x)
3147 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3148 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3151 /* In emit-rtl.cc */
3152 extern rtvec gen_rtvec_v (int, rtx *);
3153 extern rtvec gen_rtvec_v (int, rtx_insn **);
3154 extern rtx gen_reg_rtx (machine_mode);
3155 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3156 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3157 extern rtx gen_reg_rtx_and_attrs (rtx);
3158 extern rtx_code_label *gen_label_rtx (void);
3159 extern rtx gen_lowpart_common (machine_mode, rtx);
3161 /* In cse.cc */
3162 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3164 /* In emit-rtl.cc */
3165 extern rtx gen_highpart (machine_mode, rtx);
3166 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3167 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3169 /* In emit-rtl.cc */
3170 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3171 extern bool subreg_lowpart_p (const_rtx);
3172 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3174 /* Return true if a subreg of mode OUTERMODE would only access part of
3175 an inner register with mode INNERMODE. The other bits of the inner
3176 register would then be "don't care" on read. The behavior for writes
3177 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3178 chunk would be clobbered but other bits would be preserved. */
3180 inline bool
3181 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3183 /* Modes involved in a subreg must be ordered. In particular, we must
3184 always know at compile time whether the subreg is paradoxical. */
3185 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3186 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3187 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3188 return maybe_lt (outer_prec, inner_prec);
3191 /* Likewise return true if X is a subreg that is smaller than the inner
3192 register. Use read_modify_subreg_p to test whether writing to such
3193 a subreg preserves any part of the inner register. */
3195 inline bool
3196 partial_subreg_p (const_rtx x)
3198 if (GET_CODE (x) != SUBREG)
3199 return false;
3200 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3203 /* Return true if a subreg with the given outer and inner modes is
3204 paradoxical. */
3206 inline bool
3207 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3209 /* Modes involved in a subreg must be ordered. In particular, we must
3210 always know at compile time whether the subreg is paradoxical. */
3211 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3212 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3213 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3214 return maybe_gt (outer_prec, inner_prec);
3217 /* Return true if X is a paradoxical subreg, false otherwise. */
3219 inline bool
3220 paradoxical_subreg_p (const_rtx x)
3222 if (GET_CODE (x) != SUBREG)
3223 return false;
3224 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3227 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3229 inline poly_uint64
3230 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3232 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3233 GET_MODE_SIZE (innermode));
3236 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3237 return the smaller of the two modes if they are different sizes,
3238 otherwise return the outer mode. */
3240 inline machine_mode
3241 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3243 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3246 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3247 return the mode that is big enough to hold both the outer and inner
3248 values. Prefer the outer mode in the event of a tie. */
3250 inline machine_mode
3251 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3253 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3256 /* Likewise for subreg X. */
3258 inline machine_mode
3259 wider_subreg_mode (const_rtx x)
3261 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3264 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3266 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3268 inline poly_uint64
3269 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3271 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3272 GET_MODE_SIZE (innermode));
3275 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3276 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3277 poly_uint64);
3278 extern poly_int64 subreg_memory_offset (const_rtx);
3279 extern rtx make_safe_from (rtx, rtx);
3280 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3281 addr_space_t, bool, bool);
3282 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3283 addr_space_t);
3284 #define convert_memory_address(to_mode,x) \
3285 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3286 extern const char *get_insn_name (int);
3287 extern rtx_insn *get_last_insn_anywhere (void);
3288 extern rtx_insn *get_first_nonnote_insn (void);
3289 extern rtx_insn *get_last_nonnote_insn (void);
3290 extern void start_sequence (void);
3291 extern void push_to_sequence (rtx_insn *);
3292 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3293 extern void end_sequence (void);
3294 #if TARGET_SUPPORTS_WIDE_INT == 0
3295 extern double_int rtx_to_double_int (const_rtx);
3296 #endif
3297 extern void cwi_output_hex (FILE *, const_rtx);
3298 #if TARGET_SUPPORTS_WIDE_INT == 0
3299 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3300 machine_mode);
3301 #endif
3302 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3304 /* In varasm.cc */
3305 extern rtx force_const_mem (machine_mode, rtx);
3307 /* In varasm.cc */
3309 struct function;
3310 extern rtx get_pool_constant (const_rtx);
3311 extern rtx get_pool_constant_mark (rtx, bool *);
3312 extern fixed_size_mode get_pool_mode (const_rtx);
3313 extern rtx simplify_subtraction (rtx);
3314 extern void decide_function_section (tree);
3316 /* In emit-rtl.cc */
3317 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3318 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3319 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3320 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3321 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3322 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3323 location_t);
3324 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3325 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3326 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3327 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3328 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3329 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3330 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3331 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3332 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3333 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3334 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3335 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3336 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3337 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3338 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3339 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3340 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3341 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3342 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3343 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3344 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3345 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3346 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3347 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3348 extern rtx_insn *emit_insn (rtx);
