1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
51 /* Decide whether a function's arguments should be processed
52 from first to last or from last to first.
54 They should if the stack and args grow in opposite directions, but
55 only if we have push insns. */
59 #ifndef PUSH_ARGS_REVERSED
60 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
61 #define PUSH_ARGS_REVERSED /* If it's last to first. */
67 #ifndef STACK_PUSH_CODE
68 #ifdef STACK_GROWS_DOWNWARD
69 #define STACK_PUSH_CODE PRE_DEC
71 #define STACK_PUSH_CODE PRE_INC
75 /* Assume that case vectors are not pc-relative. */
76 #ifndef CASE_VECTOR_PC_RELATIVE
77 #define CASE_VECTOR_PC_RELATIVE 0
80 /* Convert defined/undefined to boolean. */
81 #ifdef TARGET_MEM_FUNCTIONS
82 #undef TARGET_MEM_FUNCTIONS
83 #define TARGET_MEM_FUNCTIONS 1
85 #define TARGET_MEM_FUNCTIONS 0
89 /* If this is nonzero, we do not bother generating VOLATILE
90 around volatile memory references, and we are willing to
91 output indirect addresses. If cse is to follow, we reject
92 indirect addresses so a useful potential cse is generated;
93 if it is used only once, instruction combination will produce
94 the same indirect address eventually. */
97 /* Chain of pending expressions for PLACEHOLDER_EXPR to replace. */
98 tree placeholder_list
= 0;
100 /* This structure is used by move_by_pieces to describe the move to
102 struct move_by_pieces
111 int explicit_inc_from
;
112 unsigned HOST_WIDE_INT len
;
113 HOST_WIDE_INT offset
;
117 /* This structure is used by store_by_pieces to describe the clear to
120 struct store_by_pieces
126 unsigned HOST_WIDE_INT len
;
127 HOST_WIDE_INT offset
;
128 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static rtx
enqueue_insn (rtx
, rtx
);
134 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
136 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
137 struct move_by_pieces
*);
138 static bool block_move_libcall_safe_for_call_parm (void);
139 static bool emit_block_move_via_movstr (rtx
, rtx
, rtx
, unsigned);
140 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
);
141 static tree
emit_block_move_libcall_fn (int);
142 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
143 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
144 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
145 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
146 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
147 struct store_by_pieces
*);
148 static bool clear_storage_via_clrstr (rtx
, rtx
, unsigned);
149 static rtx
clear_storage_via_libcall (rtx
, rtx
);
150 static tree
clear_storage_libcall_fn (int);
151 static rtx
compress_float_constant (rtx
, rtx
);
152 static rtx
get_subtarget (rtx
);
153 static int is_zeros_p (tree
);
154 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
155 HOST_WIDE_INT
, enum machine_mode
,
156 tree
, tree
, int, int);
157 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
158 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
159 tree
, enum machine_mode
, int, tree
, int);
160 static rtx
var_rtx (tree
);
162 static unsigned HOST_WIDE_INT
highest_pow2_factor (tree
);
163 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_type (tree
, tree
);
165 static int is_aligning_offset (tree
, tree
);
166 static rtx
expand_increment (tree
, int, int);
167 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
169 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
171 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
172 static rtx
const_vector_from_tree (tree
);
174 /* Record for each mode whether we can move a register directly to or
175 from an object of that mode in memory. If we can't, we won't try
176 to use that mode directly when accessing a field of that mode. */
178 static char direct_load
[NUM_MACHINE_MODES
];
179 static char direct_store
[NUM_MACHINE_MODES
];
181 /* Record for each mode whether we can float-extend from memory. */
183 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
185 /* If a memory-to-memory move would take MOVE_RATIO or more simple
186 move-instruction sequences, we will do a movstr or libcall instead. */
189 #if defined (HAVE_movstrqi) || defined (HAVE_movstrhi) || defined (HAVE_movstrsi) || defined (HAVE_movstrdi) || defined (HAVE_movstrti)
192 /* If we are optimizing for space (-Os), cut down the default move ratio. */
193 #define MOVE_RATIO (optimize_size ? 3 : 15)
197 /* This macro is used to determine whether move_by_pieces should be called
198 to perform a structure copy. */
199 #ifndef MOVE_BY_PIECES_P
200 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN) < (unsigned int) MOVE_RATIO)
204 /* If a clear memory operation would take CLEAR_RATIO or more simple
205 move-instruction sequences, we will do a clrstr or libcall instead. */
208 #if defined (HAVE_clrstrqi) || defined (HAVE_clrstrhi) || defined (HAVE_clrstrsi) || defined (HAVE_clrstrdi) || defined (HAVE_clrstrti)
209 #define CLEAR_RATIO 2
211 /* If we are optimizing for space, cut down the default clear ratio. */
212 #define CLEAR_RATIO (optimize_size ? 3 : 15)
216 /* This macro is used to determine whether clear_by_pieces should be
217 called to clear storage. */
218 #ifndef CLEAR_BY_PIECES_P
219 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
220 (move_by_pieces_ninsns (SIZE, ALIGN) < (unsigned int) CLEAR_RATIO)
223 /* This macro is used to determine whether store_by_pieces should be
224 called to "memset" storage with byte values other than zero, or
225 to "memcpy" storage when the source is a constant string. */
226 #ifndef STORE_BY_PIECES_P
227 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
230 /* This array records the insn_code of insns to perform block moves. */
231 enum insn_code movstr_optab
[NUM_MACHINE_MODES
];
233 /* This array records the insn_code of insns to perform block clears. */
234 enum insn_code clrstr_optab
[NUM_MACHINE_MODES
];
236 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
238 #ifndef SLOW_UNALIGNED_ACCESS
239 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
242 /* This is run once per compilation to set up which modes can be used
243 directly in memory and to initialize the block move optab. */
246 init_expr_once (void)
249 enum machine_mode mode
;
254 /* Try indexing by frame ptr and try by stack ptr.
255 It is known that on the Convex the stack ptr isn't a valid index.
256 With luck, one or the other is valid on any machine. */
257 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
258 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
260 /* A scratch register we can modify in-place below to avoid
261 useless RTL allocations. */
262 reg
= gen_rtx_REG (VOIDmode
, -1);
264 insn
= rtx_alloc (INSN
);
265 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
266 PATTERN (insn
) = pat
;
268 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
269 mode
= (enum machine_mode
) ((int) mode
+ 1))
273 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
274 PUT_MODE (mem
, mode
);
275 PUT_MODE (mem1
, mode
);
276 PUT_MODE (reg
, mode
);
278 /* See if there is some register that can be used in this mode and
279 directly loaded or stored from memory. */
281 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
282 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
283 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
286 if (! HARD_REGNO_MODE_OK (regno
, mode
))
292 SET_DEST (pat
) = reg
;
293 if (recog (pat
, insn
, &num_clobbers
) >= 0)
294 direct_load
[(int) mode
] = 1;
296 SET_SRC (pat
) = mem1
;
297 SET_DEST (pat
) = reg
;
298 if (recog (pat
, insn
, &num_clobbers
) >= 0)
299 direct_load
[(int) mode
] = 1;
302 SET_DEST (pat
) = mem
;
303 if (recog (pat
, insn
, &num_clobbers
) >= 0)
304 direct_store
[(int) mode
] = 1;
307 SET_DEST (pat
) = mem1
;
308 if (recog (pat
, insn
, &num_clobbers
) >= 0)
309 direct_store
[(int) mode
] = 1;
313 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
315 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
316 mode
= GET_MODE_WIDER_MODE (mode
))
318 enum machine_mode srcmode
;
319 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
320 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
324 ic
= can_extend_p (mode
, srcmode
, 0);
325 if (ic
== CODE_FOR_nothing
)
328 PUT_MODE (mem
, srcmode
);
330 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
331 float_extend_from_mem
[mode
][srcmode
] = true;
336 /* This is run at the start of compiling a function. */
341 cfun
->expr
= ggc_alloc (sizeof (struct expr_status
));
344 pending_stack_adjust
= 0;
345 stack_pointer_delta
= 0;
346 inhibit_defer_pop
= 0;
348 apply_args_value
= 0;
352 /* Small sanity check that the queue is empty at the end of a function. */
355 finish_expr_for_function (void)
361 /* Manage the queue of increment instructions to be output
362 for POSTINCREMENT_EXPR expressions, etc. */
364 /* Queue up to increment (or change) VAR later. BODY says how:
365 BODY should be the same thing you would pass to emit_insn
366 to increment right away. It will go to emit_insn later on.
368 The value is a QUEUED expression to be used in place of VAR
369 where you want to guarantee the pre-incrementation value of VAR. */
372 enqueue_insn (rtx var
, rtx body
)
374 pending_chain
= gen_rtx_QUEUED (GET_MODE (var
), var
, NULL_RTX
, NULL_RTX
,
375 body
, pending_chain
);
376 return pending_chain
;
379 /* Use protect_from_queue to convert a QUEUED expression
380 into something that you can put immediately into an instruction.
381 If the queued incrementation has not happened yet,
382 protect_from_queue returns the variable itself.
383 If the incrementation has happened, protect_from_queue returns a temp
384 that contains a copy of the old value of the variable.
386 Any time an rtx which might possibly be a QUEUED is to be put
387 into an instruction, it must be passed through protect_from_queue first.
388 QUEUED expressions are not meaningful in instructions.
390 Do not pass a value through protect_from_queue and then hold
391 on to it for a while before putting it in an instruction!
392 If the queue is flushed in between, incorrect code will result. */
395 protect_from_queue (rtx x
, int modify
)
397 RTX_CODE code
= GET_CODE (x
);
399 #if 0 /* A QUEUED can hang around after the queue is forced out. */
400 /* Shortcut for most common case. */
401 if (pending_chain
== 0)
407 /* A special hack for read access to (MEM (QUEUED ...)) to facilitate
408 use of autoincrement. Make a copy of the contents of the memory
409 location rather than a copy of the address, but not if the value is
410 of mode BLKmode. Don't modify X in place since it might be
412 if (code
== MEM
&& GET_MODE (x
) != BLKmode
413 && GET_CODE (XEXP (x
, 0)) == QUEUED
&& !modify
)
416 rtx
new = replace_equiv_address_nv (x
, QUEUED_VAR (y
));
420 rtx temp
= gen_reg_rtx (GET_MODE (x
));
422 emit_insn_before (gen_move_insn (temp
, new),
427 /* Copy the address into a pseudo, so that the returned value
428 remains correct across calls to emit_queue. */
429 return replace_equiv_address (new, copy_to_reg (XEXP (new, 0)));
432 /* Otherwise, recursively protect the subexpressions of all
433 the kinds of rtx's that can contain a QUEUED. */
436 rtx tem
= protect_from_queue (XEXP (x
, 0), 0);
437 if (tem
!= XEXP (x
, 0))
443 else if (code
== PLUS
|| code
== MULT
)
445 rtx new0
= protect_from_queue (XEXP (x
, 0), 0);
446 rtx new1
= protect_from_queue (XEXP (x
, 1), 0);
447 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
456 /* If the increment has not happened, use the variable itself. Copy it
457 into a new pseudo so that the value remains correct across calls to
459 if (QUEUED_INSN (x
) == 0)
460 return copy_to_reg (QUEUED_VAR (x
));
461 /* If the increment has happened and a pre-increment copy exists,
463 if (QUEUED_COPY (x
) != 0)
464 return QUEUED_COPY (x
);
465 /* The increment has happened but we haven't set up a pre-increment copy.
466 Set one up now, and use it. */
467 QUEUED_COPY (x
) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x
)));
468 emit_insn_before (gen_move_insn (QUEUED_COPY (x
), QUEUED_VAR (x
)),
470 return QUEUED_COPY (x
);
473 /* Return nonzero if X contains a QUEUED expression:
474 if it contains anything that will be altered by a queued increment.
475 We handle only combinations of MEM, PLUS, MINUS and MULT operators
476 since memory addresses generally contain only those. */
479 queued_subexp_p (rtx x
)
481 enum rtx_code code
= GET_CODE (x
);
487 return queued_subexp_p (XEXP (x
, 0));
491 return (queued_subexp_p (XEXP (x
, 0))
492 || queued_subexp_p (XEXP (x
, 1)));
498 /* Perform all the pending incrementations. */
504 while ((p
= pending_chain
))
506 rtx body
= QUEUED_BODY (p
);
508 switch (GET_CODE (body
))
516 QUEUED_INSN (p
) = body
;
520 #ifdef ENABLE_CHECKING
527 QUEUED_INSN (p
) = emit_insn (body
);
531 pending_chain
= QUEUED_NEXT (p
);
535 /* Copy data from FROM to TO, where the machine modes are not the same.
536 Both modes may be integer, or both may be floating.
537 UNSIGNEDP should be nonzero if FROM is an unsigned type.
538 This causes zero-extension instead of sign-extension. */
541 convert_move (rtx to
, rtx from
, int unsignedp
)
543 enum machine_mode to_mode
= GET_MODE (to
);
544 enum machine_mode from_mode
= GET_MODE (from
);
545 int to_real
= GET_MODE_CLASS (to_mode
) == MODE_FLOAT
;
546 int from_real
= GET_MODE_CLASS (from_mode
) == MODE_FLOAT
;
550 /* rtx code for making an equivalent value. */
551 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
552 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
554 to
= protect_from_queue (to
, 1);
555 from
= protect_from_queue (from
, 0);
557 if (to_real
!= from_real
)
560 /* If FROM is a SUBREG that indicates that we have already done at least
561 the required extension, strip it. We don't handle such SUBREGs as
564 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
565 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
566 >= GET_MODE_SIZE (to_mode
))
567 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
568 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
570 if (GET_CODE (to
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (to
))
573 if (to_mode
== from_mode
574 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
576 emit_move_insn (to
, from
);
580 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
582 if (GET_MODE_BITSIZE (from_mode
) != GET_MODE_BITSIZE (to_mode
))
585 if (VECTOR_MODE_P (to_mode
))
586 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
588 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
590 emit_move_insn (to
, from
);
594 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
596 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
597 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
601 if (to_real
!= from_real
)
608 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
))
610 /* Try converting directly if the insn is supported. */
611 if ((code
= can_extend_p (to_mode
, from_mode
, 0))
614 emit_unop_insn (code
, to
, from
, UNKNOWN
);
619 #ifdef HAVE_trunchfqf2
620 if (HAVE_trunchfqf2
&& from_mode
== HFmode
&& to_mode
== QFmode
)
622 emit_unop_insn (CODE_FOR_trunchfqf2
, to
, from
, UNKNOWN
);
626 #ifdef HAVE_trunctqfqf2
627 if (HAVE_trunctqfqf2
&& from_mode
== TQFmode
&& to_mode
== QFmode
)
629 emit_unop_insn (CODE_FOR_trunctqfqf2
, to
, from
, UNKNOWN
);
633 #ifdef HAVE_truncsfqf2
634 if (HAVE_truncsfqf2
&& from_mode
== SFmode
&& to_mode
== QFmode
)
636 emit_unop_insn (CODE_FOR_truncsfqf2
, to
, from
, UNKNOWN
);
640 #ifdef HAVE_truncdfqf2
641 if (HAVE_truncdfqf2
&& from_mode
== DFmode
&& to_mode
== QFmode
)
643 emit_unop_insn (CODE_FOR_truncdfqf2
, to
, from
, UNKNOWN
);
647 #ifdef HAVE_truncxfqf2
648 if (HAVE_truncxfqf2
&& from_mode
== XFmode
&& to_mode
== QFmode
)
650 emit_unop_insn (CODE_FOR_truncxfqf2
, to
, from
, UNKNOWN
);
654 #ifdef HAVE_trunctfqf2
655 if (HAVE_trunctfqf2
&& from_mode
== TFmode
&& to_mode
== QFmode
)
657 emit_unop_insn (CODE_FOR_trunctfqf2
, to
, from
, UNKNOWN
);
662 #ifdef HAVE_trunctqfhf2
663 if (HAVE_trunctqfhf2
&& from_mode
== TQFmode
&& to_mode
== HFmode
)
665 emit_unop_insn (CODE_FOR_trunctqfhf2
, to
, from
, UNKNOWN
);
669 #ifdef HAVE_truncsfhf2
670 if (HAVE_truncsfhf2
&& from_mode
== SFmode
&& to_mode
== HFmode
)
672 emit_unop_insn (CODE_FOR_truncsfhf2
, to
, from
, UNKNOWN
);
676 #ifdef HAVE_truncdfhf2
677 if (HAVE_truncdfhf2
&& from_mode
== DFmode
&& to_mode
== HFmode
)
679 emit_unop_insn (CODE_FOR_truncdfhf2
, to
, from
, UNKNOWN
);
683 #ifdef HAVE_truncxfhf2
684 if (HAVE_truncxfhf2
&& from_mode
== XFmode
&& to_mode
== HFmode
)
686 emit_unop_insn (CODE_FOR_truncxfhf2
, to
, from
, UNKNOWN
);
690 #ifdef HAVE_trunctfhf2
691 if (HAVE_trunctfhf2
&& from_mode
== TFmode
&& to_mode
== HFmode
)
693 emit_unop_insn (CODE_FOR_trunctfhf2
, to
, from
, UNKNOWN
);
698 #ifdef HAVE_truncsftqf2
699 if (HAVE_truncsftqf2
&& from_mode
== SFmode
&& to_mode
== TQFmode
)
701 emit_unop_insn (CODE_FOR_truncsftqf2
, to
, from
, UNKNOWN
);
705 #ifdef HAVE_truncdftqf2
706 if (HAVE_truncdftqf2
&& from_mode
== DFmode
&& to_mode
== TQFmode
)
708 emit_unop_insn (CODE_FOR_truncdftqf2
, to
, from
, UNKNOWN
);
712 #ifdef HAVE_truncxftqf2
713 if (HAVE_truncxftqf2
&& from_mode
== XFmode
&& to_mode
== TQFmode
)
715 emit_unop_insn (CODE_FOR_truncxftqf2
, to
, from
, UNKNOWN
);
719 #ifdef HAVE_trunctftqf2
720 if (HAVE_trunctftqf2
&& from_mode
== TFmode
&& to_mode
== TQFmode
)
722 emit_unop_insn (CODE_FOR_trunctftqf2
, to
, from
, UNKNOWN
);
727 #ifdef HAVE_truncdfsf2
728 if (HAVE_truncdfsf2
&& from_mode
== DFmode
&& to_mode
== SFmode
)
730 emit_unop_insn (CODE_FOR_truncdfsf2
, to
, from
, UNKNOWN
);
734 #ifdef HAVE_truncxfsf2
735 if (HAVE_truncxfsf2
&& from_mode
== XFmode
&& to_mode
== SFmode
)
737 emit_unop_insn (CODE_FOR_truncxfsf2
, to
, from
, UNKNOWN
);
741 #ifdef HAVE_trunctfsf2
742 if (HAVE_trunctfsf2
&& from_mode
== TFmode
&& to_mode
== SFmode
)
744 emit_unop_insn (CODE_FOR_trunctfsf2
, to
, from
, UNKNOWN
);
748 #ifdef HAVE_truncxfdf2
749 if (HAVE_truncxfdf2
&& from_mode
== XFmode
&& to_mode
== DFmode
)
751 emit_unop_insn (CODE_FOR_truncxfdf2
, to
, from
, UNKNOWN
);
755 #ifdef HAVE_trunctfdf2
756 if (HAVE_trunctfdf2
&& from_mode
== TFmode
&& to_mode
== DFmode
)
758 emit_unop_insn (CODE_FOR_trunctfdf2
, to
, from
, UNKNOWN
);
770 libcall
= extendsfdf2_libfunc
;
774 libcall
= extendsfxf2_libfunc
;
778 libcall
= extendsftf2_libfunc
;
790 libcall
= truncdfsf2_libfunc
;
794 libcall
= extenddfxf2_libfunc
;
798 libcall
= extenddftf2_libfunc
;
810 libcall
= truncxfsf2_libfunc
;
814 libcall
= truncxfdf2_libfunc
;
826 libcall
= trunctfsf2_libfunc
;
830 libcall
= trunctfdf2_libfunc
;
842 if (libcall
== (rtx
) 0)
843 /* This conversion is not implemented yet. */
847 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
849 insns
= get_insns ();
851 emit_libcall_block (insns
, to
, value
, gen_rtx_FLOAT_TRUNCATE (to_mode
,
856 /* Now both modes are integers. */
858 /* Handle expanding beyond a word. */
859 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
860 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
867 enum machine_mode lowpart_mode
;
868 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
870 /* Try converting directly if the insn is supported. */
871 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
874 /* If FROM is a SUBREG, put it into a register. Do this
875 so that we always generate the same set of insns for
876 better cse'ing; if an intermediate assignment occurred,
877 we won't be doing the operation directly on the SUBREG. */
878 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
879 from
= force_reg (from_mode
, from
);
880 emit_unop_insn (code
, to
, from
, equiv_code
);
883 /* Next, try converting via full word. */
884 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
885 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
886 != CODE_FOR_nothing
))
888 if (GET_CODE (to
) == REG
)
889 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
890 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
891 emit_unop_insn (code
, to
,
892 gen_lowpart (word_mode
, to
), equiv_code
);
896 /* No special multiword conversion insn; do it by hand. */
899 /* Since we will turn this into a no conflict block, we must ensure
900 that the source does not overlap the target. */
902 if (reg_overlap_mentioned_p (to
, from
))
903 from
= force_reg (from_mode
, from
);
905 /* Get a copy of FROM widened to a word, if necessary. */
906 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
907 lowpart_mode
= word_mode
;
909 lowpart_mode
= from_mode
;
911 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
913 lowpart
= gen_lowpart (lowpart_mode
, to
);
914 emit_move_insn (lowpart
, lowfrom
);
916 /* Compute the value to put in each remaining word. */
918 fill_value
= const0_rtx
;
923 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
924 && STORE_FLAG_VALUE
== -1)
926 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
928 fill_value
= gen_reg_rtx (word_mode
);
929 emit_insn (gen_slt (fill_value
));
935 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
936 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
938 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
942 /* Fill the remaining words. */
943 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
945 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
946 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
951 if (fill_value
!= subword
)
952 emit_move_insn (subword
, fill_value
);
955 insns
= get_insns ();
958 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
959 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
963 /* Truncating multi-word to a word or less. */
964 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
965 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
967 if (!((GET_CODE (from
) == MEM
968 && ! MEM_VOLATILE_P (from
)
969 && direct_load
[(int) to_mode
]
970 && ! mode_dependent_address_p (XEXP (from
, 0)))
971 || GET_CODE (from
) == REG
972 || GET_CODE (from
) == SUBREG
))
973 from
= force_reg (from_mode
, from
);
974 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
978 /* Handle pointer conversion. */ /* SPEE 900220. */
979 if (to_mode
== PQImode
)
981 if (from_mode
!= QImode
)
982 from
= convert_to_mode (QImode
, from
, unsignedp
);
984 #ifdef HAVE_truncqipqi2
985 if (HAVE_truncqipqi2
)
987 emit_unop_insn (CODE_FOR_truncqipqi2
, to
, from
, UNKNOWN
);
990 #endif /* HAVE_truncqipqi2 */
994 if (from_mode
== PQImode
)
996 if (to_mode
!= QImode
)
998 from
= convert_to_mode (QImode
, from
, unsignedp
);
1003 #ifdef HAVE_extendpqiqi2
1004 if (HAVE_extendpqiqi2
)
1006 emit_unop_insn (CODE_FOR_extendpqiqi2
, to
, from
, UNKNOWN
);
1009 #endif /* HAVE_extendpqiqi2 */
1014 if (to_mode
== PSImode
)
1016 if (from_mode
!= SImode
)
1017 from
= convert_to_mode (SImode
, from
, unsignedp
);
1019 #ifdef HAVE_truncsipsi2
1020 if (HAVE_truncsipsi2
)
1022 emit_unop_insn (CODE_FOR_truncsipsi2
, to
, from
, UNKNOWN
);
1025 #endif /* HAVE_truncsipsi2 */
1029 if (from_mode
== PSImode
)
1031 if (to_mode
!= SImode
)
1033 from
= convert_to_mode (SImode
, from
, unsignedp
);
1038 #ifdef HAVE_extendpsisi2
1039 if (! unsignedp
&& HAVE_extendpsisi2
)
1041 emit_unop_insn (CODE_FOR_extendpsisi2
, to
, from
, UNKNOWN
);
1044 #endif /* HAVE_extendpsisi2 */
1045 #ifdef HAVE_zero_extendpsisi2
1046 if (unsignedp
&& HAVE_zero_extendpsisi2
)
1048 emit_unop_insn (CODE_FOR_zero_extendpsisi2
, to
, from
, UNKNOWN
);
1051 #endif /* HAVE_zero_extendpsisi2 */
1056 if (to_mode
== PDImode
)
1058 if (from_mode
!= DImode
)
1059 from
= convert_to_mode (DImode
, from
, unsignedp
);
1061 #ifdef HAVE_truncdipdi2
1062 if (HAVE_truncdipdi2
)
1064 emit_unop_insn (CODE_FOR_truncdipdi2
, to
, from
, UNKNOWN
);
1067 #endif /* HAVE_truncdipdi2 */
1071 if (from_mode
== PDImode
)
1073 if (to_mode
!= DImode
)
1075 from
= convert_to_mode (DImode
, from
, unsignedp
);
1080 #ifdef HAVE_extendpdidi2
1081 if (HAVE_extendpdidi2
)
1083 emit_unop_insn (CODE_FOR_extendpdidi2
, to
, from
, UNKNOWN
);
1086 #endif /* HAVE_extendpdidi2 */
1091 /* Now follow all the conversions between integers
1092 no more than a word long. */
1094 /* For truncation, usually we can just refer to FROM in a narrower mode. */
1095 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
1096 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
1097 GET_MODE_BITSIZE (from_mode
)))
1099 if (!((GET_CODE (from
) == MEM
1100 && ! MEM_VOLATILE_P (from
)
1101 && direct_load
[(int) to_mode
]
1102 && ! mode_dependent_address_p (XEXP (from
, 0)))
1103 || GET_CODE (from
) == REG
1104 || GET_CODE (from
) == SUBREG
))
1105 from
= force_reg (from_mode
, from
);
1106 if (GET_CODE (from
) == REG
&& REGNO (from
) < FIRST_PSEUDO_REGISTER
1107 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
1108 from
= copy_to_reg (from
);
1109 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
1113 /* Handle extension. */
1114 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
1116 /* Convert directly if that works. */
1117 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
1118 != CODE_FOR_nothing
)
1121 from
= force_not_mem (from
);
1123 emit_unop_insn (code
, to
, from
, equiv_code
);
1128 enum machine_mode intermediate
;
1132 /* Search for a mode to convert via. */
1133 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
1134 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
1135 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
1136 != CODE_FOR_nothing
)
1137 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
1138 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
1139 GET_MODE_BITSIZE (intermediate
))))
1140 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
1141 != CODE_FOR_nothing
))
1143 convert_move (to
, convert_to_mode (intermediate
, from
,
1144 unsignedp
), unsignedp
);
1148 /* No suitable intermediate mode.
1149 Generate what we need with shifts. */
1150 shift_amount
= build_int_2 (GET_MODE_BITSIZE (to_mode
)
1151 - GET_MODE_BITSIZE (from_mode
), 0);
1152 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
1153 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
1155 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
1158 emit_move_insn (to
, tmp
);
1163 /* Support special truncate insns for certain modes. */
1165 if (from_mode
== DImode
&& to_mode
== SImode
)
1167 #ifdef HAVE_truncdisi2
1168 if (HAVE_truncdisi2
)
1170 emit_unop_insn (CODE_FOR_truncdisi2
, to
, from
, UNKNOWN
);
1174 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1178 if (from_mode
== DImode
&& to_mode
== HImode
)
1180 #ifdef HAVE_truncdihi2
1181 if (HAVE_truncdihi2
)
1183 emit_unop_insn (CODE_FOR_truncdihi2
, to
, from
, UNKNOWN
);
1187 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1191 if (from_mode
== DImode
&& to_mode
== QImode
)
1193 #ifdef HAVE_truncdiqi2
1194 if (HAVE_truncdiqi2
)
1196 emit_unop_insn (CODE_FOR_truncdiqi2
, to
, from
, UNKNOWN
);
1200 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1204 if (from_mode
== SImode
&& to_mode
== HImode
)
1206 #ifdef HAVE_truncsihi2
1207 if (HAVE_truncsihi2
)
1209 emit_unop_insn (CODE_FOR_truncsihi2
, to
, from
, UNKNOWN
);
1213 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1217 if (from_mode
== SImode
&& to_mode
== QImode
)
1219 #ifdef HAVE_truncsiqi2
1220 if (HAVE_truncsiqi2
)
1222 emit_unop_insn (CODE_FOR_truncsiqi2
, to
, from
, UNKNOWN
);
1226 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1230 if (from_mode
== HImode
&& to_mode
== QImode
)
1232 #ifdef HAVE_trunchiqi2
1233 if (HAVE_trunchiqi2
)
1235 emit_unop_insn (CODE_FOR_trunchiqi2
, to
, from
, UNKNOWN
);
1239 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1243 if (from_mode
== TImode
&& to_mode
== DImode
)
1245 #ifdef HAVE_trunctidi2
1246 if (HAVE_trunctidi2
)
1248 emit_unop_insn (CODE_FOR_trunctidi2
, to
, from
, UNKNOWN
);
1252 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1256 if (from_mode
== TImode
&& to_mode
== SImode
)
1258 #ifdef HAVE_trunctisi2
1259 if (HAVE_trunctisi2
)
1261 emit_unop_insn (CODE_FOR_trunctisi2
, to
, from
, UNKNOWN
);
1265 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1269 if (from_mode
== TImode
&& to_mode
== HImode
)
1271 #ifdef HAVE_trunctihi2
1272 if (HAVE_trunctihi2
)
1274 emit_unop_insn (CODE_FOR_trunctihi2
, to
, from
, UNKNOWN
);
1278 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1282 if (from_mode
== TImode
&& to_mode
== QImode
)
1284 #ifdef HAVE_trunctiqi2
1285 if (HAVE_trunctiqi2
)
1287 emit_unop_insn (CODE_FOR_trunctiqi2
, to
, from
, UNKNOWN
);
1291 convert_move (to
, force_reg (from_mode
, from
), unsignedp
);
1295 /* Handle truncation of volatile memrefs, and so on;
1296 the things that couldn't be truncated directly,
1297 and for which there was no special instruction. */
1298 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
1300 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
1301 emit_move_insn (to
, temp
);
1305 /* Mode combination is not recognized. */
1309 /* Return an rtx for a value that would result
1310 from converting X to mode MODE.
1311 Both X and MODE may be floating, or both integer.
1312 UNSIGNEDP is nonzero if X is an unsigned value.
1313 This can be done by referring to a part of X in place
1314 or by copying to a new temporary with conversion.
1316 This function *must not* call protect_from_queue
1317 except when putting X into an insn (in which case convert_move does it). */
1320 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
1322 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
1325 /* Return an rtx for a value that would result
1326 from converting X from mode OLDMODE to mode MODE.
1327 Both modes may be floating, or both integer.
1328 UNSIGNEDP is nonzero if X is an unsigned value.
1330 This can be done by referring to a part of X in place
1331 or by copying to a new temporary with conversion.
1333 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.
1335 This function *must not* call protect_from_queue
1336 except when putting X into an insn (in which case convert_move does it). */
1339 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
1343 /* If FROM is a SUBREG that indicates that we have already done at least
1344 the required extension, strip it. */
1346 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
1347 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
1348 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
1349 x
= gen_lowpart (mode
, x
);
1351 if (GET_MODE (x
) != VOIDmode
)
1352 oldmode
= GET_MODE (x
);
1354 if (mode
== oldmode
)
1357 /* There is one case that we must handle specially: If we are converting
1358 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
1359 we are to interpret the constant as unsigned, gen_lowpart will do
1360 the wrong if the constant appears negative. What we want to do is
1361 make the high-order word of the constant zero, not all ones. */
1363 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
1364 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
1365 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
1367 HOST_WIDE_INT val
= INTVAL (x
);
1369 if (oldmode
!= VOIDmode
1370 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
1372 int width
= GET_MODE_BITSIZE (oldmode
);
1374 /* We need to zero extend VAL. */
1375 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
1378 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
1381 /* We can do this with a gen_lowpart if both desired and current modes
1382 are integer, and this is either a constant integer, a register, or a
1383 non-volatile MEM. Except for the constant case where MODE is no
1384 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
1386 if ((GET_CODE (x
) == CONST_INT
1387 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1388 || (GET_MODE_CLASS (mode
) == MODE_INT
1389 && GET_MODE_CLASS (oldmode
) == MODE_INT
1390 && (GET_CODE (x
) == CONST_DOUBLE
1391 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
1392 && ((GET_CODE (x
) == MEM
&& ! MEM_VOLATILE_P (x
)
1393 && direct_load
[(int) mode
])
1394 || (GET_CODE (x
) == REG
1395 && (! HARD_REGISTER_P (x
)
1396 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
1397 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1398 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
1400 /* ?? If we don't know OLDMODE, we have to assume here that
1401 X does not need sign- or zero-extension. This may not be
1402 the case, but it's the best we can do. */
1403 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
1404 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
1406 HOST_WIDE_INT val
= INTVAL (x
);
1407 int width
= GET_MODE_BITSIZE (oldmode
);
1409 /* We must sign or zero-extend in this case. Start by
1410 zero-extending, then sign extend if we need to. */
1411 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
1413 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
1414 val
|= (HOST_WIDE_INT
) (-1) << width
;
1416 return gen_int_mode (val
, mode
);
1419 return gen_lowpart (mode
, x
);
1422 temp
= gen_reg_rtx (mode
);
1423 convert_move (temp
, x
, unsignedp
);
1427 /* STORE_MAX_PIECES is the number of bytes at a time that we can
1428 store efficiently. Due to internal GCC limitations, this is
1429 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
1430 for an immediate constant. */
1432 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
1434 /* Determine whether the LEN bytes can be moved by using several move
1435 instructions. Return nonzero if a call to move_by_pieces should
1439 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
1440 unsigned int align ATTRIBUTE_UNUSED
)
1442 return MOVE_BY_PIECES_P (len
, align
);
1445 /* Generate several move instructions to copy LEN bytes from block FROM to
1446 block TO. (These are MEM rtx's with BLKmode). The caller must pass FROM
1447 and TO through protect_from_queue before calling.
1449 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1450 used to push FROM to the stack.
1452 ALIGN is maximum stack alignment we can assume.
1454 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1455 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1459 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1460 unsigned int align
, int endp
)
1462 struct move_by_pieces data
;
1463 rtx to_addr
, from_addr
= XEXP (from
, 0);
1464 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
1465 enum machine_mode mode
= VOIDmode
, tmode
;
1466 enum insn_code icode
;
1468 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
1471 data
.from_addr
= from_addr
;
1474 to_addr
= XEXP (to
, 0);
1477 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
1478 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
1480 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
1487 #ifdef STACK_GROWS_DOWNWARD
1493 data
.to_addr
= to_addr
;
1496 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
1497 || GET_CODE (from_addr
) == POST_INC
1498 || GET_CODE (from_addr
) == POST_DEC
);
1500 data
.explicit_inc_from
= 0;
1501 data
.explicit_inc_to
= 0;
1502 if (data
.reverse
) data
.offset
= len
;
1505 /* If copying requires more than two move insns,
1506 copy addresses to registers (to make displacements shorter)
1507 and use post-increment if available. */
1508 if (!(data
.autinc_from
&& data
.autinc_to
)
1509 && move_by_pieces_ninsns (len
, align
) > 2)
1511 /* Find the mode of the largest move... */
1512 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1513 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1514 if (GET_MODE_SIZE (tmode
) < max_size
)
1517 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
1519 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
1520 data
.autinc_from
= 1;
1521 data
.explicit_inc_from
= -1;
1523 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
1525 data
.from_addr
= copy_addr_to_reg (from_addr
);
1526 data
.autinc_from
= 1;
1527 data
.explicit_inc_from
= 1;
1529 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
1530 data
.from_addr
= copy_addr_to_reg (from_addr
);
1531 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
1533 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
1535 data
.explicit_inc_to
= -1;
1537 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
1539 data
.to_addr
= copy_addr_to_reg (to_addr
);
1541 data
.explicit_inc_to
= 1;
1543 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
1544 data
.to_addr
= copy_addr_to_reg (to_addr
);
1547 if (! SLOW_UNALIGNED_ACCESS (word_mode
, align
)
1548 || align
> MOVE_MAX
* BITS_PER_UNIT
|| align
>= BIGGEST_ALIGNMENT
)
1549 align
= MOVE_MAX
* BITS_PER_UNIT
;
1551 /* First move what we can in the largest integer mode, then go to
1552 successively smaller modes. */
1554 while (max_size
> 1)
1556 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1557 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1558 if (GET_MODE_SIZE (tmode
) < max_size
)
1561 if (mode
== VOIDmode
)
1564 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1565 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1566 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
1568 max_size
= GET_MODE_SIZE (mode
);
1571 /* The code above should have handled everything. */
1585 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1586 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1588 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1591 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1598 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1606 /* Return number of insns required to move L bytes by pieces.
