(in m32rx patch): Replace "." with "@." when preceeded by a capital letter
[official-gcc.git] / gcc / dwarf2out.c
blob164b05112813145645ebac6b4e19fee69924cd41
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "rtl.h"
42 #include "hard-reg-set.h"
43 #include "regs.h"
44 #include "insn-config.h"
45 #include "reload.h"
46 #include "function.h"
47 #include "output.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "except.h"
51 #include "dwarf2.h"
52 #include "dwarf2out.h"
53 #include "dwarf2asm.h"
54 #include "toplev.h"
55 #include "varray.h"
56 #include "ggc.h"
57 #include "md5.h"
58 #include "tm_p.h"
59 #include "diagnostic.h"
60 #include "debug.h"
61 #include "target.h"
62 #include "langhooks.h"
63 #include "hashtable.h"
65 #ifdef DWARF2_DEBUGGING_INFO
66 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
67 #endif
69 /* DWARF2 Abbreviation Glossary:
70 CFA = Canonical Frame Address
71 a fixed address on the stack which identifies a call frame.
72 We define it to be the value of SP just before the call insn.
73 The CFA register and offset, which may change during the course
74 of the function, are used to calculate its value at runtime.
75 CFI = Call Frame Instruction
76 an instruction for the DWARF2 abstract machine
77 CIE = Common Information Entry
78 information describing information common to one or more FDEs
79 DIE = Debugging Information Entry
80 FDE = Frame Description Entry
81 information describing the stack call frame, in particular,
82 how to restore registers
84 DW_CFA_... = DWARF2 CFA call frame instruction
85 DW_TAG_... = DWARF2 DIE tag */
87 /* Decide whether we want to emit frame unwind information for the current
88 translation unit. */
90 int
91 dwarf2out_do_frame ()
93 return (write_symbols == DWARF2_DEBUG
94 #ifdef DWARF2_FRAME_INFO
95 || DWARF2_FRAME_INFO
96 #endif
97 #ifdef DWARF2_UNWIND_INFO
98 || flag_unwind_tables
99 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
100 #endif
104 /* The number of the current function definition for which debugging
105 information is being generated. These numbers range from 1 up to the
106 maximum number of function definitions contained within the current
107 compilation unit. These numbers are used to create unique label id's
108 unique to each function definition. */
109 unsigned current_funcdef_number = 0;
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Default version of targetm.eh_frame_section. Note this must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
118 guards. */
120 void
121 default_eh_frame_section ()
123 #ifdef EH_FRAME_SECTION_NAME
124 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
125 #else
126 tree label = get_file_function_name ('F');
128 data_section ();
129 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
130 ASM_GLOBALIZE_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
131 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
132 #endif
135 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
137 /* How to start an assembler comment. */
138 #ifndef ASM_COMMENT_START
139 #define ASM_COMMENT_START ";#"
140 #endif
142 typedef struct dw_cfi_struct *dw_cfi_ref;
143 typedef struct dw_fde_struct *dw_fde_ref;
144 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
146 /* Call frames are described using a sequence of Call Frame
147 Information instructions. The register number, offset
148 and address fields are provided as possible operands;
149 their use is selected by the opcode field. */
151 typedef union dw_cfi_oprnd_struct
153 unsigned long dw_cfi_reg_num;
154 long int dw_cfi_offset;
155 const char *dw_cfi_addr;
156 struct dw_loc_descr_struct *dw_cfi_loc;
158 dw_cfi_oprnd;
160 typedef struct dw_cfi_struct
162 dw_cfi_ref dw_cfi_next;
163 enum dwarf_call_frame_info dw_cfi_opc;
164 dw_cfi_oprnd dw_cfi_oprnd1;
165 dw_cfi_oprnd dw_cfi_oprnd2;
167 dw_cfi_node;
169 /* This is how we define the location of the CFA. We use to handle it
170 as REG + OFFSET all the time, but now it can be more complex.
171 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
172 Instead of passing around REG and OFFSET, we pass a copy
173 of this structure. */
174 typedef struct cfa_loc
176 unsigned long reg;
177 long offset;
178 long base_offset;
179 int indirect; /* 1 if CFA is accessed via a dereference. */
180 } dw_cfa_location;
182 /* All call frame descriptions (FDE's) in the GCC generated DWARF
183 refer to a single Common Information Entry (CIE), defined at
184 the beginning of the .debug_frame section. This use of a single
185 CIE obviates the need to keep track of multiple CIE's
186 in the DWARF generation routines below. */
188 typedef struct dw_fde_struct
190 const char *dw_fde_begin;
191 const char *dw_fde_current_label;
192 const char *dw_fde_end;
193 dw_cfi_ref dw_fde_cfi;
194 unsigned funcdef_number;
195 unsigned nothrow : 1;
196 unsigned uses_eh_lsda : 1;
198 dw_fde_node;
200 /* Maximum size (in bytes) of an artificially generated label. */
201 #define MAX_ARTIFICIAL_LABEL_BYTES 30
203 /* The size of addresses as they appear in the Dwarf 2 data.
204 Some architectures use word addresses to refer to code locations,
205 but Dwarf 2 info always uses byte addresses. On such machines,
206 Dwarf 2 addresses need to be larger than the architecture's
207 pointers. */
208 #ifndef DWARF2_ADDR_SIZE
209 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
210 #endif
212 /* The size in bytes of a DWARF field indicating an offset or length
213 relative to a debug info section, specified to be 4 bytes in the
214 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
215 as PTR_SIZE. */
217 #ifndef DWARF_OFFSET_SIZE
218 #define DWARF_OFFSET_SIZE 4
219 #endif
221 #define DWARF_VERSION 2
223 /* Round SIZE up to the nearest BOUNDARY. */
224 #define DWARF_ROUND(SIZE,BOUNDARY) \
225 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
227 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
228 #ifndef DWARF_CIE_DATA_ALIGNMENT
229 #ifdef STACK_GROWS_DOWNWARD
230 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
231 #else
232 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
233 #endif
234 #endif /* not DWARF_CIE_DATA_ALIGNMENT */
236 /* A pointer to the base of a table that contains frame description
237 information for each routine. */
238 static dw_fde_ref fde_table;
240 /* Number of elements currently allocated for fde_table. */
241 static unsigned fde_table_allocated;
243 /* Number of elements in fde_table currently in use. */
244 static unsigned fde_table_in_use;
246 /* Size (in elements) of increments by which we may expand the
247 fde_table. */
248 #define FDE_TABLE_INCREMENT 256
250 /* A list of call frame insns for the CIE. */
251 static dw_cfi_ref cie_cfi_head;
253 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
254 attribute that accelerates the lookup of the FDE associated
255 with the subprogram. This variable holds the table index of the FDE
256 associated with the current function (body) definition. */
257 static unsigned current_funcdef_fde;
259 struct ht *debug_str_hash;
261 struct indirect_string_node
263 struct ht_identifier id;
264 unsigned int refcount;
265 unsigned int form;
266 char *label;
269 /* Forward declarations for functions defined in this file. */
271 static char *stripattributes PARAMS ((const char *));
272 static const char *dwarf_cfi_name PARAMS ((unsigned));
273 static dw_cfi_ref new_cfi PARAMS ((void));
274 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
275 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
276 static void lookup_cfa_1 PARAMS ((dw_cfi_ref, dw_cfa_location *));
277 static void lookup_cfa PARAMS ((dw_cfa_location *));
278 static void reg_save PARAMS ((const char *, unsigned,
279 unsigned, long));
280 static void initial_return_save PARAMS ((rtx));
281 static long stack_adjust_offset PARAMS ((rtx));
282 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
283 static void output_call_frame_info PARAMS ((int));
284 static void dwarf2out_stack_adjust PARAMS ((rtx));
285 static void queue_reg_save PARAMS ((const char *, rtx, long));
286 static void flush_queued_reg_saves PARAMS ((void));
287 static bool clobbers_queued_reg_save PARAMS ((rtx));
288 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
290 /* Support for complex CFA locations. */
291 static void output_cfa_loc PARAMS ((dw_cfi_ref));
292 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
293 struct dw_loc_descr_struct *));
294 static struct dw_loc_descr_struct *build_cfa_loc
295 PARAMS ((dw_cfa_location *));
296 static void def_cfa_1 PARAMS ((const char *, dw_cfa_location *));
298 /* .debug_str support. */
299 static hashnode indirect_string_alloc PARAMS ((hash_table *));
300 static int output_indirect_string PARAMS ((struct cpp_reader *,
301 hashnode, const PTR));
303 /* How to start an assembler comment. */
304 #ifndef ASM_COMMENT_START
305 #define ASM_COMMENT_START ";#"
306 #endif
308 /* Data and reference forms for relocatable data. */
309 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
310 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
312 /* Pseudo-op for defining a new section. */
313 #ifndef SECTION_ASM_OP
314 #define SECTION_ASM_OP "\t.section\t"
315 #endif
317 #ifndef DEBUG_FRAME_SECTION
318 #define DEBUG_FRAME_SECTION ".debug_frame"
319 #endif
321 #ifndef FUNC_BEGIN_LABEL
322 #define FUNC_BEGIN_LABEL "LFB"
323 #endif
324 #ifndef FUNC_END_LABEL
325 #define FUNC_END_LABEL "LFE"
326 #endif
327 #define FRAME_BEGIN_LABEL "Lframe"
328 #define CIE_AFTER_SIZE_LABEL "LSCIE"
329 #define CIE_END_LABEL "LECIE"
330 #define CIE_LENGTH_LABEL "LLCIE"
331 #define FDE_LABEL "LSFDE"
332 #define FDE_AFTER_SIZE_LABEL "LASFDE"
333 #define FDE_END_LABEL "LEFDE"
334 #define FDE_LENGTH_LABEL "LLFDE"
335 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
336 #define LINE_NUMBER_END_LABEL "LELT"
337 #define LN_PROLOG_AS_LABEL "LASLTP"
338 #define LN_PROLOG_END_LABEL "LELTP"
339 #define DIE_LABEL_PREFIX "DW"
341 /* Definitions of defaults for various types of primitive assembly language
342 output operations. These may be overridden from within the tm.h file,
343 but typically, that is unnecessary. */
345 #ifdef SET_ASM_OP
346 #ifndef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
347 #define ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL(FILE, SY, HI, LO) \
348 do { \
349 fprintf (FILE, "%s", SET_ASM_OP); \
350 assemble_name (FILE, SY); \
351 fputc (',', FILE); \
352 assemble_name (FILE, HI); \
353 fputc ('-', FILE); \
354 assemble_name (FILE, LO); \
355 } while (0)
356 #endif
357 #endif /* SET_ASM_OP */
359 /* The DWARF 2 CFA column which tracks the return address. Normally this
360 is the column for PC, or the first column after all of the hard
361 registers. */
362 #ifndef DWARF_FRAME_RETURN_COLUMN
363 #ifdef PC_REGNUM
364 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
365 #else
366 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
367 #endif
368 #endif
