* config/xtensa/lib2funcs.S: Fix whitespace.
[official-gcc.git] / gcc / final.c
blobf43f9d92b6e186c6ec57f8773fd33c09f518bd71
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Last insn processed by final_scan_insn. */
115 static rtx debug_insn;
116 rtx current_output_insn;
118 /* Line number of last NOTE. */
119 static int last_linenum;
121 /* Highest line number in current block. */
122 static int high_block_linenum;
124 /* Likewise for function. */
125 static int high_function_linenum;
127 /* Filename of last NOTE. */
128 static const char *last_filename;
130 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
132 /* Nonzero while outputting an `asm' with operands.
133 This means that inconsistencies are the user's fault, so don't abort.
134 The precise value is the insn being output, to pass to error_for_asm. */
135 rtx this_is_asm_operands;
137 /* Number of operands of this insn, for an `asm' with operands. */
138 static unsigned int insn_noperands;
140 /* Compare optimization flag. */
142 static rtx last_ignored_compare = 0;
144 /* Assign a unique number to each insn that is output.
145 This can be used to generate unique local labels. */
147 static int insn_counter = 0;
149 #ifdef HAVE_cc0
150 /* This variable contains machine-dependent flags (defined in tm.h)
151 set and examined by output routines
152 that describe how to interpret the condition codes properly. */
154 CC_STATUS cc_status;
156 /* During output of an insn, this contains a copy of cc_status
157 from before the insn. */
159 CC_STATUS cc_prev_status;
160 #endif
162 /* Indexed by hardware reg number, is 1 if that register is ever
163 used in the current function.
165 In life_analysis, or in stupid_life_analysis, this is set
166 up to record the hard regs used explicitly. Reload adds
167 in the hard regs used for holding pseudo regs. Final uses
168 it to generate the code in the function prologue and epilogue
169 to save and restore registers as needed. */
171 char regs_ever_live[FIRST_PSEUDO_REGISTER];
173 /* Nonzero means current function must be given a frame pointer.
174 Set in stmt.c if anything is allocated on the stack there.
175 Set in reload1.c if anything is allocated on the stack there. */
177 int frame_pointer_needed;
179 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
181 static int block_depth;
183 /* Nonzero if have enabled APP processing of our assembler output. */
185 static int app_on;
187 /* If we are outputting an insn sequence, this contains the sequence rtx.
188 Zero otherwise. */
190 rtx final_sequence;
192 #ifdef ASSEMBLER_DIALECT
194 /* Number of the assembler dialect to use, starting at 0. */
195 static int dialect_number;
196 #endif
198 /* Indexed by line number, nonzero if there is a note for that line. */
200 static char *line_note_exists;
202 #ifdef HAVE_conditional_execution
203 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
204 rtx current_insn_predicate;
205 #endif
207 #ifdef HAVE_ATTR_length
208 static int asm_insn_count (rtx);
209 #endif
210 static void profile_function (FILE *);
211 static void profile_after_prologue (FILE *);
212 static bool notice_source_line (rtx);
213 static rtx walk_alter_subreg (rtx *);
214 static void output_asm_name (void);
215 static void output_alternate_entry_point (FILE *, rtx);
216 static tree get_mem_expr_from_op (rtx, int *);
217 static void output_asm_operand_names (rtx *, int *, int);
218 static void output_operand (rtx, int);
219 #ifdef LEAF_REGISTERS
220 static void leaf_renumber_regs (rtx);
221 #endif
222 #ifdef HAVE_cc0
223 static int alter_cond (rtx);
224 #endif
225 #ifndef ADDR_VEC_ALIGN
226 static int final_addr_vec_align (rtx);
227 #endif
228 #ifdef HAVE_ATTR_length
229 static int align_fuzz (rtx, rtx, int, unsigned);
230 #endif
232 /* Initialize data in final at the beginning of a compilation. */
234 void
235 init_final (const char *filename ATTRIBUTE_UNUSED)
237 app_on = 0;
238 final_sequence = 0;
240 #ifdef ASSEMBLER_DIALECT
241 dialect_number = ASSEMBLER_DIALECT;
242 #endif
245 /* Default target function prologue and epilogue assembler output.
247 If not overridden for epilogue code, then the function body itself
248 contains return instructions wherever needed. */
249 void
250 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
255 /* Default target hook that outputs nothing to a stream. */
256 void
257 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
261 /* Enable APP processing of subsequent output.
262 Used before the output from an `asm' statement. */
264 void
265 app_enable (void)
267 if (! app_on)
269 fputs (ASM_APP_ON, asm_out_file);
270 app_on = 1;
274 /* Disable APP processing of subsequent output.
275 Called from varasm.c before most kinds of output. */
277 void
278 app_disable (void)
280 if (app_on)
282 fputs (ASM_APP_OFF, asm_out_file);
283 app_on = 0;
287 /* Return the number of slots filled in the current
288 delayed branch sequence (we don't count the insn needing the
289 delay slot). Zero if not in a delayed branch sequence. */
291 #ifdef DELAY_SLOTS
293 dbr_sequence_length (void)
295 if (final_sequence != 0)
296 return XVECLEN (final_sequence, 0) - 1;
297 else
298 return 0;
300 #endif
302 /* The next two pages contain routines used to compute the length of an insn
303 and to shorten branches. */
305 /* Arrays for insn lengths, and addresses. The latter is referenced by
306 `insn_current_length'. */
308 static int *insn_lengths;
310 varray_type insn_addresses_;
312 /* Max uid for which the above arrays are valid. */
313 static int insn_lengths_max_uid;
315 /* Address of insn being processed. Used by `insn_current_length'. */
316 int insn_current_address;
318 /* Address of insn being processed in previous iteration. */
319 int insn_last_address;
321 /* known invariant alignment of insn being processed. */
322 int insn_current_align;
324 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
325 gives the next following alignment insn that increases the known
326 alignment, or NULL_RTX if there is no such insn.
327 For any alignment obtained this way, we can again index uid_align with
328 its uid to obtain the next following align that in turn increases the
329 alignment, till we reach NULL_RTX; the sequence obtained this way
330 for each insn we'll call the alignment chain of this insn in the following
331 comments. */
333 struct label_alignment
335 short alignment;
336 short max_skip;
339 static rtx *uid_align;
340 static int *uid_shuid;
341 static struct label_alignment *label_align;
343 /* Indicate that branch shortening hasn't yet been done. */
345 void
346 init_insn_lengths (void)
348 if (uid_shuid)
350 free (uid_shuid);
351 uid_shuid = 0;
353 if (insn_lengths)
355 free (insn_lengths);
356 insn_lengths = 0;
357 insn_lengths_max_uid = 0;
359 #ifdef HAVE_ATTR_length
360 INSN_ADDRESSES_FREE ();
361 #endif
362 if (uid_align)
364 free (uid_align);
365 uid_align = 0;
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, get its maximum length. */
373 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
375 #ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
380 if (insn_lengths_max_uid > INSN_UID (insn))
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
394 case JUMP_INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
401 else
402 length = insn_default_length (insn);
403 break;
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
417 break;
419 default:
420 break;
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425 #endif
426 return length;
427 #else /* not HAVE_ATTR_length */
428 return 0;
429 #endif /* not HAVE_ATTR_length */
432 /* Code to handle alignment inside shorten_branches. */
434 /* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
440 alignment point.
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
452 The estimated padding is then OX - IX.
454 OX can be safely estimated as
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
477 #ifndef LABEL_ALIGN_MAX_SKIP
478 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
479 #endif
481 #ifndef LOOP_ALIGN
482 #define LOOP_ALIGN(LABEL) align_loops_log
483 #endif
485 #ifndef LOOP_ALIGN_MAX_SKIP
486 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
487 #endif
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
491 #endif
493 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
494 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495 #endif
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
501 #ifndef JUMP_ALIGN_MAX_SKIP
502 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
503 #endif
505 #ifndef ADDR_VEC_ALIGN
506 static int
507 final_addr_vec_align (rtx addr_vec)
509 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
511 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
512 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
513 return exact_log2 (align);
517 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
518 #endif
520 #ifndef INSN_LENGTH_ALIGNMENT
521 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
522 #endif
524 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
526 static int min_labelno, max_labelno;
528 #define LABEL_TO_ALIGNMENT(LABEL) \
529 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
531 #define LABEL_TO_MAX_SKIP(LABEL) \
532 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
534 /* For the benefit of port specific code do this also as a function. */
537 label_to_alignment (rtx label)
539 return LABEL_TO_ALIGNMENT (label);
542 #ifdef HAVE_ATTR_length
543 /* The differences in addresses
544 between a branch and its target might grow or shrink depending on
545 the alignment the start insn of the range (the branch for a forward
546 branch or the label for a backward branch) starts out on; if these
547 differences are used naively, they can even oscillate infinitely.
548 We therefore want to compute a 'worst case' address difference that
549 is independent of the alignment the start insn of the range end
550 up on, and that is at least as large as the actual difference.
551 The function align_fuzz calculates the amount we have to add to the
552 naively computed difference, by traversing the part of the alignment
553 chain of the start insn of the range that is in front of the end insn
554 of the range, and considering for each alignment the maximum amount
555 that it might contribute to a size increase.
557 For casesi tables, we also want to know worst case minimum amounts of
558 address difference, in case a machine description wants to introduce
559 some common offset that is added to all offsets in a table.
560 For this purpose, align_fuzz with a growth argument of 0 computes the
561 appropriate adjustment. */
563 /* Compute the maximum delta by which the difference of the addresses of
564 START and END might grow / shrink due to a different address for start
565 which changes the size of alignment insns between START and END.
566 KNOWN_ALIGN_LOG is the alignment known for START.
567 GROWTH should be ~0 if the objective is to compute potential code size
568 increase, and 0 if the objective is to compute potential shrink.
569 The return value is undefined for any other value of GROWTH. */
571 static int
572 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
574 int uid = INSN_UID (start);
575 rtx align_label;
576 int known_align = 1 << known_align_log;
577 int end_shuid = INSN_SHUID (end);
578 int fuzz = 0;
580 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
582 int align_addr, new_align;
584 uid = INSN_UID (align_label);
585 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
586 if (uid_shuid[uid] > end_shuid)
587 break;
588 known_align_log = LABEL_TO_ALIGNMENT (align_label);
589 new_align = 1 << known_align_log;
590 if (new_align < known_align)
591 continue;
592 fuzz += (-align_addr ^ growth) & (new_align - known_align);
593 known_align = new_align;
595 return fuzz;
598 /* Compute a worst-case reference address of a branch so that it
599 can be safely used in the presence of aligned labels. Since the
600 size of the branch itself is unknown, the size of the branch is
601 not included in the range. I.e. for a forward branch, the reference
602 address is the end address of the branch as known from the previous
603 branch shortening pass, minus a value to account for possible size
604 increase due to alignment. For a backward branch, it is the start
605 address of the branch as known from the current pass, plus a value
606 to account for possible size increase due to alignment.
607 NB.: Therefore, the maximum offset allowed for backward branches needs
608 to exclude the branch size. */
611 insn_current_reference_address (rtx branch)
613 rtx dest, seq;
614 int seq_uid;
616 if (! INSN_ADDRESSES_SET_P ())
617 return 0;
619 seq = NEXT_INSN (PREV_INSN (branch));
620 seq_uid = INSN_UID (seq);
621 if (GET_CODE (branch) != JUMP_INSN)
622 /* This can happen for example on the PA; the objective is to know the
623 offset to address something in front of the start of the function.
624 Thus, we can treat it like a backward branch.
625 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
626 any alignment we'd encounter, so we skip the call to align_fuzz. */
627 return insn_current_address;
628 dest = JUMP_LABEL (branch);
630 /* BRANCH has no proper alignment chain set, so use SEQ.
