* config/xtensa/lib2funcs.S: Fix whitespace.
[official-gcc.git] / gcc / genrecog.c
blob65387123436a1dbf55a1e3d13dcc0eb8dd708dae
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
73 struct decision_head
75 struct decision *first;
76 struct decision *last;
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
83 struct decision_test
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
94 DT_accept_op, DT_accept_insn
95 } type;
97 union
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
102 struct
104 const char *name; /* Predicate to call. */
105 int index; /* Index into `preds' or -1. */
106 enum machine_mode mode; /* Machine mode for node. */
107 } pred;
109 const char *c_test; /* Additional test to perform. */
110 int veclen; /* Length of vector. */
111 int dup; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
113 int opno; /* Operand number matched. */
115 struct {
116 int code_number; /* Insn number matched. */
117 int lineno; /* Line number of the insn. */
118 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
119 } insn;
120 } u;
123 /* Data structure for decision tree for recognizing legitimate insns. */
125 struct decision
127 struct decision_head success; /* Nodes to test on success. */
128 struct decision *next; /* Node to test on failure. */
129 struct decision *prev; /* Node whose failure tests us. */
130 struct decision *afterward; /* Node to test on success,
131 but failure of successor nodes. */
133 const char *position; /* String denoting position in pattern. */
135 struct decision_test *tests; /* The tests for this node. */
137 int number; /* Node number, used for labels */
138 int subroutine_number; /* Number of subroutine this node starts */
139 int need_label; /* Label needs to be output. */
142 #define SUBROUTINE_THRESHOLD 100
144 static int next_subroutine_number;
146 /* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
150 enum routine_type {
151 RECOG, SPLIT, PEEPHOLE2
154 #define IS_SPLIT(X) ((X) != RECOG)
156 /* Next available node number for tree nodes. */
158 static int next_number;
160 /* Next number to use as an insn_code. */
162 static int next_insn_code;
164 /* Similar, but counts all expressions in the MD file; used for
165 error messages. */
167 static int next_index;
169 /* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
172 static int max_depth;
174 /* The line number of the start of the pattern currently being processed. */
175 static int pattern_lineno;
177 /* Count of errors. */
178 static int error_count;
180 /* This table contains a list of the rtl codes that can possibly match a
181 predicate defined in recog.c. The function `maybe_both_true' uses it to
182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
186 static const struct pred_table
188 const char *const name;
189 const RTX_CODE codes[NUM_RTX_CODE];
190 } preds[] = {
191 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
192 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
193 #ifdef PREDICATE_CODES
194 PREDICATE_CODES
195 #endif
196 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
197 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
198 PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG, ADDRESSOF}},
200 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
206 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
208 LABEL_REF, SUBREG, REG, ADDRESSOF}},
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
214 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
215 UNLT, LTGT}}
218 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
220 static const char *const special_mode_pred_table[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223 #endif
224 "pmode_register_operand"
227 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
229 static struct decision *new_decision
230 (const char *, struct decision_head *);
231 static struct decision_test *new_decision_test
232 (enum decision_type, struct decision_test ***);
233 static rtx find_operand
234 (rtx, int);
235 static rtx find_matching_operand
236 (rtx, int);
237 static void validate_pattern
238 (rtx, rtx, rtx, int);
239 static struct decision *add_to_sequence
240 (rtx, struct decision_head *, const char *, enum routine_type, int);
242 static int maybe_both_true_2
243 (struct decision_test *, struct decision_test *);
244 static int maybe_both_true_1
245 (struct decision_test *, struct decision_test *);
246 static int maybe_both_true
247 (struct decision *, struct decision *, int);
249 static int nodes_identical_1
250 (struct decision_test *, struct decision_test *);
251 static int nodes_identical
252 (struct decision *, struct decision *);
253 static void merge_accept_insn
254 (struct decision *, struct decision *);
255 static void merge_trees
256 (struct decision_head *, struct decision_head *);
258 static void factor_tests
259 (struct decision_head *);
260 static void simplify_tests
261 (struct decision_head *);
262 static int break_out_subroutines
263 (struct decision_head *, int);
264 static void find_afterward
265 (struct decision_head *, struct decision *);
267 static void change_state
268 (const char *, const char *, struct decision *, const char *);
269 static void print_code
270 (enum rtx_code);
271 static void write_afterward
272 (struct decision *, struct decision *, const char *);
273 static struct decision *write_switch
274 (struct decision *, int);
275 static void write_cond
276 (struct decision_test *, int, enum routine_type);
277 static void write_action
278 (struct decision *, struct decision_test *, int, int,
279 struct decision *, enum routine_type);
280 static int is_unconditional
281 (struct decision_test *, enum routine_type);
282 static int write_node
283 (struct decision *, int, enum routine_type);
284 static void write_tree_1
285 (struct decision_head *, int, enum routine_type);
286 static void write_tree
287 (struct decision_head *, const char *, enum routine_type, int);
288 static void write_subroutine
289 (struct decision_head *, enum routine_type);
290 static void write_subroutines
291 (struct decision_head *, enum routine_type);
292 static void write_header
293 (void);
295 static struct decision_head make_insn_sequence
296 (rtx, enum routine_type);
297 static void process_tree
298 (struct decision_head *, enum routine_type);
300 static void record_insn_name
301 (int, const char *);
303 static void debug_decision_0
304 (struct decision *, int, int);
305 static void debug_decision_1
306 (struct decision *, int);
307 static void debug_decision_2
308 (struct decision_test *);
309 extern void debug_decision
310 (struct decision *);
311 extern void debug_decision_list
312 (struct decision *);
314 /* Create a new node in sequence after LAST. */
316 static struct decision *
317 new_decision (const char *position, struct decision_head *last)
319 struct decision *new = xmalloc (sizeof (struct decision));
321 memset (new, 0, sizeof (*new));
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
326 last->first = last->last = new;
327 return new;
330 /* Create a new test and link it in at PLACE. */
332 static struct decision_test *
333 new_decision_test (enum decision_type type, struct decision_test ***pplace)
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
338 test = xmalloc (sizeof (*test));
339 test->next = *place;
340 test->type = type;
341 *place = test;
343 place = &test->next;
344 *pplace = place;
346 return test;
349 /* Search for and return operand N. */
351 static rtx
352 find_operand (rtx pattern, int n)
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
359 code = GET_CODE (pattern);
360 if ((code == MATCH_SCRATCH
361 || code == MATCH_INSN
362 || code == MATCH_OPERAND
363 || code == MATCH_OPERATOR
364 || code == MATCH_PARALLEL)
365 && XINT (pattern, 0) == n)
366 return pattern;
368 fmt = GET_RTX_FORMAT (code);
369 len = GET_RTX_LENGTH (code);
370 for (i = 0; i < len; i++)
372 switch (fmt[i])
374 case 'e': case 'u':
375 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
376 return r;
377 break;
379 case 'V':
380 if (! XVEC (pattern, i))
381 break;
382 /* FALLTHRU */
384 case 'E':
385 for (j = 0; j < XVECLEN (pattern, i); j++)
386 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
387 return r;
388 break;
390 case 'i': case 'w': case '0': case 's':
391 break;
393 default:
394 abort ();
398 return NULL;
401 /* Search for and return operand M, such that it has a matching
402 constraint for operand N. */
404 static rtx
405 find_matching_operand (rtx pattern, int n)
407 const char *fmt;
408 RTX_CODE code;
409 int i, j, len;
410 rtx r;
412 code = GET_CODE (pattern);
413 if (code == MATCH_OPERAND
414 && (XSTR (pattern, 2)[0] == '0' + n
415 || (XSTR (pattern, 2)[0] == '%'
416 && XSTR (pattern, 2)[1] == '0' + n)))
417 return pattern;
419 fmt = GET_RTX_FORMAT (code);
420 len = GET_RTX_LENGTH (code);
421 for (i = 0; i < len; i++)
423 switch (fmt[i])
425 case 'e': case 'u':
426 if ((r = find_matching_operand (XEXP (pattern, i), n)))
427 return r;
428 break;
430 case 'V':
431 if (! XVEC (pattern, i))
432 break;
433 /* FALLTHRU */
435 case 'E':
436 for (j = 0; j < XVECLEN (pattern, i); j++)
437 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
438 return r;
439 break;
441 case 'i': case 'w': case '0': case 's':
442 break;
444 default:
445 abort ();
449 return NULL;
453 /* Check for various errors in patterns. SET is nonnull for a destination,
454 and is the complete set pattern. SET_CODE is '=' for normal sets, and
455 '+' within a context that requires in-out constraints. */
457 static void
458 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
460 const char *fmt;
461 RTX_CODE code;
462 size_t i, len;
463 int j;
465 code = GET_CODE (pattern);
466 switch (code)
468 case MATCH_SCRATCH:
469 return;
471 case MATCH_INSN:
472 case MATCH_OPERAND:
473 case MATCH_OPERATOR:
475 const char *pred_name = XSTR (pattern, 1);
476 int allows_non_lvalue = 1, allows_non_const = 1;
477 int special_mode_pred = 0;
478 const char *c_test;
480 if (GET_CODE (insn) == DEFINE_INSN)
481 c_test = XSTR (insn, 2);
482 else
483 c_test = XSTR (insn, 1);
485 if (pred_name[0] != 0)
487 for (i = 0; i < NUM_KNOWN_PREDS; i++)
488 if (! strcmp (preds[i].name, pred_name))
489 break;
491 if (i < NUM_KNOWN_PREDS)
493 int j;
495 allows_non_lvalue = allows_non_const = 0;
496 for (j = 0; preds[i].codes[j] != 0; j++)
498 RTX_CODE c = preds[i].codes[j];
499 if (c != LABEL_REF
500 && c != SYMBOL_REF
501 && c != CONST_INT
502 && c != CONST_DOUBLE
503 && c != CONST
504 && c != HIGH
505 && c != CONSTANT_P_RTX)
506 allows_non_const = 1;
508 if (c != REG
509 && c != SUBREG
510 && c != MEM
511 && c != ADDRESSOF
512 && c != CONCAT
513 && c != PARALLEL
514 && c != STRICT_LOW_PART)
515 allows_non_lvalue = 1;
518 else
520 #ifdef PREDICATE_CODES
521 /* If the port has a list of the predicates it uses but
522 omits one, warn. */
523 message_with_line (pattern_lineno,
524 "warning: `%s' not in PREDICATE_CODES",
525 pred_name);
526 #endif
529 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
530 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
532 special_mode_pred = 1;
533 break;
537 if (code == MATCH_OPERAND)
539 const char constraints0 = XSTR (pattern, 2)[0];
541 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
542 don't use the MATCH_OPERAND constraint, only the predicate.
