2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
27 # include <asm/signal.h>
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
58 # define SIGSEGV 0 /* value is irrelevant */
63 /* Blatantly OS dependent routines, except for those that are related */
64 /* to dynamic loading. */
66 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
67 # define NEED_FIND_LIMIT
70 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
71 # define NEED_FIND_LIMIT
74 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
75 # define NEED_FIND_LIMIT
78 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
79 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
80 # define NEED_FIND_LIMIT
83 #ifdef NEED_FIND_LIMIT
88 # include <machine/trap.h>
97 #if defined(MSWIN32) || defined(MSWINCE)
98 # define WIN32_LEAN_AND_MEAN
100 # include <windows.h>
104 # include <Processes.h>
108 # include <sys/uio.h>
109 # include <malloc.h> /* for locking */
112 # include <sys/types.h>
113 # include <sys/mman.h>
114 # include <sys/stat.h>
121 #if defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX)
123 # include <sys/siginfo.h>
127 # define setjmp(env) sigsetjmp(env, 1)
128 # define longjmp(env, val) siglongjmp(env, val)
129 # define jmp_buf sigjmp_buf
133 /* Apparently necessary for djgpp 2.01. May cause problems with */
134 /* other versions. */
135 typedef long unsigned int caddr_t
;
139 # include "il/PCR_IL.h"
140 # include "th/PCR_ThCtl.h"
141 # include "mm/PCR_MM.h"
144 #if !defined(NO_EXECUTE_PERMISSION)
145 # define OPT_PROT_EXEC PROT_EXEC
147 # define OPT_PROT_EXEC 0
150 #if defined(SEARCH_FOR_DATA_START)
151 /* The I386 case can be handled without a search. The Alpha case */
152 /* used to be handled differently as well, but the rules changed */
153 /* for recent Linux versions. This seems to be the easiest way to */
154 /* cover all versions. */
157 # pragma weak __data_start
158 extern int __data_start
;
159 # pragma weak data_start
160 extern int data_start
;
166 void GC_init_linux_data_start()
168 extern ptr_t
GC_find_limit();
171 /* Try the easy approaches first: */
172 if (&__data_start
!= 0) {
173 GC_data_start
= (ptr_t
)(&__data_start
);
176 if (&data_start
!= 0) {
177 GC_data_start
= (ptr_t
)(&data_start
);
181 GC_data_start
= GC_find_limit((ptr_t
)(&_end
), FALSE
);
187 # ifndef ECOS_GC_MEMORY_SIZE
188 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
189 # endif /* ECOS_GC_MEMORY_SIZE */
191 // setjmp() function, as described in ANSI para 7.6.1.1
192 #define setjmp( __env__ ) hal_setjmp( __env__ )
194 // FIXME: This is a simple way of allocating memory which is
195 // compatible with ECOS early releases. Later releases use a more
196 // sophisticated means of allocating memory than this simple static
197 // allocator, but this method is at least bound to work.
198 static char memory
[ECOS_GC_MEMORY_SIZE
];
199 static char *brk
= memory
;
201 static void *tiny_sbrk(ptrdiff_t increment
)
207 if (brk
> memory
+ sizeof memory
)
215 #define sbrk tiny_sbrk
218 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
221 void GC_init_netbsd_elf()
223 extern ptr_t
GC_find_limit();
224 extern char **environ
;
225 /* This may need to be environ, without the underscore, for */
227 GC_data_start
= GC_find_limit((ptr_t
)&environ
, FALSE
);
235 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
238 unsigned short magic_number
;
239 unsigned short padding
[29];
243 #define E_MAGIC(x) (x).magic_number
244 #define EMAGIC 0x5A4D
245 #define E_LFANEW(x) (x).new_exe_offset
248 unsigned char magic_number
[2];
249 unsigned char byte_order
;
250 unsigned char word_order
;
251 unsigned long exe_format_level
;
254 unsigned long padding1
[13];
255 unsigned long object_table_offset
;
256 unsigned long object_count
;
257 unsigned long padding2
[31];
260 #define E32_MAGIC1(x) (x).magic_number[0]
261 #define E32MAGIC1 'L'
262 #define E32_MAGIC2(x) (x).magic_number[1]
263 #define E32MAGIC2 'X'
264 #define E32_BORDER(x) (x).byte_order
266 #define E32_WORDER(x) (x).word_order
268 #define E32_CPU(x) (x).cpu
270 #define E32_OBJTAB(x) (x).object_table_offset
271 #define E32_OBJCNT(x) (x).object_count
277 unsigned long pagemap
;
278 unsigned long mapsize
;
279 unsigned long reserved
;
282 #define O32_FLAGS(x) (x).flags
283 #define OBJREAD 0x0001L
284 #define OBJWRITE 0x0002L
285 #define OBJINVALID 0x0080L
286 #define O32_SIZE(x) (x).size
287 #define O32_BASE(x) (x).base
289 # else /* IBM's compiler */
291 /* A kludge to get around what appears to be a header file bug */
293 # define WORD unsigned short
296 # define DWORD unsigned long
303 # endif /* __IBMC__ */
305 # define INCL_DOSEXCEPTIONS
306 # define INCL_DOSPROCESS
307 # define INCL_DOSERRORS
308 # define INCL_DOSMODULEMGR
309 # define INCL_DOSMEMMGR
313 /* Disable and enable signals during nontrivial allocations */
315 void GC_disable_signals(void)
319 DosEnterMustComplete(&nest
);
320 if (nest
!= 1) ABORT("nested GC_disable_signals");
323 void GC_enable_signals(void)
327 DosExitMustComplete(&nest
);
328 if (nest
!= 0) ABORT("GC_enable_signals");
334 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
335 && !defined(MSWINCE) \
336 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
337 && !defined(NOSYS) && !defined(ECOS)
339 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
340 /* Use the traditional BSD interface */
341 # define SIGSET_T int
342 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
343 # define SIG_FILL(set) (set) = 0x7fffffff
344 /* Setting the leading bit appears to provoke a bug in some */
345 /* longjmp implementations. Most systems appear not to have */
347 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
349 /* Use POSIX/SYSV interface */
350 # define SIGSET_T sigset_t
351 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
352 # define SIG_FILL(set) sigfillset(&set)
353 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
356 static GC_bool mask_initialized
= FALSE
;
358 static SIGSET_T new_mask
;
360 static SIGSET_T old_mask
;
362 static SIGSET_T dummy
;
364 #if defined(PRINTSTATS) && !defined(THREADS)
365 # define CHECK_SIGNALS
366 int GC_sig_disabled
= 0;
369 void GC_disable_signals()
371 if (!mask_initialized
) {
374 SIG_DEL(new_mask
, SIGSEGV
);
375 SIG_DEL(new_mask
, SIGILL
);
376 SIG_DEL(new_mask
, SIGQUIT
);
378 SIG_DEL(new_mask
, SIGBUS
);
381 SIG_DEL(new_mask
, SIGIOT
);
384 SIG_DEL(new_mask
, SIGEMT
);
387 SIG_DEL(new_mask
, SIGTRAP
);
389 mask_initialized
= TRUE
;
391 # ifdef CHECK_SIGNALS
392 if (GC_sig_disabled
!= 0) ABORT("Nested disables");
395 SIGSETMASK(old_mask
,new_mask
);
398 void GC_enable_signals()
400 # ifdef CHECK_SIGNALS
401 if (GC_sig_disabled
!= 1) ABORT("Unmatched enable");
404 SIGSETMASK(dummy
,old_mask
);
411 /* Ivan Demakov: simplest way (to me) */
413 void GC_disable_signals() { }
414 void GC_enable_signals() { }
417 /* Find the page size */
420 # if defined(MSWIN32) || defined(MSWINCE)
421 void GC_setpagesize()
423 GetSystemInfo(&GC_sysinfo
);
424 GC_page_size
= GC_sysinfo
.dwPageSize
;
428 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
429 || defined(USE_MUNMAP)
430 void GC_setpagesize()
432 GC_page_size
= GETPAGESIZE();
435 /* It's acceptable to fake it. */
436 void GC_setpagesize()
438 GC_page_size
= HBLKSIZE
;
444 * Find the base of the stack.
445 * Used only in single-threaded environment.
446 * With threads, GC_mark_roots needs to know how to do this.
447 * Called with allocator lock held.