1607 ALIGN (in bits) is maximum alignment we can assume. */
1609 static unsigned HOST_WIDE_INT
1610 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
)
1612 unsigned HOST_WIDE_INT n_insns
= 0;
1613 unsigned HOST_WIDE_INT max_size
= MOVE_MAX
+ 1;
1615 if (! SLOW_UNALIGNED_ACCESS (word_mode
, align
)
1616 || align
> MOVE_MAX
* BITS_PER_UNIT
|| align
>= BIGGEST_ALIGNMENT
)
1617 align
= MOVE_MAX
* BITS_PER_UNIT
;
1619 while (max_size
> 1)
1621 enum machine_mode mode
= VOIDmode
, tmode
;
1622 enum insn_code icode
;
1624 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1625 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1626 if (GET_MODE_SIZE (tmode
) < max_size
)
1629 if (mode
== VOIDmode
)
1632 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1633 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1634 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1636 max_size
= GET_MODE_SIZE (mode
);
1644 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1645 with move instructions for mode MODE. GENFUN is the gen_... function
1646 to make a move insn for that mode. DATA has all the other info. */
1649 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1650 struct move_by_pieces
*data
)
1652 unsigned int size
= GET_MODE_SIZE (mode
);
1653 rtx to1
= NULL_RTX
, from1
;
1655 while (data
->len
>= size
)
1658 data
->offset
-= size
;
1662 if (data
->autinc_to
)
1663 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1666 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1669 if (data
->autinc_from
)
1670 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1673 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1675 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1676 emit_insn (gen_add2_insn (data
->to_addr
,
1677 GEN_INT (-(HOST_WIDE_INT
)size
)));
1678 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1679 emit_insn (gen_add2_insn (data
->from_addr
,
1680 GEN_INT (-(HOST_WIDE_INT
)size
)));
1683 emit_insn ((*genfun
) (to1
, from1
));
1686 #ifdef PUSH_ROUNDING
1687 emit_single_push_insn (mode
, from1
, NULL
);
1693 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1694 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1695 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1696 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1698 if (! data
->reverse
)
1699 data
->offset
+= size
;
1705 /* Emit code to move a block Y to a block X. This may be done with
1706 string-move instructions, with multiple scalar move instructions,
1707 or with a library call.
1709 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1710 SIZE is an rtx that says how long they are.
1711 ALIGN is the maximum alignment we can assume they have.
1712 METHOD describes what kind of copy this is, and what mechanisms may be used.
1714 Return the address of the new block, if memcpy is called and returns it,
1718 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1726 case BLOCK_OP_NORMAL
:
1727 may_use_call
= true;
1730 case BLOCK_OP_CALL_PARM
:
1731 may_use_call
= block_move_libcall_safe_for_call_parm ();
1733 /* Make inhibit_defer_pop nonzero around the library call
1734 to force it to pop the arguments right away. */
1738 case BLOCK_OP_NO_LIBCALL
:
1739 may_use_call
= false;
1746 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1748 if (GET_MODE (x
) != BLKmode
)
1750 if (GET_MODE (y
) != BLKmode
)
1753 x
= protect_from_queue (x
, 1);
1754 y
= protect_from_queue (y
, 0);
1755 size
= protect_from_queue (size
, 0);
1757 if (GET_CODE (x
) != MEM
)
1759 if (GET_CODE (y
) != MEM
)
1764 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1765 can be incorrect is coming from __builtin_memcpy. */
1766 if (GET_CODE (size
) == CONST_INT
)
1768 if (INTVAL (size
) == 0)
1771 x
= shallow_copy_rtx (x
);
1772 y
= shallow_copy_rtx (y
);
1773 set_mem_size (x
, size
);
1774 set_mem_size (y
, size
);
1777 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1778 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1779 else if (emit_block_move_via_movstr (x
, y
, size
, align
))
1781 else if (may_use_call
)
1782 retval
= emit_block_move_via_libcall (x
, y
, size
);
1784 emit_block_move_via_loop (x
, y
, size
, align
);
1786 if (method
== BLOCK_OP_CALL_PARM
)
1792 /* A subroutine of emit_block_move. Returns true if calling the
1793 block move libcall will not clobber any parameters which may have
1794 already been placed on the stack. */
1797 block_move_libcall_safe_for_call_parm (void)
1803 /* Check to see whether memcpy takes all register arguments. */
1805 takes_regs_uninit
, takes_regs_no
, takes_regs_yes
1806 } takes_regs
= takes_regs_uninit
;
1810 case takes_regs_uninit
:
1812 CUMULATIVE_ARGS args_so_far
;
1815 fn
= emit_block_move_libcall_fn (false);
1816 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0);
1818 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1819 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1821 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1822 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1823 if (!tmp
|| !REG_P (tmp
))
1824 goto fail_takes_regs
;
1825 #ifdef FUNCTION_ARG_PARTIAL_NREGS
1826 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far
, mode
,
1828 goto fail_takes_regs
;
1830 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1833 takes_regs
= takes_regs_yes
;
1836 case takes_regs_yes
:
1840 takes_regs
= takes_regs_no
;
1851 /* A subroutine of emit_block_move. Expand a movstr pattern;
1852 return true if successful. */
1855 emit_block_move_via_movstr (rtx x
, rtx y
, rtx size
, unsigned int align
)
1857 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1858 enum machine_mode mode
;
1860 /* Since this is a move insn, we don't care about volatility. */
1863 /* Try the most limited insn first, because there's no point
1864 including more than one in the machine description unless
1865 the more limited one has some advantage. */
1867 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1868 mode
= GET_MODE_WIDER_MODE (mode
))
1870 enum insn_code code
= movstr_optab
[(int) mode
];
1871 insn_operand_predicate_fn pred
;
1873 if (code
!= CODE_FOR_nothing
1874 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1875 here because if SIZE is less than the mode mask, as it is
1876 returned by the macro, it will definitely be less than the
1877 actual mode mask. */
1878 && ((GET_CODE (size
) == CONST_INT
1879 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1880 <= (GET_MODE_MASK (mode
) >> 1)))
1881 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1882 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1883 || (*pred
) (x
, BLKmode
))
1884 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1885 || (*pred
) (y
, BLKmode
))
1886 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1887 || (*pred
) (opalign
, VOIDmode
)))
1890 rtx last
= get_last_insn ();
1893 op2
= convert_to_mode (mode
, size
, 1);
1894 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1895 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1896 op2
= copy_to_mode_reg (mode
, op2
);
1898 /* ??? When called via emit_block_move_for_call, it'd be
1899 nice if there were some way to inform the backend, so
1900 that it doesn't fail the expansion because it thinks
1901 emitting the libcall would be more efficient. */
1903 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1911 delete_insns_since (last
);
1919 /* A subroutine of emit_block_move. Expand a call to memcpy or bcopy.
1920 Return the return value from memcpy, 0 otherwise. */
1923 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
)
1925 rtx dst_addr
, src_addr
;
1926 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1927 enum machine_mode size_mode
;
1930 /* DST, SRC, or SIZE may have been passed through protect_from_queue.
1932 It is unsafe to save the value generated by protect_from_queue and reuse
1933 it later. Consider what happens if emit_queue is called before the
1934 return value from protect_from_queue is used.
1936 Expansion of the CALL_EXPR below will call emit_queue before we are
1937 finished emitting RTL for argument setup. So if we are not careful we
1938 could get the wrong value for an argument.
1940 To avoid this problem we go ahead and emit code to copy the addresses of
1941 DST and SRC and SIZE into new pseudos. We can then place those new
1942 pseudos into an RTL_EXPR and use them later, even after a call to
1945 Note this is not strictly needed for library calls since they do not call
1946 emit_queue before loading their arguments. However, we may need to have
1947 library calls call emit_queue in the future since failing to do so could
1948 cause problems for targets which define SMALL_REGISTER_CLASSES and pass
1949 arguments in registers. */
1951 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1952 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1954 #ifdef POINTERS_EXTEND_UNSIGNED
1955 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1956 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1959 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1960 src_tree
= make_tree (ptr_type_node
, src_addr
);
1962 if (TARGET_MEM_FUNCTIONS
)
1963 size_mode
= TYPE_MODE (sizetype
);
1965 size_mode
= TYPE_MODE (unsigned_type_node
);
1967 size
= convert_to_mode (size_mode
, size
, 1);
1968 size
= copy_to_mode_reg (size_mode
, size
);
1970 /* It is incorrect to use the libcall calling conventions to call
1971 memcpy in this context. This could be a user call to memcpy and
1972 the user may wish to examine the return value from memcpy. For
1973 targets where libcalls and normal calls have different conventions
1974 for returning pointers, we could end up generating incorrect code.
1976 For convenience, we generate the call to bcopy this way as well. */
1978 if (TARGET_MEM_FUNCTIONS
)
1979 size_tree
= make_tree (sizetype
, size
);
1981 size_tree
= make_tree (unsigned_type_node
, size
);
1983 fn
= emit_block_move_libcall_fn (true);
1984 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1985 if (TARGET_MEM_FUNCTIONS
)
1987 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1988 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1992 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1993 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1996 /* Now we have to build up the CALL_EXPR itself. */
1997 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1998 call_expr
= build (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1999 call_expr
, arg_list
, NULL_TREE
);
2000 TREE_SIDE_EFFECTS (call_expr
) = 1;
2002 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2004 /* If we are initializing a readonly value, show the above call clobbered
2005 it. Otherwise, a load from it may erroneously be hoisted from a loop, or
2006 the delay slot scheduler might overlook conflicts and take nasty
2008 if (RTX_UNCHANGING_P (dst
))
2009 add_function_usage_to
2010 (last_call_insn (), gen_rtx_EXPR_LIST (VOIDmode
,
2011 gen_rtx_CLOBBER (VOIDmode
, dst
),
2014 return TARGET_MEM_FUNCTIONS
? retval
: NULL_RTX
;
2017 /* A subroutine of emit_block_move_via_libcall. Create the tree node
2018 for the function we use for block copies. The first time FOR_CALL
2019 is true, we call assemble_external. */
2021 static GTY(()) tree block_move_fn
;
2024 init_block_move_fn (const char *asmspec
)
2030 if (TARGET_MEM_FUNCTIONS
)
2032 fn
= get_identifier ("memcpy");
2033 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2034 const_ptr_type_node
, sizetype
,
2039 fn
= get_identifier ("bcopy");
2040 args
= build_function_type_list (void_type_node
, const_ptr_type_node
,
2041 ptr_type_node
, unsigned_type_node
,
2045 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2046 DECL_EXTERNAL (fn
) = 1;
2047 TREE_PUBLIC (fn
) = 1;
2048 DECL_ARTIFICIAL (fn
) = 1;
2049 TREE_NOTHROW (fn
) = 1;
2056 SET_DECL_RTL (block_move_fn
, NULL_RTX
);
2057 SET_DECL_ASSEMBLER_NAME (block_move_fn
, get_identifier (asmspec
));
2062 emit_block_move_libcall_fn (int for_call
)
2064 static bool emitted_extern
;
2067 init_block_move_fn (NULL
);
2069 if (for_call
&& !emitted_extern
)
2071 emitted_extern
= true;
2072 make_decl_rtl (block_move_fn
, NULL
);
2073 assemble_external (block_move_fn
);
2076 return block_move_fn
;
2079 /* A subroutine of emit_block_move. Copy the data via an explicit
2080 loop. This is used only when libcalls are forbidden. */
2081 /* ??? It'd be nice to copy in hunks larger than QImode. */
2084 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
2085 unsigned int align ATTRIBUTE_UNUSED
)
2087 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
2088 enum machine_mode iter_mode
;
2090 iter_mode
= GET_MODE (size
);
2091 if (iter_mode
== VOIDmode
)
2092 iter_mode
= word_mode
;
2094 top_label
= gen_label_rtx ();
2095 cmp_label
= gen_label_rtx ();
2096 iter
= gen_reg_rtx (iter_mode
);
2098 emit_move_insn (iter
, const0_rtx
);
2100 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
2101 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
2102 do_pending_stack_adjust ();
2104 emit_note (NOTE_INSN_LOOP_BEG
);
2106 emit_jump (cmp_label
);
2107 emit_label (top_label
);
2109 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
2110 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
2111 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
2112 x
= change_address (x
, QImode
, x_addr
);
2113 y
= change_address (y
, QImode
, y_addr
);
2115 emit_move_insn (x
, y
);
2117 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
2118 true, OPTAB_LIB_WIDEN
);
2120 emit_move_insn (iter
, tmp
);
2122 emit_note (NOTE_INSN_LOOP_CONT
);
2123 emit_label (cmp_label
);
2125 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
2128 emit_note (NOTE_INSN_LOOP_END
);
2131 /* Copy all or part of a value X into registers starting at REGNO.
2132 The number of registers to be filled is NREGS. */
2135 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
2138 #ifdef HAVE_load_multiple
2146 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
2147 x
= validize_mem (force_const_mem (mode
, x
));
2149 /* See if the machine can do this with a load multiple insn. */
2150 #ifdef HAVE_load_multiple
2151 if (HAVE_load_multiple
)
2153 last
= get_last_insn ();
2154 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
2162 delete_insns_since (last
);
2166 for (i
= 0; i
< nregs
; i
++)
2167 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
2168 operand_subword_force (x
, i
, mode
));
2171 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2172 The number of registers to be filled is NREGS. */
2175 move_block_from_reg (int regno
, rtx x
, int nregs
)
2182 /* See if the machine can do this with a store multiple insn. */
2183 #ifdef HAVE_store_multiple
2184 if (HAVE_store_multiple
)
2186 rtx last
= get_last_insn ();
2187 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
2195 delete_insns_since (last
);
2199 for (i
= 0; i
< nregs
; i
++)
2201 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
2206 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
2210 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2211 ORIG, where ORIG is a non-consecutive group of registers represented by
2212 a PARALLEL. The clone is identical to the original except in that the
2213 original set of registers is replaced by a new set of pseudo registers.
2214 The new set has the same modes as the original set. */
2217 gen_group_rtx (rtx orig
)
2222 if (GET_CODE (orig
) != PARALLEL
)
2225 length
= XVECLEN (orig
, 0);
2226 tmps
= alloca (sizeof (rtx
) * length
);
2228 /* Skip a NULL entry in first slot. */
2229 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
2234 for (; i
< length
; i
++)
2236 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
2237 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
2239 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
2242 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
2245 /* Emit code to move a block ORIG_SRC of type TYPE to a block DST,
2246 where DST is non-consecutive registers represented by a PARALLEL.
2247 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2251 emit_group_load (rtx dst
, rtx orig_src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
2256 if (GET_CODE (dst
) != PARALLEL
)
2259 /* Check for a NULL entry, used to indicate that the parameter goes
2260 both on the stack and in registers. */
2261 if (XEXP (XVECEXP (dst
, 0, 0), 0))
2266 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
2268 /* Process the pieces. */
2269 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
2271 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
2272 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
2273 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2276 /* Handle trailing fragments that run over the size of the struct. */
2277 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2279 /* Arrange to shift the fragment to where it belongs.
2280 extract_bit_field loads to the lsb of the reg. */
2282 #ifdef BLOCK_REG_PADDING
2283 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
2284 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2289 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2290 bytelen
= ssize
- bytepos
;
2295 /* If we won't be loading directly from memory, protect the real source
2296 from strange tricks we might play; but make sure that the source can
2297 be loaded directly into the destination. */
2299 if (GET_CODE (orig_src
) != MEM
2300 && (!CONSTANT_P (orig_src
)
2301 || (GET_MODE (orig_src
) != mode
2302 && GET_MODE (orig_src
) != VOIDmode
)))
2304 if (GET_MODE (orig_src
) == VOIDmode
)
2305 src
= gen_reg_rtx (mode
);
2307 src
= gen_reg_rtx (GET_MODE (orig_src
));
2309 emit_move_insn (src
, orig_src
);
2312 /* Optimize the access just a bit. */
2313 if (GET_CODE (src
) == MEM
2314 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
2315 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
2316 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2317 && bytelen
== GET_MODE_SIZE (mode
))
2319 tmps
[i
] = gen_reg_rtx (mode
);
2320 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
2322 else if (GET_CODE (src
) == CONCAT
)
2324 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
2325 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
2327 if ((bytepos
== 0 && bytelen
== slen0
)
2328 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
2330 /* The following assumes that the concatenated objects all
2331 have the same size. In this case, a simple calculation
2332 can be used to determine the object and the bit field
2334 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
2335 if (! CONSTANT_P (tmps
[i
])
2336 && (GET_CODE (tmps
[i
]) != REG
|| GET_MODE (tmps
[i
]) != mode
))
2337 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
2338 (bytepos
% slen0
) * BITS_PER_UNIT
,
2339 1, NULL_RTX
, mode
, mode
, ssize
);
2341 else if (bytepos
== 0)
2343 rtx mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
2344 emit_move_insn (mem
, src
);
2345 tmps
[i
] = adjust_address (mem
, mode
, 0);
2350 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2351 SIMD register, which is currently broken. While we get GCC
2352 to emit proper RTL for these cases, let's dump to memory. */
2353 else if (VECTOR_MODE_P (GET_MODE (dst
))
2354 && GET_CODE (src
) == REG
)
2356 int slen
= GET_MODE_SIZE (GET_MODE (src
));
2359 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
2360 emit_move_insn (mem
, src
);
2361 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
2363 else if (CONSTANT_P (src
)
2364 || (GET_CODE (src
) == REG
&& GET_MODE (src
) == mode
))
2367 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
2368 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
2372 expand_binop (mode
, ashl_optab
, tmps
[i
], GEN_INT (shift
),
2373 tmps
[i
], 0, OPTAB_WIDEN
);
2378 /* Copy the extracted pieces into the proper (probable) hard regs. */
2379 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
2380 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0), tmps
[i
]);
2383 /* Emit code to move a block SRC to block DST, where SRC and DST are
2384 non-consecutive groups of registers, each represented by a PARALLEL. */
2387 emit_group_move (rtx dst
, rtx src
)
2391 if (GET_CODE (src
) != PARALLEL
2392 || GET_CODE (dst
) != PARALLEL
2393 || XVECLEN (src
, 0) != XVECLEN (dst
, 0))
2396 /* Skip first entry if NULL. */
2397 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
2398 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
2399 XEXP (XVECEXP (src
, 0, i
), 0));
2402 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2403 where SRC is non-consecutive registers represented by a PARALLEL.
2404 SSIZE represents the total size of block ORIG_DST, or -1 if not
2408 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
2413 if (GET_CODE (src
) != PARALLEL
)
2416 /* Check for a NULL entry, used to indicate that the parameter goes
2417 both on the stack and in registers. */
2418 if (XEXP (XVECEXP (src
, 0, 0), 0))
2423 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
2425 /* Copy the (probable) hard regs into pseudos. */
2426 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
2428 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
2429 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
2430 emit_move_insn (tmps
[i
], reg
);
2434 /* If we won't be storing directly into memory, protect the real destination
2435 from strange tricks we might play. */
2437 if (GET_CODE (dst
) == PARALLEL
)
2441 /* We can get a PARALLEL dst if there is a conditional expression in
2442 a return statement. In that case, the dst and src are the same,
2443 so no action is necessary. */
2444 if (rtx_equal_p (dst
, src
))
2447 /* It is unclear if we can ever reach here, but we may as well handle
2448 it. Allocate a temporary, and split this into a store/load to/from
2451 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
2452 emit_group_store (temp
, src
, type
, ssize
);
2453 emit_group_load (dst
, temp
, type
, ssize
);
2456 else if (GET_CODE (dst
) != MEM
&& GET_CODE (dst
) != CONCAT
)
2458 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
2459 /* Make life a bit easier for combine. */
2460 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
2463 /* Process the pieces. */
2464 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
2466 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2467 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2468 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2471 /* Handle trailing fragments that run over the size of the struct. */
2472 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2474 /* store_bit_field always takes its value from the lsb.
2475 Move the fragment to the lsb if it's not already there. */
2477 #ifdef BLOCK_REG_PADDING
2478 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2479 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2485 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2486 expand_binop (mode
, ashr_optab
, tmps
[i
], GEN_INT (shift
),
2487 tmps
[i
], 0, OPTAB_WIDEN
);
2489 bytelen
= ssize
- bytepos
;
2492 if (GET_CODE (dst
) == CONCAT
)
2494 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2495 dest
= XEXP (dst
, 0);
2496 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2498 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2499 dest
= XEXP (dst
, 1);
2501 else if (bytepos
== 0 && XVECLEN (src
, 0))
2503 dest
= assign_stack_temp (GET_MODE (dest
),
2504 GET_MODE_SIZE (GET_MODE (dest
)), 0);
2505 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
2514 /* Optimize the access just a bit. */
2515 if (GET_CODE (dest
) == MEM
2516 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2517 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2518 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2519 && bytelen
== GET_MODE_SIZE (mode
))
2520 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2522 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2523 mode
, tmps
[i
], ssize
);
2528 /* Copy from the pseudo into the (probable) hard reg. */
2529 if (orig_dst
!= dst
)
2530 emit_move_insn (orig_dst
, dst
);
2533 /* Generate code to copy a BLKmode object of TYPE out of a
2534 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2535 is null, a stack temporary is created. TGTBLK is returned.
2537 The primary purpose of this routine is to handle functions
2538 that return BLKmode structures in registers. Some machines
2539 (the PA for example) want to return all small structures
2540 in registers regardless of the structure's alignment. */
2543 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2545 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2546 rtx src
= NULL
, dst
= NULL
;
2547 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2548 unsigned HOST_WIDE_INT bitpos
, xbitpos
, big_endian_correction
= 0;
2552 tgtblk
= assign_temp (build_qualified_type (type
,
2554 | TYPE_QUAL_CONST
)),
2556 preserve_temp_slots (tgtblk
);
2559 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2560 into a new pseudo which is a full word. */
2562 if (GET_MODE (srcreg
) != BLKmode
2563 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2564 srcreg
= convert_to_mode (word_mode
, srcreg
, TREE_UNSIGNED (type
));
2566 /* Structures whose size is not a multiple of a word are aligned
2567 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2568 machine, this means we must skip the empty high order bytes when
2569 calculating the bit offset. */
2570 if (BYTES_BIG_ENDIAN
2571 && bytes
% UNITS_PER_WORD
)
2572 big_endian_correction
2573 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2575 /* Copy the structure BITSIZE bites at a time.
2577 We could probably emit more efficient code for machines which do not use
2578 strict alignment, but it doesn't seem worth the effort at the current
2580 for (bitpos
= 0, xbitpos
= big_endian_correction
;
2581 bitpos
< bytes
* BITS_PER_UNIT
;
2582 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2584 /* We need a new source operand each time xbitpos is on a
2585 word boundary and when xbitpos == big_endian_correction
2586 (the first time through). */
2587 if (xbitpos
% BITS_PER_WORD
== 0
2588 || xbitpos
== big_endian_correction
)
2589 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2592 /* We need a new destination operand each time bitpos is on
2594 if (bitpos
% BITS_PER_WORD
== 0)
2595 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2597 /* Use xbitpos for the source extraction (right justified) and
2598 xbitpos for the destination store (left justified). */
2599 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2600 extract_bit_field (src
, bitsize
,
2601 xbitpos
% BITS_PER_WORD
, 1,
2602 NULL_RTX
, word_mode
, word_mode
,
2610 /* Add a USE expression for REG to the (possibly empty) list pointed
2611 to by CALL_FUSAGE. REG must denote a hard register. */
2614 use_reg (rtx
*call_fusage
, rtx reg
)
2616 if (GET_CODE (reg
) != REG
2617 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
2621 = gen_rtx_EXPR_LIST (VOIDmode
,
2622 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2625 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2626 starting at REGNO. All of these registers must be hard registers. */
2629 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2633 if (regno
+ nregs
> FIRST_PSEUDO_REGISTER
)
2636 for (i
= 0; i
< nregs
; i
++)
2637 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2640 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2641 PARALLEL REGS. This is for calls that pass values in multiple
2642 non-contiguous locations. The Irix 6 ABI has examples of this. */
2645 use_group_regs (rtx
*call_fusage
, rtx regs
)
2649 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2651 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2653 /* A NULL entry means the parameter goes both on the stack and in
2654 registers. This can also be a MEM for targets that pass values
2655 partially on the stack and partially in registers. */
2656 if (reg
!= 0 && GET_CODE (reg
) == REG
)
2657 use_reg (call_fusage
, reg
);
2662 /* Determine whether the LEN bytes generated by CONSTFUN can be
2663 stored to memory using several move instructions. CONSTFUNDATA is
2664 a pointer which will be passed as argument in every CONSTFUN call.
2665 ALIGN is maximum alignment we can assume. Return nonzero if a
2666 call to store_by_pieces should succeed. */
2669 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2670 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2671 void *constfundata
, unsigned int align
)
2673 unsigned HOST_WIDE_INT max_size
, l
;
2674 HOST_WIDE_INT offset
= 0;
2675 enum machine_mode mode
, tmode
;
2676 enum insn_code icode
;
2683 if (! STORE_BY_PIECES_P (len
, align
))
2686 if (! SLOW_UNALIGNED_ACCESS (word_mode
, align
)
2687 || align
> MOVE_MAX
* BITS_PER_UNIT
|| align
>= BIGGEST_ALIGNMENT
)
2688 align
= MOVE_MAX
* BITS_PER_UNIT
;
2690 /* We would first store what we can in the largest integer mode, then go to
2691 successively smaller modes. */
2694 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2699 max_size
= STORE_MAX_PIECES
+ 1;
2700 while (max_size
> 1)
2702 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2703 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2704 if (GET_MODE_SIZE (tmode
) < max_size
)
2707 if (mode
== VOIDmode
)
2710 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2711 if (icode
!= CODE_FOR_nothing
2712 && align
>= GET_MODE_ALIGNMENT (mode
))
2714 unsigned int size
= GET_MODE_SIZE (mode
);
2721 cst
= (*constfun
) (constfundata
, offset
, mode
);
2722 if (!LEGITIMATE_CONSTANT_P (cst
))
2732 max_size
= GET_MODE_SIZE (mode
);
2735 /* The code above should have handled everything. */
2743 /* Generate several move instructions to store LEN bytes generated by
2744 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2745 pointer which will be passed as argument in every CONSTFUN call.
2746 ALIGN is maximum alignment we can assume.
2747 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2748 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2752 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2753 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2754 void *constfundata
, unsigned int align
, int endp
)
2756 struct store_by_pieces data
;
2765 if (! STORE_BY_PIECES_P (len
, align
))
2767 to
= protect_from_queue (to
, 1);
2768 data
.constfun
= constfun
;
2769 data
.constfundata
= constfundata
;
2772 store_by_pieces_1 (&data
, align
);
2783 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2784 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2786 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2789 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2796 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2804 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2805 rtx with BLKmode). The caller must pass TO through protect_from_queue
2806 before calling. ALIGN is maximum alignment we can assume. */
2809 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2811 struct store_by_pieces data
;
2816 data
.constfun
= clear_by_pieces_1
;
2817 data
.constfundata
= NULL
;
2820 store_by_pieces_1 (&data
, align
);
2823 /* Callback routine for clear_by_pieces.
2824 Return const0_rtx unconditionally. */
2827 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2828 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2829 enum machine_mode mode ATTRIBUTE_UNUSED
)
2834 /* Subroutine of clear_by_pieces and store_by_pieces.
2835 Generate several move instructions to store LEN bytes of block TO. (A MEM
2836 rtx with BLKmode). The caller must pass TO through protect_from_queue
2837 before calling. ALIGN is maximum alignment we can assume. */
2840 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2841 unsigned int align ATTRIBUTE_UNUSED
)
2843 rtx to_addr
= XEXP (data
->to
, 0);
2844 unsigned HOST_WIDE_INT max_size
= STORE_MAX_PIECES
+ 1;
2845 enum machine_mode mode
= VOIDmode
, tmode
;
2846 enum insn_code icode
;
2849 data
->to_addr
= to_addr
;
2851 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2852 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2854 data
->explicit_inc_to
= 0;
2856 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2858 data
->offset
= data
->len
;
2860 /* If storing requires more than two move insns,
2861 copy addresses to registers (to make displacements shorter)
2862 and use post-increment if available. */
2863 if (!data
->autinc_to
2864 && move_by_pieces_ninsns (data
->len
, align
) > 2)
2866 /* Determine the main mode we'll be using. */
2867 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2868 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2869 if (GET_MODE_SIZE (tmode
) < max_size
)
2872 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2874 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2875 data
->autinc_to
= 1;
2876 data
->explicit_inc_to
= -1;
2879 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2880 && ! data
->autinc_to
)
2882 data
->to_addr
= copy_addr_to_reg (to_addr
);
2883 data
->autinc_to
= 1;
2884 data
->explicit_inc_to
= 1;
2887 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2888 data
->to_addr
= copy_addr_to_reg (to_addr
);
2891 if (! SLOW_UNALIGNED_ACCESS (word_mode
, align
)
2892 || align
> MOVE_MAX
* BITS_PER_UNIT
|| align
>= BIGGEST_ALIGNMENT
)
2893 align
= MOVE_MAX
* BITS_PER_UNIT
;
2895 /* First store what we can in the largest integer mode, then go to
2896 successively smaller modes. */
2898 while (max_size
> 1)
2900 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2901 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2902 if (GET_MODE_SIZE (tmode
) < max_size
)
2905 if (mode
== VOIDmode
)
2908 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2909 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2910 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2912 max_size
= GET_MODE_SIZE (mode
);
2915 /* The code above should have handled everything. */
2920 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2921 with move instructions for mode MODE. GENFUN is the gen_... function
2922 to make a move insn for that mode. DATA has all the other info. */
2925 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2926 struct store_by_pieces
*data
)
2928 unsigned int size
= GET_MODE_SIZE (mode
);
2931 while (data
->len
>= size
)
2934 data
->offset
-= size
;
2936 if (data
->autinc_to
)
2937 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2940 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2942 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2943 emit_insn (gen_add2_insn (data
->to_addr
,
2944 GEN_INT (-(HOST_WIDE_INT
) size
)));
2946 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2947 emit_insn ((*genfun
) (to1
, cst
));
2949 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2950 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2952 if (! data
->reverse
)
2953 data
->offset
+= size
;
2959 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2960 its length in bytes. */
2963 clear_storage (rtx object
, rtx size
)
2966 unsigned int align
= (GET_CODE (object
) == MEM
? MEM_ALIGN (object
)
2967 : GET_MODE_ALIGNMENT (GET_MODE (object
)));
2969 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2970 just move a zero. Otherwise, do this a piece at a time. */
2971 if (GET_MODE (object
) != BLKmode
2972 && GET_CODE (size
) == CONST_INT
2973 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (object
)))
2974 emit_move_insn (object
, CONST0_RTX (GET_MODE (object
)));
2977 object
= protect_from_queue (object
, 1);
2978 size
= protect_from_queue (size
, 0);
2980 if (size
== const0_rtx
)
2982 else if (GET_CODE (size
) == CONST_INT
2983 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2984 clear_by_pieces (object
, INTVAL (size
), align
);
2985 else if (clear_storage_via_clrstr (object
, size
, align
))
2988 retval
= clear_storage_via_libcall (object
, size
);
2994 /* A subroutine of clear_storage. Expand a clrstr pattern;
2995 return true if successful. */
2998 clear_storage_via_clrstr (rtx object
, rtx size
, unsigned int align
)
3000 /* Try the most limited insn first, because there's no point
3001 including more than one in the machine description unless
3002 the more limited one has some advantage. */
3004 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
3005 enum machine_mode mode
;
3007 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
3008 mode
= GET_MODE_WIDER_MODE (mode
))
3010 enum insn_code code
= clrstr_optab
[(int) mode
];
3011 insn_operand_predicate_fn pred
;
3013 if (code
!= CODE_FOR_nothing
3014 /* We don't need MODE to be narrower than
3015 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
3016 the mode mask, as it is returned by the macro, it will
3017 definitely be less than the actual mode mask. */
3018 && ((GET_CODE (size
) == CONST_INT
3019 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
3020 <= (GET_MODE_MASK (mode
) >> 1)))
3021 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
3022 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
3023 || (*pred
) (object
, BLKmode
))
3024 && ((pred
= insn_data
[(int) code
].operand
[2].predicate
) == 0
3025 || (*pred
) (opalign
, VOIDmode
)))
3028 rtx last
= get_last_insn ();
3031 op1
= convert_to_mode (mode
, size
, 1);
3032 pred
= insn_data
[(int) code
].operand
[1].predicate
;
3033 if (pred
!= 0 && ! (*pred
) (op1
, mode
))
3034 op1
= copy_to_mode_reg (mode
, op1
);
3036 pat
= GEN_FCN ((int) code
) (object
, op1
, opalign
);
3043 delete_insns_since (last
);
3050 /* A subroutine of clear_storage. Expand a call to memset or bzero.
3051 Return the return value of memset, 0 otherwise. */
3054 clear_storage_via_libcall (rtx object
, rtx size
)
3056 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
3057 enum machine_mode size_mode
;
3060 /* OBJECT or SIZE may have been passed through protect_from_queue.
3062 It is unsafe to save the value generated by protect_from_queue
3063 and reuse it later. Consider what happens if emit_queue is
3064 called before the return value from protect_from_queue is used.
3066 Expansion of the CALL_EXPR below will call emit_queue before
3067 we are finished emitting RTL for argument setup. So if we are
3068 not careful we could get the wrong value for an argument.
3070 To avoid this problem we go ahead and emit code to copy OBJECT
3071 and SIZE into new pseudos. We can then place those new pseudos
3072 into an RTL_EXPR and use them later, even after a call to
3075 Note this is not strictly needed for library calls since they
3076 do not call emit_queue before loading their arguments. However,
3077 we may need to have library calls call emit_queue in the future
3078 since failing to do so could cause problems for targets which
3079 define SMALL_REGISTER_CLASSES and pass arguments in registers. */
3081 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
3083 if (TARGET_MEM_FUNCTIONS
)
3084 size_mode
= TYPE_MODE (sizetype
);
3086 size_mode
= TYPE_MODE (unsigned_type_node
);
3087 size
= convert_to_mode (size_mode
, size
, 1);
3088 size
= copy_to_mode_reg (size_mode
, size
);
3090 /* It is incorrect to use the libcall calling conventions to call
3091 memset in this context. This could be a user call to memset and
3092 the user may wish to examine the return value from memset. For
3093 targets where libcalls and normal calls have different conventions
3094 for returning pointers, we could end up generating incorrect code.