370 /* The mapping from gcc register number to DWARF 2 CFA column number. By
371 default, we just provide columns for all registers. */
372 #ifndef DWARF_FRAME_REGNUM
373 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
374 #endif
376 /* Hook used by __throw. */
379 expand_builtin_dwarf_fp_regnum ()
381 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
384 /* The offset from the incoming value of %sp to the top of the stack frame
385 for the current function. */
386 #ifndef INCOMING_FRAME_SP_OFFSET
387 #define INCOMING_FRAME_SP_OFFSET 0
388 #endif
390 /* Return a pointer to a copy of the section string name S with all
391 attributes stripped off, and an asterisk prepended (for assemble_name). */
393 static inline char *
394 stripattributes (s)
395 const char *s;
397 char *stripped = xmalloc (strlen (s) + 2);
398 char *p = stripped;
400 *p++ = '*';
402 while (*s && *s != ',')
403 *p++ = *s++;
405 *p = '\0';
406 return stripped;
409 /* Generate code to initialize the register size table. */
411 void
412 expand_builtin_init_dwarf_reg_sizes (address)
413 tree address;
415 int i;
416 enum machine_mode mode = TYPE_MODE (char_type_node);
417 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
418 rtx mem = gen_rtx_MEM (mode, addr);
420 for (i = 0; i < DWARF_FRAME_REGISTERS; ++i)
422 int offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
423 int size = GET_MODE_SIZE (reg_raw_mode[i]);
425 if (offset < 0)
426 continue;
428 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
432 /* Convert a DWARF call frame info. operation to its string name */
434 static const char *
435 dwarf_cfi_name (cfi_opc)
436 unsigned cfi_opc;
438 switch (cfi_opc)
440 case DW_CFA_advance_loc:
441 return "DW_CFA_advance_loc";
442 case DW_CFA_offset:
443 return "DW_CFA_offset";
444 case DW_CFA_restore:
445 return "DW_CFA_restore";
446 case DW_CFA_nop:
447 return "DW_CFA_nop";
448 case DW_CFA_set_loc:
449 return "DW_CFA_set_loc";
450 case DW_CFA_advance_loc1:
451 return "DW_CFA_advance_loc1";
452 case DW_CFA_advance_loc2:
453 return "DW_CFA_advance_loc2";
454 case DW_CFA_advance_loc4:
455 return "DW_CFA_advance_loc4";
456 case DW_CFA_offset_extended:
457 return "DW_CFA_offset_extended";
458 case DW_CFA_restore_extended:
459 return "DW_CFA_restore_extended";
460 case DW_CFA_undefined:
461 return "DW_CFA_undefined";
462 case DW_CFA_same_value:
463 return "DW_CFA_same_value";
464 case DW_CFA_register:
465 return "DW_CFA_register";
466 case DW_CFA_remember_state:
467 return "DW_CFA_remember_state";
468 case DW_CFA_restore_state:
469 return "DW_CFA_restore_state";
470 case DW_CFA_def_cfa:
471 return "DW_CFA_def_cfa";
472 case DW_CFA_def_cfa_register:
473 return "DW_CFA_def_cfa_register";
474 case DW_CFA_def_cfa_offset:
475 return "DW_CFA_def_cfa_offset";
476 case DW_CFA_def_cfa_expression:
477 return "DW_CFA_def_cfa_expression";
479 /* SGI/MIPS specific */
480 case DW_CFA_MIPS_advance_loc8:
481 return "DW_CFA_MIPS_advance_loc8";
483 /* GNU extensions */
484 case DW_CFA_GNU_window_save:
485 return "DW_CFA_GNU_window_save";
486 case DW_CFA_GNU_args_size:
487 return "DW_CFA_GNU_args_size";
488 case DW_CFA_GNU_negative_offset_extended:
489 return "DW_CFA_GNU_negative_offset_extended";
491 default:
492 return "DW_CFA_<unknown>";
496 /* Return a pointer to a newly allocated Call Frame Instruction. */
498 static inline dw_cfi_ref
499 new_cfi ()
501 dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node));
503 cfi->dw_cfi_next = NULL;
504 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
505 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
507 return cfi;
510 /* Add a Call Frame Instruction to list of instructions. */
512 static inline void
513 add_cfi (list_head, cfi)
514 dw_cfi_ref *list_head;
515 dw_cfi_ref cfi;
517 dw_cfi_ref *p;
519 /* Find the end of the chain. */
520 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
523 *p = cfi;
526 /* Generate a new label for the CFI info to refer to. */
528 char *
529 dwarf2out_cfi_label ()
531 static char label[20];
532 static unsigned long label_num = 0;
534 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++);
535 ASM_OUTPUT_LABEL (asm_out_file, label);
537 return label;
540 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
541 or to the CIE if LABEL is NULL. */
543 static void
544 add_fde_cfi (label, cfi)
545 const char *label;
546 dw_cfi_ref cfi;
548 if (label)
550 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
552 if (*label == 0)
553 label = dwarf2out_cfi_label ();
555 if (fde->dw_fde_current_label == NULL
556 || strcmp (label, fde->dw_fde_current_label) != 0)
558 dw_cfi_ref xcfi;
560 fde->dw_fde_current_label = label = xstrdup (label);
562 /* Set the location counter to the new label. */
563 xcfi = new_cfi ();
564 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
565 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
566 add_cfi (&fde->dw_fde_cfi, xcfi);
569 add_cfi (&fde->dw_fde_cfi, cfi);
572 else
573 add_cfi (&cie_cfi_head, cfi);
576 /* Subroutine of lookup_cfa. */
578 static inline void
579 lookup_cfa_1 (cfi, loc)
580 dw_cfi_ref cfi;
581 dw_cfa_location *loc;
583 switch (cfi->dw_cfi_opc)
585 case DW_CFA_def_cfa_offset:
586 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
587 break;
588 case DW_CFA_def_cfa_register:
589 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
590 break;
591 case DW_CFA_def_cfa:
592 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
593 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
594 break;
595 case DW_CFA_def_cfa_expression:
596 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
597 break;
598 default:
599 break;
603 /* Find the previous value for the CFA. */
605 static void
606 lookup_cfa (loc)
607 dw_cfa_location *loc;
609 dw_cfi_ref cfi;
611 loc->reg = (unsigned long) -1;
612 loc->offset = 0;
613 loc->indirect = 0;
614 loc->base_offset = 0;
616 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
617 lookup_cfa_1 (cfi, loc);
619 if (fde_table_in_use)
621 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
622 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
623 lookup_cfa_1 (cfi, loc);
627 /* The current rule for calculating the DWARF2 canonical frame address. */
628 static dw_cfa_location cfa;
630 /* The register used for saving registers to the stack, and its offset
631 from the CFA. */
632 static dw_cfa_location cfa_store;
634 /* The running total of the size of arguments pushed onto the stack. */
635 static long args_size;
637 /* The last args_size we actually output. */
638 static long old_args_size;
640 /* Entry point to update the canonical frame address (CFA).
641 LABEL is passed to add_fde_cfi. The value of CFA is now to be
642 calculated from REG+OFFSET. */
644 void
645 dwarf2out_def_cfa (label, reg, offset)
646 const char *label;
647 unsigned reg;
648 long offset;
650 dw_cfa_location loc;
651 loc.indirect = 0;
652 loc.base_offset = 0;
653 loc.reg = reg;
654 loc.offset = offset;
655 def_cfa_1 (label, &loc);
658 /* This routine does the actual work. The CFA is now calculated from
659 the dw_cfa_location structure. */
660 static void
661 def_cfa_1 (label, loc_p)
662 const char *label;
663 dw_cfa_location *loc_p;
665 dw_cfi_ref cfi;
666 dw_cfa_location old_cfa, loc;
668 cfa = *loc_p;
669 loc = *loc_p;
671 if (cfa_store.reg == loc.reg && loc.indirect == 0)
672 cfa_store.offset = loc.offset;
674 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
675 lookup_cfa (&old_cfa);
677 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset &&
678 loc.indirect == old_cfa.indirect)
680 if (loc.indirect == 0
681 || loc.base_offset == old_cfa.base_offset)
682 /* Nothing changed so no need to issue any call frame
683 instructions. */
684 return;
687 cfi = new_cfi ();
689 if (loc.reg == old_cfa.reg && !loc.indirect)
691 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
692 indicating the CFA register did not change but the offset
693 did. */
694 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
695 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
698 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
699 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
700 && !loc.indirect)
702 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
703 indicating the CFA register has changed to <register> but the
704 offset has not changed. */
705 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
706 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
708 #endif
710 else if (loc.indirect == 0)
712 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
713 indicating the CFA register has changed to <register> with
714 the specified offset. */
715 cfi->dw_cfi_opc = DW_CFA_def_cfa;
716 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
717 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
719 else
721 /* Construct a DW_CFA_def_cfa_expression instruction to
722 calculate the CFA using a full location expression since no
723 register-offset pair is available. */
724 struct dw_loc_descr_struct *loc_list;
725 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
726 loc_list = build_cfa_loc (&loc);
727 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
730 add_fde_cfi (label, cfi);
733 /* Add the CFI for saving a register. REG is the CFA column number.
734 LABEL is passed to add_fde_cfi.
735 If SREG is -1, the register is saved at OFFSET from the CFA;
736 otherwise it is saved in SREG. */
738 static void
739 reg_save (label, reg, sreg, offset)
740 const char *label;
741 unsigned reg;
742 unsigned sreg;
743 long offset;
745 dw_cfi_ref cfi = new_cfi ();
747 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
749 /* The following comparison is correct. -1 is used to indicate that
750 the value isn't a register number. */
751 if (sreg == (unsigned int) -1)
753 if (reg & ~0x3f)
754 /* The register number won't fit in 6 bits, so we have to use
755 the long form. */
756 cfi->dw_cfi_opc = DW_CFA_offset_extended;
757 else
758 cfi->dw_cfi_opc = DW_CFA_offset;
760 #ifdef ENABLE_CHECKING
762 /* If we get an offset that is not a multiple of
763 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
764 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
765 description. */
766 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
768 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
769 abort ();
771 #endif
772 offset /= DWARF_CIE_DATA_ALIGNMENT;
773 if (offset < 0)
775 cfi->dw_cfi_opc = DW_CFA_GNU_negative_offset_extended;
776 offset = -offset;
778 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
780 else if (sreg == reg)
781 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
782 return;
783 else
785 cfi->dw_cfi_opc = DW_CFA_register;
786 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
789 add_fde_cfi (label, cfi);
792 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
793 This CFI tells the unwinder that it needs to restore the window registers
794 from the previous frame's window save area.