449 # if defined(MSWIN32) || defined(MSWINCE)
450 # define is_writable(prot) ((prot) == PAGE_READWRITE \
451 || (prot) == PAGE_WRITECOPY \
452 || (prot) == PAGE_EXECUTE_READWRITE \
453 || (prot) == PAGE_EXECUTE_WRITECOPY)
454 /* Return the number of bytes that are writable starting at p. */
455 /* The pointer p is assumed to be page aligned. */
456 /* If base is not 0, *base becomes the beginning of the */
457 /* allocation region containing p. */
458 word
GC_get_writable_length(ptr_t p
, ptr_t
*base
)
460 MEMORY_BASIC_INFORMATION buf
;
464 result
= VirtualQuery(p
, &buf
, sizeof(buf
));
465 if (result
!= sizeof(buf
)) ABORT("Weird VirtualQuery result");
466 if (base
!= 0) *base
= (ptr_t
)(buf
.AllocationBase
);
467 protect
= (buf
.Protect
& ~(PAGE_GUARD
| PAGE_NOCACHE
));
468 if (!is_writable(protect
)) {
471 if (buf
.State
!= MEM_COMMIT
) return(0);
472 return(buf
.RegionSize
);
475 ptr_t
GC_get_stack_base()
478 ptr_t sp
= (ptr_t
)(&dummy
);
479 ptr_t trunc_sp
= (ptr_t
)((word
)sp
& ~(GC_page_size
- 1));
480 word size
= GC_get_writable_length(trunc_sp
, 0);
482 return(trunc_sp
+ size
);
486 # endif /* MS Windows */
489 # include <kernel/OS.h>
490 ptr_t
GC_get_stack_base(){
492 get_thread_info(find_thread(NULL
),&th
);
500 ptr_t
GC_get_stack_base()
505 if (DosGetInfoBlocks(&ptib
, &ppib
) != NO_ERROR
) {
506 GC_err_printf0("DosGetInfoBlocks failed\n");
507 ABORT("DosGetInfoBlocks failed\n");
509 return((ptr_t
)(ptib
-> tib_pstacklimit
));
516 # include "AmigaOS.c"
520 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
523 typedef void (*handler
)(int);
525 typedef void (*handler
)();
528 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) || defined(HURD)
529 static struct sigaction old_segv_act
;
530 # if defined(_sigargs) /* !Irix6.x */ || defined(HPUX) || defined(HURD)
531 static struct sigaction old_bus_act
;
534 static handler old_segv_handler
, old_bus_handler
;
538 void GC_set_and_save_fault_handler(handler h
)
540 void GC_set_and_save_fault_handler(h
)
544 # if defined(SUNOS5SIGS) || defined(IRIX5) \
545 || defined(OSF1) || defined(HURD)
546 struct sigaction act
;
550 act
.sa_flags
= SA_RESTART
| SA_NODEFER
;
552 act
.sa_flags
= SA_RESTART
;
554 /* The presence of SA_NODEFER represents yet another gross */
555 /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
556 /* interact correctly with -lthread. We hide the confusion */
557 /* by making sure that signal handling doesn't affect the */
560 (void) sigemptyset(&act
.sa_mask
);
561 # ifdef GC_IRIX_THREADS
562 /* Older versions have a bug related to retrieving and */
563 /* and setting a handler at the same time. */
564 (void) sigaction(SIGSEGV
, 0, &old_segv_act
);
565 (void) sigaction(SIGSEGV
, &act
, 0);
567 (void) sigaction(SIGSEGV
, &act
, &old_segv_act
);
568 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
569 || defined(HPUX) || defined(HURD)
570 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
571 /* Pthreads doesn't exist under Irix 5.x, so we */
572 /* don't have to worry in the threads case. */
573 (void) sigaction(SIGBUS
, &act
, &old_bus_act
);
575 # endif /* GC_IRIX_THREADS */
577 old_segv_handler
= signal(SIGSEGV
, h
);
579 old_bus_handler
= signal(SIGBUS
, h
);
583 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
585 # ifdef NEED_FIND_LIMIT
586 /* Some tools to implement HEURISTIC2 */
587 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
588 /* static */ jmp_buf GC_jmp_buf
;
591 void GC_fault_handler(sig
)
594 longjmp(GC_jmp_buf
, 1);
597 void GC_setup_temporary_fault_handler()
599 GC_set_and_save_fault_handler(GC_fault_handler
);
602 void GC_reset_fault_handler()
604 # if defined(SUNOS5SIGS) || defined(IRIX5) \
605 || defined(OSF1) || defined(HURD)
606 (void) sigaction(SIGSEGV
, &old_segv_act
, 0);
607 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
608 || defined(HPUX) || defined(HURD)
609 (void) sigaction(SIGBUS
, &old_bus_act
, 0);
612 (void) signal(SIGSEGV
, old_segv_handler
);
614 (void) signal(SIGBUS
, old_bus_handler
);
619 /* Return the first nonaddressible location > p (up) or */
620 /* the smallest location q s.t. [q,p] is addressible (!up). */
621 ptr_t
GC_find_limit(p
, up
)
625 static VOLATILE ptr_t result
;
626 /* Needs to be static, since otherwise it may not be */
627 /* preserved across the longjmp. Can safely be */
628 /* static since it's only called once, with the */
629 /* allocation lock held. */
632 GC_setup_temporary_fault_handler();
633 if (setjmp(GC_jmp_buf
) == 0) {
634 result
= (ptr_t
)(((word
)(p
))
635 & ~(MIN_PAGE_SIZE
-1));
638 result
+= MIN_PAGE_SIZE
;
640 result
-= MIN_PAGE_SIZE
;
642 GC_noop1((word
)(*result
));
645 GC_reset_fault_handler();
647 result
+= MIN_PAGE_SIZE
;
653 # if defined(ECOS) || defined(NOSYS)
654 ptr_t
GC_get_stack_base()
661 #ifdef LINUX_STACKBOTTOM
663 #include <sys/types.h>
664 #include <sys/stat.h>
666 # define STAT_SKIP 27 /* Number of fields preceding startstack */
667 /* field in /proc/self/stat */
669 # pragma weak __libc_stack_end
670 extern ptr_t __libc_stack_end
;
673 # pragma weak __libc_ia64_register_backing_store_base
674 extern ptr_t __libc_ia64_register_backing_store_base
;
676 ptr_t
GC_get_register_stack_base(void)
678 if (0 != &__libc_ia64_register_backing_store_base
679 && 0 != __libc_ia64_register_backing_store_base
) {
680 /* Glibc 2.2.4 has a bug such that for dynamically linked */
681 /* executables __libc_ia64_register_backing_store_base is */
682 /* defined but ininitialized during constructor calls. */
683 /* Hence we check for both nonzero address and value. */
684 return __libc_ia64_register_backing_store_base
;
686 word result
= (word
)GC_stackbottom
- BACKING_STORE_DISPLACEMENT
;
687 result
+= BACKING_STORE_ALIGNMENT
- 1;
688 result
&= ~(BACKING_STORE_ALIGNMENT
- 1);
689 return (ptr_t
)result
;
694 ptr_t
GC_linux_stack_base(void)
696 /* We read the stack base value from /proc/self/stat. We do this */
697 /* using direct I/O system calls in order to avoid calling malloc */
698 /* in case REDIRECT_MALLOC is defined. */
699 # define STAT_BUF_SIZE 4096
700 # if defined(GC_USE_LD_WRAP)
701 # define STAT_READ __real_read
703 # define STAT_READ read
705 char stat_buf
[STAT_BUF_SIZE
];
709 size_t i
, buf_offset
= 0;
711 /* First try the easy way. This should work for glibc 2.2 */
712 if (0 != &__libc_stack_end
) {
713 return __libc_stack_end
;
715 f
= open("/proc/self/stat", O_RDONLY
);
716 if (f
< 0 || STAT_READ(f
, stat_buf
, STAT_BUF_SIZE
) < 2 * STAT_SKIP
) {
717 ABORT("Couldn't read /proc/self/stat");
719 c
= stat_buf
[buf_offset
++];
720 /* Skip the required number of fields. This number is hopefully */
721 /* constant across all Linux implementations. */
722 for (i
= 0; i
< STAT_SKIP
; ++i
) {
723 while (isspace(c
)) c
= stat_buf
[buf_offset
++];
724 while (!isspace(c
)) c
= stat_buf
[buf_offset
++];
726 while (isspace(c
)) c
= stat_buf
[buf_offset
++];
730 c
= stat_buf
[buf_offset
++];
733 if (result
< 0x10000000) ABORT("Absurd stack bottom value");
734 return (ptr_t
)result
;
737 #endif /* LINUX_STACKBOTTOM */
739 #ifdef FREEBSD_STACKBOTTOM
741 /* This uses an undocumented sysctl call, but at least one expert */
742 /* believes it will stay. */
745 #include <sys/types.h>
746 #include <sys/sysctl.h>
748 ptr_t
GC_freebsd_stack_base(void)
750 int nm
[2] = { CTL_KERN
, KERN_USRSTACK
}, base
, len
, r
;
753 r
= sysctl(nm
, 2, &base
, &len
, NULL
, 0);
755 if (r
) ABORT("Error getting stack base");
760 #endif /* FREEBSD_STACKBOTTOM */
762 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
763 && !defined(MSWINCE) && !defined(OS2)
765 ptr_t
GC_get_stack_base()
770 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
776 # ifdef STACK_GROWS_DOWN
777 result
= (ptr_t
)((((word
)(&dummy
))
778 + STACKBOTTOM_ALIGNMENT_M1
)
779 & ~STACKBOTTOM_ALIGNMENT_M1
);
781 result
= (ptr_t
)(((word
)(&dummy
))
782 & ~STACKBOTTOM_ALIGNMENT_M1
);
784 # endif /* HEURISTIC1 */
785 # ifdef LINUX_STACKBOTTOM
786 result
= GC_linux_stack_base();
788 # ifdef FREEBSD_STACKBOTTOM
789 result
= GC_freebsd_stack_base();
792 # ifdef STACK_GROWS_DOWN
793 result
= GC_find_limit((ptr_t
)(&dummy
), TRUE
);
794 # ifdef HEURISTIC2_LIMIT
795 if (result
> HEURISTIC2_LIMIT
796 && (ptr_t
)(&dummy
) < HEURISTIC2_LIMIT
) {
797 result
= HEURISTIC2_LIMIT
;
801 result
= GC_find_limit((ptr_t
)(&dummy
), FALSE
);
802 # ifdef HEURISTIC2_LIMIT
803 if (result
< HEURISTIC2_LIMIT
804 && (ptr_t
)(&dummy
) > HEURISTIC2_LIMIT
) {
805 result
= HEURISTIC2_LIMIT
;
810 # endif /* HEURISTIC2 */
811 # ifdef STACK_GROWS_DOWN
812 if (result
== 0) result
= (ptr_t
)(signed_word
)(-sizeof(ptr_t
));
815 # endif /* STACKBOTTOM */
817 # endif /* NOSYS ECOS */
819 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS */
822 * Register static data segment(s) as roots.
823 * If more data segments are added later then they need to be registered
824 * add that point (as we do with SunOS dynamic loading),
825 * or GC_mark_roots needs to check for them (as we do with PCR).
826 * Called with allocator lock held.
831 void GC_register_data_segments()
835 HMODULE module_handle
;
839 struct exe_hdr hdrdos
; /* MSDOS header. */
840 struct e32_exe hdr386
; /* Real header for my executable */