3096 For convenience, we generate the call to bzero this way as well. */
3098 object_tree
= make_tree (ptr_type_node
, object
);
3099 if (TARGET_MEM_FUNCTIONS
)
3100 size_tree
= make_tree (sizetype
, size
);
3102 size_tree
= make_tree (unsigned_type_node
, size
);
3104 fn
= clear_storage_libcall_fn (true);
3105 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
3106 if (TARGET_MEM_FUNCTIONS
)
3107 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
3108 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
3110 /* Now we have to build up the CALL_EXPR itself. */
3111 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
3112 call_expr
= build (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
3113 call_expr
, arg_list
, NULL_TREE
);
3114 TREE_SIDE_EFFECTS (call_expr
) = 1;
3116 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
3118 /* If we are initializing a readonly value, show the above call
3119 clobbered it. Otherwise, a load from it may erroneously be
3120 hoisted from a loop. */
3121 if (RTX_UNCHANGING_P (object
))
3122 emit_insn (gen_rtx_CLOBBER (VOIDmode
, object
));
3124 return (TARGET_MEM_FUNCTIONS
? retval
: NULL_RTX
);
3127 /* A subroutine of clear_storage_via_libcall. Create the tree node
3128 for the function we use for block clears. The first time FOR_CALL
3129 is true, we call assemble_external. */
3131 static GTY(()) tree block_clear_fn
;
3134 init_block_clear_fn (const char *asmspec
)
3136 if (!block_clear_fn
)
3140 if (TARGET_MEM_FUNCTIONS
)
3142 fn
= get_identifier ("memset");
3143 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
3144 integer_type_node
, sizetype
,
3149 fn
= get_identifier ("bzero");
3150 args
= build_function_type_list (void_type_node
, ptr_type_node
,
3151 unsigned_type_node
, NULL_TREE
);
3154 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
3155 DECL_EXTERNAL (fn
) = 1;
3156 TREE_PUBLIC (fn
) = 1;
3157 DECL_ARTIFICIAL (fn
) = 1;
3158 TREE_NOTHROW (fn
) = 1;
3160 block_clear_fn
= fn
;
3165 SET_DECL_RTL (block_clear_fn
, NULL_RTX
);
3166 SET_DECL_ASSEMBLER_NAME (block_clear_fn
, get_identifier (asmspec
));
3171 clear_storage_libcall_fn (int for_call
)
3173 static bool emitted_extern
;
3175 if (!block_clear_fn
)
3176 init_block_clear_fn (NULL
);
3178 if (for_call
&& !emitted_extern
)
3180 emitted_extern
= true;
3181 make_decl_rtl (block_clear_fn
, NULL
);
3182 assemble_external (block_clear_fn
);
3185 return block_clear_fn
;
3188 /* Generate code to copy Y into X.
3189 Both Y and X must have the same mode, except that
3190 Y can be a constant with VOIDmode.
3191 This mode cannot be BLKmode; use emit_block_move for that.
3193 Return the last instruction emitted. */
3196 emit_move_insn (rtx x
, rtx y
)
3198 enum machine_mode mode
= GET_MODE (x
);
3199 rtx y_cst
= NULL_RTX
;
3202 x
= protect_from_queue (x
, 1);
3203 y
= protect_from_queue (y
, 0);
3205 if (mode
== BLKmode
|| (GET_MODE (y
) != mode
&& GET_MODE (y
) != VOIDmode
))
3208 /* Never force constant_p_rtx to memory. */
3209 if (GET_CODE (y
) == CONSTANT_P_RTX
)
3211 else if (CONSTANT_P (y
))
3214 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3215 && (last_insn
= compress_float_constant (x
, y
)))
3220 if (!LEGITIMATE_CONSTANT_P (y
))
3222 y
= force_const_mem (mode
, y
);
3224 /* If the target's cannot_force_const_mem prevented the spill,
3225 assume that the target's move expanders will also take care
3226 of the non-legitimate constant. */
3232 /* If X or Y are memory references, verify that their addresses are valid
3234 if (GET_CODE (x
) == MEM
3235 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3236 && ! push_operand (x
, GET_MODE (x
)))
3238 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3239 x
= validize_mem (x
);
3241 if (GET_CODE (y
) == MEM
3242 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3244 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3245 y
= validize_mem (y
);
3247 if (mode
== BLKmode
)
3250 last_insn
= emit_move_insn_1 (x
, y
);
3252 if (y_cst
&& GET_CODE (x
) == REG
3253 && (set
= single_set (last_insn
)) != NULL_RTX
3254 && SET_DEST (set
) == x
3255 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3256 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3261 /* Low level part of emit_move_insn.
3262 Called just like emit_move_insn, but assumes X and Y
3263 are basically valid. */
3266 emit_move_insn_1 (rtx x
, rtx y
)
3268 enum machine_mode mode
= GET_MODE (x
);
3269 enum machine_mode submode
;
3270 enum mode_class
class = GET_MODE_CLASS (mode
);
3272 if ((unsigned int) mode
>= (unsigned int) MAX_MACHINE_MODE
)
3275 if (mov_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
3277 emit_insn (GEN_FCN (mov_optab
->handlers
[(int) mode
].insn_code
) (x
, y
));
3279 /* Expand complex moves by moving real part and imag part, if possible. */
3280 else if ((class == MODE_COMPLEX_FLOAT
|| class == MODE_COMPLEX_INT
)
3281 && BLKmode
!= (submode
= GET_MODE_INNER (mode
))
3282 && (mov_optab
->handlers
[(int) submode
].insn_code
3283 != CODE_FOR_nothing
))
3285 /* Don't split destination if it is a stack push. */
3286 int stack
= push_operand (x
, GET_MODE (x
));
3288 #ifdef PUSH_ROUNDING
3289 /* In case we output to the stack, but the size is smaller than the
3290 machine can push exactly, we need to use move instructions. */
3292 && (PUSH_ROUNDING (GET_MODE_SIZE (submode
))
3293 != GET_MODE_SIZE (submode
)))
3296 HOST_WIDE_INT offset1
, offset2
;
3298 /* Do not use anti_adjust_stack, since we don't want to update
3299 stack_pointer_delta. */
3300 temp
= expand_binop (Pmode
,
3301 #ifdef STACK_GROWS_DOWNWARD
3309 (GET_MODE_SIZE (GET_MODE (x
)))),
3310 stack_pointer_rtx
, 0, OPTAB_LIB_WIDEN
);
3312 if (temp
!= stack_pointer_rtx
)
3313 emit_move_insn (stack_pointer_rtx
, temp
);
3315 #ifdef STACK_GROWS_DOWNWARD
3317 offset2
= GET_MODE_SIZE (submode
);
3319 offset1
= -PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x
)));
3320 offset2
= (-PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x
)))
3321 + GET_MODE_SIZE (submode
));
3324 emit_move_insn (change_address (x
, submode
,
3325 gen_rtx_PLUS (Pmode
,
3327 GEN_INT (offset1
))),
3328 gen_realpart (submode
, y
));
3329 emit_move_insn (change_address (x
, submode
,
3330 gen_rtx_PLUS (Pmode
,
3332 GEN_INT (offset2
))),
3333 gen_imagpart (submode
, y
));
3337 /* If this is a stack, push the highpart first, so it
3338 will be in the argument order.
3340 In that case, change_address is used only to convert
3341 the mode, not to change the address. */
3344 /* Note that the real part always precedes the imag part in memory
3345 regardless of machine's endianness. */
3346 #ifdef STACK_GROWS_DOWNWARD
3347 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3348 gen_imagpart (submode
, y
));
3349 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3350 gen_realpart (submode
, y
));
3352 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3353 gen_realpart (submode
, y
));
3354 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3355 gen_imagpart (submode
, y
));
3360 rtx realpart_x
, realpart_y
;
3361 rtx imagpart_x
, imagpart_y
;
3363 /* If this is a complex value with each part being smaller than a
3364 word, the usual calling sequence will likely pack the pieces into
3365 a single register. Unfortunately, SUBREG of hard registers only
3366 deals in terms of words, so we have a problem converting input
3367 arguments to the CONCAT of two registers that is used elsewhere
3368 for complex values. If this is before reload, we can copy it into
3369 memory and reload. FIXME, we should see about using extract and
3370 insert on integer registers, but complex short and complex char
3371 variables should be rarely used. */
3372 if (GET_MODE_BITSIZE (mode
) < 2 * BITS_PER_WORD
3373 && (reload_in_progress
| reload_completed
) == 0)
3376 = (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3378 = (REG_P (y
) && REGNO (y
) < FIRST_PSEUDO_REGISTER
);
3380 if (packed_dest_p
|| packed_src_p
)
3382 enum mode_class reg_class
= ((class == MODE_COMPLEX_FLOAT
)
3383 ? MODE_FLOAT
: MODE_INT
);
3385 enum machine_mode reg_mode
3386 = mode_for_size (GET_MODE_BITSIZE (mode
), reg_class
, 1);
3388 if (reg_mode
!= BLKmode
)
3390 rtx mem
= assign_stack_temp (reg_mode
,
3391 GET_MODE_SIZE (mode
), 0);
3392 rtx cmem
= adjust_address (mem
, mode
, 0);
3395 = N_("function using short complex types cannot be inline");
3399 rtx sreg
= gen_rtx_SUBREG (reg_mode
, x
, 0);
3401 emit_move_insn_1 (cmem
, y
);
3402 return emit_move_insn_1 (sreg
, mem
);
3406 rtx sreg
= gen_rtx_SUBREG (reg_mode
, y
, 0);
3408 emit_move_insn_1 (mem
, sreg
);
3409 return emit_move_insn_1 (x
, cmem
);
3415 realpart_x
= gen_realpart (submode
, x
);
3416 realpart_y
= gen_realpart (submode
, y
);
3417 imagpart_x
= gen_imagpart (submode
, x
);
3418 imagpart_y
= gen_imagpart (submode
, y
);
3420 /* Show the output dies here. This is necessary for SUBREGs
3421 of pseudos since we cannot track their lifetimes correctly;
3422 hard regs shouldn't appear here except as return values.
3423 We never want to emit such a clobber after reload. */
3425 && ! (reload_in_progress
|| reload_completed
)
3426 && (GET_CODE (realpart_x
) == SUBREG
3427 || GET_CODE (imagpart_x
) == SUBREG
))
3428 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3430 emit_move_insn (realpart_x
, realpart_y
);
3431 emit_move_insn (imagpart_x
, imagpart_y
);
3434 return get_last_insn ();
3437 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3438 find a mode to do it in. If we have a movcc, use it. Otherwise,
3439 find the MODE_INT mode of the same width. */
3440 else if (GET_MODE_CLASS (mode
) == MODE_CC
3441 && mov_optab
->handlers
[(int) mode
].insn_code
== CODE_FOR_nothing
)
3443 enum insn_code insn_code
;
3444 enum machine_mode tmode
= VOIDmode
;
3448 && mov_optab
->handlers
[(int) CCmode
].insn_code
!= CODE_FOR_nothing
)
3451 for (tmode
= QImode
; tmode
!= VOIDmode
;
3452 tmode
= GET_MODE_WIDER_MODE (tmode
))
3453 if (GET_MODE_SIZE (tmode
) == GET_MODE_SIZE (mode
))
3456 if (tmode
== VOIDmode
)
3459 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3460 may call change_address which is not appropriate if we were
3461 called when a reload was in progress. We don't have to worry
3462 about changing the address since the size in bytes is supposed to
3463 be the same. Copy the MEM to change the mode and move any
3464 substitutions from the old MEM to the new one. */
3466 if (reload_in_progress
)
3468 x
= gen_lowpart_common (tmode
, x1
);
3469 if (x
== 0 && GET_CODE (x1
) == MEM
)
3471 x
= adjust_address_nv (x1
, tmode
, 0);
3472 copy_replacements (x1
, x
);
3475 y
= gen_lowpart_common (tmode
, y1
);
3476 if (y
== 0 && GET_CODE (y1
) == MEM
)
3478 y
= adjust_address_nv (y1
, tmode
, 0);
3479 copy_replacements (y1
, y
);
3484 x
= gen_lowpart (tmode
, x
);
3485 y
= gen_lowpart (tmode
, y
);
3488 insn_code
= mov_optab
->handlers
[(int) tmode
].insn_code
;
3489 return emit_insn (GEN_FCN (insn_code
) (x
, y
));
3492 /* This will handle any multi-word or full-word mode that lacks a move_insn
3493 pattern. However, you will get better code if you define such patterns,
3494 even if they must turn into multiple assembler instructions. */
3495 else if (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
)
3502 #ifdef PUSH_ROUNDING
3504 /* If X is a push on the stack, do the push now and replace
3505 X with a reference to the stack pointer. */
3506 if (push_operand (x
, GET_MODE (x
)))
3511 /* Do not use anti_adjust_stack, since we don't want to update
3512 stack_pointer_delta. */
3513 temp
= expand_binop (Pmode
,
3514 #ifdef STACK_GROWS_DOWNWARD
3522 (GET_MODE_SIZE (GET_MODE (x
)))),
3523 stack_pointer_rtx
, 0, OPTAB_LIB_WIDEN
);
3525 if (temp
!= stack_pointer_rtx
)
3526 emit_move_insn (stack_pointer_rtx
, temp
);
3528 code
= GET_CODE (XEXP (x
, 0));
3530 /* Just hope that small offsets off SP are OK. */
3531 if (code
== POST_INC
)
3532 temp
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3533 GEN_INT (-((HOST_WIDE_INT
)
3534 GET_MODE_SIZE (GET_MODE (x
)))));
3535 else if (code
== POST_DEC
)
3536 temp
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3537 GEN_INT (GET_MODE_SIZE (GET_MODE (x
))));
3539 temp
= stack_pointer_rtx
;
3541 x
= change_address (x
, VOIDmode
, temp
);
3545 /* If we are in reload, see if either operand is a MEM whose address
3546 is scheduled for replacement. */
3547 if (reload_in_progress
&& GET_CODE (x
) == MEM
3548 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3549 x
= replace_equiv_address_nv (x
, inner
);
3550 if (reload_in_progress
&& GET_CODE (y
) == MEM
3551 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3552 y
= replace_equiv_address_nv (y
, inner
);
3558 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3561 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3562 rtx ypart
= operand_subword (y
, i
, 1, mode
);
3564 /* If we can't get a part of Y, put Y into memory if it is a
3565 constant. Otherwise, force it into a register. If we still
3566 can't get a part of Y, abort. */
3567 if (ypart
== 0 && CONSTANT_P (y
))
3569 y
= force_const_mem (mode
, y
);
3570 ypart
= operand_subword (y
, i
, 1, mode
);
3572 else if (ypart
== 0)
3573 ypart
= operand_subword_force (y
, i
, mode
);
3575 if (xpart
== 0 || ypart
== 0)
3578 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3580 last_insn
= emit_move_insn (xpart
, ypart
);
3586 /* Show the output dies here. This is necessary for SUBREGs
3587 of pseudos since we cannot track their lifetimes correctly;
3588 hard regs shouldn't appear here except as return values.
3589 We never want to emit such a clobber after reload. */
3591 && ! (reload_in_progress
|| reload_completed
)
3592 && need_clobber
!= 0)
3593 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3603 /* If Y is representable exactly in a narrower mode, and the target can
3604 perform the extension directly from constant or memory, then emit the
3605 move as an extension. */
3608 compress_float_constant (rtx x
, rtx y
)
3610 enum machine_mode dstmode
= GET_MODE (x
);
3611 enum machine_mode orig_srcmode
= GET_MODE (y
);
3612 enum machine_mode srcmode
;
3615 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3617 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3618 srcmode
!= orig_srcmode
;
3619 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3622 rtx trunc_y
, last_insn
;
3624 /* Skip if the target can't extend this way. */
3625 ic
= can_extend_p (dstmode
, srcmode
, 0);
3626 if (ic
== CODE_FOR_nothing
)
3629 /* Skip if the narrowed value isn't exact. */
3630 if (! exact_real_truncate (srcmode
, &r
))
3633 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3635 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3637 /* Skip if the target needs extra instructions to perform
3639 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3642 else if (float_extend_from_mem
[dstmode
][srcmode
])
3643 trunc_y
= validize_mem (force_const_mem (srcmode
, trunc_y
));
3647 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3648 last_insn
= get_last_insn ();
3650 if (GET_CODE (x
) == REG
)
3651 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3659 /* Pushing data onto the stack. */
3661 /* Push a block of length SIZE (perhaps variable)
3662 and return an rtx to address the beginning of the block.
3663 Note that it is not possible for the value returned to be a QUEUED.
3664 The value may be virtual_outgoing_args_rtx.
3666 EXTRA is the number of bytes of padding to push in addition to SIZE.
3667 BELOW nonzero means this padding comes at low addresses;
3668 otherwise, the padding comes at high addresses. */
3671 push_block (rtx size
, int extra
, int below
)
3675 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3676 if (CONSTANT_P (size
))
3677 anti_adjust_stack (plus_constant (size
, extra
));
3678 else if (GET_CODE (size
) == REG
&& extra
== 0)
3679 anti_adjust_stack (size
);
3682 temp
= copy_to_mode_reg (Pmode
, size
);
3684 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3685 temp
, 0, OPTAB_LIB_WIDEN
);
3686 anti_adjust_stack (temp
);
3689 #ifndef STACK_GROWS_DOWNWARD
3695 temp
= virtual_outgoing_args_rtx
;
3696 if (extra
!= 0 && below
)
3697 temp
= plus_constant (temp
, extra
);
3701 if (GET_CODE (size
) == CONST_INT
)
3702 temp
= plus_constant (virtual_outgoing_args_rtx
,
3703 -INTVAL (size
) - (below
? 0 : extra
));
3704 else if (extra
!= 0 && !below
)
3705 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3706 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3708 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3709 negate_rtx (Pmode
, size
));
3712 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3715 #ifdef PUSH_ROUNDING
3717 /* Emit single push insn. */
3720 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3723 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3725 enum insn_code icode
;
3726 insn_operand_predicate_fn pred
;
3728 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3729 /* If there is push pattern, use it. Otherwise try old way of throwing
3730 MEM representing push operation to move expander. */
3731 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3732 if (icode
!= CODE_FOR_nothing
)
3734 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3735 && !((*pred
) (x
, mode
))))
3736 x
= force_reg (mode
, x
);
3737 emit_insn (GEN_FCN (icode
) (x
));
3740 if (GET_MODE_SIZE (mode
) == rounded_size
)
3741 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3742 /* If we are to pad downward, adjust the stack pointer first and
3743 then store X into the stack location using an offset. This is
3744 because emit_move_insn does not know how to pad; it does not have
3746 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3748 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3749 HOST_WIDE_INT offset
;
3751 emit_move_insn (stack_pointer_rtx
,
3752 expand_binop (Pmode
,
3753 #ifdef STACK_GROWS_DOWNWARD
3759 GEN_INT (rounded_size
),
3760 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3762 offset
= (HOST_WIDE_INT
) padding_size
;
3763 #ifdef STACK_GROWS_DOWNWARD
3764 if (STACK_PUSH_CODE
== POST_DEC
)
3765 /* We have already decremented the stack pointer, so get the
3767 offset
+= (HOST_WIDE_INT
) rounded_size
;
3769 if (STACK_PUSH_CODE
== POST_INC
)
3770 /* We have already incremented the stack pointer, so get the
3772 offset
-= (HOST_WIDE_INT
) rounded_size
;
3774 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3778 #ifdef STACK_GROWS_DOWNWARD
3779 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3780 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3781 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3783 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3784 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3785 GEN_INT (rounded_size
));
3787 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3790 dest
= gen_rtx_MEM (mode
, dest_addr
);
3794 set_mem_attributes (dest
, type
, 1);
3796 if (flag_optimize_sibling_calls
)
3797 /* Function incoming arguments may overlap with sibling call
3798 outgoing arguments and we cannot allow reordering of reads
3799 from function arguments with stores to outgoing arguments
3800 of sibling calls. */
3801 set_mem_alias_set (dest
, 0);
3803 emit_move_insn (dest
, x
);
3807 /* Generate code to push X onto the stack, assuming it has mode MODE and
3809 MODE is redundant except when X is a CONST_INT (since they don't
3811 SIZE is an rtx for the size of data to be copied (in bytes),
3812 needed only if X is BLKmode.
3814 ALIGN (in bits) is maximum alignment we can assume.
3816 If PARTIAL and REG are both nonzero, then copy that many of the first
3817 words of X into registers starting with REG, and push the rest of X.
3818 The amount of space pushed is decreased by PARTIAL words,
3819 rounded *down* to a multiple of PARM_BOUNDARY.
3820 REG must be a hard register in this case.
3821 If REG is zero but PARTIAL is not, take any all others actions for an
3822 argument partially in registers, but do not actually load any
3825 EXTRA is the amount in bytes of extra space to leave next to this arg.
3826 This is ignored if an argument block has already been allocated.
3828 On a machine that lacks real push insns, ARGS_ADDR is the address of
3829 the bottom of the argument block for this call. We use indexing off there
3830 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3831 argument block has not been preallocated.
3833 ARGS_SO_FAR is the size of args previously pushed for this call.
3835 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3836 for arguments passed in registers. If nonzero, it will be the number
3837 of bytes required. */
3840 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3841 unsigned int align
, int partial
, rtx reg
, int extra
,
3842 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3846 enum direction stack_direction
3847 #ifdef STACK_GROWS_DOWNWARD
3853 /* Decide where to pad the argument: `downward' for below,
3854 `upward' for above, or `none' for don't pad it.
3855 Default is below for small data on big-endian machines; else above. */
3856 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3858 /* Invert direction if stack is post-decrement.
3860 if (STACK_PUSH_CODE
== POST_DEC
)
3861 if (where_pad
!= none
)
3862 where_pad
= (where_pad
== downward
? upward
: downward
);
3864 xinner
= x
= protect_from_queue (x
, 0);
3866 if (mode
== BLKmode
)
3868 /* Copy a block into the stack, entirely or partially. */
3871 int used
= partial
* UNITS_PER_WORD
;
3872 int offset
= used
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3880 /* USED is now the # of bytes we need not copy to the stack
3881 because registers will take care of them. */
3884 xinner
= adjust_address (xinner
, BLKmode
, used
);
3886 /* If the partial register-part of the arg counts in its stack size,
3887 skip the part of stack space corresponding to the registers.
3888 Otherwise, start copying to the beginning of the stack space,
3889 by setting SKIP to 0. */
3890 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3892 #ifdef PUSH_ROUNDING
3893 /* Do it with several push insns if that doesn't take lots of insns
3894 and if there is no difficulty with push insns that skip bytes
3895 on the stack for alignment purposes. */
3898 && GET_CODE (size
) == CONST_INT
3900 && MEM_ALIGN (xinner
) >= align
3901 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3902 /* Here we avoid the case of a structure whose weak alignment
3903 forces many pushes of a small amount of data,
3904 and such small pushes do rounding that causes trouble. */
3905 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3906 || align
>= BIGGEST_ALIGNMENT
3907 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3908 == (align
/ BITS_PER_UNIT
)))
3909 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3911 /* Push padding now if padding above and stack grows down,
3912 or if padding below and stack grows up.
3913 But if space already allocated, this has already been done. */
3914 if (extra
&& args_addr
== 0
3915 && where_pad
!= none
&& where_pad
!= stack_direction
)
3916 anti_adjust_stack (GEN_INT (extra
));
3918 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3921 #endif /* PUSH_ROUNDING */
3925 /* Otherwise make space on the stack and copy the data
3926 to the address of that space. */
3928 /* Deduct words put into registers from the size we must copy. */
3931 if (GET_CODE (size
) == CONST_INT
)
3932 size
= GEN_INT (INTVAL (size
) - used
);
3934 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3935 GEN_INT (used
), NULL_RTX
, 0,
3939 /* Get the address of the stack space.
3940 In this case, we do not deal with EXTRA separately.
3941 A single stack adjust will do. */
3944 temp
= push_block (size
, extra
, where_pad
== downward
);
3947 else if (GET_CODE (args_so_far
) == CONST_INT
)
3948 temp
= memory_address (BLKmode
,
3949 plus_constant (args_addr
,
3950 skip
+ INTVAL (args_so_far
)));
3952 temp
= memory_address (BLKmode
,
3953 plus_constant (gen_rtx_PLUS (Pmode
,
3958 if (!ACCUMULATE_OUTGOING_ARGS
)
3960 /* If the source is referenced relative to the stack pointer,
3961 copy it to another register to stabilize it. We do not need
3962 to do this if we know that we won't be changing sp. */
3964 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3965 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3966 temp
= copy_to_reg (temp
);
3969 target
= gen_rtx_MEM (BLKmode
, temp
);
3973 set_mem_attributes (target
, type
, 1);
3974 /* Function incoming arguments may overlap with sibling call
3975 outgoing arguments and we cannot allow reordering of reads
3976 from function arguments with stores to outgoing arguments
3977 of sibling calls. */
3978 set_mem_alias_set (target
, 0);
3981 /* ALIGN may well be better aligned than TYPE, e.g. due to
3982 PARM_BOUNDARY. Assume the caller isn't lying. */
3983 set_mem_align (target
, align
);
3985 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3988 else if (partial
> 0)
3990 /* Scalar partly in registers. */
3992 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3995 /* # words of start of argument
3996 that we must make space for but need not store. */
3997 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_WORD
);
3998 int args_offset
= INTVAL (args_so_far
);
4001 /* Push padding now if padding above and stack grows down,
4002 or if padding below and stack grows up.
4003 But if space already allocated, this has already been done. */
4004 if (extra
&& args_addr
== 0
4005 && where_pad
!= none
&& where_pad
!= stack_direction
)
4006 anti_adjust_stack (GEN_INT (extra
));
4008 /* If we make space by pushing it, we might as well push
4009 the real data. Otherwise, we can leave OFFSET nonzero
4010 and leave the space uninitialized. */
4014 /* Now NOT_STACK gets the number of words that we don't need to
4015 allocate on the stack. */
4016 not_stack
= partial
- offset
;
4018 /* If the partial register-part of the arg counts in its stack size,
4019 skip the part of stack space corresponding to the registers.
4020 Otherwise, start copying to the beginning of the stack space,
4021 by setting SKIP to 0. */
4022 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4024 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
4025 x
= validize_mem (force_const_mem (mode
, x
));
4027 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4028 SUBREGs of such registers are not allowed. */
4029 if ((GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
4030 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4031 x
= copy_to_reg (x
);
4033 /* Loop over all the words allocated on the stack for this arg. */
4034 /* We can do it by words, because any scalar bigger than a word
4035 has a size a multiple of a word. */
4036 #ifndef PUSH_ARGS_REVERSED
4037 for (i
= not_stack
; i
< size
; i
++)
4039 for (i
= size
- 1; i
>= not_stack
; i
--)
4041 if (i
>= not_stack
+ offset
)
4042 emit_push_insn (operand_subword_force (x
, i
, mode
),
4043 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4045 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4047 reg_parm_stack_space
, alignment_pad
);
4054 /* Push padding now if padding above and stack grows down,
4055 or if padding below and stack grows up.
4056 But if space already allocated, this has already been done. */
4057 if (extra
&& args_addr
== 0
4058 && where_pad
!= none
&& where_pad
!= stack_direction
)
4059 anti_adjust_stack (GEN_INT (extra
));
4061 #ifdef PUSH_ROUNDING
4062 if (args_addr
== 0 && PUSH_ARGS
)
4063 emit_single_push_insn (mode
, x
, type
);
4067 if (GET_CODE (args_so_far
) == CONST_INT
)
4069 = memory_address (mode
,
4070 plus_constant (args_addr
,
4071 INTVAL (args_so_far
)));
4073 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4075 dest
= gen_rtx_MEM (mode
, addr
);
4078 set_mem_attributes (dest
, type
, 1);
4079 /* Function incoming arguments may overlap with sibling call
4080 outgoing arguments and we cannot allow reordering of reads
4081 from function arguments with stores to outgoing arguments
4082 of sibling calls. */
4083 set_mem_alias_set (dest
, 0);
4086 emit_move_insn (dest
, x
);
4090 /* If part should go in registers, copy that part
4091 into the appropriate registers. Do this now, at the end,
4092 since mem-to-mem copies above may do function calls. */
4093 if (partial
> 0 && reg
!= 0)
4095 /* Handle calls that pass values in multiple non-contiguous locations.
4096 The Irix 6 ABI has examples of this. */
4097 if (GET_CODE (reg
) == PARALLEL
)
4098 emit_group_load (reg
, x
, type
, -1);
4100 move_block_to_reg (REGNO (reg
), x
, partial
, mode
);
4103 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4104 anti_adjust_stack (GEN_INT (extra
));
4106 if (alignment_pad
&& args_addr
== 0)
4107 anti_adjust_stack (alignment_pad
);
4110 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4114 get_subtarget (rtx x
)
4117 /* Only registers can be subtargets. */
4118 || GET_CODE (x
) != REG
4119 /* If the register is readonly, it can't be set more than once. */
4120 || RTX_UNCHANGING_P (x
)
4121 /* Don't use hard regs to avoid extending their life. */
4122 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4123 /* Avoid subtargets inside loops,
4124 since they hide some invariant expressions. */
4125 || preserve_subexpressions_p ())
4129 /* Expand an assignment that stores the value of FROM into TO.
4130 If WANT_VALUE is nonzero, return an rtx for the value of TO.
4131 (This may contain a QUEUED rtx;
4132 if the value is constant, this rtx is a constant.)
4133 Otherwise, the returned value is NULL_RTX. */
4136 expand_assignment (tree to
, tree from
, int want_value
)
4141 /* Don't crash if the lhs of the assignment was erroneous. */
4143 if (TREE_CODE (to
) == ERROR_MARK
)
4145 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4146 return want_value
? result
: NULL_RTX
;
4149 /* Assignment of a structure component needs special treatment
4150 if the structure component's rtx is not simply a MEM.
4151 Assignment of an array element at a constant index, and assignment of
4152 an array element in an unaligned packed structure field, has the same
4155 if (TREE_CODE (to
) == COMPONENT_REF
|| TREE_CODE (to
) == BIT_FIELD_REF
4156 || TREE_CODE (to
) == ARRAY_REF
|| TREE_CODE (to
) == ARRAY_RANGE_REF
4157 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4159 enum machine_mode mode1
;
4160 HOST_WIDE_INT bitsize
, bitpos
;
4168 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4169 &unsignedp
, &volatilep
);
4171 /* If we are going to use store_bit_field and extract_bit_field,
4172 make sure to_rtx will be safe for multiple use. */
4174 if (mode1
== VOIDmode
&& want_value
)
4175 tem
= stabilize_reference (tem
);
4177 orig_to_rtx
= to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
4181 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4183 if (GET_CODE (to_rtx
) != MEM
)
4186 #ifdef POINTERS_EXTEND_UNSIGNED
4187 if (GET_MODE (offset_rtx
) != Pmode
)
4188 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4190 if (GET_MODE (offset_rtx
) != ptr_mode
)
4191 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4194 /* A constant address in TO_RTX can have VOIDmode, we must not try
4195 to call force_reg for that case. Avoid that case. */
4196 if (GET_CODE (to_rtx
) == MEM
4197 && GET_MODE (to_rtx
) == BLKmode
4198 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4200 && (bitpos
% bitsize
) == 0
4201 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4202 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4204 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4208 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4209 highest_pow2_factor_for_type (TREE_TYPE (to
),
4213 if (GET_CODE (to_rtx
) == MEM
)
4215 /* If the field is at offset zero, we could have been given the
4216 DECL_RTX of the parent struct. Don't munge it. */
4217 to_rtx
= shallow_copy_rtx (to_rtx
);
4219 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4222 /* Deal with volatile and readonly fields. The former is only done
4223 for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4224 if (volatilep
&& GET_CODE (to_rtx
) == MEM
)
4226 if (to_rtx
== orig_to_rtx
)
4227 to_rtx
= copy_rtx (to_rtx
);
4228 MEM_VOLATILE_P (to_rtx
) = 1;
4231 if (TREE_CODE (to
) == COMPONENT_REF
4232 && TREE_READONLY (TREE_OPERAND (to
, 1)))
4234 if (to_rtx
== orig_to_rtx
)
4235 to_rtx
= copy_rtx (to_rtx
);
4236 RTX_UNCHANGING_P (to_rtx
) = 1;
4239 if (GET_CODE (to_rtx
) == MEM
&& ! can_address_p (to
))
4241 if (to_rtx
== orig_to_rtx
)
4242 to_rtx
= copy_rtx (to_rtx
);
4243 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4246 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
4248 /* Spurious cast for HPUX compiler. */
4249 ? ((enum machine_mode
)
4250 TYPE_MODE (TREE_TYPE (to
)))
4252 unsignedp
, TREE_TYPE (tem
), get_alias_set (to
));
4254 preserve_temp_slots (result
);
4258 /* If the value is meaningful, convert RESULT to the proper mode.
4259 Otherwise, return nothing. */
4260 return (want_value
? convert_modes (TYPE_MODE (TREE_TYPE (to
)),
4261 TYPE_MODE (TREE_TYPE (from
)),
4263 TREE_UNSIGNED (TREE_TYPE (to
)))
4267 /* If the rhs is a function call and its value is not an aggregate,
4268 call the function before we start to compute the lhs.
4269 This is needed for correct code for cases such as
4270 val = setjmp (buf) on machines where reference to val
4271 requires loading up part of an address in a separate insn.
4273 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4274 since it might be a promoted variable where the zero- or sign- extension
4275 needs to be done. Handling this in the normal way is safe because no
4276 computation is done before the call. */
4277 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
)
4278 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4279 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4280 && GET_CODE (DECL_RTL (to
)) == REG
))
4285 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4287 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4289 /* Handle calls that return values in multiple non-contiguous locations.
4290 The Irix 6 ABI has examples of this. */
4291 if (GET_CODE (to_rtx
) == PARALLEL
)
4292 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4293 int_size_in_bytes (TREE_TYPE (from
)));
4294 else if (GET_MODE (to_rtx
) == BLKmode
)
4295 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4298 #ifdef POINTERS_EXTEND_UNSIGNED
4299 if (POINTER_TYPE_P (TREE_TYPE (to
))
4300 && GET_MODE (to_rtx
) != GET_MODE (value
))
4301 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4303 emit_move_insn (to_rtx
, value
);
4305 preserve_temp_slots (to_rtx
);
4308 return want_value
? to_rtx
: NULL_RTX
;
4311 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4312 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4315 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4317 /* Don't move directly into a return register. */
4318 if (TREE_CODE (to
) == RESULT_DECL
4319 && (GET_CODE (to_rtx
) == REG
|| GET_CODE (to_rtx
) == PARALLEL
))
4324 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
4326 if (GET_CODE (to_rtx
) == PARALLEL
)
4327 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4328 int_size_in_bytes (TREE_TYPE (from
)));
4330 emit_move_insn (to_rtx
, temp
);
4332 preserve_temp_slots (to_rtx
);
4335 return want_value
? to_rtx
: NULL_RTX
;
4338 /* In case we are returning the contents of an object which overlaps
4339 the place the value is being stored, use a safe function when copying
4340 a value through a pointer into a structure value return block. */
4341 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4342 && current_function_returns_struct
4343 && !current_function_returns_pcc_struct
)
4348 size
= expr_size (from
);
4349 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4351 if (TARGET_MEM_FUNCTIONS
)
4352 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4353 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4354 XEXP (from_rtx
, 0), Pmode
,
4355 convert_to_mode (TYPE_MODE (sizetype
),
4356 size
, TREE_UNSIGNED (sizetype
)),
4357 TYPE_MODE (sizetype
));
4359 emit_library_call (bcopy_libfunc
, LCT_NORMAL
,
4360 VOIDmode
, 3, XEXP (from_rtx
, 0), Pmode
,
4361 XEXP (to_rtx
, 0), Pmode
,
4362 convert_to_mode (TYPE_MODE (integer_type_node
),
4364 TREE_UNSIGNED (integer_type_node
)),
4365 TYPE_MODE (integer_type_node
));
4367 preserve_temp_slots (to_rtx
);
4370 return want_value
? to_rtx
: NULL_RTX
;
4373 /* Compute FROM and store the value in the rtx we got. */
4376 result
= store_expr (from
, to_rtx
, want_value
);
4377 preserve_temp_slots (result
);
4380 return want_value
? result
: NULL_RTX
;
4383 /* Generate code for computing expression EXP,
4384 and storing the value into TARGET.
4385 TARGET may contain a QUEUED rtx.
4387 If WANT_VALUE & 1 is nonzero, return a copy of the value
4388 not in TARGET, so that we can be sure to use the proper
4389 value in a containing expression even if TARGET has something
4390 else stored in it. If possible, we copy the value through a pseudo
4391 and return that pseudo. Or, if the value is constant, we try to
4392 return the constant. In some cases, we return a pseudo
4393 copied *from* TARGET.
4395 If the mode is BLKmode then we may return TARGET itself.
4396 It turns out that in BLKmode it doesn't cause a problem.
4397 because C has no operators that could combine two different
4398 assignments into the same BLKmode object with different values
4399 with no sequence point. Will other languages need this to
4402 If WANT_VALUE & 1 is 0, we return NULL, to make sure
4403 to catch quickly any cases where the caller uses the value
4404 and fails to set WANT_VALUE.