796 ??? Perhaps we should note in the CIE where windows are saved (instead of
797 assuming 0(cfa)) and what registers are in the window. */
799 void
800 dwarf2out_window_save (label)
801 const char *label;
803 dw_cfi_ref cfi = new_cfi ();
804 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
805 add_fde_cfi (label, cfi);
808 /* Add a CFI to update the running total of the size of arguments
809 pushed onto the stack. */
811 void
812 dwarf2out_args_size (label, size)
813 const char *label;
814 long size;
816 dw_cfi_ref cfi;
818 if (size == old_args_size)
819 return;
820 old_args_size = size;
822 cfi = new_cfi ();
823 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
824 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
825 add_fde_cfi (label, cfi);
828 /* Entry point for saving a register to the stack. REG is the GCC register
829 number. LABEL and OFFSET are passed to reg_save. */
831 void
832 dwarf2out_reg_save (label, reg, offset)
833 const char *label;
834 unsigned reg;
835 long offset;
837 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
840 /* Entry point for saving the return address in the stack.
841 LABEL and OFFSET are passed to reg_save. */
843 void
844 dwarf2out_return_save (label, offset)
845 const char *label;
846 long offset;
848 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
851 /* Entry point for saving the return address in a register.
852 LABEL and SREG are passed to reg_save. */
854 void
855 dwarf2out_return_reg (label, sreg)
856 const char *label;
857 unsigned sreg;
859 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
862 /* Record the initial position of the return address. RTL is
863 INCOMING_RETURN_ADDR_RTX. */
865 static void
866 initial_return_save (rtl)
867 rtx rtl;
869 unsigned int reg = (unsigned int) -1;
870 long offset = 0;
872 switch (GET_CODE (rtl))
874 case REG:
875 /* RA is in a register. */
876 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
877 break;
878 case MEM:
879 /* RA is on the stack. */
880 rtl = XEXP (rtl, 0);
881 switch (GET_CODE (rtl))
883 case REG:
884 if (REGNO (rtl) != STACK_POINTER_REGNUM)
885 abort ();
886 offset = 0;
887 break;
888 case PLUS:
889 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
890 abort ();
891 offset = INTVAL (XEXP (rtl, 1));
892 break;
893 case MINUS:
894 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
895 abort ();
896 offset = -INTVAL (XEXP (rtl, 1));
897 break;
898 default:
899 abort ();
901 break;
902 case PLUS:
903 /* The return address is at some offset from any value we can
904 actually load. For instance, on the SPARC it is in %i7+8. Just
905 ignore the offset for now; it doesn't matter for unwinding frames. */
906 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
907 abort ();
908 initial_return_save (XEXP (rtl, 0));
909 return;
910 default:
911 abort ();
914 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
917 /* Given a SET, calculate the amount of stack adjustment it
918 contains. */
920 static long
921 stack_adjust_offset (pattern)
922 rtx pattern;
924 rtx src = SET_SRC (pattern);
925 rtx dest = SET_DEST (pattern);
926 long offset = 0;
927 enum rtx_code code;
929 if (dest == stack_pointer_rtx)
931 /* (set (reg sp) (plus (reg sp) (const_int))) */
932 code = GET_CODE (src);
933 if (! (code == PLUS || code == MINUS)
934 || XEXP (src, 0) != stack_pointer_rtx
935 || GET_CODE (XEXP (src, 1)) != CONST_INT)
936 return 0;
938 offset = INTVAL (XEXP (src, 1));
940 else if (GET_CODE (dest) == MEM)
942 /* (set (mem (pre_dec (reg sp))) (foo)) */
943 src = XEXP (dest, 0);
944 code = GET_CODE (src);
946 if (! (code == PRE_DEC || code == PRE_INC
947 || code == PRE_MODIFY)
948 || XEXP (src, 0) != stack_pointer_rtx)
949 return 0;
951 if (code == PRE_MODIFY)
953 rtx val = XEXP (XEXP (src, 1), 1);
954 /* We handle only adjustments by constant amount. */
955 if (GET_CODE (XEXP (src, 1)) != PLUS ||
956 GET_CODE (val) != CONST_INT)
957 abort();
958 offset = -INTVAL (val);
960 else offset = GET_MODE_SIZE (GET_MODE (dest));
962 else
963 return 0;
965 if (code == PLUS || code == PRE_INC)
966 offset = -offset;
968 return offset;
971 /* Check INSN to see if it looks like a push or a stack adjustment, and
972 make a note of it if it does. EH uses this information to find out how
973 much extra space it needs to pop off the stack. */
975 static void
976 dwarf2out_stack_adjust (insn)
977 rtx insn;
979 long offset;
980 const char *label;
982 if (!flag_asynchronous_unwind_tables
983 && GET_CODE (insn) == CALL_INSN)
985 /* Extract the size of the args from the CALL rtx itself. */
987 insn = PATTERN (insn);
988 if (GET_CODE (insn) == PARALLEL)
989 insn = XVECEXP (insn, 0, 0);
990 if (GET_CODE (insn) == SET)
991 insn = SET_SRC (insn);
992 if (GET_CODE (insn) != CALL)
993 abort ();
994 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
995 return;
998 /* If only calls can throw, and we have a frame pointer,
999 save up adjustments until we see the CALL_INSN. */
1000 else if (!flag_asynchronous_unwind_tables
1001 && cfa.reg != STACK_POINTER_REGNUM)
1002 return;
1004 if (GET_CODE (insn) == BARRIER)
1006 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1007 the compiler will have already emitted a stack adjustment, but
1008 doesn't bother for calls to noreturn functions. */
1009 #ifdef STACK_GROWS_DOWNWARD
1010 offset = -args_size;
1011 #else
1012 offset = args_size;
1013 #endif
1015 else if (GET_CODE (PATTERN (insn)) == SET)
1017 offset = stack_adjust_offset (PATTERN (insn));
1019 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1020 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1022 /* There may be stack adjustments inside compound insns. Search
1023 for them. */
1024 int j;
1026 offset = 0;
1027 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1029 rtx pattern = XVECEXP (PATTERN (insn), 0, j);
1030 if (GET_CODE (pattern) == SET)
1031 offset += stack_adjust_offset (pattern);
1034 else
1035 return;
1037 if (offset == 0)
1038 return;
1040 if (cfa.reg == STACK_POINTER_REGNUM)
1041 cfa.offset += offset;
1043 #ifndef STACK_GROWS_DOWNWARD
1044 offset = -offset;
1045 #endif
1046 args_size += offset;
1047 if (args_size < 0)
1048 args_size = 0;
1050 label = dwarf2out_cfi_label ();
1051 def_cfa_1 (label, &cfa);
1052 dwarf2out_args_size (label, args_size);
1055 /* We delay emitting a register save until either (a) we reach the end
1056 of the prologue or (b) the register is clobbered. This clusters
1057 register saves so that there are fewer pc advances. */
1059 struct queued_reg_save
1061 struct queued_reg_save *next;
1062 rtx reg;
1063 long cfa_offset;
1066 static struct queued_reg_save *queued_reg_saves;
1067 static const char *last_reg_save_label;
1069 static void
1070 queue_reg_save (label, reg, offset)
1071 const char *label;
1072 rtx reg;
1073 long offset;
1075 struct queued_reg_save *q = (struct queued_reg_save *) xmalloc (sizeof (*q));
1077 q->next = queued_reg_saves;
1078 q->reg = reg;
1079 q->cfa_offset = offset;
1080 queued_reg_saves = q;
1082 last_reg_save_label = label;
1085 static void
1086 flush_queued_reg_saves ()
1088 struct queued_reg_save *q, *next;
1090 for (q = queued_reg_saves; q ; q = next)
1092 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1093 next = q->next;
1094 free (q);
1097 queued_reg_saves = NULL;
1098 last_reg_save_label = NULL;
1101 static bool
1102 clobbers_queued_reg_save (insn)
1103 rtx insn;
1105 struct queued_reg_save *q;
1107 for (q = queued_reg_saves; q ; q = q->next)
1108 if (modified_in_p (q->reg, insn))
1109 return true;
1111 return false;
1115 /* A temporary register holding an integral value used in adjusting SP
1116 or setting up the store_reg. The "offset" field holds the integer
1117 value, not an offset. */
1118 static dw_cfa_location cfa_temp;
1120 /* Record call frame debugging information for an expression EXPR,
1121 which either sets SP or FP (adjusting how we calculate the frame
1122 address) or saves a register to the stack. LABEL indicates the
1123 address of EXPR.
1125 This function encodes a state machine mapping rtxes to actions on
1126 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1127 users need not read the source code.
1129 The High-Level Picture
1131 Changes in the register we use to calculate the CFA: Currently we
1132 assume that if you copy the CFA register into another register, we
1133 should take the other one as the new CFA register; this seems to
1134 work pretty well. If it's wrong for some target, it's simple
1135 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1137 Changes in the register we use for saving registers to the stack:
1138 This is usually SP, but not always. Again, we deduce that if you
1139 copy SP into another register (and SP is not the CFA register),
1140 then the new register is the one we will be using for register
1141 saves. This also seems to work.
1143 Register saves: There's not much guesswork about this one; if
1144 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1145 register save, and the register used to calculate the destination
1146 had better be the one we think we're using for this purpose.
1148 Except: If the register being saved is the CFA register, and the
1149 offset is non-zero, we are saving the CFA, so we assume we have to
1150 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1151 the intent is to save the value of SP from the previous frame.
1153 Invariants / Summaries of Rules
1155 cfa current rule for calculating the CFA. It usually
1156 consists of a register and an offset.
1157 cfa_store register used by prologue code to save things to the stack
1158 cfa_store.offset is the offset from the value of
1159 cfa_store.reg to the actual CFA
1160 cfa_temp register holding an integral value. cfa_temp.offset
1161 stores the value, which will be used to adjust the
1162 stack pointer. cfa_temp is also used like cfa_store,
1163 to track stores to the stack via fp or a temp reg.
1165 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1166 with cfa.reg as the first operand changes the cfa.reg and its
1167 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1168 cfa_temp.offset.
1170 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1171 expression yielding a constant. This sets cfa_temp.reg
1172 and cfa_temp.offset.
1174 Rule 5: Create a new register cfa_store used to save items to the
1175 stack.
1177 Rules 10-14: Save a register to the stack. Define offset as the
1178 difference of the original location and cfa_store's
1179 location (or cfa_temp's location if cfa_temp is used).
1181 The Rules
1183 "{a,b}" indicates a choice of a xor b.