631 BRANCH also has no INSN_SHUID. */
632 if (INSN_SHUID (seq) < INSN_SHUID (dest))
634 /* Forward branch. */
635 return (insn_last_address + insn_lengths[seq_uid]
636 - align_fuzz (seq, dest, length_unit_log, ~0));
638 else
640 /* Backward branch. */
641 return (insn_current_address
642 + align_fuzz (dest, seq, length_unit_log, ~0));
645 #endif /* HAVE_ATTR_length */
647 void
648 compute_alignments (void)
650 int log, max_skip, max_log;
651 basic_block bb;
653 if (label_align)
655 free (label_align);
656 label_align = 0;
659 max_labelno = max_label_num ();
660 min_labelno = get_first_label_num ();
661 label_align = xcalloc (max_labelno - min_labelno + 1,
662 sizeof (struct label_alignment));
664 /* If not optimizing or optimizing for size, don't assign any alignments. */
665 if (! optimize || optimize_size)
666 return;
668 FOR_EACH_BB (bb)
670 rtx label = bb->head;
671 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
672 edge e;
674 if (GET_CODE (label) != CODE_LABEL
675 || probably_never_executed_bb_p (bb))
676 continue;
677 max_log = LABEL_ALIGN (label);
678 max_skip = LABEL_ALIGN_MAX_SKIP;
680 for (e = bb->pred; e; e = e->pred_next)
682 if (e->flags & EDGE_FALLTHRU)
683 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
684 else
685 branch_frequency += EDGE_FREQUENCY (e);
688 /* There are two purposes to align block with no fallthru incoming edge:
689 1) to avoid fetch stalls when branch destination is near cache boundary
690 2) to improve cache efficiency in case the previous block is not executed
691 (so it does not need to be in the cache).
693 We to catch first case, we align frequently executed blocks.
694 To catch the second, we align blocks that are executed more frequently
695 than the predecessor and the predecessor is likely to not be executed
696 when function is called. */
698 if (!has_fallthru
699 && (branch_frequency > BB_FREQ_MAX / 10
700 || (bb->frequency > bb->prev_bb->frequency * 10
701 && (bb->prev_bb->frequency
702 <= ENTRY_BLOCK_PTR->frequency / 2))))
704 log = JUMP_ALIGN (label);
705 if (max_log < log)
707 max_log = log;
708 max_skip = JUMP_ALIGN_MAX_SKIP;
711 /* In case block is frequent and reached mostly by non-fallthru edge,
712 align it. It is most likely a first block of loop. */
713 if (has_fallthru
714 && maybe_hot_bb_p (bb)
715 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
716 && branch_frequency > fallthru_frequency * 2)
718 log = LOOP_ALIGN (label);
719 if (max_log < log)
721 max_log = log;
722 max_skip = LOOP_ALIGN_MAX_SKIP;
725 LABEL_TO_ALIGNMENT (label) = max_log;
726 LABEL_TO_MAX_SKIP (label) = max_skip;
730 /* Make a pass over all insns and compute their actual lengths by shortening
731 any branches of variable length if possible. */
733 /* Give a default value for the lowest address in a function. */
735 #ifndef FIRST_INSN_ADDRESS
736 #define FIRST_INSN_ADDRESS 0
737 #endif
739 /* shorten_branches might be called multiple times: for example, the SH
740 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
741 In order to do this, it needs proper length information, which it obtains
742 by calling shorten_branches. This cannot be collapsed with
743 shorten_branches itself into a single pass unless we also want to integrate
744 reorg.c, since the branch splitting exposes new instructions with delay
745 slots. */
747 void
748 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 rtx insn;
751 int max_uid;
752 int i;
753 int max_log;
754 int max_skip;
755 #ifdef HAVE_ATTR_length
756 #define MAX_CODE_ALIGN 16
757 rtx seq;
758 int something_changed = 1;
759 char *varying_length;
760 rtx body;
761 int uid;
762 rtx align_tab[MAX_CODE_ALIGN];
764 #endif
766 /* Compute maximum UID and allocate label_align / uid_shuid. */
767 max_uid = get_max_uid ();
769 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
771 if (max_labelno != max_label_num ())
773 int old = max_labelno;
774 int n_labels;
775 int n_old_labels;
777 max_labelno = max_label_num ();
779 n_labels = max_labelno - min_labelno + 1;
780 n_old_labels = old - min_labelno + 1;
782 label_align = xrealloc (label_align,
783 n_labels * sizeof (struct label_alignment));
785 /* Range of labels grows monotonically in the function. Abort here
786 means that the initialization of array got lost. */
787 if (n_old_labels > n_labels)
788 abort ();
790 memset (label_align + n_old_labels, 0,
791 (n_labels - n_old_labels) * sizeof (struct label_alignment));
794 /* Initialize label_align and set up uid_shuid to be strictly
795 monotonically rising with insn order. */
796 /* We use max_log here to keep track of the maximum alignment we want to
797 impose on the next CODE_LABEL (or the current one if we are processing
798 the CODE_LABEL itself). */
800 max_log = 0;
801 max_skip = 0;
803 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
805 int log;
807 INSN_SHUID (insn) = i++;
808 if (INSN_P (insn))
810 /* reorg might make the first insn of a loop being run once only,
811 and delete the label in front of it. Then we want to apply
812 the loop alignment to the new label created by reorg, which
813 is separated by the former loop start insn from the
814 NOTE_INSN_LOOP_BEG. */
816 else if (GET_CODE (insn) == CODE_LABEL)
818 rtx next;
820 /* Merge in alignments computed by compute_alignments. */
821 log = LABEL_TO_ALIGNMENT (insn);
822 if (max_log < log)
824 max_log = log;
825 max_skip = LABEL_TO_MAX_SKIP (insn);
828 log = LABEL_ALIGN (insn);
829 if (max_log < log)
831 max_log = log;
832 max_skip = LABEL_ALIGN_MAX_SKIP;
834 next = NEXT_INSN (insn);
835 /* ADDR_VECs only take room if read-only data goes into the text
836 section. */
837 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
838 if (next && GET_CODE (next) == JUMP_INSN)
840 rtx nextbody = PATTERN (next);
841 if (GET_CODE (nextbody) == ADDR_VEC
842 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
844 log = ADDR_VEC_ALIGN (next);
845 if (max_log < log)
847 max_log = log;
848 max_skip = LABEL_ALIGN_MAX_SKIP;
852 LABEL_TO_ALIGNMENT (insn) = max_log;
853 LABEL_TO_MAX_SKIP (insn) = max_skip;
854 max_log = 0;
855 max_skip = 0;
857 else if (GET_CODE (insn) == BARRIER)
859 rtx label;
861 for (label = insn; label && ! INSN_P (label);
862 label = NEXT_INSN (label))
863 if (GET_CODE (label) == CODE_LABEL)
865 log = LABEL_ALIGN_AFTER_BARRIER (insn);
866 if (max_log < log)
868 max_log = log;
869 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
871 break;
875 #ifdef HAVE_ATTR_length
877 /* Allocate the rest of the arrays. */
878 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
879 insn_lengths_max_uid = max_uid;
880 /* Syntax errors can lead to labels being outside of the main insn stream.
881 Initialize insn_addresses, so that we get reproducible results. */
882 INSN_ADDRESSES_ALLOC (max_uid);
884 varying_length = xcalloc (max_uid, sizeof (char));
886 /* Initialize uid_align. We scan instructions
887 from end to start, and keep in align_tab[n] the last seen insn
888 that does an alignment of at least n+1, i.e. the successor
889 in the alignment chain for an insn that does / has a known
890 alignment of n. */
891 uid_align = xcalloc (max_uid, sizeof *uid_align);
893 for (i = MAX_CODE_ALIGN; --i >= 0;)
894 align_tab[i] = NULL_RTX;
895 seq = get_last_insn ();
896 for (; seq; seq = PREV_INSN (seq))
898 int uid = INSN_UID (seq);
899 int log;
900 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
901 uid_align[uid] = align_tab[0];
902 if (log)
904 /* Found an alignment label. */
905 uid_align[uid] = align_tab[log];
906 for (i = log - 1; i >= 0; i--)
907 align_tab[i] = seq;
910 #ifdef CASE_VECTOR_SHORTEN_MODE
911 if (optimize)
913 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
914 label fields. */
916 int min_shuid = INSN_SHUID (get_insns ()) - 1;
917 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
918 int rel;
920 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
922 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
923 int len, i, min, max, insn_shuid;
924 int min_align;
925 addr_diff_vec_flags flags;
927 if (GET_CODE (insn) != JUMP_INSN
928 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
929 continue;
930 pat = PATTERN (insn);
931 len = XVECLEN (pat, 1);
932 if (len <= 0)
933 abort ();
934 min_align = MAX_CODE_ALIGN;
935 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
937 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
938 int shuid = INSN_SHUID (lab);
939 if (shuid < min)
941 min = shuid;
942 min_lab = lab;
944 if (shuid > max)
946 max = shuid;
947 max_lab = lab;
949 if (min_align > LABEL_TO_ALIGNMENT (lab))
950 min_align = LABEL_TO_ALIGNMENT (lab);
952 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
953 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
954 insn_shuid = INSN_SHUID (insn);
955 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
956 flags.min_align = min_align;
957 flags.base_after_vec = rel > insn_shuid;
958 flags.min_after_vec = min > insn_shuid;
959 flags.max_after_vec = max > insn_shuid;
960 flags.min_after_base = min > rel;
961 flags.max_after_base = max > rel;
962 ADDR_DIFF_VEC_FLAGS (pat) = flags;
965 #endif /* CASE_VECTOR_SHORTEN_MODE */
967 /* Compute initial lengths, addresses, and varying flags for each insn. */
968 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
969 insn != 0;
970 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
972 uid = INSN_UID (insn);
974 insn_lengths[uid] = 0;
976 if (GET_CODE (insn) == CODE_LABEL)
978 int log = LABEL_TO_ALIGNMENT (insn);
979 if (log)
981 int align = 1 << log;
982 int new_address = (insn_current_address + align - 1) & -align;
983 insn_lengths[uid] = new_address - insn_current_address;
987 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
989 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
990 || GET_CODE (insn) == CODE_LABEL)
991 continue;
992 if (INSN_DELETED_P (insn))
993 continue;
995 body = PATTERN (insn);
996 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
998 /* This only takes room if read-only data goes into the text
999 section. */
1000 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1001 insn_lengths[uid] = (XVECLEN (body,
1002 GET_CODE (body) == ADDR_DIFF_VEC)
1003 * GET_MODE_SIZE (GET_MODE (body)));
1004 /* Alignment is handled by ADDR_VEC_ALIGN. */
1006 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1007 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1008 else if (GET_CODE (body) == SEQUENCE)
1010 int i;
1011 int const_delay_slots;
1012 #ifdef DELAY_SLOTS
1013 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1014 #else
1015 const_delay_slots = 0;
1016 #endif
1017 /* Inside a delay slot sequence, we do not do any branch shortening
1018 if the shortening could change the number of delay slots
1019 of the branch. */
1020 for (i = 0; i < XVECLEN (body, 0); i++)
1022 rtx inner_insn = XVECEXP (body, 0, i);
1023 int inner_uid = INSN_UID (inner_insn);
1024 int inner_length;
1026 if (GET_CODE (body) == ASM_INPUT
1027 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1028 inner_length = (asm_insn_count (PATTERN (inner_insn))
1029 * insn_default_length (inner_insn));
1030 else
1031 inner_length = insn_default_length (inner_insn);
1033 insn_lengths[inner_uid] = inner_length;
1034 if (const_delay_slots)
1036 if ((varying_length[inner_uid]
1037 = insn_variable_length_p (inner_insn)) != 0)
1038 varying_length[uid] = 1;
1039 INSN_ADDRESSES (inner_uid) = (insn_current_address
1040 + insn_lengths[uid]);
1042 else
1043 varying_length[inner_uid] = 0;
1044 insn_lengths[uid] += inner_length;
1047 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1049 insn_lengths[uid] = insn_default_length (insn);
1050 varying_length[uid] = insn_variable_length_p (insn);
1053 /* If needed, do any adjustment. */
1054 #ifdef ADJUST_INSN_LENGTH
1055 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1056 if (insn_lengths[uid] < 0)
1057 fatal_insn ("negative insn length", insn);
1058 #endif
1061 /* Now loop over all the insns finding varying length insns. For each,
1062 get the current insn length. If it has changed, reflect the change.