4406 If WANT_VALUE & 2 is set, this is a store into a call param on the
4407 stack, and block moves may need to be treated specially. */
4410 store_expr (tree exp
, rtx target
, int want_value
)
4413 int dont_return_target
= 0;
4414 int dont_store_target
= 0;
4416 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4418 /* C++ can generate ?: expressions with a throw expression in one
4419 branch and an rvalue in the other. Here, we resolve attempts to
4420 store the throw expression's nonexistent result. */
4423 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4426 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4428 /* Perform first part of compound expression, then assign from second
4430 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4431 want_value
& 2 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4433 return store_expr (TREE_OPERAND (exp
, 1), target
, want_value
);
4435 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4437 /* For conditional expression, get safe form of the target. Then
4438 test the condition, doing the appropriate assignment on either
4439 side. This avoids the creation of unnecessary temporaries.
4440 For non-BLKmode, it is more efficient not to do this. */
4442 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4445 target
= protect_from_queue (target
, 1);
4447 do_pending_stack_adjust ();
4449 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4450 start_cleanup_deferral ();
4451 store_expr (TREE_OPERAND (exp
, 1), target
, want_value
& 2);
4452 end_cleanup_deferral ();
4454 emit_jump_insn (gen_jump (lab2
));
4457 start_cleanup_deferral ();
4458 store_expr (TREE_OPERAND (exp
, 2), target
, want_value
& 2);
4459 end_cleanup_deferral ();
4464 return want_value
& 1 ? target
: NULL_RTX
;
4466 else if (queued_subexp_p (target
))
4467 /* If target contains a postincrement, let's not risk
4468 using it as the place to generate the rhs. */
4470 if (GET_MODE (target
) != BLKmode
&& GET_MODE (target
) != VOIDmode
)
4472 /* Expand EXP into a new pseudo. */
4473 temp
= gen_reg_rtx (GET_MODE (target
));
4474 temp
= expand_expr (exp
, temp
, GET_MODE (target
),
4476 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4479 temp
= expand_expr (exp
, NULL_RTX
, GET_MODE (target
),
4481 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4483 /* If target is volatile, ANSI requires accessing the value
4484 *from* the target, if it is accessed. So make that happen.
4485 In no case return the target itself. */
4486 if (! MEM_VOLATILE_P (target
) && (want_value
& 1) != 0)
4487 dont_return_target
= 1;
4489 else if ((want_value
& 1) != 0
4490 && GET_CODE (target
) == MEM
4491 && ! MEM_VOLATILE_P (target
)
4492 && GET_MODE (target
) != BLKmode
)
4493 /* If target is in memory and caller wants value in a register instead,
4494 arrange that. Pass TARGET as target for expand_expr so that,
4495 if EXP is another assignment, WANT_VALUE will be nonzero for it.
4496 We know expand_expr will not use the target in that case.
4497 Don't do this if TARGET is volatile because we are supposed
4498 to write it and then read it. */
4500 temp
= expand_expr (exp
, target
, GET_MODE (target
),
4501 want_value
& 2 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4502 if (GET_MODE (temp
) != BLKmode
&& GET_MODE (temp
) != VOIDmode
)
4504 /* If TEMP is already in the desired TARGET, only copy it from
4505 memory and don't store it there again. */
4507 || (rtx_equal_p (temp
, target
)
4508 && ! side_effects_p (temp
) && ! side_effects_p (target
)))
4509 dont_store_target
= 1;
4510 temp
= copy_to_reg (temp
);
4512 dont_return_target
= 1;
4514 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4515 /* If this is a scalar in a register that is stored in a wider mode
4516 than the declared mode, compute the result into its declared mode
4517 and then convert to the wider mode. Our value is the computed
4520 rtx inner_target
= 0;
4522 /* If we don't want a value, we can do the conversion inside EXP,
4523 which will often result in some optimizations. Do the conversion
4524 in two steps: first change the signedness, if needed, then
4525 the extend. But don't do this if the type of EXP is a subtype
4526 of something else since then the conversion might involve
4527 more than just converting modes. */
4528 if ((want_value
& 1) == 0
4529 && INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4530 && TREE_TYPE (TREE_TYPE (exp
)) == 0)
4532 if (TREE_UNSIGNED (TREE_TYPE (exp
))
4533 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4535 ((*lang_hooks
.types
.signed_or_unsigned_type
)
4536 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4538 exp
= convert ((*lang_hooks
.types
.type_for_mode
)
4539 (GET_MODE (SUBREG_REG (target
)),
4540 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4543 inner_target
= SUBREG_REG (target
);
4546 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4547 want_value
& 2 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4549 /* If TEMP is a MEM and we want a result value, make the access
4550 now so it gets done only once. Strictly speaking, this is
4551 only necessary if the MEM is volatile, or if the address
4552 overlaps TARGET. But not performing the load twice also
4553 reduces the amount of rtl we generate and then have to CSE. */
4554 if (GET_CODE (temp
) == MEM
&& (want_value
& 1) != 0)
4555 temp
= copy_to_reg (temp
);
4557 /* If TEMP is a VOIDmode constant, use convert_modes to make
4558 sure that we properly convert it. */
4559 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4561 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4562 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4563 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4564 GET_MODE (target
), temp
,
4565 SUBREG_PROMOTED_UNSIGNED_P (target
));
4568 convert_move (SUBREG_REG (target
), temp
,
4569 SUBREG_PROMOTED_UNSIGNED_P (target
));
4571 /* If we promoted a constant, change the mode back down to match
4572 target. Otherwise, the caller might get confused by a result whose
4573 mode is larger than expected. */
4575 if ((want_value
& 1) != 0 && GET_MODE (temp
) != GET_MODE (target
))
4577 if (GET_MODE (temp
) != VOIDmode
)
4579 temp
= gen_lowpart_SUBREG (GET_MODE (target
), temp
);
4580 SUBREG_PROMOTED_VAR_P (temp
) = 1;
4581 SUBREG_PROMOTED_UNSIGNED_SET (temp
,
4582 SUBREG_PROMOTED_UNSIGNED_P (target
));
4585 temp
= convert_modes (GET_MODE (target
),
4586 GET_MODE (SUBREG_REG (target
)),
4587 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4590 return want_value
& 1 ? temp
: NULL_RTX
;
4594 temp
= expand_expr (exp
, target
, GET_MODE (target
),
4595 want_value
& 2 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4596 /* Return TARGET if it's a specified hardware register.
4597 If TARGET is a volatile mem ref, either return TARGET
4598 or return a reg copied *from* TARGET; ANSI requires this.
4600 Otherwise, if TEMP is not TARGET, return TEMP
4601 if it is constant (for efficiency),
4602 or if we really want the correct value. */
4603 if (!(target
&& GET_CODE (target
) == REG
4604 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4605 && !(GET_CODE (target
) == MEM
&& MEM_VOLATILE_P (target
))
4606 && ! rtx_equal_p (temp
, target
)
4607 && (CONSTANT_P (temp
) || (want_value
& 1) != 0))
4608 dont_return_target
= 1;
4611 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4612 the same as that of TARGET, adjust the constant. This is needed, for
4613 example, in case it is a CONST_DOUBLE and we want only a word-sized
4615 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4616 && TREE_CODE (exp
) != ERROR_MARK
4617 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4618 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4619 temp
, TREE_UNSIGNED (TREE_TYPE (exp
)));
4621 /* If value was not generated in the target, store it there.
4622 Convert the value to TARGET's type first if necessary.
4623 If TEMP and TARGET compare equal according to rtx_equal_p, but
4624 one or both of them are volatile memory refs, we have to distinguish
4626 - expand_expr has used TARGET. In this case, we must not generate
4627 another copy. This can be detected by TARGET being equal according
4629 - expand_expr has not used TARGET - that means that the source just
4630 happens to have the same RTX form. Since temp will have been created
4631 by expand_expr, it will compare unequal according to == .
4632 We must generate a copy in this case, to reach the correct number
4633 of volatile memory references. */
4635 if ((! rtx_equal_p (temp
, target
)
4636 || (temp
!= target
&& (side_effects_p (temp
)
4637 || side_effects_p (target
))))
4638 && TREE_CODE (exp
) != ERROR_MARK
4639 && ! dont_store_target
4640 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4641 but TARGET is not valid memory reference, TEMP will differ
4642 from TARGET although it is really the same location. */
4643 && (TREE_CODE_CLASS (TREE_CODE (exp
)) != 'd'
4644 || target
!= DECL_RTL_IF_SET (exp
))
4645 /* If there's nothing to copy, don't bother. Don't call expr_size
4646 unless necessary, because some front-ends (C++) expr_size-hook
4647 aborts on objects that are not supposed to be bit-copied or
4649 && expr_size (exp
) != const0_rtx
)
4651 target
= protect_from_queue (target
, 1);
4652 if (GET_MODE (temp
) != GET_MODE (target
)
4653 && GET_MODE (temp
) != VOIDmode
)
4655 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (exp
));
4656 if (dont_return_target
)
4658 /* In this case, we will return TEMP,
4659 so make sure it has the proper mode.
4660 But don't forget to store the value into TARGET. */
4661 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4662 emit_move_insn (target
, temp
);
4665 convert_move (target
, temp
, unsignedp
);
4668 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4670 /* Handle copying a string constant into an array. The string
4671 constant may be shorter than the array. So copy just the string's
4672 actual length, and clear the rest. First get the size of the data
4673 type of the string, which is actually the size of the target. */
4674 rtx size
= expr_size (exp
);
4676 if (GET_CODE (size
) == CONST_INT
4677 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4678 emit_block_move (target
, temp
, size
,
4680 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4683 /* Compute the size of the data to copy from the string. */
4685 = size_binop (MIN_EXPR
,
4686 make_tree (sizetype
, size
),
4687 size_int (TREE_STRING_LENGTH (exp
)));
4689 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4691 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4694 /* Copy that much. */
4695 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4696 TREE_UNSIGNED (sizetype
));
4697 emit_block_move (target
, temp
, copy_size_rtx
,
4699 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4701 /* Figure out how much is left in TARGET that we have to clear.
4702 Do all calculations in ptr_mode. */
4703 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4705 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4706 target
= adjust_address (target
, BLKmode
,
4707 INTVAL (copy_size_rtx
));
4711 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4712 copy_size_rtx
, NULL_RTX
, 0,
4715 #ifdef POINTERS_EXTEND_UNSIGNED
4716 if (GET_MODE (copy_size_rtx
) != Pmode
)
4717 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4718 TREE_UNSIGNED (sizetype
));
4721 target
= offset_address (target
, copy_size_rtx
,
4722 highest_pow2_factor (copy_size
));
4723 label
= gen_label_rtx ();
4724 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4725 GET_MODE (size
), 0, label
);
4728 if (size
!= const0_rtx
)
4729 clear_storage (target
, size
);
4735 /* Handle calls that return values in multiple non-contiguous locations.
4736 The Irix 6 ABI has examples of this. */
4737 else if (GET_CODE (target
) == PARALLEL
)
4738 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4739 int_size_in_bytes (TREE_TYPE (exp
)));
4740 else if (GET_MODE (temp
) == BLKmode
)
4741 emit_block_move (target
, temp
, expr_size (exp
),
4743 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4745 emit_move_insn (target
, temp
);
4748 /* If we don't want a value, return NULL_RTX. */
4749 if ((want_value
& 1) == 0)
4752 /* If we are supposed to return TEMP, do so as long as it isn't a MEM.
4753 ??? The latter test doesn't seem to make sense. */
4754 else if (dont_return_target
&& GET_CODE (temp
) != MEM
)
4757 /* Return TARGET itself if it is a hard register. */
4758 else if ((want_value
& 1) != 0
4759 && GET_MODE (target
) != BLKmode
4760 && ! (GET_CODE (target
) == REG
4761 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
4762 return copy_to_reg (target
);
4768 /* Return 1 if EXP just contains zeros. FIXME merge with initializer_zerop. */
4771 is_zeros_p (tree exp
)
4775 switch (TREE_CODE (exp
))
4779 case NON_LVALUE_EXPR
:
4780 case VIEW_CONVERT_EXPR
:
4781 return is_zeros_p (TREE_OPERAND (exp
, 0));
4784 return integer_zerop (exp
);
4788 is_zeros_p (TREE_REALPART (exp
)) && is_zeros_p (TREE_IMAGPART (exp
));
4791 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (exp
), dconst0
);
4794 for (elt
= TREE_VECTOR_CST_ELTS (exp
); elt
;
4795 elt
= TREE_CHAIN (elt
))
4796 if (!is_zeros_p (TREE_VALUE (elt
)))
4802 if (TREE_TYPE (exp
) && TREE_CODE (TREE_TYPE (exp
)) == SET_TYPE
)
4803 return CONSTRUCTOR_ELTS (exp
) == NULL_TREE
;
4804 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
4805 if (! is_zeros_p (TREE_VALUE (elt
)))
4815 /* Return 1 if EXP contains mostly (3/4) zeros. */
4818 mostly_zeros_p (tree exp
)
4820 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4822 int elts
= 0, zeros
= 0;
4823 tree elt
= CONSTRUCTOR_ELTS (exp
);
4824 if (TREE_TYPE (exp
) && TREE_CODE (TREE_TYPE (exp
)) == SET_TYPE
)
4826 /* If there are no ranges of true bits, it is all zero. */
4827 return elt
== NULL_TREE
;
4829 for (; elt
; elt
= TREE_CHAIN (elt
))
4831 /* We do not handle the case where the index is a RANGE_EXPR,
4832 so the statistic will be somewhat inaccurate.
4833 We do make a more accurate count in store_constructor itself,
4834 so since this function is only used for nested array elements,
4835 this should be close enough. */
4836 if (mostly_zeros_p (TREE_VALUE (elt
)))
4841 return 4 * zeros
>= 3 * elts
;
4844 return is_zeros_p (exp
);
4847 /* Helper function for store_constructor.
4848 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4849 TYPE is the type of the CONSTRUCTOR, not the element type.
4850 CLEARED is as for store_constructor.
4851 ALIAS_SET is the alias set to use for any stores.
4853 This provides a recursive shortcut back to store_constructor when it isn't
4854 necessary to go through store_field. This is so that we can pass through
4855 the cleared field to let store_constructor know that we may not have to
4856 clear a substructure if the outer structure has already been cleared. */
4859 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4860 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4861 tree exp
, tree type
, int cleared
, int alias_set
)
4863 if (TREE_CODE (exp
) == CONSTRUCTOR
4864 && bitpos
% BITS_PER_UNIT
== 0
4865 /* If we have a nonzero bitpos for a register target, then we just
4866 let store_field do the bitfield handling. This is unlikely to
4867 generate unnecessary clear instructions anyways. */
4868 && (bitpos
== 0 || GET_CODE (target
) == MEM
))
4870 if (GET_CODE (target
) == MEM
)
4872 = adjust_address (target
,
4873 GET_MODE (target
) == BLKmode
4875 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4876 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4879 /* Update the alias set, if required. */
4880 if (GET_CODE (target
) == MEM
&& ! MEM_KEEP_ALIAS_SET_P (target
)
4881 && MEM_ALIAS_SET (target
) != 0)
4883 target
= copy_rtx (target
);
4884 set_mem_alias_set (target
, alias_set
);
4887 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4890 store_field (target
, bitsize
, bitpos
, mode
, exp
, VOIDmode
, 0, type
,
4894 /* Store the value of constructor EXP into the rtx TARGET.
4895 TARGET is either a REG or a MEM; we know it cannot conflict, since
4896 safe_from_p has been called.
4897 CLEARED is true if TARGET is known to have been zero'd.
4898 SIZE is the number of bytes of TARGET we are allowed to modify: this
4899 may not be the same as the size of EXP if we are assigning to a field
4900 which has been packed to exclude padding bits. */
4903 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4905 tree type
= TREE_TYPE (exp
);
4906 #ifdef WORD_REGISTER_OPERATIONS
4907 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4910 if (TREE_CODE (type
) == RECORD_TYPE
|| TREE_CODE (type
) == UNION_TYPE
4911 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4915 /* If size is zero or the target is already cleared, do nothing. */
4916 if (size
== 0 || cleared
)
4918 /* We either clear the aggregate or indicate the value is dead. */
4919 else if ((TREE_CODE (type
) == UNION_TYPE
4920 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4921 && ! CONSTRUCTOR_ELTS (exp
))
4922 /* If the constructor is empty, clear the union. */
4924 clear_storage (target
, expr_size (exp
));
4928 /* If we are building a static constructor into a register,
4929 set the initial value as zero so we can fold the value into
4930 a constant. But if more than one register is involved,
4931 this probably loses. */
4932 else if (GET_CODE (target
) == REG
&& TREE_STATIC (exp
)
4933 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4935 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4939 /* If the constructor has fewer fields than the structure
4940 or if we are initializing the structure to mostly zeros,
4941 clear the whole structure first. Don't do this if TARGET is a
4942 register whose mode size isn't equal to SIZE since clear_storage
4943 can't handle this case. */
4944 else if (((list_length (CONSTRUCTOR_ELTS (exp
)) != fields_length (type
))
4945 || mostly_zeros_p (exp
))
4946 && (GET_CODE (target
) != REG
4947 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4950 rtx xtarget
= target
;
4952 if (readonly_fields_p (type
))
4954 xtarget
= copy_rtx (xtarget
);
4955 RTX_UNCHANGING_P (xtarget
) = 1;
4958 clear_storage (xtarget
, GEN_INT (size
));
4963 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4965 /* Store each element of the constructor into
4966 the corresponding field of TARGET. */
4968 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
4970 tree field
= TREE_PURPOSE (elt
);
4971 tree value
= TREE_VALUE (elt
);
4972 enum machine_mode mode
;
4973 HOST_WIDE_INT bitsize
;
4974 HOST_WIDE_INT bitpos
= 0;
4976 rtx to_rtx
= target
;
4978 /* Just ignore missing fields.
4979 We cleared the whole structure, above,
4980 if any fields are missing. */
4984 if (cleared
&& is_zeros_p (value
))
4987 if (host_integerp (DECL_SIZE (field
), 1))
4988 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4992 mode
= DECL_MODE (field
);
4993 if (DECL_BIT_FIELD (field
))
4996 offset
= DECL_FIELD_OFFSET (field
);
4997 if (host_integerp (offset
, 0)
4998 && host_integerp (bit_position (field
), 0))
5000 bitpos
= int_bit_position (field
);
5004 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5010 if (CONTAINS_PLACEHOLDER_P (offset
))
5011 offset
= build (WITH_RECORD_EXPR
, sizetype
,
5012 offset
, make_tree (TREE_TYPE (exp
), target
));
5014 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
5015 if (GET_CODE (to_rtx
) != MEM
)
5018 #ifdef POINTERS_EXTEND_UNSIGNED
5019 if (GET_MODE (offset_rtx
) != Pmode
)
5020 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
5022 if (GET_MODE (offset_rtx
) != ptr_mode
)
5023 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
5026 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5027 highest_pow2_factor (offset
));
5030 if (TREE_READONLY (field
))
5032 if (GET_CODE (to_rtx
) == MEM
)
5033 to_rtx
= copy_rtx (to_rtx
);
5035 RTX_UNCHANGING_P (to_rtx
) = 1;
5038 #ifdef WORD_REGISTER_OPERATIONS
5039 /* If this initializes a field that is smaller than a word, at the
5040 start of a word, try to widen it to a full word.
5041 This special case allows us to output C++ member function
5042 initializations in a form that the optimizers can understand. */
5043 if (GET_CODE (target
) == REG
5044 && bitsize
< BITS_PER_WORD
5045 && bitpos
% BITS_PER_WORD
== 0
5046 && GET_MODE_CLASS (mode
) == MODE_INT
5047 && TREE_CODE (value
) == INTEGER_CST
5049 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5051 tree type
= TREE_TYPE (value
);
5053 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5055 type
= (*lang_hooks
.types
.type_for_size
)
5056 (BITS_PER_WORD
, TREE_UNSIGNED (type
));
5057 value
= convert (type
, value
);
5060 if (BYTES_BIG_ENDIAN
)
5062 = fold (build (LSHIFT_EXPR
, type
, value
,
5063 build_int_2 (BITS_PER_WORD
- bitsize
, 0)));
5064 bitsize
= BITS_PER_WORD
;
5069 if (GET_CODE (to_rtx
) == MEM
&& !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5070 && DECL_NONADDRESSABLE_P (field
))
5072 to_rtx
= copy_rtx (to_rtx
);
5073 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5076 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5077 value
, type
, cleared
,
5078 get_alias_set (TREE_TYPE (field
)));
5081 else if (TREE_CODE (type
) == ARRAY_TYPE
5082 || TREE_CODE (type
) == VECTOR_TYPE
)
5087 tree domain
= TYPE_DOMAIN (type
);
5088 tree elttype
= TREE_TYPE (type
);
5090 HOST_WIDE_INT minelt
= 0;
5091 HOST_WIDE_INT maxelt
= 0;
5093 /* Vectors are like arrays, but the domain is stored via an array
5095 if (TREE_CODE (type
) == VECTOR_TYPE
)
5097 /* Note that although TYPE_DEBUG_REPRESENTATION_TYPE uses
5098 the same field as TYPE_DOMAIN, we are not guaranteed that
5100 domain
= TYPE_DEBUG_REPRESENTATION_TYPE (type
);
5101 domain
= TYPE_DOMAIN (TREE_TYPE (TYPE_FIELDS (domain
)));
5104 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5105 && TYPE_MAX_VALUE (domain
)
5106 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5107 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5109 /* If we have constant bounds for the range of the type, get them. */
5112 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5113 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5116 /* If the constructor has fewer elements than the array,
5117 clear the whole array first. Similarly if this is
5118 static constructor of a non-BLKmode object. */
5119 if (cleared
|| (GET_CODE (target
) == REG
&& TREE_STATIC (exp
)))
5123 HOST_WIDE_INT count
= 0, zero_count
= 0;
5124 need_to_clear
= ! const_bounds_p
;
5126 /* This loop is a more accurate version of the loop in
5127 mostly_zeros_p (it handles RANGE_EXPR in an index).
5128 It is also needed to check for missing elements. */
5129 for (elt
= CONSTRUCTOR_ELTS (exp
);
5130 elt
!= NULL_TREE
&& ! need_to_clear
;
5131 elt
= TREE_CHAIN (elt
))
5133 tree index
= TREE_PURPOSE (elt
);
5134 HOST_WIDE_INT this_node_count
;
5136 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5138 tree lo_index
= TREE_OPERAND (index
, 0);
5139 tree hi_index
= TREE_OPERAND (index
, 1);
5141 if (! host_integerp (lo_index
, 1)
5142 || ! host_integerp (hi_index
, 1))
5148 this_node_count
= (tree_low_cst (hi_index
, 1)
5149 - tree_low_cst (lo_index
, 1) + 1);
5152 this_node_count
= 1;
5154 count
+= this_node_count
;
5155 if (mostly_zeros_p (TREE_VALUE (elt
)))
5156 zero_count
+= this_node_count
;
5159 /* Clear the entire array first if there are any missing elements,
5160 or if the incidence of zero elements is >= 75%. */
5162 && (count
< maxelt
- minelt
+ 1 || 4 * zero_count
>= 3 * count
))
5166 if (need_to_clear
&& size
> 0)
5171 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5173 clear_storage (target
, GEN_INT (size
));
5177 else if (REG_P (target
))
5178 /* Inform later passes that the old value is dead. */
5179 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
5181 /* Store each element of the constructor into
5182 the corresponding element of TARGET, determined
5183 by counting the elements. */
5184 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
5186 elt
= TREE_CHAIN (elt
), i
++)
5188 enum machine_mode mode
;
5189 HOST_WIDE_INT bitsize
;
5190 HOST_WIDE_INT bitpos
;
5192 tree value
= TREE_VALUE (elt
);
5193 tree index
= TREE_PURPOSE (elt
);
5194 rtx xtarget
= target
;
5196 if (cleared
&& is_zeros_p (value
))
5199 unsignedp
= TREE_UNSIGNED (elttype
);
5200 mode
= TYPE_MODE (elttype
);
5201 if (mode
== BLKmode
)
5202 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5203 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5206 bitsize
= GET_MODE_BITSIZE (mode
);
5208 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5210 tree lo_index
= TREE_OPERAND (index
, 0);
5211 tree hi_index
= TREE_OPERAND (index
, 1);
5212 rtx index_r
, pos_rtx
, loop_end
;
5213 struct nesting
*loop
;
5214 HOST_WIDE_INT lo
, hi
, count
;
5217 /* If the range is constant and "small", unroll the loop. */
5219 && host_integerp (lo_index
, 0)
5220 && host_integerp (hi_index
, 0)
5221 && (lo
= tree_low_cst (lo_index
, 0),
5222 hi
= tree_low_cst (hi_index
, 0),
5223 count
= hi
- lo
+ 1,
5224 (GET_CODE (target
) != MEM
5226 || (host_integerp (TYPE_SIZE (elttype
), 1)
5227 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
5230 lo
-= minelt
; hi
-= minelt
;
5231 for (; lo
<= hi
; lo
++)
5233 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
5235 if (GET_CODE (target
) == MEM
5236 && !MEM_KEEP_ALIAS_SET_P (target
)
5237 && TREE_CODE (type
) == ARRAY_TYPE
5238 && TYPE_NONALIASED_COMPONENT (type
))
5240 target
= copy_rtx (target
);
5241 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5244 store_constructor_field
5245 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5246 get_alias_set (elttype
));
5251 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
5252 loop_end
= gen_label_rtx ();
5254 unsignedp
= TREE_UNSIGNED (domain
);
5256 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
5259 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5261 SET_DECL_RTL (index
, index_r
);
5262 if (TREE_CODE (value
) == SAVE_EXPR
5263 && SAVE_EXPR_RTL (value
) == 0)
5265 /* Make sure value gets expanded once before the
5267 expand_expr (value
, const0_rtx
, VOIDmode
, 0);
5270 store_expr (lo_index
, index_r
, 0);
5271 loop
= expand_start_loop (0);
5273 /* Assign value to element index. */
5275 = convert (ssizetype
,
5276 fold (build (MINUS_EXPR
, TREE_TYPE (index
),
5277 index
, TYPE_MIN_VALUE (domain
))));
5278 position
= size_binop (MULT_EXPR
, position
,
5280 TYPE_SIZE_UNIT (elttype
)));
5282 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
5283 xtarget
= offset_address (target
, pos_rtx
,
5284 highest_pow2_factor (position
));
5285 xtarget
= adjust_address (xtarget
, mode
, 0);
5286 if (TREE_CODE (value
) == CONSTRUCTOR
)
5287 store_constructor (value
, xtarget
, cleared
,
5288 bitsize
/ BITS_PER_UNIT
);
5290 store_expr (value
, xtarget
, 0);
5292 expand_exit_loop_if_false (loop
,
5293 build (LT_EXPR
, integer_type_node
,
5296 expand_increment (build (PREINCREMENT_EXPR
,
5298 index
, integer_one_node
), 0, 0);
5300 emit_label (loop_end
);
5303 else if ((index
!= 0 && ! host_integerp (index
, 0))
5304 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5309 index
= ssize_int (1);
5312 index
= convert (ssizetype
,
5313 fold (build (MINUS_EXPR
, index
,
5314 TYPE_MIN_VALUE (domain
))));
5316 position
= size_binop (MULT_EXPR
, index
,
5318 TYPE_SIZE_UNIT (elttype
)));
5319 xtarget
= offset_address (target
,
5320 expand_expr (position
, 0, VOIDmode
, 0),
5321 highest_pow2_factor (position
));
5322 xtarget
= adjust_address (xtarget
, mode
, 0);
5323 store_expr (value
, xtarget
, 0);
5328 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5329 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5331 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5333 if (GET_CODE (target
) == MEM
&& !MEM_KEEP_ALIAS_SET_P (target
)
5334 && TREE_CODE (type
) == ARRAY_TYPE
5335 && TYPE_NONALIASED_COMPONENT (type
))
5337 target
= copy_rtx (target
);
5338 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5341 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5342 type
, cleared
, get_alias_set (elttype
));
5348 /* Set constructor assignments. */
5349 else if (TREE_CODE (type
) == SET_TYPE
)
5351 tree elt
= CONSTRUCTOR_ELTS (exp
);
5352 unsigned HOST_WIDE_INT nbytes
= int_size_in_bytes (type
), nbits
;
5353 tree domain
= TYPE_DOMAIN (type
);
5354 tree domain_min
, domain_max
, bitlength
;
5356 /* The default implementation strategy is to extract the constant
5357 parts of the constructor, use that to initialize the target,
5358 and then "or" in whatever non-constant ranges we need in addition.
5360 If a large set is all zero or all ones, it is
5361 probably better to set it using memset (if available) or bzero.
5362 Also, if a large set has just a single range, it may also be
5363 better to first clear all the first clear the set (using
5364 bzero/memset), and set the bits we want. */
5366 /* Check for all zeros. */
5367 if (elt
== NULL_TREE
&& size
> 0)
5370 clear_storage (target
, GEN_INT (size
));
5374 domain_min
= convert (sizetype
, TYPE_MIN_VALUE (domain
));
5375 domain_max
= convert (sizetype
, TYPE_MAX_VALUE (domain
));
5376 bitlength
= size_binop (PLUS_EXPR
,
5377 size_diffop (domain_max
, domain_min
),
5380 nbits
= tree_low_cst (bitlength
, 1);
5382 /* For "small" sets, or "medium-sized" (up to 32 bytes) sets that
5383 are "complicated" (more than one range), initialize (the
5384 constant parts) by copying from a constant. */
5385 if (GET_MODE (target
) != BLKmode
|| nbits
<= 2 * BITS_PER_WORD
5386 || (nbytes
<= 32 && TREE_CHAIN (elt
) != NULL_TREE
))
5388 unsigned int set_word_size
= TYPE_ALIGN (TREE_TYPE (exp
));
5389 enum machine_mode mode
= mode_for_size (set_word_size
, MODE_INT
, 1);
5390 char *bit_buffer
= alloca (nbits
);
5391 HOST_WIDE_INT word
= 0;
5392 unsigned int bit_pos
= 0;
5393 unsigned int ibit
= 0;
5394 unsigned int offset
= 0; /* In bytes from beginning of set. */
5396 elt
= get_set_constructor_bits (exp
, bit_buffer
, nbits
);
5399 if (bit_buffer
[ibit
])
5401 if (BYTES_BIG_ENDIAN
)
5402 word
|= (1 << (set_word_size
- 1 - bit_pos
));
5404 word
|= 1 << bit_pos
;
5408 if (bit_pos
>= set_word_size
|| ibit
== nbits
)
5410 if (word
!= 0 || ! cleared
)
5412 rtx datum
= GEN_INT (word
);
5415 /* The assumption here is that it is safe to use
5416 XEXP if the set is multi-word, but not if
5417 it's single-word. */
5418 if (GET_CODE (target
) == MEM
)
5419 to_rtx
= adjust_address (target
, mode
, offset
);
5420 else if (offset
== 0)
5424 emit_move_insn (to_rtx
, datum
);
5431 offset
+= set_word_size
/ BITS_PER_UNIT
;
5436 /* Don't bother clearing storage if the set is all ones. */
5437 if (TREE_CHAIN (elt
) != NULL_TREE
5438 || (TREE_PURPOSE (elt
) == NULL_TREE
5440 : ( ! host_integerp (TREE_VALUE (elt
), 0)
5441 || ! host_integerp (TREE_PURPOSE (elt
), 0)
5442 || (tree_low_cst (TREE_VALUE (elt
), 0)
5443 - tree_low_cst (TREE_PURPOSE (elt
), 0) + 1
5444 != (HOST_WIDE_INT
) nbits
))))
5445 clear_storage (target
, expr_size (exp
));
5447 for (; elt
!= NULL_TREE
; elt
= TREE_CHAIN (elt
))
5449 /* Start of range of element or NULL. */
5450 tree startbit
= TREE_PURPOSE (elt
);
5451 /* End of range of element, or element value. */
5452 tree endbit
= TREE_VALUE (elt
);
5453 HOST_WIDE_INT startb
, endb
;
5454 rtx bitlength_rtx
, startbit_rtx
, endbit_rtx
, targetx
;
5456 bitlength_rtx
= expand_expr (bitlength
,
5457 NULL_RTX
, MEM
, EXPAND_CONST_ADDRESS
);
5459 /* Handle non-range tuple element like [ expr ]. */
5460 if (startbit
== NULL_TREE
)
5462 startbit
= save_expr (endbit
);
5466 startbit
= convert (sizetype
, startbit
);
5467 endbit
= convert (sizetype
, endbit
);
5468 if (! integer_zerop (domain_min
))
5470 startbit
= size_binop (MINUS_EXPR
, startbit
, domain_min
);
5471 endbit
= size_binop (MINUS_EXPR
, endbit
, domain_min
);
5473 startbit_rtx
= expand_expr (startbit
, NULL_RTX
, MEM
,
5474 EXPAND_CONST_ADDRESS
);
5475 endbit_rtx
= expand_expr (endbit
, NULL_RTX
, MEM
,
5476 EXPAND_CONST_ADDRESS
);
5482 ((build_qualified_type ((*lang_hooks
.types
.type_for_mode
)
5483 (GET_MODE (target
), 0),
5486 emit_move_insn (targetx
, target
);
5489 else if (GET_CODE (target
) == MEM
)
5494 /* Optimization: If startbit and endbit are constants divisible
5495 by BITS_PER_UNIT, call memset instead. */
5496 if (TARGET_MEM_FUNCTIONS
5497 && TREE_CODE (startbit
) == INTEGER_CST
5498 && TREE_CODE (endbit
) == INTEGER_CST
5499 && (startb
= TREE_INT_CST_LOW (startbit
)) % BITS_PER_UNIT
== 0
5500 && (endb
= TREE_INT_CST_LOW (endbit
) + 1) % BITS_PER_UNIT
== 0)
5502 emit_library_call (memset_libfunc
, LCT_NORMAL
,
5504 plus_constant (XEXP (targetx
, 0),
5505 startb
/ BITS_PER_UNIT
),
5507 constm1_rtx
, TYPE_MODE (integer_type_node
),
5508 GEN_INT ((endb
- startb
) / BITS_PER_UNIT
),
5509 TYPE_MODE (sizetype
));
5512 emit_library_call (setbits_libfunc
, LCT_NORMAL
,
5513 VOIDmode
, 4, XEXP (targetx
, 0),
5514 Pmode
, bitlength_rtx
, TYPE_MODE (sizetype
),
5515 startbit_rtx
, TYPE_MODE (sizetype
),
5516 endbit_rtx
, TYPE_MODE (sizetype
));
5519 emit_move_insn (target
, targetx
);
5527 /* Store the value of EXP (an expression tree)
5528 into a subfield of TARGET which has mode MODE and occupies
5529 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5530 If MODE is VOIDmode, it means that we are storing into a bit-field.
5532 If VALUE_MODE is VOIDmode, return nothing in particular.
5533 UNSIGNEDP is not used in this case.
5535 Otherwise, return an rtx for the value stored. This rtx
5536 has mode VALUE_MODE if that is convenient to do.
5537 In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
5539 TYPE is the type of the underlying object,
5541 ALIAS_SET is the alias set for the destination. This value will
5542 (in general) be different from that for TARGET, since TARGET is a
5543 reference to the containing structure. */
5546 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5547 enum machine_mode mode
, tree exp
, enum machine_mode value_mode
,
5548 int unsignedp
, tree type
, int alias_set
)
5550 HOST_WIDE_INT width_mask
= 0;
5552 if (TREE_CODE (exp
) == ERROR_MARK
)
5555 /* If we have nothing to store, do nothing unless the expression has
5558 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5559 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5560 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5562 /* If we are storing into an unaligned field of an aligned union that is
5563 in a register, we may have the mode of TARGET being an integer mode but
5564 MODE == BLKmode. In that case, get an aligned object whose size and
5565 alignment are the same as TARGET and store TARGET into it (we can avoid
5566 the store if the field being stored is the entire width of TARGET). Then
5567 call ourselves recursively to store the field into a BLKmode version of
5568 that object. Finally, load from the object into TARGET. This is not
5569 very efficient in general, but should only be slightly more expensive
5570 than the otherwise-required unaligned accesses. Perhaps this can be
5571 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5572 twice, once with emit_move_insn and once via store_field. */
5575 && (GET_CODE (target
) == REG
|| GET_CODE (target
) == SUBREG
))
5577 rtx object
= assign_temp (type
, 0, 1, 1);
5578 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5580 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5581 emit_move_insn (object
, target
);
5583 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, VOIDmode
, 0, type
,
5586 emit_move_insn (target
, object
);
5588 /* We want to return the BLKmode version of the data. */
5592 if (GET_CODE (target
) == CONCAT
)
5594 /* We're storing into a struct containing a single __complex. */
5598 return store_expr (exp
, target
, 0);
5601 /* If the structure is in a register or if the component
5602 is a bit field, we cannot use addressing to access it.