1184 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1186 Rule 1:
1187 (set <reg1> <reg2>:cfa.reg)
1188 effects: cfa.reg = <reg1>
1189 cfa.offset unchanged
1190 cfa_temp.reg = <reg1>
1191 cfa_temp.offset = cfa.offset
1193 Rule 2:
1194 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg {<const_int>,<reg>:cfa_temp.reg}))
1195 effects: cfa.reg = sp if fp used
1196 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1197 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1198 if cfa_store.reg==sp
1200 Rule 3:
1201 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1202 effects: cfa.reg = fp
1203 cfa_offset += +/- <const_int>
1205 Rule 4:
1206 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1207 constraints: <reg1> != fp
1208 <reg1> != sp
1209 effects: cfa.reg = <reg1>
1210 cfa_temp.reg = <reg1>
1211 cfa_temp.offset = cfa.offset
1213 Rule 5:
1214 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1215 constraints: <reg1> != fp
1216 <reg1> != sp
1217 effects: cfa_store.reg = <reg1>
1218 cfa_store.offset = cfa.offset - cfa_temp.offset
1220 Rule 6:
1221 (set <reg> <const_int>)
1222 effects: cfa_temp.reg = <reg>
1223 cfa_temp.offset = <const_int>
1225 Rule 7:
1226 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1227 effects: cfa_temp.reg = <reg1>
1228 cfa_temp.offset |= <const_int>
1230 Rule 8:
1231 (set <reg> (high <exp>))
1232 effects: none
1234 Rule 9:
1235 (set <reg> (lo_sum <exp> <const_int>))
1236 effects: cfa_temp.reg = <reg>
1237 cfa_temp.offset = <const_int>
1239 Rule 10:
1240 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1241 effects: cfa_store.offset -= <const_int>
1242 cfa.offset = cfa_store.offset if cfa.reg == sp
1243 cfa.reg = sp
1244 cfa.base_offset = -cfa_store.offset
1246 Rule 11:
1247 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1248 effects: cfa_store.offset += -/+ mode_size(mem)
1249 cfa.offset = cfa_store.offset if cfa.reg == sp
1250 cfa.reg = sp
1251 cfa.base_offset = -cfa_store.offset
1253 Rule 12:
1254 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>)) <reg2>)
1255 effects: cfa.reg = <reg1>
1256 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1258 Rule 13:
1259 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1260 effects: cfa.reg = <reg1>
1261 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1263 Rule 14:
1264 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1265 effects: cfa.reg = <reg1>
1266 cfa.base_offset = -cfa_temp.offset
1267 cfa_temp.offset -= mode_size(mem) */
1269 static void
1270 dwarf2out_frame_debug_expr (expr, label)
1271 rtx expr;
1272 const char *label;
1274 rtx src, dest;
1275 long offset;
1277 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1278 the PARALLEL independently. The first element is always processed if
1279 it is a SET. This is for backward compatibility. Other elements
1280 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1281 flag is set in them. */
1283 if (GET_CODE (expr) == PARALLEL
1284 || GET_CODE (expr) == SEQUENCE)
1286 int par_index;
1287 int limit = XVECLEN (expr, 0);
1289 for (par_index = 0; par_index < limit; par_index++)
1291 rtx x = XVECEXP (expr, 0, par_index);
1293 if (GET_CODE (x) == SET &&
1294 (RTX_FRAME_RELATED_P (x) || par_index == 0))
1295 dwarf2out_frame_debug_expr (x, label);
1297 return;
1300 if (GET_CODE (expr) != SET)
1301 abort ();
1303 src = SET_SRC (expr);
1304 dest = SET_DEST (expr);
1306 switch (GET_CODE (dest))
1308 case REG:
1309 /* Rule 1 */
1310 /* Update the CFA rule wrt SP or FP. Make sure src is
1311 relative to the current CFA register. */
1312 switch (GET_CODE (src))
1314 /* Setting FP from SP. */
1315 case REG:
1316 if (cfa.reg == (unsigned) REGNO (src))
1317 /* OK. */
1319 else
1320 abort ();
1322 /* We used to require that dest be either SP or FP, but the
1323 ARM copies SP to a temporary register, and from there to
1324 FP. So we just rely on the backends to only set
1325 RTX_FRAME_RELATED_P on appropriate insns. */
1326 cfa.reg = REGNO (dest);
1327 cfa_temp.reg = cfa.reg;
1328 cfa_temp.offset = cfa.offset;
1329 break;
1331 case PLUS:
1332 case MINUS:
1333 case LO_SUM:
1334 if (dest == stack_pointer_rtx)
1336 /* Rule 2 */
1337 /* Adjusting SP. */
1338 switch (GET_CODE (XEXP (src, 1)))
1340 case CONST_INT:
1341 offset = INTVAL (XEXP (src, 1));
1342 break;
1343 case REG:
1344 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1345 abort ();
1346 offset = cfa_temp.offset;
1347 break;
1348 default:
1349 abort ();
1352 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1354 /* Restoring SP from FP in the epilogue. */
1355 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1356 abort ();
1357 cfa.reg = STACK_POINTER_REGNUM;
1359 else if (GET_CODE (src) == LO_SUM)
1360 /* Assume we've set the source reg of the LO_SUM from sp. */
1362 else if (XEXP (src, 0) != stack_pointer_rtx)
1363 abort ();
1365 if (GET_CODE (src) != MINUS)
1366 offset = -offset;
1367 if (cfa.reg == STACK_POINTER_REGNUM)
1368 cfa.offset += offset;
1369 if (cfa_store.reg == STACK_POINTER_REGNUM)
1370 cfa_store.offset += offset;
1372 else if (dest == hard_frame_pointer_rtx)
1374 /* Rule 3 */
1375 /* Either setting the FP from an offset of the SP,
1376 or adjusting the FP */
1377 if (! frame_pointer_needed)
1378 abort ();
1380 if (GET_CODE (XEXP (src, 0)) == REG
1381 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1382 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1384 offset = INTVAL (XEXP (src, 1));
1385 if (GET_CODE (src) != MINUS)
1386 offset = -offset;
1387 cfa.offset += offset;
1388 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1390 else
1391 abort ();
1393 else
1395 if (GET_CODE (src) == MINUS)
1396 abort ();
1398 /* Rule 4 */
1399 if (GET_CODE (XEXP (src, 0)) == REG
1400 && REGNO (XEXP (src, 0)) == cfa.reg
1401 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1403 /* Setting a temporary CFA register that will be copied
1404 into the FP later on. */
1405 offset = - INTVAL (XEXP (src, 1));
1406 cfa.offset += offset;
1407 cfa.reg = REGNO (dest);
1408 /* Or used to save regs to the stack. */
1409 cfa_temp.reg = cfa.reg;
1410 cfa_temp.offset = cfa.offset;
1412 /* Rule 5 */
1413 else if (GET_CODE (XEXP (src, 0)) == REG
1414 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1415 && XEXP (src, 1) == stack_pointer_rtx)
1417 /* Setting a scratch register that we will use instead
1418 of SP for saving registers to the stack. */
1419 if (cfa.reg != STACK_POINTER_REGNUM)
1420 abort ();
1421 cfa_store.reg = REGNO (dest);
1422 cfa_store.offset = cfa.offset - cfa_temp.offset;
1424 /* Rule 9 */
1425 else if (GET_CODE (src) == LO_SUM
1426 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1428 cfa_temp.reg = REGNO (dest);
1429 cfa_temp.offset = INTVAL (XEXP (src, 1));
1431 else
1432 abort ();
1434 break;
1436 /* Rule 6 */
1437 case CONST_INT:
1438 cfa_temp.reg = REGNO (dest);
1439 cfa_temp.offset = INTVAL (src);
1440 break;
1442 /* Rule 7 */
1443 case IOR:
1444 if (GET_CODE (XEXP (src, 0)) != REG
1445 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1446 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1447 abort ();
1448 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1449 cfa_temp.reg = REGNO (dest);
1450 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1451 break;
1453 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1454 which will fill in all of the bits. */
1455 /* Rule 8 */
1456 case HIGH:
1457 break;
1459 default:
1460 abort ();
1462 def_cfa_1 (label, &cfa);
1463 break;
1465 case MEM:
1466 if (GET_CODE (src) != REG)
1467 abort ();
1469 /* Saving a register to the stack. Make sure dest is relative to the
1470 CFA register. */
1471 switch (GET_CODE (XEXP (dest, 0)))
1473 /* Rule 10 */
1474 /* With a push. */
1475 case PRE_MODIFY:
1476 /* We can't handle variable size modifications. */
1477 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1478 abort();
1479 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1481 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1482 || cfa_store.reg != STACK_POINTER_REGNUM)
1483 abort ();
1484 cfa_store.offset += offset;
1485 if (cfa.reg == STACK_POINTER_REGNUM)
1486 cfa.offset = cfa_store.offset;
1488 offset = -cfa_store.offset;
1489 break;
1490 /* Rule 11 */
1491 case PRE_INC:
1492 case PRE_DEC:
1493 offset = GET_MODE_SIZE (GET_MODE (dest));
1494 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1495 offset = -offset;
1497 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1498 || cfa_store.reg != STACK_POINTER_REGNUM)
1499 abort ();
1500 cfa_store.offset += offset;
1501 if (cfa.reg == STACK_POINTER_REGNUM)
1502 cfa.offset = cfa_store.offset;
1504 offset = -cfa_store.offset;
1505 break;
1507 /* Rule 12 */
1508 /* With an offset. */
1509 case PLUS:
1510 case MINUS:
1511 case LO_SUM:
1512 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1513 abort ();
1514 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1515 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1516 offset = -offset;
1518 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1519 offset -= cfa_store.offset;
1520 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1521 offset -= cfa_temp.offset;
1522 else
1523 abort ();
1524 break;
1526 /* Rule 13 */
1527 /* Without an offset. */
1528 case REG:
1529 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1530 offset = -cfa_store.offset;
1531 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1532 offset = -cfa_temp.offset;
1533 else
1534 abort ();
1535 break;
1537 /* Rule 14 */
1538 case POST_INC:
1539 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1540 abort ();
1541 offset = -cfa_temp.offset;
1542 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1543 break;
1545 default:
1546 abort ();
1549 if (REGNO (src) != STACK_POINTER_REGNUM