841 struct o32_obj seg
; /* Currrent segment */
845 if (DosGetInfoBlocks(&ptib
, &ppib
) != NO_ERROR
) {
846 GC_err_printf0("DosGetInfoBlocks failed\n");
847 ABORT("DosGetInfoBlocks failed\n");
849 module_handle
= ppib
-> pib_hmte
;
850 if (DosQueryModuleName(module_handle
, PBUFSIZ
, path
) != NO_ERROR
) {
851 GC_err_printf0("DosQueryModuleName failed\n");
852 ABORT("DosGetInfoBlocks failed\n");
854 myexefile
= fopen(path
, "rb");
855 if (myexefile
== 0) {
856 GC_err_puts("Couldn't open executable ");
857 GC_err_puts(path
); GC_err_puts("\n");
858 ABORT("Failed to open executable\n");
860 if (fread((char *)(&hdrdos
), 1, sizeof hdrdos
, myexefile
) < sizeof hdrdos
) {
861 GC_err_puts("Couldn't read MSDOS header from ");
862 GC_err_puts(path
); GC_err_puts("\n");
863 ABORT("Couldn't read MSDOS header");
865 if (E_MAGIC(hdrdos
) != EMAGIC
) {
866 GC_err_puts("Executable has wrong DOS magic number: ");
867 GC_err_puts(path
); GC_err_puts("\n");
868 ABORT("Bad DOS magic number");
870 if (fseek(myexefile
, E_LFANEW(hdrdos
), SEEK_SET
) != 0) {
871 GC_err_puts("Seek to new header failed in ");
872 GC_err_puts(path
); GC_err_puts("\n");
873 ABORT("Bad DOS magic number");
875 if (fread((char *)(&hdr386
), 1, sizeof hdr386
, myexefile
) < sizeof hdr386
) {
876 GC_err_puts("Couldn't read MSDOS header from ");
877 GC_err_puts(path
); GC_err_puts("\n");
878 ABORT("Couldn't read OS/2 header");
880 if (E32_MAGIC1(hdr386
) != E32MAGIC1
|| E32_MAGIC2(hdr386
) != E32MAGIC2
) {
881 GC_err_puts("Executable has wrong OS/2 magic number:");
882 GC_err_puts(path
); GC_err_puts("\n");
883 ABORT("Bad OS/2 magic number");
885 if ( E32_BORDER(hdr386
) != E32LEBO
|| E32_WORDER(hdr386
) != E32LEWO
) {
886 GC_err_puts("Executable %s has wrong byte order: ");
887 GC_err_puts(path
); GC_err_puts("\n");
888 ABORT("Bad byte order");
890 if ( E32_CPU(hdr386
) == E32CPU286
) {
891 GC_err_puts("GC can't handle 80286 executables: ");
892 GC_err_puts(path
); GC_err_puts("\n");
895 if (fseek(myexefile
, E_LFANEW(hdrdos
) + E32_OBJTAB(hdr386
),
897 GC_err_puts("Seek to object table failed: ");
898 GC_err_puts(path
); GC_err_puts("\n");
899 ABORT("Seek to object table failed");
901 for (nsegs
= E32_OBJCNT(hdr386
); nsegs
> 0; nsegs
--) {
903 if (fread((char *)(&seg
), 1, sizeof seg
, myexefile
) < sizeof seg
) {
904 GC_err_puts("Couldn't read obj table entry from ");
905 GC_err_puts(path
); GC_err_puts("\n");
906 ABORT("Couldn't read obj table entry");
908 flags
= O32_FLAGS(seg
);
909 if (!(flags
& OBJWRITE
)) continue;
910 if (!(flags
& OBJREAD
)) continue;
911 if (flags
& OBJINVALID
) {
912 GC_err_printf0("Object with invalid pages?\n");
915 GC_add_roots_inner(O32_BASE(seg
), O32_BASE(seg
)+O32_SIZE(seg
), FALSE
);
921 # if defined(MSWIN32) || defined(MSWINCE)
924 /* Unfortunately, we have to handle win32s very differently from NT, */
925 /* Since VirtualQuery has very different semantics. In particular, */
926 /* under win32s a VirtualQuery call on an unmapped page returns an */
927 /* invalid result. Under GC_register_data_segments is a noop and */
928 /* all real work is done by GC_register_dynamic_libraries. Under */
929 /* win32s, we cannot find the data segments associated with dll's. */
930 /* We rgister the main data segment here. */
931 GC_bool GC_win32s
= FALSE
; /* We're running under win32s. */
933 GC_bool
GC_is_win32s()
935 DWORD v
= GetVersion();
937 /* Check that this is not NT, and Windows major version <= 3 */
938 return ((v
& 0x80000000) && (v
& 0xff) <= 3);
943 GC_win32s
= GC_is_win32s();
946 /* Return the smallest address a such that VirtualQuery */
947 /* returns correct results for all addresses between a and start. */
948 /* Assumes VirtualQuery returns correct information for start. */
949 ptr_t
GC_least_described_address(ptr_t start
)
951 MEMORY_BASIC_INFORMATION buf
;
957 limit
= GC_sysinfo
.lpMinimumApplicationAddress
;
958 p
= (ptr_t
)((word
)start
& ~(GC_page_size
- 1));
960 q
= (LPVOID
)(p
- GC_page_size
);
961 if ((ptr_t
)q
> (ptr_t
)p
/* underflow */ || q
< limit
) break;
962 result
= VirtualQuery(q
, &buf
, sizeof(buf
));
963 if (result
!= sizeof(buf
) || buf
.AllocationBase
== 0) break;
964 p
= (ptr_t
)(buf
.AllocationBase
);
970 /* Is p the start of either the malloc heap, or of one of our */
972 GC_bool
GC_is_heap_base (ptr_t p
)
977 # ifndef REDIRECT_MALLOC
978 static ptr_t malloc_heap_pointer
= 0;
980 if (0 == malloc_heap_pointer
) {
981 MEMORY_BASIC_INFORMATION buf
;
982 void *pTemp
= malloc( 1 );
983 register DWORD result
= VirtualQuery(pTemp
, &buf
, sizeof(buf
));
988 if (result
!= sizeof(buf
)) {
989 ABORT("Weird VirtualQuery result");
991 malloc_heap_pointer
= (ptr_t
)(buf
.AllocationBase
);
993 if (p
== malloc_heap_pointer
) return(TRUE
);
995 for (i
= 0; i
< GC_n_heap_bases
; i
++) {
996 if (GC_heap_bases
[i
] == p
) return(TRUE
);
1002 void GC_register_root_section(ptr_t static_root
)
1004 MEMORY_BASIC_INFORMATION buf
;
1009 char * limit
, * new_limit
;
1011 if (!GC_win32s
) return;
1012 p
= base
= limit
= GC_least_described_address(static_root
);
1013 while (p
< GC_sysinfo
.lpMaximumApplicationAddress
) {
1014 result
= VirtualQuery(p
, &buf
, sizeof(buf
));
1015 if (result
!= sizeof(buf
) || buf
.AllocationBase
== 0
1016 || GC_is_heap_base(buf
.AllocationBase
)) break;
1017 new_limit
= (char *)p
+ buf
.RegionSize
;
1018 protect
= buf
.Protect
;
1019 if (buf
.State
== MEM_COMMIT
1020 && is_writable(protect
)) {
1021 if ((char *)p
== limit
) {
1024 if (base
!= limit
) GC_add_roots_inner(base
, limit
, FALSE
);
1029 if (p
> (LPVOID
)new_limit
/* overflow */) break;
1030 p
= (LPVOID
)new_limit
;
1032 if (base
!= limit
) GC_add_roots_inner(base
, limit
, FALSE
);
1036 void GC_register_data_segments()
1040 GC_register_root_section((ptr_t
)(&dummy
));
1044 # else /* !OS2 && !Windows */
1046 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1047 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1048 char * GC_SysVGetDataStart(max_page_size
, etext_addr
)
1052 word text_end
= ((word
)(etext_addr
) + sizeof(word
) - 1)
1053 & ~(sizeof(word
) - 1);
1054 /* etext rounded to word boundary */
1055 word next_page
= ((text_end
+ (word
)max_page_size
- 1)
1056 & ~((word
)max_page_size
- 1));
1057 word page_offset
= (text_end
& ((word
)max_page_size
- 1));
1058 VOLATILE
char * result
= (char *)(next_page
+ page_offset
);
1059 /* Note that this isnt equivalent to just adding */
1060 /* max_page_size to &etext if &etext is at a page boundary */
1062 GC_setup_temporary_fault_handler();
1063 if (setjmp(GC_jmp_buf
) == 0) {
1064 /* Try writing to the address. */
1066 GC_reset_fault_handler();
1068 GC_reset_fault_handler();
1069 /* We got here via a longjmp. The address is not readable. */
1070 /* This is known to happen under Solaris 2.4 + gcc, which place */
1071 /* string constants in the text segment, but after etext. */
1072 /* Use plan B. Note that we now know there is a gap between */
1073 /* text and data segments, so plan A bought us something. */
1074 result
= (char *)GC_find_limit((ptr_t
)(DATAEND
) - MIN_PAGE_SIZE
, FALSE
);
1076 return((char *)result
);
1083 # define GC_AMIGA_DS
1084 # include "AmigaOS.c"
1087 #else /* !OS2 && !Windows && !AMIGA */
1089 void GC_register_data_segments()
1091 # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1093 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1094 /* As of Solaris 2.3, the Solaris threads implementation */
1095 /* allocates the data structure for the initial thread with */
1096 /* sbrk at process startup. It needs to be scanned, so that */
1097 /* we don't lose some malloc allocated data structures */
1098 /* hanging from it. We're on thin ice here ... */
1099 extern caddr_t
sbrk();
1101 GC_add_roots_inner(DATASTART
, (char *)sbrk(0), FALSE
);
1103 GC_add_roots_inner(DATASTART
, (char *)(DATAEND
), FALSE
);
1106 # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1107 GC_add_roots_inner(DATASTART
, (char *) get_end(), FALSE
);
1111 # if defined(THINK_C)
1112 extern void* GC_MacGetDataStart(void);
1113 /* globals begin above stack and end at a5. */
1114 GC_add_roots_inner((ptr_t
)GC_MacGetDataStart(),
1115 (ptr_t
)LMGetCurrentA5(), FALSE
);
1117 # if defined(__MWERKS__)
1119 extern void* GC_MacGetDataStart(void);
1120 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1121 # if __option(far_data)
1122 extern void* GC_MacGetDataEnd(void);
1124 /* globals begin above stack and end at a5. */
1125 GC_add_roots_inner((ptr_t
)GC_MacGetDataStart(),
1126 (ptr_t
)LMGetCurrentA5(), FALSE
);
1127 /* MATTHEW: Handle Far Globals */
1128 # if __option(far_data)
1129 /* Far globals follow he QD globals: */
1130 GC_add_roots_inner((ptr_t
)LMGetCurrentA5(),
1131 (ptr_t
)GC_MacGetDataEnd(), FALSE
);
1134 extern char __data_start__
[], __data_end__
[];
1135 GC_add_roots_inner((ptr_t
)&__data_start__
,
1136 (ptr_t
)&__data_end__
, FALSE
);
1137 # endif /* __POWERPC__ */
1138 # endif /* __MWERKS__ */
1139 # endif /* !THINK_C */
1143 /* Dynamic libraries are added at every collection, since they may */
1147 # endif /* ! AMIGA */
1148 # endif /* ! MSWIN32 && ! MSWINCE*/
1152 * Auxiliary routines for obtaining memory from OS.