5603 Use bit-field techniques or SUBREG to store in it. */
5605 if (mode
== VOIDmode
5606 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5607 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5608 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5609 || GET_CODE (target
) == REG
5610 || GET_CODE (target
) == SUBREG
5611 /* If the field isn't aligned enough to store as an ordinary memref,
5612 store it as a bit field. */
5614 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5615 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5616 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5617 || (bitpos
% BITS_PER_UNIT
!= 0)))
5618 /* If the RHS and field are a constant size and the size of the
5619 RHS isn't the same size as the bitfield, we must use bitfield
5622 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5623 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5625 rtx temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5627 /* If BITSIZE is narrower than the size of the type of EXP
5628 we will be narrowing TEMP. Normally, what's wanted are the
5629 low-order bits. However, if EXP's type is a record and this is
5630 big-endian machine, we want the upper BITSIZE bits. */
5631 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5632 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5633 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5634 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5635 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5639 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5641 if (mode
!= VOIDmode
&& mode
!= BLKmode
5642 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5643 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5645 /* If the modes of TARGET and TEMP are both BLKmode, both
5646 must be in memory and BITPOS must be aligned on a byte
5647 boundary. If so, we simply do a block copy. */
5648 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5650 if (GET_CODE (target
) != MEM
|| GET_CODE (temp
) != MEM
5651 || bitpos
% BITS_PER_UNIT
!= 0)
5654 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5655 emit_block_move (target
, temp
,
5656 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5660 return value_mode
== VOIDmode
? const0_rtx
: target
;
5663 /* Store the value in the bitfield. */
5664 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
,
5665 int_size_in_bytes (type
));
5667 if (value_mode
!= VOIDmode
)
5669 /* The caller wants an rtx for the value.
5670 If possible, avoid refetching from the bitfield itself. */
5672 && ! (GET_CODE (target
) == MEM
&& MEM_VOLATILE_P (target
)))
5675 enum machine_mode tmode
;
5677 tmode
= GET_MODE (temp
);
5678 if (tmode
== VOIDmode
)
5682 return expand_and (tmode
, temp
,
5683 gen_int_mode (width_mask
, tmode
),
5686 count
= build_int_2 (GET_MODE_BITSIZE (tmode
) - bitsize
, 0);
5687 temp
= expand_shift (LSHIFT_EXPR
, tmode
, temp
, count
, 0, 0);
5688 return expand_shift (RSHIFT_EXPR
, tmode
, temp
, count
, 0, 0);
5691 return extract_bit_field (target
, bitsize
, bitpos
, unsignedp
,
5692 NULL_RTX
, value_mode
, VOIDmode
,
5693 int_size_in_bytes (type
));
5699 rtx addr
= XEXP (target
, 0);
5700 rtx to_rtx
= target
;
5702 /* If a value is wanted, it must be the lhs;
5703 so make the address stable for multiple use. */
5705 if (value_mode
!= VOIDmode
&& GET_CODE (addr
) != REG
5706 && ! CONSTANT_ADDRESS_P (addr
)
5707 /* A frame-pointer reference is already stable. */
5708 && ! (GET_CODE (addr
) == PLUS
5709 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
5710 && (XEXP (addr
, 0) == virtual_incoming_args_rtx
5711 || XEXP (addr
, 0) == virtual_stack_vars_rtx
)))
5712 to_rtx
= replace_equiv_address (to_rtx
, copy_to_reg (addr
));
5714 /* Now build a reference to just the desired component. */
5716 to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5718 if (to_rtx
== target
)
5719 to_rtx
= copy_rtx (to_rtx
);
5721 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5722 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5723 set_mem_alias_set (to_rtx
, alias_set
);
5725 return store_expr (exp
, to_rtx
, value_mode
!= VOIDmode
);
5729 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5730 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5731 codes and find the ultimate containing object, which we return.
5733 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5734 bit position, and *PUNSIGNEDP to the signedness of the field.
5735 If the position of the field is variable, we store a tree
5736 giving the variable offset (in units) in *POFFSET.
5737 This offset is in addition to the bit position.
5738 If the position is not variable, we store 0 in *POFFSET.
5740 If any of the extraction expressions is volatile,
5741 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5743 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5744 is a mode that can be used to access the field. In that case, *PBITSIZE
5747 If the field describes a variable-sized object, *PMODE is set to
5748 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5749 this case, but the address of the object can be found. */
5752 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5753 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5754 enum machine_mode
*pmode
, int *punsignedp
,
5758 enum machine_mode mode
= VOIDmode
;
5759 tree offset
= size_zero_node
;
5760 tree bit_offset
= bitsize_zero_node
;
5761 tree placeholder_ptr
= 0;
5764 /* First get the mode, signedness, and size. We do this from just the
5765 outermost expression. */
5766 if (TREE_CODE (exp
) == COMPONENT_REF
)
5768 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5769 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5770 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5772 *punsignedp
= TREE_UNSIGNED (TREE_OPERAND (exp
, 1));
5774 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5776 size_tree
= TREE_OPERAND (exp
, 1);
5777 *punsignedp
= TREE_UNSIGNED (exp
);
5781 mode
= TYPE_MODE (TREE_TYPE (exp
));
5782 *punsignedp
= TREE_UNSIGNED (TREE_TYPE (exp
));
5784 if (mode
== BLKmode
)
5785 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5787 *pbitsize
= GET_MODE_BITSIZE (mode
);
5792 if (! host_integerp (size_tree
, 1))
5793 mode
= BLKmode
, *pbitsize
= -1;
5795 *pbitsize
= tree_low_cst (size_tree
, 1);
5798 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5799 and find the ultimate containing object. */
5802 if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5803 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
, TREE_OPERAND (exp
, 2));
5804 else if (TREE_CODE (exp
) == COMPONENT_REF
)
5806 tree field
= TREE_OPERAND (exp
, 1);
5807 tree this_offset
= DECL_FIELD_OFFSET (field
);
5809 /* If this field hasn't been filled in yet, don't go
5810 past it. This should only happen when folding expressions
5811 made during type construction. */
5812 if (this_offset
== 0)
5814 else if (CONTAINS_PLACEHOLDER_P (this_offset
))
5815 this_offset
= build (WITH_RECORD_EXPR
, sizetype
, this_offset
, exp
);
5817 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5818 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5819 DECL_FIELD_BIT_OFFSET (field
));
5821 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5824 else if (TREE_CODE (exp
) == ARRAY_REF
5825 || TREE_CODE (exp
) == ARRAY_RANGE_REF
)
5827 tree index
= TREE_OPERAND (exp
, 1);
5828 tree array
= TREE_OPERAND (exp
, 0);
5829 tree domain
= TYPE_DOMAIN (TREE_TYPE (array
));
5830 tree low_bound
= (domain
? TYPE_MIN_VALUE (domain
) : 0);
5831 tree unit_size
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array
)));
5833 /* We assume all arrays have sizes that are a multiple of a byte.
5834 First subtract the lower bound, if any, in the type of the
5835 index, then convert to sizetype and multiply by the size of the
5837 if (low_bound
!= 0 && ! integer_zerop (low_bound
))
5838 index
= fold (build (MINUS_EXPR
, TREE_TYPE (index
),
5841 /* If the index has a self-referential type, pass it to a
5842 WITH_RECORD_EXPR; if the component size is, pass our
5843 component to one. */
5844 if (CONTAINS_PLACEHOLDER_P (index
))
5845 index
= build (WITH_RECORD_EXPR
, TREE_TYPE (index
), index
, exp
);
5846 if (CONTAINS_PLACEHOLDER_P (unit_size
))
5847 unit_size
= build (WITH_RECORD_EXPR
, sizetype
, unit_size
, array
);
5849 offset
= size_binop (PLUS_EXPR
, offset
,
5850 size_binop (MULT_EXPR
,
5851 convert (sizetype
, index
),
5855 else if (TREE_CODE (exp
) == PLACEHOLDER_EXPR
)
5857 tree
new = find_placeholder (exp
, &placeholder_ptr
);
5859 /* If we couldn't find the replacement, return the PLACEHOLDER_EXPR.
5860 We might have been called from tree optimization where we
5861 haven't set up an object yet. */
5870 /* We can go inside most conversions: all NON_VALUE_EXPRs, all normal
5871 conversions that don't change the mode, and all view conversions
5872 except those that need to "step up" the alignment. */
5873 else if (TREE_CODE (exp
) != NON_LVALUE_EXPR
5874 && ! (TREE_CODE (exp
) == VIEW_CONVERT_EXPR
5875 && ! ((TYPE_ALIGN (TREE_TYPE (exp
))
5876 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5878 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5879 < BIGGEST_ALIGNMENT
)
5880 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5881 || TYPE_ALIGN_OK (TREE_TYPE
5882 (TREE_OPERAND (exp
, 0))))))
5883 && ! ((TREE_CODE (exp
) == NOP_EXPR
5884 || TREE_CODE (exp
) == CONVERT_EXPR
)
5885 && (TYPE_MODE (TREE_TYPE (exp
))
5886 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))))
5889 /* If any reference in the chain is volatile, the effect is volatile. */
5890 if (TREE_THIS_VOLATILE (exp
))
5893 exp
= TREE_OPERAND (exp
, 0);
5896 /* If OFFSET is constant, see if we can return the whole thing as a
5897 constant bit position. Otherwise, split it up. */
5898 if (host_integerp (offset
, 0)
5899 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5901 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5902 && host_integerp (tem
, 0))
5903 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5905 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5911 /* Return 1 if T is an expression that get_inner_reference handles. */
5914 handled_component_p (tree t
)
5916 switch (TREE_CODE (t
))
5921 case ARRAY_RANGE_REF
:
5922 case NON_LVALUE_EXPR
:
5923 case VIEW_CONVERT_EXPR
:
5926 /* ??? Sure they are handled, but get_inner_reference may return
5927 a different PBITSIZE, depending upon whether the expression is
5928 wrapped up in a NOP_EXPR or not, e.g. for bitfields. */
5931 return (TYPE_MODE (TREE_TYPE (t
))
5932 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (t
, 0))));
5939 /* Given an rtx VALUE that may contain additions and multiplications, return
5940 an equivalent value that just refers to a register, memory, or constant.
5941 This is done by generating instructions to perform the arithmetic and
5942 returning a pseudo-register containing the value.
5944 The returned value may be a REG, SUBREG, MEM or constant. */
5947 force_operand (rtx value
, rtx target
)
5950 /* Use subtarget as the target for operand 0 of a binary operation. */
5951 rtx subtarget
= get_subtarget (target
);
5952 enum rtx_code code
= GET_CODE (value
);
5954 /* Check for a PIC address load. */
5955 if ((code
== PLUS
|| code
== MINUS
)
5956 && XEXP (value
, 0) == pic_offset_table_rtx
5957 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5958 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5959 || GET_CODE (XEXP (value
, 1)) == CONST
))
5962 subtarget
= gen_reg_rtx (GET_MODE (value
));
5963 emit_move_insn (subtarget
, value
);
5967 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5970 target
= gen_reg_rtx (GET_MODE (value
));
5971 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5972 code
== ZERO_EXTEND
);
5976 if (GET_RTX_CLASS (code
) == '2' || GET_RTX_CLASS (code
) == 'c')
5978 op2
= XEXP (value
, 1);
5979 if (!CONSTANT_P (op2
) && !(GET_CODE (op2
) == REG
&& op2
!= subtarget
))
5981 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5984 op2
= negate_rtx (GET_MODE (value
), op2
);
5987 /* Check for an addition with OP2 a constant integer and our first
5988 operand a PLUS of a virtual register and something else. In that
5989 case, we want to emit the sum of the virtual register and the
5990 constant first and then add the other value. This allows virtual
5991 register instantiation to simply modify the constant rather than
5992 creating another one around this addition. */
5993 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5994 && GET_CODE (XEXP (value
, 0)) == PLUS
5995 && GET_CODE (XEXP (XEXP (value
, 0), 0)) == REG
5996 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5997 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5999 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6000 XEXP (XEXP (value
, 0), 0), op2
,
6001 subtarget
, 0, OPTAB_LIB_WIDEN
);
6002 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6003 force_operand (XEXP (XEXP (value
,
6005 target
, 0, OPTAB_LIB_WIDEN
);
6008 op1
= force_operand (XEXP (value
, 0), subtarget
);
6009 op2
= force_operand (op2
, NULL_RTX
);
6013 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
6015 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
6016 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6017 target
, 1, OPTAB_LIB_WIDEN
);
6019 return expand_divmod (0,
6020 FLOAT_MODE_P (GET_MODE (value
))
6021 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
6022 GET_MODE (value
), op1
, op2
, target
, 0);
6025 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6029 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
6033 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6037 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6038 target
, 0, OPTAB_LIB_WIDEN
);
6041 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6042 target
, 1, OPTAB_LIB_WIDEN
);
6045 if (GET_RTX_CLASS (code
) == '1')
6047 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
6048 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
6051 #ifdef INSN_SCHEDULING
6052 /* On machines that have insn scheduling, we want all memory reference to be
6053 explicit, so we need to deal with such paradoxical SUBREGs. */
6054 if (GET_CODE (value
) == SUBREG
&& GET_CODE (SUBREG_REG (value
)) == MEM
6055 && (GET_MODE_SIZE (GET_MODE (value
))
6056 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
6058 = simplify_gen_subreg (GET_MODE (value
),
6059 force_reg (GET_MODE (SUBREG_REG (value
)),
6060 force_operand (SUBREG_REG (value
),
6062 GET_MODE (SUBREG_REG (value
)),
6063 SUBREG_BYTE (value
));
6069 /* Subroutine of expand_expr: return nonzero iff there is no way that
6070 EXP can reference X, which is being modified. TOP_P is nonzero if this
6071 call is going to be used to determine whether we need a temporary
6072 for EXP, as opposed to a recursive call to this function.
6074 It is always safe for this routine to return zero since it merely
6075 searches for optimization opportunities. */
6078 safe_from_p (rtx x
, tree exp
, int top_p
)
6082 static tree save_expr_list
;
6085 /* If EXP has varying size, we MUST use a target since we currently
6086 have no way of allocating temporaries of variable size
6087 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6088 So we assume here that something at a higher level has prevented a
6089 clash. This is somewhat bogus, but the best we can do. Only
6090 do this when X is BLKmode and when we are at the top level. */
6091 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
6092 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
6093 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
6094 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
6095 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
6097 && GET_MODE (x
) == BLKmode
)
6098 /* If X is in the outgoing argument area, it is always safe. */
6099 || (GET_CODE (x
) == MEM
6100 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
6101 || (GET_CODE (XEXP (x
, 0)) == PLUS
6102 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
6105 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6106 find the underlying pseudo. */
6107 if (GET_CODE (x
) == SUBREG
)
6110 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6114 /* A SAVE_EXPR might appear many times in the expression passed to the
6115 top-level safe_from_p call, and if it has a complex subexpression,
6116 examining it multiple times could result in a combinatorial explosion.
6117 E.g. on an Alpha running at least 200MHz, a Fortran test case compiled
6118 with optimization took about 28 minutes to compile -- even though it was
6119 only a few lines long. So we mark each SAVE_EXPR we see with TREE_PRIVATE
6120 and turn that off when we are done. We keep a list of the SAVE_EXPRs
6121 we have processed. Note that the only test of top_p was above. */
6130 rtn
= safe_from_p (x
, exp
, 0);
6132 for (t
= save_expr_list
; t
!= 0; t
= TREE_CHAIN (t
))
6133 TREE_PRIVATE (TREE_PURPOSE (t
)) = 0;
6138 /* Now look at our tree code and possibly recurse. */
6139 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
6142 exp_rtl
= DECL_RTL_IF_SET (exp
);
6149 if (TREE_CODE (exp
) == TREE_LIST
)
6153 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
6155 exp
= TREE_CHAIN (exp
);
6158 if (TREE_CODE (exp
) != TREE_LIST
)
6159 return safe_from_p (x
, exp
, 0);
6162 else if (TREE_CODE (exp
) == ERROR_MARK
)
6163 return 1; /* An already-visited SAVE_EXPR? */
6169 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
6174 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6178 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6179 the expression. If it is set, we conflict iff we are that rtx or
6180 both are in memory. Otherwise, we check all operands of the
6181 expression recursively. */
6183 switch (TREE_CODE (exp
))
6186 /* If the operand is static or we are static, we can't conflict.
6187 Likewise if we don't conflict with the operand at all. */
6188 if (staticp (TREE_OPERAND (exp
, 0))
6189 || TREE_STATIC (exp
)
6190 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
6193 /* Otherwise, the only way this can conflict is if we are taking
6194 the address of a DECL a that address if part of X, which is
6196 exp
= TREE_OPERAND (exp
, 0);
6199 if (!DECL_RTL_SET_P (exp
)
6200 || GET_CODE (DECL_RTL (exp
)) != MEM
)
6203 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
6208 if (GET_CODE (x
) == MEM
6209 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
6210 get_alias_set (exp
)))
6215 /* Assume that the call will clobber all hard registers and
6217 if ((GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6218 || GET_CODE (x
) == MEM
)
6223 /* If a sequence exists, we would have to scan every instruction
6224 in the sequence to see if it was safe. This is probably not
6226 if (RTL_EXPR_SEQUENCE (exp
))
6229 exp_rtl
= RTL_EXPR_RTL (exp
);
6232 case WITH_CLEANUP_EXPR
:
6233 exp_rtl
= WITH_CLEANUP_EXPR_RTL (exp
);
6236 case CLEANUP_POINT_EXPR
:
6237 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6240 exp_rtl
= SAVE_EXPR_RTL (exp
);
6244 /* If we've already scanned this, don't do it again. Otherwise,
6245 show we've scanned it and record for clearing the flag if we're
6247 if (TREE_PRIVATE (exp
))
6250 TREE_PRIVATE (exp
) = 1;
6251 if (! safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
6253 TREE_PRIVATE (exp
) = 0;
6257 save_expr_list
= tree_cons (exp
, NULL_TREE
, save_expr_list
);
6261 /* The only operand we look at is operand 1. The rest aren't
6262 part of the expression. */
6263 return safe_from_p (x
, TREE_OPERAND (exp
, 1), 0);
6269 /* If we have an rtx, we do not need to scan our operands. */
6273 nops
= first_rtl_op (TREE_CODE (exp
));
6274 for (i
= 0; i
< nops
; i
++)
6275 if (TREE_OPERAND (exp
, i
) != 0
6276 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6279 /* If this is a language-specific tree code, it may require
6280 special handling. */
6281 if ((unsigned int) TREE_CODE (exp
)
6282 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6283 && !(*lang_hooks
.safe_from_p
) (x
, exp
))
6287 /* If we have an rtl, find any enclosed object. Then see if we conflict
6291 if (GET_CODE (exp_rtl
) == SUBREG
)
6293 exp_rtl
= SUBREG_REG (exp_rtl
);
6294 if (GET_CODE (exp_rtl
) == REG
6295 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6299 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6300 are memory and they conflict. */
6301 return ! (rtx_equal_p (x
, exp_rtl
)
6302 || (GET_CODE (x
) == MEM
&& GET_CODE (exp_rtl
) == MEM
6303 && true_dependence (exp_rtl
, VOIDmode
, x
,
6304 rtx_addr_varies_p
)));
6307 /* If we reach here, it is safe. */
6311 /* Subroutine of expand_expr: return rtx if EXP is a
6312 variable or parameter; else return 0. */
6318 switch (TREE_CODE (exp
))
6322 return DECL_RTL (exp
);
6328 #ifdef MAX_INTEGER_COMPUTATION_MODE
6331 check_max_integer_computation_mode (tree exp
)
6333 enum tree_code code
;
6334 enum machine_mode mode
;
6336 /* Strip any NOPs that don't change the mode. */
6338 code
= TREE_CODE (exp
);
6340 /* We must allow conversions of constants to MAX_INTEGER_COMPUTATION_MODE. */
6341 if (code
== NOP_EXPR
6342 && TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
6345 /* First check the type of the overall operation. We need only look at
6346 unary, binary and relational operations. */
6347 if (TREE_CODE_CLASS (code
) == '1'
6348 || TREE_CODE_CLASS (code
) == '2'
6349 || TREE_CODE_CLASS (code
) == '<')
6351 mode
= TYPE_MODE (TREE_TYPE (exp
));
6352 if (GET_MODE_CLASS (mode
) == MODE_INT
6353 && mode
> MAX_INTEGER_COMPUTATION_MODE
)
6354 internal_error ("unsupported wide integer operation");
6357 /* Check operand of a unary op. */
6358 if (TREE_CODE_CLASS (code
) == '1')
6360 mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6361 if (GET_MODE_CLASS (mode
) == MODE_INT
6362 && mode
> MAX_INTEGER_COMPUTATION_MODE
)
6363 internal_error ("unsupported wide integer operation");
6366 /* Check operands of a binary/comparison op. */
6367 if (TREE_CODE_CLASS (code
) == '2' || TREE_CODE_CLASS (code
) == '<')
6369 mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6370 if (GET_MODE_CLASS (mode
) == MODE_INT
6371 && mode
> MAX_INTEGER_COMPUTATION_MODE
)
6372 internal_error ("unsupported wide integer operation");
6374 mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1)));
6375 if (GET_MODE_CLASS (mode
) == MODE_INT
6376 && mode
> MAX_INTEGER_COMPUTATION_MODE
)
6377 internal_error ("unsupported wide integer operation");
6382 /* Return the highest power of two that EXP is known to be a multiple of.
6383 This is used in updating alignment of MEMs in array references. */
6385 static unsigned HOST_WIDE_INT
6386 highest_pow2_factor (tree exp
)
6388 unsigned HOST_WIDE_INT c0
, c1
;
6390 switch (TREE_CODE (exp
))
6393 /* We can find the lowest bit that's a one. If the low
6394 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6395 We need to handle this case since we can find it in a COND_EXPR,
6396 a MIN_EXPR, or a MAX_EXPR. If the constant overlows, we have an
6397 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6399 if (TREE_CONSTANT_OVERFLOW (exp
))
6400 return BIGGEST_ALIGNMENT
;
6403 /* Note: tree_low_cst is intentionally not used here,
6404 we don't care about the upper bits. */
6405 c0
= TREE_INT_CST_LOW (exp
);
6407 return c0
? c0
: BIGGEST_ALIGNMENT
;
6411 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6412 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6413 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6414 return MIN (c0
, c1
);
6417 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6418 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6421 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6423 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6424 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6426 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6427 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6428 return MAX (1, c0
/ c1
);
6432 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6433 case SAVE_EXPR
: case WITH_RECORD_EXPR
:
6434 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6437 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6440 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6441 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6442 return MIN (c0
, c1
);
6451 /* Similar, except that it is known that the expression must be a multiple
6452 of the alignment of TYPE. */
6454 static unsigned HOST_WIDE_INT
6455 highest_pow2_factor_for_type (tree type
, tree exp
)
6457 unsigned HOST_WIDE_INT type_align
, factor
;
6459 factor
= highest_pow2_factor (exp
);
6460 type_align
= TYPE_ALIGN (type
) / BITS_PER_UNIT
;
6461 return MAX (factor
, type_align
);
6464 /* Return an object on the placeholder list that matches EXP, a
6465 PLACEHOLDER_EXPR. An object "matches" if it is of the type of the
6466 PLACEHOLDER_EXPR or a pointer type to it. For further information, see
6467 tree.def. If no such object is found, return 0. If PLIST is nonzero, it
6468 is a location which initially points to a starting location in the
6469 placeholder list (zero means start of the list) and where a pointer into
6470 the placeholder list at which the object is found is placed. */
6473 find_placeholder (tree exp
, tree
*plist
)
6475 tree type
= TREE_TYPE (exp
);
6476 tree placeholder_expr
;
6478 for (placeholder_expr
6479 = plist
&& *plist
? TREE_CHAIN (*plist
) : placeholder_list
;
6480 placeholder_expr
!= 0;
6481 placeholder_expr
= TREE_CHAIN (placeholder_expr
))
6483 tree need_type
= TYPE_MAIN_VARIANT (type
);
6486 /* Find the outermost reference that is of the type we want. If none,
6487 see if any object has a type that is a pointer to the type we
6489 for (elt
= TREE_PURPOSE (placeholder_expr
); elt
!= 0;
6490 elt
= ((TREE_CODE (elt
) == COMPOUND_EXPR
6491 || TREE_CODE (elt
) == COND_EXPR
)
6492 ? TREE_OPERAND (elt
, 1)
6493 : (TREE_CODE_CLASS (TREE_CODE (elt
)) == 'r'
6494 || TREE_CODE_CLASS (TREE_CODE (elt
)) == '1'
6495 || TREE_CODE_CLASS (TREE_CODE (elt
)) == '2'
6496 || TREE_CODE_CLASS (TREE_CODE (elt
)) == 'e')
6497 ? TREE_OPERAND (elt
, 0) : 0))
6498 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt
)) == need_type
)
6501 *plist
= placeholder_expr
;
6505 for (elt
= TREE_PURPOSE (placeholder_expr
); elt
!= 0;
6507 = ((TREE_CODE (elt
) == COMPOUND_EXPR
6508 || TREE_CODE (elt
) == COND_EXPR
)
6509 ? TREE_OPERAND (elt
, 1)
6510 : (TREE_CODE_CLASS (TREE_CODE (elt
)) == 'r'
6511 || TREE_CODE_CLASS (TREE_CODE (elt
)) == '1'
6512 || TREE_CODE_CLASS (TREE_CODE (elt
)) == '2'
6513 || TREE_CODE_CLASS (TREE_CODE (elt
)) == 'e')
6514 ? TREE_OPERAND (elt
, 0) : 0))
6515 if (POINTER_TYPE_P (TREE_TYPE (elt
))
6516 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt
)))
6520 *plist
= placeholder_expr
;
6521 return build1 (INDIRECT_REF
, need_type
, elt
);
6528 /* expand_expr: generate code for computing expression EXP.
6529 An rtx for the computed value is returned. The value is never null.
6530 In the case of a void EXP, const0_rtx is returned.
6532 The value may be stored in TARGET if TARGET is nonzero.
6533 TARGET is just a suggestion; callers must assume that
6534 the rtx returned may not be the same as TARGET.
6536 If TARGET is CONST0_RTX, it means that the value will be ignored.
6538 If TMODE is not VOIDmode, it suggests generating the
6539 result in mode TMODE. But this is done only when convenient.
6540 Otherwise, TMODE is ignored and the value generated in its natural mode.
6541 TMODE is just a suggestion; callers must assume that
6542 the rtx returned may not have mode TMODE.
6544 Note that TARGET may have neither TMODE nor MODE. In that case, it
6545 probably will not be used.
6547 If MODIFIER is EXPAND_SUM then when EXP is an addition
6548 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6549 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6550 products as above, or REG or MEM, or constant.
6551 Ordinarily in such cases we would output mul or add instructions
6552 and then return a pseudo reg containing the sum.
6554 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6555 it also marks a label as absolutely required (it can't be dead).
6556 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6557 This is used for outputting expressions used in initializers.
6559 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6560 with a constant address even if that address is not normally legitimate.
6561 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6563 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6564 a call parameter. Such targets require special care as we haven't yet
6565 marked TARGET so that it's safe from being trashed by libcalls. We
6566 don't want to use TARGET for anything but the final result;
6567 Intermediate values must go elsewhere. Additionally, calls to
6568 emit_block_move will be flagged with BLOCK_OP_CALL_PARM. */
6571 expand_expr (tree exp
, rtx target
, enum machine_mode tmode
, enum expand_modifier modifier
)
6574 tree type
= TREE_TYPE (exp
);
6575 int unsignedp
= TREE_UNSIGNED (type
);
6576 enum machine_mode mode
;
6577 enum tree_code code
= TREE_CODE (exp
);
6579 rtx subtarget
, original_target
;
6583 /* Handle ERROR_MARK before anybody tries to access its type. */
6584 if (TREE_CODE (exp
) == ERROR_MARK
|| TREE_CODE (type
) == ERROR_MARK
)
6586 op0
= CONST0_RTX (tmode
);
6592 mode
= TYPE_MODE (type
);
6593 /* Use subtarget as the target for operand 0 of a binary operation. */
6594 subtarget
= get_subtarget (target
);
6595 original_target
= target
;
6596 ignore
= (target
== const0_rtx
6597 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6598 || code
== CONVERT_EXPR
|| code
== REFERENCE_EXPR
6599 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
6600 && TREE_CODE (type
) == VOID_TYPE
));
6602 /* If we are going to ignore this result, we need only do something
6603 if there is a side-effect somewhere in the expression. If there
6604 is, short-circuit the most common cases here. Note that we must
6605 not call expand_expr with anything but const0_rtx in case this
6606 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6610 if (! TREE_SIDE_EFFECTS (exp
))
6613 /* Ensure we reference a volatile object even if value is ignored, but
6614 don't do this if all we are doing is taking its address. */
6615 if (TREE_THIS_VOLATILE (exp
)
6616 && TREE_CODE (exp
) != FUNCTION_DECL
6617 && mode
!= VOIDmode
&& mode
!= BLKmode
6618 && modifier
!= EXPAND_CONST_ADDRESS
)
6620 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6621 if (GET_CODE (temp
) == MEM
)
6622 temp
= copy_to_reg (temp
);
6626 if (TREE_CODE_CLASS (code
) == '1' || code
== COMPONENT_REF
6627 || code
== INDIRECT_REF
|| code
== BUFFER_REF
)
6628 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6631 else if (TREE_CODE_CLASS (code
) == '2' || TREE_CODE_CLASS (code
) == '<'
6632 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6634 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6635 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6638 else if ((code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
)
6639 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp
, 1)))
6640 /* If the second operand has no side effects, just evaluate
6642 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6644 else if (code
== BIT_FIELD_REF
)
6646 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6647 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6648 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6655 #ifdef MAX_INTEGER_COMPUTATION_MODE
6656 /* Only check stuff here if the mode we want is different from the mode
6657 of the expression; if it's the same, check_max_integer_computation_mode
6658 will handle it. Do we really need to check this stuff at all? */
6661 && GET_MODE (target
) != mode
6662 && TREE_CODE (exp
) != INTEGER_CST
6663 && TREE_CODE (exp
) != PARM_DECL
6664 && TREE_CODE (exp
) != ARRAY_REF
6665 && TREE_CODE (exp
) != ARRAY_RANGE_REF
6666 && TREE_CODE (exp
) != COMPONENT_REF
6667 && TREE_CODE (exp
) != BIT_FIELD_REF
6668 && TREE_CODE (exp
) != INDIRECT_REF
6669 && TREE_CODE (exp
) != CALL_EXPR
6670 && TREE_CODE (exp
) != VAR_DECL
6671 && TREE_CODE (exp
) != RTL_EXPR
)
6673 enum machine_mode mode
= GET_MODE (target
);
6675 if (GET_MODE_CLASS (mode
) == MODE_INT
6676 && mode
> MAX_INTEGER_COMPUTATION_MODE
)
6677 internal_error ("unsupported wide integer operation");
6681 && TREE_CODE (exp
) != INTEGER_CST
6682 && TREE_CODE (exp
) != PARM_DECL
6683 && TREE_CODE (exp
) != ARRAY_REF
6684 && TREE_CODE (exp
) != ARRAY_RANGE_REF
6685 && TREE_CODE (exp
) != COMPONENT_REF
6686 && TREE_CODE (exp
) != BIT_FIELD_REF
6687 && TREE_CODE (exp
) != INDIRECT_REF
6688 && TREE_CODE (exp
) != VAR_DECL
6689 && TREE_CODE (exp
) != CALL_EXPR
6690 && TREE_CODE (exp
) != RTL_EXPR
6691 && GET_MODE_CLASS (tmode
) == MODE_INT
6692 && tmode
> MAX_INTEGER_COMPUTATION_MODE
)
6693 internal_error ("unsupported wide integer operation");
6695 check_max_integer_computation_mode (exp
);
6698 /* If will do cse, generate all results into pseudo registers
6699 since 1) that allows cse to find more things
6700 and 2) otherwise cse could produce an insn the machine
6701 cannot support. An exception is a CONSTRUCTOR into a multi-word
6702 MEM: that's much more likely to be most efficient into the MEM.
6703 Another is a CALL_EXPR which must return in memory. */
6705 if (! cse_not_expected
&& mode
!= BLKmode
&& target
6706 && (GET_CODE (target
) != REG
|| REGNO (target
) < FIRST_PSEUDO_REGISTER
)
6707 && ! (code
== CONSTRUCTOR
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
6708 && ! (code
== CALL_EXPR
&& aggregate_value_p (exp
)))
6715 tree function
= decl_function_context (exp
);
6716 /* Labels in containing functions, or labels used from initializers,
6718 if (modifier
== EXPAND_INITIALIZER
6719 || (function
!= current_function_decl
6720 && function
!= inline_function_decl
6722 temp
= force_label_rtx (exp
);
6724 temp
= label_rtx (exp
);
6726 temp
= gen_rtx_MEM (FUNCTION_MODE
, gen_rtx_LABEL_REF (Pmode
, temp
));
6727 if (function
!= current_function_decl
6728 && function
!= inline_function_decl
&& function
!= 0)
6729 LABEL_REF_NONLOCAL_P (XEXP (temp
, 0)) = 1;
6734 if (!DECL_RTL_SET_P (exp
))
6736 error ("%Hprior parameter's size depends on '%D'",
6737 &DECL_SOURCE_LOCATION (exp
), exp
);
6738 return CONST0_RTX (mode
);
6741 /* ... fall through ... */
6744 /* If a static var's type was incomplete when the decl was written,
6745 but the type is complete now, lay out the decl now. */
6746 if (DECL_SIZE (exp
) == 0
6747 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6748 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6749 layout_decl (exp
, 0);
6751 /* ... fall through ... */
6755 if (DECL_RTL (exp
) == 0)
6758 /* Ensure variable marked as used even if it doesn't go through
6759 a parser. If it hasn't be used yet, write out an external
6761 if (! TREE_USED (exp
))
6763 assemble_external (exp
);
6764 TREE_USED (exp
) = 1;
6767 /* Show we haven't gotten RTL for this yet. */
6770 /* Handle variables inherited from containing functions. */
6771 context
= decl_function_context (exp
);
6773 /* We treat inline_function_decl as an alias for the current function
6774 because that is the inline function whose vars, types, etc.
6775 are being merged into the current function.
6776 See expand_inline_function. */
6778 if (context
!= 0 && context
!= current_function_decl
6779 && context
!= inline_function_decl
6780 /* If var is static, we don't need a static chain to access it. */
6781 && ! (GET_CODE (DECL_RTL (exp
)) == MEM
6782 && CONSTANT_P (XEXP (DECL_RTL (exp
), 0))))
6786 /* Mark as non-local and addressable. */
6787 DECL_NONLOCAL (exp
) = 1;
6788 if (DECL_NO_STATIC_CHAIN (current_function_decl
))
6790 (*lang_hooks
.mark_addressable
) (exp
);
6791 if (GET_CODE (DECL_RTL (exp
)) != MEM
)
6793 addr
= XEXP (DECL_RTL (exp
), 0);
6794 if (GET_CODE (addr
) == MEM
)
6796 = replace_equiv_address (addr
,
6797 fix_lexical_addr (XEXP (addr
, 0), exp
));
6799 addr
= fix_lexical_addr (addr
, exp
);
6801 temp
= replace_equiv_address (DECL_RTL (exp
), addr
);
6804 /* This is the case of an array whose size is to be determined
6805 from its initializer, while the initializer is still being parsed.