1550 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1551 && (unsigned) REGNO (src) == cfa.reg)
1553 /* We're storing the current CFA reg into the stack. */
1555 if (cfa.offset == 0)
1557 /* If the source register is exactly the CFA, assume
1558 we're saving SP like any other register; this happens
1559 on the ARM. */
1561 def_cfa_1 (label, &cfa);
1562 queue_reg_save (label, stack_pointer_rtx, offset);
1563 break;
1565 else
1567 /* Otherwise, we'll need to look in the stack to
1568 calculate the CFA. */
1570 rtx x = XEXP (dest, 0);
1571 if (GET_CODE (x) != REG)
1572 x = XEXP (x, 0);
1573 if (GET_CODE (x) != REG)
1574 abort ();
1575 cfa.reg = (unsigned) REGNO (x);
1576 cfa.base_offset = offset;
1577 cfa.indirect = 1;
1578 def_cfa_1 (label, &cfa);
1579 break;
1583 def_cfa_1 (label, &cfa);
1584 queue_reg_save (label, src, offset);
1585 break;
1587 default:
1588 abort ();
1592 /* Record call frame debugging information for INSN, which either
1593 sets SP or FP (adjusting how we calculate the frame address) or saves a
1594 register to the stack. If INSN is NULL_RTX, initialize our state. */
1596 void
1597 dwarf2out_frame_debug (insn)
1598 rtx insn;
1600 const char *label;
1601 rtx src;
1603 if (insn == NULL_RTX)
1605 /* Flush any queued register saves. */
1606 flush_queued_reg_saves ();
1608 /* Set up state for generating call frame debug info. */
1609 lookup_cfa (&cfa);
1610 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1611 abort ();
1612 cfa.reg = STACK_POINTER_REGNUM;
1613 cfa_store = cfa;
1614 cfa_temp.reg = -1;
1615 cfa_temp.offset = 0;
1616 return;
1619 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1620 flush_queued_reg_saves ();
1622 if (! RTX_FRAME_RELATED_P (insn))
1624 if (!ACCUMULATE_OUTGOING_ARGS)
1625 dwarf2out_stack_adjust (insn);
1626 return;
1629 label = dwarf2out_cfi_label ();
1631 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1632 if (src)
1633 insn = XEXP (src, 0);
1634 else
1635 insn = PATTERN (insn);
1637 dwarf2out_frame_debug_expr (insn, label);
1640 /* Output a Call Frame Information opcode and its operand(s). */
1642 static void
1643 output_cfi (cfi, fde, for_eh)
1644 dw_cfi_ref cfi;
1645 dw_fde_ref fde;
1646 int for_eh;
1648 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1650 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1651 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1652 "DW_CFA_advance_loc 0x%lx",
1653 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1655 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1657 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1658 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1659 "DW_CFA_offset, column 0x%lx",
1660 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1661 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1663 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1665 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1666 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1667 "DW_CFA_restore, column 0x%lx",
1668 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1670 else
1672 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1673 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1675 switch (cfi->dw_cfi_opc)
1677 case DW_CFA_set_loc:
1678 if (for_eh)
1679 dw2_asm_output_encoded_addr_rtx (
1680 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1681 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1682 NULL);
1683 else
1684 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1685 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1686 break;
1687 case DW_CFA_advance_loc1:
1688 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1689 fde->dw_fde_current_label, NULL);
1690 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1691 break;
1692 case DW_CFA_advance_loc2:
1693 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1694 fde->dw_fde_current_label, NULL);
1695 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1696 break;
1697 case DW_CFA_advance_loc4:
1698 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1699 fde->dw_fde_current_label, NULL);
1700 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1701 break;
1702 case DW_CFA_MIPS_advance_loc8:
1703 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1704 fde->dw_fde_current_label, NULL);
1705 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1706 break;
1707 case DW_CFA_offset_extended:
1708 case DW_CFA_GNU_negative_offset_extended:
1709 case DW_CFA_def_cfa:
1710 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1711 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1712 break;
1713 case DW_CFA_restore_extended:
1714 case DW_CFA_undefined:
1715 case DW_CFA_same_value:
1716 case DW_CFA_def_cfa_register:
1717 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1718 break;
1719 case DW_CFA_register:
1720 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1721 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, NULL);
1722 break;
1723 case DW_CFA_def_cfa_offset:
1724 case DW_CFA_GNU_args_size:
1725 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1726 break;
1727 case DW_CFA_GNU_window_save:
1728 break;
1729 case DW_CFA_def_cfa_expression:
1730 output_cfa_loc (cfi);
1731 break;
1732 default:
1733 break;
1738 /* Output the call frame information used to used to record information
1739 that relates to calculating the frame pointer, and records the
1740 location of saved registers. */
1742 static void
1743 output_call_frame_info (for_eh)
1744 int for_eh;
1746 unsigned int i;
1747 dw_fde_ref fde;
1748 dw_cfi_ref cfi;
1749 char l1[20], l2[20], section_start_label[20];
1750 int any_lsda_needed = 0;
1751 char augmentation[6];
1752 int augmentation_size;
1753 int fde_encoding = DW_EH_PE_absptr;
1754 int per_encoding = DW_EH_PE_absptr;
1755 int lsda_encoding = DW_EH_PE_absptr;
1757 /* If we don't have any functions we'll want to unwind out of, don't
1758 emit any EH unwind information. */
1759 if (for_eh)
1761 int any_eh_needed = flag_asynchronous_unwind_tables;
1762 for (i = 0; i < fde_table_in_use; ++i)
1763 if (fde_table[i].uses_eh_lsda)
1764 any_eh_needed = any_lsda_needed = 1;
1765 else if (! fde_table[i].nothrow)
1766 any_eh_needed = 1;
1768 if (! any_eh_needed)
1769 return;
1772 /* We're going to be generating comments, so turn on app. */
1773 if (flag_debug_asm)
1774 app_enable ();
1776 if (for_eh)
1777 (*targetm.asm_out.eh_frame_section) ();
1778 else
1779 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1781 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1782 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1784 /* Output the CIE. */
1785 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1786 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1787 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1788 "Length of Common Information Entry");
1789 ASM_OUTPUT_LABEL (asm_out_file, l1);
1791 /* Now that the CIE pointer is PC-relative for EH,
1792 use 0 to identify the CIE. */
1793 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1794 (for_eh ? 0 : DW_CIE_ID),
1795 "CIE Identifier Tag");
1797 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1799 augmentation[0] = 0;
1800 augmentation_size = 0;
1801 if (for_eh)
1803 char *p;
1805 /* Augmentation:
1806 z Indicates that a uleb128 is present to size the
1807 augmentation section.
1808 L Indicates the encoding (and thus presence) of
1809 an LSDA pointer in the FDE augmentation.
1810 R Indicates a non-default pointer encoding for
1811 FDE code pointers.
1812 P Indicates the presence of an encoding + language
1813 personality routine in the CIE augmentation. */
1815 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1816 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1817 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1819 p = augmentation + 1;
1820 if (eh_personality_libfunc)
1822 *p++ = 'P';
1823 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1825 if (any_lsda_needed)
1827 *p++ = 'L';
1828 augmentation_size += 1;
1830 if (fde_encoding != DW_EH_PE_absptr)
1832 *p++ = 'R';
1833 augmentation_size += 1;
1835 if (p > augmentation + 1)
1837 augmentation[0] = 'z';
1838 *p = '\0';
1841 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1842 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1844 int offset = ( 4 /* Length */
1845 + 4 /* CIE Id */
1846 + 1 /* CIE version */
1847 + strlen (augmentation) + 1 /* Augmentation */
1848 + size_of_uleb128 (1) /* Code alignment */
1849 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1850 + 1 /* RA column */
1851 + 1 /* Augmentation size */
1852 + 1 /* Personality encoding */ );
1853 int pad = -offset & (PTR_SIZE - 1);
1855 augmentation_size += pad;
1857 /* Augmentations should be small, so there's scarce need to
1858 iterate for a solution. Die if we exceed one uleb128 byte. */
1859 if (size_of_uleb128 (augmentation_size) != 1)
1860 abort ();
1863 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
1865 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
1867 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
1868 "CIE Data Alignment Factor");
1870 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
1872 if (augmentation[0])
1874 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
1875 if (eh_personality_libfunc)
1877 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
1878 eh_data_format_name (per_encoding));
1879 dw2_asm_output_encoded_addr_rtx (per_encoding,
1880 eh_personality_libfunc, NULL);
1882 if (any_lsda_needed)
1883 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
1884 eh_data_format_name (lsda_encoding));
1885 if (fde_encoding != DW_EH_PE_absptr)
1886 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
1887 eh_data_format_name (fde_encoding));
1890 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
1891 output_cfi (cfi, NULL, for_eh);