543 This is confusing to folks doing new ports, so help them
544 not make the mistake. */
545 if (GET_CODE (insn) == DEFINE_EXPAND
546 || GET_CODE (insn) == DEFINE_SPLIT
547 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
549 if (constraints0)
550 message_with_line (pattern_lineno,
551 "warning: constraints not supported in %s",
552 rtx_name[GET_CODE (insn)]);
555 /* A MATCH_OPERAND that is a SET should have an output reload. */
556 else if (set && constraints0)
558 if (set_code == '+')
560 if (constraints0 == '+')
562 /* If we've only got an output reload for this operand,
563 we'd better have a matching input operand. */
564 else if (constraints0 == '='
565 && find_matching_operand (insn, XINT (pattern, 0)))
567 else
569 message_with_line (pattern_lineno,
570 "operand %d missing in-out reload",
571 XINT (pattern, 0));
572 error_count++;
575 else if (constraints0 != '=' && constraints0 != '+')
577 message_with_line (pattern_lineno,
578 "operand %d missing output reload",
579 XINT (pattern, 0));
580 error_count++;
585 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
586 while not likely to occur at runtime, results in less efficient
587 code from insn-recog.c. */
588 if (set
589 && pred_name[0] != '\0'
590 && allows_non_lvalue)
592 message_with_line (pattern_lineno,
593 "warning: destination operand %d allows non-lvalue",
594 XINT (pattern, 0));
597 /* A modeless MATCH_OPERAND can be handy when we can
598 check for multiple modes in the c_test. In most other cases,
599 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
600 and PEEP2 can FAIL within the output pattern. Exclude
601 address_operand, since its mode is related to the mode of
602 the memory not the operand. Exclude the SET_DEST of a call
603 instruction, as that is a common idiom. */
605 if (GET_MODE (pattern) == VOIDmode
606 && code == MATCH_OPERAND
607 && GET_CODE (insn) == DEFINE_INSN
608 && allows_non_const
609 && ! special_mode_pred
610 && pred_name[0] != '\0'
611 && strcmp (pred_name, "address_operand") != 0
612 && strstr (c_test, "operands") == NULL
613 && ! (set
614 && GET_CODE (set) == SET
615 && GET_CODE (SET_SRC (set)) == CALL))
617 message_with_line (pattern_lineno,
618 "warning: operand %d missing mode?",
619 XINT (pattern, 0));
621 return;
624 case SET:
626 enum machine_mode dmode, smode;
627 rtx dest, src;
629 dest = SET_DEST (pattern);
630 src = SET_SRC (pattern);
632 /* STRICT_LOW_PART is a wrapper. Its argument is the real
633 destination, and it's mode should match the source. */
634 if (GET_CODE (dest) == STRICT_LOW_PART)
635 dest = XEXP (dest, 0);
637 /* Find the referant for a DUP. */
639 if (GET_CODE (dest) == MATCH_DUP
640 || GET_CODE (dest) == MATCH_OP_DUP
641 || GET_CODE (dest) == MATCH_PAR_DUP)
642 dest = find_operand (insn, XINT (dest, 0));
644 if (GET_CODE (src) == MATCH_DUP
645 || GET_CODE (src) == MATCH_OP_DUP
646 || GET_CODE (src) == MATCH_PAR_DUP)
647 src = find_operand (insn, XINT (src, 0));
649 dmode = GET_MODE (dest);
650 smode = GET_MODE (src);
652 /* The mode of an ADDRESS_OPERAND is the mode of the memory
653 reference, not the mode of the address. */
654 if (GET_CODE (src) == MATCH_OPERAND
655 && ! strcmp (XSTR (src, 1), "address_operand"))
658 /* The operands of a SET must have the same mode unless one
659 is VOIDmode. */
660 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
662 message_with_line (pattern_lineno,
663 "mode mismatch in set: %smode vs %smode",
664 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
665 error_count++;
668 /* If only one of the operands is VOIDmode, and PC or CC0 is
669 not involved, it's probably a mistake. */
670 else if (dmode != smode
671 && GET_CODE (dest) != PC
672 && GET_CODE (dest) != CC0
673 && GET_CODE (src) != PC
674 && GET_CODE (src) != CC0
675 && GET_CODE (src) != CONST_INT)
677 const char *which;
678 which = (dmode == VOIDmode ? "destination" : "source");
679 message_with_line (pattern_lineno,
680 "warning: %s missing a mode?", which);
683 if (dest != SET_DEST (pattern))
684 validate_pattern (dest, insn, pattern, '=');
685 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
686 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
687 return;
690 case CLOBBER:
691 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
692 return;
694 case ZERO_EXTRACT:
695 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
696 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
697 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
698 return;
700 case STRICT_LOW_PART:
701 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
702 return;
704 case LABEL_REF:
705 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
707 message_with_line (pattern_lineno,
708 "operand to label_ref %smode not VOIDmode",
709 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
710 error_count++;
712 break;
714 default:
715 break;
718 fmt = GET_RTX_FORMAT (code);
719 len = GET_RTX_LENGTH (code);
720 for (i = 0; i < len; i++)
722 switch (fmt[i])
724 case 'e': case 'u':
725 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
726 break;
728 case 'E':
729 for (j = 0; j < XVECLEN (pattern, i); j++)
730 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
731 break;
733 case 'i': case 'w': case '0': case 's':
734 break;
736 default:
737 abort ();
742 /* Create a chain of nodes to verify that an rtl expression matches
743 PATTERN.
745 LAST is a pointer to the listhead in the previous node in the chain (or
746 in the calling function, for the first node).
