1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
61 Three techniques for filling delay slots have been implemented so far:
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
116 #include "coretypes.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
132 #include "insn-attr.h"
133 #include "resource.h"
139 #ifndef ANNUL_IFTRUE_SLOTS
140 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
142 #ifndef ANNUL_IFFALSE_SLOTS
143 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
146 /* Insns which have delay slots that have not yet been filled. */
148 static struct obstack unfilled_slots_obstack
;
149 static rtx
*unfilled_firstobj
;
151 /* Define macros to refer to the first and last slot containing unfilled
152 insns. These are used because the list may move and its address
153 should be recomputed at each use. */
155 #define unfilled_slots_base \
156 ((rtx *) obstack_base (&unfilled_slots_obstack))
158 #define unfilled_slots_next \
159 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
161 /* Points to the label before the end of the function. */
162 static rtx end_of_function_label
;
164 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
165 not always monotonically increase. */
166 static int *uid_to_ruid
;
168 /* Highest valid index in `uid_to_ruid'. */
171 static int stop_search_p (rtx
, int);
172 static int resource_conflicts_p (struct resources
*, struct resources
*);
173 static int insn_references_resource_p (rtx
, struct resources
*, int);
174 static int insn_sets_resource_p (rtx
, struct resources
*, int);
175 static rtx
find_end_label (void);
176 static rtx
emit_delay_sequence (rtx
, rtx
, int);
177 static rtx
add_to_delay_list (rtx
, rtx
);
178 static rtx
delete_from_delay_slot (rtx
);
179 static void delete_scheduled_jump (rtx
);
180 static void note_delay_statistics (int, int);
181 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
182 static rtx
optimize_skip (rtx
);
184 static int get_jump_flags (rtx
, rtx
);
185 static int rare_destination (rtx
);
186 static int mostly_true_jump (rtx
, rtx
);
187 static rtx
get_branch_condition (rtx
, rtx
);
188 static int condition_dominates_p (rtx
, rtx
);
189 static int redirect_with_delay_slots_safe_p (rtx
, rtx
, rtx
);
190 static int redirect_with_delay_list_safe_p (rtx
, rtx
, rtx
);
191 static int check_annul_list_true_false (int, rtx
);
192 static rtx
steal_delay_list_from_target (rtx
, rtx
, rtx
, rtx
,
196 int, int *, int *, rtx
*);
197 static rtx
steal_delay_list_from_fallthrough (rtx
, rtx
, rtx
, rtx
,
202 static void try_merge_delay_insns (rtx
, rtx
);
203 static rtx
redundant_insn (rtx
, rtx
, rtx
);
204 static int own_thread_p (rtx
, rtx
, int);
205 static void update_block (rtx
, rtx
);
206 static int reorg_redirect_jump (rtx
, rtx
);
207 static void update_reg_dead_notes (rtx
, rtx
);
208 static void fix_reg_dead_note (rtx
, rtx
);
209 static void update_reg_unused_notes (rtx
, rtx
);
210 static void fill_simple_delay_slots (int);
211 static rtx
fill_slots_from_thread (rtx
, rtx
, rtx
, rtx
, int, int, int, int,
213 static void fill_eager_delay_slots (void);
214 static void relax_delay_slots (rtx
);
216 static void make_return_insns (rtx
);
219 /* Return TRUE if this insn should stop the search for insn to fill delay
220 slots. LABELS_P indicates that labels should terminate the search.
221 In all cases, jumps terminate the search. */
224 stop_search_p (rtx insn
, int labels_p
)
229 /* If the insn can throw an exception that is caught within the function,
230 it may effectively perform a jump from the viewpoint of the function.
231 Therefore act like for a jump. */
232 if (can_throw_internal (insn
))
235 switch (GET_CODE (insn
))
249 /* OK unless it contains a delay slot or is an `asm' insn of some type.
250 We don't know anything about these. */
251 return (GET_CODE (PATTERN (insn
)) == SEQUENCE
252 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
253 || asm_noperands (PATTERN (insn
)) >= 0);
260 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
261 resource set contains a volatile memory reference. Otherwise, return FALSE. */
264 resource_conflicts_p (struct resources
*res1
, struct resources
*res2
)
266 if ((res1
->cc
&& res2
->cc
) || (res1
->memory
&& res2
->memory
)
267 || (res1
->unch_memory
&& res2
->unch_memory
)
268 || res1
->volatil
|| res2
->volatil
)
272 return (res1
->regs
& res2
->regs
) != HARD_CONST (0);
277 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
278 if ((res1
->regs
[i
] & res2
->regs
[i
]) != 0)
285 /* Return TRUE if any resource marked in RES, a `struct resources', is
286 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
287 routine is using those resources.
289 We compute this by computing all the resources referenced by INSN and
290 seeing if this conflicts with RES. It might be faster to directly check
291 ourselves, and this is the way it used to work, but it means duplicating
292 a large block of complex code. */
295 insn_references_resource_p (rtx insn
, struct resources
*res
,
296 int include_delayed_effects
)
298 struct resources insn_res
;
300 CLEAR_RESOURCE (&insn_res
);
301 mark_referenced_resources (insn
, &insn_res
, include_delayed_effects
);
302 return resource_conflicts_p (&insn_res
, res
);
305 /* Return TRUE if INSN modifies resources that are marked in RES.
306 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
307 included. CC0 is only modified if it is explicitly set; see comments
308 in front of mark_set_resources for details. */
311 insn_sets_resource_p (rtx insn
, struct resources
*res
,
312 int include_delayed_effects
)
314 struct resources insn_sets
;
316 CLEAR_RESOURCE (&insn_sets
);
317 mark_set_resources (insn
, &insn_sets
, 0, include_delayed_effects
);
318 return resource_conflicts_p (&insn_sets
, res
);
321 /* Find a label at the end of the function or before a RETURN. If there
322 is none, try to make one. If that fails, returns 0.
324 The property of such a label is that it is placed just before the
325 epilogue or a bare RETURN insn, so that another bare RETURN can be
326 turned into a jump to the label unconditionally. In particular, the
327 label cannot be placed before a RETURN insn with a filled delay slot.
329 ??? There may be a problem with the current implementation. Suppose
330 we start with a bare RETURN insn and call find_end_label. It may set
331 end_of_function_label just before the RETURN. Suppose the machinery
332 is able to fill the delay slot of the RETURN insn afterwards. Then
333 end_of_function_label is no longer valid according to the property
334 described above and find_end_label will still return it unmodified.
335 Note that this is probably mitigated by the following observation:
336 once end_of_function_label is made, it is very likely the target of
337 a jump, so filling the delay slot of the RETURN will be much more
341 find_end_label (void)
345 /* If we found one previously, return it. */
346 if (end_of_function_label
)
347 return end_of_function_label
;
349 /* Otherwise, see if there is a label at the end of the function. If there
350 is, it must be that RETURN insns aren't needed, so that is our return
351 label and we don't have to do anything else. */
353 insn
= get_last_insn ();
355 || (NONJUMP_INSN_P (insn
)
356 && (GET_CODE (PATTERN (insn
)) == USE
357 || GET_CODE (PATTERN (insn
)) == CLOBBER
)))
358 insn
= PREV_INSN (insn
);
360 /* When a target threads its epilogue we might already have a
361 suitable return insn. If so put a label before it for the
362 end_of_function_label. */
364 && JUMP_P (PREV_INSN (insn
))
365 && GET_CODE (PATTERN (PREV_INSN (insn
))) == RETURN
)
367 rtx temp
= PREV_INSN (PREV_INSN (insn
));
368 end_of_function_label
= gen_label_rtx ();
369 LABEL_NUSES (end_of_function_label
) = 0;
371 /* Put the label before an USE insns that may precede the RETURN insn. */
372 while (GET_CODE (temp
) == USE
)
373 temp
= PREV_INSN (temp
);
375 emit_label_after (end_of_function_label
, temp
);
378 else if (LABEL_P (insn
))
379 end_of_function_label
= insn
;
382 end_of_function_label
= gen_label_rtx ();
383 LABEL_NUSES (end_of_function_label
) = 0;
384 /* If the basic block reorder pass moves the return insn to
385 some other place try to locate it again and put our
386 end_of_function_label there. */
387 while (insn
&& ! (GET_CODE (insn
) == JUMP_INSN
388 && (GET_CODE (PATTERN (insn
)) == RETURN
)))
389 insn
= PREV_INSN (insn
);
392 insn
= PREV_INSN (insn
);
394 /* Put the label before an USE insns that may proceed the
396 while (GET_CODE (insn
) == USE
)
397 insn
= PREV_INSN (insn
);
399 emit_label_after (end_of_function_label
, insn
);
410 /* The RETURN insn has its delay slot filled so we cannot
411 emit the label just before it. Since we already have
412 an epilogue and cannot emit a new RETURN, we cannot
413 emit the label at all. */
414 end_of_function_label
= NULL_RTX
;
415 return end_of_function_label
;
417 #endif /* HAVE_epilogue */
419 /* Otherwise, make a new label and emit a RETURN and BARRIER,
421 emit_label (end_of_function_label
);
423 /* We don't bother trying to create a return insn if the
424 epilogue has filled delay-slots; we would have to try and
425 move the delay-slot fillers to the delay-slots for the new
426 return insn or in front of the new return insn. */
427 if (current_function_epilogue_delay_list
== NULL
430 /* The return we make may have delay slots too. */
431 rtx insn
= gen_return ();
432 insn
= emit_jump_insn (insn
);
434 if (num_delay_slots (insn
) > 0)
435 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
441 /* Show one additional use for this label so it won't go away until
443 ++LABEL_NUSES (end_of_function_label
);
445 return end_of_function_label
;
448 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
449 the pattern of INSN with the SEQUENCE.
451 Chain the insns so that NEXT_INSN of each insn in the sequence points to
452 the next and NEXT_INSN of the last insn in the sequence points to
453 the first insn after the sequence. Similarly for PREV_INSN. This makes
454 it easier to scan all insns.
456 Returns the SEQUENCE that replaces INSN. */
459 emit_delay_sequence (rtx insn
, rtx list
, int length
)
465 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
466 rtvec seqv
= rtvec_alloc (length
+ 1);
467 rtx seq
= gen_rtx_SEQUENCE (VOIDmode
, seqv
);
468 rtx seq_insn
= make_insn_raw (seq
);
469 rtx first
= get_insns ();
470 rtx last
= get_last_insn ();
472 /* Make a copy of the insn having delay slots. */
473 rtx delay_insn
= copy_rtx (insn
);
475 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
476 confuse further processing. Update LAST in case it was the last insn.
477 We will put the BARRIER back in later. */
478 if (NEXT_INSN (insn
) && BARRIER_P (NEXT_INSN (insn
)))
480 delete_related_insns (NEXT_INSN (insn
));
481 last
= get_last_insn ();
485 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
486 NEXT_INSN (seq_insn
) = NEXT_INSN (insn
);
487 PREV_INSN (seq_insn
) = PREV_INSN (insn
);
490 PREV_INSN (NEXT_INSN (seq_insn
)) = seq_insn
;
493 NEXT_INSN (PREV_INSN (seq_insn
)) = seq_insn
;
495 /* Note the calls to set_new_first_and_last_insn must occur after
496 SEQ_INSN has been completely spliced into the insn stream.
498 Otherwise CUR_INSN_UID will get set to an incorrect value because
499 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
501 set_new_first_and_last_insn (first
, seq_insn
);
504 set_new_first_and_last_insn (seq_insn
, last
);
506 /* Build our SEQUENCE and rebuild the insn chain. */
507 XVECEXP (seq
, 0, 0) = delay_insn
;
508 INSN_DELETED_P (delay_insn
) = 0;
509 PREV_INSN (delay_insn
) = PREV_INSN (seq_insn
);
511 for (li
= list
; li
; li
= XEXP (li
, 1), i
++)
513 rtx tem
= XEXP (li
, 0);
516 /* Show that this copy of the insn isn't deleted. */
517 INSN_DELETED_P (tem
) = 0;
519 XVECEXP (seq
, 0, i
) = tem
;
520 PREV_INSN (tem
) = XVECEXP (seq
, 0, i
- 1);
521 NEXT_INSN (XVECEXP (seq
, 0, i
- 1)) = tem
;
523 /* SPARC assembler, for instance, emit warning when debug info is output
524 into the delay slot. */
525 if (INSN_LOCATOR (tem
) && !INSN_LOCATOR (seq_insn
))
526 INSN_LOCATOR (seq_insn
) = INSN_LOCATOR (tem
);
527 INSN_LOCATOR (tem
) = 0;
529 for (note
= REG_NOTES (tem
); note
; note
= next
)
531 next
= XEXP (note
, 1);
532 switch (REG_NOTE_KIND (note
))
535 /* Remove any REG_DEAD notes because we can't rely on them now
536 that the insn has been moved. */
537 remove_note (tem
, note
);
541 /* Keep the label reference count up to date. */
542 if (LABEL_P (XEXP (note
, 0)))
543 LABEL_NUSES (XEXP (note
, 0)) ++;
552 NEXT_INSN (XVECEXP (seq
, 0, length
)) = NEXT_INSN (seq_insn
);
554 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
555 last insn in that SEQUENCE to point to us. Similarly for the first
556 insn in the following insn if it is a SEQUENCE. */
558 if (PREV_INSN (seq_insn
) && NONJUMP_INSN_P (PREV_INSN (seq_insn
))
559 && GET_CODE (PATTERN (PREV_INSN (seq_insn
))) == SEQUENCE
)
560 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn
)), 0,
561 XVECLEN (PATTERN (PREV_INSN (seq_insn
)), 0) - 1))
564 if (NEXT_INSN (seq_insn
) && NONJUMP_INSN_P (NEXT_INSN (seq_insn
))
565 && GET_CODE (PATTERN (NEXT_INSN (seq_insn
))) == SEQUENCE
)
566 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn
)), 0, 0)) = seq_insn
;
568 /* If there used to be a BARRIER, put it back. */
570 emit_barrier_after (seq_insn
);
572 gcc_assert (i
== length
+ 1);
577 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
578 be in the order in which the insns are to be executed. */
581 add_to_delay_list (rtx insn
, rtx delay_list
)
583 /* If we have an empty list, just make a new list element. If
584 INSN has its block number recorded, clear it since we may
585 be moving the insn to a new block. */
589 clear_hashed_info_for_insn (insn
);
590 return gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
593 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
595 XEXP (delay_list
, 1) = add_to_delay_list (insn
, XEXP (delay_list
, 1));
600 /* Delete INSN from the delay slot of the insn that it is in, which may
601 produce an insn with no delay slots. Return the new insn. */
604 delete_from_delay_slot (rtx insn
)
606 rtx trial
, seq_insn
, seq
, prev
;
611 /* We first must find the insn containing the SEQUENCE with INSN in its
612 delay slot. Do this by finding an insn, TRIAL, where
613 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
616 PREV_INSN (NEXT_INSN (trial
)) == trial
;
617 trial
= NEXT_INSN (trial
))
620 seq_insn
= PREV_INSN (NEXT_INSN (trial
));
621 seq
= PATTERN (seq_insn
);
623 if (NEXT_INSN (seq_insn
) && BARRIER_P (NEXT_INSN (seq_insn
)))
626 /* Create a delay list consisting of all the insns other than the one
627 we are deleting (unless we were the only one). */
628 if (XVECLEN (seq
, 0) > 2)
629 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
630 if (XVECEXP (seq
, 0, i
) != insn
)
631 delay_list
= add_to_delay_list (XVECEXP (seq
, 0, i
), delay_list
);
633 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
634 list, and rebuild the delay list if non-empty. */
635 prev
= PREV_INSN (seq_insn
);
636 trial
= XVECEXP (seq
, 0, 0);
637 delete_related_insns (seq_insn
);
638 add_insn_after (trial
, prev
);
640 /* If there was a barrier after the old SEQUENCE, remit it. */
642 emit_barrier_after (trial
);
644 /* If there are any delay insns, remit them. Otherwise clear the
647 trial
= emit_delay_sequence (trial
, delay_list
, XVECLEN (seq
, 0) - 2);
648 else if (INSN_P (trial
))
649 INSN_ANNULLED_BRANCH_P (trial
) = 0;
651 INSN_FROM_TARGET_P (insn
) = 0;
653 /* Show we need to fill this insn again. */
654 obstack_ptr_grow (&unfilled_slots_obstack
, trial
);
659 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
660 the insn that sets CC0 for it and delete it too. */
663 delete_scheduled_jump (rtx insn
)
665 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
666 delete the insn that sets the condition code, but it is hard to find it.