1155 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1156 && !defined(MSWIN32) && !defined(MSWINCE) \
1157 && !defined(MACOS) && !defined(DOS4GW)
1160 extern caddr_t
sbrk();
1163 # define SBRK_ARG_T ptrdiff_t
1165 # define SBRK_ARG_T int
1170 /* The compiler seems to generate speculative reads one past the end of */
1171 /* an allocated object. Hence we need to make sure that the page */
1172 /* following the last heap page is also mapped. */
1173 ptr_t
GC_unix_get_mem(bytes
)
1176 caddr_t cur_brk
= (caddr_t
)sbrk(0);
1178 SBRK_ARG_T lsbs
= (word
)cur_brk
& (GC_page_size
-1);
1179 static caddr_t my_brk_val
= 0;
1181 if ((SBRK_ARG_T
)bytes
< 0) return(0); /* too big */
1183 if((caddr_t
)(sbrk(GC_page_size
- lsbs
)) == (caddr_t
)(-1)) return(0);
1185 if (cur_brk
== my_brk_val
) {
1186 /* Use the extra block we allocated last time. */
1187 result
= (ptr_t
)sbrk((SBRK_ARG_T
)bytes
);
1188 if (result
== (caddr_t
)(-1)) return(0);
1189 result
-= GC_page_size
;
1191 result
= (ptr_t
)sbrk(GC_page_size
+ (SBRK_ARG_T
)bytes
);
1192 if (result
== (caddr_t
)(-1)) return(0);
1194 my_brk_val
= result
+ bytes
+ GC_page_size
; /* Always page aligned */
1195 return((ptr_t
)result
);
1198 #else /* Not RS6000 */
1200 #if defined(USE_MMAP)
1201 /* Tested only under Linux, IRIX5 and Solaris 2 */
1203 #ifdef USE_MMAP_FIXED
1204 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1205 /* Seems to yield better performance on Solaris 2, but can */
1206 /* be unreliable if something is already mapped at the address. */
1208 # define GC_MMAP_FLAGS MAP_PRIVATE
1212 # define HEAP_START 0
1215 ptr_t
GC_unix_get_mem(bytes
)
1218 static GC_bool initialized
= FALSE
;
1221 static ptr_t last_addr
= HEAP_START
;
1224 fd
= open("/dev/zero", O_RDONLY
);
1227 if (bytes
& (GC_page_size
-1)) ABORT("Bad GET_MEM arg");
1228 result
= mmap(last_addr
, bytes
, PROT_READ
| PROT_WRITE
| OPT_PROT_EXEC
,
1229 GC_MMAP_FLAGS
, fd
, 0/* offset */);
1230 if (result
== MAP_FAILED
) return(0);
1231 last_addr
= (ptr_t
)result
+ bytes
+ GC_page_size
- 1;
1232 last_addr
= (ptr_t
)((word
)last_addr
& ~(GC_page_size
- 1));
1233 # if !defined(LINUX)
1234 if (last_addr
== 0) {
1235 /* Oops. We got the end of the address space. This isn't */
1236 /* usable by arbitrary C code, since one-past-end pointers */
1237 /* don't work, so we discard it and try again. */
1238 munmap(result
, (size_t)(-GC_page_size
) - (size_t)result
);
1239 /* Leave last page mapped, so we can't repeat. */
1240 return GC_unix_get_mem(bytes
);
1243 GC_ASSERT(last_addr
!= 0);
1245 return((ptr_t
)result
);
1248 #else /* Not RS6000, not USE_MMAP */
1249 ptr_t
GC_unix_get_mem(bytes
)
1254 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1255 /* The equivalent may be needed on other systems as well. */
1259 ptr_t cur_brk
= (ptr_t
)sbrk(0);
1260 SBRK_ARG_T lsbs
= (word
)cur_brk
& (GC_page_size
-1);
1262 if ((SBRK_ARG_T
)bytes
< 0) return(0); /* too big */
1264 if((ptr_t
)sbrk(GC_page_size
- lsbs
) == (ptr_t
)(-1)) return(0);
1266 result
= (ptr_t
)sbrk((SBRK_ARG_T
)bytes
);
1267 if (result
== (ptr_t
)(-1)) result
= 0;
1275 #endif /* Not USE_MMAP */
1276 #endif /* Not RS6000 */
1282 void * os2_alloc(size_t bytes
)
1286 if (DosAllocMem(&result
, bytes
, PAG_EXECUTE
| PAG_READ
|
1287 PAG_WRITE
| PAG_COMMIT
)
1291 if (result
== 0) return(os2_alloc(bytes
));
1298 # if defined(MSWIN32) || defined(MSWINCE)
1299 SYSTEM_INFO GC_sysinfo
;
1304 word GC_n_heap_bases
= 0;
1306 ptr_t
GC_win32_get_mem(bytes
)
1312 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1313 /* There are also unconfirmed rumors of other */
1314 /* problems, so we dodge the issue. */
1315 result
= (ptr_t
) GlobalAlloc(0, bytes
+ HBLKSIZE
);
1316 result
= (ptr_t
)(((word
)result
+ HBLKSIZE
) & ~(HBLKSIZE
-1));
1318 result
= (ptr_t
) VirtualAlloc(NULL
, bytes
,
1319 MEM_COMMIT
| MEM_RESERVE
,
1320 PAGE_EXECUTE_READWRITE
);
1322 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1323 /* If I read the documentation correctly, this can */
1324 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1325 if (GC_n_heap_bases
>= MAX_HEAP_SECTS
) ABORT("Too many heap sections");
1326 GC_heap_bases
[GC_n_heap_bases
++] = result
;
1330 void GC_win32_free_heap ()
1333 while (GC_n_heap_bases
> 0) {
1334 GlobalFree (GC_heap_bases
[--GC_n_heap_bases
]);
1335 GC_heap_bases
[GC_n_heap_bases
] = 0;
1342 # define GC_AMIGA_AM
1343 # include "AmigaOS.c"
1349 word GC_n_heap_bases
= 0;
1351 ptr_t
GC_wince_get_mem(bytes
)
1357 /* Round up allocation size to multiple of page size */
1358 bytes
= (bytes
+ GC_page_size
-1) & ~(GC_page_size
-1);
1360 /* Try to find reserved, uncommitted pages */
1361 for (i
= 0; i
< GC_n_heap_bases
; i
++) {
1362 if (((word
)(-(signed_word
)GC_heap_lengths
[i
])
1363 & (GC_sysinfo
.dwAllocationGranularity
-1))
1365 result
= GC_heap_bases
[i
] + GC_heap_lengths
[i
];
1370 if (i
== GC_n_heap_bases
) {
1371 /* Reserve more pages */
1372 word res_bytes
= (bytes
+ GC_sysinfo
.dwAllocationGranularity
-1)
1373 & ~(GC_sysinfo
.dwAllocationGranularity
-1);
1374 result
= (ptr_t
) VirtualAlloc(NULL
, res_bytes
,
1375 MEM_RESERVE
| MEM_TOP_DOWN
,
1376 PAGE_EXECUTE_READWRITE
);
1377 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1378 /* If I read the documentation correctly, this can */
1379 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1380 if (GC_n_heap_bases
>= MAX_HEAP_SECTS
) ABORT("Too many heap sections");
1381 GC_heap_bases
[GC_n_heap_bases
] = result
;
1382 GC_heap_lengths
[GC_n_heap_bases
] = 0;
1387 result
= (ptr_t
) VirtualAlloc(result
, bytes
,
1389 PAGE_EXECUTE_READWRITE
);
1390 if (result
!= NULL
) {
1391 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1392 GC_heap_lengths
[i
] += bytes
;
1401 /* For now, this only works on Win32/WinCE and some Unix-like */
1402 /* systems. If you have something else, don't define */
1404 /* We assume ANSI C to support this feature. */
1406 #if !defined(MSWIN32) && !defined(MSWINCE)
1409 #include <sys/mman.h>
1410 #include <sys/stat.h>
1411 #include <sys/types.h>
1415 /* Compute a page aligned starting address for the unmap */
1416 /* operation on a block of size bytes starting at start. */
1417 /* Return 0 if the block is too small to make this feasible. */
1418 ptr_t
GC_unmap_start(ptr_t start
, word bytes
)
1420 ptr_t result
= start
;
1421 /* Round start to next page boundary. */
1422 result
+= GC_page_size
- 1;
1423 result
= (ptr_t
)((word
)result
& ~(GC_page_size
- 1));
1424 if (result
+ GC_page_size
> start
+ bytes
) return 0;
1428 /* Compute end address for an unmap operation on the indicated */
1430 ptr_t
GC_unmap_end(ptr_t start
, word bytes
)
1432 ptr_t end_addr
= start
+ bytes
;
1433 end_addr
= (ptr_t
)((word
)end_addr
& ~(GC_page_size
- 1));
1437 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1438 /* memory using VirtualAlloc and VirtualFree. These functions */
1439 /* work on individual allocations of virtual memory, made */
1440 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1441 /* The ranges we need to (de)commit may span several of these */
1442 /* allocations; therefore we use VirtualQuery to check */
1443 /* allocation lengths, and split up the range as necessary. */
1445 /* We assume that GC_remap is called on exactly the same range */
1446 /* as a previous call to GC_unmap. It is safe to consistently */
1447 /* round the endpoints in both places. */
1448 void GC_unmap(ptr_t start
, word bytes
)
1450 ptr_t start_addr
= GC_unmap_start(start
, bytes
);
1451 ptr_t end_addr
= GC_unmap_end(start
, bytes
);
1452 word len
= end_addr
- start_addr
;
1453 if (0 == start_addr
) return;
1454 # if defined(MSWIN32) || defined(MSWINCE)
1456 MEMORY_BASIC_INFORMATION mem_info
;
1458 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1459 != sizeof(mem_info
))
1460 ABORT("Weird VirtualQuery result");
1461 free_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1462 if (!VirtualFree(start_addr
, free_len
, MEM_DECOMMIT
))
1463 ABORT("VirtualFree failed");
1464 GC_unmapped_bytes
+= free_len
;
1465 start_addr
+= free_len
;
1469 if (munmap(start_addr
, len
) != 0) ABORT("munmap failed");
1470 GC_unmapped_bytes
+= len
;
1475 void GC_remap(ptr_t start
, word bytes
)
1477 static int zero_descr
= -1;
1478 ptr_t start_addr
= GC_unmap_start(start
, bytes
);
1479 ptr_t end_addr
= GC_unmap_end(start
, bytes
);
1480 word len
= end_addr
- start_addr
;
1483 # if defined(MSWIN32) || defined(MSWINCE)
1484 if (0 == start_addr
) return;
1486 MEMORY_BASIC_INFORMATION mem_info
;
1488 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1489 != sizeof(mem_info
))
1490 ABORT("Weird VirtualQuery result");
1491 alloc_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1492 result
= VirtualAlloc(start_addr
, alloc_len
,
1494 PAGE_EXECUTE_READWRITE
);
1495 if (result
!= start_addr
) {
1496 ABORT("VirtualAlloc remapping failed");
1498 GC_unmapped_bytes
-= alloc_len
;
1499 start_addr
+= alloc_len
;
1503 if (-1 == zero_descr
) zero_descr
= open("/dev/zero", O_RDWR
);
1504 if (0 == start_addr
) return;
1505 result
= mmap(start_addr
, len
, PROT_READ
| PROT_WRITE
| OPT_PROT_EXEC
,
1506 MAP_FIXED
| MAP_PRIVATE
, zero_descr
, 0);
1507 if (result
!= start_addr
) {
1508 ABORT("mmap remapping failed");
1510 GC_unmapped_bytes
-= len
;
1514 /* Two adjacent blocks have already been unmapped and are about to */
1515 /* be merged. Unmap the whole block. This typically requires */
1516 /* that we unmap a small section in the middle that was not previously */
1517 /* unmapped due to alignment constraints. */
1518 void GC_unmap_gap(ptr_t start1
, word bytes1
, ptr_t start2
, word bytes2
)
1520 ptr_t start1_addr
= GC_unmap_start(start1
, bytes1
);
1521 ptr_t end1_addr
= GC_unmap_end(start1
, bytes1
);
1522 ptr_t start2_addr
= GC_unmap_start(start2
, bytes2
);
1523 ptr_t end2_addr
= GC_unmap_end(start2
, bytes2
);
1524 ptr_t start_addr
= end1_addr
;
1525 ptr_t end_addr
= start2_addr
;
1527 GC_ASSERT(start1
+ bytes1
== start2
);
1528 if (0 == start1_addr
) start_addr
= GC_unmap_start(start1
, bytes1
+ bytes2
);
1529 if (0 == start2_addr
) end_addr
= GC_unmap_end(start1
, bytes1
+ bytes2
);
1530 if (0 == start_addr
) return;
1531 len
= end_addr
- start_addr
;
1532 # if defined(MSWIN32) || defined(MSWINCE)
1534 MEMORY_BASIC_INFORMATION mem_info
;
1536 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1537 != sizeof(mem_info
))
1538 ABORT("Weird VirtualQuery result");
1539 free_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1540 if (!VirtualFree(start_addr
, free_len
, MEM_DECOMMIT
))
1541 ABORT("VirtualFree failed");
1542 GC_unmapped_bytes
+= free_len
;
1543 start_addr
+= free_len
;
1547 if (len
!= 0 && munmap(start_addr
, len
) != 0) ABORT("munmap failed");
1548 GC_unmapped_bytes
+= len
;
1552 #endif /* USE_MUNMAP */
1554 /* Routine for pushing any additional roots. In THREADS */
1555 /* environment, this is also responsible for marking from */
1556 /* thread stacks. */
1558 void (*GC_push_other_roots
)() = 0;
1562 PCR_ERes
GC_push_thread_stack(PCR_Th_T
*t
, PCR_Any dummy
)
1564 struct PCR_ThCtl_TInfoRep info
;
1567 info
.ti_stkLow
= info
.ti_stkHi
= 0;
1568 result
= PCR_ThCtl_GetInfo(t
, &info
);
1569 GC_push_all_stack((ptr_t
)(info
.ti_stkLow
), (ptr_t
)(info
.ti_stkHi
));
1573 /* Push the contents of an old object. We treat this as stack */
1574 /* data only becasue that makes it robust against mark stack */
1576 PCR_ERes
GC_push_old_obj(void *p
, size_t size
, PCR_Any data
)
1578 GC_push_all_stack((ptr_t
)p
, (ptr_t
)p
+ size
);
1579 return(PCR_ERes_okay
);
1583 void GC_default_push_other_roots
GC_PROTO((void))
1585 /* Traverse data allocated by previous memory managers. */
1587 extern struct PCR_MM_ProcsRep
* GC_old_allocator
;
1589 if ((*(GC_old_allocator
->mmp_enumerate
))(PCR_Bool_false
,
1592 ABORT("Old object enumeration failed");
1595 /* Traverse all thread stacks. */
1597 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack
,0))
1598 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1599 ABORT("Thread stack marking failed\n");
1607 # ifdef ALL_INTERIOR_POINTERS
1611 void GC_push_thread_structures
GC_PROTO((void))
1613 /* Not our responsibibility. */
1616 extern void ThreadF__ProcessStacks();
1618 void GC_push_thread_stack(start
, stop
)
1621 GC_push_all_stack((ptr_t
)start
, (ptr_t
)stop
+ sizeof(word
));
1624 /* Push routine with M3 specific calling convention. */
1625 GC_m3_push_root(dummy1
, p
, dummy2
, dummy3
)
1627 ptr_t dummy1
, dummy2
;
1632 GC_PUSH_ONE_STACK(q
, p
);
1635 /* M3 set equivalent to RTHeap.TracedRefTypes */
1636 typedef struct { int elts
[1]; } RefTypeSet
;
1637 RefTypeSet GC_TracedRefTypes
= {{0x1}};
1639 void GC_default_push_other_roots
GC_PROTO((void))
1641 /* Use the M3 provided routine for finding static roots. */
1642 /* This is a bit dubious, since it presumes no C roots. */
1643 /* We handle the collector roots explicitly in GC_push_roots */
1644 RTMain__GlobalMapProc(GC_m3_push_root
, 0, GC_TracedRefTypes
);
1645 if (GC_words_allocd
> 0) {
1646 ThreadF__ProcessStacks(GC_push_thread_stack
);
1648 /* Otherwise this isn't absolutely necessary, and we have */
1649 /* startup ordering problems. */
1652 # endif /* SRC_M3 */
1654 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
1655 defined(GC_WIN32_THREADS)
1657 extern void GC_push_all_stacks();
1659 void GC_default_push_other_roots
GC_PROTO((void))
1661 GC_push_all_stacks();
1664 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
1666 void (*GC_push_other_roots
) GC_PROTO((void)) = GC_default_push_other_roots
;
1668 #endif /* THREADS */
1671 * Routines for accessing dirty bits on virtual pages.