748 POSITION is the string representing the current position in the insn.
750 INSN_TYPE is the type of insn for which we are emitting code.
752 A pointer to the final node in the chain is returned. */
754 static struct decision *
755 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
756 enum routine_type insn_type, int top)
758 RTX_CODE code;
759 struct decision *this, *sub;
760 struct decision_test *test;
761 struct decision_test **place;
762 char *subpos;
763 size_t i;
764 const char *fmt;
765 int depth = strlen (position);
766 int len;
767 enum machine_mode mode;
769 if (depth > max_depth)
770 max_depth = depth;
772 subpos = xmalloc (depth + 2);
773 strcpy (subpos, position);
774 subpos[depth + 1] = 0;
776 sub = this = new_decision (position, last);
777 place = &this->tests;
779 restart:
780 mode = GET_MODE (pattern);
781 code = GET_CODE (pattern);
783 switch (code)
785 case PARALLEL:
786 /* Toplevel peephole pattern. */
787 if (insn_type == PEEPHOLE2 && top)
789 /* We don't need the node we just created -- unlink it. */
790 last->first = last->last = NULL;
792 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
794 /* Which insn we're looking at is represented by A-Z. We don't
795 ever use 'A', however; it is always implied. */
797 subpos[depth] = (i > 0 ? 'A' + i : 0);
798 sub = add_to_sequence (XVECEXP (pattern, 0, i),
799 last, subpos, insn_type, 0);
800 last = &sub->success;
802 goto ret;
805 /* Else nothing special. */
806 break;
808 case MATCH_PARALLEL:
809 /* The explicit patterns within a match_parallel enforce a minimum
810 length on the vector. The match_parallel predicate may allow
811 for more elements. We do need to check for this minimum here
812 or the code generated to match the internals may reference data
813 beyond the end of the vector. */
814 test = new_decision_test (DT_veclen_ge, &place);
815 test->u.veclen = XVECLEN (pattern, 2);
816 /* FALLTHRU */
818 case MATCH_OPERAND:
819 case MATCH_SCRATCH:
820 case MATCH_OPERATOR:
821 case MATCH_INSN:
823 const char *pred_name;
824 RTX_CODE was_code = code;
825 int allows_const_int = 1;
827 if (code == MATCH_SCRATCH)
829 pred_name = "scratch_operand";
830 code = UNKNOWN;
832 else
834 pred_name = XSTR (pattern, 1);
835 if (code == MATCH_PARALLEL)
836 code = PARALLEL;
837 else
838 code = UNKNOWN;
841 if (pred_name[0] != 0)
843 test = new_decision_test (DT_pred, &place);
844 test->u.pred.name = pred_name;
845 test->u.pred.mode = mode;
847 /* See if we know about this predicate and save its number.
848 If we do, and it only accepts one code, note that fact.
850 If we know that the predicate does not allow CONST_INT,
851 we know that the only way the predicate can match is if
852 the modes match (here we use the kludge of relying on the
853 fact that "address_operand" accepts CONST_INT; otherwise,
854 it would have to be a special case), so we can test the
855 mode (but we need not). This fact should considerably
856 simplify the generated code. */
858 for (i = 0; i < NUM_KNOWN_PREDS; i++)
859 if (! strcmp (preds[i].name, pred_name))
860 break;
862 if (i < NUM_KNOWN_PREDS)
864 int j;
866 test->u.pred.index = i;
868 if (preds[i].codes[1] == 0 && code == UNKNOWN)
869 code = preds[i].codes[0];
871 allows_const_int = 0;
872 for (j = 0; preds[i].codes[j] != 0; j++)
873 if (preds[i].codes[j] == CONST_INT)
875 allows_const_int = 1;
876 break;
879 else
880 test->u.pred.index = -1;
883 /* Can't enforce a mode if we allow const_int. */
884 if (allows_const_int)
885 mode = VOIDmode;
887 /* Accept the operand, ie. record it in `operands'. */
888 test = new_decision_test (DT_accept_op, &place);
889 test->u.opno = XINT (pattern, 0);
891 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
893 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
894 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
896 subpos[depth] = i + base;
897 sub = add_to_sequence (XVECEXP (pattern, 2, i),
898 &sub->success, subpos, insn_type, 0);
901 goto fini;
904 case MATCH_OP_DUP:
905 code = UNKNOWN;
907 test = new_decision_test (DT_dup, &place);
908 test->u.dup = XINT (pattern, 0);
910 test = new_decision_test (DT_accept_op, &place);
911 test->u.opno = XINT (pattern, 0);
913 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
915 subpos[depth] = i + '0';
916 sub = add_to_sequence (XVECEXP (pattern, 1, i),
917 &sub->success, subpos, insn_type, 0);
919 goto fini;
921 case MATCH_DUP:
922 case MATCH_PAR_DUP:
923 code = UNKNOWN;
925 test = new_decision_test (DT_dup, &place);
926 test->u.dup = XINT (pattern, 0);
927 goto fini;
929 case ADDRESS:
930 pattern = XEXP (pattern, 0);
931 goto restart;
933 default:
934 break;
937 fmt = GET_RTX_FORMAT (code);
938 len = GET_RTX_LENGTH (code);
940 /* Do tests against the current node first. */
941 for (i = 0; i < (size_t) len; i++)
943 if (fmt[i] == 'i')
945 if (i == 0)
947 test = new_decision_test (DT_elt_zero_int, &place);
948 test->u.intval = XINT (pattern, i);
950 else if (i == 1)
952 test = new_decision_test (DT_elt_one_int, &place);
953 test->u.intval = XINT (pattern, i);
955 else
956 abort ();
958 else if (fmt[i] == 'w')
960 /* If this value actually fits in an int, we can use a switch
961 statement here, so indicate that. */
962 enum decision_type type
963 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
964 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
966 if (i != 0)
967 abort ();
969 test = new_decision_test (type, &place);
970 test->u.intval = XWINT (pattern, i);
972 else if (fmt[i] == 'E')
974 if (i != 0)
975 abort ();
977 test = new_decision_test (DT_veclen, &place);
978 test->u.veclen = XVECLEN (pattern, i);
982 /* Now test our sub-patterns. */
983 for (i = 0; i < (size_t) len; i++)
985 switch (fmt[i])
987 case 'e': case 'u':
988 subpos[depth] = '0' + i;
989 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
990 subpos, insn_type, 0);
991 break;
993 case 'E':
995 int j;
996 for (j = 0; j < XVECLEN (pattern, i); j++)
998 subpos[depth] = 'a' + j;
999 sub = add_to_sequence (XVECEXP (pattern, i, j),
1000 &sub->success, subpos, insn_type, 0);
1002 break;
1005 case 'i': case 'w':
1006 /* Handled above. */
1007 break;
1008 case '0':
1009 break;
1011 default:
1012 abort ();
1016 fini:
1017 /* Insert nodes testing mode and code, if they're still relevant,
1018 before any of the nodes we may have added above. */
1019 if (code != UNKNOWN)
1021 place = &this->tests;
1022 test = new_decision_test (DT_code, &place);
1023 test->u.code = code;
1026 if (mode != VOIDmode)
1028 place = &this->tests;
1029 test = new_decision_test (DT_mode, &place);
1030 test->u.mode = mode;
1033 /* If we didn't insert any tests or accept nodes, hork. */
1034 if (this->tests == NULL)
1035 abort ();
1037 ret:
1038 free (subpos);
1039 return sub;
1042 /* A subroutine of maybe_both_true; examines only one test.
1043 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1045 static int
1046 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1048 if (d1->type == d2->type)
1050 switch (d1->type)
1052 case DT_mode:
1053 return d1->u.mode == d2->u.mode;
1055 case DT_code:
1056 return d1->u.code == d2->u.code;
1058 case DT_veclen:
1059 return d1->u.veclen == d2->u.veclen;
1061 case DT_elt_zero_int:
1062 case DT_elt_one_int:
1063 case DT_elt_zero_wide:
1064 case DT_elt_zero_wide_safe:
1065 return d1->u.intval == d2->u.intval;
1067 default:
1068 break;
1072 /* If either has a predicate that we know something about, set
1073 things up so that D1 is the one that always has a known
1074 predicate. Then see if they have any codes in common. */
1076 if (d1->type == DT_pred || d2->type == DT_pred)
1078 if (d2->type == DT_pred)
1080 struct decision_test *tmp;
1081 tmp = d1, d1 = d2, d2 = tmp;
1084 /* If D2 tests a mode, see if it matches D1. */
1085 if (d1->u.pred.mode != VOIDmode)
1087 if (d2->type == DT_mode)
1089 if (d1->u.pred.mode != d2->u.mode
1090 /* The mode of an address_operand predicate is the
1091 mode of the memory, not the operand. It can only
1092 be used for testing the predicate, so we must
1093 ignore it here. */
1094 && strcmp (d1->u.pred.name, "address_operand") != 0)
1095 return 0;
1097 /* Don't check two predicate modes here, because if both predicates
1098 accept CONST_INT, then both can still be true even if the modes
1099 are different. If they don't accept CONST_INT, there will be a
1100 separate DT_mode that will make maybe_both_true_1 return 0. */
1103 if (d1->u.pred.index >= 0)
1105 /* If D2 tests a code, see if it is in the list of valid
1106 codes for D1's predicate. */
1107 if (d2->type == DT_code)
1109 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1110 while (*c != 0)
1112 if (*c == d2->u.code)
1113 break;
1114 ++c;
1116 if (*c == 0)
1117 return 0;
1120 /* Otherwise see if the predicates have any codes in common. */
1121 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1123 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1124 int common = 0;
1126 while (*c1 != 0 && !common)
1128 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1129 while (*c2 != 0 && !common)
1131 common = (*c1 == *c2);
1132 ++c2;
1134 ++c1;
1137 if (!common)
1138 return 0;
1143 /* Tests vs veclen may be known when strict equality is involved. */
1144 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1145 return d1->u.veclen >= d2->u.veclen;
1146 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1147 return d2->u.veclen >= d1->u.veclen;
1149 return -1;
1152 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1153 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1155 static int
1156 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1158 struct decision_test *t1, *t2;
1160 /* A match_operand with no predicate can match anything. Recognize
1161 this by the existence of a lone DT_accept_op test. */
1162 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1163 return 1;
1165 /* Eliminate pairs of tests while they can exactly match. */
1166 while (d1 && d2 && d1->type == d2->type)
1168 if (maybe_both_true_2 (d1, d2) == 0)
1169 return 0;
1170 d1 = d1->next, d2 = d2->next;
1173 /* After that, consider all pairs. */
1174 for (t1 = d1; t1 ; t1 = t1->next)
1175 for (t2 = d2; t2 ; t2 = t2->next)
1176 if (maybe_both_true_2 (t1, t2) == 0)
1177 return 0;
1179 return -1;
1182 /* Return 0 if we can prove that there is no RTL that can match both
1183 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1184 can match both or just that we couldn't prove there wasn't such an RTL).