3349 extern rtx_insn *emit_debug_insn (rtx);
3350 extern rtx_insn *emit_jump_insn (rtx);
3351 extern rtx_insn *emit_likely_jump_insn (rtx);
3352 extern rtx_insn *emit_unlikely_jump_insn (rtx);
3353 extern rtx_insn *emit_call_insn (rtx);
3354 extern rtx_code_label *emit_label (rtx);
3355 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3356 extern rtx_barrier *emit_barrier (void);
3357 extern rtx_note *emit_note (enum insn_note);
3358 extern rtx_note *emit_note_copy (rtx_note *);
3359 extern rtx_insn *gen_clobber (rtx);
3360 extern rtx_insn *emit_clobber (rtx);
3361 extern rtx_insn *gen_use (rtx);
3362 extern rtx_insn *emit_use (rtx);
3363 extern rtx_insn *make_insn_raw (rtx);
3364 extern void add_function_usage_to (rtx, rtx);
3365 extern rtx_call_insn *last_call_insn (void);
3366 extern rtx_insn *previous_insn (rtx_insn *);
3367 extern rtx_insn *next_insn (rtx_insn *);
3368 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3369 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3370 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3371 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3372 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3373 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3374 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3375 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3376 extern rtx_insn *prev_real_insn (rtx_insn *);
3377 extern rtx_insn *next_real_insn (rtx_insn *);
3378 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3379 extern rtx_insn *next_real_nondebug_insn (rtx);
3380 extern rtx_insn *prev_active_insn (rtx_insn *);
3381 extern rtx_insn *next_active_insn (rtx_insn *);
3382 extern bool active_insn_p (const rtx_insn *);
3384 /* In emit-rtl.cc */
3385 extern int insn_line (const rtx_insn *);
3386 extern const char * insn_file (const rtx_insn *);
3387 extern tree insn_scope (const rtx_insn *);
3388 extern expanded_location insn_location (const rtx_insn *);
3389 extern int insn_discriminator (const rtx_insn *);
3390 extern location_t prologue_location, epilogue_location;
3392 /* In jump.cc */
3393 extern enum rtx_code reverse_condition (enum rtx_code);
3394 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3395 extern enum rtx_code swap_condition (enum rtx_code);
3396 extern enum rtx_code unsigned_condition (enum rtx_code);
3397 extern enum rtx_code signed_condition (enum rtx_code);
3398 extern void mark_jump_label (rtx, rtx_insn *, int);
3400 /* Return true if integer comparison operator CODE interprets its operands
3401 as unsigned. */
3403 inline bool
3404 unsigned_condition_p (enum rtx_code code)
3406 return unsigned_condition (code) == code;
3409 /* In jump.cc */
3410 extern rtx_insn *delete_related_insns (rtx);
3412 /* In recog.cc */
3413 extern rtx *find_constant_term_loc (rtx *);
3415 /* In emit-rtl.cc */
3416 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3418 /* In insn-recog.cc (generated by genrecog). */
3419 extern rtx_insn *split_insns (rtx, rtx_insn *);
3421 /* In simplify-rtx.cc */
3423 /* A class that records the context in which a simplification
3424 is being mode. */
3425 class simplify_context
3427 public:
3428 rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode);
3429 rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx);
3430 rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode,
3431 rtx, rtx, rtx);
3432 rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode,
3433 rtx, rtx);
3434 rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3436 rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3438 rtx simplify_merge_mask (rtx, rtx, int);
3440 rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode);
3441 rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx);
3442 rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode,
3443 rtx, rtx, rtx);
3444 rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx);
3445 rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3446 rtx simplify_gen_vec_select (rtx, unsigned int);
3448 /* Tracks the level of MEM nesting for the value being simplified:
3449 0 means the value is not in a MEM, >0 means it is. This is needed
3450 because the canonical representation of multiplication is different
3451 inside a MEM than outside. */
3452 unsigned int mem_depth = 0;
3454 /* Tracks number of simplify_associative_operation calls performed during
3455 outermost simplify* call. */
3456 unsigned int assoc_count = 0;
3458 /* Limit for the above number, return NULL from
3459 simplify_associative_operation after we reach that assoc_count. */
3460 static const unsigned int max_assoc_count = 64;
3462 private:
3463 rtx simplify_truncation (machine_mode, rtx, machine_mode);
3464 rtx simplify_byte_swapping_operation (rtx_code, machine_mode, rtx, rtx);
3465 rtx simplify_associative_operation (rtx_code, machine_mode, rtx, rtx);
3466 rtx simplify_distributive_operation (rtx_code, machine_mode, rtx, rtx);
3467 rtx simplify_logical_relational_operation (rtx_code, machine_mode, rtx, rtx);
3468 rtx simplify_binary_operation_series (rtx_code, machine_mode, rtx, rtx);
3469 rtx simplify_distribute_over_subregs (rtx_code, machine_mode, rtx, rtx);
3470 rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int);
3471 rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx);
3472 rtx simplify_cond_clz_ctz (rtx, rtx_code, rtx, rtx);
3474 rtx simplify_unary_operation_1 (rtx_code, machine_mode, rtx);
3475 rtx simplify_binary_operation_1 (rtx_code, machine_mode, rtx, rtx, rtx, rtx);
3476 rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode,
3477 rtx, rtx, rtx);
3478 rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode,
3479 rtx, rtx);
3482 inline rtx
3483 simplify_unary_operation (rtx_code code, machine_mode mode, rtx op,
3484 machine_mode op_mode)
3486 return simplify_context ().simplify_unary_operation (code, mode, op,
3487 op_mode);
3490 inline rtx
3491 simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3493 return simplify_context ().simplify_binary_operation (code, mode, op0, op1);
3496 inline rtx
3497 simplify_ternary_operation (rtx_code code, machine_mode mode,
3498 machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
3500 return simplify_context ().simplify_ternary_operation (code, mode, op0_mode,
3501 op0, op1, op2);
3504 inline rtx
3505 simplify_relational_operation (rtx_code code, machine_mode mode,
3506 machine_mode op_mode, rtx op0, rtx op1)
3508 return simplify_context ().simplify_relational_operation (code, mode,
3509 op_mode, op0, op1);
3512 inline rtx
3513 simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3514 poly_uint64 byte)
3516 return simplify_context ().simplify_subreg (outermode, op, innermode, byte);
3519 inline rtx
3520 simplify_gen_unary (rtx_code code, machine_mode mode, rtx op,
3521 machine_mode op_mode)
3523 return simplify_context ().simplify_gen_unary (code, mode, op, op_mode);
3526 inline rtx
3527 simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3529 return simplify_context ().simplify_gen_binary (code, mode, op0, op1);