1672 * We plan to eventually implement four strategies for doing so:
1673 * DEFAULT_VDB: A simple dummy implementation that treats every page
1674 * as possibly dirty. This makes incremental collection
1675 * useless, but the implementation is still correct.
1676 * PCR_VDB: Use PPCRs virtual dirty bit facility.
1677 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1678 * works under some SVR4 variants. Even then, it may be
1679 * too slow to be entirely satisfactory. Requires reading
1680 * dirty bits for entire address space. Implementations tend
1681 * to assume that the client is a (slow) debugger.
1682 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1683 * dirtied pages. The implementation (and implementability)
1684 * is highly system dependent. This usually fails when system
1685 * calls write to a protected page. We prevent the read system
1686 * call from doing so. It is the clients responsibility to
1687 * make sure that other system calls are similarly protected
1688 * or write only to the stack.
1691 GC_bool GC_dirty_maintained
= FALSE
;
1695 /* All of the following assume the allocation lock is held, and */
1696 /* signals are disabled. */
1698 /* The client asserts that unallocated pages in the heap are never */
1701 /* Initialize virtual dirty bit implementation. */
1702 void GC_dirty_init()
1704 GC_dirty_maintained
= TRUE
;
1707 /* Retrieve system dirty bits for heap to a local buffer. */
1708 /* Restore the systems notion of which pages are dirty. */
1709 void GC_read_dirty()
1712 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1713 /* If the actual page size is different, this returns TRUE if any */
1714 /* of the pages overlapping h are dirty. This routine may err on the */
1715 /* side of labelling pages as dirty (and this implementation does). */
1717 GC_bool
GC_page_was_dirty(h
)
1724 * The following two routines are typically less crucial. They matter
1725 * most with large dynamic libraries, or if we can't accurately identify
1726 * stacks, e.g. under Solaris 2.X. Otherwise the following default
1727 * versions are adequate.
1730 /* Could any valid GC heap pointer ever have been written to this page? */
1732 GC_bool
GC_page_was_ever_dirty(h
)
1738 /* Reset the n pages starting at h to "was never dirty" status. */
1739 void GC_is_fresh(h
, n
)
1745 /* A call hints that h is about to be written. */
1746 /* May speed up some dirty bit implementations. */
1748 void GC_write_hint(h
)
1753 # endif /* DEFAULT_VDB */
1756 # ifdef MPROTECT_VDB
1759 * See DEFAULT_VDB for interface descriptions.
1763 * This implementation maintains dirty bits itself by catching write
1764 * faults and keeping track of them. We assume nobody else catches
1765 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1766 * except as a result of a read system call. This means clients must
1767 * either ensure that system calls do not touch the heap, or must
1768 * provide their own wrappers analogous to the one for read.
1769 * We assume the page size is a multiple of HBLKSIZE.
1770 * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1771 * tried to use portable code where easily possible. It is known
1772 * not to work under a number of other systems.
1775 # if !defined(MSWIN32) && !defined(MSWINCE)
1777 # include <sys/mman.h>
1778 # include <signal.h>
1779 # include <sys/syscall.h>
1781 # define PROTECT(addr, len) \
1782 if (mprotect((caddr_t)(addr), (size_t)(len), \
1783 PROT_READ | OPT_PROT_EXEC) < 0) { \
1784 ABORT("mprotect failed"); \
1786 # define UNPROTECT(addr, len) \
1787 if (mprotect((caddr_t)(addr), (size_t)(len), \
1788 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1789 ABORT("un-mprotect failed"); \
1795 # include <signal.h>
1798 static DWORD protect_junk
;
1799 # define PROTECT(addr, len) \
1800 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1802 DWORD last_error = GetLastError(); \
1803 GC_printf1("Last error code: %lx\n", last_error); \
1804 ABORT("VirtualProtect failed"); \
1806 # define UNPROTECT(addr, len) \
1807 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1809 ABORT("un-VirtualProtect failed"); \
1814 #if defined(SUNOS4) || defined(FREEBSD)
1815 typedef void (* SIG_PF
)();
1817 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
1818 || defined(MACOSX) || defined(HURD)
1820 typedef void (* SIG_PF
)(int);
1822 typedef void (* SIG_PF
)();
1825 #if defined(MSWIN32)
1826 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF
;
1828 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1830 #if defined(MSWINCE)
1831 typedef LONG (WINAPI
*SIG_PF
)(struct _EXCEPTION_POINTERS
*);
1833 # define SIG_DFL (SIG_PF) (-1)
1836 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
1837 typedef void (* REAL_SIG_PF
)(int, int, struct sigcontext
*);
1839 #if defined(SUNOS5SIGS)
1841 # define SIGINFO __siginfo
1843 # define SIGINFO siginfo
1846 typedef void (* REAL_SIG_PF
)(int, struct SIGINFO
*, void *);
1848 typedef void (* REAL_SIG_PF
)();
1852 # include <linux/version.h>
1853 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1854 typedef struct sigcontext s_c
;
1856 typedef struct sigcontext_struct s_c
;
1858 # if defined(ALPHA) || defined(M68K)
1859 typedef void (* REAL_SIG_PF
)(int, int, s_c
*);
1861 # if defined(IA64) || defined(HP_PA)
1862 typedef void (* REAL_SIG_PF
)(int, siginfo_t
*, s_c
*);
1864 typedef void (* REAL_SIG_PF
)(int, s_c
);
1868 /* Retrieve fault address from sigcontext structure by decoding */
1870 char * get_fault_addr(s_c
*sc
) {
1874 instr
= *((unsigned *)(sc
->sc_pc
));
1875 faultaddr
= sc
->sc_regs
[(instr
>> 16) & 0x1f];
1876 faultaddr
+= (word
) (((int)instr
<< 16) >> 16);
1877 return (char *)faultaddr
;
1879 # endif /* !ALPHA */
1882 # if defined(MACOSX) /* Should also test for PowerPC? */
1883 typedef void (* REAL_SIG_PF
)(int, int, struct sigcontext
*);
1885 /* Decodes the machine instruction which was responsible for the sending of the
1886 SIGBUS signal. Sadly this is the only way to find the faulting address because
1887 the signal handler doesn't get it directly from the kernel (although it is
1888 available on the Mach level, but droppped by the BSD personality before it
1889 calls our signal handler...)