1186 TOPLEVEL is nonzero if we are to only look at the top level and not
1187 recursively descend. */
1189 static int
1190 maybe_both_true (struct decision *d1, struct decision *d2,
1191 int toplevel)
1193 struct decision *p1, *p2;
1194 int cmp;
1196 /* Don't compare strings on the different positions in insn. Doing so
1197 is incorrect and results in false matches from constructs like
1199 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1200 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1202 [(set (match_operand:HI "register_operand" "r")
1203 (match_operand:HI "register_operand" "r"))]
1205 If we are presented with such, we are recursing through the remainder
1206 of a node's success nodes (from the loop at the end of this function).
1207 Skip forward until we come to a position that matches.
1209 Due to the way position strings are constructed, we know that iterating
1210 forward from the lexically lower position (e.g. "00") will run into
1211 the lexically higher position (e.g. "1") and not the other way around.
1212 This saves a bit of effort. */
1214 cmp = strcmp (d1->position, d2->position);
1215 if (cmp != 0)
1217 if (toplevel)
1218 abort ();
1220 /* If the d2->position was lexically lower, swap. */
1221 if (cmp > 0)
1222 p1 = d1, d1 = d2, d2 = p1;
1224 if (d1->success.first == 0)
1225 return 1;
1226 for (p1 = d1->success.first; p1; p1 = p1->next)
1227 if (maybe_both_true (p1, d2, 0))
1228 return 1;
1230 return 0;
1233 /* Test the current level. */
1234 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1235 if (cmp >= 0)
1236 return cmp;
1238 /* We can't prove that D1 and D2 cannot both be true. If we are only
1239 to check the top level, return 1. Otherwise, see if we can prove
1240 that all choices in both successors are mutually exclusive. If
1241 either does not have any successors, we can't prove they can't both
1242 be true. */
1244 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1245 return 1;
1247 for (p1 = d1->success.first; p1; p1 = p1->next)
1248 for (p2 = d2->success.first; p2; p2 = p2->next)
1249 if (maybe_both_true (p1, p2, 0))
1250 return 1;
1252 return 0;
1255 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1257 static int
1258 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1260 switch (d1->type)
1262 case DT_mode:
1263 return d1->u.mode == d2->u.mode;
1265 case DT_code:
1266 return d1->u.code == d2->u.code;
1268 case DT_pred:
1269 return (d1->u.pred.mode == d2->u.pred.mode
1270 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1272 case DT_c_test:
1273 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1275 case DT_veclen:
1276 case DT_veclen_ge:
1277 return d1->u.veclen == d2->u.veclen;
1279 case DT_dup:
1280 return d1->u.dup == d2->u.dup;
1282 case DT_elt_zero_int:
1283 case DT_elt_one_int:
1284 case DT_elt_zero_wide:
1285 case DT_elt_zero_wide_safe:
1286 return d1->u.intval == d2->u.intval;
1288 case DT_accept_op:
1289 return d1->u.opno == d2->u.opno;
1291 case DT_accept_insn:
1292 /* Differences will be handled in merge_accept_insn. */
1293 return 1;
1295 default:
1296 abort ();
1300 /* True iff the two nodes are identical (on one level only). Due
1301 to the way these lists are constructed, we shouldn't have to
1302 consider different orderings on the tests. */
1304 static int
1305 nodes_identical (struct decision *d1, struct decision *d2)
1307 struct decision_test *t1, *t2;
1309 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1311 if (t1->type != t2->type)
1312 return 0;
1313 if (! nodes_identical_1 (t1, t2))
1314 return 0;
1317 /* For success, they should now both be null. */
1318 if (t1 != t2)
1319 return 0;
1321 /* Check that their subnodes are at the same position, as any one set
1322 of sibling decisions must be at the same position. Allowing this
1323 requires complications to find_afterward and when change_state is
1324 invoked. */
1325 if (d1->success.first
1326 && d2->success.first
1327 && strcmp (d1->success.first->position, d2->success.first->position))
1328 return 0;
1330 return 1;
1333 /* A subroutine of merge_trees; given two nodes that have been declared
1334 identical, cope with two insn accept states. If they differ in the
1335 number of clobbers, then the conflict was created by make_insn_sequence
1336 and we can drop the with-clobbers version on the floor. If both
1337 nodes have no additional clobbers, we have found an ambiguity in the
1338 source machine description. */
1340 static void
1341 merge_accept_insn (struct decision *oldd, struct decision *addd)
1343 struct decision_test *old, *add;
1345 for (old = oldd->tests; old; old = old->next)
1346 if (old->type == DT_accept_insn)
1347 break;
1348 if (old == NULL)
1349 return;
1351 for (add = addd->tests; add; add = add->next)
1352 if (add->type == DT_accept_insn)
1353 break;
1354 if (add == NULL)
1355 return;
1357 /* If one node is for a normal insn and the second is for the base
1358 insn with clobbers stripped off, the second node should be ignored. */
1360 if (old->u.insn.num_clobbers_to_add == 0
1361 && add->u.insn.num_clobbers_to_add > 0)
1363 /* Nothing to do here. */
1365 else if (old->u.insn.num_clobbers_to_add > 0
1366 && add->u.insn.num_clobbers_to_add == 0)
1368 /* In this case, replace OLD with ADD. */
1369 old->u.insn = add->u.insn;
1371 else
1373 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1374 get_insn_name (add->u.insn.code_number),
1375 get_insn_name (old->u.insn.code_number));
1376 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1377 get_insn_name (old->u.insn.code_number));
1378 error_count++;
1382 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1384 static void
1385 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1387 struct decision *next, *add;
1389 if (addh->first == 0)
1390 return;
1391 if (oldh->first == 0)
1393 *oldh = *addh;
1394 return;
1397 /* Trying to merge bits at different positions isn't possible. */
1398 if (strcmp (oldh->first->position, addh->first->position))
1399 abort ();
1401 for (add = addh->first; add ; add = next)
1403 struct decision *old, *insert_before = NULL;
1405 next = add->next;
1407 /* The semantics of pattern matching state that the tests are
1408 done in the order given in the MD file so that if an insn
1409 matches two patterns, the first one will be used. However,
1410 in practice, most, if not all, patterns are unambiguous so
1411 that their order is independent. In that case, we can merge
1412 identical tests and group all similar modes and codes together.
1414 Scan starting from the end of OLDH until we reach a point
1415 where we reach the head of the list or where we pass a
1416 pattern that could also be true if NEW is true. If we find
1417 an identical pattern, we can merge them. Also, record the
1418 last node that tests the same code and mode and the last one
1419 that tests just the same mode.
1421 If we have no match, place NEW after the closest match we found. */
1423 for (old = oldh->last; old; old = old->prev)
1425 if (nodes_identical (old, add))
1427 merge_accept_insn (old, add);
1428 merge_trees (&old->success, &add->success);
1429 goto merged_nodes;
1432 if (maybe_both_true (old, add, 0))
1433 break;
1435 /* Insert the nodes in DT test type order, which is roughly
1436 how expensive/important the test is. Given that the tests
1437 are also ordered within the list, examining the first is
1438 sufficient. */
1439 if ((int) add->tests->type < (int) old->tests->type)
1440 insert_before = old;
1443 if (insert_before == NULL)
1445 add->next = NULL;
1446 add->prev = oldh->last;
1447 oldh->last->next = add;
1448 oldh->last = add;
1450 else
1452 if ((add->prev = insert_before->prev) != NULL)
1453 add->prev->next = add;
1454 else
1455 oldh->first = add;
1456 add->next = insert_before;
1457 insert_before->prev = add;
1460 merged_nodes:;
1464 /* Walk the tree looking for sub-nodes that perform common tests.