1893 /* Pad the CIE out to an address sized boundary. */
1894 ASM_OUTPUT_ALIGN (asm_out_file,
1895 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
1896 ASM_OUTPUT_LABEL (asm_out_file, l2);
1898 /* Loop through all of the FDE's. */
1899 for (i = 0; i < fde_table_in_use; ++i)
1901 fde = &fde_table[i];
1903 /* Don't emit EH unwind info for leaf functions that don't need it. */
1904 if (for_eh && fde->nothrow && ! fde->uses_eh_lsda)
1905 continue;
1907 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, FDE_LABEL, for_eh + i * 2);
1908 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
1909 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
1910 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1911 "FDE Length");
1912 ASM_OUTPUT_LABEL (asm_out_file, l1);
1914 if (for_eh)
1915 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
1916 else
1917 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
1918 "FDE CIE offset");
1920 if (for_eh)
1922 dw2_asm_output_encoded_addr_rtx (fde_encoding,
1923 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
1924 "FDE initial location");
1925 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
1926 fde->dw_fde_end, fde->dw_fde_begin,
1927 "FDE address range");
1929 else
1931 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
1932 "FDE initial location");
1933 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
1934 fde->dw_fde_end, fde->dw_fde_begin,
1935 "FDE address range");
1938 if (augmentation[0])
1940 if (any_lsda_needed)
1942 int size = size_of_encoded_value (lsda_encoding);
1944 if (lsda_encoding == DW_EH_PE_aligned)
1946 int offset = ( 4 /* Length */
1947 + 4 /* CIE offset */
1948 + 2 * size_of_encoded_value (fde_encoding)
1949 + 1 /* Augmentation size */ );
1950 int pad = -offset & (PTR_SIZE - 1);
1952 size += pad;
1953 if (size_of_uleb128 (size) != 1)
1954 abort ();
1957 dw2_asm_output_data_uleb128 (size, "Augmentation size");
1959 if (fde->uses_eh_lsda)
1961 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
1962 fde->funcdef_number);
1963 dw2_asm_output_encoded_addr_rtx (
1964 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
1965 "Language Specific Data Area");
1967 else
1969 if (lsda_encoding == DW_EH_PE_aligned)
1970 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
1971 dw2_asm_output_data (size_of_encoded_value (lsda_encoding),
1972 0, "Language Specific Data Area (none)");
1975 else
1976 dw2_asm_output_data_uleb128 (0, "Augmentation size");
1979 /* Loop through the Call Frame Instructions associated with
1980 this FDE. */
1981 fde->dw_fde_current_label = fde->dw_fde_begin;
1982 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
1983 output_cfi (cfi, fde, for_eh);
1985 /* Pad the FDE out to an address sized boundary. */
1986 ASM_OUTPUT_ALIGN (asm_out_file,
1987 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
1988 ASM_OUTPUT_LABEL (asm_out_file, l2);
1991 #ifndef EH_FRAME_SECTION_NAME
1992 if (for_eh)
1993 dw2_asm_output_data (4, 0, "End of Table");
1994 #endif
1995 #ifdef MIPS_DEBUGGING_INFO
1996 /* Work around Irix 6 assembler bug whereby labels at the end of a section
1997 get a value of 0. Putting .align 0 after the label fixes it. */
1998 ASM_OUTPUT_ALIGN (asm_out_file, 0);
1999 #endif
2001 /* Turn off app to make assembly quicker. */
2002 if (flag_debug_asm)
2003 app_disable ();
2006 /* Output a marker (i.e. a label) for the beginning of a function, before
2007 the prologue. */
2009 void
2010 dwarf2out_begin_prologue (line, file)
2011 unsigned int line ATTRIBUTE_UNUSED;
2012 const char *file ATTRIBUTE_UNUSED;
2014 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2015 dw_fde_ref fde;
2017 current_function_func_begin_label = 0;
2019 #ifdef IA64_UNWIND_INFO
2020 /* ??? current_function_func_begin_label is also used by except.c
2021 for call-site information. We must emit this label if it might
2022 be used. */
2023 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2024 && ! dwarf2out_do_frame ())
2025 return;
2026 #else
2027 if (! dwarf2out_do_frame ())
2028 return;
2029 #endif
2031 ++current_funcdef_number;
2033 function_section (current_function_decl);
2034 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2035 current_funcdef_number);
2036 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2037 current_funcdef_number);
2038 current_function_func_begin_label = get_identifier (label);
2040 #ifdef IA64_UNWIND_INFO
2041 /* We can elide the fde allocation if we're not emitting debug info. */
2042 if (! dwarf2out_do_frame ())
2043 return;
2044 #endif
2046 /* Expand the fde table if necessary. */
2047 if (fde_table_in_use == fde_table_allocated)
2049 fde_table_allocated += FDE_TABLE_INCREMENT;
2050 fde_table
2051 = (dw_fde_ref) xrealloc (fde_table,
2052 fde_table_allocated * sizeof (dw_fde_node));
2055 /* Record the FDE associated with this function. */
2056 current_funcdef_fde = fde_table_in_use;
2058 /* Add the new FDE at the end of the fde_table. */
2059 fde = &fde_table[fde_table_in_use++];
2060 fde->dw_fde_begin = xstrdup (label);
2061 fde->dw_fde_current_label = NULL;
2062 fde->dw_fde_end = NULL;
2063 fde->dw_fde_cfi = NULL;
2064 fde->funcdef_number = current_funcdef_number;
2065 fde->nothrow = current_function_nothrow;
2066 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2068 args_size = old_args_size = 0;
2070 /* We only want to output line number information for the genuine
2071 dwarf2 prologue case, not the eh frame case. */
2072 #ifdef DWARF2_DEBUGGING_INFO
2073 if (file)
2074 dwarf2out_source_line (line, file);
2075 #endif
2078 /* Output a marker (i.e. a label) for the absolute end of the generated code
2079 for a function definition. This gets called *after* the epilogue code has
2080 been generated. */
2082 void
2083 dwarf2out_end_epilogue ()
2085 dw_fde_ref fde;
2086 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2088 /* Output a label to mark the endpoint of the code generated for this
2089 function. */
2090 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, current_funcdef_number);
2091 ASM_OUTPUT_LABEL (asm_out_file, label);
2092 fde = &fde_table[fde_table_in_use - 1];
2093 fde->dw_fde_end = xstrdup (label);
2096 void
2097 dwarf2out_frame_init ()
2099 /* Allocate the initial hunk of the fde_table. */
2100 fde_table = (dw_fde_ref) xcalloc (FDE_TABLE_INCREMENT, sizeof (dw_fde_node));
2101 fde_table_allocated = FDE_TABLE_INCREMENT;
2102 fde_table_in_use = 0;
2104 /* Generate the CFA instructions common to all FDE's. Do it now for the
2105 sake of lookup_cfa. */
2107 #ifdef DWARF2_UNWIND_INFO
2108 /* On entry, the Canonical Frame Address is at SP. */
2109 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2110 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2111 #endif
2114 void
2115 dwarf2out_frame_finish ()
2117 /* Output call frame information. */
2118 if (write_symbols == DWARF2_DEBUG)
2119 output_call_frame_info (0);
2120 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2121 output_call_frame_info (1);
2124 /* And now, the subset of the debugging information support code necessary
2125 for emitting location expressions. */
2127 typedef struct dw_val_struct *dw_val_ref;
2128 typedef struct die_struct *dw_die_ref;
2129 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2130 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2132 /* Each DIE may have a series of attribute/value pairs. Values
2133 can take on several forms. The forms that are used in this
2134 implementation are listed below. */
2136 typedef enum
2138 dw_val_class_addr,
2139 dw_val_class_offset,
2140 dw_val_class_loc,
2141 dw_val_class_loc_list,
2142 dw_val_class_const,
2143 dw_val_class_unsigned_const,
2144 dw_val_class_long_long,
2145 dw_val_class_float,
2146 dw_val_class_flag,
2147 dw_val_class_die_ref,
2148 dw_val_class_fde_ref,
2149 dw_val_class_lbl_id,
2150 dw_val_class_lbl_offset,
2151 dw_val_class_str
2153 dw_val_class;
2155 /* Describe a double word constant value. */
2156 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2158 typedef struct dw_long_long_struct
2160 unsigned long hi;
2161 unsigned long low;
2163 dw_long_long_const;
2165 /* Describe a floating point constant value. */
2167 typedef struct dw_fp_struct
2169 long *array;
2170 unsigned length;
2172 dw_float_const;
2174 /* The dw_val_node describes an attribute's value, as it is
2175 represented internally. */
2177 typedef struct dw_val_struct
2179 dw_val_class val_class;
2180 union
2182 rtx val_addr;
2183 long unsigned val_offset;
2184 dw_loc_list_ref val_loc_list;
2185 dw_loc_descr_ref val_loc;
2186 long int val_int;
2187 long unsigned val_unsigned;
2188 dw_long_long_const val_long_long;
2189 dw_float_const val_float;
2190 struct {
2191 dw_die_ref die;
2192 int external;
2193 } val_die_ref;
2194 unsigned val_fde_index;
2195 struct indirect_string_node *val_str;
2196 char *val_lbl_id;
2197 unsigned char val_flag;
2201 dw_val_node;
2203 /* Locations in memory are described using a sequence of stack machine
2204 operations. */
2206 typedef struct dw_loc_descr_struct
2208 dw_loc_descr_ref dw_loc_next;
2209 enum dwarf_location_atom dw_loc_opc;
2210 dw_val_node dw_loc_oprnd1;
2211 dw_val_node dw_loc_oprnd2;
2212 int dw_loc_addr;
2214 dw_loc_descr_node;
2216 /* Location lists are ranges + location descriptions for that range,
2217 so you can track variables that are in different places over
2218 their entire life. */
2219 typedef struct dw_loc_list_struct
2221 dw_loc_list_ref dw_loc_next;
2222 const char *begin; /* Label for begin address of range */
2223 const char *end; /* Label for end address of range */
2224 char *ll_symbol; /* Label for beginning of location list. Only on head of list */
2225 const char *section; /* Section this loclist is relative to */
2226 dw_loc_descr_ref expr;
2227 } dw_loc_list_node;