3532 inline rtx
3533 simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode,
3534 rtx op0, rtx op1, rtx op2)
3536 return simplify_context ().simplify_gen_ternary (code, mode, op0_mode,
3537 op0, op1, op2);
3540 inline rtx
3541 simplify_gen_relational (rtx_code code, machine_mode mode,
3542 machine_mode op_mode, rtx op0, rtx op1)
3544 return simplify_context ().simplify_gen_relational (code, mode, op_mode,
3545 op0, op1);
3548 inline rtx
3549 simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3550 poly_uint64 byte)
3552 return simplify_context ().simplify_gen_subreg (outermode, op,
3553 innermode, byte);
3556 inline rtx
3557 simplify_gen_vec_select (rtx op, unsigned int index)
3559 return simplify_context ().simplify_gen_vec_select (op, index);
3562 inline rtx
3563 lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode)
3565 return simplify_context ().lowpart_subreg (outermode, op, innermode);
3568 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3569 rtx, machine_mode);
3570 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3571 rtx, rtx);
3572 extern rtx simplify_const_relational_operation (enum rtx_code,
3573 machine_mode, rtx, rtx);
3574 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3575 rtx (*fn) (rtx, const_rtx, void *), void *);
3576 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3577 extern rtx simplify_rtx (const_rtx);
3578 extern rtx avoid_constant_pool_reference (rtx);
3579 extern rtx delegitimize_mem_from_attrs (rtx);
3580 extern bool mode_signbit_p (machine_mode, const_rtx);
3581 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3582 extern bool val_signbit_known_set_p (machine_mode,
3583 unsigned HOST_WIDE_INT);
3584 extern bool val_signbit_known_clear_p (machine_mode,
3585 unsigned HOST_WIDE_INT);
3586 extern bool reverse_rotate_by_imm_p (machine_mode, unsigned int, rtx);
3588 /* In reginfo.cc */
3589 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3590 const predefined_function_abi *);
3591 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3593 /* In emit-rtl.cc */
3594 extern rtx set_for_reg_notes (rtx);
3595 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3596 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3597 extern void set_insn_deleted (rtx_insn *);
3599 /* Functions in rtlanal.cc */
3601 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3602 extern rtx simple_regno_set (rtx, unsigned int);
3603 extern bool contains_symbol_ref_p (const_rtx);
3604 extern bool contains_symbolic_reference_p (const_rtx);
3605 extern bool contains_constant_pool_address_p (const_rtx);
3606 extern void add_auto_inc_notes (rtx_insn *, rtx);
3608 /* Handle the cheap and common cases inline for performance. */
3610 inline rtx single_set (const rtx_insn *insn)
3612 if (!INSN_P (insn))
3613 return NULL_RTX;
3615 if (GET_CODE (PATTERN (insn)) == SET)
3616 return PATTERN (insn);
3618 /* Defer to the more expensive case. */
3619 return single_set_2 (insn, PATTERN (insn));
3622 extern scalar_int_mode get_address_mode (rtx mem);
3623 extern bool rtx_addr_can_trap_p (const_rtx);
3624 extern bool nonzero_address_p (const_rtx);
3625 extern bool rtx_unstable_p (const_rtx);
3626 extern bool rtx_varies_p (const_rtx, bool);
3627 extern bool rtx_addr_varies_p (const_rtx, bool);
3628 extern rtx get_call_rtx_from (const rtx_insn *);
3629 extern tree get_call_fndecl (const rtx_insn *);
3630 extern HOST_WIDE_INT get_integer_term (const_rtx);
3631 extern rtx get_related_value (const_rtx);
3632 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3633 extern void split_const (rtx, rtx *, rtx *);
3634 extern rtx strip_offset (rtx, poly_int64 *);
3635 extern poly_int64 get_args_size (const_rtx);
3636 extern bool unsigned_reg_p (rtx);
3637 extern bool reg_mentioned_p (const_rtx, const_rtx);
3638 extern int count_occurrences (const_rtx, const_rtx, int);
3639 extern bool reg_referenced_p (const_rtx, const_rtx);
3640 extern bool reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3641 extern bool reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3642 extern int commutative_operand_precedence (rtx);
3643 extern bool swap_commutative_operands_p (rtx, rtx);
3644 extern bool modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3645 extern bool no_labels_between_p (const rtx_insn *, const rtx_insn *);
3646 extern bool modified_in_p (const_rtx, const_rtx);
3647 extern bool reg_set_p (const_rtx, const_rtx);
3648 extern bool multiple_sets (const_rtx);
3649 extern bool set_noop_p (const_rtx);
3650 extern bool noop_move_p (const rtx_insn *);
3651 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3652 extern bool reg_overlap_mentioned_p (const_rtx, const_rtx);
3653 extern const_rtx set_of (const_rtx, const_rtx);
3654 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3655 extern void record_hard_reg_uses (rtx *, void *);
3656 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3657 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3658 extern void note_pattern_stores (const_rtx,
3659 void (*) (rtx, const_rtx, void *), void *);
3660 extern void note_stores (const rtx_insn *,
3661 void (*) (rtx, const_rtx, void *), void *);
3662 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3663 extern bool dead_or_set_p (const rtx_insn *, const_rtx);
3664 extern bool dead_or_set_regno_p (const rtx_insn *, unsigned int);
3665 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3666 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3667 extern rtx find_reg_equal_equiv_note (const_rtx);
3668 extern rtx find_constant_src (const rtx_insn *);
3669 extern bool find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3670 extern bool find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3671 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3672 extern void add_reg_note (rtx, enum reg_note, rtx);
3673 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3674 extern void add_args_size_note (rtx_insn *, poly_int64);
3675 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3676 extern rtx duplicate_reg_note (rtx);
3677 extern void remove_note (rtx_insn *, const_rtx);
3678 extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false);
3679 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3680 extern bool side_effects_p (const_rtx);
3681 extern bool volatile_refs_p (const_rtx);
3682 extern bool volatile_insn_p (const_rtx);
3683 extern bool may_trap_p_1 (const_rtx, unsigned);
3684 extern bool may_trap_p (const_rtx);
3685 extern bool may_trap_or_fault_p (const_rtx);
3686 extern bool can_throw_internal (const_rtx);
3687 extern bool can_throw_external (const_rtx);
3688 extern bool insn_could_throw_p (const_rtx);
3689 extern bool insn_nothrow_p (const_rtx);
3690 extern bool can_nonlocal_goto (const rtx_insn *);
3691 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3692 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3693 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3694 extern void replace_label (rtx *, rtx, rtx, bool);
3695 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3696 extern bool rtx_referenced_p (const_rtx, const_rtx);
3697 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3698 extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3699 extern bool computed_jump_p (const rtx_insn *);