1063 When nothing changes for a full pass, we are done. */
1065 while (something_changed)
1067 something_changed = 0;
1068 insn_current_align = MAX_CODE_ALIGN - 1;
1069 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1070 insn != 0;
1071 insn = NEXT_INSN (insn))
1073 int new_length;
1074 #ifdef ADJUST_INSN_LENGTH
1075 int tmp_length;
1076 #endif
1077 int length_align;
1079 uid = INSN_UID (insn);
1081 if (GET_CODE (insn) == CODE_LABEL)
1083 int log = LABEL_TO_ALIGNMENT (insn);
1084 if (log > insn_current_align)
1086 int align = 1 << log;
1087 int new_address= (insn_current_address + align - 1) & -align;
1088 insn_lengths[uid] = new_address - insn_current_address;
1089 insn_current_align = log;
1090 insn_current_address = new_address;
1092 else
1093 insn_lengths[uid] = 0;
1094 INSN_ADDRESSES (uid) = insn_current_address;
1095 continue;
1098 length_align = INSN_LENGTH_ALIGNMENT (insn);
1099 if (length_align < insn_current_align)
1100 insn_current_align = length_align;
1102 insn_last_address = INSN_ADDRESSES (uid);
1103 INSN_ADDRESSES (uid) = insn_current_address;
1105 #ifdef CASE_VECTOR_SHORTEN_MODE
1106 if (optimize && GET_CODE (insn) == JUMP_INSN
1107 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1109 rtx body = PATTERN (insn);
1110 int old_length = insn_lengths[uid];
1111 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1112 rtx min_lab = XEXP (XEXP (body, 2), 0);
1113 rtx max_lab = XEXP (XEXP (body, 3), 0);
1114 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1115 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1116 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1117 rtx prev;
1118 int rel_align = 0;
1119 addr_diff_vec_flags flags;
1121 /* Avoid automatic aggregate initialization. */
1122 flags = ADDR_DIFF_VEC_FLAGS (body);
1124 /* Try to find a known alignment for rel_lab. */
1125 for (prev = rel_lab;
1126 prev
1127 && ! insn_lengths[INSN_UID (prev)]
1128 && ! (varying_length[INSN_UID (prev)] & 1);
1129 prev = PREV_INSN (prev))
1130 if (varying_length[INSN_UID (prev)] & 2)
1132 rel_align = LABEL_TO_ALIGNMENT (prev);
1133 break;
1136 /* See the comment on addr_diff_vec_flags in rtl.h for the
1137 meaning of the flags values. base: REL_LAB vec: INSN */
1138 /* Anything after INSN has still addresses from the last
1139 pass; adjust these so that they reflect our current
1140 estimate for this pass. */
1141 if (flags.base_after_vec)
1142 rel_addr += insn_current_address - insn_last_address;
1143 if (flags.min_after_vec)
1144 min_addr += insn_current_address - insn_last_address;
1145 if (flags.max_after_vec)
1146 max_addr += insn_current_address - insn_last_address;
1147 /* We want to know the worst case, i.e. lowest possible value
1148 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1149 its offset is positive, and we have to be wary of code shrink;
1150 otherwise, it is negative, and we have to be vary of code
1151 size increase. */
1152 if (flags.min_after_base)
1154 /* If INSN is between REL_LAB and MIN_LAB, the size
1155 changes we are about to make can change the alignment
1156 within the observed offset, therefore we have to break
1157 it up into two parts that are independent. */
1158 if (! flags.base_after_vec && flags.min_after_vec)
1160 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1161 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1163 else
1164 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1166 else
1168 if (flags.base_after_vec && ! flags.min_after_vec)
1170 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1171 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1173 else
1174 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1176 /* Likewise, determine the highest lowest possible value
1177 for the offset of MAX_LAB. */
1178 if (flags.max_after_base)
1180 if (! flags.base_after_vec && flags.max_after_vec)
1182 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1183 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1185 else
1186 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1188 else
1190 if (flags.base_after_vec && ! flags.max_after_vec)
1192 max_addr += align_fuzz (max_lab, insn, 0, 0);
1193 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1195 else
1196 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1198 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1199 max_addr - rel_addr,
1200 body));
1201 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1203 insn_lengths[uid]
1204 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1205 insn_current_address += insn_lengths[uid];
1206 if (insn_lengths[uid] != old_length)
1207 something_changed = 1;
1210 continue;
1212 #endif /* CASE_VECTOR_SHORTEN_MODE */
1214 if (! (varying_length[uid]))
1216 if (GET_CODE (insn) == INSN
1217 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1219 int i;
1221 body = PATTERN (insn);
1222 for (i = 0; i < XVECLEN (body, 0); i++)
1224 rtx inner_insn = XVECEXP (body, 0, i);
1225 int inner_uid = INSN_UID (inner_insn);
1227 INSN_ADDRESSES (inner_uid) = insn_current_address;
1229 insn_current_address += insn_lengths[inner_uid];
1232 else
1233 insn_current_address += insn_lengths[uid];
1235 continue;
1238 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1240 int i;
1242 body = PATTERN (insn);
1243 new_length = 0;
1244 for (i = 0; i < XVECLEN (body, 0); i++)
1246 rtx inner_insn = XVECEXP (body, 0, i);
1247 int inner_uid = INSN_UID (inner_insn);
1248 int inner_length;
1250 INSN_ADDRESSES (inner_uid) = insn_current_address;
1252 /* insn_current_length returns 0 for insns with a
1253 non-varying length. */
1254 if (! varying_length[inner_uid])
1255 inner_length = insn_lengths[inner_uid];
1256 else
1257 inner_length = insn_current_length (inner_insn);
1259 if (inner_length != insn_lengths[inner_uid])
1261 insn_lengths[inner_uid] = inner_length;
1262 something_changed = 1;
1264 insn_current_address += insn_lengths[inner_uid];
1265 new_length += inner_length;
1268 else
1270 new_length = insn_current_length (insn);
1271 insn_current_address += new_length;
1274 #ifdef ADJUST_INSN_LENGTH
1275 /* If needed, do any adjustment. */
1276 tmp_length = new_length;
1277 ADJUST_INSN_LENGTH (insn, new_length);
1278 insn_current_address += (new_length - tmp_length);
1279 #endif
1281 if (new_length != insn_lengths[uid])
1283 insn_lengths[uid] = new_length;
1284 something_changed = 1;
1287 /* For a non-optimizing compile, do only a single pass. */
1288 if (!optimize)
1289 break;
1292 free (varying_length);
1294 #endif /* HAVE_ATTR_length */
1297 #ifdef HAVE_ATTR_length
1298 /* Given the body of an INSN known to be generated by an ASM statement, return
1299 the number of machine instructions likely to be generated for this insn.
1300 This is used to compute its length. */
1302 static int
1303 asm_insn_count (rtx body)
1305 const char *template;
1306 int count = 1;
1308 if (GET_CODE (body) == ASM_INPUT)
1309 template = XSTR (body, 0);
1310 else
1311 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1313 for (; *template; template++)
1314 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1315 count++;
1317 return count;
1319 #endif
1321 /* Output assembler code for the start of a function,
1322 and initialize some of the variables in this file
1323 for the new function. The label for the function and associated
1324 assembler pseudo-ops have already been output in `assemble_start_function'.
1326 FIRST is the first insn of the rtl for the function being compiled.
1327 FILE is the file to write assembler code to.
1328 OPTIMIZE is nonzero if we should eliminate redundant
1329 test and compare insns. */
1331 void
1332 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1333 int optimize ATTRIBUTE_UNUSED)
1335 block_depth = 0;
1337 this_is_asm_operands = 0;
1339 #ifdef NON_SAVING_SETJMP
1340 /* A function that calls setjmp should save and restore all the
1341 call-saved registers on a system where longjmp clobbers them. */
1342 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1344 int i;
1346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1347 if (!call_used_regs[i])
1348 regs_ever_live[i] = 1;
1350 #endif
1352 last_filename = locator_file (prologue_locator);
1353 last_linenum = locator_line (prologue_locator);
1355 high_block_linenum = high_function_linenum = last_linenum;
1357 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1359 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1360 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1361 dwarf2out_begin_prologue (0, NULL);
1362 #endif
1364 #ifdef LEAF_REG_REMAP
1365 if (current_function_uses_only_leaf_regs)
1366 leaf_renumber_regs (first);
1367 #endif
1369 /* The Sun386i and perhaps other machines don't work right
1370 if the profiling code comes after the prologue. */
1371 #ifdef PROFILE_BEFORE_PROLOGUE
1372 if (current_function_profile)
1373 profile_function (file);
1374 #endif /* PROFILE_BEFORE_PROLOGUE */
1376 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1377 if (dwarf2out_do_frame ())
1378 dwarf2out_frame_debug (NULL_RTX);
1379 #endif
1381 /* If debugging, assign block numbers to all of the blocks in this
1382 function. */
1383 if (write_symbols)
1385 remove_unnecessary_notes ();
1386 reemit_insn_block_notes ();
1387 number_blocks (current_function_decl);
1388 /* We never actually put out begin/end notes for the top-level
1389 block in the function. But, conceptually, that block is
1390 always needed. */
1391 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1394 /* First output the function prologue: code to set up the stack frame. */
1395 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1397 /* If the machine represents the prologue as RTL, the profiling code must
1398 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1399 #ifdef HAVE_prologue
1400 if (! HAVE_prologue)
1401 #endif
1402 profile_after_prologue (file);
1405 static void
1406 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1408 #ifndef PROFILE_BEFORE_PROLOGUE
1409 if (current_function_profile)
1410 profile_function (file);
1411 #endif /* not PROFILE_BEFORE_PROLOGUE */
1414 static void
1415 profile_function (FILE *file ATTRIBUTE_UNUSED)
1417 #ifndef NO_PROFILE_COUNTERS
1418 # define NO_PROFILE_COUNTERS 0
1419 #endif
1420 #if defined(ASM_OUTPUT_REG_PUSH)
1421 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1422 int sval = current_function_returns_struct;
1423 #endif
1424 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1425 int cxt = current_function_needs_context;
1426 #endif
1427 #endif /* ASM_OUTPUT_REG_PUSH */
1429 if (! NO_PROFILE_COUNTERS)
1431 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1432 data_section ();
1433 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1434 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1435 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1438 function_section (current_function_decl);
1440 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1441 if (sval)
1442 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1443 #else
1444 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1445 if (sval)
1447 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1449 #endif
1450 #endif
1452 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1453 if (cxt)
1454 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1455 #else
1456 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1457 if (cxt)
1459 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1461 #endif
1462 #endif
1464 FUNCTION_PROFILER (file, current_function_funcdef_no);
1466 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1467 if (cxt)
1468 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1469 #else
1470 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1471 if (cxt)
1473 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1475 #endif
1476 #endif
1478 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479 if (sval)
1480 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1481 #else
1482 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1483 if (sval)
1485 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1487 #endif
1488 #endif
1491 /* Output assembler code for the end of a function.
1492 For clarity, args are same as those of `final_start_function'
1493 even though not all of them are needed. */
1495 void
1496 final_end_function (void)
1498 app_disable ();
1500 (*debug_hooks->end_function) (high_function_linenum);
1502 /* Finally, output the function epilogue:
1503 code to restore the stack frame and return to the caller. */
1504 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1506 /* And debug output. */
1507 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1509 #if defined (DWARF2_UNWIND_INFO)
1510 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1511 && dwarf2out_do_frame ())
1512 dwarf2out_end_epilogue (last_linenum, last_filename);
1513 #endif
1516 /* Output assembler code for some insns: all or part of a function.
1517 For description of args, see `final_start_function', above.
1519 PRESCAN is 1 if we are not really outputting,
1520 just scanning as if we were outputting.
1521 Prescanning deletes and rearranges insns just like ordinary output.
1522 PRESCAN is -2 if we are outputting after having prescanned.
1523 In this case, don't try to delete or rearrange insns
1524 because that has already been done.
1525 Prescanning is done only on certain machines. */
1527 void
1528 final (rtx first, FILE *file, int optimize, int prescan)
1530 rtx insn;
1531 int max_line = 0;
1532 int max_uid = 0;
1534 last_ignored_compare = 0;
1536 /* Make a map indicating which line numbers appear in this function.