667 Since this case is rare anyway, don't bother trying; there would likely
668 be other insns that became dead anyway, which we wouldn't know to
672 if (reg_mentioned_p (cc0_rtx
, insn
))
674 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
676 /* If a reg-note was found, it points to an insn to set CC0. This
677 insn is in the delay list of some other insn. So delete it from
678 the delay list it was in. */
681 if (! FIND_REG_INC_NOTE (XEXP (note
, 0), NULL_RTX
)
682 && sets_cc0_p (PATTERN (XEXP (note
, 0))) == 1)
683 delete_from_delay_slot (XEXP (note
, 0));
687 /* The insn setting CC0 is our previous insn, but it may be in
688 a delay slot. It will be the last insn in the delay slot, if
690 rtx trial
= previous_insn (insn
);
692 trial
= prev_nonnote_insn (trial
);
693 if (sets_cc0_p (PATTERN (trial
)) != 1
694 || FIND_REG_INC_NOTE (trial
, NULL_RTX
))
696 if (PREV_INSN (NEXT_INSN (trial
)) == trial
)
697 delete_related_insns (trial
);
699 delete_from_delay_slot (trial
);
704 delete_related_insns (insn
);
707 /* Counters for delay-slot filling. */
709 #define NUM_REORG_FUNCTIONS 2
710 #define MAX_DELAY_HISTOGRAM 3
711 #define MAX_REORG_PASSES 2
713 static int num_insns_needing_delays
[NUM_REORG_FUNCTIONS
][MAX_REORG_PASSES
];
715 static int num_filled_delays
[NUM_REORG_FUNCTIONS
][MAX_DELAY_HISTOGRAM
+1][MAX_REORG_PASSES
];
717 static int reorg_pass_number
;
720 note_delay_statistics (int slots_filled
, int index
)
722 num_insns_needing_delays
[index
][reorg_pass_number
]++;
723 if (slots_filled
> MAX_DELAY_HISTOGRAM
)
724 slots_filled
= MAX_DELAY_HISTOGRAM
;
725 num_filled_delays
[index
][slots_filled
][reorg_pass_number
]++;
728 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
730 /* Optimize the following cases:
732 1. When a conditional branch skips over only one instruction,
733 use an annulling branch and put that insn in the delay slot.
734 Use either a branch that annuls when the condition if true or
735 invert the test with a branch that annuls when the condition is
736 false. This saves insns, since otherwise we must copy an insn
739 (orig) (skip) (otherwise)
740 Bcc.n L1 Bcc',a L1 Bcc,a L1'
747 2. When a conditional branch skips over only one instruction,
748 and after that, it unconditionally branches somewhere else,
749 perform the similar optimization. This saves executing the
750 second branch in the case where the inverted condition is true.
759 This should be expanded to skip over N insns, where N is the number
760 of delay slots required. */
763 optimize_skip (rtx insn
)
765 rtx trial
= next_nonnote_insn (insn
);
766 rtx next_trial
= next_active_insn (trial
);
770 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
773 || !NONJUMP_INSN_P (trial
)
774 || GET_CODE (PATTERN (trial
)) == SEQUENCE
775 || recog_memoized (trial
) < 0
776 || (! eligible_for_annul_false (insn
, 0, trial
, flags
)
777 && ! eligible_for_annul_true (insn
, 0, trial
, flags
))
778 || can_throw_internal (trial
))
781 /* There are two cases where we are just executing one insn (we assume
782 here that a branch requires only one insn; this should be generalized
783 at some point): Where the branch goes around a single insn or where
784 we have one insn followed by a branch to the same label we branch to.
785 In both of these cases, inverting the jump and annulling the delay
786 slot give the same effect in fewer insns. */
787 if ((next_trial
== next_active_insn (JUMP_LABEL (insn
))
788 && ! (next_trial
== 0 && current_function_epilogue_delay_list
!= 0))
790 && JUMP_P (next_trial
)
791 && JUMP_LABEL (insn
) == JUMP_LABEL (next_trial
)
792 && (simplejump_p (next_trial
)
793 || GET_CODE (PATTERN (next_trial
)) == RETURN
)))
795 if (eligible_for_annul_false (insn
, 0, trial
, flags
))
797 if (invert_jump (insn
, JUMP_LABEL (insn
), 1))
798 INSN_FROM_TARGET_P (trial
) = 1;
799 else if (! eligible_for_annul_true (insn
, 0, trial
, flags
))
803 delay_list
= add_to_delay_list (trial
, NULL_RTX
);
804 next_trial
= next_active_insn (trial
);
805 update_block (trial
, trial
);
806 delete_related_insns (trial
);
808 /* Also, if we are targeting an unconditional
809 branch, thread our jump to the target of that branch. Don't
810 change this into a RETURN here, because it may not accept what
811 we have in the delay slot. We'll fix this up later. */
812 if (next_trial
&& JUMP_P (next_trial
)
813 && (simplejump_p (next_trial
)
814 || GET_CODE (PATTERN (next_trial
)) == RETURN
))
816 rtx target_label
= JUMP_LABEL (next_trial
);
817 if (target_label
== 0)
818 target_label
= find_end_label ();
822 /* Recompute the flags based on TARGET_LABEL since threading
823 the jump to TARGET_LABEL may change the direction of the
824 jump (which may change the circumstances in which the
825 delay slot is nullified). */
826 flags
= get_jump_flags (insn
, target_label
);
827 if (eligible_for_annul_true (insn
, 0, trial
, flags
))
828 reorg_redirect_jump (insn
, target_label
);
832 INSN_ANNULLED_BRANCH_P (insn
) = 1;
839 /* Encode and return branch direction and prediction information for
840 INSN assuming it will jump to LABEL.
842 Non conditional branches return no direction information and
843 are predicted as very likely taken. */
846 get_jump_flags (rtx insn
, rtx label
)
850 /* get_jump_flags can be passed any insn with delay slots, these may
851 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
852 direction information, and only if they are conditional jumps.
854 If LABEL is zero, then there is no way to determine the branch
857 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
858 && INSN_UID (insn
) <= max_uid
860 && INSN_UID (label
) <= max_uid
)
862 = (uid_to_ruid
[INSN_UID (label
)] > uid_to_ruid
[INSN_UID (insn
)])
863 ? ATTR_FLAG_forward
: ATTR_FLAG_backward
;
864 /* No valid direction information. */
868 /* If insn is a conditional branch call mostly_true_jump to get
869 determine the branch prediction.
871 Non conditional branches are predicted as very likely taken. */
873 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
877 prediction
= mostly_true_jump (insn
, get_branch_condition (insn
, label
));
881 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
884 flags
|= ATTR_FLAG_likely
;
887 flags
|= ATTR_FLAG_unlikely
;
890 flags
|= (ATTR_FLAG_very_unlikely
| ATTR_FLAG_unlikely
);
898 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
903 /* Return 1 if INSN is a destination that will be branched to rarely (the
904 return point of a function); return 2 if DEST will be branched to very
905 rarely (a call to a function that doesn't return). Otherwise,
909 rare_destination (rtx insn
)
914 for (; insn
; insn
= next
)
916 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
917 insn
= XVECEXP (PATTERN (insn
), 0, 0);
919 next
= NEXT_INSN (insn
);
921 switch (GET_CODE (insn
))
926 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
927 don't scan past JUMP_INSNs, so any barrier we find here must
928 have been after a CALL_INSN and hence mean the call doesn't
932 if (GET_CODE (PATTERN (insn
)) == RETURN
)
934 else if (simplejump_p (insn
)
935 && jump_count
++ < 10)
936 next
= JUMP_LABEL (insn
);
945 /* If we got here it means we hit the end of the function. So this
946 is an unlikely destination. */
951 /* Return truth value of the statement that this branch
952 is mostly taken. If we think that the branch is extremely likely
953 to be taken, we return 2. If the branch is slightly more likely to be
954 taken, return 1. If the branch is slightly less likely to be taken,
955 return 0 and if the branch is highly unlikely to be taken, return -1.