3700 extern bool tls_referenced_p (const_rtx);
3701 extern bool contains_mem_rtx_p (rtx x);
3702 extern bool register_asm_p (const_rtx);
3704 /* Overload for refers_to_regno_p for checking a single register. */
3705 inline bool
3706 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3708 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3711 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3712 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3713 NULL. The callback is passed the same opaque ARG passed to
3714 for_each_inc_dec. Return zero to continue looking for other
3715 autoinc operations or any other value to interrupt the traversal and
3716 return that value to the caller of for_each_inc_dec. */
3717 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3718 rtx srcoff, void *arg);
3719 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3721 extern rtx regno_use_in (unsigned int, rtx);
3722 extern bool auto_inc_p (const_rtx);
3723 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3724 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3725 extern bool loc_mentioned_in_p (rtx *, const_rtx);
3726 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3727 extern bool keep_with_call_p (const rtx_insn *);
3728 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3729 extern int pattern_cost (rtx, bool);
3730 extern int insn_cost (rtx_insn *, bool);
3731 extern unsigned seq_cost (const rtx_insn *, bool);
3733 /* Given an insn and condition, return a canonical description of
3734 the test being made. */
3735 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3736 int, int);
3738 /* Given a JUMP_INSN, return a canonical description of the test
3739 being made. */
3740 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3742 /* Information about a subreg of a hard register. */
3743 struct subreg_info
3745 /* Offset of first hard register involved in the subreg. */
3746 int offset;
3747 /* Number of hard registers involved in the subreg. In the case of
3748 a paradoxical subreg, this is the number of registers that would
3749 be modified by writing to the subreg; some of them may be don't-care
3750 when reading from the subreg. */
3751 int nregs;
3752 /* Whether this subreg can be represented as a hard reg with the new
3753 mode (by adding OFFSET to the original hard register). */
3754 bool representable_p;
3757 extern void subreg_get_info (unsigned int, machine_mode,
3758 poly_uint64, machine_mode,
3759 struct subreg_info *);
3761 /* lists.cc */
3763 extern void free_EXPR_LIST_list (rtx_expr_list **);
3764 extern void free_INSN_LIST_list (rtx_insn_list **);
3765 extern void free_EXPR_LIST_node (rtx);
3766 extern void free_INSN_LIST_node (rtx);
3767 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3768 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3769 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3770 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3771 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3772 extern rtx remove_list_elem (rtx, rtx *);
3773 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3774 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3777 /* reginfo.cc */
3779 /* Resize reg info. */
3780 extern bool resize_reg_info (void);
3781 /* Free up register info memory. */
3782 extern void free_reg_info (void);
3783 extern void init_subregs_of_mode (void);
3784 extern void finish_subregs_of_mode (void);
3785 extern void reginfo_cc_finalize (void);
3787 /* recog.cc */
3788 extern rtx extract_asm_operands (rtx);
3789 extern int asm_noperands (const_rtx);
3790 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3791 machine_mode *, location_t *);
3792 extern void get_referenced_operands (const char *, bool *, unsigned int);
3794 extern enum reg_class reg_preferred_class (int);
3795 extern enum reg_class reg_alternate_class (int);
3796 extern enum reg_class reg_allocno_class (int);
3797 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3798 enum reg_class);
3800 extern void split_all_insns (void);
3801 extern void split_all_insns_noflow (void);
3803 #define MAX_SAVED_CONST_INT 64
3804 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3806 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3807 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3808 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3809 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3810 extern GTY(()) rtx const_true_rtx;
3812 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3814 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3815 same as VOIDmode. */
3817 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3819 /* Likewise, for the constants 1 and 2 and -1. */
3821 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3822 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3823 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3825 extern GTY(()) rtx pc_rtx;
3826 extern GTY(()) rtx ret_rtx;
3827 extern GTY(()) rtx simple_return_rtx;
3828 extern GTY(()) rtx_insn *invalid_insn_rtx;
3830 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3831 is used to represent the frame pointer. This is because the
3832 hard frame pointer and the automatic variables are separated by an amount
3833 that cannot be determined until after register allocation. We can assume
3834 that in this case ELIMINABLE_REGS will be defined, one action of which
3835 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3836 #ifndef HARD_FRAME_POINTER_REGNUM
3837 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3838 #endif
3840 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3841 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3842 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3843 #endif
3845 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3846 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3847 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3848 #endif
3850 /* Index labels for global_rtl. */
3851 enum global_rtl_index
3853 GR_STACK_POINTER,
3854 GR_FRAME_POINTER,
3855 /* For register elimination to work properly these hard_frame_pointer_rtx,
3856 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3857 the same register. */
3858 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3859 GR_ARG_POINTER = GR_FRAME_POINTER,
3860 #endif
3861 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3862 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3863 #else
3864 GR_HARD_FRAME_POINTER,
3865 #endif
3866 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3867 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3868 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3869 #else
3870 GR_ARG_POINTER,
3871 #endif
3872 #endif
3873 GR_VIRTUAL_INCOMING_ARGS,
3874 GR_VIRTUAL_STACK_ARGS,
3875 GR_VIRTUAL_STACK_DYNAMIC,
3876 GR_VIRTUAL_OUTGOING_ARGS,
3877 GR_VIRTUAL_CFA,
3878 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3880 GR_MAX
3883 /* Target-dependent globals. */
3884 struct GTY(()) target_rtl {
3885 /* All references to the hard registers in global_rtl_index go through
3886 these unique rtl objects. On machines where the frame-pointer and
3887 arg-pointer are the same register, they use the same unique object.
3889 After register allocation, other rtl objects which used to be pseudo-regs
3890 may be clobbered to refer to the frame-pointer register.