1537 When producing SDB debugging info, delete troublesome line number
1538 notes from inlined functions in other files as well as duplicate
1539 line number notes. */
1540 #ifdef SDB_DEBUGGING_INFO
1541 if (write_symbols == SDB_DEBUG)
1543 rtx last = 0;
1544 for (insn = first; insn; insn = NEXT_INSN (insn))
1545 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1547 if ((RTX_INTEGRATED_P (insn)
1548 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1549 || (last != 0
1550 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1551 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1553 delete_insn (insn); /* Use delete_note. */
1554 continue;
1556 last = insn;
1557 if (NOTE_LINE_NUMBER (insn) > max_line)
1558 max_line = NOTE_LINE_NUMBER (insn);
1561 else
1562 #endif
1564 for (insn = first; insn; insn = NEXT_INSN (insn))
1565 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1566 max_line = NOTE_LINE_NUMBER (insn);
1569 line_note_exists = xcalloc (max_line + 1, sizeof (char));
1571 for (insn = first; insn; insn = NEXT_INSN (insn))
1573 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1574 max_uid = INSN_UID (insn);
1575 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1576 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1577 #ifdef HAVE_cc0
1578 /* If CC tracking across branches is enabled, record the insn which
1579 jumps to each branch only reached from one place. */
1580 if (optimize && GET_CODE (insn) == JUMP_INSN)
1582 rtx lab = JUMP_LABEL (insn);
1583 if (lab && LABEL_NUSES (lab) == 1)
1585 LABEL_REFS (lab) = insn;
1588 #endif
1591 init_recog ();
1593 CC_STATUS_INIT;
1595 /* Output the insns. */
1596 for (insn = NEXT_INSN (first); insn;)
1598 #ifdef HAVE_ATTR_length
1599 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1601 /* This can be triggered by bugs elsewhere in the compiler if
1602 new insns are created after init_insn_lengths is called. */
1603 if (GET_CODE (insn) == NOTE)
1604 insn_current_address = -1;
1605 else
1606 abort ();
1608 else
1609 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1610 #endif /* HAVE_ATTR_length */
1612 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1615 free (line_note_exists);
1616 line_note_exists = NULL;
1619 const char *
1620 get_insn_template (int code, rtx insn)
1622 const void *output = insn_data[code].output;
1623 switch (insn_data[code].output_format)
1625 case INSN_OUTPUT_FORMAT_SINGLE:
1626 return (const char *) output;
1627 case INSN_OUTPUT_FORMAT_MULTI:
1628 return ((const char *const *) output)[which_alternative];
1629 case INSN_OUTPUT_FORMAT_FUNCTION:
1630 if (insn == NULL)
1631 abort ();
1632 return (*(insn_output_fn) output) (recog_data.operand, insn);
1634 default:
1635 abort ();
1639 /* Emit the appropriate declaration for an alternate-entry-point
1640 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1641 LABEL_KIND != LABEL_NORMAL.
1643 The case fall-through in this function is intentional. */
1644 static void
1645 output_alternate_entry_point (FILE *file, rtx insn)
1647 const char *name = LABEL_NAME (insn);
1649 switch (LABEL_KIND (insn))
1651 case LABEL_WEAK_ENTRY:
1652 #ifdef ASM_WEAKEN_LABEL
1653 ASM_WEAKEN_LABEL (file, name);
1654 #endif
1655 case LABEL_GLOBAL_ENTRY:
1656 (*targetm.asm_out.globalize_label) (file, name);
1657 case LABEL_STATIC_ENTRY:
1658 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1659 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1660 #endif
1661 ASM_OUTPUT_LABEL (file, name);
1662 break;
1664 case LABEL_NORMAL:
1665 default:
1666 abort ();
1670 /* The final scan for one insn, INSN.
1671 Args are same as in `final', except that INSN
1672 is the insn being scanned.
1673 Value returned is the next insn to be scanned.
1675 NOPEEPHOLES is the flag to disallow peephole processing (currently
1676 used for within delayed branch sequence output). */
1679 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1680 int prescan, int nopeepholes ATTRIBUTE_UNUSED)
1682 #ifdef HAVE_cc0
1683 rtx set;
1684 #endif
1686 insn_counter++;
1688 /* Ignore deleted insns. These can occur when we split insns (due to a
1689 template of "#") while not optimizing. */
1690 if (INSN_DELETED_P (insn))
1691 return NEXT_INSN (insn);
1693 switch (GET_CODE (insn))
1695 case NOTE:
1696 if (prescan > 0)
1697 break;
1699 switch (NOTE_LINE_NUMBER (insn))
1701 case NOTE_INSN_DELETED:
1702 case NOTE_INSN_LOOP_BEG:
1703 case NOTE_INSN_LOOP_END:
1704 case NOTE_INSN_LOOP_END_TOP_COND:
1705 case NOTE_INSN_LOOP_CONT:
1706 case NOTE_INSN_LOOP_VTOP:
1707 case NOTE_INSN_FUNCTION_END:
1708 case NOTE_INSN_REPEATED_LINE_NUMBER:
1709 case NOTE_INSN_EXPECTED_VALUE:
1710 break;
1712 case NOTE_INSN_BASIC_BLOCK:
1713 #ifdef IA64_UNWIND_INFO
1714 IA64_UNWIND_EMIT (asm_out_file, insn);
1715 #endif
1716 if (flag_debug_asm)
1717 fprintf (asm_out_file, "\t%s basic block %d\n",
1718 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1719 break;
1721 case NOTE_INSN_EH_REGION_BEG:
1722 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1723 NOTE_EH_HANDLER (insn));
1724 break;
1726 case NOTE_INSN_EH_REGION_END:
1727 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1728 NOTE_EH_HANDLER (insn));
1729 break;
1731 case NOTE_INSN_PROLOGUE_END:
1732 (*targetm.asm_out.function_end_prologue) (file);
1733 profile_after_prologue (file);
1734 break;
1736 case NOTE_INSN_EPILOGUE_BEG:
1737 (*targetm.asm_out.function_begin_epilogue) (file);
1738 break;
1740 case NOTE_INSN_FUNCTION_BEG:
1741 app_disable ();
1742 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1743 break;
1745 case NOTE_INSN_BLOCK_BEG:
1746 if (debug_info_level == DINFO_LEVEL_NORMAL
1747 || debug_info_level == DINFO_LEVEL_VERBOSE
1748 || write_symbols == DWARF_DEBUG
1749 || write_symbols == DWARF2_DEBUG
1750 || write_symbols == VMS_AND_DWARF2_DEBUG
1751 || write_symbols == VMS_DEBUG)
1753 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1755 app_disable ();
1756 ++block_depth;
1757 high_block_linenum = last_linenum;
1759 /* Output debugging info about the symbol-block beginning. */
1760 (*debug_hooks->begin_block) (last_linenum, n);
1762 /* Mark this block as output. */
1763 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1765 break;
1767 case NOTE_INSN_BLOCK_END:
1768 if (debug_info_level == DINFO_LEVEL_NORMAL
1769 || debug_info_level == DINFO_LEVEL_VERBOSE
1770 || write_symbols == DWARF_DEBUG
1771 || write_symbols == DWARF2_DEBUG
1772 || write_symbols == VMS_AND_DWARF2_DEBUG
1773 || write_symbols == VMS_DEBUG)
1775 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1777 app_disable ();
1779 /* End of a symbol-block. */
1780 --block_depth;
1781 if (block_depth < 0)
1782 abort ();
1784 (*debug_hooks->end_block) (high_block_linenum, n);
1786 break;
1788 case NOTE_INSN_DELETED_LABEL:
1789 /* Emit the label. We may have deleted the CODE_LABEL because
1790 the label could be proved to be unreachable, though still
1791 referenced (in the form of having its address taken. */
1792 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1793 break;
1795 case 0:
1796 break;
1798 default:
1799 if (NOTE_LINE_NUMBER (insn) <= 0)
1800 abort ();
1801 break;
1803 break;
1805 case BARRIER:
1806 #if defined (DWARF2_UNWIND_INFO)
1807 if (dwarf2out_do_frame ())
1808 dwarf2out_frame_debug (insn);
1809 #endif
1810 break;
1812 case CODE_LABEL:
1813 /* The target port might emit labels in the output function for
1814 some insn, e.g. sh.c output_branchy_insn. */
1815 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1817 int align = LABEL_TO_ALIGNMENT (insn);
1818 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1819 int max_skip = LABEL_TO_MAX_SKIP (insn);
1820 #endif
1822 if (align && NEXT_INSN (insn))
1824 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1825 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1826 #else
1827 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1828 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1829 #else
1830 ASM_OUTPUT_ALIGN (file, align);
1831 #endif
1832 #endif
1835 #ifdef HAVE_cc0
1836 CC_STATUS_INIT;
1837 /* If this label is reached from only one place, set the condition
1838 codes from the instruction just before the branch. */
1840 /* Disabled because some insns set cc_status in the C output code
1841 and NOTICE_UPDATE_CC alone can set incorrect status. */
1842 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1844 rtx jump = LABEL_REFS (insn);
1845 rtx barrier = prev_nonnote_insn (insn);
1846 rtx prev;
1847 /* If the LABEL_REFS field of this label has been set to point
1848 at a branch, the predecessor of the branch is a regular
1849 insn, and that branch is the only way to reach this label,
1850 set the condition codes based on the branch and its
1851 predecessor. */
1852 if (barrier && GET_CODE (barrier) == BARRIER
1853 && jump && GET_CODE (jump) == JUMP_INSN
1854 && (prev = prev_nonnote_insn (jump))
1855 && GET_CODE (prev) == INSN)
1857 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1858 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1861 #endif
1862 if (prescan > 0)
1863 break;
1865 #ifdef FINAL_PRESCAN_LABEL
1866 FINAL_PRESCAN_INSN (insn, NULL, 0);
1867 #endif
1869 if (LABEL_NAME (insn))
1870 (*debug_hooks->label) (insn);
1872 if (app_on)
1874 fputs (ASM_APP_OFF, file);
1875 app_on = 0;
1877 if (NEXT_INSN (insn) != 0
1878 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1880 rtx nextbody = PATTERN (NEXT_INSN (insn));
1882 /* If this label is followed by a jump-table,
1883 make sure we put the label in the read-only section. Also
1884 possibly write the label and jump table together. */
1886 if (GET_CODE (nextbody) == ADDR_VEC
1887 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1889 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1890 /* In this case, the case vector is being moved by the
1891 target, so don't output the label at all. Leave that
1892 to the back end macros. */
1893 #else
1894 if (! JUMP_TABLES_IN_TEXT_SECTION)
1896 int log_align;
1898 readonly_data_section ();
1900 #ifdef ADDR_VEC_ALIGN
1901 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1902 #else
1903 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1904 #endif
1905 ASM_OUTPUT_ALIGN (file, log_align);
1907 else
1908 function_section (current_function_decl);
1910 #ifdef ASM_OUTPUT_CASE_LABEL
1911 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1912 NEXT_INSN (insn));
1913 #else
1914 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1915 #endif
1916 #endif
1917 break;
1920 if (LABEL_ALT_ENTRY_P (insn))
1921 output_alternate_entry_point (file, insn);
1922 else
1923 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1924 break;
1926 default:
1928 rtx body = PATTERN (insn);
1929 int insn_code_number;
1930 const char *template;
1931 rtx note;
1933 /* An INSN, JUMP_INSN or CALL_INSN.