957 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
960 mostly_true_jump (rtx jump_insn
, rtx condition
)
962 rtx target_label
= JUMP_LABEL (jump_insn
);
964 int rare_dest
= rare_destination (target_label
);
965 int rare_fallthrough
= rare_destination (NEXT_INSN (jump_insn
));
967 /* If branch probabilities are available, then use that number since it
968 always gives a correct answer. */
969 note
= find_reg_note (jump_insn
, REG_BR_PROB
, 0);
972 int prob
= INTVAL (XEXP (note
, 0));
974 if (prob
>= REG_BR_PROB_BASE
* 9 / 10)
976 else if (prob
>= REG_BR_PROB_BASE
/ 2)
978 else if (prob
>= REG_BR_PROB_BASE
/ 10)
984 /* ??? Ought to use estimate_probability instead. */
986 /* If this is a branch outside a loop, it is highly unlikely. */
987 if (GET_CODE (PATTERN (jump_insn
)) == SET
988 && GET_CODE (SET_SRC (PATTERN (jump_insn
))) == IF_THEN_ELSE
989 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)) == LABEL_REF
990 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)))
991 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)) == LABEL_REF
992 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)))))
997 /* If this is the test of a loop, it is very likely true. We scan
998 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
999 before the next real insn, we assume the branch is to the top of
1001 for (insn
= PREV_INSN (target_label
);
1002 insn
&& NOTE_P (insn
);
1003 insn
= PREV_INSN (insn
))
1004 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
1008 /* Look at the relative rarities of the fallthrough and destination. If
1009 they differ, we can predict the branch that way. */
1011 switch (rare_fallthrough
- rare_dest
)
1025 /* If we couldn't figure out what this jump was, assume it won't be
1026 taken. This should be rare. */
1030 /* EQ tests are usually false and NE tests are usually true. Also,
1031 most quantities are positive, so we can make the appropriate guesses
1032 about signed comparisons against zero. */
1033 switch (GET_CODE (condition
))
1036 /* Unconditional branch. */
1044 if (XEXP (condition
, 1) == const0_rtx
)
1049 if (XEXP (condition
, 1) == const0_rtx
)
1057 /* Predict backward branches usually take, forward branches usually not. If
1058 we don't know whether this is forward or backward, assume the branch
1059 will be taken, since most are. */
1060 return (target_label
== 0 || INSN_UID (jump_insn
) > max_uid
1061 || INSN_UID (target_label
) > max_uid
1062 || (uid_to_ruid
[INSN_UID (jump_insn
)]
1063 > uid_to_ruid
[INSN_UID (target_label
)]));
1066 /* Return the condition under which INSN will branch to TARGET. If TARGET
1067 is zero, return the condition under which INSN will return. If INSN is
1068 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1069 type of jump, or it doesn't go to TARGET, return 0. */
1072 get_branch_condition (rtx insn
, rtx target
)
1074 rtx pat
= PATTERN (insn
);
1077 if (condjump_in_parallel_p (insn
))
1078 pat
= XVECEXP (pat
, 0, 0);
1080 if (GET_CODE (pat
) == RETURN
)
1081 return target
== 0 ? const_true_rtx
: 0;
1083 else if (GET_CODE (pat
) != SET
|| SET_DEST (pat
) != pc_rtx
)
1086 src
= SET_SRC (pat
);
1087 if (GET_CODE (src
) == LABEL_REF
&& XEXP (src
, 0) == target
)
1088 return const_true_rtx
;
1090 else if (GET_CODE (src
) == IF_THEN_ELSE
1091 && ((target
== 0 && GET_CODE (XEXP (src
, 1)) == RETURN
)
1092 || (GET_CODE (XEXP (src
, 1)) == LABEL_REF
1093 && XEXP (XEXP (src
, 1), 0) == target
))
1094 && XEXP (src
, 2) == pc_rtx
)
1095 return XEXP (src
, 0);
1097 else if (GET_CODE (src
) == IF_THEN_ELSE
1098 && ((target
== 0 && GET_CODE (XEXP (src
, 2)) == RETURN
)
1099 || (GET_CODE (XEXP (src
, 2)) == LABEL_REF
1100 && XEXP (XEXP (src
, 2), 0) == target
))
1101 && XEXP (src
, 1) == pc_rtx
)
1104 rev
= reversed_comparison_code (XEXP (src
, 0), insn
);
1106 return gen_rtx_fmt_ee (rev
, GET_MODE (XEXP (src
, 0)),
1107 XEXP (XEXP (src
, 0), 0),
1108 XEXP (XEXP (src
, 0), 1));
1114 /* Return nonzero if CONDITION is more strict than the condition of
1115 INSN, i.e., if INSN will always branch if CONDITION is true. */
1118 condition_dominates_p (rtx condition
, rtx insn
)
1120 rtx other_condition
= get_branch_condition (insn
, JUMP_LABEL (insn
));
1121 enum rtx_code code
= GET_CODE (condition
);
1122 enum rtx_code other_code
;
1124 if (rtx_equal_p (condition
, other_condition
)
1125 || other_condition
== const_true_rtx
)
1128 else if (condition
== const_true_rtx
|| other_condition
== 0)
1131 other_code
= GET_CODE (other_condition
);
1132 if (GET_RTX_LENGTH (code
) != 2 || GET_RTX_LENGTH (other_code
) != 2
1133 || ! rtx_equal_p (XEXP (condition
, 0), XEXP (other_condition
, 0))
1134 || ! rtx_equal_p (XEXP (condition
, 1), XEXP (other_condition
, 1)))
1137 return comparison_dominates_p (code
, other_code
);
1140 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1141 any insns already in the delay slot of JUMP. */
1144 redirect_with_delay_slots_safe_p (rtx jump
, rtx newlabel
, rtx seq
)
1147 rtx pat
= PATTERN (seq
);
1149 /* Make sure all the delay slots of this jump would still
1150 be valid after threading the jump. If they are still
1151 valid, then return nonzero. */
1153 flags
= get_jump_flags (jump
, newlabel
);
1154 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1156 #ifdef ANNUL_IFFALSE_SLOTS
1157 (INSN_ANNULLED_BRANCH_P (jump
)
1158 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1159 ? eligible_for_annul_false (jump
, i
- 1,
1160 XVECEXP (pat
, 0, i
), flags
) :
1162 #ifdef ANNUL_IFTRUE_SLOTS
1163 (INSN_ANNULLED_BRANCH_P (jump
)
1164 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1165 ? eligible_for_annul_true (jump
, i
- 1,
1166 XVECEXP (pat
, 0, i
), flags
) :
1168 eligible_for_delay (jump
, i
- 1, XVECEXP (pat
, 0, i
), flags
)))
1171 return (i
== XVECLEN (pat
, 0));
1174 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1175 any insns we wish to place in the delay slot of JUMP. */
1178 redirect_with_delay_list_safe_p (rtx jump
, rtx newlabel
, rtx delay_list
)
1183 /* Make sure all the insns in DELAY_LIST would still be
1184 valid after threading the jump. If they are still
1185 valid, then return nonzero. */
1187 flags
= get_jump_flags (jump
, newlabel
);
1188 for (li
= delay_list
, i
= 0; li
; li
= XEXP (li
, 1), i
++)
1190 #ifdef ANNUL_IFFALSE_SLOTS
1191 (INSN_ANNULLED_BRANCH_P (jump
)
1192 && INSN_FROM_TARGET_P (XEXP (li
, 0)))
1193 ? eligible_for_annul_false (jump
, i
, XEXP (li
, 0), flags
) :
1195 #ifdef ANNUL_IFTRUE_SLOTS
1196 (INSN_ANNULLED_BRANCH_P (jump
)
1197 && ! INSN_FROM_TARGET_P (XEXP (li
, 0)))
1198 ? eligible_for_annul_true (jump
, i
, XEXP (li
, 0), flags
) :
1200 eligible_for_delay (jump
, i
, XEXP (li
, 0), flags
)))
1203 return (li
== NULL
);
1206 /* DELAY_LIST is a list of insns that have already been placed into delay
1207 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1208 If not, return 0; otherwise return 1. */
1211 check_annul_list_true_false (int annul_true_p
, rtx delay_list
)
1217 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1219 rtx trial
= XEXP (temp
, 0);
1221 if ((annul_true_p
&& INSN_FROM_TARGET_P (trial
))
1222 || (!annul_true_p
&& !INSN_FROM_TARGET_P (trial
)))
1230 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1231 the condition tested by INSN is CONDITION and the resources shown in
1232 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1233 from SEQ's delay list, in addition to whatever insns it may execute
1234 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1235 needed while searching for delay slot insns. Return the concatenated
1236 delay list if possible, otherwise, return 0.
1238 SLOTS_TO_FILL is the total number of slots required by INSN, and
1239 PSLOTS_FILLED points to the number filled so far (also the number of
1240 insns in DELAY_LIST). It is updated with the number that have been
1241 filled from the SEQUENCE, if any.
1243 PANNUL_P points to a nonzero value if we already know that we need
1244 to annul INSN. If this routine determines that annulling is needed,
1245 it may set that value nonzero.
1247 PNEW_THREAD points to a location that is to receive the place at which
1248 execution should continue. */
1251 steal_delay_list_from_target (rtx insn
, rtx condition
, rtx seq
,
1252 rtx delay_list
, struct resources
*sets
,
1253 struct resources
*needed
,
1254 struct resources
*other_needed
,
1255 int slots_to_fill
, int *pslots_filled
,
1256 int *pannul_p
, rtx
*pnew_thread
)
1259 int slots_remaining
= slots_to_fill
- *pslots_filled
;
1260 int total_slots_filled
= *pslots_filled
;
1261 rtx new_delay_list
= 0;
1262 int must_annul
= *pannul_p
;
1265 struct resources cc_set
;
1267 /* We can't do anything if there are more delay slots in SEQ than we
1268 can handle, or if we don't know that it will be a taken branch.
1269 We know that it will be a taken branch if it is either an unconditional
1270 branch or a conditional branch with a stricter branch condition.
1272 Also, exit if the branch has more than one set, since then it is computing
1273 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1274 ??? It may be possible to move other sets into INSN in addition to
1275 moving the instructions in the delay slots.
1277 We can not steal the delay list if one of the instructions in the
1278 current delay_list modifies the condition codes and the jump in the
1279 sequence is a conditional jump. We can not do this because we can
1280 not change the direction of the jump because the condition codes
1281 will effect the direction of the jump in the sequence. */
1283 CLEAR_RESOURCE (&cc_set
);
1284 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1286 rtx trial
= XEXP (temp
, 0);
1288 mark_set_resources (trial
, &cc_set
, 0, MARK_SRC_DEST_CALL
);
1289 if (insn_references_resource_p (XVECEXP (seq
, 0, 0), &cc_set
, 0))
1293 if (XVECLEN (seq
, 0) - 1 > slots_remaining
1294 || ! condition_dominates_p (condition
, XVECEXP (seq
, 0, 0))
1295 || ! single_set (XVECEXP (seq
, 0, 0)))
1298 #ifdef MD_CAN_REDIRECT_BRANCH
1299 /* On some targets, branches with delay slots can have a limited
1300 displacement. Give the back end a chance to tell us we can't do
1302 if (! MD_CAN_REDIRECT_BRANCH (insn
, XVECEXP (seq
, 0, 0)))
1306 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1308 rtx trial
= XVECEXP (seq
, 0, i
);
1311 if (insn_references_resource_p (trial
, sets
, 0)
1312 || insn_sets_resource_p (trial
, needed
, 0)
1313 || insn_sets_resource_p (trial
, sets
, 0)
1315 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1317 || find_reg_note (trial
, REG_CC_USER
, NULL_RTX
)
1319 /* If TRIAL is from the fallthrough code of an annulled branch insn
1320 in SEQ, we cannot use it. */
1321 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq
, 0, 0))
1322 && ! INSN_FROM_TARGET_P (trial
)))
1325 /* If this insn was already done (usually in a previous delay slot),
1326 pretend we put it in our delay slot. */
1327 if (redundant_insn (trial
, insn
, new_delay_list
))
1330 /* We will end up re-vectoring this branch, so compute flags
1331 based on jumping to the new label. */
1332 flags
= get_jump_flags (insn
, JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1335 && ((condition
== const_true_rtx
1336 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1337 && ! may_trap_p (PATTERN (trial
)))))
1338 ? eligible_for_delay (insn
, total_slots_filled
, trial
, flags
)
1339 : (must_annul
|| (delay_list
== NULL
&& new_delay_list
== NULL
))
1341 check_annul_list_true_false (0, delay_list
)
1342 && check_annul_list_true_false (0, new_delay_list
)
1343 && eligible_for_annul_false (insn
, total_slots_filled
,
1348 temp
= copy_rtx (trial
);
1349 INSN_FROM_TARGET_P (temp
) = 1;
1350 new_delay_list
= add_to_delay_list (temp
, new_delay_list
);
1351 total_slots_filled
++;
1353 if (--slots_remaining
== 0)
1360 /* Show the place to which we will be branching. */
1361 *pnew_thread
= next_active_insn (JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1363 /* Add any new insns to the delay list and update the count of the
1364 number of slots filled. */
1365 *pslots_filled
= total_slots_filled
;
1369 if (delay_list
== 0)
1370 return new_delay_list
;
1372 for (temp
= new_delay_list
; temp
; temp
= XEXP (temp
, 1))
1373 delay_list
= add_to_delay_list (XEXP (temp
, 0), delay_list
);
1378 /* Similar to steal_delay_list_from_target except that SEQ is on the
1379 fallthrough path of INSN. Here we only do something if the delay insn
1380 of SEQ is an unconditional branch. In that case we steal its delay slot
1381 for INSN since unconditional branches are much easier to fill. */
1384 steal_delay_list_from_fallthrough (rtx insn
, rtx condition
, rtx seq
,
1385 rtx delay_list
, struct resources
*sets
,
1386 struct resources
*needed
,
1387 struct resources
*other_needed
,
1388 int slots_to_fill
, int *pslots_filled
,
1393 int must_annul
= *pannul_p
;
1396 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1398 /* We can't do anything if SEQ's delay insn isn't an
1399 unconditional branch. */
1401 if (! simplejump_p (XVECEXP (seq
, 0, 0))
1402 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) != RETURN
)
1405 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1407 rtx trial
= XVECEXP (seq
, 0, i
);
1409 /* If TRIAL sets CC0, stealing it will move it too far from the use
1411 if (insn_references_resource_p (trial
, sets
, 0)
1412 || insn_sets_resource_p (trial
, needed
, 0)
1413 || insn_sets_resource_p (trial
, sets
, 0)
1415 || sets_cc0_p (PATTERN (trial
))
1421 /* If this insn was already done, we don't need it. */
1422 if (redundant_insn (trial
, insn
, delay_list
))
1424 delete_from_delay_slot (trial
);
1429 && ((condition
== const_true_rtx
1430 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1431 && ! may_trap_p (PATTERN (trial
)))))
1432 ? eligible_for_delay (insn
, *pslots_filled
, trial
, flags
)
1433 : (must_annul
|| delay_list
== NULL
) && (must_annul
= 1,
1434 check_annul_list_true_false (1, delay_list
)
1435 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
1439 delete_from_delay_slot (trial
);
1440 delay_list
= add_to_delay_list (trial
, delay_list
);
1442 if (++(*pslots_filled
) == slots_to_fill
)
1454 /* Try merging insns starting at THREAD which match exactly the insns in
1457 If all insns were matched and the insn was previously annulling, the
1458 annul bit will be cleared.