3891 But references that were originally to the frame-pointer can be
3892 distinguished from the others because they contain frame_pointer_rtx.
3894 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3895 tricky: until register elimination has taken place hard_frame_pointer_rtx
3896 should be used if it is being set, and frame_pointer_rtx otherwise. After
3897 register elimination hard_frame_pointer_rtx should always be used.
3898 On machines where the two registers are same (most) then these are the
3899 same. */
3900 rtx x_global_rtl[GR_MAX];
3902 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3903 rtx x_pic_offset_table_rtx;
3905 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3906 This is used to implement __builtin_return_address for some machines;
3907 see for instance the MIPS port. */
3908 rtx x_return_address_pointer_rtx;
3910 /* Commonly used RTL for hard registers. These objects are not
3911 necessarily unique, so we allocate them separately from global_rtl.
3912 They are initialized once per compilation unit, then copied into
3913 regno_reg_rtx at the beginning of each function. */
3914 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3916 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3917 rtx x_top_of_stack[MAX_MACHINE_MODE];
3919 /* Static hunks of RTL used by the aliasing code; these are treated
3920 as persistent to avoid unnecessary RTL allocations. */
3921 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3923 /* The default memory attributes for each mode. */
3924 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3926 /* Track if RTL has been initialized. */
3927 bool target_specific_initialized;
3930 extern GTY(()) struct target_rtl default_target_rtl;
3931 #if SWITCHABLE_TARGET
3932 extern struct target_rtl *this_target_rtl;
3933 #else
3934 #define this_target_rtl (&default_target_rtl)
3935 #endif
3937 #define global_rtl \
3938 (this_target_rtl->x_global_rtl)
3939 #define pic_offset_table_rtx \
3940 (this_target_rtl->x_pic_offset_table_rtx)
3941 #define return_address_pointer_rtx \
3942 (this_target_rtl->x_return_address_pointer_rtx)
3943 #define top_of_stack \
3944 (this_target_rtl->x_top_of_stack)
3945 #define mode_mem_attrs \
3946 (this_target_rtl->x_mode_mem_attrs)
3948 /* All references to certain hard regs, except those created
3949 by allocating pseudo regs into them (when that's possible),
3950 go through these unique rtx objects. */
3951 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3952 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3953 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3954 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3956 #ifndef GENERATOR_FILE
3957 /* Return the attributes of a MEM rtx. */
3958 inline const class mem_attrs *
3959 get_mem_attrs (const_rtx x)
3961 class mem_attrs *attrs;
3963 attrs = MEM_ATTRS (x);
3964 if (!attrs)
3965 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3966 return attrs;
3968 #endif
3970 /* Include the RTL generation functions. */
3972 #ifndef GENERATOR_FILE
3973 #include "genrtl.h"
3974 #undef gen_rtx_ASM_INPUT
3975 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3976 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3977 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3978 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3979 #endif
3981 /* There are some RTL codes that require special attention; the
3982 generation functions included above do the raw handling. If you
3983 add to this list, modify special_rtx in gengenrtl.cc as well. */
3985 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3986 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3987 extern rtx_insn *
3988 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3989 basic_block bb, rtx pattern, int location, int code,
3990 rtx reg_notes);
3991 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3992 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3993 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3994 extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
3995 extern rtx gen_raw_REG (machine_mode, unsigned int);
3996 #define alloca_raw_REG(mode, regno) \
3997 init_raw_REG (rtx_alloca (REG), (mode), (regno))
3998 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3999 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
4000 extern rtx gen_rtx_MEM (machine_mode, rtx);
4001 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
4002 enum var_init_status);
4004 #ifdef GENERATOR_FILE
4005 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
4006 #else
4007 inline void
4008 PUT_MODE (rtx x, machine_mode mode)
4010 if (REG_P (x))
4011 set_mode_and_regno (x, mode, REGNO (x));
4012 else
4013 PUT_MODE_RAW (x, mode);
4015 #endif
4017 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
4019 /* Virtual registers are used during RTL generation to refer to locations into
4020 the stack frame when the actual location isn't known until RTL generation
4021 is complete. The routine instantiate_virtual_regs replaces these with
4022 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
4023 a constant. */
4025 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
4027 /* This points to the first word of the incoming arguments passed on the stack,
4028 either by the caller or by the callee when pretending it was passed by the
4029 caller. */
4031 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
4033 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
4035 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
4036 variable on the stack. Otherwise, it points to the first variable on
4037 the stack. */
4039 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
4041 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
4043 /* This points to the location of dynamically-allocated memory on the stack
4044 immediately after the stack pointer has been adjusted by the amount
4045 desired. */
4047 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
4049 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
4051 /* This points to the location in the stack at which outgoing arguments should
4052 be written when the stack is pre-pushed (arguments pushed using push
4053 insns always use sp). */
4055 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
4057 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
4059 /* This points to the Canonical Frame Address of the function. This
4060 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
4061 but is calculated relative to the arg pointer for simplicity; the
4062 frame pointer nor stack pointer are necessarily fixed relative to
4063 the CFA until after reload. */
4065 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
4067 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
4069 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
4071 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
4072 when finalized. */
4074 #define virtual_preferred_stack_boundary_rtx \
4075 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
4077 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
4078 ((FIRST_VIRTUAL_REGISTER) + 5)
4080 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
4082 /* Nonzero if REGNUM is a pointer into the stack frame. */
4083 #define REGNO_PTR_FRAME_P(REGNUM) \
4084 ((REGNUM) == STACK_POINTER_REGNUM \
4085 || (REGNUM) == FRAME_POINTER_REGNUM \
4086 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
4087 || (REGNUM) == ARG_POINTER_REGNUM \
4088 || VIRTUAL_REGISTER_NUM_P (REGNUM))
4090 /* REGNUM never really appearing in the INSN stream. */
4091 #define INVALID_REGNUM (~(unsigned int) 0)
4093 /* REGNUM for which no debug information can be generated. */
4094 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
4096 extern rtx output_constant_def (tree, int);
4097 extern rtx lookup_constant_def (tree);
4099 /* Nonzero after end of reload pass.