1934 First check for special kinds that recog doesn't recognize. */
1936 if (GET_CODE (body) == USE /* These are just declarations */
1937 || GET_CODE (body) == CLOBBER)
1938 break;
1940 #ifdef HAVE_cc0
1941 /* If there is a REG_CC_SETTER note on this insn, it means that
1942 the setting of the condition code was done in the delay slot
1943 of the insn that branched here. So recover the cc status
1944 from the insn that set it. */
1946 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1947 if (note)
1949 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1950 cc_prev_status = cc_status;
1952 #endif
1954 /* Detect insns that are really jump-tables
1955 and output them as such. */
1957 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1959 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1960 int vlen, idx;
1961 #endif
1963 if (prescan > 0)
1964 break;
1966 if (app_on)
1968 fputs (ASM_APP_OFF, file);
1969 app_on = 0;
1972 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1973 if (GET_CODE (body) == ADDR_VEC)
1975 #ifdef ASM_OUTPUT_ADDR_VEC
1976 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1977 #else
1978 abort ();
1979 #endif
1981 else
1983 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1984 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1985 #else
1986 abort ();
1987 #endif
1989 #else
1990 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1991 for (idx = 0; idx < vlen; idx++)
1993 if (GET_CODE (body) == ADDR_VEC)
1995 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1996 ASM_OUTPUT_ADDR_VEC_ELT
1997 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1998 #else
1999 abort ();
2000 #endif
2002 else
2004 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2005 ASM_OUTPUT_ADDR_DIFF_ELT
2006 (file,
2007 body,
2008 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2009 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2010 #else
2011 abort ();
2012 #endif
2015 #ifdef ASM_OUTPUT_CASE_END
2016 ASM_OUTPUT_CASE_END (file,
2017 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2018 insn);
2019 #endif
2020 #endif
2022 function_section (current_function_decl);
2024 break;
2026 /* Output this line note if it is the first or the last line
2027 note in a row. */
2028 if (notice_source_line (insn))
2030 (*debug_hooks->source_line) (last_linenum, last_filename);
2033 if (GET_CODE (body) == ASM_INPUT)
2035 const char *string = XSTR (body, 0);
2037 /* There's no telling what that did to the condition codes. */
2038 CC_STATUS_INIT;
2039 if (prescan > 0)
2040 break;
2042 if (string[0])
2044 if (! app_on)
2046 fputs (ASM_APP_ON, file);
2047 app_on = 1;
2049 fprintf (asm_out_file, "\t%s\n", string);
2051 break;
2054 /* Detect `asm' construct with operands. */
2055 if (asm_noperands (body) >= 0)
2057 unsigned int noperands = asm_noperands (body);
2058 rtx *ops = alloca (noperands * sizeof (rtx));
2059 const char *string;
2061 /* There's no telling what that did to the condition codes. */
2062 CC_STATUS_INIT;
2063 if (prescan > 0)
2064 break;
2066 /* Get out the operand values. */
2067 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2068 /* Inhibit aborts on what would otherwise be compiler bugs. */
2069 insn_noperands = noperands;
2070 this_is_asm_operands = insn;
2072 /* Output the insn using them. */
2073 if (string[0])
2075 if (! app_on)
2077 fputs (ASM_APP_ON, file);
2078 app_on = 1;
2080 output_asm_insn (string, ops);
2083 this_is_asm_operands = 0;
2084 break;
2087 if (prescan <= 0 && app_on)
2089 fputs (ASM_APP_OFF, file);
2090 app_on = 0;
2093 if (GET_CODE (body) == SEQUENCE)
2095 /* A delayed-branch sequence */
2096 int i;
2097 rtx next;
2099 if (prescan > 0)
2100 break;
2101 final_sequence = body;
2103 /* Record the delay slots' frame information before the branch.
2104 This is needed for delayed calls: see execute_cfa_program(). */
2105 #if defined (DWARF2_UNWIND_INFO)
2106 if (dwarf2out_do_frame ())
2107 for (i = 1; i < XVECLEN (body, 0); i++)
2108 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2109 #endif
2111 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2112 force the restoration of a comparison that was previously
2113 thought unnecessary. If that happens, cancel this sequence
2114 and cause that insn to be restored. */
2116 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2117 if (next != XVECEXP (body, 0, 1))
2119 final_sequence = 0;
2120 return next;
2123 for (i = 1; i < XVECLEN (body, 0); i++)
2125 rtx insn = XVECEXP (body, 0, i);
2126 rtx next = NEXT_INSN (insn);
2127 /* We loop in case any instruction in a delay slot gets
2128 split. */
2130 insn = final_scan_insn (insn, file, 0, prescan, 1);
2131 while (insn != next);
2133 #ifdef DBR_OUTPUT_SEQEND
2134 DBR_OUTPUT_SEQEND (file);
2135 #endif
2136 final_sequence = 0;
2138 /* If the insn requiring the delay slot was a CALL_INSN, the
2139 insns in the delay slot are actually executed before the
2140 called function. Hence we don't preserve any CC-setting
2141 actions in these insns and the CC must be marked as being
2142 clobbered by the function. */
2143 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2145 CC_STATUS_INIT;
2147 break;
2150 /* We have a real machine instruction as rtl. */
2152 body = PATTERN (insn);
2154 #ifdef HAVE_cc0
2155 set = single_set (insn);
2157 /* Check for redundant test and compare instructions
2158 (when the condition codes are already set up as desired).
2159 This is done only when optimizing; if not optimizing,
2160 it should be possible for the user to alter a variable
2161 with the debugger in between statements
2162 and the next statement should reexamine the variable
2163 to compute the condition codes. */
2165 if (optimize)
2167 #if 0
2168 rtx set = single_set (insn);
2169 #endif
2171 if (set
2172 && GET_CODE (SET_DEST (set)) == CC0
2173 && insn != last_ignored_compare)
2175 if (GET_CODE (SET_SRC (set)) == SUBREG)
2176 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2177 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2179 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2180 XEXP (SET_SRC (set), 0)
2181 = alter_subreg (&XEXP (SET_SRC (set), 0));
2182 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2183 XEXP (SET_SRC (set), 1)
2184 = alter_subreg (&XEXP (SET_SRC (set), 1));
2186 if ((cc_status.value1 != 0
2187 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2188 || (cc_status.value2 != 0
2189 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2191 /* Don't delete insn if it has an addressing side-effect. */
2192 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2193 /* or if anything in it is volatile. */
2194 && ! volatile_refs_p (PATTERN (insn)))
2196 /* We don't really delete the insn; just ignore it. */
2197 last_ignored_compare = insn;
2198 break;
2203 #endif
2205 #ifndef STACK_REGS
2206 /* Don't bother outputting obvious no-ops, even without -O.
2207 This optimization is fast and doesn't interfere with debugging.
2208 Don't do this if the insn is in a delay slot, since this
2209 will cause an improper number of delay insns to be written. */
2210 if (final_sequence == 0
2211 && prescan >= 0
2212 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2213 && GET_CODE (SET_SRC (body)) == REG
2214 && GET_CODE (SET_DEST (body)) == REG
2215 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2216 break;
2217 #endif
2219 #ifdef HAVE_cc0
2220 /* If this is a conditional branch, maybe modify it
2221 if the cc's are in a nonstandard state
2222 so that it accomplishes the same thing that it would
2223 do straightforwardly if the cc's were set up normally. */
2225 if (cc_status.flags != 0
2226 && GET_CODE (insn) == JUMP_INSN
2227 && GET_CODE (body) == SET
2228 && SET_DEST (body) == pc_rtx
2229 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2230 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2231 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2232 /* This is done during prescan; it is not done again
2233 in final scan when prescan has been done. */
2234 && prescan >= 0)
2236 /* This function may alter the contents of its argument
2237 and clear some of the cc_status.flags bits.
2238 It may also return 1 meaning condition now always true
2239 or -1 meaning condition now always false
2240 or 2 meaning condition nontrivial but altered. */
2241 int result = alter_cond (XEXP (SET_SRC (body), 0));
2242 /* If condition now has fixed value, replace the IF_THEN_ELSE
2243 with its then-operand or its else-operand. */
2244 if (result == 1)
2245 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2246 if (result == -1)
2247 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2249 /* The jump is now either unconditional or a no-op.
2250 If it has become a no-op, don't try to output it.
2251 (It would not be recognized.) */
2252 if (SET_SRC (body) == pc_rtx)
2254 delete_insn (insn);
2255 break;
2257 else if (GET_CODE (SET_SRC (body)) == RETURN)
2258 /* Replace (set (pc) (return)) with (return). */
2259 PATTERN (insn) = body = SET_SRC (body);
2261 /* Rerecognize the instruction if it has changed. */
2262 if (result != 0)
2263 INSN_CODE (insn) = -1;
2266 /* Make same adjustments to instructions that examine the
2267 condition codes without jumping and instructions that
2268 handle conditional moves (if this machine has either one). */
2270 if (cc_status.flags != 0
2271 && set != 0)
2273 rtx cond_rtx, then_rtx, else_rtx;
2275 if (GET_CODE (insn) != JUMP_INSN
2276 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2278 cond_rtx = XEXP (SET_SRC (set), 0);
2279 then_rtx = XEXP (SET_SRC (set), 1);
2280 else_rtx = XEXP (SET_SRC (set), 2);
2282 else
2284 cond_rtx = SET_SRC (set);
2285 then_rtx = const_true_rtx;
2286 else_rtx = const0_rtx;
2289 switch (GET_CODE (cond_rtx))
2291 case GTU:
2292 case GT:
2293 case LTU:
2294 case LT:
2295 case GEU:
2296 case GE:
2297 case LEU:
2298 case LE:
2299 case EQ:
2300 case NE:
2302 int result;
2303 if (XEXP (cond_rtx, 0) != cc0_rtx)
2304 break;
2305 result = alter_cond (cond_rtx);
2306 if (result == 1)
2307 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2308 else if (result == -1)
2309 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2310 else if (result == 2)
2311 INSN_CODE (insn) = -1;
2312 if (SET_DEST (set) == SET_SRC (set))
2313 delete_insn (insn);
2315 break;
2317 default:
2318 break;
2322 #endif
2324 #ifdef HAVE_peephole
2325 /* Do machine-specific peephole optimizations if desired. */
2327 if (optimize && !flag_no_peephole && !nopeepholes)
2329 rtx next = peephole (insn);
2330 /* When peepholing, if there were notes within the peephole,
2331 emit them before the peephole. */
2332 if (next != 0 && next != NEXT_INSN (insn))
2334 rtx prev = PREV_INSN (insn);
2336 for (note = NEXT_INSN (insn); note != next;
2337 note = NEXT_INSN (note))
2338 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2340 /* In case this is prescan, put the notes
2341 in proper position for later rescan. */
2342 note = NEXT_INSN (insn);
2343 PREV_INSN (note) = prev;
2344 NEXT_INSN (prev) = note;
2345 NEXT_INSN (PREV_INSN (next)) = insn;
2346 PREV_INSN (insn) = PREV_INSN (next);
2347 NEXT_INSN (insn) = next;
2348 PREV_INSN (next) = insn;
2351 /* PEEPHOLE might have changed this. */
2352 body = PATTERN (insn);
2354 #endif
2356 /* Try to recognize the instruction.
2357 If successful, verify that the operands satisfy the
2358 constraints for the instruction. Crash if they don't,
2359 since `reload' should have changed them so that they do. */
2361 insn_code_number = recog_memoized (insn);
2362 cleanup_subreg_operands (insn);
2364 /* Dump the insn in the assembly for debugging. */
2365 if (flag_dump_rtl_in_asm)
2367 print_rtx_head = ASM_COMMENT_START;
2368 print_rtl_single (asm_out_file, insn);
2369 print_rtx_head = "";
2372 if (! constrain_operands_cached (1))
2373 fatal_insn_not_found (insn);
2375 /* Some target machines need to prescan each insn before
2376 it is output. */
2378 #ifdef FINAL_PRESCAN_INSN
2379 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2380 #endif
2382 #ifdef HAVE_conditional_execution
2383 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2384 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2385 else
2386 current_insn_predicate = NULL_RTX;
2387 #endif
2389 #ifdef HAVE_cc0
2390 cc_prev_status = cc_status;
2392 /* Update `cc_status' for this instruction.
