New testcase.
[official-gcc.git] / gcc / stupid.c
blob718c39b6c04ef9381f43f51b41a3e0978b3e5023
1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 91, 94, 95, 96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
25 Stupid register allocation goes in place of the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
28 is not computed here.
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
45 #include "config.h"
46 #include "system.h"
48 #include "rtl.h"
49 #include "hard-reg-set.h"
50 #include "regs.h"
51 #include "flags.h"
52 #include "toplev.h"
54 /* Vector mapping INSN_UIDs to suids.
55 The suids are like uids but increase monotonically always.
56 We use them to see whether a subroutine call came
57 between a variable's birth and its death. */
59 static int *uid_suid;
61 /* Get the suid of an insn. */
63 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
65 /* Record the suid of the last CALL_INSN
66 so we can tell whether a pseudo reg crosses any calls. */
68 static int last_call_suid;
70 /* Record the suid of the last NOTE_INSN_SETJMP
71 so we can tell whether a pseudo reg crosses any setjmp. */
73 static int last_setjmp_suid;
75 /* Element N is suid of insn where life span of pseudo reg N ends.
76 Element is 0 if register N has not been seen yet on backward scan. */
78 static int *reg_where_dead;
80 /* Element N is suid of insn where life span of pseudo reg N begins. */
82 static int *reg_where_born;
84 /* Numbers of pseudo-regs to be allocated, highest priority first. */
86 static int *reg_order;
88 /* Indexed by reg number (hard or pseudo), nonzero if register is live
89 at the current point in the instruction stream. */
91 static char *regs_live;
93 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
94 its size. */
96 static char *regs_change_size;
98 /* Indexed by reg number, nonzero if reg crosses a setjmp. */
100 static char *regs_crosses_setjmp;
102 /* Indexed by insn's suid, the set of hard regs live after that insn. */
104 static HARD_REG_SET *after_insn_hard_regs;
106 /* Record that hard reg REGNO is live after insn INSN. */
108 #define MARK_LIVE_AFTER(INSN,REGNO) \
109 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
111 static int stupid_reg_compare PROTO((const GENERIC_PTR,const GENERIC_PTR));
112 static int stupid_find_reg PROTO((int, enum reg_class, enum machine_mode,
113 int, int, int));
114 static void stupid_mark_refs PROTO((rtx, rtx));
116 /* Stupid life analysis is for the case where only variables declared
117 `register' go in registers. For this case, we mark all
118 pseudo-registers that belong to register variables as
119 dying in the last instruction of the function, and all other
120 pseudo registers as dying in the last place they are referenced.
121 Hard registers are marked as dying in the last reference before
122 the end or before each store into them. */
124 void
125 stupid_life_analysis (f, nregs, file)
126 rtx f;
127 int nregs;
128 FILE *file;
130 register int i;
131 register rtx last, insn;
132 int max_uid, max_suid;
134 current_function_has_computed_jump = 0;
136 bzero (regs_ever_live, sizeof regs_ever_live);
138 regs_live = (char *) alloca (nregs);
140 /* First find the last real insn, and count the number of insns,
141 and assign insns their suids. */
143 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
144 if (INSN_UID (insn) > i)
145 i = INSN_UID (insn);
147 max_uid = i + 1;
148 uid_suid = (int *) alloca ((i + 1) * sizeof (int));
150 /* Compute the mapping from uids to suids.
151 Suids are numbers assigned to insns, like uids,
152 except that suids increase monotonically through the code. */
154 last = 0; /* In case of empty function body */
155 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
157 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
158 last = insn;
160 INSN_SUID (insn) = ++i;
163 last_call_suid = i + 1;
164 last_setjmp_suid = i + 1;
165 max_suid = i + 1;
167 max_regno = nregs;
169 /* Allocate tables to record info about regs. */
171 reg_where_dead = (int *) alloca (nregs * sizeof (int));
172 bzero ((char *) reg_where_dead, nregs * sizeof (int));
174 reg_where_born = (int *) alloca (nregs * sizeof (int));
175 bzero ((char *) reg_where_born, nregs * sizeof (int));
177 reg_order = (int *) alloca (nregs * sizeof (int));
178 bzero ((char *) reg_order, nregs * sizeof (int));
180 regs_change_size = (char *) alloca (nregs * sizeof (char));
181 bzero ((char *) regs_change_size, nregs * sizeof (char));
183 regs_crosses_setjmp = (char *) alloca (nregs * sizeof (char));
184 bzero ((char *) regs_crosses_setjmp, nregs * sizeof (char));
186 /* Allocate the reg_renumber array */
187 allocate_reg_info (max_regno, FALSE, TRUE);
188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
189 reg_renumber[i] = i;
191 after_insn_hard_regs
192 = (HARD_REG_SET *) alloca (max_suid * sizeof (HARD_REG_SET));
194 bzero ((char *) after_insn_hard_regs, max_suid * sizeof (HARD_REG_SET));
196 /* Allocate and zero out many data structures
197 that will record the data from lifetime analysis. */
199 allocate_for_life_analysis ();
201 for (i = 0; i < max_regno; i++)
202 REG_N_DEATHS (i) = 1;
204 bzero (regs_live, nregs);
206 /* Find where each pseudo register is born and dies,
207 by scanning all insns from the end to the start
208 and noting all mentions of the registers.