1890 This code should be able to deal correctly with all PPCs starting from the
1891 601 up to and including the G4s (including Velocity Engine). */
1892 #define EXTRACT_OP1(iw) (((iw) & 0xFC000000) >> 26)
1893 #define EXTRACT_OP2(iw) (((iw) & 0x000007FE) >> 1)
1894 #define EXTRACT_REGA(iw) (((iw) & 0x001F0000) >> 16)
1895 #define EXTRACT_REGB(iw) (((iw) & 0x03E00000) >> 21)
1896 #define EXTRACT_REGC(iw) (((iw) & 0x0000F800) >> 11)
1897 #define EXTRACT_DISP(iw) ((short *) &(iw))[1]
1899 static char *get_fault_addr(struct sigcontext
*scp
)
1901 unsigned int instr
= *((unsigned int *) scp
->sc_ir
);
1902 unsigned int * regs
= &((unsigned int *) scp
->sc_regs
)[2];
1904 unsigned int baseA
= 0, baseB
= 0;
1905 unsigned int addr
, alignmask
= 0xFFFFFFFF;
1907 #ifdef GC_DEBUG_DECODER
1908 GC_err_printf1("Instruction: 0x%lx\n", instr
);
1909 GC_err_printf1("Opcode 1: d\n", (int)EXTRACT_OP1(instr
));
1911 switch(EXTRACT_OP1(instr
)) {
1915 case 55: /* stfdu */
1917 case 53: /* stfsu */
1923 tmp
= EXTRACT_REGA(instr
);
1926 disp
= EXTRACT_DISP(instr
);
1929 #ifdef GC_DEBUG_DECODER
1930 GC_err_printf1("Opcode 2: %d\n", (int)EXTRACT_OP2(instr
));
1932 switch(EXTRACT_OP2(instr
)) {
1934 case 54: /* dcbst */
1935 case 1014: /* dcbz */
1936 case 247: /* stbux */
1937 case 215: /* stbx */
1938 case 759: /* stfdux */
1939 case 727: /* stfdx */
1940 case 983: /* stfiwx */
1941 case 695: /* stfsux */
1942 case 663: /* stfsx */
1943 case 918: /* sthbrx */
1944 case 439: /* sthux */
1945 case 407: /* sthx */
1946 case 661: /* stswx */
1947 case 662: /* stwbrx */
1948 case 150: /* stwcx. */
1949 case 183: /* stwux */
1950 case 151: /* stwx */
1951 case 135: /* stvebx */
1952 case 167: /* stvehx */
1953 case 199: /* stvewx */
1954 case 231: /* stvx */
1955 case 487: /* stvxl */
1956 tmp
= EXTRACT_REGA(instr
);
1959 baseB
= regs
[EXTRACT_REGC(instr
)];
1960 /* determine Altivec alignment mask */
1961 switch(EXTRACT_OP2(instr
)) {
1962 case 167: /* stvehx */
1963 alignmask
= 0xFFFFFFFE;
1965 case 199: /* stvewx */
1966 alignmask
= 0xFFFFFFFC;
1968 case 231: /* stvx */
1969 alignmask
= 0xFFFFFFF0;
1971 case 487: /* stvxl */
1972 alignmask
= 0xFFFFFFF0;
1976 case 725: /* stswi */
1977 tmp
= EXTRACT_REGA(instr
);
1981 default: /* ignore instruction */
1982 #ifdef GC_DEBUG_DECODER
1983 GC_err_printf("Ignored by inner handler\n");
1989 default: /* ignore instruction */
1990 #ifdef GC_DEBUG_DECODER
1991 GC_err_printf("Ignored by main handler\n");
1997 addr
= (baseA
+ baseB
) + disp
;
1999 #ifdef GC_DEBUG_DECODER
2000 GC_err_printf1("BaseA: %d\n", baseA
);
2001 GC_err_printf1("BaseB: %d\n", baseB
);
2002 GC_err_printf1("Disp: %d\n", disp
);
2003 GC_err_printf1("Address: %d\n", addr
);
2005 return (char *)addr
;
2009 SIG_PF GC_old_bus_handler
;
2010 SIG_PF GC_old_segv_handler
; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2013 /* We need to lock around the bitmap update in the write fault handler */
2014 /* in order to avoid the risk of losing a bit. We do this with a */
2015 /* test-and-set spin lock if we know how to do that. Otherwise we */
2016 /* check whether we are already in the handler and use the dumb but */
2017 /* safe fallback algorithm of setting all bits in the word. */
2018 /* Contention should be very rare, so we do the minimum to handle it */
2020 #ifdef GC_TEST_AND_SET_DEFINED
2021 static VOLATILE
unsigned int fault_handler_lock
= 0;
2022 void async_set_pht_entry_from_index(VOLATILE page_hash_table db
, int index
) {
2023 while (GC_test_and_set(&fault_handler_lock
)) {}
2024 /* Could also revert to set_pht_entry_from_index_safe if initial */
2025 /* GC_test_and_set fails. */
2026 set_pht_entry_from_index(db
, index
);
2027 GC_clear(&fault_handler_lock
);
2029 #else /* !GC_TEST_AND_SET_DEFINED */
2030 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2031 /* just before we notice the conflict and correct it. We may end up */
2032 /* looking at it while it's wrong. But this requires contention */
2033 /* exactly when a GC is triggered, which seems far less likely to */
2034 /* fail than the old code, which had no reported failures. Thus we */
2035 /* leave it this way while we think of something better, or support */
2036 /* GC_test_and_set on the remaining platforms. */
2037 static VOLATILE word currently_updating
= 0;
2038 void async_set_pht_entry_from_index(VOLATILE page_hash_table db
, int index
) {
2039 unsigned int update_dummy
;
2040 currently_updating
= (word
)(&update_dummy
);
2041 set_pht_entry_from_index(db
, index
);
2042 /* If we get contention in the 10 or so instruction window here, */
2043 /* and we get stopped by a GC between the two updates, we lose! */
2044 if (currently_updating
!= (word
)(&update_dummy
)) {
2045 set_pht_entry_from_index_safe(db
, index
);
2046 /* We claim that if two threads concurrently try to update the */
2047 /* dirty bit vector, the first one to execute UPDATE_START */
2048 /* will see it changed when UPDATE_END is executed. (Note that */
2049 /* &update_dummy must differ in two distinct threads.) It */
2050 /* will then execute set_pht_entry_from_index_safe, thus */
2051 /* returning us to a safe state, though not soon enough. */
2054 #endif /* !GC_TEST_AND_SET_DEFINED */
2055 #else /* !THREADS */
2056 # define async_set_pht_entry_from_index(db, index) \
2057 set_pht_entry_from_index(db, index)
2058 #endif /* !THREADS */
2061 # if defined (SUNOS4) || defined(FREEBSD)
2062 void GC_write_fault_handler(sig
, code
, scp
, addr
)
2064 struct sigcontext
*scp
;
2067 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2068 # define CODE_OK (FC_CODE(code) == FC_PROT \
2069 || (FC_CODE(code) == FC_OBJERR \
2070 && FC_ERRNO(code) == FC_PROT))
2073 # define SIG_OK (sig == SIGBUS)
2074 # define CODE_OK (code == BUS_PAGE_FAULT)
2077 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2079 void GC_write_fault_handler(int sig
, int code
, struct sigcontext
*scp
)
2081 # define SIG_OK (sig == SIGSEGV)
2082 # define CODE_OK (code == 2 /* experimentally determined */)
2085 # define SIG_OK (sig == SIGSEGV)
2086 # define CODE_OK (code == EACCES)
2089 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2090 # define CODE_OK TRUE
2094 # if defined(ALPHA) || defined(M68K)
2095 void GC_write_fault_handler(int sig
, int code
, s_c
* sc
)
2097 # if defined(IA64) || defined(HP_PA)
2098 void GC_write_fault_handler(int sig
, siginfo_t
* si
, s_c
* scp
)
2100 void GC_write_fault_handler(int sig
, s_c sc
)
2103 # define SIG_OK (sig == SIGSEGV)
2104 # define CODE_OK TRUE
2105 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2106 /* Should probably consider alignment issues on other */
2107 /* architectures. */
2109 # if defined(SUNOS5SIGS)
2111 void GC_write_fault_handler(int sig
, struct SIGINFO
*scp
, void * context
)
2113 void GC_write_fault_handler(sig
, scp
, context
)
2115 struct SIGINFO
*scp
;
2119 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2120 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2121 || (scp -> si_code == BUS_ADRERR) \
2122 || (scp -> si_code == BUS_UNKNOWN) \
2123 || (scp -> si_code == SEGV_UNKNOWN) \
2124 || (scp -> si_code == BUS_OBJERR)
2126 # define SIG_OK (sig == SIGSEGV)
2127 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2131 # if defined(MACOSX)
2132 void GC_write_fault_handler(int sig
, int code
, struct sigcontext
*scp
)
2133 # define SIG_OK (sig == SIGBUS)
2134 # define CODE_OK (code == 0 /* experimentally determined */)
2137 # if defined(MSWIN32) || defined(MSWINCE)
2138 LONG WINAPI
GC_write_fault_handler(struct _EXCEPTION_POINTERS
*exc_info
)
2139 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2140 STATUS_ACCESS_VIOLATION)
2141 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2145 register unsigned i
;
2147 char *addr
= (char *) code
;
2150 char * addr
= (char *) (size_t) (scp
-> sc_badvaddr
);
2152 # if defined(OSF1) && defined(ALPHA)
2153 char * addr
= (char *) (scp
-> sc_traparg_a0
);
2156 char * addr
= (char *) (scp
-> si_addr
);
2160 char * addr
= (char *) (sc
.cr2
);
2165 struct sigcontext
*scp
= (struct sigcontext
*)(sc
);
2167 int format
= (scp
->sc_formatvec
>> 12) & 0xf;
2168 unsigned long *framedata
= (unsigned long *)(scp
+ 1);
2171 if (format
== 0xa || format
== 0xb) {
2174 } else if (format
== 7) {
2177 if (framedata
[1] & 0x08000000) {
2178 /* correct addr on misaligned access */
2179 ea
= (ea
+4095)&(~4095);
2181 } else if (format
== 4) {
2184 if (framedata
[1] & 0x08000000) {
2185 /* correct addr on misaligned access */
2186 ea
= (ea
+4095)&(~4095);
2192 char * addr
= get_fault_addr(sc
);
2194 # if defined(IA64) || defined(HP_PA)
2195 char * addr
= si
-> si_addr
;
2196 /* I believe this is claimed to work on all platforms for */
2197 /* Linux 2.3.47 and later. Hopefully we don't have to */
2198 /* worry about earlier kernels on IA64. */
2200 # if defined(POWERPC)
2201 char * addr
= (char *) (sc
.regs
->dar
);
2203 --> architecture
not supported
2210 # if defined(MACOSX)
2211 char * addr
= get_fault_addr(scp
);
2213 # if defined(MSWIN32) || defined(MSWINCE)
2214 char * addr
= (char *) (exc_info
-> ExceptionRecord
2215 -> ExceptionInformation
[1]);
2216 # define sig SIGSEGV
2219 if (SIG_OK
&& CODE_OK
) {
2220 register struct hblk
* h
=
2221 (struct hblk
*)((word
)addr
& ~(GC_page_size
-1));
2222 GC_bool in_allocd_block
;
2225 /* Address is only within the correct physical page. */
2226 in_allocd_block
= FALSE
;
2227 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
2228 if (HDR(h
+i
) != 0) {
2229 in_allocd_block
= TRUE
;
2233 in_allocd_block
= (HDR(addr
) != 0);
2235 if (!in_allocd_block
) {
2236 /* Heap blocks now begin and end on page boundaries */
2239 if (sig
== SIGSEGV
) {
2240 old_handler
= GC_old_segv_handler
;
2242 old_handler
= GC_old_bus_handler
;
2244 if (old_handler
== SIG_DFL
) {
2245 # if !defined(MSWIN32) && !defined(MSWINCE)
2246 GC_err_printf1("Segfault at 0x%lx\n", addr
);
2247 ABORT("Unexpected bus error or segmentation fault");
2249 return(EXCEPTION_CONTINUE_SEARCH
);
2252 # if defined (SUNOS4) || defined(FREEBSD)
2253 (*old_handler
) (sig
, code
, scp
, addr
);
2256 # if defined (SUNOS5SIGS)
2257 (*(REAL_SIG_PF
)old_handler
) (sig
, scp
, context
);
2260 # if defined (LINUX)
2261 # if defined(ALPHA) || defined(M68K)
2262 (*(REAL_SIG_PF
)old_handler
) (sig
, code
, sc
);
2264 # if defined(IA64) || defined(HP_PA)
2265 (*(REAL_SIG_PF
)old_handler
) (sig
, si