6808 else if (GET_CODE (DECL_RTL (exp
)) == MEM
6809 && GET_CODE (XEXP (DECL_RTL (exp
), 0)) == REG
)
6810 temp
= validize_mem (DECL_RTL (exp
));
6812 /* If DECL_RTL is memory, we are in the normal case and either
6813 the address is not valid or it is not a register and -fforce-addr
6814 is specified, get the address into a register. */
6816 else if (GET_CODE (DECL_RTL (exp
)) == MEM
6817 && modifier
!= EXPAND_CONST_ADDRESS
6818 && modifier
!= EXPAND_SUM
6819 && modifier
!= EXPAND_INITIALIZER
6820 && (! memory_address_p (DECL_MODE (exp
),
6821 XEXP (DECL_RTL (exp
), 0))
6823 && GET_CODE (XEXP (DECL_RTL (exp
), 0)) != REG
)))
6824 temp
= replace_equiv_address (DECL_RTL (exp
),
6825 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6827 /* If we got something, return it. But first, set the alignment
6828 if the address is a register. */
6831 if (GET_CODE (temp
) == MEM
&& GET_CODE (XEXP (temp
, 0)) == REG
)
6832 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6837 /* If the mode of DECL_RTL does not match that of the decl, it
6838 must be a promoted value. We return a SUBREG of the wanted mode,
6839 but mark it so that we know that it was already extended. */
6841 if (GET_CODE (DECL_RTL (exp
)) == REG
6842 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6844 /* Get the signedness used for this variable. Ensure we get the
6845 same mode we got when the variable was declared. */
6846 if (GET_MODE (DECL_RTL (exp
))
6847 != promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6848 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0)))
6851 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6852 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6853 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6857 return DECL_RTL (exp
);
6860 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6861 TREE_INT_CST_HIGH (exp
), mode
);
6863 /* ??? If overflow is set, fold will have done an incomplete job,
6864 which can result in (plus xx (const_int 0)), which can get
6865 simplified by validate_replace_rtx during virtual register
6866 instantiation, which can result in unrecognizable insns.
6867 Avoid this by forcing all overflows into registers. */
6868 if (TREE_CONSTANT_OVERFLOW (exp
)
6869 && modifier
!= EXPAND_INITIALIZER
)
6870 temp
= force_reg (mode
, temp
);
6875 return const_vector_from_tree (exp
);
6878 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6881 /* If optimized, generate immediate CONST_DOUBLE
6882 which will be turned into memory by reload if necessary.
6884 We used to force a register so that loop.c could see it. But
6885 this does not allow gen_* patterns to perform optimizations with
6886 the constants. It also produces two insns in cases like "x = 1.0;".
6887 On most machines, floating-point constants are not permitted in
6888 many insns, so we'd end up copying it to a register in any case.
6890 Now, we do the copying in expand_binop, if appropriate. */
6891 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6892 TYPE_MODE (TREE_TYPE (exp
)));
6895 /* Handle evaluating a complex constant in a CONCAT target. */
6896 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6898 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6901 rtarg
= XEXP (original_target
, 0);
6902 itarg
= XEXP (original_target
, 1);
6904 /* Move the real and imaginary parts separately. */
6905 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6906 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6909 emit_move_insn (rtarg
, op0
);
6911 emit_move_insn (itarg
, op1
);
6913 return original_target
;
6916 /* ... fall through ... */
6919 temp
= output_constant_def (exp
, 1);
6921 /* temp contains a constant address.
6922 On RISC machines where a constant address isn't valid,
6923 make some insns to get that address into a register. */
6924 if (modifier
!= EXPAND_CONST_ADDRESS
6925 && modifier
!= EXPAND_INITIALIZER
6926 && modifier
!= EXPAND_SUM
6927 && (! memory_address_p (mode
, XEXP (temp
, 0))
6928 || flag_force_addr
))
6929 return replace_equiv_address (temp
,
6930 copy_rtx (XEXP (temp
, 0)));
6933 case EXPR_WITH_FILE_LOCATION
:
6936 location_t saved_loc
= input_location
;
6937 input_filename
= EXPR_WFL_FILENAME (exp
);
6938 input_line
= EXPR_WFL_LINENO (exp
);
6939 if (EXPR_WFL_EMIT_LINE_NOTE (exp
))
6940 emit_line_note (input_location
);
6941 /* Possibly avoid switching back and forth here. */
6942 to_return
= expand_expr (EXPR_WFL_NODE (exp
), target
, tmode
, modifier
);
6943 input_location
= saved_loc
;
6948 context
= decl_function_context (exp
);
6950 /* If this SAVE_EXPR was at global context, assume we are an
6951 initialization function and move it into our context. */
6953 SAVE_EXPR_CONTEXT (exp
) = current_function_decl
;
6955 /* We treat inline_function_decl as an alias for the current function
6956 because that is the inline function whose vars, types, etc.
6957 are being merged into the current function.
6958 See expand_inline_function. */
6959 if (context
== current_function_decl
|| context
== inline_function_decl
)
6962 /* If this is non-local, handle it. */
6965 /* The following call just exists to abort if the context is
6966 not of a containing function. */
6967 find_function_data (context
);
6969 temp
= SAVE_EXPR_RTL (exp
);
6970 if (temp
&& GET_CODE (temp
) == REG
)
6972 put_var_into_stack (exp
, /*rescan=*/true);
6973 temp
= SAVE_EXPR_RTL (exp
);
6975 if (temp
== 0 || GET_CODE (temp
) != MEM
)
6978 replace_equiv_address (temp
,
6979 fix_lexical_addr (XEXP (temp
, 0), exp
));
6981 if (SAVE_EXPR_RTL (exp
) == 0)
6983 if (mode
== VOIDmode
)
6986 temp
= assign_temp (build_qualified_type (type
,
6988 | TYPE_QUAL_CONST
)),
6991 SAVE_EXPR_RTL (exp
) = temp
;
6992 if (!optimize
&& GET_CODE (temp
) == REG
)
6993 save_expr_regs
= gen_rtx_EXPR_LIST (VOIDmode
, temp
,
6996 /* If the mode of TEMP does not match that of the expression, it
6997 must be a promoted value. We pass store_expr a SUBREG of the
6998 wanted mode but mark it so that we know that it was already
7001 if (GET_CODE (temp
) == REG
&& GET_MODE (temp
) != mode
)
7003 temp
= gen_lowpart_SUBREG (mode
, SAVE_EXPR_RTL (exp
));
7004 promote_mode (type
, mode
, &unsignedp
, 0);
7005 SUBREG_PROMOTED_VAR_P (temp
) = 1;
7006 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
7009 if (temp
== const0_rtx
)
7010 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, 0);
7012 store_expr (TREE_OPERAND (exp
, 0), temp
,
7013 modifier
== EXPAND_STACK_PARM
? 2 : 0);
7015 TREE_USED (exp
) = 1;
7018 /* If the mode of SAVE_EXPR_RTL does not match that of the expression, it
7019 must be a promoted value. We return a SUBREG of the wanted mode,
7020 but mark it so that we know that it was already extended. */
7022 if (GET_CODE (SAVE_EXPR_RTL (exp
)) == REG
7023 && GET_MODE (SAVE_EXPR_RTL (exp
)) != mode
)
7025 /* Compute the signedness and make the proper SUBREG. */
7026 promote_mode (type
, mode
, &unsignedp
, 0);
7027 temp
= gen_lowpart_SUBREG (mode
, SAVE_EXPR_RTL (exp
));
7028 SUBREG_PROMOTED_VAR_P (temp
) = 1;
7029 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
7033 return SAVE_EXPR_RTL (exp
);
7038 temp
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7039 TREE_OPERAND (exp
, 0)
7040 = (*lang_hooks
.unsave_expr_now
) (TREE_OPERAND (exp
, 0));
7044 case PLACEHOLDER_EXPR
:
7046 tree old_list
= placeholder_list
;
7047 tree placeholder_expr
= 0;
7049 exp
= find_placeholder (exp
, &placeholder_expr
);
7053 placeholder_list
= TREE_CHAIN (placeholder_expr
);
7054 temp
= expand_expr (exp
, original_target
, tmode
, modifier
);
7055 placeholder_list
= old_list
;
7059 case WITH_RECORD_EXPR
:
7060 /* Put the object on the placeholder list, expand our first operand,
7061 and pop the list. */
7062 placeholder_list
= tree_cons (TREE_OPERAND (exp
, 1), NULL_TREE
,
7064 target
= expand_expr (TREE_OPERAND (exp
, 0), original_target
, tmode
,
7066 placeholder_list
= TREE_CHAIN (placeholder_list
);
7070 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
7071 expand_goto (TREE_OPERAND (exp
, 0));
7073 expand_computed_goto (TREE_OPERAND (exp
, 0));
7077 expand_exit_loop_if_false (NULL
,
7078 invert_truthvalue (TREE_OPERAND (exp
, 0)));
7081 case LABELED_BLOCK_EXPR
:
7082 if (LABELED_BLOCK_BODY (exp
))
7083 expand_expr_stmt_value (LABELED_BLOCK_BODY (exp
), 0, 1);
7084 /* Should perhaps use expand_label, but this is simpler and safer. */
7085 do_pending_stack_adjust ();
7086 emit_label (label_rtx (LABELED_BLOCK_LABEL (exp
)));
7089 case EXIT_BLOCK_EXPR
:
7090 if (EXIT_BLOCK_RETURN (exp
))
7091 sorry ("returned value in block_exit_expr");
7092 expand_goto (LABELED_BLOCK_LABEL (EXIT_BLOCK_LABELED_BLOCK (exp
)));
7097 expand_start_loop (1);
7098 expand_expr_stmt_value (TREE_OPERAND (exp
, 0), 0, 1);
7106 tree vars
= TREE_OPERAND (exp
, 0);
7108 /* Need to open a binding contour here because
7109 if there are any cleanups they must be contained here. */
7110 expand_start_bindings (2);
7112 /* Mark the corresponding BLOCK for output in its proper place. */
7113 if (TREE_OPERAND (exp
, 2) != 0
7114 && ! TREE_USED (TREE_OPERAND (exp
, 2)))
7115 (*lang_hooks
.decls
.insert_block
) (TREE_OPERAND (exp
, 2));
7117 /* If VARS have not yet been expanded, expand them now. */
7120 if (!DECL_RTL_SET_P (vars
))
7122 expand_decl_init (vars
);
7123 vars
= TREE_CHAIN (vars
);
7126 temp
= expand_expr (TREE_OPERAND (exp
, 1), target
, tmode
, modifier
);
7128 expand_end_bindings (TREE_OPERAND (exp
, 0), 0, 0);
7134 if (RTL_EXPR_SEQUENCE (exp
))
7136 if (RTL_EXPR_SEQUENCE (exp
) == const0_rtx
)
7138 emit_insn (RTL_EXPR_SEQUENCE (exp
));
7139 RTL_EXPR_SEQUENCE (exp
) = const0_rtx
;
7141 preserve_rtl_expr_result (RTL_EXPR_RTL (exp
));
7142 free_temps_for_rtl_expr (exp
);
7143 return RTL_EXPR_RTL (exp
);
7146 /* If we don't need the result, just ensure we evaluate any
7152 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
7153 expand_expr (TREE_VALUE (elt
), const0_rtx
, VOIDmode
, 0);
7158 /* All elts simple constants => refer to a constant in memory. But
7159 if this is a non-BLKmode mode, let it store a field at a time
7160 since that should make a CONST_INT or CONST_DOUBLE when we
7161 fold. Likewise, if we have a target we can use, it is best to
7162 store directly into the target unless the type is large enough
7163 that memcpy will be used. If we are making an initializer and
7164 all operands are constant, put it in memory as well.
7166 FIXME: Avoid trying to fill vector constructors piece-meal.
7167 Output them with output_constant_def below unless we're sure
7168 they're zeros. This should go away when vector initializers
7169 are treated like VECTOR_CST instead of arrays.
7171 else if ((TREE_STATIC (exp
)
7172 && ((mode
== BLKmode
7173 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7174 || TREE_ADDRESSABLE (exp
)
7175 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7176 && (! MOVE_BY_PIECES_P
7177 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7179 && ((TREE_CODE (type
) == VECTOR_TYPE
7180 && !is_zeros_p (exp
))
7181 || ! mostly_zeros_p (exp
)))))
7182 || ((modifier
== EXPAND_INITIALIZER
7183 || modifier
== EXPAND_CONST_ADDRESS
)
7184 && TREE_CONSTANT (exp
)))
7186 rtx constructor
= output_constant_def (exp
, 1);
7188 if (modifier
!= EXPAND_CONST_ADDRESS
7189 && modifier
!= EXPAND_INITIALIZER
7190 && modifier
!= EXPAND_SUM
)
7191 constructor
= validize_mem (constructor
);
7197 /* Handle calls that pass values in multiple non-contiguous
7198 locations. The Irix 6 ABI has examples of this. */
7199 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7200 || GET_CODE (target
) == PARALLEL
7201 || modifier
== EXPAND_STACK_PARM
)
7203 = assign_temp (build_qualified_type (type
,
7205 | (TREE_READONLY (exp
)
7206 * TYPE_QUAL_CONST
))),
7207 0, TREE_ADDRESSABLE (exp
), 1);
7209 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7215 tree exp1
= TREE_OPERAND (exp
, 0);
7217 tree string
= string_constant (exp1
, &index
);
7219 /* Try to optimize reads from const strings. */
7221 && TREE_CODE (string
) == STRING_CST
7222 && TREE_CODE (index
) == INTEGER_CST
7223 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
7224 && GET_MODE_CLASS (mode
) == MODE_INT
7225 && GET_MODE_SIZE (mode
) == 1
7226 && modifier
!= EXPAND_WRITE
)
7227 return gen_int_mode (TREE_STRING_POINTER (string
)
7228 [TREE_INT_CST_LOW (index
)], mode
);
7230 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
7231 op0
= memory_address (mode
, op0
);
7232 temp
= gen_rtx_MEM (mode
, op0
);
7233 set_mem_attributes (temp
, exp
, 0);
7235 /* If we are writing to this object and its type is a record with
7236 readonly fields, we must mark it as readonly so it will
7237 conflict with readonly references to those fields. */
7238 if (modifier
== EXPAND_WRITE
&& readonly_fields_p (type
))
7239 RTX_UNCHANGING_P (temp
) = 1;
7245 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) != ARRAY_TYPE
)
7249 tree array
= TREE_OPERAND (exp
, 0);
7250 tree domain
= TYPE_DOMAIN (TREE_TYPE (array
));
7251 tree low_bound
= domain
? TYPE_MIN_VALUE (domain
) : integer_zero_node
;
7252 tree index
= convert (sizetype
, TREE_OPERAND (exp
, 1));
7255 /* Optimize the special-case of a zero lower bound.
7257 We convert the low_bound to sizetype to avoid some problems
7258 with constant folding. (E.g. suppose the lower bound is 1,
7259 and its mode is QI. Without the conversion, (ARRAY
7260 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7261 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
7263 if (! integer_zerop (low_bound
))
7264 index
= size_diffop (index
, convert (sizetype
, low_bound
));
7266 /* Fold an expression like: "foo"[2].
7267 This is not done in fold so it won't happen inside &.
7268 Don't fold if this is for wide characters since it's too
7269 difficult to do correctly and this is a very rare case. */
7271 if (modifier
!= EXPAND_CONST_ADDRESS
7272 && modifier
!= EXPAND_INITIALIZER
7273 && modifier
!= EXPAND_MEMORY
7274 && TREE_CODE (array
) == STRING_CST
7275 && TREE_CODE (index
) == INTEGER_CST
7276 && compare_tree_int (index
, TREE_STRING_LENGTH (array
)) < 0
7277 && GET_MODE_CLASS (mode
) == MODE_INT
7278 && GET_MODE_SIZE (mode
) == 1)
7279 return gen_int_mode (TREE_STRING_POINTER (array
)
7280 [TREE_INT_CST_LOW (index
)], mode
);
7282 /* If this is a constant index into a constant array,
7283 just get the value from the array. Handle both the cases when
7284 we have an explicit constructor and when our operand is a variable
7285 that was declared const. */
7287 if (modifier
!= EXPAND_CONST_ADDRESS
7288 && modifier
!= EXPAND_INITIALIZER
7289 && modifier
!= EXPAND_MEMORY
7290 && TREE_CODE (array
) == CONSTRUCTOR
7291 && ! TREE_SIDE_EFFECTS (array
)
7292 && TREE_CODE (index
) == INTEGER_CST
7293 && 0 > compare_tree_int (index
,
7294 list_length (CONSTRUCTOR_ELTS
7295 (TREE_OPERAND (exp
, 0)))))
7299 for (elem
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7300 i
= TREE_INT_CST_LOW (index
);
7301 elem
!= 0 && i
!= 0; i
--, elem
= TREE_CHAIN (elem
))
7305 return expand_expr (fold (TREE_VALUE (elem
)), target
, tmode
,
7309 else if (optimize
>= 1
7310 && modifier
!= EXPAND_CONST_ADDRESS
7311 && modifier
!= EXPAND_INITIALIZER
7312 && modifier
!= EXPAND_MEMORY
7313 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7314 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7315 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
)
7317 if (TREE_CODE (index
) == INTEGER_CST
)
7319 tree init
= DECL_INITIAL (array
);
7321 if (TREE_CODE (init
) == CONSTRUCTOR
)
7325 for (elem
= CONSTRUCTOR_ELTS (init
);
7327 && !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
7328 elem
= TREE_CHAIN (elem
))
7331 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
7332 return expand_expr (fold (TREE_VALUE (elem
)), target
,
7335 else if (TREE_CODE (init
) == STRING_CST
7336 && 0 > compare_tree_int (index
,
7337 TREE_STRING_LENGTH (init
)))
7339 tree type
= TREE_TYPE (TREE_TYPE (init
));
7340 enum machine_mode mode
= TYPE_MODE (type
);
7342 if (GET_MODE_CLASS (mode
) == MODE_INT
7343 && GET_MODE_SIZE (mode
) == 1)
7344 return gen_int_mode (TREE_STRING_POINTER (init
)
7345 [TREE_INT_CST_LOW (index
)], mode
);
7350 goto normal_inner_ref
;
7353 /* If the operand is a CONSTRUCTOR, we can just extract the
7354 appropriate field if it is present. */
7355 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7359 for (elt
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)); elt
;
7360 elt
= TREE_CHAIN (elt
))
7361 if (TREE_PURPOSE (elt
) == TREE_OPERAND (exp
, 1)
7362 /* We can normally use the value of the field in the
7363 CONSTRUCTOR. However, if this is a bitfield in
7364 an integral mode that we can fit in a HOST_WIDE_INT,
7365 we must mask only the number of bits in the bitfield,
7366 since this is done implicitly by the constructor. If
7367 the bitfield does not meet either of those conditions,
7368 we can't do this optimization. */
7369 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt
))
7370 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt
)))
7372 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt
)))
7373 <= HOST_BITS_PER_WIDE_INT
))))
7375 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
))
7376 && modifier
== EXPAND_STACK_PARM
)
7378 op0
= expand_expr (TREE_VALUE (elt
), target
, tmode
, modifier
);
7379 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
)))
7381 HOST_WIDE_INT bitsize
7382 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt
)));
7383 enum machine_mode imode
7384 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt
)));
7386 if (TREE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt
))))
7388 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7389 op0
= expand_and (imode
, op0
, op1
, target
);
7394 = build_int_2 (GET_MODE_BITSIZE (imode
) - bitsize
,
7397 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7399 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7407 goto normal_inner_ref
;
7410 case ARRAY_RANGE_REF
:
7413 enum machine_mode mode1
;
7414 HOST_WIDE_INT bitsize
, bitpos
;
7417 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7418 &mode1
, &unsignedp
, &volatilep
);
7421 /* If we got back the original object, something is wrong. Perhaps
7422 we are evaluating an expression too early. In any event, don't
7423 infinitely recurse. */
7427 /* If TEM's type is a union of variable size, pass TARGET to the inner
7428 computation, since it will need a temporary and TARGET is known
7429 to have to do. This occurs in unchecked conversion in Ada. */
7433 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7434 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7436 && modifier
!= EXPAND_STACK_PARM
7437 ? target
: NULL_RTX
),
7439 (modifier
== EXPAND_INITIALIZER
7440 || modifier
== EXPAND_CONST_ADDRESS
7441 || modifier
== EXPAND_STACK_PARM
)
7442 ? modifier
: EXPAND_NORMAL
);
7444 /* If this is a constant, put it into a register if it is a
7445 legitimate constant and OFFSET is 0 and memory if it isn't. */
7446 if (CONSTANT_P (op0
))
7448 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7449 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7451 op0
= force_reg (mode
, op0
);
7453 op0
= validize_mem (force_const_mem (mode
, op0
));
7456 /* Otherwise, if this object not in memory and we either have an
7457 offset or a BLKmode result, put it there. This case can't occur in
7458 C, but can in Ada if we have unchecked conversion of an expression
7459 from a scalar type to an array or record type or for an
7460 ARRAY_RANGE_REF whose type is BLKmode. */
7461 else if (GET_CODE (op0
) != MEM
7463 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7465 /* If the operand is a SAVE_EXPR, we can deal with this by
7466 forcing the SAVE_EXPR into memory. */
7467 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == SAVE_EXPR
)
7469 put_var_into_stack (TREE_OPERAND (exp
, 0),
7471 op0
= SAVE_EXPR_RTL (TREE_OPERAND (exp
, 0));
7476 = build_qualified_type (TREE_TYPE (tem
),
7477 (TYPE_QUALS (TREE_TYPE (tem
))
7478 | TYPE_QUAL_CONST
));
7479 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7481 emit_move_insn (memloc
, op0
);
7488 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7491 if (GET_CODE (op0
) != MEM
)
7494 #ifdef POINTERS_EXTEND_UNSIGNED
7495 if (GET_MODE (offset_rtx
) != Pmode
)
7496 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7498 if (GET_MODE (offset_rtx
) != ptr_mode
)
7499 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7502 /* A constant address in OP0 can have VOIDmode, we must not try
7503 to call force_reg for that case. Avoid that case. */
7504 if (GET_CODE (op0
) == MEM
7505 && GET_MODE (op0
) == BLKmode
7506 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7508 && (bitpos
% bitsize
) == 0
7509 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7510 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7512 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7516 op0
= offset_address (op0
, offset_rtx
,
7517 highest_pow2_factor (offset
));
7520 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7521 record its alignment as BIGGEST_ALIGNMENT. */
7522 if (GET_CODE (op0
) == MEM
&& bitpos
== 0 && offset
!= 0
7523 && is_aligning_offset (offset
, tem
))
7524 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7526 /* Don't forget about volatility even if this is a bitfield. */
7527 if (GET_CODE (op0
) == MEM
&& volatilep
&& ! MEM_VOLATILE_P (op0
))
7529 if (op0
== orig_op0
)
7530 op0
= copy_rtx (op0
);
7532 MEM_VOLATILE_P (op0
) = 1;
7535 /* The following code doesn't handle CONCAT.
7536 Assume only bitpos == 0 can be used for CONCAT, due to
7537 one element arrays having the same mode as its element. */
7538 if (GET_CODE (op0
) == CONCAT
)
7540 if (bitpos
!= 0 || bitsize
!= GET_MODE_BITSIZE (GET_MODE (op0
)))
7545 /* In cases where an aligned union has an unaligned object
7546 as a field, we might be extracting a BLKmode value from
7547 an integer-mode (e.g., SImode) object. Handle this case
7548 by doing the extract into an object as wide as the field
7549 (which we know to be the width of a basic mode), then
7550 storing into memory, and changing the mode to BLKmode. */
7551 if (mode1
== VOIDmode
7552 || GET_CODE (op0
) == REG
|| GET_CODE (op0
) == SUBREG
7553 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7554 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7555 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7556 && modifier
!= EXPAND_CONST_ADDRESS
7557 && modifier
!= EXPAND_INITIALIZER
)
7558 /* If the field isn't aligned enough to fetch as a memref,
7559 fetch it as a bit field. */
7560 || (mode1
!= BLKmode
7561 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7562 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0))
7563 && ((modifier
== EXPAND_CONST_ADDRESS
7564 || modifier
== EXPAND_INITIALIZER
)
7566 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7567 || (bitpos
% BITS_PER_UNIT
!= 0)))
7568 /* If the type and the field are a constant size and the
7569 size of the type isn't the same size as the bitfield,
7570 we must use bitfield operations. */
7572 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
)))
7574 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7577 enum machine_mode ext_mode
= mode
;
7579 if (ext_mode
== BLKmode
7580 && ! (target
!= 0 && GET_CODE (op0
) == MEM
7581 && GET_CODE (target
) == MEM
7582 && bitpos
% BITS_PER_UNIT
== 0))
7583 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7585 if (ext_mode
== BLKmode
)
7587 /* In this case, BITPOS must start at a byte boundary and
7588 TARGET, if specified, must be a MEM. */
7589 if (GET_CODE (op0
) != MEM
7590 || (target
!= 0 && GET_CODE (target
) != MEM
)
7591 || bitpos
% BITS_PER_UNIT
!= 0)
7594 op0
= adjust_address (op0
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
7596 target
= assign_temp (type
, 0, 1, 1);
7598 emit_block_move (target
, op0
,
7599 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7601 (modifier
== EXPAND_STACK_PARM
7602 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7607 op0
= validize_mem (op0
);
7609 if (GET_CODE (op0
) == MEM
&& GET_CODE (XEXP (op0
, 0)) == REG
)
7610 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7612 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7613 (modifier
== EXPAND_STACK_PARM
7614 ? NULL_RTX
: target
),
7616 int_size_in_bytes (TREE_TYPE (tem
)));
7618 /* If the result is a record type and BITSIZE is narrower than
7619 the mode of OP0, an integral mode, and this is a big endian
7620 machine, we must put the field into the high-order bits. */
7621 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7622 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7623 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7624 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7625 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7629 if (mode
== BLKmode
)
7631 rtx
new = assign_temp (build_qualified_type
7632 ((*lang_hooks
.types
.type_for_mode
)
7634 TYPE_QUAL_CONST
), 0, 1, 1);
7636 emit_move_insn (new, op0
);
7637 op0
= copy_rtx (new);
7638 PUT_MODE (op0
, BLKmode
);
7639 set_mem_attributes (op0
, exp
, 1);
7645 /* If the result is BLKmode, use that to access the object
7647 if (mode
== BLKmode
)
7650 /* Get a reference to just this component. */
7651 if (modifier
== EXPAND_CONST_ADDRESS
7652 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7653 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7655 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7657 if (op0
== orig_op0
)
7658 op0
= copy_rtx (op0
);
7660 set_mem_attributes (op0
, exp
, 0);
7661 if (GET_CODE (XEXP (op0
, 0)) == REG
)
7662 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7664 MEM_VOLATILE_P (op0
) |= volatilep
;
7665 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7666 || modifier
== EXPAND_CONST_ADDRESS
7667 || modifier
== EXPAND_INITIALIZER
)
7669 else if (target
== 0)
7670 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7672 convert_move (target
, op0
, unsignedp
);
7678 rtx insn
, before
= get_last_insn (), vtbl_ref
;
7680 /* Evaluate the interior expression. */
7681 subtarget
= expand_expr (TREE_OPERAND (exp
, 0), target
,
7684 /* Get or create an instruction off which to hang a note. */
7685 if (REG_P (subtarget
))
7688 insn
= get_last_insn ();
7691 if (! INSN_P (insn
))
7692 insn
= prev_nonnote_insn (insn
);
7696 target
= gen_reg_rtx (GET_MODE (subtarget
));
7697 insn
= emit_move_insn (target
, subtarget
);
7700 /* Collect the data for the note. */
7701 vtbl_ref
= XEXP (DECL_RTL (TREE_OPERAND (exp
, 1)), 0);
7702 vtbl_ref
= plus_constant (vtbl_ref
,
7703 tree_low_cst (TREE_OPERAND (exp
, 2), 0));
7704 /* Discard the initial CONST that was added. */
7705 vtbl_ref
= XEXP (vtbl_ref
, 0);
7708 = gen_rtx_EXPR_LIST (REG_VTABLE_REF
, vtbl_ref
, REG_NOTES (insn
));
7713 /* Intended for a reference to a buffer of a file-object in Pascal.
7714 But it's not certain that a special tree code will really be
7715 necessary for these. INDIRECT_REF might work for them. */
7721 /* Pascal set IN expression.
7724 rlo = set_low - (set_low%bits_per_word);
7725 the_word = set [ (index - rlo)/bits_per_word ];
7726 bit_index = index % bits_per_word;
7727 bitmask = 1 << bit_index;
7728 return !!(the_word & bitmask); */
7730 tree set
= TREE_OPERAND (exp
, 0);
7731 tree index
= TREE_OPERAND (exp
, 1);
7732 int iunsignedp
= TREE_UNSIGNED (TREE_TYPE (index
));
7733 tree set_type
= TREE_TYPE (set
);
7734 tree set_low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (set_type
));
7735 tree set_high_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (set_type
));
7736 rtx index_val
= expand_expr (index
, 0, VOIDmode
, 0);
7737 rtx lo_r
= expand_expr (set_low_bound
, 0, VOIDmode
, 0);
7738 rtx hi_r
= expand_expr (set_high_bound
, 0, VOIDmode
, 0);
7739 rtx setval
= expand_expr (set
, 0, VOIDmode
, 0);
7740 rtx setaddr
= XEXP (setval
, 0);
7741 enum machine_mode index_mode
= TYPE_MODE (TREE_TYPE (index
));
7743 rtx diff
, quo
, rem
, addr
, bit
, result
;
7745 /* If domain is empty, answer is no. Likewise if index is constant
7746 and out of bounds. */
7747 if (((TREE_CODE (set_high_bound
) == INTEGER_CST
7748 && TREE_CODE (set_low_bound
) == INTEGER_CST
7749 && tree_int_cst_lt (set_high_bound
, set_low_bound
))
7750 || (TREE_CODE (index
) == INTEGER_CST
7751 && TREE_CODE (set_low_bound
) == INTEGER_CST
7752 && tree_int_cst_lt (index
, set_low_bound
))
7753 || (TREE_CODE (set_high_bound
) == INTEGER_CST
7754 && TREE_CODE (index
) == INTEGER_CST
7755 && tree_int_cst_lt (set_high_bound
, index
))))
7759 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7761 /* If we get here, we have to generate the code for both cases
7762 (in range and out of range). */
7764 op0
= gen_label_rtx ();
7765 op1
= gen_label_rtx ();
7767 if (! (GET_CODE (index_val
) == CONST_INT
7768 && GET_CODE (lo_r
) == CONST_INT
))
7769 emit_cmp_and_jump_insns (index_val
, lo_r
, LT
, NULL_RTX
,
7770 GET_MODE (index_val
), iunsignedp
, op1
);
7772 if (! (GET_CODE (index_val
) == CONST_INT
7773 && GET_CODE (hi_r
) == CONST_INT
))
7774 emit_cmp_and_jump_insns (index_val
, hi_r
, GT
, NULL_RTX
,
7775 GET_MODE (index_val
), iunsignedp
, op1
);
7777 /* Calculate the element number of bit zero in the first word
7779 if (GET_CODE (lo_r
) == CONST_INT
)
7780 rlow
= GEN_INT (INTVAL (lo_r
)
7781 & ~((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
));
7783 rlow
= expand_binop (index_mode
, and_optab
, lo_r
,
7784 GEN_INT (~((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
)),
7785 NULL_RTX
, iunsignedp
, OPTAB_LIB_WIDEN
);
7787 diff
= expand_binop (index_mode
, sub_optab
, index_val
, rlow
,
7788 NULL_RTX
, iunsignedp
, OPTAB_LIB_WIDEN
);
7790 quo
= expand_divmod (0, TRUNC_DIV_EXPR
, index_mode
, diff
,
7791 GEN_INT (BITS_PER_UNIT
), NULL_RTX
, iunsignedp
);
7792 rem
= expand_divmod (1, TRUNC_MOD_EXPR
, index_mode
, index_val
,
7793 GEN_INT (BITS_PER_UNIT
), NULL_RTX
, iunsignedp
);
7795 addr
= memory_address (byte_mode
,
7796 expand_binop (index_mode
, add_optab
, diff
,
7797 setaddr
, NULL_RTX
, iunsignedp
,
7800 /* Extract the bit we want to examine. */
7801 bit
= expand_shift (RSHIFT_EXPR
, byte_mode
,
7802 gen_rtx_MEM (byte_mode
, addr
),
7803 make_tree (TREE_TYPE (index
), rem
),
7805 result
= expand_binop (byte_mode
, and_optab
, bit
, const1_rtx
,
7806 GET_MODE (target
) == byte_mode
? target
: 0,
7807 1, OPTAB_LIB_WIDEN
);
7809 if (result
!= target
)
7810 convert_move (target
, result
, 1);
7812 /* Output the code to handle the out-of-range case. */
7815 emit_move_insn (target
, const0_rtx
);
7820 case WITH_CLEANUP_EXPR
:
7821 if (WITH_CLEANUP_EXPR_RTL (exp
) == 0)
7823 WITH_CLEANUP_EXPR_RTL (exp
)
7824 = expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7825 expand_decl_cleanup_eh (NULL_TREE
, TREE_OPERAND (exp
, 1),
7826 CLEANUP_EH_ONLY (exp
));
7828 /* That's it for this cleanup. */
7829 TREE_OPERAND (exp
, 1) = 0;
7831 return WITH_CLEANUP_EXPR_RTL (exp
);
7833 case CLEANUP_POINT_EXPR
:
7835 /* Start a new binding layer that will keep track of all cleanup
7836 actions to be performed. */
7837 expand_start_bindings (2);
7839 target_temp_slot_level
= temp_slot_level
;
7841 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7842 /* If we're going to use this value, load it up now. */
7844 op0
= force_not_mem (op0
);
7845 preserve_temp_slots (op0
);
7846 expand_end_bindings (NULL_TREE
, 0, 0);
7851 /* Check for a built-in function. */
7852 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7853 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7855 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7857 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7858 == BUILT_IN_FRONTEND
)
7859 return (*lang_hooks
.expand_expr
) (exp
, original_target
,
7862 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7865 return expand_call (exp
, target
, ignore
);
7867 case NON_LVALUE_EXPR
:
7870 case REFERENCE_EXPR
:
7871 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7874 if (TREE_CODE (type
) == UNION_TYPE
)
7876 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7878 /* If both input and output are BLKmode, this conversion isn't doing
7879 anything except possibly changing memory attribute. */
7880 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7882 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7885 result
= copy_rtx (result
);
7886 set_mem_attributes (result
, exp
, 0);
7891 target
= assign_temp (type
, 0, 1, 1);
7893 if (GET_CODE (target
) == MEM
)
7894 /* Store data into beginning of memory target. */
7895 store_expr (TREE_OPERAND (exp
, 0),
7896 adjust_address (target
, TYPE_MODE (valtype
), 0),
7897 modifier
== EXPAND_STACK_PARM
? 2 : 0);
7899 else if (GET_CODE (target
) == REG
)
7900 /* Store this field into a union of the proper type. */
7901 store_field (target
,
7902 MIN ((int_size_in_bytes (TREE_TYPE
7903 (TREE_OPERAND (exp
, 0)))
7905 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7906 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7907 VOIDmode
, 0, type
, 0);
7911 /* Return the entire union. */
7915 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7917 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7920 /* If the signedness of the conversion differs and OP0 is
7921 a promoted SUBREG, clear that indication since we now
7922 have to do the proper extension. */
7923 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7924 && GET_CODE (op0
) == SUBREG
)
7925 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7930 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7931 if (GET_MODE (op0
) == mode
)
7934 /* If OP0 is a constant, just convert it into the proper mode. */
7935 if (CONSTANT_P (op0
))
7937 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7938 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7940 if (modifier
== EXPAND_INITIALIZER
)
7941 return simplify_gen_subreg (mode
, op0
, inner_mode
,
7942 subreg_lowpart_offset (mode
,
7945 return convert_modes (mode
, inner_mode
, op0
,
7946 TREE_UNSIGNED (inner_type
));
7949 if (modifier
== EXPAND_INITIALIZER
)
7950 return gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7954 convert_to_mode (mode
, op0
,
7955 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7957 convert_move (target
, op0
,
7958 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7961 case VIEW_CONVERT_EXPR
:
7962 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7964 /* If the input and output modes are both the same, we are done.
7965 Otherwise, if neither mode is BLKmode and both are integral and within
7966 a word, we can use gen_lowpart. If neither is true, make sure the
7967 operand is in memory and convert the MEM to the new mode. */
7968 if (TYPE_MODE (type
) == GET_MODE (op0
))
7970 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7971 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7972 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
7973 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_WORD
7974 && GET_MODE_SIZE (GET_MODE (op0
)) <= UNITS_PER_WORD
)
7975 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7976 else if (GET_CODE (op0
) != MEM
)
7978 /* If the operand is not a MEM, force it into memory. Since we
7979 are going to be be changing the mode of the MEM, don't call
7980 force_const_mem for constants because we don't allow pool
7981 constants to change mode. */
7982 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7984 if (TREE_ADDRESSABLE (exp
))
7987 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7989 = assign_stack_temp_for_type
7990 (TYPE_MODE (inner_type
),
7991 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7993 emit_move_insn (target
, op0
);
7997 /* At this point, OP0 is in the correct mode. If the output type is such
7998 that the operand is known to be aligned, indicate that it is.