1460 For each insn that is merged, if the branch is or will be non-annulling,
1461 we delete the merged insn. */
1464 try_merge_delay_insns (rtx insn
, rtx thread
)
1466 rtx trial
, next_trial
;
1467 rtx delay_insn
= XVECEXP (PATTERN (insn
), 0, 0);
1468 int annul_p
= INSN_ANNULLED_BRANCH_P (delay_insn
);
1469 int slot_number
= 1;
1470 int num_slots
= XVECLEN (PATTERN (insn
), 0);
1471 rtx next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1472 struct resources set
, needed
;
1473 rtx merged_insns
= 0;
1477 flags
= get_jump_flags (delay_insn
, JUMP_LABEL (delay_insn
));
1479 CLEAR_RESOURCE (&needed
);
1480 CLEAR_RESOURCE (&set
);
1482 /* If this is not an annulling branch, take into account anything needed in
1483 INSN's delay slot. This prevents two increments from being incorrectly
1484 folded into one. If we are annulling, this would be the correct
1485 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1486 will essentially disable this optimization. This method is somewhat of
1487 a kludge, but I don't see a better way.) */
1489 for (i
= 1 ; i
< num_slots
; i
++)
1490 if (XVECEXP (PATTERN (insn
), 0, i
))
1491 mark_referenced_resources (XVECEXP (PATTERN (insn
), 0, i
), &needed
, 1);
1493 for (trial
= thread
; !stop_search_p (trial
, 1); trial
= next_trial
)
1495 rtx pat
= PATTERN (trial
);
1496 rtx oldtrial
= trial
;
1498 next_trial
= next_nonnote_insn (trial
);
1500 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1501 if (NONJUMP_INSN_P (trial
)
1502 && (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
))
1505 if (GET_CODE (next_to_match
) == GET_CODE (trial
)
1507 /* We can't share an insn that sets cc0. */
1508 && ! sets_cc0_p (pat
)
1510 && ! insn_references_resource_p (trial
, &set
, 1)
1511 && ! insn_sets_resource_p (trial
, &set
, 1)
1512 && ! insn_sets_resource_p (trial
, &needed
, 1)
1513 && (trial
= try_split (pat
, trial
, 0)) != 0
1514 /* Update next_trial, in case try_split succeeded. */
1515 && (next_trial
= next_nonnote_insn (trial
))
1516 /* Likewise THREAD. */
1517 && (thread
= oldtrial
== thread
? trial
: thread
)
1518 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (trial
))
1519 /* Have to test this condition if annul condition is different
1520 from (and less restrictive than) non-annulling one. */
1521 && eligible_for_delay (delay_insn
, slot_number
- 1, trial
, flags
))
1526 update_block (trial
, thread
);
1527 if (trial
== thread
)
1528 thread
= next_active_insn (thread
);
1530 delete_related_insns (trial
);
1531 INSN_FROM_TARGET_P (next_to_match
) = 0;
1534 merged_insns
= gen_rtx_INSN_LIST (VOIDmode
, trial
, merged_insns
);
1536 if (++slot_number
== num_slots
)
1539 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1542 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
1543 mark_referenced_resources (trial
, &needed
, 1);
1546 /* See if we stopped on a filled insn. If we did, try to see if its
1547 delay slots match. */
1548 if (slot_number
!= num_slots
1549 && trial
&& NONJUMP_INSN_P (trial
)
1550 && GET_CODE (PATTERN (trial
)) == SEQUENCE
1551 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial
), 0, 0)))
1553 rtx pat
= PATTERN (trial
);
1554 rtx filled_insn
= XVECEXP (pat
, 0, 0);
1556 /* Account for resources set/needed by the filled insn. */
1557 mark_set_resources (filled_insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1558 mark_referenced_resources (filled_insn
, &needed
, 1);
1560 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1562 rtx dtrial
= XVECEXP (pat
, 0, i
);
1564 if (! insn_references_resource_p (dtrial
, &set
, 1)
1565 && ! insn_sets_resource_p (dtrial
, &set
, 1)
1566 && ! insn_sets_resource_p (dtrial
, &needed
, 1)
1568 && ! sets_cc0_p (PATTERN (dtrial
))
1570 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (dtrial
))
1571 && eligible_for_delay (delay_insn
, slot_number
- 1, dtrial
, flags
))
1577 update_block (dtrial
, thread
);
1578 new = delete_from_delay_slot (dtrial
);
1579 if (INSN_DELETED_P (thread
))
1581 INSN_FROM_TARGET_P (next_to_match
) = 0;
1584 merged_insns
= gen_rtx_INSN_LIST (SImode
, dtrial
,
1587 if (++slot_number
== num_slots
)
1590 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1594 /* Keep track of the set/referenced resources for the delay
1595 slots of any trial insns we encounter. */
1596 mark_set_resources (dtrial
, &set
, 0, MARK_SRC_DEST_CALL
);
1597 mark_referenced_resources (dtrial
, &needed
, 1);
1602 /* If all insns in the delay slot have been matched and we were previously
1603 annulling the branch, we need not any more. In that case delete all the
1604 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1605 the delay list so that we know that it isn't only being used at the
1607 if (slot_number
== num_slots
&& annul_p
)
1609 for (; merged_insns
; merged_insns
= XEXP (merged_insns
, 1))
1611 if (GET_MODE (merged_insns
) == SImode
)
1615 update_block (XEXP (merged_insns
, 0), thread
);
1616 new = delete_from_delay_slot (XEXP (merged_insns
, 0));
1617 if (INSN_DELETED_P (thread
))
1622 update_block (XEXP (merged_insns
, 0), thread
);
1623 delete_related_insns (XEXP (merged_insns
, 0));
1627 INSN_ANNULLED_BRANCH_P (delay_insn
) = 0;
1629 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1630 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
)) = 0;
1634 /* See if INSN is redundant with an insn in front of TARGET. Often this
1635 is called when INSN is a candidate for a delay slot of TARGET.
1636 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1637 of INSN. Often INSN will be redundant with an insn in a delay slot of
1638 some previous insn. This happens when we have a series of branches to the
1639 same label; in that case the first insn at the target might want to go
1640 into each of the delay slots.
1642 If we are not careful, this routine can take up a significant fraction
1643 of the total compilation time (4%), but only wins rarely. Hence we
1644 speed this routine up by making two passes. The first pass goes back
1645 until it hits a label and sees if it finds an insn with an identical
1646 pattern. Only in this (relatively rare) event does it check for
1649 We do not split insns we encounter. This could cause us not to find a
1650 redundant insn, but the cost of splitting seems greater than the possible
1651 gain in rare cases. */
1654 redundant_insn (rtx insn
, rtx target
, rtx delay_list
)
1656 rtx target_main
= target
;
1657 rtx ipat
= PATTERN (insn
);
1659 struct resources needed
, set
;
1661 unsigned insns_to_search
;
1663 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1664 are allowed to not actually assign to such a register. */
1665 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
) != 0)
1668 /* Scan backwards looking for a match. */
1669 for (trial
= PREV_INSN (target
),
1670 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1671 trial
&& insns_to_search
> 0;
1672 trial
= PREV_INSN (trial
), --insns_to_search
)
1674 if (LABEL_P (trial
))
1677 if (! INSN_P (trial
))
1680 pat
= PATTERN (trial
);
1681 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1684 if (GET_CODE (pat
) == SEQUENCE
)
1686 /* Stop for a CALL and its delay slots because it is difficult to
1687 track its resource needs correctly. */
1688 if (CALL_P (XVECEXP (pat
, 0, 0)))
1691 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1692 slots because it is difficult to track its resource needs
1695 #ifdef INSN_SETS_ARE_DELAYED
1696 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1700 #ifdef INSN_REFERENCES_ARE_DELAYED
1701 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1705 /* See if any of the insns in the delay slot match, updating
1706 resource requirements as we go. */
1707 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1708 if (GET_CODE (XVECEXP (pat
, 0, i
)) == GET_CODE (insn
)
1709 && rtx_equal_p (PATTERN (XVECEXP (pat
, 0, i
)), ipat
)
1710 && ! find_reg_note (XVECEXP (pat
, 0, i
), REG_UNUSED
, NULL_RTX
))
1713 /* If found a match, exit this loop early. */
1718 else if (GET_CODE (trial
) == GET_CODE (insn
) && rtx_equal_p (pat
, ipat
)
1719 && ! find_reg_note (trial
, REG_UNUSED
, NULL_RTX
))
1723 /* If we didn't find an insn that matches, return 0. */
1727 /* See what resources this insn sets and needs. If they overlap, or
1728 if this insn references CC0, it can't be redundant. */
1730 CLEAR_RESOURCE (&needed
);
1731 CLEAR_RESOURCE (&set
);
1732 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1733 mark_referenced_resources (insn
, &needed
, 1);
1735 /* If TARGET is a SEQUENCE, get the main insn. */
1736 if (NONJUMP_INSN_P (target
) && GET_CODE (PATTERN (target
)) == SEQUENCE
)
1737 target_main
= XVECEXP (PATTERN (target
), 0, 0);
1739 if (resource_conflicts_p (&needed
, &set
)
1741 || reg_mentioned_p (cc0_rtx
, ipat
)
1743 /* The insn requiring the delay may not set anything needed or set by
1745 || insn_sets_resource_p (target_main
, &needed
, 1)
1746 || insn_sets_resource_p (target_main
, &set
, 1))
1749 /* Insns we pass may not set either NEEDED or SET, so merge them for
1751 needed
.memory
|= set
.memory
;
1752 needed
.unch_memory
|= set
.unch_memory
;
1753 IOR_HARD_REG_SET (needed
.regs
, set
.regs
);
1755 /* This insn isn't redundant if it conflicts with an insn that either is
1756 or will be in a delay slot of TARGET. */
1760 if (insn_sets_resource_p (XEXP (delay_list
, 0), &needed
, 1))
1762 delay_list
= XEXP (delay_list
, 1);
1765 if (NONJUMP_INSN_P (target
) && GET_CODE (PATTERN (target
)) == SEQUENCE
)
1766 for (i
= 1; i
< XVECLEN (PATTERN (target
), 0); i
++)
1767 if (insn_sets_resource_p (XVECEXP (PATTERN (target
), 0, i
), &needed
, 1))
1770 /* Scan backwards until we reach a label or an insn that uses something
1771 INSN sets or sets something insn uses or sets. */
1773 for (trial
= PREV_INSN (target
),
1774 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1775 trial
&& !LABEL_P (trial
) && insns_to_search
> 0;
1776 trial
= PREV_INSN (trial
), --insns_to_search
)
1778 if (!INSN_P (trial
))
1781 pat
= PATTERN (trial
);
1782 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1785 if (GET_CODE (pat
) == SEQUENCE
)
1787 /* If this is a CALL_INSN and its delay slots, it is hard to track
1788 the resource needs properly, so give up. */
1789 if (CALL_P (XVECEXP (pat
, 0, 0)))
1792 /* If this is an INSN or JUMP_INSN with delayed effects, it
1793 is hard to track the resource needs properly, so give up. */
1795 #ifdef INSN_SETS_ARE_DELAYED
1796 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1800 #ifdef INSN_REFERENCES_ARE_DELAYED
1801 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1805 /* See if any of the insns in the delay slot match, updating
1806 resource requirements as we go. */
1807 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1809 rtx candidate
= XVECEXP (pat
, 0, i
);
1811 /* If an insn will be annulled if the branch is false, it isn't
1812 considered as a possible duplicate insn. */
1813 if (rtx_equal_p (PATTERN (candidate
), ipat
)
1814 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1815 && INSN_FROM_TARGET_P (candidate
)))
1817 /* Show that this insn will be used in the sequel. */
1818 INSN_FROM_TARGET_P (candidate
) = 0;
1822 /* Unless this is an annulled insn from the target of a branch,
1823 we must stop if it sets anything needed or set by INSN. */
1824 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1825 || ! INSN_FROM_TARGET_P (candidate
))
1826 && insn_sets_resource_p (candidate
, &needed
, 1))
1830 /* If the insn requiring the delay slot conflicts with INSN, we
1832 if (insn_sets_resource_p (XVECEXP (pat
, 0, 0), &needed
, 1))
1837 /* See if TRIAL is the same as INSN. */
1838 pat
= PATTERN (trial
);
1839 if (rtx_equal_p (pat
, ipat
))
1842 /* Can't go any further if TRIAL conflicts with INSN. */
1843 if (insn_sets_resource_p (trial
, &needed
, 1))
1851 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1852 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1853 is nonzero, we are allowed to fall into this thread; otherwise, we are
1856 If LABEL is used more than one or we pass a label other than LABEL before
1857 finding an active insn, we do not own this thread. */
1860 own_thread_p (rtx thread
, rtx label
, int allow_fallthrough
)
1865 /* We don't own the function end. */
1869 /* Get the first active insn, or THREAD, if it is an active insn. */
1870 active_insn
= next_active_insn (PREV_INSN (thread
));
1872 for (insn
= thread
; insn
!= active_insn
; insn
= NEXT_INSN (insn
))
1874 && (insn
!= label
|| LABEL_NUSES (insn
) != 1))
1877 if (allow_fallthrough
)
1880 /* Ensure that we reach a BARRIER before any insn or label. */
1881 for (insn
= prev_nonnote_insn (thread
);
1882 insn
== 0 || !BARRIER_P (insn
);
1883 insn
= prev_nonnote_insn (insn
))
1886 || (NONJUMP_INSN_P (insn
)
1887 && GET_CODE (PATTERN (insn
)) != USE
1888 && GET_CODE (PATTERN (insn
)) != CLOBBER
))
1894 /* Called when INSN is being moved from a location near the target of a jump.
1895 We leave a marker of the form (use (INSN)) immediately in front
1896 of WHERE for mark_target_live_regs. These markers will be deleted when
1899 We used to try to update the live status of registers if WHERE is at
1900 the start of a basic block, but that can't work since we may remove a
1901 BARRIER in relax_delay_slots. */
1904 update_block (rtx insn
, rtx where
)
1906 /* Ignore if this was in a delay slot and it came from the target of
1908 if (INSN_FROM_TARGET_P (insn
))
1911 emit_insn_before (gen_rtx_USE (VOIDmode
, insn
), where
);
1913 /* INSN might be making a value live in a block where it didn't use to
1914 be. So recompute liveness information for this block. */
1916 incr_ticks_for_insn (insn
);
1919 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1920 the basic block containing the jump. */
1923 reorg_redirect_jump (rtx jump
, rtx nlabel
)
1925 incr_ticks_for_insn (jump
);
1926 return redirect_jump (jump
, nlabel
, 1);
1929 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1930 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1931 that reference values used in INSN. If we find one, then we move the
1932 REG_DEAD note to INSN.
1934 This is needed to handle the case where an later insn (after INSN) has a
1935 REG_DEAD note for a register used by INSN, and this later insn subsequently
1936 gets moved before a CODE_LABEL because it is a redundant insn. In this
1937 case, mark_target_live_regs may be confused into thinking the register
1938 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1941 update_reg_dead_notes (rtx insn
, rtx delayed_insn
)
1945 for (p
= next_nonnote_insn (insn
); p
!= delayed_insn
;
1946 p
= next_nonnote_insn (p
))
1947 for (link
= REG_NOTES (p
); link
; link
= next
)
1949 next
= XEXP (link
, 1);
1951 if (REG_NOTE_KIND (link
) != REG_DEAD
1952 || !REG_P (XEXP (link
, 0)))
1955 if (reg_referenced_p (XEXP (link
, 0), PATTERN (insn
)))
1957 /* Move the REG_DEAD note from P to INSN. */
1958 remove_note (p
, link
);
1959 XEXP (link
, 1) = REG_NOTES (insn
);
1960 REG_NOTES (insn
) = link
;
1965 /* Called when an insn redundant with start_insn is deleted. If there
1966 is a REG_DEAD note for the target of start_insn between start_insn
1967 and stop_insn, then the REG_DEAD note needs to be deleted since the
1968 value no longer dies there.