1465 Factor out the common test into a new node. This enables us
1466 (depending on the test type) to emit switch statements later. */
1468 static void
1469 factor_tests (struct decision_head *head)
1471 struct decision *first, *next;
1473 for (first = head->first; first && first->next; first = next)
1475 enum decision_type type;
1476 struct decision *new, *old_last;
1478 type = first->tests->type;
1479 next = first->next;
1481 /* Want at least two compatible sequential nodes. */
1482 if (next->tests->type != type)
1483 continue;
1485 /* Don't want all node types, just those we can turn into
1486 switch statements. */
1487 if (type != DT_mode
1488 && type != DT_code
1489 && type != DT_veclen
1490 && type != DT_elt_zero_int
1491 && type != DT_elt_one_int
1492 && type != DT_elt_zero_wide_safe)
1493 continue;
1495 /* If we'd been performing more than one test, create a new node
1496 below our first test. */
1497 if (first->tests->next != NULL)
1499 new = new_decision (first->position, &first->success);
1500 new->tests = first->tests->next;
1501 first->tests->next = NULL;
1504 /* Crop the node tree off after our first test. */
1505 first->next = NULL;
1506 old_last = head->last;
1507 head->last = first;
1509 /* For each compatible test, adjust to perform only one test in
1510 the top level node, then merge the node back into the tree. */
1513 struct decision_head h;
1515 if (next->tests->next != NULL)
1517 new = new_decision (next->position, &next->success);
1518 new->tests = next->tests->next;
1519 next->tests->next = NULL;
1521 new = next;
1522 next = next->next;
1523 new->next = NULL;
1524 h.first = h.last = new;
1526 merge_trees (head, &h);
1528 while (next && next->tests->type == type);
1530 /* After we run out of compatible tests, graft the remaining nodes
1531 back onto the tree. */
1532 if (next)
1534 next->prev = head->last;
1535 head->last->next = next;
1536 head->last = old_last;
1540 /* Recurse. */
1541 for (first = head->first; first; first = first->next)
1542 factor_tests (&first->success);
1545 /* After factoring, try to simplify the tests on any one node.
1546 Tests that are useful for switch statements are recognizable
1547 by having only a single test on a node -- we'll be manipulating
1548 nodes with multiple tests:
1550 If we have mode tests or code tests that are redundant with
1551 predicates, remove them. */
1553 static void
1554 simplify_tests (struct decision_head *head)
1556 struct decision *tree;
1558 for (tree = head->first; tree; tree = tree->next)
1560 struct decision_test *a, *b;
1562 a = tree->tests;
1563 b = a->next;
1564 if (b == NULL)
1565 continue;
1567 /* Find a predicate node. */
1568 while (b && b->type != DT_pred)
1569 b = b->next;
1570 if (b)
1572 /* Due to how these tests are constructed, we don't even need
1573 to check that the mode and code are compatible -- they were
1574 generated from the predicate in the first place. */
1575 while (a->type == DT_mode || a->type == DT_code)
1576 a = a->next;
1577 tree->tests = a;
1581 /* Recurse. */
1582 for (tree = head->first; tree; tree = tree->next)
1583 simplify_tests (&tree->success);
1586 /* Count the number of subnodes of HEAD. If the number is high enough,
1587 make the first node in HEAD start a separate subroutine in the C code
1588 that is generated. */
1590 static int
1591 break_out_subroutines (struct decision_head *head, int initial)
1593 int size = 0;
1594 struct decision *sub;
1596 for (sub = head->first; sub; sub = sub->next)
1597 size += 1 + break_out_subroutines (&sub->success, 0);
1599 if (size > SUBROUTINE_THRESHOLD && ! initial)
1601 head->first->subroutine_number = ++next_subroutine_number;
1602 size = 1;
1604 return size;
1607 /* For each node p, find the next alternative that might be true
1608 when p is true. */
1610 static void
1611 find_afterward (struct decision_head *head, struct decision *real_afterward)
1613 struct decision *p, *q, *afterward;
1615 /* We can't propagate alternatives across subroutine boundaries.
1616 This is not incorrect, merely a minor optimization loss. */
1618 p = head->first;
1619 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1621 for ( ; p ; p = p->next)
1623 /* Find the next node that might be true if this one fails. */
1624 for (q = p->next; q ; q = q->next)
1625 if (maybe_both_true (p, q, 1))
1626 break;
1628 /* If we reached the end of the list without finding one,
1629 use the incoming afterward position. */
1630 if (!q)
1631 q = afterward;
1632 p->afterward = q;
1633 if (q)
1634 q->need_label = 1;
1637 /* Recurse. */
1638 for (p = head->first; p ; p = p->next)
1639 if (p->success.first)
1640 find_afterward (&p->success, p->afterward);
1642 /* When we are generating a subroutine, record the real afterward
1643 position in the first node where write_tree can find it, and we
1644 can do the right thing at the subroutine call site. */
1645 p = head->first;
1646 if (p->subroutine_number > 0)
1647 p->afterward = real_afterward;
1650 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1651 actions are necessary to move to NEWPOS. If we fail to move to the
1652 new state, branch to node AFTERWARD if nonzero, otherwise return.
1654 Failure to move to the new state can only occur if we are trying to
1655 match multiple insns and we try to step past the end of the stream. */
1657 static void
1658 change_state (const char *oldpos, const char *newpos,
1659 struct decision *afterward, const char *indent)
1661 int odepth = strlen (oldpos);
1662 int ndepth = strlen (newpos);
1663 int depth;
1664 int old_has_insn, new_has_insn;
1666 /* Pop up as many levels as necessary. */
1667 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1668 continue;
1670 /* Hunt for the last [A-Z] in both strings. */
1671 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1672 if (ISUPPER (oldpos[old_has_insn]))
1673 break;
1674 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1675 if (ISUPPER (newpos[new_has_insn]))
1676 break;
1678 /* Go down to desired level. */
1679 while (depth < ndepth)
1681 /* It's a different insn from the first one. */
1682 if (ISUPPER (newpos[depth]))
1684 /* We can only fail if we're moving down the tree. */
1685 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1687 printf ("%stem = peep2_next_insn (%d);\n",
1688 indent, newpos[depth] - 'A');
1690 else
1692 printf ("%stem = peep2_next_insn (%d);\n",
1693 indent, newpos[depth] - 'A');
1694 printf ("%sif (tem == NULL_RTX)\n", indent);
1695 if (afterward)
1696 printf ("%s goto L%d;\n", indent, afterward->number);
1697 else
1698 printf ("%s goto ret0;\n", indent);
1700 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1702 else if (ISLOWER (newpos[depth]))
1703 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1704 indent, depth + 1, depth, newpos[depth] - 'a');
1705 else
1706 printf ("%sx%d = XEXP (x%d, %c);\n",
1707 indent, depth + 1, depth, newpos[depth]);
1708 ++depth;
1712 /* Print the enumerator constant for CODE -- the upcase version of
1713 the name. */
1715 static void
1716 print_code (enum rtx_code code)
1718 const char *p;
1719 for (p = GET_RTX_NAME (code); *p; p++)
1720 putchar (TOUPPER (*p));
1723 /* Emit code to cross an afterward link -- change state and branch. */
1725 static void
1726 write_afterward (struct decision *start, struct decision *afterward,
1727 const char *indent)
1729 if (!afterward || start->subroutine_number > 0)
1730 printf("%sgoto ret0;\n", indent);
1731 else
1733 change_state (start->position, afterward->position, NULL, indent);
1734 printf ("%sgoto L%d;\n", indent, afterward->number);
1738 /* Emit a switch statement, if possible, for an initial sequence of
1739 nodes at START. Return the first node yet untested. */
1741 static struct decision *
1742 write_switch (struct decision *start, int depth)
1744 struct decision *p = start;
1745 enum decision_type type = p->tests->type;
1746 struct decision *needs_label = NULL;
1748 /* If we have two or more nodes in sequence that test the same one
1749 thing, we may be able to use a switch statement. */
1751 if (!p->next
1752 || p->tests->next
1753 || p->next->tests->type != type
1754 || p->next->tests->next
1755 || nodes_identical_1 (p->tests, p->next->tests))
1756 return p;
1758 /* DT_code is special in that we can do interesting things with
1759 known predicates at the same time. */
1760 if (type == DT_code)
1762 char codemap[NUM_RTX_CODE];
1763 struct decision *ret;
1764 RTX_CODE code;
1766 memset (codemap, 0, sizeof(codemap));
1768 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1769 code = p->tests->u.code;
1772 if (p != start && p->need_label && needs_label == NULL)
1773 needs_label = p;
1775 printf (" case ");
1776 print_code (code);
1777 printf (":\n goto L%d;\n", p->success.first->number);
1778 p->success.first->need_label = 1;
1780 codemap[code] = 1;
1781 p = p->next;
1783 while (p
1784 && ! p->tests->next
1785 && p->tests->type == DT_code
1786 && ! codemap[code = p->tests->u.code]);
1788 /* If P is testing a predicate that we know about and we haven't
1789 seen any of the codes that are valid for the predicate, we can
1790 write a series of "case" statement, one for each possible code.