4100 Set to 1 or 0 by reload1.cc. */
4102 extern int reload_completed;
4104 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
4105 extern int epilogue_completed;
4107 /* Set to 1 while reload_as_needed is operating.
4108 Required by some machines to handle any generated moves differently. */
4110 extern int reload_in_progress;
4112 /* Set to true while in IRA. */
4113 extern bool ira_in_progress;
4115 /* Set to true while in LRA. */
4116 extern bool lra_in_progress;
4118 /* This macro indicates whether you may create a new
4119 pseudo-register. */
4121 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
4123 #ifdef STACK_REGS
4124 /* Nonzero after end of regstack pass.
4125 Set to 1 or 0 by reg-stack.cc. */
4126 extern int regstack_completed;
4127 #endif
4129 /* If this is nonzero, we do not bother generating VOLATILE
4130 around volatile memory references, and we are willing to
4131 output indirect addresses. If cse is to follow, we reject
4132 indirect addresses so a useful potential cse is generated;
4133 if it is used only once, instruction combination will produce
4134 the same indirect address eventually. */
4135 extern int cse_not_expected;
4137 /* Translates rtx code to tree code, for those codes needed by
4138 real_arithmetic. The function returns an int because the caller may not
4139 know what `enum tree_code' means. */
4141 extern int rtx_to_tree_code (enum rtx_code);
4143 /* In cse.cc */
4144 extern int delete_trivially_dead_insns (rtx_insn *, int);
4145 extern bool exp_equiv_p (const_rtx, const_rtx, int, bool);
4147 typedef bool (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
4148 machine_mode *);
4149 extern unsigned hash_rtx (const_rtx, machine_mode, int *, int *,
4150 bool, hash_rtx_callback_function = NULL);
4152 /* In dse.cc */
4153 extern bool check_for_inc_dec (rtx_insn *insn);
4155 /* In jump.cc */
4156 extern bool comparison_dominates_p (enum rtx_code, enum rtx_code);
4157 extern bool jump_to_label_p (const rtx_insn *);
4158 extern bool condjump_p (const rtx_insn *);
4159 extern bool any_condjump_p (const rtx_insn *);
4160 extern bool any_uncondjump_p (const rtx_insn *);
4161 extern rtx pc_set (const rtx_insn *);
4162 extern rtx condjump_label (const rtx_insn *);
4163 extern bool simplejump_p (const rtx_insn *);
4164 extern bool returnjump_p (const rtx_insn *);
4165 extern bool eh_returnjump_p (rtx_insn *);
4166 extern bool onlyjump_p (const rtx_insn *);
4167 extern bool invert_jump_1 (rtx_jump_insn *, rtx);
4168 extern bool invert_jump (rtx_jump_insn *, rtx, int);
4169 extern bool rtx_renumbered_equal_p (const_rtx, const_rtx);
4170 extern int true_regnum (const_rtx);
4171 extern unsigned int reg_or_subregno (const_rtx);
4172 extern bool redirect_jump_1 (rtx_insn *, rtx);
4173 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
4174 extern bool redirect_jump (rtx_jump_insn *, rtx, int);
4175 extern void rebuild_jump_labels (rtx_insn *);
4176 extern void rebuild_jump_labels_chain (rtx_insn *);
4177 extern rtx reversed_comparison (const_rtx, machine_mode);
4178 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
4179 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
4180 const_rtx, const rtx_insn *);
4181 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
4182 extern bool condjump_in_parallel_p (const rtx_insn *);
4184 /* In emit-rtl.cc. */
4185 extern int max_reg_num (void);
4186 extern int max_label_num (void);
4187 extern int get_first_label_num (void);
4188 extern void maybe_set_first_label_num (rtx_code_label *);
4189 extern void delete_insns_since (rtx_insn *);
4190 extern void mark_reg_pointer (rtx, int);
4191 extern void mark_user_reg (rtx);
4192 extern void reset_used_flags (rtx);
4193 extern void set_used_flags (rtx);
4194 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4195 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4196 extern int get_max_insn_count (void);
4197 extern bool in_sequence_p (void);
4198 extern void init_emit (void);
4199 extern void init_emit_regs (void);
4200 extern void init_derived_machine_modes (void);
4201 extern void init_emit_once (void);
4202 extern void push_topmost_sequence (void);
4203 extern void pop_topmost_sequence (void);
4204 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4205 extern void unshare_all_rtl (void);
4206 extern void unshare_all_rtl_again (rtx_insn *);
4207 extern void unshare_all_rtl_in_chain (rtx_insn *);
4208 extern void verify_rtl_sharing (void);
4209 extern void add_insn (rtx_insn *);
4210 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4211 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4212 extern void remove_insn (rtx_insn *);
4213 extern rtx_insn *emit (rtx, bool = true);
4214 extern void emit_insn_at_entry (rtx);
4215 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4216 extern rtx gen_const_mem (machine_mode, rtx);
4217 extern rtx gen_frame_mem (machine_mode, rtx);
4218 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4219 extern bool validate_subreg (machine_mode, machine_mode,
4220 const_rtx, poly_uint64);
4222 /* In combine.cc */
4223 extern unsigned int extended_count (const_rtx, machine_mode, bool);
4224 extern rtx remove_death (unsigned int, rtx_insn *);
4225 extern rtx make_compound_operation (rtx, enum rtx_code);
4227 /* In sched-rgn.cc. */