1970 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1971 confused into thinking the register is dead. */
1974 fix_reg_dead_note (rtx start_insn
, rtx stop_insn
)
1978 for (p
= next_nonnote_insn (start_insn
); p
!= stop_insn
;
1979 p
= next_nonnote_insn (p
))
1980 for (link
= REG_NOTES (p
); link
; link
= next
)
1982 next
= XEXP (link
, 1);
1984 if (REG_NOTE_KIND (link
) != REG_DEAD
1985 || !REG_P (XEXP (link
, 0)))
1988 if (reg_set_p (XEXP (link
, 0), PATTERN (start_insn
)))
1990 remove_note (p
, link
);
1996 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1998 This handles the case of udivmodXi4 instructions which optimize their
1999 output depending on whether any REG_UNUSED notes are present.
2000 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2004 update_reg_unused_notes (rtx insn
, rtx redundant_insn
)
2008 for (link
= REG_NOTES (insn
); link
; link
= next
)
2010 next
= XEXP (link
, 1);
2012 if (REG_NOTE_KIND (link
) != REG_UNUSED
2013 || !REG_P (XEXP (link
, 0)))
2016 if (! find_regno_note (redundant_insn
, REG_UNUSED
,
2017 REGNO (XEXP (link
, 0))))
2018 remove_note (insn
, link
);
2022 /* Scan a function looking for insns that need a delay slot and find insns to
2023 put into the delay slot.
2025 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2026 as calls). We do these first since we don't want jump insns (that are
2027 easier to fill) to get the only insns that could be used for non-jump insns.
2028 When it is zero, only try to fill JUMP_INSNs.
2030 When slots are filled in this manner, the insns (including the
2031 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2032 it is possible to tell whether a delay slot has really been filled
2033 or not. `final' knows how to deal with this, by communicating
2034 through FINAL_SEQUENCE. */
2037 fill_simple_delay_slots (int non_jumps_p
)
2039 rtx insn
, pat
, trial
, next_trial
;
2041 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2042 struct resources needed
, set
;
2043 int slots_to_fill
, slots_filled
;
2046 for (i
= 0; i
< num_unfilled_slots
; i
++)
2049 /* Get the next insn to fill. If it has already had any slots assigned,
2050 we can't do anything with it. Maybe we'll improve this later. */
2052 insn
= unfilled_slots_base
[i
];
2054 || INSN_DELETED_P (insn
)
2055 || (NONJUMP_INSN_P (insn
)
2056 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2057 || (JUMP_P (insn
) && non_jumps_p
)
2058 || (!JUMP_P (insn
) && ! non_jumps_p
))
2061 /* It may have been that this insn used to need delay slots, but
2062 now doesn't; ignore in that case. This can happen, for example,
2063 on the HP PA RISC, where the number of delay slots depends on
2064 what insns are nearby. */
2065 slots_to_fill
= num_delay_slots (insn
);
2067 /* Some machine description have defined instructions to have
2068 delay slots only in certain circumstances which may depend on
2069 nearby insns (which change due to reorg's actions).
2071 For example, the PA port normally has delay slots for unconditional
2074 However, the PA port claims such jumps do not have a delay slot
2075 if they are immediate successors of certain CALL_INSNs. This
2076 allows the port to favor filling the delay slot of the call with
2077 the unconditional jump. */
2078 if (slots_to_fill
== 0)
2081 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2082 says how many. After initialization, first try optimizing
2085 nop add %o7,.-L1,%o7
2089 If this case applies, the delay slot of the call is filled with
2090 the unconditional jump. This is done first to avoid having the
2091 delay slot of the call filled in the backward scan. Also, since
2092 the unconditional jump is likely to also have a delay slot, that
2093 insn must exist when it is subsequently scanned.
2095 This is tried on each insn with delay slots as some machines
2096 have insns which perform calls, but are not represented as
2103 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2105 flags
= get_jump_flags (insn
, NULL_RTX
);
2107 if ((trial
= next_active_insn (insn
))
2109 && simplejump_p (trial
)
2110 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2111 && no_labels_between_p (insn
, trial
)
2112 && ! can_throw_internal (trial
))
2116 delay_list
= add_to_delay_list (trial
, delay_list
);
2118 /* TRIAL may have had its delay slot filled, then unfilled. When
2119 the delay slot is unfilled, TRIAL is placed back on the unfilled
2120 slots obstack. Unfortunately, it is placed on the end of the
2121 obstack, not in its original location. Therefore, we must search
2122 from entry i + 1 to the end of the unfilled slots obstack to
2123 try and find TRIAL. */
2124 tmp
= &unfilled_slots_base
[i
+ 1];
2125 while (*tmp
!= trial
&& tmp
!= unfilled_slots_next
)
2128 /* Remove the unconditional jump from consideration for delay slot
2129 filling and unthread it. */
2133 rtx next
= NEXT_INSN (trial
);
2134 rtx prev
= PREV_INSN (trial
);
2136 NEXT_INSN (prev
) = next
;
2138 PREV_INSN (next
) = prev
;
2142 /* Now, scan backwards from the insn to search for a potential
2143 delay-slot candidate. Stop searching when a label or jump is hit.
2145 For each candidate, if it is to go into the delay slot (moved
2146 forward in execution sequence), it must not need or set any resources
2147 that were set by later insns and must not set any resources that
2148 are needed for those insns.
2150 The delay slot insn itself sets resources unless it is a call
2151 (in which case the called routine, not the insn itself, is doing
2154 if (slots_filled
< slots_to_fill
)
2156 CLEAR_RESOURCE (&needed
);
2157 CLEAR_RESOURCE (&set
);
2158 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST
);
2159 mark_referenced_resources (insn
, &needed
, 0);
2161 for (trial
= prev_nonnote_insn (insn
); ! stop_search_p (trial
, 1);
2164 next_trial
= prev_nonnote_insn (trial
);
2166 /* This must be an INSN or CALL_INSN. */
2167 pat
= PATTERN (trial
);
2169 /* USE and CLOBBER at this level was just for flow; ignore it. */
2170 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2173 /* Check for resource conflict first, to avoid unnecessary
2175 if (! insn_references_resource_p (trial
, &set
, 1)
2176 && ! insn_sets_resource_p (trial
, &set
, 1)
2177 && ! insn_sets_resource_p (trial
, &needed
, 1)
2179 /* Can't separate set of cc0 from its use. */
2180 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2182 && ! can_throw_internal (trial
))
2184 trial
= try_split (pat
, trial
, 1);
2185 next_trial
= prev_nonnote_insn (trial
);
2186 if (eligible_for_delay (insn
, slots_filled
, trial
, flags
))
2188 /* In this case, we are searching backward, so if we
2189 find insns to put on the delay list, we want
2190 to put them at the head, rather than the
2191 tail, of the list. */
2193 update_reg_dead_notes (trial
, insn
);
2194 delay_list
= gen_rtx_INSN_LIST (VOIDmode
,
2196 update_block (trial
, trial
);
2197 delete_related_insns (trial
);
2198 if (slots_to_fill
== ++slots_filled
)
2204 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2205 mark_referenced_resources (trial
, &needed
, 1);
2209 /* If all needed slots haven't been filled, we come here. */
2211 /* Try to optimize case of jumping around a single insn. */
2212 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2213 if (slots_filled
!= slots_to_fill
2216 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2218 delay_list
= optimize_skip (insn
);
2224 /* Try to get insns from beyond the insn needing the delay slot.
2225 These insns can neither set or reference resources set in insns being
2226 skipped, cannot set resources in the insn being skipped, and, if this
2227 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2228 call might not return).
2230 There used to be code which continued past the target label if
2231 we saw all uses of the target label. This code did not work,
2232 because it failed to account for some instructions which were
2233 both annulled and marked as from the target. This can happen as a
2234 result of optimize_skip. Since this code was redundant with
2235 fill_eager_delay_slots anyways, it was just deleted. */
2237 if (slots_filled
!= slots_to_fill
2238 /* If this instruction could throw an exception which is
2239 caught in the same function, then it's not safe to fill
2240 the delay slot with an instruction from beyond this
2241 point. For example, consider:
2252 Even though `i' is a local variable, we must be sure not
2253 to put `i = 3' in the delay slot if `f' might throw an
2256 Presumably, we should also check to see if we could get
2257 back to this function via `setjmp'. */
2258 && ! can_throw_internal (insn
)
2260 || ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
2261 && ! simplejump_p (insn
)
2262 && JUMP_LABEL (insn
) != 0)))
2264 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2265 label. Otherwise, zero. */
2267 int maybe_never
= 0;
2268 rtx pat
, trial_delay
;
2270 CLEAR_RESOURCE (&needed
);
2271 CLEAR_RESOURCE (&set
);
2275 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2276 mark_referenced_resources (insn
, &needed
, 1);
2281 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2282 mark_referenced_resources (insn
, &needed
, 1);
2284 target
= JUMP_LABEL (insn
);
2288 for (trial
= next_nonnote_insn (insn
); trial
; trial
= next_trial
)
2290 next_trial
= next_nonnote_insn (trial
);
2293 || BARRIER_P (trial
))
2296 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2297 pat
= PATTERN (trial
);
2299 /* Stand-alone USE and CLOBBER are just for flow. */
2300 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2303 /* If this already has filled delay slots, get the insn needing
2305 if (GET_CODE (pat
) == SEQUENCE
)
2306 trial_delay
= XVECEXP (pat
, 0, 0);
2308 trial_delay
= trial
;
2310 /* Stop our search when seeing an unconditional jump. */
2311 if (JUMP_P (trial_delay
))
2314 /* See if we have a resource problem before we try to
2316 if (GET_CODE (pat
) != SEQUENCE
2317 && ! insn_references_resource_p (trial
, &set
, 1)
2318 && ! insn_sets_resource_p (trial
, &set
, 1)
2319 && ! insn_sets_resource_p (trial
, &needed
, 1)
2321 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2323 && ! (maybe_never
&& may_trap_p (pat
))
2324 && (trial
= try_split (pat
, trial
, 0))
2325 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2326 && ! can_throw_internal(trial
))
2328 next_trial
= next_nonnote_insn (trial
);
2329 delay_list
= add_to_delay_list (trial
, delay_list
);
2332 if (reg_mentioned_p (cc0_rtx
, pat
))
2333 link_cc0_insns (trial
);
2336 delete_related_insns (trial
);
2337 if (slots_to_fill
== ++slots_filled
)
2342 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2343 mark_referenced_resources (trial
, &needed
, 1);
2345 /* Ensure we don't put insns between the setting of cc and the
2346 comparison by moving a setting of cc into an earlier delay
2347 slot since these insns could clobber the condition code. */
2350 /* If this is a call or jump, we might not get here. */
2351 if (CALL_P (trial_delay
)
2352 || JUMP_P (trial_delay
))
2356 /* If there are slots left to fill and our search was stopped by an
2357 unconditional branch, try the insn at the branch target. We can
2358 redirect the branch if it works.
2360 Don't do this if the insn at the branch target is a branch. */
2361 if (slots_to_fill
!= slots_filled
2364 && simplejump_p (trial
)
2365 && (target
== 0 || JUMP_LABEL (trial
) == target
)
2366 && (next_trial
= next_active_insn (JUMP_LABEL (trial
))) != 0
2367 && ! (NONJUMP_INSN_P (next_trial
)
2368 && GET_CODE (PATTERN (next_trial
)) == SEQUENCE
)
2369 && !JUMP_P (next_trial
)
2370 && ! insn_references_resource_p (next_trial
, &set
, 1)
2371 && ! insn_sets_resource_p (next_trial
, &set
, 1)
2372 && ! insn_sets_resource_p (next_trial
, &needed
, 1)
2374 && ! reg_mentioned_p (cc0_rtx
, PATTERN (next_trial
))
2376 && ! (maybe_never
&& may_trap_p (PATTERN (next_trial
)))
2377 && (next_trial
= try_split (PATTERN (next_trial
), next_trial
, 0))
2378 && eligible_for_delay (insn
, slots_filled
, next_trial
, flags
)
2379 && ! can_throw_internal (trial
))
2381 /* See comment in relax_delay_slots about necessity of using
2382 next_real_insn here. */
2383 rtx new_label
= next_real_insn (next_trial
);
2386 new_label
= get_label_before (new_label
);
2388 new_label
= find_end_label ();
2393 = add_to_delay_list (copy_rtx (next_trial
), delay_list
);
2395 reorg_redirect_jump (trial
, new_label
);
2397 /* If we merged because we both jumped to the same place,
2398 redirect the original insn also. */
2400 reorg_redirect_jump (insn
, new_label
);
2405 /* If this is an unconditional jump, then try to get insns from the
2406 target of the jump. */
2408 && simplejump_p (insn
)
2409 && slots_filled
!= slots_to_fill
)
2411 = fill_slots_from_thread (insn
, const_true_rtx
,
2412 next_active_insn (JUMP_LABEL (insn
)),
2414 own_thread_p (JUMP_LABEL (insn
),
2415 JUMP_LABEL (insn
), 0),
2416 slots_to_fill
, &slots_filled
,
2420 unfilled_slots_base
[i
]
2421 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2423 if (slots_to_fill
== slots_filled
)
2424 unfilled_slots_base
[i
] = 0;
2426 note_delay_statistics (slots_filled
, 0);
2429 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2430 /* See if the epilogue needs any delay slots. Try to fill them if so.