2393 The instruction's output routine may change it further.
2394 If the output routine for a jump insn needs to depend
2395 on the cc status, it should look at cc_prev_status. */
2397 NOTICE_UPDATE_CC (body, insn);
2398 #endif
2400 current_output_insn = debug_insn = insn;
2402 #if defined (DWARF2_UNWIND_INFO)
2403 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2404 dwarf2out_frame_debug (insn);
2405 #endif
2407 /* Find the proper template for this insn. */
2408 template = get_insn_template (insn_code_number, insn);
2410 /* If the C code returns 0, it means that it is a jump insn
2411 which follows a deleted test insn, and that test insn
2412 needs to be reinserted. */
2413 if (template == 0)
2415 rtx prev;
2417 if (prev_nonnote_insn (insn) != last_ignored_compare)
2418 abort ();
2420 /* We have already processed the notes between the setter and
2421 the user. Make sure we don't process them again, this is
2422 particularly important if one of the notes is a block
2423 scope note or an EH note. */
2424 for (prev = insn;
2425 prev != last_ignored_compare;
2426 prev = PREV_INSN (prev))
2428 if (GET_CODE (prev) == NOTE)
2429 delete_insn (prev); /* Use delete_note. */
2432 return prev;
2435 /* If the template is the string "#", it means that this insn must
2436 be split. */
2437 if (template[0] == '#' && template[1] == '\0')
2439 rtx new = try_split (body, insn, 0);
2441 /* If we didn't split the insn, go away. */
2442 if (new == insn && PATTERN (new) == body)
2443 fatal_insn ("could not split insn", insn);
2445 #ifdef HAVE_ATTR_length
2446 /* This instruction should have been split in shorten_branches,
2447 to ensure that we would have valid length info for the
2448 splitees. */
2449 abort ();
2450 #endif
2452 return new;
2455 if (prescan > 0)
2456 break;
2458 #ifdef IA64_UNWIND_INFO
2459 IA64_UNWIND_EMIT (asm_out_file, insn);
2460 #endif
2461 /* Output assembler code from the template. */
2463 output_asm_insn (template, recog_data.operand);
2465 /* If necessary, report the effect that the instruction has on
2466 the unwind info. We've already done this for delay slots
2467 and call instructions. */
2468 #if defined (DWARF2_UNWIND_INFO)
2469 if (GET_CODE (insn) == INSN
2470 #if !defined (HAVE_prologue)
2471 && !ACCUMULATE_OUTGOING_ARGS
2472 #endif
2473 && final_sequence == 0
2474 && dwarf2out_do_frame ())
2475 dwarf2out_frame_debug (insn);
2476 #endif
2478 #if 0
2479 /* It's not at all clear why we did this and doing so used to
2480 interfere with tests that used REG_WAS_0 notes, which are
2481 now gone, so let's try with this out. */
2483 /* Mark this insn as having been output. */
2484 INSN_DELETED_P (insn) = 1;
2485 #endif
2487 /* Emit information for vtable gc. */
2488 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2490 current_output_insn = debug_insn = 0;
2493 return NEXT_INSN (insn);
2496 /* Output debugging info to the assembler file FILE
2497 based on the NOTE-insn INSN, assumed to be a line number. */
2499 static bool
2500 notice_source_line (rtx insn)
2502 const char *filename = insn_file (insn);
2503 int linenum = insn_line (insn);
2505 if (filename && (filename != last_filename || last_linenum != linenum))
2507 last_filename = filename;
2508 last_linenum = linenum;
2509 high_block_linenum = MAX (last_linenum, high_block_linenum);
2510 high_function_linenum = MAX (last_linenum, high_function_linenum);
2511 return true;
2513 return false;
2516 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2517 directly to the desired hard register. */
2519 void
2520 cleanup_subreg_operands (rtx insn)
2522 int i;
2523 extract_insn_cached (insn);
2524 for (i = 0; i < recog_data.n_operands; i++)
2526 /* The following test cannot use recog_data.operand when tesing
2527 for a SUBREG: the underlying object might have been changed
2528 already if we are inside a match_operator expression that
2529 matches the else clause. Instead we test the underlying
2530 expression directly. */
2531 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2532 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2533 else if (GET_CODE (recog_data.operand[i]) == PLUS
2534 || GET_CODE (recog_data.operand[i]) == MULT
2535 || GET_CODE (recog_data.operand[i]) == MEM)
2536 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2539 for (i = 0; i < recog_data.n_dups; i++)
2541 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2542 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2543 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2544 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2545 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2546 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2550 /* If X is a SUBREG, replace it with a REG or a MEM,
2551 based on the thing it is a subreg of. */
2554 alter_subreg (rtx *xp)
2556 rtx x = *xp;
2557 rtx y = SUBREG_REG (x);
2559 /* simplify_subreg does not remove subreg from volatile references.
2560 We are required to. */
2561 if (GET_CODE (y) == MEM)
2562 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2563 else
2565 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2566 SUBREG_BYTE (x));
2568 if (new != 0)
2569 *xp = new;
2570 /* Simplify_subreg can't handle some REG cases, but we have to. */
2571 else if (GET_CODE (y) == REG)
2573 unsigned int regno = subreg_hard_regno (x, 1);
2574 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2576 else
2577 abort ();
2580 return *xp;
2583 /* Do alter_subreg on all the SUBREGs contained in X. */
2585 static rtx
2586 walk_alter_subreg (rtx *xp)
2588 rtx x = *xp;
2589 switch (GET_CODE (x))
2591 case PLUS:
2592 case MULT:
2593 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2594 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2595 break;
2597 case MEM:
2598 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2599 break;
2601 case SUBREG:
2602 return alter_subreg (xp);
2604 default:
2605 break;
2608 return *xp;
2611 #ifdef HAVE_cc0
2613 /* Given BODY, the body of a jump instruction, alter the jump condition
2614 as required by the bits that are set in cc_status.flags.
2615 Not all of the bits there can be handled at this level in all cases.
2617 The value is normally 0.
2618 1 means that the condition has become always true.
2619 -1 means that the condition has become always false.
2620 2 means that COND has been altered. */
2622 static int
2623 alter_cond (rtx cond)
2625 int value = 0;
2627 if (cc_status.flags & CC_REVERSED)
2629 value = 2;
2630 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2633 if (cc_status.flags & CC_INVERTED)
2635 value = 2;
2636 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2639 if (cc_status.flags & CC_NOT_POSITIVE)
2640 switch (GET_CODE (cond))
2642 case LE:
2643 case LEU:
2644 case GEU:
2645 /* Jump becomes unconditional. */
2646 return 1;
2648 case GT:
2649 case GTU:
2650 case LTU:
2651 /* Jump becomes no-op. */
2652 return -1;
2654 case GE:
2655 PUT_CODE (cond, EQ);
2656 value = 2;
2657 break;
2659 case LT:
2660 PUT_CODE (cond, NE);
2661 value = 2;
2662 break;
2664 default:
2665 break;
2668 if (cc_status.flags & CC_NOT_NEGATIVE)
2669 switch (GET_CODE (cond))
2671 case GE:
2672 case GEU:
2673 /* Jump becomes unconditional. */
2674 return 1;
2676 case LT:
2677 case LTU:
2678 /* Jump becomes no-op. */
2679 return -1;
2681 case LE:
2682 case LEU:
2683 PUT_CODE (cond, EQ);
2684 value = 2;
2685 break;
2687 case GT:
2688 case GTU:
2689 PUT_CODE (cond, NE);
2690 value = 2;
2691 break;
2693 default:
2694 break;
2697 if (cc_status.flags & CC_NO_OVERFLOW)
2698 switch (GET_CODE (cond))
2700 case GEU:
2701 /* Jump becomes unconditional. */
2702 return 1;
2704 case LEU:
2705 PUT_CODE (cond, EQ);
2706 value = 2;
2707 break;
2709 case GTU:
2710 PUT_CODE (cond, NE);
2711 value = 2;
2712 break;
2714 case LTU:
2715 /* Jump becomes no-op. */
2716 return -1;
2718 default:
2719 break;
2722 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2723 switch (GET_CODE (cond))
2725 default:
2726 abort ();
2728 case NE:
2729 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2730 value = 2;
2731 break;
2733 case EQ:
2734 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2735 value = 2;
2736 break;
2739 if (cc_status.flags & CC_NOT_SIGNED)
2740 /* The flags are valid if signed condition operators are converted
2741 to unsigned. */
2742 switch (GET_CODE (cond))
2744 case LE:
2745 PUT_CODE (cond, LEU);
2746 value = 2;
2747 break;
2749 case LT:
2750 PUT_CODE (cond, LTU);
2751 value = 2;
2752 break;
2754 case GT:
2755 PUT_CODE (cond, GTU);
2756 value = 2;
2757 break;
2759 case GE:
2760 PUT_CODE (cond, GEU);
2761 value = 2;
2762 break;
2764 default:
2765 break;
2768 return value;
2770 #endif
2772 /* Report inconsistency between the assembler template and the operands.
2773 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2775 void
2776 output_operand_lossage (const char *msgid, ...)
2778 char *fmt_string;
2779 char *new_message;
2780 const char *pfx_str;
2781 va_list ap;
2783 va_start (ap, msgid);
2785 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2786 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2787 vasprintf (&new_message, fmt_string, ap);
2789 if (this_is_asm_operands)
2790 error_for_asm (this_is_asm_operands, "%s", new_message);
2791 else
2792 internal_error ("%s", new_message);
2794 free (fmt_string);
2795 free (new_message);
2796 va_end (ap);
2799 /* Output of assembler code from a template, and its subroutines. */
2801 /* Annotate the assembly with a comment describing the pattern and
2802 alternative used. */
2804 static void
2805 output_asm_name (void)
2807 if (debug_insn)
2809 int num = INSN_CODE (debug_insn);
2810 fprintf (asm_out_file, "\t%s %d\t%s",
2811 ASM_COMMENT_START, INSN_UID (debug_insn),
2812 insn_data[num].name);
2813 if (insn_data[num].n_alternatives > 1)
2814 fprintf (asm_out_file, "/%d", which_alternative + 1);
2815 #ifdef HAVE_ATTR_length
2816 fprintf (asm_out_file, "\t[length = %d]",
2817 get_attr_length (debug_insn));
2818 #endif
2819 /* Clear this so only the first assembler insn
2820 of any rtl insn will get the special comment for -dp. */
2821 debug_insn = 0;
2825 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2826 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2827 corresponds to the address of the object and 0 if to the object. */
2829 static tree
2830 get_mem_expr_from_op (rtx op, int *paddressp)
2832 tree expr;
2833 int inner_addressp;
2835 *paddressp = 0;
2837 if (GET_CODE (op) == REG)
2838 return REG_EXPR (op);
2839 else if (GET_CODE (op) != MEM)
2840 return 0;
2842 if (MEM_EXPR (op) != 0)
2843 return MEM_EXPR (op);
2845 /* Otherwise we have an address, so indicate it and look at the address. */
2846 *paddressp = 1;
2847 op = XEXP (op, 0);
2849 /* First check if we have a decl for the address, then look at the right side
2850 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2851 But don't allow the address to itself be indirect. */
2852 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2853 return expr;
2854 else if (GET_CODE (op) == PLUS
2855 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2856 return expr;
2858 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2859 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2860 op = XEXP (op, 0);
2862 expr = get_mem_expr_from_op (op, &inner_addressp);
2863 return inner_addressp ? 0 : expr;
2866 /* Output operand names for assembler instructions. OPERANDS is the
2867 operand vector, OPORDER is the order to write the operands, and NOPS
2868 is the number of operands to write. */
2870 static void
2871 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2873 int wrote = 0;
2874 int i;
2876 for (i = 0; i < nops; i++)
2878 int addressp;
2879 rtx op = operands[oporder[i]];
2880 tree expr = get_mem_expr_from_op (op, &addressp);
2882 fprintf (asm_out_file, "%c%s",
2883 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2884 wrote = 1;
2885 if (expr)
2887 fprintf (asm_out_file, "%s",
2888 addressp ? "*" : "");
2889 print_mem_expr (asm_out_file, expr);
2890 wrote = 1;
2892 else if (REG_P (op) && ORIGINAL_REGNO (op)
2893 && ORIGINAL_REGNO (op) != REGNO (op))
2894 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2898 /* Output text from TEMPLATE to the assembler output file,
2899 obeying %-directions to substitute operands taken from
2900 the vector OPERANDS.
2902 %N (for N a digit) means print operand N in usual manner.
2903 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2904 and print the label name with no punctuation.
2905 %cN means require operand N to be a constant
2906 and print the constant expression with no punctuation.
2907 %aN means expect operand N to be a memory address
2908 (not a memory reference!) and print a reference
2909 to that address.