7999 Otherwise, we need only be concerned about alignment for non-BLKmode
8001 if (GET_CODE (op0
) == MEM
)
8003 op0
= copy_rtx (op0
);
8005 if (TYPE_ALIGN_OK (type
))
8006 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
8007 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
8008 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
8010 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8011 HOST_WIDE_INT temp_size
8012 = MAX (int_size_in_bytes (inner_type
),
8013 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
8014 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
8015 temp_size
, 0, type
);
8016 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
8018 if (TREE_ADDRESSABLE (exp
))
8021 if (GET_MODE (op0
) == BLKmode
)
8022 emit_block_move (new_with_op0_mode
, op0
,
8023 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
8024 (modifier
== EXPAND_STACK_PARM
8025 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
8027 emit_move_insn (new_with_op0_mode
, op0
);
8032 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
8038 this_optab
= ! unsignedp
&& flag_trapv
8039 && (GET_MODE_CLASS (mode
) == MODE_INT
)
8040 ? addv_optab
: add_optab
;
8042 /* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and
8043 something else, make sure we add the register to the constant and
8044 then to the other thing. This case can occur during strength
8045 reduction and doing it this way will produce better code if the
8046 frame pointer or argument pointer is eliminated.
8048 fold-const.c will ensure that the constant is always in the inner
8049 PLUS_EXPR, so the only case we need to do anything about is if
8050 sp, ap, or fp is our second argument, in which case we must swap
8051 the innermost first argument and our second argument. */
8053 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
8054 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
8055 && TREE_CODE (TREE_OPERAND (exp
, 1)) == RTL_EXPR
8056 && (RTL_EXPR_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
8057 || RTL_EXPR_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
8058 || RTL_EXPR_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
8060 tree t
= TREE_OPERAND (exp
, 1);
8062 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
8063 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
8066 /* If the result is to be ptr_mode and we are adding an integer to
8067 something, we might be forming a constant. So try to use
8068 plus_constant. If it produces a sum and we can't accept it,
8069 use force_operand. This allows P = &ARR[const] to generate
8070 efficient code on machines where a SYMBOL_REF is not a valid
8073 If this is an EXPAND_SUM call, always return the sum. */
8074 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8075 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8077 if (modifier
== EXPAND_STACK_PARM
)
8079 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
8080 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8081 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
8085 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
8087 /* Use immed_double_const to ensure that the constant is
8088 truncated according to the mode of OP1, then sign extended
8089 to a HOST_WIDE_INT. Using the constant directly can result
8090 in non-canonical RTL in a 64x32 cross compile. */
8092 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
8094 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
8095 op1
= plus_constant (op1
, INTVAL (constant_part
));
8096 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8097 op1
= force_operand (op1
, target
);
8101 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8102 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_INT
8103 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
8107 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8108 (modifier
== EXPAND_INITIALIZER
8109 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8110 if (! CONSTANT_P (op0
))
8112 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
8113 VOIDmode
, modifier
);
8114 /* Don't go to both_summands if modifier
8115 says it's not right to return a PLUS. */
8116 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8120 /* Use immed_double_const to ensure that the constant is
8121 truncated according to the mode of OP1, then sign extended
8122 to a HOST_WIDE_INT. Using the constant directly can result
8123 in non-canonical RTL in a 64x32 cross compile. */
8125 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
8127 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8128 op0
= plus_constant (op0
, INTVAL (constant_part
));
8129 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8130 op0
= force_operand (op0
, target
);
8135 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8138 /* No sense saving up arithmetic to be done
8139 if it's all in the wrong mode to form part of an address.
8140 And force_operand won't know whether to sign-extend or
8142 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8143 || mode
!= ptr_mode
)
8145 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8146 if (! operand_equal_p (TREE_OPERAND (exp
, 0),
8147 TREE_OPERAND (exp
, 1), 0))
8148 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, 0);
8151 if (op0
== const0_rtx
)
8153 if (op1
== const0_rtx
)
8158 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, modifier
);
8159 if (! operand_equal_p (TREE_OPERAND (exp
, 0),
8160 TREE_OPERAND (exp
, 1), 0))
8161 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
8162 VOIDmode
, modifier
);
8166 /* We come here from MINUS_EXPR when the second operand is a
8169 /* Make sure any term that's a sum with a constant comes last. */
8170 if (GET_CODE (op0
) == PLUS
8171 && CONSTANT_P (XEXP (op0
, 1)))
8177 /* If adding to a sum including a constant,
8178 associate it to put the constant outside. */
8179 if (GET_CODE (op1
) == PLUS
8180 && CONSTANT_P (XEXP (op1
, 1)))
8182 rtx constant_term
= const0_rtx
;
8184 temp
= simplify_binary_operation (PLUS
, mode
, XEXP (op1
, 0), op0
);
8187 /* Ensure that MULT comes first if there is one. */
8188 else if (GET_CODE (op0
) == MULT
)
8189 op0
= gen_rtx_PLUS (mode
, op0
, XEXP (op1
, 0));
8191 op0
= gen_rtx_PLUS (mode
, XEXP (op1
, 0), op0
);
8193 /* Let's also eliminate constants from op0 if possible. */
8194 op0
= eliminate_constant_term (op0
, &constant_term
);
8196 /* CONSTANT_TERM and XEXP (op1, 1) are known to be constant, so
8197 their sum should be a constant. Form it into OP1, since the
8198 result we want will then be OP0 + OP1. */
8200 temp
= simplify_binary_operation (PLUS
, mode
, constant_term
,
8205 op1
= gen_rtx_PLUS (mode
, constant_term
, XEXP (op1
, 1));
8208 /* Put a constant term last and put a multiplication first. */
8209 if (CONSTANT_P (op0
) || GET_CODE (op1
) == MULT
)
8210 temp
= op1
, op1
= op0
, op0
= temp
;
8212 temp
= simplify_binary_operation (PLUS
, mode
, op0
, op1
);
8213 return temp
? temp
: gen_rtx_PLUS (mode
, op0
, op1
);
8216 /* For initializers, we are allowed to return a MINUS of two
8217 symbolic constants. Here we handle all cases when both operands
8219 /* Handle difference of two symbolic constants,
8220 for the sake of an initializer. */
8221 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8222 && really_constant_p (TREE_OPERAND (exp
, 0))
8223 && really_constant_p (TREE_OPERAND (exp
, 1)))
8225 rtx op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
,
8227 rtx op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
,
8230 /* If the last operand is a CONST_INT, use plus_constant of
8231 the negated constant. Else make the MINUS. */
8232 if (GET_CODE (op1
) == CONST_INT
)
8233 return plus_constant (op0
, - INTVAL (op1
));
8235 return gen_rtx_MINUS (mode
, op0
, op1
);
8238 this_optab
= ! unsignedp
&& flag_trapv
8239 && (GET_MODE_CLASS(mode
) == MODE_INT
)
8240 ? subv_optab
: sub_optab
;
8242 /* No sense saving up arithmetic to be done
8243 if it's all in the wrong mode to form part of an address.
8244 And force_operand won't know whether to sign-extend or
8246 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8247 || mode
!= ptr_mode
)
8250 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8253 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, modifier
);
8254 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, modifier
);
8256 /* Convert A - const to A + (-const). */
8257 if (GET_CODE (op1
) == CONST_INT
)
8259 op1
= negate_rtx (mode
, op1
);
8266 /* If first operand is constant, swap them.
8267 Thus the following special case checks need only
8268 check the second operand. */
8269 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
8271 tree t1
= TREE_OPERAND (exp
, 0);
8272 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
8273 TREE_OPERAND (exp
, 1) = t1
;
8276 /* Attempt to return something suitable for generating an
8277 indexed address, for machines that support that. */
8279 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8280 && host_integerp (TREE_OPERAND (exp
, 1), 0))
8282 tree exp1
= TREE_OPERAND (exp
, 1);
8284 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8287 /* If we knew for certain that this is arithmetic for an array
8288 reference, and we knew the bounds of the array, then we could
8289 apply the distributive law across (PLUS X C) for constant C.
8290 Without such knowledge, we risk overflowing the computation
8291 when both X and C are large, but X+C isn't. */
8292 /* ??? Could perhaps special-case EXP being unsigned and C being
8293 positive. In that case we are certain that X+C is no smaller
8294 than X and so the transformed expression will overflow iff the
8295 original would have. */
8297 if (GET_CODE (op0
) != REG
)
8298 op0
= force_operand (op0
, NULL_RTX
);
8299 if (GET_CODE (op0
) != REG
)
8300 op0
= copy_to_mode_reg (mode
, op0
);
8302 return gen_rtx_MULT (mode
, op0
,
8303 gen_int_mode (tree_low_cst (exp1
, 0),
8304 TYPE_MODE (TREE_TYPE (exp1
))));
8307 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8310 if (modifier
== EXPAND_STACK_PARM
)
8313 /* Check for multiplying things that have been extended
8314 from a narrower type. If this machine supports multiplying
8315 in that narrower type with a result in the desired type,
8316 do it that way, and avoid the explicit type-conversion. */
8317 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
8318 && TREE_CODE (type
) == INTEGER_TYPE
8319 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8320 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8321 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8322 && int_fits_type_p (TREE_OPERAND (exp
, 1),
8323 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8324 /* Don't use a widening multiply if a shift will do. */
8325 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8326 > HOST_BITS_PER_WIDE_INT
)
8327 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
8329 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
8330 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8332 TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))))
8333 /* If both operands are extended, they must either both
8334 be zero-extended or both be sign-extended. */
8335 && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8337 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))))))
8339 enum machine_mode innermode
8340 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)));
8341 optab other_optab
= (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8342 ? smul_widen_optab
: umul_widen_optab
);
8343 this_optab
= (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8344 ? umul_widen_optab
: smul_widen_optab
);
8345 if (mode
== GET_MODE_WIDER_MODE (innermode
))
8347 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
8349 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8350 NULL_RTX
, VOIDmode
, 0);
8351 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8352 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
8355 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
8356 NULL_RTX
, VOIDmode
, 0);
8359 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
8360 && innermode
== word_mode
)
8363 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8364 NULL_RTX
, VOIDmode
, 0);
8365 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8366 op1
= convert_modes (innermode
, mode
,
8367 expand_expr (TREE_OPERAND (exp
, 1),
8368 NULL_RTX
, VOIDmode
, 0),
8371 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
8372 NULL_RTX
, VOIDmode
, 0);
8373 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8374 unsignedp
, OPTAB_LIB_WIDEN
);
8375 htem
= expand_mult_highpart_adjust (innermode
,
8376 gen_highpart (innermode
, temp
),
8378 gen_highpart (innermode
, temp
),
8380 emit_move_insn (gen_highpart (innermode
, temp
), htem
);
8385 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8386 if (! operand_equal_p (TREE_OPERAND (exp
, 0),
8387 TREE_OPERAND (exp
, 1), 0))
8388 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, 0);
8391 return expand_mult (mode
, op0
, op1
, target
, unsignedp
);
8393 case TRUNC_DIV_EXPR
:
8394 case FLOOR_DIV_EXPR
:
8396 case ROUND_DIV_EXPR
:
8397 case EXACT_DIV_EXPR
:
8398 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8400 if (modifier
== EXPAND_STACK_PARM
)
8402 /* Possible optimization: compute the dividend with EXPAND_SUM
8403 then if the divisor is constant can optimize the case
8404 where some terms of the dividend have coeffs divisible by it. */
8405 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8406 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, 0);
8407 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8410 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
8411 expensive divide. If not, combine will rebuild the original
8413 if (flag_unsafe_math_optimizations
&& optimize
&& !optimize_size
8414 && TREE_CODE (type
) == REAL_TYPE
8415 && !real_onep (TREE_OPERAND (exp
, 0)))
8416 return expand_expr (build (MULT_EXPR
, type
, TREE_OPERAND (exp
, 0),
8417 build (RDIV_EXPR
, type
,
8418 build_real (type
, dconst1
),
8419 TREE_OPERAND (exp
, 1))),
8420 target
, tmode
, modifier
);
8421 this_optab
= sdiv_optab
;
8424 case TRUNC_MOD_EXPR
:
8425 case FLOOR_MOD_EXPR
:
8427 case ROUND_MOD_EXPR
:
8428 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8430 if (modifier
== EXPAND_STACK_PARM
)
8432 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8433 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, 0);
8434 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8436 case FIX_ROUND_EXPR
:
8437 case FIX_FLOOR_EXPR
:
8439 abort (); /* Not used for C. */
8441 case FIX_TRUNC_EXPR
:
8442 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
8443 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8444 target
= gen_reg_rtx (mode
);
8445 expand_fix (target
, op0
, unsignedp
);
8449 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
8450 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8451 target
= gen_reg_rtx (mode
);
8452 /* expand_float can't figure out what to do if FROM has VOIDmode.
8453 So give it the correct mode. With -O, cse will optimize this. */
8454 if (GET_MODE (op0
) == VOIDmode
)
8455 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
8457 expand_float (target
, op0
,
8458 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8462 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8463 if (modifier
== EXPAND_STACK_PARM
)
8465 temp
= expand_unop (mode
,
8466 ! unsignedp
&& flag_trapv
8467 && (GET_MODE_CLASS(mode
) == MODE_INT
)
8468 ? negv_optab
: neg_optab
, op0
, target
, 0);
8474 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8475 if (modifier
== EXPAND_STACK_PARM
)
8478 /* Handle complex values specially. */
8479 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
8480 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
8481 return expand_complex_abs (mode
, op0
, target
, unsignedp
);
8483 /* Unsigned abs is simply the operand. Testing here means we don't
8484 risk generating incorrect code below. */
8485 if (TREE_UNSIGNED (type
))
8488 return expand_abs (mode
, op0
, target
, unsignedp
,
8489 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
8493 target
= original_target
;
8495 || modifier
== EXPAND_STACK_PARM
8496 || ! safe_from_p (target
, TREE_OPERAND (exp
, 1), 1)
8497 || (GET_CODE (target
) == MEM
&& MEM_VOLATILE_P (target
))
8498 || GET_MODE (target
) != mode
8499 || (GET_CODE (target
) == REG
8500 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8501 target
= gen_reg_rtx (mode
);
8502 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, 0);
8503 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8505 /* First try to do it with a special MIN or MAX instruction.
8506 If that does not win, use a conditional jump to select the proper
8508 this_optab
= (TREE_UNSIGNED (type
)
8509 ? (code
== MIN_EXPR
? umin_optab
: umax_optab
)
8510 : (code
== MIN_EXPR
? smin_optab
: smax_optab
));
8512 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8517 /* At this point, a MEM target is no longer useful; we will get better
8520 if (GET_CODE (target
) == MEM
)
8521 target
= gen_reg_rtx (mode
);
8524 emit_move_insn (target
, op0
);
8526 op0
= gen_label_rtx ();
8528 /* If this mode is an integer too wide to compare properly,
8529 compare word by word. Rely on cse to optimize constant cases. */
8530 if (GET_MODE_CLASS (mode
) == MODE_INT
8531 && ! can_compare_p (GE
, mode
, ccp_jump
))
8533 if (code
== MAX_EXPR
)
8534 do_jump_by_parts_greater_rtx (mode
, TREE_UNSIGNED (type
),
8535 target
, op1
, NULL_RTX
, op0
);
8537 do_jump_by_parts_greater_rtx (mode
, TREE_UNSIGNED (type
),
8538 op1
, target
, NULL_RTX
, op0
);
8542 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 1)));
8543 do_compare_rtx_and_jump (target
, op1
, code
== MAX_EXPR
? GE
: LE
,
8544 unsignedp
, mode
, NULL_RTX
, NULL_RTX
,
8547 emit_move_insn (target
, op1
);
8552 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8553 if (modifier
== EXPAND_STACK_PARM
)
8555 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8561 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8562 if (modifier
== EXPAND_STACK_PARM
)
8564 temp
= expand_unop (mode
, ffs_optab
, op0
, target
, 1);
8570 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8571 temp
= expand_unop (mode
, clz_optab
, op0
, target
, 1);
8577 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8578 temp
= expand_unop (mode
, ctz_optab
, op0
, target
, 1);
8584 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8585 temp
= expand_unop (mode
, popcount_optab
, op0
, target
, 1);
8591 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8592 temp
= expand_unop (mode
, parity_optab
, op0
, target
, 1);
8597 /* ??? Can optimize bitwise operations with one arg constant.
8598 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8599 and (a bitwise1 b) bitwise2 b (etc)
8600 but that is probably not worth while. */
8602 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8603 boolean values when we want in all cases to compute both of them. In
8604 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8605 as actual zero-or-1 values and then bitwise anding. In cases where
8606 there cannot be any side effects, better code would be made by
8607 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8608 how to recognize those cases. */
8610 case TRUTH_AND_EXPR
:
8612 this_optab
= and_optab
;
8617 this_optab
= ior_optab
;
8620 case TRUTH_XOR_EXPR
:
8622 this_optab
= xor_optab
;
8629 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8631 if (modifier
== EXPAND_STACK_PARM
)
8633 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8634 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8637 /* Could determine the answer when only additive constants differ. Also,
8638 the addition of one can be handled by changing the condition. */
8645 case UNORDERED_EXPR
:
8652 temp
= do_store_flag (exp
,
8653 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8654 tmode
!= VOIDmode
? tmode
: mode
, 0);
8658 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8659 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8661 && GET_CODE (original_target
) == REG
8662 && (GET_MODE (original_target
)
8663 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8665 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8668 /* If temp is constant, we can just compute the result. */
8669 if (GET_CODE (temp
) == CONST_INT
)
8671 if (INTVAL (temp
) != 0)
8672 emit_move_insn (target
, const1_rtx
);
8674 emit_move_insn (target
, const0_rtx
);
8679 if (temp
!= original_target
)
8681 enum machine_mode mode1
= GET_MODE (temp
);
8682 if (mode1
== VOIDmode
)
8683 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8685 temp
= copy_to_mode_reg (mode1
, temp
);
8688 op1
= gen_label_rtx ();
8689 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8690 GET_MODE (temp
), unsignedp
, op1
);
8691 emit_move_insn (temp
, const1_rtx
);
8696 /* If no set-flag instruction, must generate a conditional
8697 store into a temporary variable. Drop through
8698 and handle this like && and ||. */
8700 case TRUTH_ANDIF_EXPR
:
8701 case TRUTH_ORIF_EXPR
:
8704 || modifier
== EXPAND_STACK_PARM
8705 || ! safe_from_p (target
, exp
, 1)
8706 /* Make sure we don't have a hard reg (such as function's return
8707 value) live across basic blocks, if not optimizing. */
8708 || (!optimize
&& GET_CODE (target
) == REG
8709 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8710 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8713 emit_clr_insn (target
);
8715 op1
= gen_label_rtx ();
8716 jumpifnot (exp
, op1
);
8719 emit_0_to_1_insn (target
);
8722 return ignore
? const0_rtx
: target
;
8724 case TRUTH_NOT_EXPR
:
8725 if (modifier
== EXPAND_STACK_PARM
)
8727 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8728 /* The parser is careful to generate TRUTH_NOT_EXPR
8729 only with operands that are always zero or one. */
8730 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8731 target
, 1, OPTAB_LIB_WIDEN
);
8737 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, 0);
8739 return expand_expr (TREE_OPERAND (exp
, 1),
8740 (ignore
? const0_rtx
: target
),
8741 VOIDmode
, modifier
);
8744 /* If we would have a "singleton" (see below) were it not for a
8745 conversion in each arm, bring that conversion back out. */
8746 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
8747 && TREE_CODE (TREE_OPERAND (exp
, 2)) == NOP_EXPR
8748 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0))
8749 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 2), 0))))
8751 tree iftrue
= TREE_OPERAND (TREE_OPERAND (exp
, 1), 0);
8752 tree iffalse
= TREE_OPERAND (TREE_OPERAND (exp
, 2), 0);
8754 if ((TREE_CODE_CLASS (TREE_CODE (iftrue
)) == '2'
8755 && operand_equal_p (iffalse
, TREE_OPERAND (iftrue
, 0), 0))
8756 || (TREE_CODE_CLASS (TREE_CODE (iffalse
)) == '2'
8757 && operand_equal_p (iftrue
, TREE_OPERAND (iffalse
, 0), 0))
8758 || (TREE_CODE_CLASS (TREE_CODE (iftrue
)) == '1'
8759 && operand_equal_p (iffalse
, TREE_OPERAND (iftrue
, 0), 0))
8760 || (TREE_CODE_CLASS (TREE_CODE (iffalse
)) == '1'
8761 && operand_equal_p (iftrue
, TREE_OPERAND (iffalse
, 0), 0)))
8762 return expand_expr (build1 (NOP_EXPR
, type
,
8763 build (COND_EXPR
, TREE_TYPE (iftrue
),
8764 TREE_OPERAND (exp
, 0),
8766 target
, tmode
, modifier
);
8770 /* Note that COND_EXPRs whose type is a structure or union
8771 are required to be constructed to contain assignments of
8772 a temporary variable, so that we can evaluate them here
8773 for side effect only. If type is void, we must do likewise. */
8775 /* If an arm of the branch requires a cleanup,
8776 only that cleanup is performed. */
8779 tree binary_op
= 0, unary_op
= 0;
8781 /* If this is (A ? 1 : 0) and A is a condition, just evaluate it and
8782 convert it to our mode, if necessary. */
8783 if (integer_onep (TREE_OPERAND (exp
, 1))
8784 && integer_zerop (TREE_OPERAND (exp
, 2))
8785 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 0))) == '<')
8789 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
8794 if (modifier
== EXPAND_STACK_PARM
)
8796 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, mode
, modifier
);
8797 if (GET_MODE (op0
) == mode
)
8801 target
= gen_reg_rtx (mode
);
8802 convert_move (target
, op0
, unsignedp
);
8806 /* Check for X ? A + B : A. If we have this, we can copy A to the
8807 output and conditionally add B. Similarly for unary operations.
8808 Don't do this if X has side-effects because those side effects
8809 might affect A or B and the "?" operation is a sequence point in
8810 ANSI. (operand_equal_p tests for side effects.) */
8812 if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 1))) == '2'
8813 && operand_equal_p (TREE_OPERAND (exp
, 2),
8814 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0), 0))
8815 singleton
= TREE_OPERAND (exp
, 2), binary_op
= TREE_OPERAND (exp
, 1);
8816 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 2))) == '2'
8817 && operand_equal_p (TREE_OPERAND (exp
, 1),
8818 TREE_OPERAND (TREE_OPERAND (exp
, 2), 0), 0))
8819 singleton
= TREE_OPERAND (exp
, 1), binary_op
= TREE_OPERAND (exp
, 2);
8820 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 1))) == '1'
8821 && operand_equal_p (TREE_OPERAND (exp
, 2),
8822 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0), 0))
8823 singleton
= TREE_OPERAND (exp
, 2), unary_op
= TREE_OPERAND (exp
, 1);
8824 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 2))) == '1'
8825 && operand_equal_p (TREE_OPERAND (exp
, 1),
8826 TREE_OPERAND (TREE_OPERAND (exp
, 2), 0), 0))
8827 singleton
= TREE_OPERAND (exp
, 1), unary_op
= TREE_OPERAND (exp
, 2);
8829 /* If we are not to produce a result, we have no target. Otherwise,
8830 if a target was specified use it; it will not be used as an
8831 intermediate target unless it is safe. If no target, use a
8836 else if (modifier
== EXPAND_STACK_PARM
)
8837 temp
= assign_temp (type
, 0, 0, 1);
8838 else if (original_target
8839 && (safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8840 || (singleton
&& GET_CODE (original_target
) == REG
8841 && REGNO (original_target
) >= FIRST_PSEUDO_REGISTER
8842 && original_target
== var_rtx (singleton
)))
8843 && GET_MODE (original_target
) == mode
8844 #ifdef HAVE_conditional_move
8845 && (! can_conditionally_move_p (mode
)
8846 || GET_CODE (original_target
) == REG
8847 || TREE_ADDRESSABLE (type
))
8849 && (GET_CODE (original_target
) != MEM
8850 || TREE_ADDRESSABLE (type
)))
8851 temp
= original_target
;
8852 else if (TREE_ADDRESSABLE (type
))
8855 temp
= assign_temp (type
, 0, 0, 1);
8857 /* If we had X ? A + C : A, with C a constant power of 2, and we can
8858 do the test of X as a store-flag operation, do this as
8859 A + ((X != 0) << log C). Similarly for other simple binary
8860 operators. Only do for C == 1 if BRANCH_COST is low. */
8861 if (temp
&& singleton
&& binary_op
8862 && (TREE_CODE (binary_op
) == PLUS_EXPR
8863 || TREE_CODE (binary_op
) == MINUS_EXPR
8864 || TREE_CODE (binary_op
) == BIT_IOR_EXPR
8865 || TREE_CODE (binary_op
) == BIT_XOR_EXPR
)
8866 && (BRANCH_COST
>= 3 ? integer_pow2p (TREE_OPERAND (binary_op
, 1))
8867 : integer_onep (TREE_OPERAND (binary_op
, 1)))
8868 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 0))) == '<')
8872 optab boptab
= (TREE_CODE (binary_op
) == PLUS_EXPR
8873 ? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op
))
8874 ? addv_optab
: add_optab
)
8875 : TREE_CODE (binary_op
) == MINUS_EXPR
8876 ? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op
))
8877 ? subv_optab
: sub_optab
)
8878 : TREE_CODE (binary_op
) == BIT_IOR_EXPR
? ior_optab
8881 /* If we had X ? A : A + 1, do this as A + (X == 0). */
8882 if (singleton
== TREE_OPERAND (exp
, 1))
8883 cond
= invert_truthvalue (TREE_OPERAND (exp
, 0));
8885 cond
= TREE_OPERAND (exp
, 0);
8887 result
= do_store_flag (cond
, (safe_from_p (temp
, singleton
, 1)
8889 mode
, BRANCH_COST
<= 1);
8891 if (result
!= 0 && ! integer_onep (TREE_OPERAND (binary_op
, 1)))
8892 result
= expand_shift (LSHIFT_EXPR
, mode
, result
,
8893 build_int_2 (tree_log2
8897 (safe_from_p (temp
, singleton
, 1)
8898 ? temp
: NULL_RTX
), 0);
8902 op1
= expand_expr (singleton
, NULL_RTX
, VOIDmode
, 0);
8903 return expand_binop (mode
, boptab
, op1
, result
, temp
,
8904 unsignedp
, OPTAB_LIB_WIDEN
);
8908 do_pending_stack_adjust ();
8910 op0
= gen_label_rtx ();
8912 if (singleton
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp
, 0)))
8916 /* If the target conflicts with the other operand of the
8917 binary op, we can't use it. Also, we can't use the target
8918 if it is a hard register, because evaluating the condition
8919 might clobber it. */
8921 && ! safe_from_p (temp
, TREE_OPERAND (binary_op
, 1), 1))
8922 || (GET_CODE (temp
) == REG
8923 && REGNO (temp
) < FIRST_PSEUDO_REGISTER
))
8924 temp
= gen_reg_rtx (mode
);
8925 store_expr (singleton
, temp
,
8926 modifier
== EXPAND_STACK_PARM
? 2 : 0);
8929 expand_expr (singleton
,
8930 ignore
? const0_rtx
: NULL_RTX
, VOIDmode
, 0);
8931 if (singleton
== TREE_OPERAND (exp
, 1))
8932 jumpif (TREE_OPERAND (exp
, 0), op0
);
8934 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8936 start_cleanup_deferral ();
8937 if (binary_op
&& temp
== 0)
8938 /* Just touch the other operand. */
8939 expand_expr (TREE_OPERAND (binary_op
, 1),
8940 ignore
? const0_rtx
: NULL_RTX
, VOIDmode
, 0);
8942 store_expr (build (TREE_CODE (binary_op
), type
,
8943 make_tree (type
, temp
),
8944 TREE_OPERAND (binary_op
, 1)),
8945 temp
, modifier
== EXPAND_STACK_PARM
? 2 : 0);
8947 store_expr (build1 (TREE_CODE (unary_op
), type
,
8948 make_tree (type
, temp
)),
8949 temp
, modifier
== EXPAND_STACK_PARM
? 2 : 0);
8952 /* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any
8953 comparison operator. If we have one of these cases, set the
8954 output to A, branch on A (cse will merge these two references),
8955 then set the output to FOO. */
8957 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 0))) == '<'
8958 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1))
8959 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8960 TREE_OPERAND (exp
, 1), 0)
8961 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp
, 0))
8962 || TREE_CODE (TREE_OPERAND (exp
, 1)) == SAVE_EXPR
)
8963 && safe_from_p (temp
, TREE_OPERAND (exp
, 2), 1))
8965 if (GET_CODE (temp
) == REG
8966 && REGNO (temp
) < FIRST_PSEUDO_REGISTER
)
8967 temp
= gen_reg_rtx (mode
);
8968 store_expr (TREE_OPERAND (exp
, 1), temp
,
8969 modifier
== EXPAND_STACK_PARM
? 2 : 0);
8970 jumpif (TREE_OPERAND (exp
, 0), op0
);
8972 start_cleanup_deferral ();
8973 store_expr (TREE_OPERAND (exp
, 2), temp
,
8974 modifier
== EXPAND_STACK_PARM
? 2 : 0);
8978 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 0))) == '<'
8979 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1))
8980 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8981 TREE_OPERAND (exp
, 2), 0)
8982 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp
, 0))
8983 || TREE_CODE (TREE_OPERAND (exp
, 2)) == SAVE_EXPR
)
8984 && safe_from_p (temp
, TREE_OPERAND (exp
, 1), 1))
8986 if (GET_CODE (temp
) == REG
8987 && REGNO (temp
) < FIRST_PSEUDO_REGISTER
)
8988 temp
= gen_reg_rtx (mode
);
8989 store_expr (TREE_OPERAND (exp
, 2), temp
,
8990 modifier
== EXPAND_STACK_PARM
? 2 : 0);
8991 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8993 start_cleanup_deferral ();
8994 store_expr (TREE_OPERAND (exp
, 1), temp
,
8995 modifier
== EXPAND_STACK_PARM
? 2 : 0);
9000 op1
= gen_label_rtx ();
9001 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
9003 start_cleanup_deferral ();
9005 /* One branch of the cond can be void, if it never returns. For
9006 example A ? throw : E */
9008 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
)
9009 store_expr (TREE_OPERAND (exp
, 1), temp
,
9010 modifier
== EXPAND_STACK_PARM
? 2 : 0);
9012 expand_expr (TREE_OPERAND (exp
, 1),
9013 ignore
? const0_rtx
: NULL_RTX
, VOIDmode
, 0);
9014 end_cleanup_deferral ();
9016 emit_jump_insn (gen_jump (op1
));
9019 start_cleanup_deferral ();
9021 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
)
9022 store_expr (TREE_OPERAND (exp
, 2), temp
,
9023 modifier
== EXPAND_STACK_PARM
? 2 : 0);
9025 expand_expr (TREE_OPERAND (exp
, 2),
9026 ignore
? const0_rtx
: NULL_RTX
, VOIDmode
, 0);
9029 end_cleanup_deferral ();
9040 /* Something needs to be initialized, but we didn't know
9041 where that thing was when building the tree. For example,
9042 it could be the return value of a function, or a parameter
9043 to a function which lays down in the stack, or a temporary
9044 variable which must be passed by reference.
9046 We guarantee that the expression will either be constructed
9047 or copied into our original target. */
9049 tree slot
= TREE_OPERAND (exp
, 0);
9050 tree cleanups
= NULL_TREE
;
9053 if (TREE_CODE (slot
) != VAR_DECL
)
9057 target
= original_target
;
9059 /* Set this here so that if we get a target that refers to a
9060 register variable that's already been used, put_reg_into_stack
9061 knows that it should fix up those uses. */
9062 TREE_USED (slot
) = 1;
9066 if (DECL_RTL_SET_P (slot
))
9068 target
= DECL_RTL (slot
);
9069 /* If we have already expanded the slot, so don't do
9071 if (TREE_OPERAND (exp
, 1) == NULL_TREE
)
9076 target
= assign_temp (type
, 2, 0, 1);
9077 /* All temp slots at this level must not conflict. */
9078 preserve_temp_slots (target
);
9079 SET_DECL_RTL (slot
, target
);
9080 if (TREE_ADDRESSABLE (slot
))
9081 put_var_into_stack (slot
, /*rescan=*/false);
9083 /* Since SLOT is not known to the called function
9084 to belong to its stack frame, we must build an explicit
9085 cleanup. This case occurs when we must build up a reference
9086 to pass the reference as an argument. In this case,
9087 it is very likely that such a reference need not be
9090 if (TREE_OPERAND (exp
, 2) == 0)
9091 TREE_OPERAND (exp
, 2)
9092 = (*lang_hooks
.maybe_build_cleanup
) (slot
);
9093 cleanups
= TREE_OPERAND (exp
, 2);
9098 /* This case does occur, when expanding a parameter which
9099 needs to be constructed on the stack. The target
9100 is the actual stack address that we want to initialize.
9101 The function we call will perform the cleanup in this case. */
9103 /* If we have already assigned it space, use that space,
9104 not target that we were passed in, as our target
9105 parameter is only a hint. */
9106 if (DECL_RTL_SET_P (slot
))
9108 target
= DECL_RTL (slot
);
9109 /* If we have already expanded the slot, so don't do
9111 if (TREE_OPERAND (exp
, 1) == NULL_TREE
)
9116 SET_DECL_RTL (slot
, target
);
9117 /* If we must have an addressable slot, then make sure that
9118 the RTL that we just stored in slot is OK. */
9119 if (TREE_ADDRESSABLE (slot
))
9120 put_var_into_stack (slot
, /*rescan=*/true);
9124 exp1
= TREE_OPERAND (exp
, 3) = TREE_OPERAND (exp
, 1);
9125 /* Mark it as expanded. */
9126 TREE_OPERAND (exp
, 1) = NULL_TREE
;
9128 store_expr (exp1
, target
, modifier
== EXPAND_STACK_PARM
? 2 : 0);
9130 expand_decl_cleanup_eh (NULL_TREE
, cleanups
, CLEANUP_EH_ONLY (exp
));
9137 tree lhs
= TREE_OPERAND (exp
, 0);
9138 tree rhs
= TREE_OPERAND (exp
, 1);
9140 temp
= expand_assignment (lhs
, rhs
, ! ignore
);
9146 /* If lhs is complex, expand calls in rhs before computing it.
9147 That's so we don't compute a pointer and save it over a
9148 call. If lhs is simple, compute it first so we can give it
9149 as a target if the rhs is just a call. This avoids an
9150 extra temp and copy and that prevents a partial-subsumption
9151 which makes bad code. Actually we could treat
9152 component_ref's of vars like vars. */
9154 tree lhs
= TREE_OPERAND (exp
, 0);
9155 tree rhs
= TREE_OPERAND (exp
, 1);
9159 /* Check for |= or &= of a bitfield of size one into another bitfield
9160 of size 1. In this case, (unless we need the result of the
9161 assignment) we can do this more efficiently with a
9162 test followed by an assignment, if necessary.