210 Also find where each hard register is live
211 and record that info in after_insn_hard_regs.
212 regs_live[I] is 1 if hard reg I is live
213 at the current point in the scan. */
215 for (insn = last; insn; insn = PREV_INSN (insn))
217 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
219 /* Copy the info in regs_live into the element of after_insn_hard_regs
220 for the current position in the rtl code. */
222 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
223 if (regs_live[i])
224 SET_HARD_REG_BIT (*p, i);
226 /* Update which hard regs are currently live
227 and also the birth and death suids of pseudo regs
228 based on the pattern of this insn. */
230 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
231 stupid_mark_refs (PATTERN (insn), insn);
233 if (GET_CODE (insn) == NOTE
234 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
235 last_setjmp_suid = INSN_SUID (insn);
237 /* Mark all call-clobbered regs as dead after each call insn so that
238 a pseudo whose life span includes this insn will not go in one of
239 them. If the function contains a non-local goto, mark all hard
240 registers dead (except for stack related bits).
242 Then mark those regs as all dead for the continuing scan
243 of the insns before the call. */
245 if (GET_CODE (insn) == CALL_INSN)
247 last_call_suid = INSN_SUID (insn);
249 if (current_function_has_nonlocal_label)
251 IOR_COMPL_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
252 fixed_reg_set);
253 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
254 if (! fixed_regs[i])
255 regs_live[i] = 0;
257 else
259 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
260 call_used_reg_set);
261 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
262 if (call_used_regs[i])
263 regs_live[i] = 0;
266 /* It is important that this be done after processing the insn's
267 pattern because we want the function result register to still
268 be live if it's also used to pass arguments. */
269 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn), insn);
271 if (GET_CODE (insn) == JUMP_INSN && computed_jump_p (insn))
272 current_function_has_computed_jump = 1;
275 /* Now decide the order in which to allocate the pseudo registers. */
277 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
278 reg_order[i] = i;
280 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
281 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
282 stupid_reg_compare);
284 /* Now, in that order, try to find hard registers for those pseudo regs. */
286 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
288 register int r = reg_order[i];
290 /* Some regnos disappear from the rtl. Ignore them to avoid crash.
291 Also don't allocate registers that cross a setjmp, or live across
292 a call if this function receives a nonlocal goto. */
293 if (regno_reg_rtx[r] == 0 || regs_crosses_setjmp[r]
294 || (REG_N_CALLS_CROSSED (r) > 0
295 && current_function_has_nonlocal_label))
296 continue;
298 /* Now find the best hard-register class for this pseudo register */
299 if (N_REG_CLASSES > 1)
300 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
301 reg_preferred_class (r),
302 PSEUDO_REGNO_MODE (r),
303 reg_where_born[r],
304 reg_where_dead[r],
305 regs_change_size[r]);
307 /* If no reg available in that class, try alternate class. */
308 if (reg_renumber[r] == -1 && reg_alternate_class (r) != NO_REGS)
309 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
310 reg_alternate_class (r),
311 PSEUDO_REGNO_MODE (r),
312 reg_where_born[r],
313 reg_where_dead[r],
314 regs_change_size[r]);
317 if (file)
318 dump_flow_info (file);
321 /* Comparison function for qsort.