, scp
);
2267 (*(REAL_SIG_PF
)old_handler
) (sig
, sc
);
2272 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2273 (*(REAL_SIG_PF
)old_handler
) (sig
, code
, scp
);
2277 (*(REAL_SIG_PF
)old_handler
) (sig
, code
, scp
);
2280 return((*old_handler
)(exc_info
));
2284 UNPROTECT(h
, GC_page_size
);
2285 /* We need to make sure that no collection occurs between */
2286 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2287 /* a write by a third thread might go unnoticed. Reversing */
2288 /* the order is just as bad, since we would end up unprotecting */
2289 /* a page in a GC cycle during which it's not marked. */
2290 /* Currently we do this by disabling the thread stopping */
2291 /* signals while this handler is running. An alternative might */
2292 /* be to record the fact that we're about to unprotect, or */
2293 /* have just unprotected a page in the GC's thread structure, */
2294 /* and then to have the thread stopping code set the dirty */
2295 /* flag, if necessary. */
2296 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
2297 register int index
= PHT_HASH(h
+i
);
2299 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2302 /* These reset the signal handler each time by default. */
2303 signal(SIGSEGV
, (SIG_PF
) GC_write_fault_handler
);
2305 /* The write may not take place before dirty bits are read. */
2306 /* But then we'll fault again ... */
2307 # if defined(MSWIN32) || defined(MSWINCE)
2308 return(EXCEPTION_CONTINUE_EXECUTION
);
2313 #if defined(MSWIN32) || defined(MSWINCE)
2314 return EXCEPTION_CONTINUE_SEARCH
;
2316 GC_err_printf1("Segfault at 0x%lx\n", addr
);
2317 ABORT("Unexpected bus error or segmentation fault");
2322 * We hold the allocation lock. We expect block h to be written
2325 void GC_write_hint(h
)
2328 register struct hblk
* h_trunc
;
2329 register unsigned i
;
2330 register GC_bool found_clean
;
2332 if (!GC_dirty_maintained
) return;
2333 h_trunc
= (struct hblk
*)((word
)h
& ~(GC_page_size
-1));
2334 found_clean
= FALSE
;
2335 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
2336 register int index
= PHT_HASH(h_trunc
+i
);
2338 if (!get_pht_entry_from_index(GC_dirty_pages
, index
)) {
2340 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2344 UNPROTECT(h_trunc
, GC_page_size
);
2348 void GC_dirty_init()
2350 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2351 defined(OSF1) || defined(HURD)
2352 struct sigaction act
, oldact
;
2353 /* We should probably specify SA_SIGINFO for Linux, and handle */
2354 /* the different architectures more uniformly. */
2355 # if defined(IRIX5) || defined(LINUX) || defined(OSF1) || defined(HURD)
2356 act
.sa_flags
= SA_RESTART
;
2357 act
.sa_handler
= (SIG_PF
)GC_write_fault_handler
;
2359 act
.sa_flags
= SA_RESTART
| SA_SIGINFO
;
2360 act
.sa_sigaction
= GC_write_fault_handler
;
2362 (void)sigemptyset(&act
.sa_mask
);
2364 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2365 /* handler. This effectively makes the handler atomic w.r.t. */
2366 /* stopping the world for GC. */
2367 (void)sigaddset(&act
.sa_mask
, SIG_SUSPEND
);
2368 # endif /* SIG_SUSPEND */
2370 # if defined(MACOSX)
2371 struct sigaction act
, oldact
;
2373 act
.sa_flags
= SA_RESTART
;
2374 act
.sa_handler
= GC_write_fault_handler
;
2375 sigemptyset(&act
.sa_mask
);
2378 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2380 GC_dirty_maintained
= TRUE
;
2381 if (GC_page_size
% HBLKSIZE
!= 0) {
2382 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2383 ABORT("Page size not multiple of HBLKSIZE");
2385 # if defined(SUNOS4) || defined(FREEBSD)
2386 GC_old_bus_handler
= signal(SIGBUS
, GC_write_fault_handler
);
2387 if (GC_old_bus_handler
== SIG_IGN
) {
2388 GC_err_printf0("Previously ignored bus error!?");
2389 GC_old_bus_handler
= SIG_DFL
;
2391 if (GC_old_bus_handler
!= SIG_DFL
) {
2393 GC_err_printf0("Replaced other SIGBUS handler\n");
2397 # if defined(SUNOS4)
2398 GC_old_segv_handler
= signal(SIGSEGV
, (SIG_PF
)GC_write_fault_handler
);
2399 if (GC_old_segv_handler
== SIG_IGN
) {
2400 GC_err_printf0("Previously ignored segmentation violation!?");
2401 GC_old_segv_handler
= SIG_DFL
;
2403 if (GC_old_segv_handler
!= SIG_DFL
) {
2405 GC_err_printf0("Replaced other SIGSEGV handler\n");
2409 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) \
2410 || defined(OSF1) || defined(HURD)
2411 /* SUNOS5SIGS includes HPUX */
2412 # if defined(GC_IRIX_THREADS)
2413 sigaction(SIGSEGV
, 0, &oldact
);
2414 sigaction(SIGSEGV
, &act
, 0);
2416 sigaction(SIGSEGV
, &act
, &oldact
);
2418 # if defined(_sigargs) || defined(HURD)
2419 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2421 GC_old_segv_handler
= oldact
.sa_handler
;
2422 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2423 if (oldact
.sa_flags
& SA_SIGINFO
) {
2424 GC_old_segv_handler
= (SIG_PF
)(oldact
.sa_sigaction
);
2426 GC_old_segv_handler
= oldact
.sa_handler
;
2429 if (GC_old_segv_handler
== SIG_IGN
) {
2430 GC_err_printf0("Previously ignored segmentation violation!?");
2431 GC_old_segv_handler
= SIG_DFL
;
2433 if (GC_old_segv_handler
!= SIG_DFL
) {
2435 GC_err_printf0("Replaced other SIGSEGV handler\n");
2439 # if defined(MACOSX) || defined(HPUX) || defined(LINUX) || defined(HURD)
2440 sigaction(SIGBUS
, &act
, &oldact
);
2441 GC_old_bus_handler
= oldact
.sa_handler
;
2442 if (GC_old_bus_handler
== SIG_IGN
) {
2443 GC_err_printf0("Previously ignored bus error!?");
2444 GC_old_bus_handler
= SIG_DFL
;
2446 if (GC_old_bus_handler
!= SIG_DFL
) {
2448 GC_err_printf0("Replaced other SIGBUS handler\n");
2451 # endif /* MACOS || HPUX || LINUX */
2452 # if defined(MSWIN32)
2453 GC_old_segv_handler
= SetUnhandledExceptionFilter(GC_write_fault_handler
);
2454 if (GC_old_segv_handler
!= NULL
) {
2456 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2459 GC_old_segv_handler
= SIG_DFL
;
2466 void GC_protect_heap()
2472 for (i
= 0; i
< GC_n_heap_sects
; i
++) {
2473 start
= GC_heap_sects
[i
].hs_start
;
2474 len
= GC_heap_sects
[i
].hs_bytes
;
2475 PROTECT(start
, len
);
2479 /* We assume that either the world is stopped or its OK to lose dirty */
2480 /* bits while this is happenning (as in GC_enable_incremental). */
2481 void GC_read_dirty()
2483 BCOPY((word
*)GC_dirty_pages
, GC_grungy_pages
,
2484 (sizeof GC_dirty_pages
));
2485 BZERO((word
*)GC_dirty_pages
, (sizeof GC_dirty_pages
));
2489 GC_bool
GC_page_was_dirty(h
)
2492 register word index
= PHT_HASH(h
);
2494 return(HDR(h
) == 0 || get_pht_entry_from_index(GC_grungy_pages
, index
));
2498 * Acquiring the allocation lock here is dangerous, since this
2499 * can be called from within GC_call_with_alloc_lock, and the cord
2500 * package does so. On systems that allow nested lock acquisition, this
2502 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2505 static GC_bool syscall_acquired_lock
= FALSE
; /* Protected by GC lock. */
2507 void GC_begin_syscall()
2509 if (!I_HOLD_LOCK()) {
2511 syscall_acquired_lock
= TRUE
;
2515 void GC_end_syscall()
2517 if (syscall_acquired_lock
) {
2518 syscall_acquired_lock
= FALSE
;
2523 void GC_unprotect_range(addr
, len
)
2527 struct hblk
* start_block
;
2528 struct hblk
* end_block
;
2529 register struct hblk
*h
;
2532 if (!GC_incremental
) return;
2533 obj_start
= GC_base(addr
);
2534 if (obj_start
== 0) return;
2535 if (GC_base(addr
+ len
- 1) != obj_start
) {
2536 ABORT("GC_unprotect_range(range bigger than object)");
2538 start_block
= (struct hblk
*)((word
)addr
& ~(GC_page_size
- 1));
2539 end_block
= (struct hblk
*)((word
)(addr
+ len
- 1) & ~(GC_page_size
- 1));
2540 end_block
+= GC_page_size
/HBLKSIZE
- 1;
2541 for (h
= start_block
; h
<= end_block
; h
++) {
2542 register word index
= PHT_HASH(h
);
2544 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2546 UNPROTECT(start_block
,
2547 ((ptr_t
)end_block
- (ptr_t
)start_block
) + HBLKSIZE
);
2550 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_LINUX_THREADS) \
2551 && !defined(GC_USE_LD_WRAP)
2552 /* Replacement for UNIX system call. */
2553 /* Other calls that write to the heap */
2554 /* should be handled similarly. */
2555 # if defined(__STDC__) && !defined(SUNOS4)
2556 # include <unistd.h>
2557 # include <sys/uio.h>
2558 ssize_t
read(int fd
, void *buf
, size_t nbyte
)
2561 int read(fd
, buf
, nbyte
)
2563 int GC_read(fd
, buf
, nbyte
)
2573 GC_unprotect_range(buf
, (word
)nbyte
);
2574 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
2575 /* Indirect system call may not always be easily available. */
2576 /* We could call _read, but that would interfere with the */
2577 /* libpthread interception of read. */
2578 /* On Linux, we have to be careful with the linuxthreads */
2579 /* read interception. */
2584 iov
.iov_len
= nbyte
;
2585 result
= readv(fd
, &iov
, 1);
2589 result
= __read(fd
, buf
, nbyte
);
2591 /* The two zero args at the end of this list are because one
2592 IA-64 syscall() implementation actually requires six args
2593 to be passed, even though they aren't always used. */
2594 result
= syscall(SYS_read
, fd
, buf
, nbyte
, 0, 0);
2600 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
2602 #ifdef GC_USE_LD_WRAP
2603 /* We use the GNU ld call wrapping facility. */
2604 /* This requires that the linker be invoked with "--wrap read". */
2605 /* This can be done by passing -Wl,"--wrap read" to gcc. */
2606 /* I'm not sure that this actually wraps whatever version of read */
2607 /* is called by stdio. That code also mentions __read. */
2608 # include <unistd.h>
2609 ssize_t
__wrap_read(int fd
, void *buf
, size_t nbyte
)
2614 GC_unprotect_range(buf
, (word
)nbyte
);
2615 result
= __real_read(fd
, buf
, nbyte
);
2620 /* We should probably also do this for __read, or whatever stdio */
2621 /* actually calls. */
2625 GC_bool
GC_page_was_ever_dirty(h
)
2631 /* Reset the n pages starting at h to "was never dirty" status. */
2633 void GC_is_fresh(h
, n
)
2639 # else /* !MPROTECT_VDB */
2641 # ifdef GC_USE_LD_WRAP
2642 ssize_t
__wrap_read(int fd
, void *buf
, size_t nbyte
)
2643 { return __real_read(fd
, buf
, nbyte
); }
2646 # endif /* MPROTECT_VDB */
2651 * See DEFAULT_VDB for interface descriptions.
2655 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2656 * from which we can read page modified bits. This facility is far from
2657 * optimal (e.g. we would like to get the info for only some of the
2658 * address space), but it avoids intercepting system calls.