2431 The only thing we can do is scan backwards from the end of the
2432 function. If we did this in a previous pass, it is incorrect to do it
2434 if (current_function_epilogue_delay_list
)
2437 slots_to_fill
= DELAY_SLOTS_FOR_EPILOGUE
;
2438 if (slots_to_fill
== 0)
2442 CLEAR_RESOURCE (&set
);
2444 /* The frame pointer and stack pointer are needed at the beginning of
2445 the epilogue, so instructions setting them can not be put in the
2446 epilogue delay slot. However, everything else needed at function
2447 end is safe, so we don't want to use end_of_function_needs here. */
2448 CLEAR_RESOURCE (&needed
);
2449 if (frame_pointer_needed
)
2451 SET_HARD_REG_BIT (needed
.regs
, FRAME_POINTER_REGNUM
);
2452 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2453 SET_HARD_REG_BIT (needed
.regs
, HARD_FRAME_POINTER_REGNUM
);
2455 if (! EXIT_IGNORE_STACK
2456 || current_function_sp_is_unchanging
)
2457 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2460 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2462 #ifdef EPILOGUE_USES
2463 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2465 if (EPILOGUE_USES (i
))
2466 SET_HARD_REG_BIT (needed
.regs
, i
);
2470 for (trial
= get_last_insn (); ! stop_search_p (trial
, 1);
2471 trial
= PREV_INSN (trial
))
2475 pat
= PATTERN (trial
);
2476 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2479 if (! insn_references_resource_p (trial
, &set
, 1)
2480 && ! insn_sets_resource_p (trial
, &needed
, 1)
2481 && ! insn_sets_resource_p (trial
, &set
, 1)
2483 /* Don't want to mess with cc0 here. */
2484 && ! reg_mentioned_p (cc0_rtx
, pat
)
2486 && ! can_throw_internal (trial
))
2488 trial
= try_split (pat
, trial
, 1);
2489 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial
, slots_filled
))
2491 /* Here as well we are searching backward, so put the
2492 insns we find on the head of the list. */
2494 current_function_epilogue_delay_list
2495 = gen_rtx_INSN_LIST (VOIDmode
, trial
,
2496 current_function_epilogue_delay_list
);
2497 mark_end_of_function_resources (trial
, 1);
2498 update_block (trial
, trial
);
2499 delete_related_insns (trial
);
2501 /* Clear deleted bit so final.c will output the insn. */
2502 INSN_DELETED_P (trial
) = 0;
2504 if (slots_to_fill
== ++slots_filled
)
2510 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2511 mark_referenced_resources (trial
, &needed
, 1);
2514 note_delay_statistics (slots_filled
, 0);
2518 /* Try to find insns to place in delay slots.
2520 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2521 or is an unconditional branch if CONDITION is const_true_rtx.
2522 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2524 THREAD is a flow-of-control, either the insns to be executed if the
2525 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2527 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2528 to see if any potential delay slot insns set things needed there.
2530 LIKELY is nonzero if it is extremely likely that the branch will be
2531 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2532 end of a loop back up to the top.
2534 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2535 thread. I.e., it is the fallthrough code of our jump or the target of the
2536 jump when we are the only jump going there.
2538 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2539 case, we can only take insns from the head of the thread for our delay
2540 slot. We then adjust the jump to point after the insns we have taken. */
2543 fill_slots_from_thread (rtx insn
, rtx condition
, rtx thread
,
2544 rtx opposite_thread
, int likely
, int thread_if_true
,
2545 int own_thread
, int slots_to_fill
,
2546 int *pslots_filled
, rtx delay_list
)
2549 struct resources opposite_needed
, set
, needed
;
2555 /* Validate our arguments. */
2556 gcc_assert(condition
!= const_true_rtx
|| thread_if_true
);
2557 gcc_assert(own_thread
|| thread_if_true
);
2559 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2561 /* If our thread is the end of subroutine, we can't get any delay
2566 /* If this is an unconditional branch, nothing is needed at the
2567 opposite thread. Otherwise, compute what is needed there. */
2568 if (condition
== const_true_rtx
)
2569 CLEAR_RESOURCE (&opposite_needed
);
2571 mark_target_live_regs (get_insns (), opposite_thread
, &opposite_needed
);
2573 /* If the insn at THREAD can be split, do it here to avoid having to
2574 update THREAD and NEW_THREAD if it is done in the loop below. Also
2575 initialize NEW_THREAD. */
2577 new_thread
= thread
= try_split (PATTERN (thread
), thread
, 0);
2579 /* Scan insns at THREAD. We are looking for an insn that can be removed
2580 from THREAD (it neither sets nor references resources that were set
2581 ahead of it and it doesn't set anything needs by the insns ahead of
2582 it) and that either can be placed in an annulling insn or aren't
2583 needed at OPPOSITE_THREAD. */
2585 CLEAR_RESOURCE (&needed
);
2586 CLEAR_RESOURCE (&set
);
2588 /* If we do not own this thread, we must stop as soon as we find
2589 something that we can't put in a delay slot, since all we can do
2590 is branch into THREAD at a later point. Therefore, labels stop
2591 the search if this is not the `true' thread. */
2593 for (trial
= thread
;
2594 ! stop_search_p (trial
, ! thread_if_true
) && (! lose
|| own_thread
);
2595 trial
= next_nonnote_insn (trial
))
2599 /* If we have passed a label, we no longer own this thread. */
2600 if (LABEL_P (trial
))
2606 pat
= PATTERN (trial
);
2607 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2610 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2611 don't separate or copy insns that set and use CC0. */
2612 if (! insn_references_resource_p (trial
, &set
, 1)
2613 && ! insn_sets_resource_p (trial
, &set
, 1)
2614 && ! insn_sets_resource_p (trial
, &needed
, 1)
2616 && ! (reg_mentioned_p (cc0_rtx
, pat
)
2617 && (! own_thread
|| ! sets_cc0_p (pat
)))
2619 && ! can_throw_internal (trial
))
2623 /* If TRIAL is redundant with some insn before INSN, we don't
2624 actually need to add it to the delay list; we can merely pretend
2626 if ((prior_insn
= redundant_insn (trial
, insn
, delay_list
)))
2628 fix_reg_dead_note (prior_insn
, insn
);
2631 update_block (trial
, thread
);
2632 if (trial
== thread
)
2634 thread
= next_active_insn (thread
);
2635 if (new_thread
== trial
)
2636 new_thread
= thread
;
2639 delete_related_insns (trial
);
2643 update_reg_unused_notes (prior_insn
, trial
);
2644 new_thread
= next_active_insn (trial
);
2650 /* There are two ways we can win: If TRIAL doesn't set anything
2651 needed at the opposite thread and can't trap, or if it can
2652 go into an annulled delay slot. */
2654 && (condition
== const_true_rtx
2655 || (! insn_sets_resource_p (trial
, &opposite_needed
, 1)
2656 && ! may_trap_p (pat
))))
2659 trial
= try_split (pat
, trial
, 0);
2660 if (new_thread
== old_trial
)
2662 if (thread
== old_trial
)
2664 pat
= PATTERN (trial
);
2665 if (eligible_for_delay (insn
, *pslots_filled
, trial
, flags
))
2669 #ifdef ANNUL_IFTRUE_SLOTS
2672 #ifdef ANNUL_IFFALSE_SLOTS
2678 trial
= try_split (pat
, trial
, 0);
2679 if (new_thread
== old_trial
)
2681 if (thread
== old_trial
)
2683 pat
= PATTERN (trial
);
2684 if ((must_annul
|| delay_list
== NULL
) && (thread_if_true
2685 ? check_annul_list_true_false (0, delay_list
)
2686 && eligible_for_annul_false (insn
, *pslots_filled
, trial
, flags
)
2687 : check_annul_list_true_false (1, delay_list
)
2688 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
2696 if (reg_mentioned_p (cc0_rtx
, pat
))
2697 link_cc0_insns (trial
);
2700 /* If we own this thread, delete the insn. If this is the
2701 destination of a branch, show that a basic block status
2702 may have been updated. In any case, mark the new
2703 starting point of this thread. */
2708 update_block (trial
, thread
);
2709 if (trial
== thread
)
2711 thread
= next_active_insn (thread
);
2712 if (new_thread
== trial
)
2713 new_thread
= thread
;
2716 /* We are moving this insn, not deleting it. We must
2717 temporarily increment the use count on any referenced
2718 label lest it be deleted by delete_related_insns. */
2719 note
= find_reg_note (trial
, REG_LABEL
, 0);
2720 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2721 if (note
&& LABEL_P (XEXP (note
, 0)))
2722 LABEL_NUSES (XEXP (note
, 0))++;
2724 delete_related_insns (trial
);
2726 if (note
&& LABEL_P (XEXP (note
, 0)))
2727 LABEL_NUSES (XEXP (note
, 0))--;
2730 new_thread
= next_active_insn (trial
);
2732 temp
= own_thread
? trial
: copy_rtx (trial
);
2734 INSN_FROM_TARGET_P (temp
) = 1;
2736 delay_list
= add_to_delay_list (temp
, delay_list
);
2738 if (slots_to_fill
== ++(*pslots_filled
))
2740 /* Even though we have filled all the slots, we
2741 may be branching to a location that has a
2742 redundant insn. Skip any if so. */
2743 while (new_thread
&& ! own_thread
2744 && ! insn_sets_resource_p (new_thread
, &set
, 1)
2745 && ! insn_sets_resource_p (new_thread
, &needed
, 1)
2746 && ! insn_references_resource_p (new_thread
,
2749 = redundant_insn (new_thread
, insn
,
2752 /* We know we do not own the thread, so no need
2753 to call update_block and delete_insn. */
2754 fix_reg_dead_note (prior_insn
, insn
);
2755 update_reg_unused_notes (prior_insn
, new_thread
);
2756 new_thread
= next_active_insn (new_thread
);
2766 /* This insn can't go into a delay slot. */
2768 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2769 mark_referenced_resources (trial
, &needed
, 1);
2771 /* Ensure we don't put insns between the setting of cc and the comparison
2772 by moving a setting of cc into an earlier delay slot since these insns
2773 could clobber the condition code. */
2776 /* If this insn is a register-register copy and the next insn has
2777 a use of our destination, change it to use our source. That way,
2778 it will become a candidate for our delay slot the next time
2779 through this loop. This case occurs commonly in loops that
2782 We could check for more complex cases than those tested below,
2783 but it doesn't seem worth it. It might also be a good idea to try
2784 to swap the two insns. That might do better.
2786 We can't do this if the next insn modifies our destination, because
2787 that would make the replacement into the insn invalid. We also can't
2788 do this if it modifies our source, because it might be an earlyclobber
2789 operand. This latter test also prevents updating the contents of
2790 a PRE_INC. We also can't do this if there's overlap of source and
2791 destination. Overlap may happen for larger-than-register-size modes. */
2793 if (NONJUMP_INSN_P (trial
) && GET_CODE (pat
) == SET
2794 && REG_P (SET_SRC (pat
))
2795 && REG_P (SET_DEST (pat
))
2796 && !reg_overlap_mentioned_p (SET_DEST (pat
), SET_SRC (pat
)))
2798 rtx next
= next_nonnote_insn (trial
);
2800 if (next
&& NONJUMP_INSN_P (next
)
2801 && GET_CODE (PATTERN (next
)) != USE
2802 && ! reg_set_p (SET_DEST (pat
), next
)
2803 && ! reg_set_p (SET_SRC (pat
), next
)
2804 && reg_referenced_p (SET_DEST (pat
), PATTERN (next
))
2805 && ! modified_in_p (SET_DEST (pat
), next
))
2806 validate_replace_rtx (SET_DEST (pat
), SET_SRC (pat
), next
);
2810 /* If we stopped on a branch insn that has delay slots, see if we can
2811 steal some of the insns in those slots. */
2812 if (trial
&& NONJUMP_INSN_P (trial
)
2813 && GET_CODE (PATTERN (trial
)) == SEQUENCE
2814 && JUMP_P (XVECEXP (PATTERN (trial
), 0, 0)))
2816 /* If this is the `true' thread, we will want to follow the jump,
2817 so we can only do this if we have taken everything up to here. */
2818 if (thread_if_true
&& trial
== new_thread
)
2821 = steal_delay_list_from_target (insn
, condition
, PATTERN (trial
),
2822 delay_list
, &set
, &needed
,
2823 &opposite_needed
, slots_to_fill
,
2824 pslots_filled
, &must_annul
,
2826 /* If we owned the thread and are told that it branched
2827 elsewhere, make sure we own the thread at the new location. */
2828 if (own_thread
&& trial
!= new_thread
)
2829 own_thread
= own_thread_p (new_thread
, new_thread
, 0);
2831 else if (! thread_if_true
)
2833 = steal_delay_list_from_fallthrough (insn
, condition
,
2835 delay_list
, &set
, &needed
,
2836 &opposite_needed
, slots_to_fill
,
2837 pslots_filled
, &must_annul
);
2840 /* If we haven't found anything for this delay slot and it is very
2841 likely that the branch will be taken, see if the insn at our target
2842 increments or decrements a register with an increment that does not
2843 depend on the destination register. If so, try to place the opposite
2844 arithmetic insn after the jump insn and put the arithmetic insn in the
2845 delay slot. If we can't do this, return. */
2846 if (delay_list
== 0 && likely
&& new_thread
2847 && NONJUMP_INSN_P (new_thread
)
2848 && GET_CODE (PATTERN (new_thread
)) != ASM_INPUT
2849 && asm_noperands (PATTERN (new_thread
)) < 0)
2851 rtx pat
= PATTERN (new_thread
);
2856 pat
= PATTERN (trial
);
2858 if (!NONJUMP_INSN_P (trial
)
2859 || GET_CODE (pat
) != SET
2860 || ! eligible_for_delay (insn
, 0, trial
, flags
)
2861 || can_throw_internal (trial
))
2864 dest
= SET_DEST (pat
), src
= SET_SRC (pat
);
2865 if ((GET_CODE (src
) == PLUS
|| GET_CODE (src
) == MINUS
)
2866 && rtx_equal_p (XEXP (src
, 0), dest
)
2867 && ! reg_overlap_mentioned_p (dest
, XEXP (src
, 1))
2868 && ! side_effects_p (pat
))
2870 rtx other
= XEXP (src
, 1);
2874 /* If this is a constant adjustment, use the same code with
2875 the negated constant. Otherwise, reverse the sense of the
2877 if (GET_CODE (other
) == CONST_INT
)
2878 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
), GET_MODE (src
), dest
,
2879 negate_rtx (GET_MODE (src
), other
));
2881 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
) == PLUS
? MINUS
: PLUS
,
2882 GET_MODE (src
), dest
, other
);
2884 ninsn
= emit_insn_after (gen_rtx_SET (VOIDmode
, dest
, new_arith
),
2887 if (recog_memoized (ninsn
) < 0
2888 || (extract_insn (ninsn
), ! constrain_operands (1)))
2890 delete_related_insns (ninsn
);
2896 update_block (trial
, thread
);
2897 if (trial
== thread
)
2899 thread
= next_active_insn (thread
);
2900 if (new_thread
== trial
)
2901 new_thread
= thread
;
2903 delete_related_insns (trial
);
2906 new_thread
= next_active_insn (trial
);
2908 ninsn
= own_thread
? trial
: copy_rtx (trial
);
2910 INSN_FROM_TARGET_P (ninsn
) = 1;
2912 delay_list
= add_to_delay_list (ninsn
, NULL_RTX
);
2917 if (delay_list
&& must_annul
)
2918 INSN_ANNULLED_BRANCH_P (insn
) = 1;
2920 /* If we are to branch into the middle of this thread, find an appropriate
2921 label or make a new one if none, and redirect INSN to it. If we hit the
2922 end of the function, use the end-of-function label. */
2923 if (new_thread
!= thread
)
2927 gcc_assert (thread_if_true
);
2929 if (new_thread
&& JUMP_P (new_thread
)
2930 && (simplejump_p (new_thread
)
2931 || GET_CODE (PATTERN (new_thread
)) == RETURN
)
2932 && redirect_with_delay_list_safe_p (insn
,
2933 JUMP_LABEL (new_thread
),
2935 new_thread
= follow_jumps (JUMP_LABEL (new_thread
));
2937 if (new_thread
== 0)
2938 label
= find_end_label ();
2939 else if (LABEL_P (new_thread
))
2942 label
= get_label_before (new_thread
);
2945 reorg_redirect_jump (insn
, label
);
2951 /* Make another attempt to find insns to place in delay slots.