322 Returns -1 (1) if register *R1P is higher priority than *R2P. */
324 static int
325 stupid_reg_compare (r1p, r2p)
326 const GENERIC_PTR r1p;
327 const GENERIC_PTR r2p;
329 register int r1 = *(int *)r1p, r2 = *(int *)r2p;
330 register int len1 = reg_where_dead[r1] - reg_where_born[r1];
331 register int len2 = reg_where_dead[r2] - reg_where_born[r2];
332 int tem;
334 tem = len2 - len1;
335 if (tem != 0)
336 return tem;
338 tem = REG_N_REFS (r1) - REG_N_REFS (r2);
339 if (tem != 0)
340 return tem;
342 /* If regs are equally good, sort by regno,
343 so that the results of qsort leave nothing to chance. */
344 return r1 - r2;
347 /* Find a block of SIZE words of hard registers in reg_class CLASS
348 that can hold a value of machine-mode MODE
349 (but actually we test only the first of the block for holding MODE)
350 currently free from after insn whose suid is BORN_INSN
351 through the insn whose suid is DEAD_INSN,
352 and return the number of the first of them.
353 Return -1 if such a block cannot be found.
355 If CALL_PRESERVED is nonzero, insist on registers preserved
356 over subroutine calls, and return -1 if cannot find such.
358 If CHANGES_SIZE is nonzero, it means this register was used as the
359 operand of a SUBREG that changes its size. */
361 static int
362 stupid_find_reg (call_preserved, class, mode,
363 born_insn, dead_insn, changes_size)
364 int call_preserved;
365 enum reg_class class;
366 enum machine_mode mode;
367 int born_insn, dead_insn;
368 int changes_size;
370 register int i, ins;
371 #ifdef HARD_REG_SET
372 register /* Declare them register if they are scalars. */
373 #endif
374 HARD_REG_SET used, this_reg;
375 #ifdef ELIMINABLE_REGS
376 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
377 #endif
379 /* If this register's life is more than 5,000 insns, we probably
380 can't allocate it, so don't waste the time trying. This avoids
381 quadratic behavior on programs that have regularly-occurring
382 SAVE_EXPRs. */
383 if (dead_insn > born_insn + 5000)
384 return -1;
386 COPY_HARD_REG_SET (used,
387 call_preserved ? call_used_reg_set : fixed_reg_set);
389 #ifdef ELIMINABLE_REGS
390 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
391 SET_HARD_REG_BIT (used, eliminables[i].from);
392 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
393 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
394 #endif
395 #else
396 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
397 #endif
399 for (ins = born_insn; ins < dead_insn; ins++)
400 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
402 #ifdef STACK_REGS
403 if (current_function_has_computed_jump)
404 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
405 SET_HARD_REG_BIT (used, i);
406 #endif
408 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
410 #ifdef CLASS_CANNOT_CHANGE_SIZE
411 if (changes_size)
412 IOR_HARD_REG_SET (used,
413 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
414 #endif
416 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
418 #ifdef REG_ALLOC_ORDER
419 int regno = reg_alloc_order[i];
420 #else
421 int regno = i;
422 #endif
424 /* If a register has screwy overlap problems,
425 don't use it at all if not optimizing.
426 Actually this is only for the 387 stack register,
427 and it's because subsequent code won't work. */
428 #ifdef OVERLAPPING_REGNO_P
429 if (OVERLAPPING_REGNO_P (regno))
430 continue;
431 #endif
433 if (! TEST_HARD_REG_BIT (used, regno)
434 && HARD_REGNO_MODE_OK (regno, mode))
436 register int j;
437 register int size1 = HARD_REGNO_NREGS (regno, mode);
438 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
439 if (j == size1)
441 CLEAR_HARD_REG_SET (this_reg);
442 while (--j >= 0)
443 SET_HARD_REG_BIT (this_reg, regno + j);
444 for (ins = born_insn; ins < dead_insn; ins++)
446 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
448 return regno;
450 #ifndef REG_ALLOC_ORDER
451 i += j; /* Skip starting points we know will lose */
452 #endif
456 return -1;
459 /* Walk X, noting all assignments and references to registers
460 and recording what they imply about life spans.