2662 #include <sys/types.h>
2663 #include <sys/signal.h>
2664 #include <sys/fault.h>
2665 #include <sys/syscall.h>
2666 #include <sys/procfs.h>
2667 #include <sys/stat.h>
2669 #define INITIAL_BUF_SZ 4096
2670 word GC_proc_buf_size
= INITIAL_BUF_SZ
;
2673 #ifdef GC_SOLARIS_THREADS
2674 /* We don't have exact sp values for threads. So we count on */
2675 /* occasionally declaring stack pages to be fresh. Thus we */
2676 /* need a real implementation of GC_is_fresh. We can't clear */
2677 /* entries in GC_written_pages, since that would declare all */
2678 /* pages with the given hash address to be fresh. */
2679 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2680 struct hblk
** GC_fresh_pages
; /* A direct mapped cache. */
2681 /* Collisions are dropped. */
2683 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2684 # define ADD_FRESH_PAGE(h) \
2685 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2686 # define PAGE_IS_FRESH(h) \
2687 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2690 /* Add all pages in pht2 to pht1 */
2691 void GC_or_pages(pht1
, pht2
)
2692 page_hash_table pht1
, pht2
;
2696 for (i
= 0; i
< PHT_SIZE
; i
++) pht1
[i
] |= pht2
[i
];
2701 void GC_dirty_init()
2706 GC_dirty_maintained
= TRUE
;
2707 if (GC_words_allocd
!= 0 || GC_words_allocd_before_gc
!= 0) {
2710 for (i
= 0; i
< PHT_SIZE
; i
++) GC_written_pages
[i
] = (word
)(-1);
2712 GC_printf1("Allocated words:%lu:all pages may have been written\n",
2714 (GC_words_allocd
+ GC_words_allocd_before_gc
));
2717 sprintf(buf
, "/proc/%d", getpid());
2718 fd
= open(buf
, O_RDONLY
);
2720 ABORT("/proc open failed");
2722 GC_proc_fd
= syscall(SYS_ioctl
, fd
, PIOCOPENPD
, 0);
2724 if (GC_proc_fd
< 0) {
2725 ABORT("/proc ioctl failed");
2727 GC_proc_buf
= GC_scratch_alloc(GC_proc_buf_size
);
2728 # ifdef GC_SOLARIS_THREADS
2729 GC_fresh_pages
= (struct hblk
**)
2730 GC_scratch_alloc(MAX_FRESH_PAGES
* sizeof (struct hblk
*));
2731 if (GC_fresh_pages
== 0) {
2732 GC_err_printf0("No space for fresh pages\n");
2735 BZERO(GC_fresh_pages
, MAX_FRESH_PAGES
* sizeof (struct hblk
*));
2739 /* Ignore write hints. They don't help us here. */
2741 void GC_write_hint(h
)
2746 #ifdef GC_SOLARIS_THREADS
2747 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2749 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2752 void GC_read_dirty()
2754 unsigned long ps
, np
;
2757 struct prasmap
* map
;
2759 ptr_t current_addr
, limit
;
2763 BZERO(GC_grungy_pages
, (sizeof GC_grungy_pages
));
2766 if (READ(GC_proc_fd
, bufp
, GC_proc_buf_size
) <= 0) {
2768 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2772 /* Retry with larger buffer. */
2773 word new_size
= 2 * GC_proc_buf_size
;
2774 char * new_buf
= GC_scratch_alloc(new_size
);
2777 GC_proc_buf
= bufp
= new_buf
;
2778 GC_proc_buf_size
= new_size
;
2780 if (syscall(SYS_read
, GC_proc_fd
, bufp
, GC_proc_buf_size
) <= 0) {
2781 WARN("Insufficient space for /proc read\n", 0);
2783 memset(GC_grungy_pages
, 0xff, sizeof (page_hash_table
));
2784 memset(GC_written_pages
, 0xff, sizeof(page_hash_table
));
2785 # ifdef GC_SOLARIS_THREADS
2786 BZERO(GC_fresh_pages
,
2787 MAX_FRESH_PAGES
* sizeof (struct hblk
*));
2793 /* Copy dirty bits into GC_grungy_pages */
2794 nmaps
= ((struct prpageheader
*)bufp
) -> pr_nmap
;
2795 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2796 nmaps, PG_REFERENCED, PG_MODIFIED); */
2797 bufp
= bufp
+ sizeof(struct prpageheader
);
2798 for (i
= 0; i
< nmaps
; i
++) {
2799 map
= (struct prasmap
*)bufp
;
2800 vaddr
= (ptr_t
)(map
-> pr_vaddr
);
2801 ps
= map
-> pr_pagesize
;
2802 np
= map
-> pr_npage
;
2803 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2804 limit
= vaddr
+ ps
* np
;
2805 bufp
+= sizeof (struct prasmap
);
2806 for (current_addr
= vaddr
;
2807 current_addr
< limit
; current_addr
+= ps
){
2808 if ((*bufp
++) & PG_MODIFIED
) {
2809 register struct hblk
* h
= (struct hblk
*) current_addr
;
2811 while ((ptr_t
)h
< current_addr
+ ps
) {
2812 register word index
= PHT_HASH(h
);
2814 set_pht_entry_from_index(GC_grungy_pages
, index
);
2815 # ifdef GC_SOLARIS_THREADS
2817 register int slot
= FRESH_PAGE_SLOT(h
);
2819 if (GC_fresh_pages
[slot
] == h
) {
2820 GC_fresh_pages
[slot
] = 0;
2828 bufp
+= sizeof(long) - 1;
2829 bufp
= (char *)((unsigned long)bufp
& ~(sizeof(long)-1));
2831 /* Update GC_written_pages. */
2832 GC_or_pages(GC_written_pages
, GC_grungy_pages
);
2833 # ifdef GC_SOLARIS_THREADS
2834 /* Make sure that old stacks are considered completely clean */
2835 /* unless written again. */
2836 GC_old_stacks_are_fresh();
2842 GC_bool
GC_page_was_dirty(h
)
2845 register word index
= PHT_HASH(h
);
2846 register GC_bool result
;
2848 result
= get_pht_entry_from_index(GC_grungy_pages
, index
);
2849 # ifdef GC_SOLARIS_THREADS
2850 if (result
&& PAGE_IS_FRESH(h
)) result
= FALSE
;
2851 /* This happens only if page was declared fresh since */
2852 /* the read_dirty call, e.g. because it's in an unused */
2853 /* thread stack. It's OK to treat it as clean, in */
2854 /* that case. And it's consistent with */
2855 /* GC_page_was_ever_dirty. */
2860 GC_bool
GC_page_was_ever_dirty(h
)
2863 register word index
= PHT_HASH(h
);
2864 register GC_bool result
;
2866 result
= get_pht_entry_from_index(GC_written_pages
, index
);
2867 # ifdef GC_SOLARIS_THREADS
2868 if (result
&& PAGE_IS_FRESH(h
)) result
= FALSE
;
2873 /* Caller holds allocation lock. */
2874 void GC_is_fresh(h
, n
)
2879 register word index
;
2881 # ifdef GC_SOLARIS_THREADS
2884 if (GC_fresh_pages
!= 0) {
2885 for (i
= 0; i
< n
; i
++) {
2886 ADD_FRESH_PAGE(h
+ i
);
2892 # endif /* PROC_VDB */
2897 # include "vd/PCR_VD.h"
2899 # define NPAGES (32*1024) /* 128 MB */
2901 PCR_VD_DB GC_grungy_bits
[NPAGES
];
2903 ptr_t GC_vd_base
; /* Address corresponding to GC_grungy_bits[0] */
2904 /* HBLKSIZE aligned. */
2906 void GC_dirty_init()
2908 GC_dirty_maintained
= TRUE
;
2909 /* For the time being, we assume the heap generally grows up */
2910 GC_vd_base
= GC_heap_sects
[0].hs_start
;
2911 if (GC_vd_base
== 0) {
2912 ABORT("Bad initial heap segment");
2914 if (PCR_VD_Start(HBLKSIZE
, GC_vd_base
, NPAGES
*HBLKSIZE
)
2916 ABORT("dirty bit initialization failed");
2920 void GC_read_dirty()
2922 /* lazily enable dirty bits on newly added heap sects */
2924 static int onhs
= 0;
2925 int nhs
= GC_n_heap_sects
;
2926 for( ; onhs
< nhs
; onhs
++ ) {
2927 PCR_VD_WriteProtectEnable(
2928 GC_heap_sects
[onhs
].hs_start
,
2929 GC_heap_sects
[onhs
].hs_bytes
);
2934 if (PCR_VD_Clear(GC_vd_base
, NPAGES
*HBLKSIZE
, GC_grungy_bits
)
2936 ABORT("dirty bit read failed");
2940 GC_bool
GC_page_was_dirty(h
)
2943 if((ptr_t
)h
< GC_vd_base
|| (ptr_t
)h
>= GC_vd_base
+ NPAGES
*HBLKSIZE
) {
2946 return(GC_grungy_bits
[h
- (struct hblk
*)GC_vd_base
] & PCR_VD_DB_dirtyBit
);
2950 void GC_write_hint(h
)
2953 PCR_VD_WriteProtectDisable(h
, HBLKSIZE
);
2954 PCR_VD_WriteProtectEnable(h
, HBLKSIZE
);
2957 # endif /* PCR_VDB */
2960 * Call stack save code for debugging.
2961 * Should probably be in mach_dep.c, but that requires reorganization.
2964 /* I suspect the following works for most X86 *nix variants, so */
2965 /* long as the frame pointer is explicitly stored. In the case of gcc, */
2966 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
2967 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
2969 struct frame
*fr_savfp
;
2971 long fr_arg
[NARGS
]; /* All the arguments go here. */
2980 struct frame
*fr_savfp
;
2989 # if defined(SUNOS4)
2990 # include <machine/frame.h>
2992 # if defined (DRSNX)
2993 # include <sys/sparc/frame.h>
2995 # if defined(OPENBSD) || defined(NETBSD)
2998 # include <sys/frame.h>
3004 --> We only know how to to get the first
6 arguments
3008 #ifdef SAVE_CALL_CHAIN
3009 /* Fill in the pc and argument information for up to NFRAMES of my */
3010 /* callers. Ignore my frame and my callers frame. */
3012 #if (defined(OPENBSD) || defined(NETBSD)) && defined(SPARC)
3013 # define FR_SAVFP fr_fp
3014 # define FR_SAVPC fr_pc
3016 # define FR_SAVFP fr_savfp
3017 # define FR_SAVPC fr_savpc
3020 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
3026 void GC_save_callers (info
)
3027 struct callinfo info
[NFRAMES
];
3029 struct frame
*frame
;
3033 /* We assume this is turned on only with gcc as the compiler. */
3034 asm("movl %%ebp,%0" : "=r"(frame
));
3037 word
GC_save_regs_in_stack();
3039 frame
= (struct frame
*) GC_save_regs_in_stack ();
3040 fp
= (struct frame
*)((long) frame
-> FR_SAVFP
+ BIAS
);
3043 for (; (!(fp HOTTER_THAN frame
) && !(GC_stackbottom
HOTTER_THAN (ptr_t
)fp
)
3044 && (nframes
< NFRAMES
));
3045 fp
= (struct frame
*)((long) fp
-> FR_SAVFP
+ BIAS
), nframes
++) {
3048 info
[nframes
].ci_pc
= fp
->FR_SAVPC
;
3050 for (i
= 0; i
< NARGS
; i
++) {
3051 info
[nframes
].ci_arg
[i
] = ~(fp
->fr_arg
[i
]);
3053 # endif /* NARGS > 0 */
3055 if (nframes
< NFRAMES
) info
[nframes
].ci_pc
= 0;
3058 #endif /* SAVE_CALL_CHAIN */
3060 #if defined(LINUX) && defined(__ELF__) && \
3061 (!defined(SMALL_CONFIG) || defined(USE_PROC_FOR_LIBRARIES))
3062 #ifdef GC_USE_LD_WRAP
3063 # define READ __real_read
3069 /* Repeatedly perform a read call until the buffer is filled or */
3070 /* we encounter EOF. */
3071 ssize_t
GC_repeat_read(int fd
, char *buf
, size_t count
)
3073 ssize_t num_read
= 0;
3076 while (num_read
< count
) {
3077 result
= READ(fd
, buf
+ num_read
, count
- num_read
);
3078 if (result
< 0) return result
;
3079 if (result
== 0) break;
3084 #endif /* LINUX && ... */
3087 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
3089 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
3090 addresses in FIND_LEAK output. */
3092 void GC_print_address_map()
3096 char maps_temp
[32768];
3097 GC_err_printf0("---------- Begin address map ----------\n");
3098 f
= open("/proc/self/maps", O_RDONLY
);
3099 if (-1 == f
) ABORT("Couldn't open /proc/self/maps");
3101 result
= GC_repeat_read(f
, maps_temp
, sizeof(maps_temp
));
3102 if (result
<= 0) ABORT("Couldn't read /proc/self/maps");
3103 GC_err_write(maps_temp
, result
);
3104 } while (result
== sizeof(maps_temp
));
3106 GC_err_printf0("---------- End address map ----------\n");