4228 extern void schedule_insns (void);
4230 /* In sched-ebb.cc. */
4231 extern void schedule_ebbs (void);
4233 /* In sel-sched-dump.cc. */
4234 extern void sel_sched_fix_param (const char *param, const char *val);
4236 /* In print-rtl.cc */
4237 extern const char *print_rtx_head;
4238 extern void debug (const rtx_def &ref);
4239 extern void debug (const rtx_def *ptr);
4240 extern void debug_rtx (const_rtx);
4241 extern void debug_rtx_list (const rtx_insn *, int);
4242 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4243 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4244 extern void print_mem_expr (FILE *, const_tree);
4245 extern void print_rtl (FILE *, const_rtx);
4246 extern void print_simple_rtl (FILE *, const_rtx);
4247 extern void print_rtl_single (FILE *, const_rtx);
4248 extern void print_rtl_single_with_indent (FILE *, const_rtx, int);
4249 extern void print_inline_rtx (FILE *, const_rtx, int);
4251 /* In stmt.cc */
4252 extern void expand_null_return (void);
4253 extern void expand_naked_return (void);
4254 extern void emit_jump (rtx);
4256 /* Memory operation built-ins differ by return value. Mapping
4257 of the enum values is following:
4258 - RETURN_BEGIN - return destination, e.g. memcpy
4259 - RETURN_END - return destination + n, e.g. mempcpy
4260 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4261 null byte of the string, e.g. strcpy
4264 enum memop_ret
4266 RETURN_BEGIN,
4267 RETURN_END,
4268 RETURN_END_MINUS_ONE
4271 /* In expr.cc */
4272 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4273 unsigned int, memop_ret);
4274 extern poly_int64 find_args_size_adjust (rtx_insn *);
4275 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4277 /* In expmed.cc */
4278 extern void init_expmed (void);
4279 extern void expand_inc (rtx, rtx);
4280 extern void expand_dec (rtx, rtx);
4282 /* In lower-subreg.cc */
4283 extern void init_lower_subreg (void);
4285 /* In gcse.cc */
4286 extern bool can_copy_p (machine_mode);
4287 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4288 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4290 /* In cprop.cc */
4291 extern rtx fis_get_condition (rtx_insn *);
4293 /* In ira.cc */
4294 extern HARD_REG_SET eliminable_regset;
4295 extern void mark_elimination (int, int);
4297 /* In reginfo.cc */
4298 extern bool reg_classes_intersect_p (reg_class_t, reg_class_t);
4299 extern bool reg_class_subset_p (reg_class_t, reg_class_t);
4300 extern void globalize_reg (tree, int);
4301 extern void init_reg_modes_target (void);
4302 extern void init_regs (void);
4303 extern void reinit_regs (void);
4304 extern void init_fake_stack_mems (void);
4305 extern void save_register_info (void);
4306 extern void init_reg_sets (void);
4307 extern void regclass (rtx, int);
4308 extern void reg_scan (rtx_insn *, unsigned int);
4309 extern void fix_register (const char *, int, int);
4310 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4312 /* In reload1.cc */
4313 extern bool function_invariant_p (const_rtx);
4315 /* In calls.cc */
4316 enum libcall_type
4318 LCT_NORMAL = 0,
4319 LCT_CONST = 1,
4320 LCT_PURE = 2,
4321 LCT_NORETURN = 3,
4322 LCT_THROW = 4,
4323 LCT_RETURNS_TWICE = 5
4326 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4327 machine_mode, int, rtx_mode_t *);
4329 /* Output a library call and discard the returned value. FUN is the
4330 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4331 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4332 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4333 another LCT_ value for other types of library calls.
4335 There are different overloads of this function for different numbers
4336 of arguments. In each case the argument value is followed by its mode. */
4338 inline void
4339 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4341 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4344 inline void
4345 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4346 rtx arg1, machine_mode arg1_mode)
4348 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4349 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4352 inline void
4353 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4354 rtx arg1, machine_mode arg1_mode,
4355 rtx arg2, machine_mode arg2_mode)
4357 rtx_mode_t args[] = {
4358 rtx_mode_t (arg1, arg1_mode),
4359 rtx_mode_t (arg2, arg2_mode)
4361 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4364 inline void
4365 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4366 rtx arg1, machine_mode arg1_mode,
4367 rtx arg2, machine_mode arg2_mode,
4368 rtx arg3, machine_mode arg3_mode)
4370 rtx_mode_t args[] = {
4371 rtx_mode_t (arg1, arg1_mode),
4372 rtx_mode_t (arg2, arg2_mode),
4373 rtx_mode_t (arg3, arg3_mode)
4375 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4378 inline void
4379 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4380 rtx arg1, machine_mode arg1_mode,
4381 rtx arg2, machine_mode arg2_mode,
4382 rtx arg3, machine_mode arg3_mode,
4383 rtx arg4, machine_mode arg4_mode)
4385 rtx_mode_t args[] = {
4386 rtx_mode_t (arg1, arg1_mode),
4387 rtx_mode_t (arg2, arg2_mode),
4388 rtx_mode_t (arg3, arg3_mode),
4389 rtx_mode_t (arg4, arg4_mode)
4391 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4394 /* Like emit_library_call, but return the value produced by the call.