1791 Since we are already in a switch, these redundant tests are very
1792 cheap and will reduce the number of predicates called. */
1794 /* Note that while we write out cases for these predicates here,
1795 we don't actually write the test here, as it gets kinda messy.
1796 It is trivial to leave this to later by telling our caller that
1797 we only processed the CODE tests. */
1798 if (needs_label != NULL)
1799 ret = needs_label;
1800 else
1801 ret = p;
1803 while (p && p->tests->type == DT_pred
1804 && p->tests->u.pred.index >= 0)
1806 const RTX_CODE *c;
1808 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1809 if (codemap[(int) *c] != 0)
1810 goto pred_done;
1812 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1814 printf (" case ");
1815 print_code (*c);
1816 printf (":\n");
1817 codemap[(int) *c] = 1;
1820 printf (" goto L%d;\n", p->number);
1821 p->need_label = 1;
1822 p = p->next;
1825 pred_done:
1826 /* Make the default case skip the predicates we managed to match. */
1828 printf (" default:\n");
1829 if (p != ret)
1831 if (p)
1833 printf (" goto L%d;\n", p->number);
1834 p->need_label = 1;
1836 else
1837 write_afterward (start, start->afterward, " ");
1839 else
1840 printf (" break;\n");
1841 printf (" }\n");
1843 return ret;
1845 else if (type == DT_mode
1846 || type == DT_veclen
1847 || type == DT_elt_zero_int
1848 || type == DT_elt_one_int
1849 || type == DT_elt_zero_wide_safe)
1851 const char *indent = "";
1853 /* We cast switch parameter to integer, so we must ensure that the value
1854 fits. */
1855 if (type == DT_elt_zero_wide_safe)
1857 indent = " ";
1858 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1860 printf ("%s switch (", indent);
1861 switch (type)
1863 case DT_mode:
1864 printf ("GET_MODE (x%d)", depth);
1865 break;
1866 case DT_veclen:
1867 printf ("XVECLEN (x%d, 0)", depth);
1868 break;
1869 case DT_elt_zero_int:
1870 printf ("XINT (x%d, 0)", depth);
1871 break;
1872 case DT_elt_one_int:
1873 printf ("XINT (x%d, 1)", depth);
1874 break;
1875 case DT_elt_zero_wide_safe:
1876 /* Convert result of XWINT to int for portability since some C
1877 compilers won't do it and some will. */
1878 printf ("(int) XWINT (x%d, 0)", depth);
1879 break;
1880 default:
1881 abort ();
1883 printf (")\n%s {\n", indent);
1887 /* Merge trees will not unify identical nodes if their
1888 sub-nodes are at different levels. Thus we must check
1889 for duplicate cases. */
1890 struct decision *q;
1891 for (q = start; q != p; q = q->next)
1892 if (nodes_identical_1 (p->tests, q->tests))
1893 goto case_done;
1895 if (p != start && p->need_label && needs_label == NULL)
1896 needs_label = p;
1898 printf ("%s case ", indent);
1899 switch (type)
1901 case DT_mode:
1902 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1903 break;
1904 case DT_veclen:
1905 printf ("%d", p->tests->u.veclen);
1906 break;
1907 case DT_elt_zero_int:
1908 case DT_elt_one_int:
1909 case DT_elt_zero_wide:
1910 case DT_elt_zero_wide_safe:
1911 printf (HOST_WIDE_INT_PRINT_DEC_C, p->tests->u.intval);
1912 break;
1913 default:
1914 abort ();
1916 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1917 p->success.first->need_label = 1;
1919 p = p->next;
1921 while (p && p->tests->type == type && !p->tests->next);
1923 case_done:
1924 printf ("%s default:\n%s break;\n%s }\n",
1925 indent, indent, indent);
1927 return needs_label != NULL ? needs_label : p;
1929 else
1931 /* None of the other tests are amenable. */
1932 return p;
1936 /* Emit code for one test. */
1938 static void
1939 write_cond (struct decision_test *p, int depth,
1940 enum routine_type subroutine_type)
1942 switch (p->type)
1944 case DT_mode:
1945 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1946 break;
1948 case DT_code:
1949 printf ("GET_CODE (x%d) == ", depth);
1950 print_code (p->u.code);
1951 break;
1953 case DT_veclen:
1954 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1955 break;
1957 case DT_elt_zero_int:
1958 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1959 break;
1961 case DT_elt_one_int:
1962 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1963 break;
1965 case DT_elt_zero_wide:
1966 case DT_elt_zero_wide_safe:
1967 printf ("XWINT (x%d, 0) == ", depth);
1968 printf (HOST_WIDE_INT_PRINT_DEC_C, p->u.intval);
1969 break;
1971 case DT_veclen_ge:
1972 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1973 break;
1975 case DT_dup:
1976 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1977 break;
1979 case DT_pred:
1980 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1981 GET_MODE_NAME (p->u.pred.mode));
1982 break;
1984 case DT_c_test:
1985 printf ("(%s)", p->u.c_test);
1986 break;
1988 case DT_accept_insn:
1989 switch (subroutine_type)
1991 case RECOG:
1992 if (p->u.insn.num_clobbers_to_add == 0)
1993 abort ();
1994 printf ("pnum_clobbers != NULL");
1995 break;
1997 default:
1998 abort ();
2000 break;
2002 default:
2003 abort ();
2007 /* Emit code for one action. The previous tests have succeeded;
2008 TEST is the last of the chain. In the normal case we simply
2009 perform a state change. For the `accept' tests we must do more work. */
2011 static void
2012 write_action (struct decision *p, struct decision_test *test,
2013 int depth, int uncond, struct decision *success,
2014 enum routine_type subroutine_type)
2016 const char *indent;
2017 int want_close = 0;
2019 if (uncond)
2020 indent = " ";
2021 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2023 fputs (" {\n", stdout);
2024 indent = " ";
2025 want_close = 1;
2027 else
2028 indent = " ";
2030 if (test->type == DT_accept_op)
2032 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2034 /* Only allow DT_accept_insn to follow. */
2035 if (test->next)
2037 test = test->next;
2038 if (test->type != DT_accept_insn)
2039 abort ();
2043 /* Sanity check that we're now at the end of the list of tests. */
2044 if (test->next)
2045 abort ();
2047 if (test->type == DT_accept_insn)
2049 switch (subroutine_type)
2051 case RECOG:
2052 if (test->u.insn.num_clobbers_to_add != 0)
2053 printf ("%s*pnum_clobbers = %d;\n",
2054 indent, test->u.insn.num_clobbers_to_add);
2055 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2056 break;
2058 case SPLIT:
2059 printf ("%sreturn gen_split_%d (operands);\n",
2060 indent, test->u.insn.code_number);
2061 break;
2063 case PEEPHOLE2:
2065 int match_len = 0, i;
2067 for (i = strlen (p->position) - 1; i >= 0; --i)
2068 if (ISUPPER (p->position[i]))
2070 match_len = p->position[i] - 'A';
2071 break;
2073 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2074 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2075 indent, test->u.insn.code_number);
2076 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2078 break;
2080 default:
2081 abort ();
2084 else
2086 printf("%sgoto L%d;\n", indent, success->number);
2087 success->need_label = 1;
2090 if (want_close)
2091 fputs (" }\n", stdout);
2094 /* Return 1 if the test is always true and has no fallthru path. Return -1
2095 if the test does have a fallthru path, but requires that the condition be
2096 terminated. Otherwise return 0 for a normal test. */
2097 /* ??? is_unconditional is a stupid name for a tri-state function. */
2099 static int
2100 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2102 if (t->type == DT_accept_op)
2103 return 1;
2105 if (t->type == DT_accept_insn)
2107 switch (subroutine_type)
2109 case RECOG:
2110 return (t->u.insn.num_clobbers_to_add == 0);
2111 case SPLIT:
2112 return 1;
2113 case PEEPHOLE2:
2114 return -1;
2115 default:
2116 abort ();
2120 return 0;
2123 /* Emit code for one node -- the conditional and the accompanying action.