2953 We previously looked for insns located in front of the delay insn
2954 and, for non-jump delay insns, located behind the delay insn.
2956 Here only try to schedule jump insns and try to move insns from either
2957 the target or the following insns into the delay slot. If annulling is
2958 supported, we will be likely to do this. Otherwise, we can do this only
2962 fill_eager_delay_slots (void)
2966 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2968 for (i
= 0; i
< num_unfilled_slots
; i
++)
2971 rtx target_label
, insn_at_target
, fallthrough_insn
;
2974 int own_fallthrough
;
2975 int prediction
, slots_to_fill
, slots_filled
;
2977 insn
= unfilled_slots_base
[i
];
2979 || INSN_DELETED_P (insn
)
2981 || ! (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2984 slots_to_fill
= num_delay_slots (insn
);
2985 /* Some machine description have defined instructions to have
2986 delay slots only in certain circumstances which may depend on
2987 nearby insns (which change due to reorg's actions).
2989 For example, the PA port normally has delay slots for unconditional
2992 However, the PA port claims such jumps do not have a delay slot
2993 if they are immediate successors of certain CALL_INSNs. This
2994 allows the port to favor filling the delay slot of the call with
2995 the unconditional jump. */
2996 if (slots_to_fill
== 0)
3000 target_label
= JUMP_LABEL (insn
);
3001 condition
= get_branch_condition (insn
, target_label
);
3006 /* Get the next active fallthrough and target insns and see if we own
3007 them. Then see whether the branch is likely true. We don't need
3008 to do a lot of this for unconditional branches. */
3010 insn_at_target
= next_active_insn (target_label
);
3011 own_target
= own_thread_p (target_label
, target_label
, 0);
3013 if (condition
== const_true_rtx
)
3015 own_fallthrough
= 0;
3016 fallthrough_insn
= 0;
3021 fallthrough_insn
= next_active_insn (insn
);
3022 own_fallthrough
= own_thread_p (NEXT_INSN (insn
), NULL_RTX
, 1);
3023 prediction
= mostly_true_jump (insn
, condition
);
3026 /* If this insn is expected to branch, first try to get insns from our
3027 target, then our fallthrough insns. If it is not expected to branch,
3028 try the other order. */
3033 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3034 fallthrough_insn
, prediction
== 2, 1,
3036 slots_to_fill
, &slots_filled
, delay_list
);
3038 if (delay_list
== 0 && own_fallthrough
)
3040 /* Even though we didn't find anything for delay slots,
3041 we might have found a redundant insn which we deleted
3042 from the thread that was filled. So we have to recompute
3043 the next insn at the target. */
3044 target_label
= JUMP_LABEL (insn
);
3045 insn_at_target
= next_active_insn (target_label
);
3048 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3049 insn_at_target
, 0, 0,
3051 slots_to_fill
, &slots_filled
,
3057 if (own_fallthrough
)
3059 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3060 insn_at_target
, 0, 0,
3062 slots_to_fill
, &slots_filled
,
3065 if (delay_list
== 0)
3067 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3068 next_active_insn (insn
), 0, 1,
3070 slots_to_fill
, &slots_filled
,
3075 unfilled_slots_base
[i
]
3076 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
3078 if (slots_to_fill
== slots_filled
)
3079 unfilled_slots_base
[i
] = 0;
3081 note_delay_statistics (slots_filled
, 1);
3085 /* Once we have tried two ways to fill a delay slot, make a pass over the
3086 code to try to improve the results and to do such things as more jump
3090 relax_delay_slots (rtx first
)
3092 rtx insn
, next
, pat
;
3093 rtx trial
, delay_insn
, target_label
;
3095 /* Look at every JUMP_INSN and see if we can improve it. */
3096 for (insn
= first
; insn
; insn
= next
)
3100 next
= next_active_insn (insn
);
3102 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3103 the next insn, or jumps to a label that is not the last of a
3104 group of consecutive labels. */
3106 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3107 && (target_label
= JUMP_LABEL (insn
)) != 0)
3109 target_label
= skip_consecutive_labels (follow_jumps (target_label
));
3110 if (target_label
== 0)
3111 target_label
= find_end_label ();
3113 if (target_label
&& next_active_insn (target_label
) == next
3114 && ! condjump_in_parallel_p (insn
))
3120 if (target_label
&& target_label
!= JUMP_LABEL (insn
))
3121 reorg_redirect_jump (insn
, target_label
);
3123 /* See if this jump branches around an unconditional jump.
3124 If so, invert this jump and point it to the target of the
3126 if (next
&& JUMP_P (next
)
3127 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3129 && next_active_insn (target_label
) == next_active_insn (next
)
3130 && no_labels_between_p (insn
, next
))
3132 rtx label
= JUMP_LABEL (next
);
3134 /* Be careful how we do this to avoid deleting code or
3135 labels that are momentarily dead. See similar optimization
3138 We also need to ensure we properly handle the case when
3139 invert_jump fails. */
3141 ++LABEL_NUSES (target_label
);
3143 ++LABEL_NUSES (label
);
3145 if (invert_jump (insn
, label
, 1))
3147 delete_related_insns (next
);
3152 --LABEL_NUSES (label
);
3154 if (--LABEL_NUSES (target_label
) == 0)
3155 delete_related_insns (target_label
);
3161 /* If this is an unconditional jump and the previous insn is a
3162 conditional jump, try reversing the condition of the previous
3163 insn and swapping our targets. The next pass might be able to
3166 Don't do this if we expect the conditional branch to be true, because
3167 we would then be making the more common case longer. */
3170 && (simplejump_p (insn
) || GET_CODE (PATTERN (insn
)) == RETURN
)
3171 && (other
= prev_active_insn (insn
)) != 0
3172 && (condjump_p (other
) || condjump_in_parallel_p (other
))
3173 && no_labels_between_p (other
, insn
)
3174 && 0 > mostly_true_jump (other
,
3175 get_branch_condition (other
,
3176 JUMP_LABEL (other
))))
3178 rtx other_target
= JUMP_LABEL (other
);
3179 target_label
= JUMP_LABEL (insn
);
3181 if (invert_jump (other
, target_label
, 0))
3182 reorg_redirect_jump (insn
, other_target
);
3185 /* Now look only at cases where we have filled a delay slot. */
3186 if (!NONJUMP_INSN_P (insn
)
3187 || GET_CODE (PATTERN (insn
)) != SEQUENCE
)
3190 pat
= PATTERN (insn
);
3191 delay_insn
= XVECEXP (pat
, 0, 0);
3193 /* See if the first insn in the delay slot is redundant with some
3194 previous insn. Remove it from the delay slot if so; then set up
3195 to reprocess this insn. */
3196 if (redundant_insn (XVECEXP (pat
, 0, 1), delay_insn
, 0))
3198 delete_from_delay_slot (XVECEXP (pat
, 0, 1));
3199 next
= prev_active_insn (next
);
3203 /* See if we have a RETURN insn with a filled delay slot followed
3204 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3205 the first RETURN (but not its delay insn). This gives the same
3206 effect in fewer instructions.
3208 Only do so if optimizing for size since this results in slower, but
3211 && GET_CODE (PATTERN (delay_insn
)) == RETURN
3214 && GET_CODE (PATTERN (next
)) == RETURN
)
3219 /* Delete the RETURN and just execute the delay list insns.
3221 We do this by deleting the INSN containing the SEQUENCE, then
3222 re-emitting the insns separately, and then deleting the RETURN.
3223 This allows the count of the jump target to be properly
3226 /* Clear the from target bit, since these insns are no longer
3228 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3229 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3231 trial
= PREV_INSN (insn
);
3232 delete_related_insns (insn
);
3233 gcc_assert (GET_CODE (pat
) == SEQUENCE
);
3235 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3237 rtx this_insn
= XVECEXP (pat
, 0, i
);
3238 add_insn_after (this_insn
, after
);
3241 delete_scheduled_jump (delay_insn
);
3245 /* Now look only at the cases where we have a filled JUMP_INSN. */
3246 if (!JUMP_P (XVECEXP (PATTERN (insn
), 0, 0))
3247 || ! (condjump_p (XVECEXP (PATTERN (insn
), 0, 0))
3248 || condjump_in_parallel_p (XVECEXP (PATTERN (insn
), 0, 0))))
3251 target_label
= JUMP_LABEL (delay_insn
);
3255 /* If this jump goes to another unconditional jump, thread it, but
3256 don't convert a jump into a RETURN here. */
3257 trial
= skip_consecutive_labels (follow_jumps (target_label
));
3259 trial
= find_end_label ();
3261 if (trial
&& trial
!= target_label
3262 && redirect_with_delay_slots_safe_p (delay_insn
, trial
, insn
))
3264 reorg_redirect_jump (delay_insn
, trial
);
3265 target_label
= trial
;
3268 /* If the first insn at TARGET_LABEL is redundant with a previous
3269 insn, redirect the jump to the following insn process again. */
3270 trial
= next_active_insn (target_label
);
3271 if (trial
&& GET_CODE (PATTERN (trial
)) != SEQUENCE
3272 && redundant_insn (trial
, insn
, 0)
3273 && ! can_throw_internal (trial
))
3275 /* Figure out where to emit the special USE insn so we don't
3276 later incorrectly compute register live/death info. */
3277 rtx tmp
= next_active_insn (trial
);
3279 tmp
= find_end_label ();
3283 /* Insert the special USE insn and update dataflow info. */
3284 update_block (trial
, tmp
);
3286 /* Now emit a label before the special USE insn, and
3287 redirect our jump to the new label. */
3288 target_label
= get_label_before (PREV_INSN (tmp
));
3289 reorg_redirect_jump (delay_insn
, target_label
);
3295 /* Similarly, if it is an unconditional jump with one insn in its
3296 delay list and that insn is redundant, thread the jump. */
3297 if (trial
&& GET_CODE (PATTERN (trial
)) == SEQUENCE
3298 && XVECLEN (PATTERN (trial
), 0) == 2
3299 && JUMP_P (XVECEXP (PATTERN (trial
), 0, 0))
3300 && (simplejump_p (XVECEXP (PATTERN (trial
), 0, 0))
3301 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial
), 0, 0))) == RETURN
)
3302 && redundant_insn (XVECEXP (PATTERN (trial
), 0, 1), insn
, 0))
3304 target_label
= JUMP_LABEL (XVECEXP (PATTERN (trial
), 0, 0));
3305 if (target_label
== 0)
3306 target_label
= find_end_label ();
3309 && redirect_with_delay_slots_safe_p (delay_insn
, target_label
,
3312 reorg_redirect_jump (delay_insn
, target_label
);
3319 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3320 && prev_active_insn (target_label
) == insn
3321 && ! condjump_in_parallel_p (delay_insn
)
3323 /* If the last insn in the delay slot sets CC0 for some insn,
3324 various code assumes that it is in a delay slot. We could
3325 put it back where it belonged and delete the register notes,
3326 but it doesn't seem worthwhile in this uncommon case. */
3327 && ! find_reg_note (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1),
3328 REG_CC_USER
, NULL_RTX
)
3335 /* All this insn does is execute its delay list and jump to the
3336 following insn. So delete the jump and just execute the delay
3339 We do this by deleting the INSN containing the SEQUENCE, then
3340 re-emitting the insns separately, and then deleting the jump.