4395 Use VALUE to store the result if it is nonnull, otherwise pick a
4396 convenient location. */
4398 inline rtx
4399 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4400 machine_mode outmode)
4402 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4405 inline rtx
4406 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4407 machine_mode outmode,
4408 rtx arg1, machine_mode arg1_mode)
4410 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4411 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4414 inline rtx
4415 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4416 machine_mode outmode,
4417 rtx arg1, machine_mode arg1_mode,
4418 rtx arg2, machine_mode arg2_mode)
4420 rtx_mode_t args[] = {
4421 rtx_mode_t (arg1, arg1_mode),
4422 rtx_mode_t (arg2, arg2_mode)
4424 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4427 inline rtx
4428 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4429 machine_mode outmode,
4430 rtx arg1, machine_mode arg1_mode,
4431 rtx arg2, machine_mode arg2_mode,
4432 rtx arg3, machine_mode arg3_mode)
4434 rtx_mode_t args[] = {
4435 rtx_mode_t (arg1, arg1_mode),
4436 rtx_mode_t (arg2, arg2_mode),
4437 rtx_mode_t (arg3, arg3_mode)
4439 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4442 inline rtx
4443 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4444 machine_mode outmode,
4445 rtx arg1, machine_mode arg1_mode,
4446 rtx arg2, machine_mode arg2_mode,
4447 rtx arg3, machine_mode arg3_mode,
4448 rtx arg4, machine_mode arg4_mode)
4450 rtx_mode_t args[] = {
4451 rtx_mode_t (arg1, arg1_mode),
4452 rtx_mode_t (arg2, arg2_mode),
4453 rtx_mode_t (arg3, arg3_mode),
4454 rtx_mode_t (arg4, arg4_mode)
4456 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4459 /* In varasm.cc */
4460 extern void init_varasm_once (void);
4462 extern rtx make_debug_expr_from_rtl (const_rtx);
4464 /* In read-rtl.cc */
4465 #ifdef GENERATOR_FILE
4466 extern bool read_rtx (const char *, vec<rtx> *);
4467 #endif
4469 /* In alias.cc */
4470 extern rtx canon_rtx (rtx);
4471 extern rtx get_addr (rtx);
4472 extern bool read_dependence (const_rtx, const_rtx);
4473 extern bool true_dependence (const_rtx, machine_mode, const_rtx);
4474 extern bool canon_true_dependence (const_rtx, machine_mode, rtx,
4475 const_rtx, rtx);
4476 extern bool anti_dependence (const_rtx, const_rtx);
4477 extern bool canon_anti_dependence (const_rtx, bool,
4478 const_rtx, machine_mode, rtx);
4479 extern bool output_dependence (const_rtx, const_rtx);
4480 extern bool canon_output_dependence (const_rtx, bool,
4481 const_rtx, machine_mode, rtx);
4482 extern bool may_alias_p (const_rtx, const_rtx);
4483 extern void init_alias_target (void);
4484 extern void init_alias_analysis (void);
4485 extern void end_alias_analysis (void);
4486 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4487 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4488 extern bool may_be_sp_based_p (rtx);
4489 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4490 extern rtx get_reg_known_value (unsigned int);
4491 extern bool get_reg_known_equiv_p (unsigned int);
4492 extern rtx get_reg_base_value (unsigned int);
4493 extern rtx extract_mem_from_operand (rtx);
4495 #ifdef STACK_REGS
4496 extern bool stack_regs_mentioned (const_rtx insn);
4497 #endif
4499 /* In toplev.cc */
4500 extern GTY(()) rtx stack_limit_rtx;
4502 /* In var-tracking.cc */
4503 extern unsigned int variable_tracking_main (void);
4504 extern void delete_vta_debug_insns (bool);
4506 /* In stor-layout.cc. */
4507 extern void get_mode_bounds (scalar_int_mode, int,
4508 scalar_int_mode, rtx *, rtx *);
4510 /* In loop-iv.cc */
4511 extern rtx canon_condition (rtx);
4512 extern void simplify_using_condition (rtx, rtx *, bitmap);
4514 /* In final.cc */
4515 extern void compute_alignments (void);
4516 extern void update_alignments (vec<rtx> &);
4517 extern int asm_str_count (const char *templ);
4519 struct rtl_hooks
4521 rtx (*gen_lowpart) (machine_mode, rtx);
4522 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4523 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4524 unsigned HOST_WIDE_INT *);
4525 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4526 unsigned int *);
4527 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4529 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4532 /* Each pass can provide its own. */
4533 extern struct rtl_hooks rtl_hooks;
4535 /* ... but then it has to restore these. */
4536 extern const struct rtl_hooks general_rtl_hooks;
4538 /* Keep this for the nonce. */
4539 #define gen_lowpart rtl_hooks.gen_lowpart
4541 extern void insn_locations_init (void);
4542 extern void insn_locations_finalize (void);
4543 extern void set_curr_insn_location (location_t);
4544 extern location_t curr_insn_location (void);
4545 extern void set_insn_locations (rtx_insn *, location_t);
4547 /* rtl-error.cc */
4548 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4549 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4550 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4551 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4553 #define fatal_insn(msgid, insn) \
4554 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4555 #define fatal_insn_not_found(insn) \
4556 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4558 /* reginfo.cc */
4559 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4561 /* Information about the function that is propagated by the RTL backend.
4562 Available only for functions that has been already assembled. */
4564 struct GTY(()) cgraph_rtl_info {
4565 unsigned int preferred_incoming_stack_boundary;
4567 /* Which registers the function clobbers, either directly or by
4568 calling another function. */
4569 HARD_REG_SET function_used_regs;
4572 /* If loads from memories of mode MODE always sign or zero extend,
4573 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4574 otherwise. */
4576 inline rtx_code
4577 load_extend_op (machine_mode mode)
4579 scalar_int_mode int_mode;
4580 if (is_a <scalar_int_mode> (mode, &int_mode)
4581 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4582 return LOAD_EXTEND_OP (int_mode);
4583 return UNKNOWN;
4586 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4587 and return the base. Return X otherwise. */
4589 inline rtx
4590 strip_offset_and_add (rtx x, poly_int64 *offset)
4592 if (GET_CODE (x) == PLUS)
4594 poly_int64 suboffset;
4595 x = strip_offset (x, &suboffset);
4596 *offset = poly_uint64 (*offset) + suboffset;
4598 return x;
4601 /* Return true if X is an operation that always operates on the full
4602 registers for WORD_REGISTER_OPERATIONS architectures. */
4604 inline bool
4605 word_register_operation_p (const_rtx x)
4607 switch (GET_CODE (x))
4609 case CONST_INT:
4610 case ROTATE:
4611 case ROTATERT:
4612 case SIGN_EXTRACT:
4613 case ZERO_EXTRACT:
4614 return false;
4616 default:
4617 return true;
4621 /* Holds an rtx comparison to simplify passing many parameters pertaining to a
4622 single comparison. */
4624 struct rtx_comparison {
4625 rtx_code code;
4626 rtx op0, op1;
4627 machine_mode mode;
4630 /* gtype-desc.cc. */
4631 extern void gt_ggc_mx (rtx &);
4632 extern void gt_pch_nx (rtx &);
4633 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4635 #endif /* ! GCC_RTL_H */