2124 Return true if there is no fallthru path. */
2126 static int
2127 write_node (struct decision *p, int depth,
2128 enum routine_type subroutine_type)
2130 struct decision_test *test, *last_test;
2131 int uncond;
2133 last_test = test = p->tests;
2134 uncond = is_unconditional (test, subroutine_type);
2135 if (uncond == 0)
2137 printf (" if (");
2138 write_cond (test, depth, subroutine_type);
2140 while ((test = test->next) != NULL)
2142 int uncond2;
2144 last_test = test;
2145 uncond2 = is_unconditional (test, subroutine_type);
2146 if (uncond2 != 0)
2147 break;
2149 printf ("\n && ");
2150 write_cond (test, depth, subroutine_type);
2153 printf (")\n");
2156 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2158 return uncond > 0;
2161 /* Emit code for all of the sibling nodes of HEAD. */
2163 static void
2164 write_tree_1 (struct decision_head *head, int depth,
2165 enum routine_type subroutine_type)
2167 struct decision *p, *next;
2168 int uncond = 0;
2170 for (p = head->first; p ; p = next)
2172 /* The label for the first element was printed in write_tree. */
2173 if (p != head->first && p->need_label)
2174 OUTPUT_LABEL (" ", p->number);
2176 /* Attempt to write a switch statement for a whole sequence. */
2177 next = write_switch (p, depth);
2178 if (p != next)
2179 uncond = 0;
2180 else
2182 /* Failed -- fall back and write one node. */
2183 uncond = write_node (p, depth, subroutine_type);
2184 next = p->next;
2188 /* Finished with this chain. Close a fallthru path by branching
2189 to the afterward node. */
2190 if (! uncond)
2191 write_afterward (head->last, head->last->afterward, " ");
2194 /* Write out the decision tree starting at HEAD. PREVPOS is the
2195 position at the node that branched to this node. */
2197 static void
2198 write_tree (struct decision_head *head, const char *prevpos,
2199 enum routine_type type, int initial)
2201 struct decision *p = head->first;
2203 putchar ('\n');
2204 if (p->need_label)
2205 OUTPUT_LABEL (" ", p->number);
2207 if (! initial && p->subroutine_number > 0)
2209 static const char * const name_prefix[] = {
2210 "recog", "split", "peephole2"
2213 static const char * const call_suffix[] = {
2214 ", pnum_clobbers", "", ", _pmatch_len"
2217 /* This node has been broken out into a separate subroutine.
2218 Call it, test the result, and branch accordingly. */
2220 if (p->afterward)
2222 printf (" tem = %s_%d (x0, insn%s);\n",
2223 name_prefix[type], p->subroutine_number, call_suffix[type]);
2224 if (IS_SPLIT (type))
2225 printf (" if (tem != 0)\n return tem;\n");
2226 else
2227 printf (" if (tem >= 0)\n return tem;\n");
2229 change_state (p->position, p->afterward->position, NULL, " ");
2230 printf (" goto L%d;\n", p->afterward->number);
2232 else
2234 printf (" return %s_%d (x0, insn%s);\n",
2235 name_prefix[type], p->subroutine_number, call_suffix[type]);
2238 else
2240 int depth = strlen (p->position);
2242 change_state (prevpos, p->position, head->last->afterward, " ");
2243 write_tree_1 (head, depth, type);
2245 for (p = head->first; p; p = p->next)
2246 if (p->success.first)
2247 write_tree (&p->success, p->position, type, 0);
2251 /* Write out a subroutine of type TYPE to do comparisons starting at
2252 node TREE. */
2254 static void
2255 write_subroutine (struct decision_head *head, enum routine_type type)
2257 int subfunction = head->first ? head->first->subroutine_number : 0;
2258 const char *s_or_e;
2259 char extension[32];
2260 int i;
2262 s_or_e = subfunction ? "static " : "";
2264 if (subfunction)
2265 sprintf (extension, "_%d", subfunction);
2266 else if (type == RECOG)
2267 extension[0] = '\0';
2268 else
2269 strcpy (extension, "_insns");
2271 switch (type)
2273 case RECOG:
2274 printf ("%sint\n\
2275 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2276 break;
2277 case SPLIT:
2278 printf ("%srtx\n\
2279 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2280 s_or_e, extension);
2281 break;
2282 case PEEPHOLE2:
2283 printf ("%srtx\n\
2284 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2285 s_or_e, extension);
2286 break;
2289 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2290 for (i = 1; i <= max_depth; i++)
2291 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2293 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2295 if (!subfunction)
2296 printf (" recog_data.insn = NULL_RTX;\n");
2298 if (head->first)
2299 write_tree (head, "", type, 1);
2300 else
2301 printf (" goto ret0;\n");
2303 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2306 /* In break_out_subroutines, we discovered the boundaries for the
2307 subroutines, but did not write them out. Do so now. */
2309 static void
2310 write_subroutines (struct decision_head *head, enum routine_type type)
2312 struct decision *p;
2314 for (p = head->first; p ; p = p->next)
2315 if (p->success.first)
2316 write_subroutines (&p->success, type);
2318 if (head->first->subroutine_number > 0)
2319 write_subroutine (head, type);
2322 /* Begin the output file. */
2324 static void
2325 write_header (void)
2327 puts ("\
2328 /* Generated automatically by the program `genrecog' from the target\n\
2329 machine description file. */\n\
2331 #include \"config.h\"\n\
2332 #include \"system.h\"\n\
2333 #include \"coretypes.h\"\n\
2334 #include \"tm.h\"\n\
2335 #include \"rtl.h\"\n\
2336 #include \"tm_p.h\"\n\
2337 #include \"function.h\"\n\
2338 #include \"insn-config.h\"\n\
2339 #include \"recog.h\"\n\
2340 #include \"real.h\"\n\
2341 #include \"output.h\"\n\
2342 #include \"flags.h\"\n\
2343 #include \"hard-reg-set.h\"\n\
2344 #include \"resource.h\"\n\
2345 #include \"toplev.h\"\n\
2346 #include \"reload.h\"\n\
2347 \n");
2349 puts ("\n\
2350 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2351 X0 is a valid instruction.\n\
2353 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2354 returns a nonnegative number which is the insn code number for the\n\
2355 pattern that matched. This is the same as the order in the machine\n\
2356 description of the entry that matched. This number can be used as an\n\
2357 index into `insn_data' and other tables.\n");
2358 puts ("\
2359 The third argument to recog is an optional pointer to an int. If\n\
2360 present, recog will accept a pattern if it matches except for missing\n\
2361 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2362 the optional pointer will be set to the number of CLOBBERs that need\n\
2363 to be added (it should be initialized to zero by the caller). If it");
2364 puts ("\
2365 is set nonzero, the caller should allocate a PARALLEL of the\n\
2366 appropriate size, copy the initial entries, and call add_clobbers\n\
2367 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2370 puts ("\n\
2371 The function split_insns returns 0 if the rtl could not\n\
2372 be split or the split rtl as an INSN list if it can be.\n\
2374 The function peephole2_insns returns 0 if the rtl could not\n\
2375 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2376 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2377 */\n\n");
2381 /* Construct and return a sequence of decisions
2382 that will recognize INSN.