9164 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9165 things change so we do, this code should be enhanced to
9168 && TREE_CODE (lhs
) == COMPONENT_REF
9169 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
9170 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
9171 && TREE_OPERAND (rhs
, 0) == lhs
9172 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
9173 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
9174 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
9176 rtx label
= gen_label_rtx ();
9178 do_jump (TREE_OPERAND (rhs
, 1),
9179 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
9180 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
9181 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
9182 (TREE_CODE (rhs
) == BIT_IOR_EXPR
9184 : integer_zero_node
)),
9186 do_pending_stack_adjust ();
9191 temp
= expand_assignment (lhs
, rhs
, ! ignore
);
9197 if (!TREE_OPERAND (exp
, 0))
9198 expand_null_return ();
9200 expand_return (TREE_OPERAND (exp
, 0));
9203 case PREINCREMENT_EXPR
:
9204 case PREDECREMENT_EXPR
:
9205 return expand_increment (exp
, 0, ignore
);
9207 case POSTINCREMENT_EXPR
:
9208 case POSTDECREMENT_EXPR
:
9209 /* Faster to treat as pre-increment if result is not used. */
9210 return expand_increment (exp
, ! ignore
, ignore
);
9213 if (modifier
== EXPAND_STACK_PARM
)
9215 /* Are we taking the address of a nested function? */
9216 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == FUNCTION_DECL
9217 && decl_function_context (TREE_OPERAND (exp
, 0)) != 0
9218 && ! DECL_NO_STATIC_CHAIN (TREE_OPERAND (exp
, 0))
9219 && ! TREE_STATIC (exp
))
9221 op0
= trampoline_address (TREE_OPERAND (exp
, 0));
9222 op0
= force_operand (op0
, target
);
9224 /* If we are taking the address of something erroneous, just
9226 else if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ERROR_MARK
)
9228 /* If we are taking the address of a constant and are at the
9229 top level, we have to use output_constant_def since we can't
9230 call force_const_mem at top level. */
9232 && (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
9233 || (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, 0)))
9235 op0
= XEXP (output_constant_def (TREE_OPERAND (exp
, 0), 0), 0);
9238 /* We make sure to pass const0_rtx down if we came in with
9239 ignore set, to avoid doing the cleanups twice for something. */
9240 op0
= expand_expr (TREE_OPERAND (exp
, 0),
9241 ignore
? const0_rtx
: NULL_RTX
, VOIDmode
,
9242 (modifier
== EXPAND_INITIALIZER
9243 ? modifier
: EXPAND_CONST_ADDRESS
));
9245 /* If we are going to ignore the result, OP0 will have been set
9246 to const0_rtx, so just return it. Don't get confused and
9247 think we are taking the address of the constant. */
9251 /* Pass 1 for MODIFY, so that protect_from_queue doesn't get
9252 clever and returns a REG when given a MEM. */
9253 op0
= protect_from_queue (op0
, 1);
9255 /* We would like the object in memory. If it is a constant, we can
9256 have it be statically allocated into memory. For a non-constant,
9257 we need to allocate some memory and store the value into it. */
9259 if (CONSTANT_P (op0
))
9260 op0
= force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
9262 else if (GET_CODE (op0
) == REG
|| GET_CODE (op0
) == SUBREG
9263 || GET_CODE (op0
) == CONCAT
|| GET_CODE (op0
) == ADDRESSOF
9264 || GET_CODE (op0
) == PARALLEL
|| GET_CODE (op0
) == LO_SUM
)
9266 /* If the operand is a SAVE_EXPR, we can deal with this by
9267 forcing the SAVE_EXPR into memory. */
9268 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == SAVE_EXPR
)
9270 put_var_into_stack (TREE_OPERAND (exp
, 0),
9272 op0
= SAVE_EXPR_RTL (TREE_OPERAND (exp
, 0));
9276 /* If this object is in a register, it can't be BLKmode. */
9277 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
9278 rtx memloc
= assign_temp (inner_type
, 1, 1, 1);
9280 if (GET_CODE (op0
) == PARALLEL
)
9281 /* Handle calls that pass values in multiple
9282 non-contiguous locations. The Irix 6 ABI has examples
9284 emit_group_store (memloc
, op0
, inner_type
,
9285 int_size_in_bytes (inner_type
));
9287 emit_move_insn (memloc
, op0
);
9293 if (GET_CODE (op0
) != MEM
)
9296 mark_temp_addr_taken (op0
);
9297 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
9299 op0
= XEXP (op0
, 0);
9300 #ifdef POINTERS_EXTEND_UNSIGNED
9301 if (GET_MODE (op0
) == Pmode
&& GET_MODE (op0
) != mode
9302 && mode
== ptr_mode
)
9303 op0
= convert_memory_address (ptr_mode
, op0
);
9308 /* If OP0 is not aligned as least as much as the type requires, we
9309 need to make a temporary, copy OP0 to it, and take the address of
9310 the temporary. We want to use the alignment of the type, not of
9311 the operand. Note that this is incorrect for FUNCTION_TYPE, but
9312 the test for BLKmode means that can't happen. The test for
9313 BLKmode is because we never make mis-aligned MEMs with
9316 We don't need to do this at all if the machine doesn't have
9317 strict alignment. */
9318 if (STRICT_ALIGNMENT
&& GET_MODE (op0
) == BLKmode
9319 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
9321 && MEM_ALIGN (op0
) < BIGGEST_ALIGNMENT
)
9323 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
9326 if (TYPE_ALIGN_OK (inner_type
))
9329 if (TREE_ADDRESSABLE (inner_type
))
9331 /* We can't make a bitwise copy of this object, so fail. */
9332 error ("cannot take the address of an unaligned member");
9336 new = assign_stack_temp_for_type
9337 (TYPE_MODE (inner_type
),
9338 MEM_SIZE (op0
) ? INTVAL (MEM_SIZE (op0
))
9339 : int_size_in_bytes (inner_type
),
9340 1, build_qualified_type (inner_type
,
9341 (TYPE_QUALS (inner_type
)
9342 | TYPE_QUAL_CONST
)));
9344 emit_block_move (new, op0
, expr_size (TREE_OPERAND (exp
, 0)),
9345 (modifier
== EXPAND_STACK_PARM
9346 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
9351 op0
= force_operand (XEXP (op0
, 0), target
);
9355 && GET_CODE (op0
) != REG
9356 && modifier
!= EXPAND_CONST_ADDRESS
9357 && modifier
!= EXPAND_INITIALIZER
9358 && modifier
!= EXPAND_SUM
)
9359 op0
= force_reg (Pmode
, op0
);
9361 if (GET_CODE (op0
) == REG
9362 && ! REG_USERVAR_P (op0
))
9363 mark_reg_pointer (op0
, TYPE_ALIGN (TREE_TYPE (type
)));
9365 #ifdef POINTERS_EXTEND_UNSIGNED
9366 if (GET_MODE (op0
) == Pmode
&& GET_MODE (op0
) != mode
9367 && mode
== ptr_mode
)
9368 op0
= convert_memory_address (ptr_mode
, op0
);
9373 case ENTRY_VALUE_EXPR
:
9376 /* COMPLEX type for Extended Pascal & Fortran */
9379 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9382 /* Get the rtx code of the operands. */
9383 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
9384 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
9387 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
9391 /* Move the real (op0) and imaginary (op1) parts to their location. */
9392 emit_move_insn (gen_realpart (mode
, target
), op0
);
9393 emit_move_insn (gen_imagpart (mode
, target
), op1
);
9395 insns
= get_insns ();
9398 /* Complex construction should appear as a single unit. */
9399 /* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
9400 each with a separate pseudo as destination.
9401 It's not correct for flow to treat them as a unit. */
9402 if (GET_CODE (target
) != CONCAT
)
9403 emit_no_conflict_block (insns
, target
, op0
, op1
, NULL_RTX
);
9411 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
9412 return gen_realpart (mode
, op0
);
9415 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
9416 return gen_imagpart (mode
, op0
);
9420 enum machine_mode partmode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9424 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
9427 target
= gen_reg_rtx (mode
);
9431 /* Store the realpart and the negated imagpart to target. */
9432 emit_move_insn (gen_realpart (partmode
, target
),
9433 gen_realpart (partmode
, op0
));
9435 imag_t
= gen_imagpart (partmode
, target
);
9436 temp
= expand_unop (partmode
,
9437 ! unsignedp
&& flag_trapv
9438 && (GET_MODE_CLASS(partmode
) == MODE_INT
)
9439 ? negv_optab
: neg_optab
,
9440 gen_imagpart (partmode
, op0
), imag_t
, 0);
9442 emit_move_insn (imag_t
, temp
);
9444 insns
= get_insns ();
9447 /* Conjugate should appear as a single unit
9448 If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS,
9449 each with a separate pseudo as destination.
9450 It's not correct for flow to treat them as a unit. */
9451 if (GET_CODE (target
) != CONCAT
)
9452 emit_no_conflict_block (insns
, target
, op0
, NULL_RTX
, NULL_RTX
);
9459 case TRY_CATCH_EXPR
:
9461 tree handler
= TREE_OPERAND (exp
, 1);
9463 expand_eh_region_start ();
9465 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
9467 expand_eh_region_end_cleanup (handler
);
9472 case TRY_FINALLY_EXPR
:
9474 tree try_block
= TREE_OPERAND (exp
, 0);
9475 tree finally_block
= TREE_OPERAND (exp
, 1);
9477 if (!optimize
|| unsafe_for_reeval (finally_block
) > 1)
9479 /* In this case, wrapping FINALLY_BLOCK in an UNSAVE_EXPR
9480 is not sufficient, so we cannot expand the block twice.
9481 So we play games with GOTO_SUBROUTINE_EXPR to let us
9482 expand the thing only once. */
9483 /* When not optimizing, we go ahead with this form since
9484 (1) user breakpoints operate more predictably without
9485 code duplication, and
9486 (2) we're not running any of the global optimizers
9487 that would explode in time/space with the highly
9488 connected CFG created by the indirect branching. */
9490 rtx finally_label
= gen_label_rtx ();
9491 rtx done_label
= gen_label_rtx ();
9492 rtx return_link
= gen_reg_rtx (Pmode
);
9493 tree cleanup
= build (GOTO_SUBROUTINE_EXPR
, void_type_node
,
9494 (tree
) finally_label
, (tree
) return_link
);
9495 TREE_SIDE_EFFECTS (cleanup
) = 1;
9497 /* Start a new binding layer that will keep track of all cleanup
9498 actions to be performed. */
9499 expand_start_bindings (2);
9500 target_temp_slot_level
= temp_slot_level
;
9502 expand_decl_cleanup (NULL_TREE
, cleanup
);
9503 op0
= expand_expr (try_block
, target
, tmode
, modifier
);
9505 preserve_temp_slots (op0
);
9506 expand_end_bindings (NULL_TREE
, 0, 0);
9507 emit_jump (done_label
);
9508 emit_label (finally_label
);
9509 expand_expr (finally_block
, const0_rtx
, VOIDmode
, 0);
9510 emit_indirect_jump (return_link
);
9511 emit_label (done_label
);
9515 expand_start_bindings (2);
9516 target_temp_slot_level
= temp_slot_level
;
9518 expand_decl_cleanup (NULL_TREE
, finally_block
);
9519 op0
= expand_expr (try_block
, target
, tmode
, modifier
);
9521 preserve_temp_slots (op0
);
9522 expand_end_bindings (NULL_TREE
, 0, 0);
9528 case GOTO_SUBROUTINE_EXPR
:
9530 rtx subr
= (rtx
) TREE_OPERAND (exp
, 0);
9531 rtx return_link
= *(rtx
*) &TREE_OPERAND (exp
, 1);
9532 rtx return_address
= gen_label_rtx ();
9533 emit_move_insn (return_link
,
9534 gen_rtx_LABEL_REF (Pmode
, return_address
));
9536 emit_label (return_address
);
9541 return expand_builtin_va_arg (TREE_OPERAND (exp
, 0), type
);
9544 return get_exception_pointer (cfun
);
9547 /* Function descriptors are not valid except for as
9548 initialization constants, and should not be expanded. */
9552 return (*lang_hooks
.expand_expr
) (exp
, original_target
, tmode
, modifier
);
9555 /* Here to do an ordinary binary operator, generating an instruction
9556 from the optab already placed in `this_optab'. */
9558 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
9560 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
9561 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, 0);
9563 if (modifier
== EXPAND_STACK_PARM
)
9565 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9566 unsignedp
, OPTAB_LIB_WIDEN
);
9572 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9573 when applied to the address of EXP produces an address known to be
9574 aligned more than BIGGEST_ALIGNMENT. */
9577 is_aligning_offset (tree offset
, tree exp
)
9579 /* Strip off any conversions and WITH_RECORD_EXPR nodes. */
9580 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
9581 || TREE_CODE (offset
) == NOP_EXPR
9582 || TREE_CODE (offset
) == CONVERT_EXPR
9583 || TREE_CODE (offset
) == WITH_RECORD_EXPR
)
9584 offset
= TREE_OPERAND (offset
, 0);
9586 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9587 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9588 if (TREE_CODE (offset
) != BIT_AND_EXPR
9589 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
9590 || compare_tree_int (TREE_OPERAND (offset
, 1), BIGGEST_ALIGNMENT
) <= 0
9591 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
9594 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9595 It must be NEGATE_EXPR. Then strip any more conversions. */
9596 offset
= TREE_OPERAND (offset
, 0);
9597 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
9598 || TREE_CODE (offset
) == NOP_EXPR
9599 || TREE_CODE (offset
) == CONVERT_EXPR
)
9600 offset
= TREE_OPERAND (offset
, 0);
9602 if (TREE_CODE (offset
) != NEGATE_EXPR
)
9605 offset
= TREE_OPERAND (offset
, 0);
9606 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
9607 || TREE_CODE (offset
) == NOP_EXPR
9608 || TREE_CODE (offset
) == CONVERT_EXPR
)
9609 offset
= TREE_OPERAND (offset
, 0);
9611 /* This must now be the address either of EXP or of a PLACEHOLDER_EXPR
9612 whose type is the same as EXP. */
9613 return (TREE_CODE (offset
) == ADDR_EXPR
9614 && (TREE_OPERAND (offset
, 0) == exp
9615 || (TREE_CODE (TREE_OPERAND (offset
, 0)) == PLACEHOLDER_EXPR
9616 && (TREE_TYPE (TREE_OPERAND (offset
, 0))
9617 == TREE_TYPE (exp
)))));
9620 /* Return the tree node if an ARG corresponds to a string constant or zero
9621 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9622 in bytes within the string that ARG is accessing. The type of the
9623 offset will be `sizetype'. */
9626 string_constant (tree arg
, tree
*ptr_offset
)
9630 if (TREE_CODE (arg
) == ADDR_EXPR
9631 && TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
9633 *ptr_offset
= size_zero_node
;
9634 return TREE_OPERAND (arg
, 0);
9636 else if (TREE_CODE (arg
) == PLUS_EXPR
)
9638 tree arg0
= TREE_OPERAND (arg
, 0);
9639 tree arg1
= TREE_OPERAND (arg
, 1);
9644 if (TREE_CODE (arg0
) == ADDR_EXPR
9645 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
)
9647 *ptr_offset
= convert (sizetype
, arg1
);
9648 return TREE_OPERAND (arg0
, 0);
9650 else if (TREE_CODE (arg1
) == ADDR_EXPR
9651 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
)
9653 *ptr_offset
= convert (sizetype
, arg0
);
9654 return TREE_OPERAND (arg1
, 0);
9661 /* Expand code for a post- or pre- increment or decrement
9662 and return the RTX for the result.
9663 POST is 1 for postinc/decrements and 0 for preinc/decrements. */
9666 expand_increment (tree exp
, int post
, int ignore
)
9670 tree incremented
= TREE_OPERAND (exp
, 0);
9671 optab this_optab
= add_optab
;
9673 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
9674 int op0_is_copy
= 0;
9675 int single_insn
= 0;
9676 /* 1 means we can't store into OP0 directly,
9677 because it is a subreg narrower than a word,
9678 and we don't dare clobber the rest of the word. */
9681 /* Stabilize any component ref that might need to be
9682 evaluated more than once below. */
9684 || TREE_CODE (incremented
) == BIT_FIELD_REF
9685 || (TREE_CODE (incremented
) == COMPONENT_REF
9686 && (TREE_CODE (TREE_OPERAND (incremented
, 0)) != INDIRECT_REF
9687 || DECL_BIT_FIELD (TREE_OPERAND (incremented
, 1)))))
9688 incremented
= stabilize_reference (incremented
);
9689 /* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost
9690 ones into save exprs so that they don't accidentally get evaluated
9691 more than once by the code below. */
9692 if (TREE_CODE (incremented
) == PREINCREMENT_EXPR
9693 || TREE_CODE (incremented
) == PREDECREMENT_EXPR
)
9694 incremented
= save_expr (incremented
);
9696 /* Compute the operands as RTX.
9697 Note whether OP0 is the actual lvalue or a copy of it:
9698 I believe it is a copy iff it is a register or subreg
9699 and insns were generated in computing it. */
9701 temp
= get_last_insn ();
9702 op0
= expand_expr (incremented
, NULL_RTX
, VOIDmode
, 0);
9704 /* If OP0 is a SUBREG made for a promoted variable, we cannot increment
9705 in place but instead must do sign- or zero-extension during assignment,
9706 so we copy it into a new register and let the code below use it as
9709 Note that we can safely modify this SUBREG since it is know not to be
9710 shared (it was made by the expand_expr call above). */
9712 if (GET_CODE (op0
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op0
))
9715 SUBREG_REG (op0
) = copy_to_reg (SUBREG_REG (op0
));
9719 else if (GET_CODE (op0
) == SUBREG
9720 && GET_MODE_BITSIZE (GET_MODE (op0
)) < BITS_PER_WORD
)
9722 /* We cannot increment this SUBREG in place. If we are
9723 post-incrementing, get a copy of the old value. Otherwise,
9724 just mark that we cannot increment in place. */
9726 op0
= copy_to_reg (op0
);
9731 op0_is_copy
= ((GET_CODE (op0
) == SUBREG
|| GET_CODE (op0
) == REG
)
9732 && temp
!= get_last_insn ());
9733 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
, VOIDmode
, 0);
9735 /* Decide whether incrementing or decrementing. */
9736 if (TREE_CODE (exp
) == POSTDECREMENT_EXPR
9737 || TREE_CODE (exp
) == PREDECREMENT_EXPR
)
9738 this_optab
= sub_optab
;
9740 /* Convert decrement by a constant into a negative increment. */
9741 if (this_optab
== sub_optab
9742 && GET_CODE (op1
) == CONST_INT
)
9744 op1
= GEN_INT (-INTVAL (op1
));
9745 this_optab
= add_optab
;
9748 if (TYPE_TRAP_SIGNED (TREE_TYPE (exp
)))
9749 this_optab
= this_optab
== add_optab
? addv_optab
: subv_optab
;
9751 /* For a preincrement, see if we can do this with a single instruction. */
9754 icode
= (int) this_optab
->handlers
[(int) mode
].insn_code
;
9755 if (icode
!= (int) CODE_FOR_nothing
9756 /* Make sure that OP0 is valid for operands 0 and 1
9757 of the insn we want to queue. */
9758 && (*insn_data
[icode
].operand
[0].predicate
) (op0
, mode
)
9759 && (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode
)
9760 && (*insn_data
[icode
].operand
[2].predicate
) (op1
, mode
))
9764 /* If OP0 is not the actual lvalue, but rather a copy in a register,
9765 then we cannot just increment OP0. We must therefore contrive to
9766 increment the original value. Then, for postincrement, we can return
9767 OP0 since it is a copy of the old value. For preincrement, expand here
9768 unless we can do it with a single insn.
9770 Likewise if storing directly into OP0 would clobber high bits
9771 we need to preserve (bad_subreg). */
9772 if (op0_is_copy
|| (!post
&& !single_insn
) || bad_subreg
)
9774 /* This is the easiest way to increment the value wherever it is.
9775 Problems with multiple evaluation of INCREMENTED are prevented
9776 because either (1) it is a component_ref or preincrement,
9777 in which case it was stabilized above, or (2) it is an array_ref
9778 with constant index in an array in a register, which is
9779 safe to reevaluate. */
9780 tree newexp
= build (((TREE_CODE (exp
) == POSTDECREMENT_EXPR
9781 || TREE_CODE (exp
) == PREDECREMENT_EXPR
)
9782 ? MINUS_EXPR
: PLUS_EXPR
),
9785 TREE_OPERAND (exp
, 1));
9787 while (TREE_CODE (incremented
) == NOP_EXPR
9788 || TREE_CODE (incremented
) == CONVERT_EXPR
)
9790 newexp
= convert (TREE_TYPE (incremented
), newexp
);
9791 incremented
= TREE_OPERAND (incremented
, 0);
9794 temp
= expand_assignment (incremented
, newexp
, ! post
&& ! ignore
);
9795 return post
? op0
: temp
;
9800 /* We have a true reference to the value in OP0.
9801 If there is an insn to add or subtract in this mode, queue it.
9802 Queueing the increment insn avoids the register shuffling
9803 that often results if we must increment now and first save
9804 the old value for subsequent use. */
9806 #if 0 /* Turned off to avoid making extra insn for indexed memref. */
9807 op0
= stabilize (op0
);
9810 icode
= (int) this_optab
->handlers
[(int) mode
].insn_code
;
9811 if (icode
!= (int) CODE_FOR_nothing
9812 /* Make sure that OP0 is valid for operands 0 and 1
9813 of the insn we want to queue. */
9814 && (*insn_data
[icode
].operand
[0].predicate
) (op0
, mode
)
9815 && (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode
))
9817 if (! (*insn_data
[icode
].operand
[2].predicate
) (op1
, mode
))
9818 op1
= force_reg (mode
, op1
);
9820 return enqueue_insn (op0
, GEN_FCN (icode
) (op0
, op0
, op1
));
9822 if (icode
!= (int) CODE_FOR_nothing
&& GET_CODE (op0
) == MEM
)
9824 rtx addr
= (general_operand (XEXP (op0
, 0), mode
)
9825 ? force_reg (Pmode
, XEXP (op0
, 0))
9826 : copy_to_reg (XEXP (op0
, 0)));
9829 op0
= replace_equiv_address (op0
, addr
);
9830 temp
= force_reg (GET_MODE (op0
), op0
);
9831 if (! (*insn_data
[icode
].operand
[2].predicate
) (op1
, mode
))
9832 op1
= force_reg (mode
, op1
);
9834 /* The increment queue is LIFO, thus we have to `queue'
9835 the instructions in reverse order. */
9836 enqueue_insn (op0
, gen_move_insn (op0
, temp
));
9837 result
= enqueue_insn (temp
, GEN_FCN (icode
) (temp
, temp
, op1
));
9842 /* Preincrement, or we can't increment with one simple insn. */
9844 /* Save a copy of the value before inc or dec, to return it later. */
9845 temp
= value
= copy_to_reg (op0
);
9847 /* Arrange to return the incremented value. */
9848 /* Copy the rtx because expand_binop will protect from the queue,
9849 and the results of that would be invalid for us to return
9850 if our caller does emit_queue before using our result. */
9851 temp
= copy_rtx (value
= op0
);
9853 /* Increment however we can. */
9854 op1
= expand_binop (mode
, this_optab
, value
, op1
, op0
,
9855 TREE_UNSIGNED (TREE_TYPE (exp
)), OPTAB_LIB_WIDEN
);
9857 /* Make sure the value is stored into OP0. */
9859 emit_move_insn (op0
, op1
);
9864 /* Generate code to calculate EXP using a store-flag instruction
9865 and return an rtx for the result. EXP is either a comparison
9866 or a TRUTH_NOT_EXPR whose operand is a comparison.
9868 If TARGET is nonzero, store the result there if convenient.
9870 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9873 Return zero if there is no suitable set-flag instruction
9874 available on this machine.
9876 Once expand_expr has been called on the arguments of the comparison,
9877 we are committed to doing the store flag, since it is not safe to
9878 re-evaluate the expression. We emit the store-flag insn by calling
9879 emit_store_flag, but only expand the arguments if we have a reason
9880 to believe that emit_store_flag will be successful. If we think that
9881 it will, but it isn't, we have to simulate the store-flag with a
9882 set/jump/set sequence. */
9885 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
9888 tree arg0
, arg1
, type
;
9890 enum machine_mode operand_mode
;
9894 enum insn_code icode
;
9895 rtx subtarget
= target
;
9898 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9899 result at the end. We can't simply invert the test since it would
9900 have already been inverted if it were valid. This case occurs for
9901 some floating-point comparisons. */
9903 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
9904 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
9906 arg0
= TREE_OPERAND (exp
, 0);
9907 arg1
= TREE_OPERAND (exp
, 1);
9909 /* Don't crash if the comparison was erroneous. */
9910 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9913 type
= TREE_TYPE (arg0
);
9914 operand_mode
= TYPE_MODE (type
);
9915 unsignedp
= TREE_UNSIGNED (type
);
9917 /* We won't bother with BLKmode store-flag operations because it would mean
9918 passing a lot of information to emit_store_flag. */
9919 if (operand_mode
== BLKmode
)
9922 /* We won't bother with store-flag operations involving function pointers
9923 when function pointers must be canonicalized before comparisons. */
9924 #ifdef HAVE_canonicalize_funcptr_for_compare
9925 if (HAVE_canonicalize_funcptr_for_compare
9926 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
9927 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
9929 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
9930 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
9931 == FUNCTION_TYPE
))))
9938 /* Get the rtx comparison code to use. We know that EXP is a comparison
9939 operation of some type. Some comparisons against 1 and -1 can be
9940 converted to comparisons with zero. Do so here so that the tests
9941 below will be aware that we have a comparison with zero. These
9942 tests will not catch constants in the first operand, but constants
9943 are rarely passed as the first operand. */
9945 switch (TREE_CODE (exp
))
9954 if (integer_onep (arg1
))
9955 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
9957 code
= unsignedp
? LTU
: LT
;
9960 if (! unsignedp
&& integer_all_onesp (arg1
))
9961 arg1
= integer_zero_node
, code
= LT
;
9963 code
= unsignedp
? LEU
: LE
;
9966 if (! unsignedp
&& integer_all_onesp (arg1
))
9967 arg1
= integer_zero_node
, code
= GE
;
9969 code
= unsignedp
? GTU
: GT
;
9972 if (integer_onep (arg1
))
9973 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
9975 code
= unsignedp
? GEU
: GE
;
9978 case UNORDERED_EXPR
:
10004 /* Put a constant second. */
10005 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
10007 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10008 code
= swap_condition (code
);
10011 /* If this is an equality or inequality test of a single bit, we can
10012 do this by shifting the bit being tested to the low-order bit and
10013 masking the result with the constant 1. If the condition was EQ,
10014 we xor it with 1. This does not require an scc insn and is faster
10015 than an scc insn even if we have it.
10017 The code to make this transformation was moved into fold_single_bit_test,
10018 so we just call into the folder and expand its result. */
10020 if ((code
== NE
|| code
== EQ
)
10021 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
10022 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10024 tree type
= (*lang_hooks
.types
.type_for_mode
) (mode
, unsignedp
);
10025 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
10027 target
, VOIDmode
, EXPAND_NORMAL
);
10030 /* Now see if we are likely to be able to do this. Return if not. */
10031 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
10034 icode
= setcc_gen_code
[(int) code
];
10035 if (icode
== CODE_FOR_nothing
10036 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
10038 /* We can only do this if it is one of the special cases that
10039 can be handled without an scc insn. */
10040 if ((code
== LT
&& integer_zerop (arg1
))
10041 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
10043 else if (BRANCH_COST
>= 0
10044 && ! only_cheap
&& (code
== NE
|| code
== EQ
)
10045 && TREE_CODE (type
) != REAL_TYPE
10046 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
10047 != CODE_FOR_nothing
)
10048 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
10049 != CODE_FOR_nothing
)))
10055 if (! get_subtarget (target
)
10056 || GET_MODE (subtarget
) != operand_mode
10057 || ! safe_from_p (subtarget
, arg1
, 1))
10060 op0
= expand_expr (arg0
, subtarget
, VOIDmode
, 0);
10061 op1
= expand_expr (arg1
, NULL_RTX
, VOIDmode
, 0);
10064 target
= gen_reg_rtx (mode
);
10066 /* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe
10067 because, if the emit_store_flag does anything it will succeed and
10068 OP0 and OP1 will not be used subsequently. */
10070 result
= emit_store_flag (target
, code
,
10071 queued_subexp_p (op0
) ? copy_rtx (op0
) : op0
,
10072 queued_subexp_p (op1
) ? copy_rtx (op1
) : op1
,
10073 operand_mode
, unsignedp
, 1);
10078 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
10079 result
, 0, OPTAB_LIB_WIDEN
);
10083 /* If this failed, we have to do this with set/compare/jump/set code. */
10084 if (GET_CODE (target
) != REG
10085 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
10086 target
= gen_reg_rtx (GET_MODE (target
));
10088 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
10089 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
10090 operand_mode
, NULL_RTX
);
10091 if (GET_CODE (result
) == CONST_INT
)
10092 return (((result
== const0_rtx
&& ! invert
)
10093 || (result
!= const0_rtx
&& invert
))
10094 ? const0_rtx
: const1_rtx
);
10096 /* The code of RESULT may not match CODE if compare_from_rtx
10097 decided to swap its operands and reverse the original code.
10099 We know that compare_from_rtx returns either a CONST_INT or
10100 a new comparison code, so it is safe to just extract the
10101 code from RESULT. */
10102 code
= GET_CODE (result
);
10104 label
= gen_label_rtx ();
10105 if (bcc_gen_fctn
[(int) code
] == 0)
10108 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
10109 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
10110 emit_label (label
);
10116 /* Stubs in case we haven't got a casesi insn. */
10117 #ifndef HAVE_casesi
10118 # define HAVE_casesi 0
10119 # define gen_casesi(a, b, c, d, e) (0)
10120 # define CODE_FOR_casesi CODE_FOR_nothing
10123 /* If the machine does not have a case insn that compares the bounds,
10124 this means extra overhead for dispatch tables, which raises the
10125 threshold for using them. */
10126 #ifndef CASE_VALUES_THRESHOLD
10127 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
10128 #endif /* CASE_VALUES_THRESHOLD */
10131 case_values_threshold (void)
10133 return CASE_VALUES_THRESHOLD
;
10136 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10137 0 otherwise (i.e. if there is no casesi instruction). */
10139 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
10140 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
10142 enum machine_mode index_mode
= SImode
;
10143 int index_bits
= GET_MODE_BITSIZE (index_mode
);
10144 rtx op1
, op2
, index
;
10145 enum machine_mode op_mode
;
10150 /* Convert the index to SImode. */
10151 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
10153 enum machine_mode omode
= TYPE_MODE (index_type
);
10154 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
10156 /* We must handle the endpoints in the original mode. */
10157 index_expr
= build (MINUS_EXPR
, index_type
,
10158 index_expr
, minval
);
10159 minval
= integer_zero_node
;
10160 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
10161 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
10162 omode
, 1, default_label
);
10163 /* Now we can safely truncate. */
10164 index
= convert_to_mode (index_mode
, index
, 0);
10168 if (TYPE_MODE (index_type
) != index_mode
)
10170 index_expr
= convert ((*lang_hooks
.types
.type_for_size
)
10171 (index_bits
, 0), index_expr
);
10172 index_type
= TREE_TYPE (index_expr
);
10175 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
10178 index
= protect_from_queue (index
, 0);
10179 do_pending_stack_adjust ();
10181 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
10182 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
10184 index
= copy_to_mode_reg (op_mode
, index
);
10186 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
10188 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
10189 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
10190 op1
, TREE_UNSIGNED (TREE_TYPE (minval
)));
10191 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
10193 op1
= copy_to_mode_reg (op_mode
, op1
);
10195 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
10197 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
10198 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
10199 op2
, TREE_UNSIGNED (TREE_TYPE (range
)));
10200 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
10202 op2
= copy_to_mode_reg (op_mode
, op2
);
10204 emit_jump_insn (gen_casesi (index
, op1
, op2
,
10205 table_label
, default_label
));
10209 /* Attempt to generate a tablejump instruction; same concept. */
10210 #ifndef HAVE_tablejump
10211 #define HAVE_tablejump 0
10212 #define gen_tablejump(x, y) (0)
10215 /* Subroutine of the next function.
10217 INDEX is the value being switched on, with the lowest value
10218 in the table already subtracted.
10219 MODE is its expected mode (needed if INDEX is constant).
10220 RANGE is the length of the jump table.
10221 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10223 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10224 index value is out of range. */
10227 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10232 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
10233 cfun
->max_jumptable_ents
= INTVAL (range
);
10235 /* Do an unsigned comparison (in the proper mode) between the index
10236 expression and the value which represents the length of the range.
10237 Since we just finished subtracting the lower bound of the range
10238 from the index expression, this comparison allows us to simultaneously
10239 check that the original index expression value is both greater than
10240 or equal to the minimum value of the range and less than or equal to
10241 the maximum value of the range. */
10243 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10246 /* If index is in range, it must fit in Pmode.
10247 Convert to Pmode so we can index with it. */
10249 index
= convert_to_mode (Pmode
, index
, 1);
10251 /* Don't let a MEM slip thru, because then INDEX that comes
10252 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10253 and break_out_memory_refs will go to work on it and mess it up. */
10254 #ifdef PIC_CASE_VECTOR_ADDRESS
10255 if (flag_pic
&& GET_CODE (index
) != REG
)
10256 index
= copy_to_mode_reg (Pmode
, index
);
10259 /* If flag_force_addr were to affect this address
10260 it could interfere with the tricky assumptions made
10261 about addresses that contain label-refs,
10262 which may be valid only very near the tablejump itself. */
10263 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10264 GET_MODE_SIZE, because this indicates how large insns are. The other
10265 uses should all be Pmode, because they are addresses. This code
10266 could fail if addresses and insns are not the same size. */
10267 index
= gen_rtx_PLUS (Pmode
,
10268 gen_rtx_MULT (Pmode
, index
,
10269 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
10270 gen_rtx_LABEL_REF (Pmode
, table_label
));
10271 #ifdef PIC_CASE_VECTOR_ADDRESS
10273 index
= PIC_CASE_VECTOR_ADDRESS (index
);
10276 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
10277 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
10278 vector
= gen_rtx_MEM (CASE_VECTOR_MODE
, index
);
10279 RTX_UNCHANGING_P (vector
) = 1;
10280 MEM_NOTRAP_P (vector
) = 1;
10281 convert_move (temp
, vector
, 0);
10283 emit_jump_insn (gen_tablejump (temp
, table_label
));
10285 /* If we are generating PIC code or if the table is PC-relative, the
10286 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10287 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
10292 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
10293 rtx table_label
, rtx default_label
)
10297 if (! HAVE_tablejump
)
10300 index_expr
= fold (build (MINUS_EXPR
, index_type
,
10301 convert (index_type
, index_expr
),
10302 convert (index_type
, minval
)));
10303 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
10305 index
= protect_from_queue (index
, 0);
10306 do_pending_stack_adjust ();
10308 do_tablejump (index
, TYPE_MODE (index_type
),
10309 convert_modes (TYPE_MODE (index_type
),
10310 TYPE_MODE (TREE_TYPE (range
)),
10311 expand_expr (range
, NULL_RTX
,
10313 TREE_UNSIGNED (TREE_TYPE (range
))),
10314 table_label
, default_label
);
10318 /* Nonzero if the mode is a valid vector mode for this architecture.
10319 This returns nonzero even if there is no hardware support for the
10320 vector mode, but we can emulate with narrower modes. */
10323 vector_mode_valid_p (enum machine_mode mode
)
10325 enum mode_class
class = GET_MODE_CLASS (mode
);
10326 enum machine_mode innermode
;
10328 /* Doh! What's going on? */
10329 if (class != MODE_VECTOR_INT
10330 && class != MODE_VECTOR_FLOAT
)
10333 /* Hardware support. Woo hoo! */
10334 if (VECTOR_MODE_SUPPORTED_P (mode
))
10337 innermode
= GET_MODE_INNER (mode
);
10339 /* We should probably return 1 if requesting V4DI and we have no DI,
10340 but we have V2DI, but this is probably very unlikely. */
10342 /* If we have support for the inner mode, we can safely emulate it.
10343 We may not have V2DI, but me can emulate with a pair of DIs. */
10344 return mov_optab
->handlers
[innermode
].insn_code
!= CODE_FOR_nothing
;
10347 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10349 const_vector_from_tree (tree exp
)
10354 enum machine_mode inner
, mode
;
10356 mode
= TYPE_MODE (TREE_TYPE (exp
));
10358 if (is_zeros_p (exp
))
10359 return CONST0_RTX (mode
);
10361 units
= GET_MODE_NUNITS (mode
);
10362 inner
= GET_MODE_INNER (mode
);
10364 v
= rtvec_alloc (units
);
10366 link
= TREE_VECTOR_CST_ELTS (exp
);
10367 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
10369 elt
= TREE_VALUE (link
);
10371 if (TREE_CODE (elt
) == REAL_CST
)
10372 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
10375 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
10376 TREE_INT_CST_HIGH (elt
),
10380 /* Initialize remaining elements to 0. */
10381 for (; i
< units
; ++i
)
10382 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
10384 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
10387 #include "gt-expr.h"