3341 This allows the count of the jump target to be properly
3344 /* Clear the from target bit, since these insns are no longer
3346 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3347 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3349 trial
= PREV_INSN (insn
);
3350 delete_related_insns (insn
);
3351 gcc_assert (GET_CODE (pat
) == SEQUENCE
);
3353 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3355 rtx this_insn
= XVECEXP (pat
, 0, i
);
3356 add_insn_after (this_insn
, after
);
3359 delete_scheduled_jump (delay_insn
);
3363 /* See if this is an unconditional jump around a single insn which is
3364 identical to the one in its delay slot. In this case, we can just
3365 delete the branch and the insn in its delay slot. */
3366 if (next
&& NONJUMP_INSN_P (next
)
3367 && prev_label (next_active_insn (next
)) == target_label
3368 && simplejump_p (insn
)
3369 && XVECLEN (pat
, 0) == 2
3370 && rtx_equal_p (PATTERN (next
), PATTERN (XVECEXP (pat
, 0, 1))))
3372 delete_related_insns (insn
);
3376 /* See if this jump (with its delay slots) branches around another
3377 jump (without delay slots). If so, invert this jump and point
3378 it to the target of the second jump. We cannot do this for
3379 annulled jumps, though. Again, don't convert a jump to a RETURN
3381 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3382 && next
&& JUMP_P (next
)
3383 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3384 && next_active_insn (target_label
) == next_active_insn (next
)
3385 && no_labels_between_p (insn
, next
))
3387 rtx label
= JUMP_LABEL (next
);
3388 rtx old_label
= JUMP_LABEL (delay_insn
);
3391 label
= find_end_label ();
3393 /* find_end_label can generate a new label. Check this first. */
3395 && no_labels_between_p (insn
, next
)
3396 && redirect_with_delay_slots_safe_p (delay_insn
, label
, insn
))
3398 /* Be careful how we do this to avoid deleting code or labels
3399 that are momentarily dead. See similar optimization in
3402 ++LABEL_NUSES (old_label
);
3404 if (invert_jump (delay_insn
, label
, 1))
3408 /* Must update the INSN_FROM_TARGET_P bits now that
3409 the branch is reversed, so that mark_target_live_regs
3410 will handle the delay slot insn correctly. */
3411 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
3413 rtx slot
= XVECEXP (PATTERN (insn
), 0, i
);
3414 INSN_FROM_TARGET_P (slot
) = ! INSN_FROM_TARGET_P (slot
);
3417 delete_related_insns (next
);
3421 if (old_label
&& --LABEL_NUSES (old_label
) == 0)
3422 delete_related_insns (old_label
);
3427 /* If we own the thread opposite the way this insn branches, see if we
3428 can merge its delay slots with following insns. */
3429 if (INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3430 && own_thread_p (NEXT_INSN (insn
), 0, 1))
3431 try_merge_delay_insns (insn
, next
);
3432 else if (! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3433 && own_thread_p (target_label
, target_label
, 0))
3434 try_merge_delay_insns (insn
, next_active_insn (target_label
));
3436 /* If we get here, we haven't deleted INSN. But we may have deleted
3437 NEXT, so recompute it. */
3438 next
= next_active_insn (insn
);
3444 /* Look for filled jumps to the end of function label. We can try to convert
3445 them into RETURN insns if the insns in the delay slot are valid for the
3449 make_return_insns (rtx first
)
3451 rtx insn
, jump_insn
, pat
;
3452 rtx real_return_label
= end_of_function_label
;
3455 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3456 /* If a previous pass filled delay slots in the epilogue, things get a
3457 bit more complicated, as those filler insns would generally (without
3458 data flow analysis) have to be executed after any existing branch
3459 delay slot filler insns. It is also unknown whether such a
3460 transformation would actually be profitable. Note that the existing
3461 code only cares for branches with (some) filled delay slots. */
3462 if (current_function_epilogue_delay_list
!= NULL
)
3466 /* See if there is a RETURN insn in the function other than the one we
3467 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3468 into a RETURN to jump to it. */
3469 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3470 if (JUMP_P (insn
) && GET_CODE (PATTERN (insn
)) == RETURN
)
3472 real_return_label
= get_label_before (insn
);
3476 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3477 was equal to END_OF_FUNCTION_LABEL. */
3478 LABEL_NUSES (real_return_label
)++;
3480 /* Clear the list of insns to fill so we can use it. */
3481 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3483 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3487 /* Only look at filled JUMP_INSNs that go to the end of function
3489 if (!NONJUMP_INSN_P (insn
)
3490 || GET_CODE (PATTERN (insn
)) != SEQUENCE
3491 || !JUMP_P (XVECEXP (PATTERN (insn
), 0, 0))
3492 || JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0)) != end_of_function_label
)
3495 pat
= PATTERN (insn
);
3496 jump_insn
= XVECEXP (pat
, 0, 0);
3498 /* If we can't make the jump into a RETURN, try to redirect it to the best
3499 RETURN and go on to the next insn. */
3500 if (! reorg_redirect_jump (jump_insn
, NULL_RTX
))
3502 /* Make sure redirecting the jump will not invalidate the delay
3504 if (redirect_with_delay_slots_safe_p (jump_insn
,
3507 reorg_redirect_jump (jump_insn
, real_return_label
);
3511 /* See if this RETURN can accept the insns current in its delay slot.
3512 It can if it has more or an equal number of slots and the contents
3513 of each is valid. */
3515 flags
= get_jump_flags (jump_insn
, JUMP_LABEL (jump_insn
));
3516 slots
= num_delay_slots (jump_insn
);
3517 if (slots
>= XVECLEN (pat
, 0) - 1)
3519 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3521 #ifdef ANNUL_IFFALSE_SLOTS
3522 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3523 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3524 ? eligible_for_annul_false (jump_insn
, i
- 1,
3525 XVECEXP (pat
, 0, i
), flags
) :
3527 #ifdef ANNUL_IFTRUE_SLOTS
3528 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3529 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3530 ? eligible_for_annul_true (jump_insn
, i
- 1,
3531 XVECEXP (pat
, 0, i
), flags
) :
3533 eligible_for_delay (jump_insn
, i
- 1,
3534 XVECEXP (pat
, 0, i
), flags
)))
3540 if (i
== XVECLEN (pat
, 0))
3543 /* We have to do something with this insn. If it is an unconditional
3544 RETURN, delete the SEQUENCE and output the individual insns,
3545 followed by the RETURN. Then set things up so we try to find
3546 insns for its delay slots, if it needs some. */
3547 if (GET_CODE (PATTERN (jump_insn
)) == RETURN
)
3549 rtx prev
= PREV_INSN (insn
);
3551 delete_related_insns (insn
);
3552 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3553 prev
= emit_insn_after (PATTERN (XVECEXP (pat
, 0, i
)), prev
);
3555 insn
= emit_jump_insn_after (PATTERN (jump_insn
), prev
);
3556 emit_barrier_after (insn
);
3559 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3562 /* It is probably more efficient to keep this with its current
3563 delay slot as a branch to a RETURN. */
3564 reorg_redirect_jump (jump_insn
, real_return_label
);
3567 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3568 new delay slots we have created. */
3569 if (--LABEL_NUSES (real_return_label
) == 0)
3570 delete_related_insns (real_return_label
);
3572 fill_simple_delay_slots (1);
3573 fill_simple_delay_slots (0);
3577 /* Try to find insns to place in delay slots. */
3580 dbr_schedule (rtx first
, FILE *file
)
3582 rtx insn
, next
, epilogue_insn
= 0;
3585 int old_flag_no_peephole
= flag_no_peephole
;
3587 /* Execute `final' once in prescan mode to delete any insns that won't be
3588 used. Don't let final try to do any peephole optimization--it will
3589 ruin dataflow information for this pass. */
3591 flag_no_peephole
= 1;
3592 final (first
, 0, NO_DEBUG
, 1, 1);
3593 flag_no_peephole
= old_flag_no_peephole
;
3596 /* If the current function has no insns other than the prologue and
3597 epilogue, then do not try to fill any delay slots. */
3598 if (n_basic_blocks
== 0)
3601 /* Find the highest INSN_UID and allocate and initialize our map from
3602 INSN_UID's to position in code. */
3603 for (max_uid
= 0, insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3605 if (INSN_UID (insn
) > max_uid
)
3606 max_uid
= INSN_UID (insn
);
3608 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
3609 epilogue_insn
= insn
;
3612 uid_to_ruid
= xmalloc ((max_uid
+ 1) * sizeof (int));
3613 for (i
= 0, insn
= first
; insn
; i
++, insn
= NEXT_INSN (insn
))
3614 uid_to_ruid
[INSN_UID (insn
)] = i
;
3616 /* Initialize the list of insns that need filling. */
3617 if (unfilled_firstobj
== 0)
3619 gcc_obstack_init (&unfilled_slots_obstack
);
3620 unfilled_firstobj
= obstack_alloc (&unfilled_slots_obstack
, 0);
3623 for (insn
= next_active_insn (first
); insn
; insn
= next_active_insn (insn
))
3627 INSN_ANNULLED_BRANCH_P (insn
) = 0;
3628 INSN_FROM_TARGET_P (insn
) = 0;
3630 /* Skip vector tables. We can't get attributes for them. */
3632 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3633 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
3636 if (num_delay_slots (insn
) > 0)
3637 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3639 /* Ensure all jumps go to the last of a set of consecutive labels. */
3641 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3642 && JUMP_LABEL (insn
) != 0
3643 && ((target
= skip_consecutive_labels (JUMP_LABEL (insn
)))
3644 != JUMP_LABEL (insn
)))
3645 redirect_jump (insn
, target
, 1);
3648 init_resource_info (epilogue_insn
);
3650 /* Show we haven't computed an end-of-function label yet. */
3651 end_of_function_label
= 0;
3653 /* Initialize the statistics for this function. */
3654 memset (num_insns_needing_delays
, 0, sizeof num_insns_needing_delays
);
3655 memset (num_filled_delays
, 0, sizeof num_filled_delays
);
3657 /* Now do the delay slot filling. Try everything twice in case earlier
3658 changes make more slots fillable. */
3660 for (reorg_pass_number
= 0;
3661 reorg_pass_number
< MAX_REORG_PASSES
;
3662 reorg_pass_number
++)
3664 fill_simple_delay_slots (1);
3665 fill_simple_delay_slots (0);
3666 fill_eager_delay_slots ();
3667 relax_delay_slots (first
);
3670 /* Delete any USE insns made by update_block; subsequent passes don't need
3671 them or know how to deal with them. */
3672 for (insn
= first
; insn
; insn
= next
)
3674 next
= NEXT_INSN (insn
);
3676 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == USE
3677 && INSN_P (XEXP (PATTERN (insn
), 0)))
3678 next
= delete_related_insns (insn
);
3681 /* If we made an end of function label, indicate that it is now
3682 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3683 If it is now unused, delete it. */
3684 if (end_of_function_label
&& --LABEL_NUSES (end_of_function_label
) == 0)
3685 delete_related_insns (end_of_function_label
);
3688 if (HAVE_return
&& end_of_function_label
!= 0)
3689 make_return_insns (first
);
3692 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3694 /* It is not clear why the line below is needed, but it does seem to be. */
3695 unfilled_firstobj
= obstack_alloc (&unfilled_slots_obstack
, 0);
3699 int i
, j
, need_comma
;
3700 int total_delay_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3701 int total_annul_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3703 for (reorg_pass_number
= 0;
3704 reorg_pass_number
< MAX_REORG_PASSES
;
3705 reorg_pass_number
++)
3707 fprintf (file
, ";; Reorg pass #%d:\n", reorg_pass_number
+ 1);
3708 for (i
= 0; i
< NUM_REORG_FUNCTIONS
; i
++)
3711 fprintf (file
, ";; Reorg function #%d\n", i
);
3713 fprintf (file
, ";; %d insns needing delay slots\n;; ",
3714 num_insns_needing_delays
[i
][reorg_pass_number
]);
3716 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3717 if (num_filled_delays
[i
][j
][reorg_pass_number
])
3720 fprintf (file
, ", ");
3722 fprintf (file
, "%d got %d delays",
3723 num_filled_delays
[i
][j
][reorg_pass_number
], j
);
3725 fprintf (file
, "\n");
3728 memset (total_delay_slots
, 0, sizeof total_delay_slots
);
3729 memset (total_annul_slots
, 0, sizeof total_annul_slots
);
3730 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3732 if (! INSN_DELETED_P (insn
)
3733 && NONJUMP_INSN_P (insn
)
3734 && GET_CODE (PATTERN (insn
)) != USE
3735 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3737 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3739 j
= XVECLEN (PATTERN (insn
), 0) - 1;
3740 if (j
> MAX_DELAY_HISTOGRAM
)
3741 j
= MAX_DELAY_HISTOGRAM
;
3742 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn
), 0, 0)))
3743 total_annul_slots
[j
]++;
3745 total_delay_slots
[j
]++;
3747 else if (num_delay_slots (insn
) > 0)
3748 total_delay_slots
[0]++;
3751 fprintf (file
, ";; Reorg totals: ");
3753 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3755 if (total_delay_slots
[j
])
3758 fprintf (file
, ", ");
3760 fprintf (file
, "%d got %d delays", total_delay_slots
[j
], j
);
3763 fprintf (file
, "\n");
3764 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3765 fprintf (file
, ";; Reorg annuls: ");
3767 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3769 if (total_annul_slots
[j
])
3772 fprintf (file
, ", ");
3774 fprintf (file
, "%d got %d delays", total_annul_slots
[j
], j
);
3777 fprintf (file
, "\n");
3779 fprintf (file
, "\n");
3782 /* For all JUMP insns, fill in branch prediction notes, so that during
3783 assembler output a target can set branch prediction bits in the code.
3784 We have to do this now, as up until this point the destinations of
3785 JUMPS can be moved around and changed, but past right here that cannot
3787 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3791 if (NONJUMP_INSN_P (insn
))
3793 rtx pat
= PATTERN (insn
);
3795 if (GET_CODE (pat
) == SEQUENCE
)
3796 insn
= XVECEXP (pat
, 0, 0);
3801 pred_flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
3802 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_BR_PRED
,
3803 GEN_INT (pred_flags
),
3806 free_resource_info ();
3808 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3809 /* SPARC assembler, for instance, emit warning when debug info is output
3810 into the delay slot. */
3814 for (link
= current_function_epilogue_delay_list
;
3816 link
= XEXP (link
, 1))
3817 INSN_LOCATOR (XEXP (link
, 0)) = 0;
3821 #endif /* DELAY_SLOTS */