461 INSN is the current insn, supplied so we can find its suid. */
463 static void
464 stupid_mark_refs (x, insn)
465 rtx x, insn;
467 register RTX_CODE code;
468 register char *fmt;
469 register int regno, i;
471 if (x == 0)
472 return;
474 code = GET_CODE (x);
476 if (code == SET || code == CLOBBER)
478 if (SET_DEST (x) != 0
479 && (GET_CODE (SET_DEST (x)) == REG
480 || (GET_CODE (SET_DEST (x)) == SUBREG
481 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
482 && (REGNO (SUBREG_REG (SET_DEST (x)))
483 >= FIRST_PSEUDO_REGISTER))))
485 /* Register is being assigned. */
486 /* If setting a SUBREG, we treat the entire reg as being set. */
487 if (GET_CODE (SET_DEST (x)) == SUBREG)
488 regno = REGNO (SUBREG_REG (SET_DEST (x)));
489 else
490 regno = REGNO (SET_DEST (x));
492 /* For hard regs, update the where-live info. */
493 if (regno < FIRST_PSEUDO_REGISTER)
495 register int j
496 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
498 while (--j >= 0)
500 regs_ever_live[regno+j] = 1;
501 regs_live[regno+j] = 0;
503 /* The following line is for unused outputs;
504 they do get stored even though never used again. */
505 MARK_LIVE_AFTER (insn, regno+j);
507 /* When a hard reg is clobbered, mark it in use
508 just before this insn, so it is live all through. */
509 if (code == CLOBBER && INSN_SUID (insn) > 0)
510 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
511 regno+j);
514 /* For pseudo regs, record where born, where dead, number of
515 times used, and whether live across a call. */
516 else
518 /* Update the life-interval bounds of this pseudo reg. */
520 /* When a pseudo-reg is CLOBBERed, it is born just before
521 the clobbering insn. When setting, just after. */
522 int where_born = INSN_SUID (insn) - (code == CLOBBER);
524 reg_where_born[regno] = where_born;
526 /* The reg must live at least one insn even
527 in it is never again used--because it has to go
528 in SOME hard reg. Mark it as dying after the current
529 insn so that it will conflict with any other outputs of
530 this insn. */
531 if (reg_where_dead[regno] < where_born + 2)
533 reg_where_dead[regno] = where_born + 2;
534 regs_live[regno] = 1;
537 /* Count the refs of this reg. */
538 REG_N_REFS (regno)++;
540 if (last_call_suid < reg_where_dead[regno])
541 REG_N_CALLS_CROSSED (regno) += 1;
543 if (last_setjmp_suid < reg_where_dead[regno])
544 regs_crosses_setjmp[regno] = 1;
546 /* If this register is only used in this insn and is only
547 set, mark it unused. We have to do this even when not
548 optimizing so that MD patterns which count on this
549 behavior (e.g., it not causing an output reload on
550 an insn setting CC) will operate correctly. */
551 if (GET_CODE (SET_DEST (x)) == REG
552 && REGNO_FIRST_UID (regno) == INSN_UID (insn)
553 && REGNO_LAST_UID (regno) == INSN_UID (insn)
554 && (code == CLOBBER || ! reg_mentioned_p (SET_DEST (x),
555 SET_SRC (x))))
556 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_UNUSED,
557 SET_DEST (x),
558 REG_NOTES (insn));
562 /* Record references from the value being set,
563 or from addresses in the place being set if that's not a reg.
564 If setting a SUBREG, we treat the entire reg as *used*. */
565 if (code == SET)
567 stupid_mark_refs (SET_SRC (x), insn);
568 if (GET_CODE (SET_DEST (x)) != REG)
569 stupid_mark_refs (SET_DEST (x), insn);
571 return;
574 else if (code == SUBREG
575 && GET_CODE (SUBREG_REG (x)) == REG
576 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
577 && (GET_MODE_SIZE (GET_MODE (x))
578 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
579 && (INTEGRAL_MODE_P (GET_MODE (x))
580 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x)))))
581 regs_change_size[REGNO (SUBREG_REG (x))] = 1;
583 /* Register value being used, not set. */
585 else if (code == REG)
587 regno = REGNO (x);
588 if (regno < FIRST_PSEUDO_REGISTER)
590 /* Hard reg: mark it live for continuing scan of previous insns. */
591 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
592 while (--j >= 0)
594 regs_ever_live[regno+j] = 1;
595 regs_live[regno+j] = 1;
598 else
600 /* Pseudo reg: record first use, last use and number of uses. */
602 reg_where_born[regno] = INSN_SUID (insn);
603 REG_N_REFS (regno)++;
604 if (regs_live[regno] == 0)
606 regs_live[regno] = 1;
607 reg_where_dead[regno] = INSN_SUID (insn);
610 return;
613 /* Recursive scan of all other rtx's. */
615 fmt = GET_RTX_FORMAT (code);
616 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
618 if (fmt[i] == 'e')
619 stupid_mark_refs (XEXP (x, i), insn);
620 if (fmt[i] == 'E')
622 register int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 stupid_mark_refs (XVECEXP (x, i, j), insn);