2910 %nN means expect operand N to be a constant
2911 and print a constant expression for minus the value
2912 of the operand, with no other punctuation. */
2914 void
2915 output_asm_insn (const char *template, rtx *operands)
2917 const char *p;
2918 int c;
2919 #ifdef ASSEMBLER_DIALECT
2920 int dialect = 0;
2921 #endif
2922 int oporder[MAX_RECOG_OPERANDS];
2923 char opoutput[MAX_RECOG_OPERANDS];
2924 int ops = 0;
2926 /* An insn may return a null string template
2927 in a case where no assembler code is needed. */
2928 if (*template == 0)
2929 return;
2931 memset (opoutput, 0, sizeof opoutput);
2932 p = template;
2933 putc ('\t', asm_out_file);
2935 #ifdef ASM_OUTPUT_OPCODE
2936 ASM_OUTPUT_OPCODE (asm_out_file, p);
2937 #endif
2939 while ((c = *p++))
2940 switch (c)
2942 case '\n':
2943 if (flag_verbose_asm)
2944 output_asm_operand_names (operands, oporder, ops);
2945 if (flag_print_asm_name)
2946 output_asm_name ();
2948 ops = 0;
2949 memset (opoutput, 0, sizeof opoutput);
2951 putc (c, asm_out_file);
2952 #ifdef ASM_OUTPUT_OPCODE
2953 while ((c = *p) == '\t')
2955 putc (c, asm_out_file);
2956 p++;
2958 ASM_OUTPUT_OPCODE (asm_out_file, p);
2959 #endif
2960 break;
2962 #ifdef ASSEMBLER_DIALECT
2963 case '{':
2965 int i;
2967 if (dialect)
2968 output_operand_lossage ("nested assembly dialect alternatives");
2969 else
2970 dialect = 1;
2972 /* If we want the first dialect, do nothing. Otherwise, skip
2973 DIALECT_NUMBER of strings ending with '|'. */
2974 for (i = 0; i < dialect_number; i++)
2976 while (*p && *p != '}' && *p++ != '|')
2978 if (*p == '}')
2979 break;
2980 if (*p == '|')
2981 p++;
2984 if (*p == '\0')
2985 output_operand_lossage ("unterminated assembly dialect alternative");
2987 break;
2989 case '|':
2990 if (dialect)
2992 /* Skip to close brace. */
2995 if (*p == '\0')
2997 output_operand_lossage ("unterminated assembly dialect alternative");
2998 break;
3001 while (*p++ != '}');
3002 dialect = 0;
3004 else
3005 putc (c, asm_out_file);
3006 break;
3008 case '}':
3009 if (! dialect)
3010 putc (c, asm_out_file);
3011 dialect = 0;
3012 break;
3013 #endif
3015 case '%':
3016 /* %% outputs a single %. */
3017 if (*p == '%')
3019 p++;
3020 putc (c, asm_out_file);
3022 /* %= outputs a number which is unique to each insn in the entire
3023 compilation. This is useful for making local labels that are
3024 referred to more than once in a given insn. */
3025 else if (*p == '=')
3027 p++;
3028 fprintf (asm_out_file, "%d", insn_counter);
3030 /* % followed by a letter and some digits
3031 outputs an operand in a special way depending on the letter.
3032 Letters `acln' are implemented directly.
3033 Other letters are passed to `output_operand' so that
3034 the PRINT_OPERAND macro can define them. */
3035 else if (ISALPHA (*p))
3037 int letter = *p++;
3038 c = atoi (p);
3040 if (! ISDIGIT (*p))
3041 output_operand_lossage ("operand number missing after %%-letter");
3042 else if (this_is_asm_operands
3043 && (c < 0 || (unsigned int) c >= insn_noperands))
3044 output_operand_lossage ("operand number out of range");
3045 else if (letter == 'l')
3046 output_asm_label (operands[c]);
3047 else if (letter == 'a')
3048 output_address (operands[c]);
3049 else if (letter == 'c')
3051 if (CONSTANT_ADDRESS_P (operands[c]))
3052 output_addr_const (asm_out_file, operands[c]);
3053 else
3054 output_operand (operands[c], 'c');
3056 else if (letter == 'n')
3058 if (GET_CODE (operands[c]) == CONST_INT)
3059 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3060 - INTVAL (operands[c]));
3061 else
3063 putc ('-', asm_out_file);
3064 output_addr_const (asm_out_file, operands[c]);
3067 else
3068 output_operand (operands[c], letter);
3070 if (!opoutput[c])
3071 oporder[ops++] = c;
3072 opoutput[c] = 1;
3074 while (ISDIGIT (c = *p))
3075 p++;
3077 /* % followed by a digit outputs an operand the default way. */
3078 else if (ISDIGIT (*p))
3080 c = atoi (p);
3081 if (this_is_asm_operands
3082 && (c < 0 || (unsigned int) c >= insn_noperands))
3083 output_operand_lossage ("operand number out of range");
3084 else
3085 output_operand (operands[c], 0);
3087 if (!opoutput[c])
3088 oporder[ops++] = c;
3089 opoutput[c] = 1;
3091 while (ISDIGIT (c = *p))
3092 p++;
3094 /* % followed by punctuation: output something for that
3095 punctuation character alone, with no operand.
3096 The PRINT_OPERAND macro decides what is actually done. */
3097 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3098 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3099 output_operand (NULL_RTX, *p++);
3100 #endif
3101 else
3102 output_operand_lossage ("invalid %%-code");
3103 break;
3105 default:
3106 putc (c, asm_out_file);
3109 /* Write out the variable names for operands, if we know them. */
3110 if (flag_verbose_asm)
3111 output_asm_operand_names (operands, oporder, ops);
3112 if (flag_print_asm_name)
3113 output_asm_name ();
3115 putc ('\n', asm_out_file);
3118 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3120 void
3121 output_asm_label (rtx x)
3123 char buf[256];
3125 if (GET_CODE (x) == LABEL_REF)
3126 x = XEXP (x, 0);
3127 if (GET_CODE (x) == CODE_LABEL
3128 || (GET_CODE (x) == NOTE
3129 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3130 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3131 else
3132 output_operand_lossage ("`%%l' operand isn't a label");
3134 assemble_name (asm_out_file, buf);
3137 /* Print operand X using machine-dependent assembler syntax.
3138 The macro PRINT_OPERAND is defined just to control this function.
3139 CODE is a non-digit that preceded the operand-number in the % spec,
3140 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3141 between the % and the digits.
3142 When CODE is a non-letter, X is 0.
3144 The meanings of the letters are machine-dependent and controlled
3145 by PRINT_OPERAND. */
3147 static void
3148 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3150 if (x && GET_CODE (x) == SUBREG)
3151 x = alter_subreg (&x);
3153 /* If X is a pseudo-register, abort now rather than writing trash to the
3154 assembler file. */
3156 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3157 abort ();
3159 PRINT_OPERAND (asm_out_file, x, code);
3162 /* Print a memory reference operand for address X
3163 using machine-dependent assembler syntax.
3164 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3166 void
3167 output_address (rtx x)
3169 walk_alter_subreg (&x);
3170 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3173 /* Print an integer constant expression in assembler syntax.
3174 Addition and subtraction are the only arithmetic
3175 that may appear in these expressions. */
3177 void
3178 output_addr_const (FILE *file, rtx x)
3180 char buf[256];
3182 restart:
3183 switch (GET_CODE (x))
3185 case PC:
3186 putc ('.', file);
3187 break;
3189 case SYMBOL_REF:
3190 #ifdef ASM_OUTPUT_SYMBOL_REF
3191 ASM_OUTPUT_SYMBOL_REF (file, x);
3192 #else
3193 assemble_name (file, XSTR (x, 0));
3194 #endif
3195 break;
3197 case LABEL_REF:
3198 x = XEXP (x, 0);
3199 /* Fall through. */
3200 case CODE_LABEL:
3201 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3202 #ifdef ASM_OUTPUT_LABEL_REF
3203 ASM_OUTPUT_LABEL_REF (file, buf);
3204 #else
3205 assemble_name (file, buf);
3206 #endif
3207 break;
3209 case CONST_INT:
3210 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3211 break;
3213 case CONST:
3214 /* This used to output parentheses around the expression,
3215 but that does not work on the 386 (either ATT or BSD assembler). */
3216 output_addr_const (file, XEXP (x, 0));
3217 break;
3219 case CONST_DOUBLE:
3220 if (GET_MODE (x) == VOIDmode)
3222 /* We can use %d if the number is one word and positive. */
3223 if (CONST_DOUBLE_HIGH (x))
3224 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3225 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3226 else if (CONST_DOUBLE_LOW (x) < 0)
3227 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3228 else
3229 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3231 else
3232 /* We can't handle floating point constants;
3233 PRINT_OPERAND must handle them. */
3234 output_operand_lossage ("floating constant misused");
3235 break;
3237 case PLUS:
3238 /* Some assemblers need integer constants to appear last (eg masm). */
3239 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3241 output_addr_const (file, XEXP (x, 1));
3242 if (INTVAL (XEXP (x, 0)) >= 0)
3243 fprintf (file, "+");
3244 output_addr_const (file, XEXP (x, 0));
3246 else
3248 output_addr_const (file, XEXP (x, 0));
3249 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3250 || INTVAL (XEXP (x, 1)) >= 0)
3251 fprintf (file, "+");
3252 output_addr_const (file, XEXP (x, 1));
3254 break;
3256 case MINUS:
3257 /* Avoid outputting things like x-x or x+5-x,
3258 since some assemblers can't handle that. */
3259 x = simplify_subtraction (x);
3260 if (GET_CODE (x) != MINUS)
3261 goto restart;
3263 output_addr_const (file, XEXP (x, 0));
3264 fprintf (file, "-");
3265 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3266 || GET_CODE (XEXP (x, 1)) == PC
3267 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3268 output_addr_const (file, XEXP (x, 1));
3269 else
3271 fputs (targetm.asm_out.open_paren, file);
3272 output_addr_const (file, XEXP (x, 1));
3273 fputs (targetm.asm_out.close_paren, file);
3275 break;
3277 case ZERO_EXTEND:
3278 case SIGN_EXTEND:
3279 case SUBREG:
3280 output_addr_const (file, XEXP (x, 0));
3281 break;
3283 default:
3284 #ifdef OUTPUT_ADDR_CONST_EXTRA
3285 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3286 break;
3288 fail:
3289 #endif
3290 output_operand_lossage ("invalid expression as operand");
3294 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3295 %R prints the value of REGISTER_PREFIX.
3296 %L prints the value of LOCAL_LABEL_PREFIX.
3297 %U prints the value of USER_LABEL_PREFIX.
3298 %I prints the value of IMMEDIATE_PREFIX.
3299 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3300 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3302 We handle alternate assembler dialects here, just like output_asm_insn. */
3304 void
3305 asm_fprintf (FILE *file, const char *p, ...)
3307 char buf[10];
3308 char *q, c;
3309 va_list argptr;
3311 va_start (argptr, p);
3313 buf[0] = '%';
3315 while ((c = *p++))
3316 switch (c)
3318 #ifdef ASSEMBLER_DIALECT
3319 case '{':
3321 int i;
3323 /* If we want the first dialect, do nothing. Otherwise, skip
3324 DIALECT_NUMBER of strings ending with '|'. */
3325 for (i = 0; i < dialect_number; i++)
3327 while (*p && *p++ != '|')
3330 if (*p == '|')
3331 p++;
3334 break;
3336 case '|':
3337 /* Skip to close brace. */
3338 while (*p && *p++ != '}')
3340 break;
3342 case '}':
3343 break;
3344 #endif
3346 case '%':
3347 c = *p++;
3348 q = &buf[1];
3349 while (strchr ("-+ #0", c))
3351 *q++ = c;
3352 c = *p++;
3354 while (ISDIGIT (c) || c == '.')