2384 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2386 static struct decision_head
2387 make_insn_sequence (rtx insn, enum routine_type type)
2389 rtx x;
2390 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2391 int truth = maybe_eval_c_test (c_test);
2392 struct decision *last;
2393 struct decision_test *test, **place;
2394 struct decision_head head;
2395 char c_test_pos[2];
2397 /* We should never see an insn whose C test is false at compile time. */
2398 if (truth == 0)
2399 abort ();
2401 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2403 c_test_pos[0] = '\0';
2404 if (type == PEEPHOLE2)
2406 int i, j;
2408 /* peephole2 gets special treatment:
2409 - X always gets an outer parallel even if it's only one entry
2410 - we remove all traces of outer-level match_scratch and match_dup
2411 expressions here. */
2412 x = rtx_alloc (PARALLEL);
2413 PUT_MODE (x, VOIDmode);
2414 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2415 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2417 rtx tmp = XVECEXP (insn, 0, i);
2418 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2420 XVECEXP (x, 0, j) = tmp;
2421 j++;
2424 XVECLEN (x, 0) = j;
2426 c_test_pos[0] = 'A' + j - 1;
2427 c_test_pos[1] = '\0';
2429 else if (XVECLEN (insn, type == RECOG) == 1)
2430 x = XVECEXP (insn, type == RECOG, 0);
2431 else
2433 x = rtx_alloc (PARALLEL);
2434 XVEC (x, 0) = XVEC (insn, type == RECOG);
2435 PUT_MODE (x, VOIDmode);
2438 validate_pattern (x, insn, NULL_RTX, 0);
2440 memset(&head, 0, sizeof(head));
2441 last = add_to_sequence (x, &head, "", type, 1);
2443 /* Find the end of the test chain on the last node. */
2444 for (test = last->tests; test->next; test = test->next)
2445 continue;
2446 place = &test->next;
2448 /* Skip the C test if it's known to be true at compile time. */
2449 if (truth == -1)
2451 /* Need a new node if we have another test to add. */
2452 if (test->type == DT_accept_op)
2454 last = new_decision (c_test_pos, &last->success);
2455 place = &last->tests;
2457 test = new_decision_test (DT_c_test, &place);
2458 test->u.c_test = c_test;
2461 test = new_decision_test (DT_accept_insn, &place);
2462 test->u.insn.code_number = next_insn_code;
2463 test->u.insn.lineno = pattern_lineno;
2464 test->u.insn.num_clobbers_to_add = 0;
2466 switch (type)
2468 case RECOG:
2469 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2470 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2471 If so, set up to recognize the pattern without these CLOBBERs. */
2473 if (GET_CODE (x) == PARALLEL)
2475 int i;
2477 /* Find the last non-clobber in the parallel. */
2478 for (i = XVECLEN (x, 0); i > 0; i--)
2480 rtx y = XVECEXP (x, 0, i - 1);
2481 if (GET_CODE (y) != CLOBBER
2482 || (GET_CODE (XEXP (y, 0)) != REG
2483 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2484 break;
2487 if (i != XVECLEN (x, 0))
2489 rtx new;
2490 struct decision_head clobber_head;
2492 /* Build a similar insn without the clobbers. */
2493 if (i == 1)
2494 new = XVECEXP (x, 0, 0);
2495 else
2497 int j;
2499 new = rtx_alloc (PARALLEL);
2500 XVEC (new, 0) = rtvec_alloc (i);
2501 for (j = i - 1; j >= 0; j--)
2502 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2505 /* Recognize it. */
2506 memset (&clobber_head, 0, sizeof(clobber_head));
2507 last = add_to_sequence (new, &clobber_head, "", type, 1);
2509 /* Find the end of the test chain on the last node. */
2510 for (test = last->tests; test->next; test = test->next)
2511 continue;
2513 /* We definitely have a new test to add -- create a new
2514 node if needed. */
2515 place = &test->next;
2516 if (test->type == DT_accept_op)
2518 last = new_decision ("", &last->success);
2519 place = &last->tests;
2522 /* Skip the C test if it's known to be true at compile
2523 time. */
2524 if (truth == -1)
2526 test = new_decision_test (DT_c_test, &place);
2527 test->u.c_test = c_test;
2530 test = new_decision_test (DT_accept_insn, &place);
2531 test->u.insn.code_number = next_insn_code;
2532 test->u.insn.lineno = pattern_lineno;
2533 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2535 merge_trees (&head, &clobber_head);
2538 break;
2540 case SPLIT:
2541 /* Define the subroutine we will call below and emit in genemit. */
2542 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
2543 break;
2545 case PEEPHOLE2:
2546 /* Define the subroutine we will call below and emit in genemit. */
2547 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2548 next_insn_code);
2549 break;
2552 return head;
2555 static void
2556 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2558 if (head->first == NULL)
2560 /* We can elide peephole2_insns, but not recog or split_insns. */
2561 if (subroutine_type == PEEPHOLE2)
2562 return;
2564 else
2566 factor_tests (head);
2568 next_subroutine_number = 0;
2569 break_out_subroutines (head, 1);
2570 find_afterward (head, NULL);
2572 /* We run this after find_afterward, because find_afterward needs
2573 the redundant DT_mode tests on predicates to determine whether
2574 two tests can both be true or not. */
2575 simplify_tests(head);
2577 write_subroutines (head, subroutine_type);
2580 write_subroutine (head, subroutine_type);
2583 extern int main (int, char **);
2586 main (int argc, char **argv)
2588 rtx desc;
2589 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2591 progname = "genrecog";
2593 memset (&recog_tree, 0, sizeof recog_tree);
2594 memset (&split_tree, 0, sizeof split_tree);
2595 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2597 if (argc <= 1)
2598 fatal ("no input file name");
2600 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2601 return (FATAL_EXIT_CODE);
2603 next_insn_code = 0;
2604 next_index = 0;
2606 write_header ();
2608 /* Read the machine description. */
2610 while (1)
2612 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2613 if (desc == NULL)
2614 break;
2616 if (GET_CODE (desc) == DEFINE_INSN)
2618 h = make_insn_sequence (desc, RECOG);
2619 merge_trees (&recog_tree, &h);
2621 else if (GET_CODE (desc) == DEFINE_SPLIT)
2623 h = make_insn_sequence (desc, SPLIT);
2624 merge_trees (&split_tree, &h);
2626 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2628 h = make_insn_sequence (desc, PEEPHOLE2);
2629 merge_trees (&peephole2_tree, &h);
2632 next_index++;
2635 if (error_count)
2636 return FATAL_EXIT_CODE;
2638 puts ("\n\n");
2640 process_tree (&recog_tree, RECOG);
2641 process_tree (&split_tree, SPLIT);
2642 process_tree (&peephole2_tree, PEEPHOLE2);
2644 fflush (stdout);
2645 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2648 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2649 const char *
2650 get_insn_name (int code)
2652 if (code < insn_name_ptr_size)
2653 return insn_name_ptr[code];
2654 else
2655 return NULL;
2658 static void
2659 record_insn_name (int code, const char *name)
2661 static const char *last_real_name = "insn";
2662 static int last_real_code = 0;
2663 char *new;
2665 if (insn_name_ptr_size <= code)
2667 int new_size;
2668 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2669 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2670 memset (insn_name_ptr + insn_name_ptr_size, 0,
2671 sizeof(char *) * (new_size - insn_name_ptr_size));
2672 insn_name_ptr_size = new_size;
2675 if (!name || name[0] == '\0')
2677 new = xmalloc (strlen (last_real_name) + 10);
2678 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2680 else
2682 last_real_name = new = xstrdup (name);
2683 last_real_code = code;
2686 insn_name_ptr[code] = new;
2689 static void
2690 debug_decision_2 (struct decision_test *test)
2692 switch (test->type)
2694 case DT_mode:
2695 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2696 break;
2697 case DT_code:
2698 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2699 break;
2700 case DT_veclen:
2701 fprintf (stderr, "veclen=%d", test->u.veclen);
2702 break;
2703 case DT_elt_zero_int:
2704 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2705 break;
2706 case DT_elt_one_int:
2707 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2708 break;
2709 case DT_elt_zero_wide:
2710 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2711 break;
2712 case DT_elt_zero_wide_safe:
2713 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2714 break;
2715 case DT_veclen_ge:
2716 fprintf (stderr, "veclen>=%d", test->u.veclen);
2717 break;
2718 case DT_dup:
2719 fprintf (stderr, "dup=%d", test->u.dup);
2720 break;
2721 case DT_pred:
2722 fprintf (stderr, "pred=(%s,%s)",
2723 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2724 break;
2725 case DT_c_test:
2727 char sub[16+4];
2728 strncpy (sub, test->u.c_test, sizeof(sub));
2729 memcpy (sub+16, "...", 4);
2730 fprintf (stderr, "c_test=\"%s\"", sub);
2732 break;
2733 case DT_accept_op:
2734 fprintf (stderr, "A_op=%d", test->u.opno);
2735 break;
2736 case DT_accept_insn:
2737 fprintf (stderr, "A_insn=(%d,%d)",
2738 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2739 break;
2741 default:
2742 abort ();
2746 static void
2747 debug_decision_1 (struct decision *d, int indent)
2749 int i;
2750 struct decision_test *test;
2752 if (d == NULL)
2754 for (i = 0; i < indent; ++i)
2755 putc (' ', stderr);
2756 fputs ("(nil)\n", stderr);
2757 return;
2760 for (i = 0; i < indent; ++i)
2761 putc (' ', stderr);
2763 putc ('{', stderr);
2764 test = d->tests;
2765 if (test)
2767 debug_decision_2 (test);
2768 while ((test = test->next) != NULL)
2770 fputs (" + ", stderr);
2771 debug_decision_2 (test);
2774 fprintf (stderr, "} %d n %d a %d\n", d->number,
2775 (d->next ? d->next->number : -1),
2776 (d->afterward ? d->afterward->number : -1));
2779 static void
2780 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2782 struct decision *n;
2783 int i;
2785 if (maxdepth < 0)
2786 return;
2787 if (d == NULL)
2789 for (i = 0; i < indent; ++i)
2790 putc (' ', stderr);
2791 fputs ("(nil)\n", stderr);
2792 return;
2795 debug_decision_1 (d, indent);
2796 for (n = d->success.first; n ; n = n->next)
2797 debug_decision_0 (n, indent + 2, maxdepth - 1);
2800 void
2801 debug_decision (struct decision *d)
2803 debug_decision_0 (d, 0, 1000000);
2806 void
2807 debug_decision_list (struct decision *d)
2809 while (d)
2811 debug_decision_0 (d, 0, 0);
2812 d = d->next;