3356 *q++ = c;
3357 c = *p++;
3359 switch (c)
3361 case '%':
3362 putc ('%', file);
3363 break;
3365 case 'd': case 'i': case 'u':
3366 case 'x': case 'X': case 'o':
3367 case 'c':
3368 *q++ = c;
3369 *q = 0;
3370 fprintf (file, buf, va_arg (argptr, int));
3371 break;
3373 case 'w':
3374 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3375 'o' cases, but we do not check for those cases. It
3376 means that the value is a HOST_WIDE_INT, which may be
3377 either `long' or `long long'. */
3378 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3379 q += strlen (HOST_WIDE_INT_PRINT);
3380 *q++ = *p++;
3381 *q = 0;
3382 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3383 break;
3385 case 'l':
3386 *q++ = c;
3387 #ifdef HAVE_LONG_LONG
3388 if (*p == 'l')
3390 *q++ = *p++;
3391 *q++ = *p++;
3392 *q = 0;
3393 fprintf (file, buf, va_arg (argptr, long long));
3395 else
3396 #endif
3398 *q++ = *p++;
3399 *q = 0;
3400 fprintf (file, buf, va_arg (argptr, long));
3403 break;
3405 case 's':
3406 *q++ = c;
3407 *q = 0;
3408 fprintf (file, buf, va_arg (argptr, char *));
3409 break;
3411 case 'O':
3412 #ifdef ASM_OUTPUT_OPCODE
3413 ASM_OUTPUT_OPCODE (asm_out_file, p);
3414 #endif
3415 break;
3417 case 'R':
3418 #ifdef REGISTER_PREFIX
3419 fprintf (file, "%s", REGISTER_PREFIX);
3420 #endif
3421 break;
3423 case 'I':
3424 #ifdef IMMEDIATE_PREFIX
3425 fprintf (file, "%s", IMMEDIATE_PREFIX);
3426 #endif
3427 break;
3429 case 'L':
3430 #ifdef LOCAL_LABEL_PREFIX
3431 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3432 #endif
3433 break;
3435 case 'U':
3436 fputs (user_label_prefix, file);
3437 break;
3439 #ifdef ASM_FPRINTF_EXTENSIONS
3440 /* Upper case letters are reserved for general use by asm_fprintf
3441 and so are not available to target specific code. In order to
3442 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3443 they are defined here. As they get turned into real extensions
3444 to asm_fprintf they should be removed from this list. */
3445 case 'A': case 'B': case 'C': case 'D': case 'E':
3446 case 'F': case 'G': case 'H': case 'J': case 'K':
3447 case 'M': case 'N': case 'P': case 'Q': case 'S':
3448 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3449 break;
3451 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3452 #endif
3453 default:
3454 abort ();
3456 break;
3458 default:
3459 putc (c, file);
3461 va_end (argptr);
3464 /* Split up a CONST_DOUBLE or integer constant rtx
3465 into two rtx's for single words,
3466 storing in *FIRST the word that comes first in memory in the target
3467 and in *SECOND the other. */
3469 void
3470 split_double (rtx value, rtx *first, rtx *second)
3472 if (GET_CODE (value) == CONST_INT)
3474 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3476 /* In this case the CONST_INT holds both target words.
3477 Extract the bits from it into two word-sized pieces.
3478 Sign extend each half to HOST_WIDE_INT. */
3479 unsigned HOST_WIDE_INT low, high;
3480 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3482 /* Set sign_bit to the most significant bit of a word. */
3483 sign_bit = 1;
3484 sign_bit <<= BITS_PER_WORD - 1;
3486 /* Set mask so that all bits of the word are set. We could
3487 have used 1 << BITS_PER_WORD instead of basing the
3488 calculation on sign_bit. However, on machines where
3489 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3490 compiler warning, even though the code would never be
3491 executed. */
3492 mask = sign_bit << 1;
3493 mask--;
3495 /* Set sign_extend as any remaining bits. */
3496 sign_extend = ~mask;
3498 /* Pick the lower word and sign-extend it. */
3499 low = INTVAL (value);
3500 low &= mask;
3501 if (low & sign_bit)
3502 low |= sign_extend;
3504 /* Pick the higher word, shifted to the least significant
3505 bits, and sign-extend it. */
3506 high = INTVAL (value);
3507 high >>= BITS_PER_WORD - 1;
3508 high >>= 1;
3509 high &= mask;
3510 if (high & sign_bit)
3511 high |= sign_extend;
3513 /* Store the words in the target machine order. */
3514 if (WORDS_BIG_ENDIAN)
3516 *first = GEN_INT (high);
3517 *second = GEN_INT (low);
3519 else
3521 *first = GEN_INT (low);
3522 *second = GEN_INT (high);
3525 else
3527 /* The rule for using CONST_INT for a wider mode
3528 is that we regard the value as signed.
3529 So sign-extend it. */
3530 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3531 if (WORDS_BIG_ENDIAN)
3533 *first = high;
3534 *second = value;
3536 else
3538 *first = value;
3539 *second = high;
3543 else if (GET_CODE (value) != CONST_DOUBLE)
3545 if (WORDS_BIG_ENDIAN)
3547 *first = const0_rtx;
3548 *second = value;
3550 else
3552 *first = value;
3553 *second = const0_rtx;
3556 else if (GET_MODE (value) == VOIDmode
3557 /* This is the old way we did CONST_DOUBLE integers. */
3558 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3560 /* In an integer, the words are defined as most and least significant.
3561 So order them by the target's convention. */
3562 if (WORDS_BIG_ENDIAN)
3564 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3565 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3567 else
3569 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3570 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3573 else
3575 REAL_VALUE_TYPE r;
3576 long l[2];
3577 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3579 /* Note, this converts the REAL_VALUE_TYPE to the target's
3580 format, splits up the floating point double and outputs
3581 exactly 32 bits of it into each of l[0] and l[1] --
3582 not necessarily BITS_PER_WORD bits. */
3583 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3585 /* If 32 bits is an entire word for the target, but not for the host,
3586 then sign-extend on the host so that the number will look the same
3587 way on the host that it would on the target. See for instance
3588 simplify_unary_operation. The #if is needed to avoid compiler
3589 warnings. */
3591 #if HOST_BITS_PER_LONG > 32
3592 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3594 if (l[0] & ((long) 1 << 31))
3595 l[0] |= ((long) (-1) << 32);
3596 if (l[1] & ((long) 1 << 31))
3597 l[1] |= ((long) (-1) << 32);
3599 #endif
3601 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3602 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3606 /* Return nonzero if this function has no function calls. */
3609 leaf_function_p (void)
3611 rtx insn;
3612 rtx link;
3614 if (current_function_profile || profile_arc_flag)
3615 return 0;
3617 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3619 if (GET_CODE (insn) == CALL_INSN
3620 && ! SIBLING_CALL_P (insn))
3621 return 0;
3622 if (GET_CODE (insn) == INSN
3623 && GET_CODE (PATTERN (insn)) == SEQUENCE
3624 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3625 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3626 return 0;
3628 for (link = current_function_epilogue_delay_list;
3629 link;
3630 link = XEXP (link, 1))
3632 insn = XEXP (link, 0);
3634 if (GET_CODE (insn) == CALL_INSN
3635 && ! SIBLING_CALL_P (insn))
3636 return 0;
3637 if (GET_CODE (insn) == INSN
3638 && GET_CODE (PATTERN (insn)) == SEQUENCE
3639 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3640 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3641 return 0;
3644 return 1;
3647 /* Return 1 if branch is a forward branch.
3648 Uses insn_shuid array, so it works only in the final pass. May be used by
3649 output templates to customary add branch prediction hints.
3652 final_forward_branch_p (rtx insn)
3654 int insn_id, label_id;
3655 if (!uid_shuid)
3656 abort ();
3657 insn_id = INSN_SHUID (insn);
3658 label_id = INSN_SHUID (JUMP_LABEL (insn));
3659 /* We've hit some insns that does not have id information available. */
3660 if (!insn_id || !label_id)
3661 abort ();
3662 return insn_id < label_id;
3665 /* On some machines, a function with no call insns
3666 can run faster if it doesn't create its own register window.
3667 When output, the leaf function should use only the "output"
3668 registers. Ordinarily, the function would be compiled to use
3669 the "input" registers to find its arguments; it is a candidate
3670 for leaf treatment if it uses only the "input" registers.
3671 Leaf function treatment means renumbering so the function
3672 uses the "output" registers instead. */
3674 #ifdef LEAF_REGISTERS
3676 /* Return 1 if this function uses only the registers that can be
3677 safely renumbered. */
3680 only_leaf_regs_used (void)
3682 int i;
3683 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3685 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3686 if ((regs_ever_live[i] || global_regs[i])
3687 && ! permitted_reg_in_leaf_functions[i])
3688 return 0;
3690 if (current_function_uses_pic_offset_table
3691 && pic_offset_table_rtx != 0
3692 && GET_CODE (pic_offset_table_rtx) == REG
3693 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3694 return 0;
3696 return 1;
3699 /* Scan all instructions and renumber all registers into those
3700 available in leaf functions. */
3702 static void
3703 leaf_renumber_regs (rtx first)
3705 rtx insn;
3707 /* Renumber only the actual patterns.
3708 The reg-notes can contain frame pointer refs,
3709 and renumbering them could crash, and should not be needed. */
3710 for (insn = first; insn; insn = NEXT_INSN (insn))
3711 if (INSN_P (insn))
3712 leaf_renumber_regs_insn (PATTERN (insn));
3713 for (insn = current_function_epilogue_delay_list;
3714 insn;
3715 insn = XEXP (insn, 1))
3716 if (INSN_P (XEXP (insn, 0)))
3717 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3720 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3721 available in leaf functions. */
3723 void
3724 leaf_renumber_regs_insn (rtx in_rtx)
3726 int i, j;
3727 const char *format_ptr;
3729 if (in_rtx == 0)
3730 return;
3732 /* Renumber all input-registers into output-registers.
3733 renumbered_regs would be 1 for an output-register;
3734 they */
3736 if (GET_CODE (in_rtx) == REG)
3738 int newreg;
3740 /* Don't renumber the same reg twice. */
3741 if (in_rtx->used)
3742 return;
3744 newreg = REGNO (in_rtx);
3745 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3746 to reach here as part of a REG_NOTE. */
3747 if (newreg >= FIRST_PSEUDO_REGISTER)
3749 in_rtx->used = 1;
3750 return;
3752 newreg = LEAF_REG_REMAP (newreg);
3753 if (newreg < 0)
3754 abort ();
3755 regs_ever_live[REGNO (in_rtx)] = 0;
3756 regs_ever_live[newreg] = 1;
3757 REGNO (in_rtx) = newreg;
3758 in_rtx->used = 1;
3761 if (INSN_P (in_rtx))
3763 /* Inside a SEQUENCE, we find insns.
3764 Renumber just the patterns of these insns,
3765 just as we do for the top-level insns. */
3766 leaf_renumber_regs_insn (PATTERN (in_rtx));
3767 return;
3770 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3772 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3773 switch (*format_ptr++)
3775 case 'e':
3776 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3777 break;
3779 case 'E':
3780 if (NULL != XVEC (in_rtx, i))
3782 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3783 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3785 break;
3787 case 'S':
3788 case 's':
3789 case '0':
3790 case 'i':
3791 case 'w':
3792 case 'n':
3793 case 'u':
3794 break;
3796 default:
3797 abort ();
3800 #endif
3803 /* When -gused is used, emit debug info for only used symbols. But in
3804 addition to the standard intercepted debug_hooks there are some direct
3805 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3806 Those routines may also be called from a higher level intercepted routine. So
3807 to prevent recording data for an inner call to one of these for an intercept,
3808 we maintain a intercept nesting counter (debug_nesting). We only save the
3809 intercepted arguments if the nesting is 1. */
3810 int debug_nesting = 0;
3812 static tree *symbol_queue;
3813 int symbol_queue_index = 0;
3814 static int symbol_queue_size = 0;
3816 /* Generate the symbols for any queued up type symbols we encountered
3817 while generating the type info for some originally used symbol.
3818 This might generate additional entries in the queue. Only when
3819 the nesting depth goes to 0 is this routine called. */
3821 void
3822 debug_flush_symbol_queue (void)
3824 int i;
3826 /* Make sure that additionally queued items are not flushed
3827 prematurely. */
3829 ++debug_nesting;
3831 for (i = 0; i < symbol_queue_index; ++i)
3833 /* If we pushed queued symbols then such symbols are must be
3834 output no matter what anyone else says. Specifically,
3835 we need to make sure dbxout_symbol() thinks the symbol was
3836 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3837 which may be set for outside reasons. */
3838 int saved_tree_used = TREE_USED (symbol_queue[i]);
3839 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3840 TREE_USED (symbol_queue[i]) = 1;
3841 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3843 #ifdef DBX_DEBUGGING_INFO
3844 dbxout_symbol (symbol_queue[i], 0);
3845 #endif
3847 TREE_USED (symbol_queue[i]) = saved_tree_used;
3848 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3851 symbol_queue_index = 0;
3852 --debug_nesting;
3855 /* Queue a type symbol needed as part of the definition of a decl
3856 symbol. These symbols are generated when debug_flush_symbol_queue()
3857 is called. */
3859 void
3860 debug_queue_symbol (tree decl)
3862 if (symbol_queue_index >= symbol_queue_size)
3864 symbol_queue_size += 10;
3865 symbol_queue = xrealloc (symbol_queue,
3866 symbol_queue_size * sizeof (tree));
3869 symbol_queue[symbol_queue_index++] = decl;
3872 /* Free symbol queue. */
3873 void
3874 debug_free_queue (void)
3876 if (symbol_queue)
3878 free (symbol_queue);
3879 symbol_queue = NULL;
3880 symbol_queue_size = 0;