2229 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2230 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2231 unsigned long,
2232 unsigned long));
2233 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2234 dw_loc_descr_ref));
2235 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2236 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2237 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2238 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2240 /* Convert a DWARF stack opcode into its string name. */
2242 static const char *
2243 dwarf_stack_op_name (op)
2244 unsigned op;
2246 switch (op)
2248 case DW_OP_addr:
2249 return "DW_OP_addr";
2250 case DW_OP_deref:
2251 return "DW_OP_deref";
2252 case DW_OP_const1u:
2253 return "DW_OP_const1u";
2254 case DW_OP_const1s:
2255 return "DW_OP_const1s";
2256 case DW_OP_const2u:
2257 return "DW_OP_const2u";
2258 case DW_OP_const2s:
2259 return "DW_OP_const2s";
2260 case DW_OP_const4u:
2261 return "DW_OP_const4u";
2262 case DW_OP_const4s:
2263 return "DW_OP_const4s";
2264 case DW_OP_const8u:
2265 return "DW_OP_const8u";
2266 case DW_OP_const8s:
2267 return "DW_OP_const8s";
2268 case DW_OP_constu:
2269 return "DW_OP_constu";
2270 case DW_OP_consts:
2271 return "DW_OP_consts";
2272 case DW_OP_dup:
2273 return "DW_OP_dup";
2274 case DW_OP_drop:
2275 return "DW_OP_drop";
2276 case DW_OP_over:
2277 return "DW_OP_over";
2278 case DW_OP_pick:
2279 return "DW_OP_pick";
2280 case DW_OP_swap:
2281 return "DW_OP_swap";
2282 case DW_OP_rot:
2283 return "DW_OP_rot";
2284 case DW_OP_xderef:
2285 return "DW_OP_xderef";
2286 case DW_OP_abs:
2287 return "DW_OP_abs";
2288 case DW_OP_and:
2289 return "DW_OP_and";
2290 case DW_OP_div:
2291 return "DW_OP_div";
2292 case DW_OP_minus:
2293 return "DW_OP_minus";
2294 case DW_OP_mod:
2295 return "DW_OP_mod";
2296 case DW_OP_mul:
2297 return "DW_OP_mul";
2298 case DW_OP_neg:
2299 return "DW_OP_neg";
2300 case DW_OP_not:
2301 return "DW_OP_not";
2302 case DW_OP_or:
2303 return "DW_OP_or";
2304 case DW_OP_plus:
2305 return "DW_OP_plus";
2306 case DW_OP_plus_uconst:
2307 return "DW_OP_plus_uconst";
2308 case DW_OP_shl:
2309 return "DW_OP_shl";
2310 case DW_OP_shr:
2311 return "DW_OP_shr";
2312 case DW_OP_shra:
2313 return "DW_OP_shra";
2314 case DW_OP_xor:
2315 return "DW_OP_xor";
2316 case DW_OP_bra:
2317 return "DW_OP_bra";
2318 case DW_OP_eq:
2319 return "DW_OP_eq";
2320 case DW_OP_ge:
2321 return "DW_OP_ge";
2322 case DW_OP_gt:
2323 return "DW_OP_gt";
2324 case DW_OP_le:
2325 return "DW_OP_le";
2326 case DW_OP_lt:
2327 return "DW_OP_lt";
2328 case DW_OP_ne:
2329 return "DW_OP_ne";
2330 case DW_OP_skip:
2331 return "DW_OP_skip";
2332 case DW_OP_lit0:
2333 return "DW_OP_lit0";
2334 case DW_OP_lit1:
2335 return "DW_OP_lit1";
2336 case DW_OP_lit2:
2337 return "DW_OP_lit2";
2338 case DW_OP_lit3:
2339 return "DW_OP_lit3";
2340 case DW_OP_lit4:
2341 return "DW_OP_lit4";
2342 case DW_OP_lit5:
2343 return "DW_OP_lit5";
2344 case DW_OP_lit6:
2345 return "DW_OP_lit6";
2346 case DW_OP_lit7:
2347 return "DW_OP_lit7";
2348 case DW_OP_lit8:
2349 return "DW_OP_lit8";
2350 case DW_OP_lit9:
2351 return "DW_OP_lit9";
2352 case DW_OP_lit10:
2353 return "DW_OP_lit10";
2354 case DW_OP_lit11:
2355 return "DW_OP_lit11";
2356 case DW_OP_lit12:
2357 return "DW_OP_lit12";
2358 case DW_OP_lit13:
2359 return "DW_OP_lit13";
2360 case DW_OP_lit14:
2361 return "DW_OP_lit14";
2362 case DW_OP_lit15:
2363 return "DW_OP_lit15";
2364 case DW_OP_lit16:
2365 return "DW_OP_lit16";
2366 case DW_OP_lit17:
2367 return "DW_OP_lit17";
2368 case DW_OP_lit18:
2369 return "DW_OP_lit18";
2370 case DW_OP_lit19:
2371 return "DW_OP_lit19";
2372 case DW_OP_lit20:
2373 return "DW_OP_lit20";
2374 case DW_OP_lit21:
2375 return "DW_OP_lit21";
2376 case DW_OP_lit22:
2377 return "DW_OP_lit22";
2378 case DW_OP_lit23:
2379 return "DW_OP_lit23";
2380 case DW_OP_lit24:
2381 return "DW_OP_lit24";
2382 case DW_OP_lit25:
2383 return "DW_OP_lit25";
2384 case DW_OP_lit26:
2385 return "DW_OP_lit26";
2386 case DW_OP_lit27:
2387 return "DW_OP_lit27";
2388 case DW_OP_lit28:
2389 return "DW_OP_lit28";
2390 case DW_OP_lit29:
2391 return "DW_OP_lit29";
2392 case DW_OP_lit30:
2393 return "DW_OP_lit30";
2394 case DW_OP_lit31:
2395 return "DW_OP_lit31";
2396 case DW_OP_reg0:
2397 return "DW_OP_reg0";
2398 case DW_OP_reg1:
2399 return "DW_OP_reg1";
2400 case DW_OP_reg2:
2401 return "DW_OP_reg2";
2402 case DW_OP_reg3:
2403 return "DW_OP_reg3";
2404 case DW_OP_reg4:
2405 return "DW_OP_reg4";
2406 case DW_OP_reg5:
2407 return "DW_OP_reg5";
2408 case DW_OP_reg6:
2409 return "DW_OP_reg6";
2410 case DW_OP_reg7:
2411 return "DW_OP_reg7";
2412 case DW_OP_reg8:
2413 return "DW_OP_reg8";
2414 case DW_OP_reg9:
2415 return "DW_OP_reg9";
2416 case DW_OP_reg10:
2417 return "DW_OP_reg10";
2418 case DW_OP_reg11:
2419 return "DW_OP_reg11";
2420 case DW_OP_reg12:
2421 return "DW_OP_reg12";
2422 case DW_OP_reg13:
2423 return "DW_OP_reg13";
2424 case DW_OP_reg14:
2425 return "DW_OP_reg14";
2426 case DW_OP_reg15:
2427 return "DW_OP_reg15";
2428 case DW_OP_reg16:
2429 return "DW_OP_reg16";
2430 case DW_OP_reg17:
2431 return "DW_OP_reg17";
2432 case DW_OP_reg18:
2433 return "DW_OP_reg18";
2434 case DW_OP_reg19:
2435 return "DW_OP_reg19";
2436 case DW_OP_reg20:
2437 return "DW_OP_reg20";
2438 case DW_OP_reg21:
2439 return "DW_OP_reg21";
2440 case DW_OP_reg22:
2441 return "DW_OP_reg22";
2442 case DW_OP_reg23:
2443 return "DW_OP_reg23";
2444 case DW_OP_reg24:
2445 return "DW_OP_reg24";
2446 case DW_OP_reg25:
2447 return "DW_OP_reg25";
2448 case DW_OP_reg26:
2449 return "DW_OP_reg26";
2450 case DW_OP_reg27:
2451 return "DW_OP_reg27";
2452 case DW_OP_reg28:
2453 return "DW_OP_reg28";
2454 case DW_OP_reg29:
2455 return "DW_OP_reg29";
2456 case DW_OP_reg30:
2457 return "DW_OP_reg30";
2458 case DW_OP_reg31:
2459 return "DW_OP_reg31";
2460 case DW_OP_breg0:
2461 return "DW_OP_breg0";
2462 case DW_OP_breg1:
2463 return "DW_OP_breg1";
2464 case DW_OP_breg2:
2465 return "DW_OP_breg2";
2466 case DW_OP_breg3:
2467 return "DW_OP_breg3";
2468 case DW_OP_breg4:
2469 return "DW_OP_breg4";
2470 case DW_OP_breg5:
2471 return "DW_OP_breg5";
2472 case DW_OP_breg6:
2473 return "DW_OP_breg6";
2474 case DW_OP_breg7:
2475 return "DW_OP_breg7";
2476 case DW_OP_breg8:
2477 return "DW_OP_breg8";
2478 case DW_OP_breg9:
2479 return "DW_OP_breg9";
2480 case DW_OP_breg10:
2481 return "DW_OP_breg10";
2482 case DW_OP_breg11:
2483 return "DW_OP_breg11";
2484 case DW_OP_breg12:
2485 return "DW_OP_breg12";
2486 case DW_OP_breg13:
2487 return "DW_OP_breg13";
2488 case DW_OP_breg14:
2489 return "DW_OP_breg14";
2490 case DW_OP_breg15:
2491 return "DW_OP_breg15";
2492 case DW_OP_breg16:
2493 return "DW_OP_breg16";
2494 case DW_OP_breg17:
2495 return "DW_OP_breg17";
2496 case DW_OP_breg18:
2497 return "DW_OP_breg18";
2498 case DW_OP_breg19:
2499 return "DW_OP_breg19";
2500 case DW_OP_breg20:
2501 return "DW_OP_breg20";
2502 case DW_OP_breg21:
2503 return "DW_OP_breg21";
2504 case DW_OP_breg22:
2505 return "DW_OP_breg22";
2506 case DW_OP_breg23:
2507 return "DW_OP_breg23";
2508 case DW_OP_breg24:
2509 return "DW_OP_breg24";
2510 case DW_OP_breg25:
2511 return "DW_OP_breg25";
2512 case DW_OP_breg26:
2513 return "DW_OP_breg26";
2514 case DW_OP_breg27:
2515 return "DW_OP_breg27";
2516 case DW_OP_breg28:
2517 return "DW_OP_breg28";
2518 case DW_OP_breg29:
2519 return "DW_OP_breg29";
2520 case DW_OP_breg30:
2521 return "DW_OP_breg30";
2522 case DW_OP_breg31:
2523 return "DW_OP_breg31";
2524 case DW_OP_regx:
2525 return "DW_OP_regx";
2526 case DW_OP_fbreg:
2527 return "DW_OP_fbreg";
2528 case DW_OP_bregx:
2529 return "DW_OP_bregx";
2530 case DW_OP_piece:
2531 return "DW_OP_piece";
2532 case DW_OP_deref_size:
2533 return "DW_OP_deref_size";
2534 case DW_OP_xderef_size:
2535 return "DW_OP_xderef_size";
2536 case DW_OP_nop:
2537 return "DW_OP_nop";
2538 default:
2539 return "OP_<unknown>";
2543 /* Return a pointer to a newly allocated location description. Location
2544 descriptions are simple expression terms that can be strung
2545 together to form more complicated location (address) descriptions. */
2547 static inline dw_loc_descr_ref
2548 new_loc_descr (op, oprnd1, oprnd2)
2549 enum dwarf_location_atom op;
2550 unsigned long oprnd1;
2551 unsigned long oprnd2;
2553 /* Use xcalloc here so we clear out all of the long_long constant in
2554 the union. */
2555 dw_loc_descr_ref descr
2556 = (dw_loc_descr_ref) xcalloc (1, sizeof (dw_loc_descr_node));
2558 descr->dw_loc_opc = op;
2559 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2560 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2561 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2562 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2564 return descr;
2568 /* Add a location description term to a location description expression. */
2570 static inline void
2571 add_loc_descr (list_head, descr)
2572 dw_loc_descr_ref *list_head;
2573 dw_loc_descr_ref descr;
2575 dw_loc_descr_ref *d;
2577 /* Find the end of the chain. */
2578 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2581 *d = descr;
2584 /* Return the size of a location descriptor. */
2586 static unsigned long
2587 size_of_loc_descr (loc)
2588 dw_loc_descr_ref loc;
2590 unsigned long size = 1;
2592 switch (loc->dw_loc_opc)
2594 case DW_OP_addr:
2595 size += DWARF2_ADDR_SIZE;
2596 break;
2597 case DW_OP_const1u:
2598 case DW_OP_const1s:
2599 size += 1;
2600 break;
2601 case DW_OP_const2u:
2602 case DW_OP_const2s:
2603 size += 2;
2604 break;
2605 case DW_OP_const4u:
2606 case DW_OP_const4s:
2607 size += 4;
2608 break;
2609 case DW_OP_const8u:
2610 case DW_OP_const8s:
2611 size += 8;
2612 break;
2613 case DW_OP_constu:
2614 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2615 break;
2616 case DW_OP_consts:
2617 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2618 break;
2619 case DW_OP_pick:
2620 size += 1;
2621 break;
2622 case DW_OP_plus_uconst:
2623 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2624 break;
2625 case DW_OP_skip:
2626 case DW_OP_bra:
2627 size += 2;
2628 break;
2629 case DW_OP_breg0:
2630 case DW_OP_breg1:
2631 case DW_OP_breg2:
2632 case DW_OP_breg3:
2633 case DW_OP_breg4:
2634 case DW_OP_breg5:
2635 case DW_OP_breg6:
2636 case DW_OP_breg7:
2637 case DW_OP_breg8:
2638 case DW_OP_breg9:
2639 case DW_OP_breg10:
2640 case DW_OP_breg11:
2641 case DW_OP_breg12:
2642 case DW_OP_breg13:
2643 case DW_OP_breg14:
2644 case DW_OP_breg15:
2645 case DW_OP_breg16:
2646 case DW_OP_breg17:
2647 case DW_OP_breg18:
2648 case DW_OP_breg19:
2649 case DW_OP_breg20:
2650 case DW_OP_breg21:
2651 case DW_OP_breg22:
2652 case DW_OP_breg23:
2653 case DW_OP_breg24:
2654 case DW_OP_breg25:
2655 case DW_OP_breg26:
2656 case DW_OP_breg27:
2657 case DW_OP_breg28:
2658 case DW_OP_breg29:
2659 case DW_OP_breg30:
2660 case DW_OP_breg31:
2661 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2662 break;
2663 case DW_OP_regx:
2664 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2665 break;
2666 case DW_OP_fbreg:
2667 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2668 break;
2669 case DW_OP_bregx:
2670 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2671 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2672 break;
2673 case DW_OP_piece:
2674 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2675 break;
2676 case DW_OP_deref_size:
2677 case DW_OP_xderef_size:
2678 size += 1;
2679 break;
2680 default:
2681 break;
2684 return size;
2687 /* Return the size of a series of location descriptors. */
2689 static unsigned long
2690 size_of_locs (loc)
2691 dw_loc_descr_ref loc;
2693 unsigned long size = 0;
2695 for (; loc != NULL; loc = loc->dw_loc_next)
2697 loc->dw_loc_addr = size;
2698 size += size_of_loc_descr (loc);
2701 return size;
2704 /* Output location description stack opcode's operands (if any). */
2706 static void
2707 output_loc_operands (loc)
2708 dw_loc_descr_ref loc;
2710 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2711 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2713 switch (loc->dw_loc_opc)
2715 #ifdef DWARF2_DEBUGGING_INFO
2716 case DW_OP_addr:
2717 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2718 break;
2719 case DW_OP_const2u:
2720 case DW_OP_const2s:
2721 dw2_asm_output_data (2, val1->v.val_int, NULL);
2722 break;
2723 case DW_OP_const4u:
2724 case DW_OP_const4s:
2725 dw2_asm_output_data (4, val1->v.val_int, NULL);
2726 break;
2727 case DW_OP_const8u:
2728 case DW_OP_const8s:
2729 if (HOST_BITS_PER_LONG < 64)
2730 abort ();
2731 dw2_asm_output_data (8, val1->v.val_int, NULL);
2732 break;
2733 case DW_OP_skip:
2734 case DW_OP_bra:
2736 int offset;
2738 if (val1->val_class == dw_val_class_loc)
2739 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2740 else
2741 abort ();
2743 dw2_asm_output_data (2, offset, NULL);
2745 break;
2746 #else
2747 case DW_OP_addr:
2748 case DW_OP_const2u:
2749 case DW_OP_const2s:
2750 case DW_OP_const4u:
2751 case DW_OP_const4s:
2752 case DW_OP_const8u:
2753 case DW_OP_const8s:
2754 case DW_OP_skip:
2755 case DW_OP_bra:
2756 /* We currently don't make any attempt to make sure these are
2757 aligned properly like we do for the main unwind info, so
2758 don't support emitting things larger than a byte if we're
2759 only doing unwinding. */
2760 abort ();
2761 #endif
2762 case DW_OP_const1u:
2763 case DW_OP_const1s:
2764 dw2_asm_output_data (1, val1->v.val_int, NULL);
2765 break;
2766 case DW_OP_constu:
2767 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2768 break;
2769 case DW_OP_consts:
2770 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2771 break;
2772 case DW_OP_pick:
2773 dw2_asm_output_data (1, val1->v.val_int, NULL);
2774 break;
2775 case DW_OP_plus_uconst:
2776 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2777 break;
2778 case DW_OP_breg0:
2779 case DW_OP_breg1:
2780 case DW_OP_breg2:
2781 case DW_OP_breg3:
2782 case DW_OP_breg4:
2783 case DW_OP_breg5:
2784 case DW_OP_breg6:
2785 case DW_OP_breg7:
2786 case DW_OP_breg8:
2787 case DW_OP_breg9:
2788 case DW_OP_breg10:
2789 case DW_OP_breg11:
2790 case DW_OP_breg12:
2791 case DW_OP_breg13:
2792 case DW_OP_breg14:
2793 case DW_OP_breg15:
2794 case DW_OP_breg16:
2795 case DW_OP_breg17:
2796 case DW_OP_breg18:
2797 case DW_OP_breg19:
2798 case DW_OP_breg20:
2799 case DW_OP_breg21:
2800 case DW_OP_breg22:
2801 case DW_OP_breg23:
2802 case DW_OP_breg24:
2803 case DW_OP_breg25:
2804 case DW_OP_breg26:
2805 case DW_OP_breg27:
2806 case DW_OP_breg28:
2807 case DW_OP_breg29:
2808 case DW_OP_breg30:
2809 case DW_OP_breg31:
2810 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2811 break;
2812 case DW_OP_regx:
2813 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2814 break;
2815 case DW_OP_fbreg:
2816 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2817 break;
2818 case DW_OP_bregx:
2819 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2820 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2821 break;
2822 case DW_OP_piece:
2823 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2824 break;
2825 case DW_OP_deref_size:
2826 case DW_OP_xderef_size:
2827 dw2_asm_output_data (1, val1->v.val_int, NULL);
2828 break;
2829 default:
2830 /* Other codes have no operands. */
2831 break;
2835 /* Output a sequence of location operations. */
2837 static void
2838 output_loc_sequence (loc)
2839 dw_loc_descr_ref loc;
2841 for (; loc != NULL; loc = loc->dw_loc_next)
2843 /* Output the opcode. */
2844 dw2_asm_output_data (1, loc->dw_loc_opc,
2845 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
2847 /* Output the operand(s) (if any). */
2848 output_loc_operands (loc);
2852 /* This routine will generate the correct assembly data for a location
2853 description based on a cfi entry with a complex address. */
2855 static void
2856 output_cfa_loc (cfi)
2857 dw_cfi_ref cfi;
2859 dw_loc_descr_ref loc;
2860 unsigned long size;
2862 /* Output the size of the block. */
2863 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2864 size = size_of_locs (loc);
2865 dw2_asm_output_data_uleb128 (size, NULL);
2867 /* Now output the operations themselves. */
2868 output_loc_sequence (loc);
2871 /* This function builds a dwarf location descriptor sequence from
2872 a dw_cfa_location. */
2874 static struct dw_loc_descr_struct *
2875 build_cfa_loc (cfa)
2876 dw_cfa_location *cfa;
2878 struct dw_loc_descr_struct *head, *tmp;
2880 if (cfa->indirect == 0)
2881 abort ();
2883 if (cfa->base_offset)
2885 if (cfa->reg <= 31)
2886 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
2887 else
2888 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
2890 else if (cfa->reg <= 31)
2891 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
2892 else
2893 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
2894 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2895 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2896 add_loc_descr (&head, tmp);
2897 if (cfa->offset != 0)
2899 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
2900 add_loc_descr (&head, tmp);
2902 return head;
2905 /* This function fills in aa dw_cfa_location structure from a
2906 dwarf location descriptor sequence. */
2908 static void
2909 get_cfa_from_loc_descr (cfa, loc)
2910 dw_cfa_location *cfa;
2911 struct dw_loc_descr_struct *loc;
2913 struct dw_loc_descr_struct *ptr;
2914 cfa->offset = 0;
2915 cfa->base_offset = 0;
2916 cfa->indirect = 0;
2917 cfa->reg = -1;
2919 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
2921 enum dwarf_location_atom op = ptr->dw_loc_opc;
2922 switch (op)
2924 case DW_OP_reg0:
2925 case DW_OP_reg1:
2926 case DW_OP_reg2:
2927 case DW_OP_reg3:
2928 case DW_OP_reg4:
2929 case DW_OP_reg5:
2930 case DW_OP_reg6:
2931 case DW_OP_reg7:
2932 case DW_OP_reg8:
2933 case DW_OP_reg9:
2934 case DW_OP_reg10:
2935 case DW_OP_reg11:
2936 case DW_OP_reg12:
2937 case DW_OP_reg13:
2938 case DW_OP_reg14:
2939 case DW_OP_reg15:
2940 case DW_OP_reg16:
2941 case DW_OP_reg17:
2942 case DW_OP_reg18:
2943 case DW_OP_reg19:
2944 case DW_OP_reg20:
2945 case DW_OP_reg21:
2946 case DW_OP_reg22:
2947 case DW_OP_reg23:
2948 case DW_OP_reg24:
2949 case DW_OP_reg25:
2950 case DW_OP_reg26:
2951 case DW_OP_reg27:
2952 case DW_OP_reg28:
2953 case DW_OP_reg29:
2954 case DW_OP_reg30:
2955 case DW_OP_reg31:
2956 cfa->reg = op - DW_OP_reg0;
2957 break;
2958 case DW_OP_regx:
2959 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
2960 break;
2961 case DW_OP_breg0:
2962 case DW_OP_breg1:
2963 case DW_OP_breg2:
2964 case DW_OP_breg3:
2965 case DW_OP_breg4:
2966 case DW_OP_breg5:
2967 case DW_OP_breg6:
2968 case DW_OP_breg7:
2969 case DW_OP_breg8:
2970 case DW_OP_breg9:
2971 case DW_OP_breg10:
2972 case DW_OP_breg11:
2973 case DW_OP_breg12:
2974 case DW_OP_breg13:
2975 case DW_OP_breg14:
2976 case DW_OP_breg15:
2977 case DW_OP_breg16:
2978 case DW_OP_breg17:
2979 case DW_OP_breg18:
2980 case DW_OP_breg19:
2981 case DW_OP_breg20:
2982 case DW_OP_breg21:
2983 case DW_OP_breg22:
2984 case DW_OP_breg23:
2985 case DW_OP_breg24:
2986 case DW_OP_breg25:
2987 case DW_OP_breg26:
2988 case DW_OP_breg27:
2989 case DW_OP_breg28:
2990 case DW_OP_breg29:
2991 case DW_OP_breg30:
2992 case DW_OP_breg31:
2993 cfa->reg = op - DW_OP_breg0;
2994 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
2995 break;
2996 case DW_OP_bregx:
2997 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
2998 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
2999 break;
3000 case DW_OP_deref:
3001 cfa->indirect = 1;
3002 break;
3003 case DW_OP_plus_uconst:
3004 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3005 break;
3006 default:
3007 internal_error ("DW_LOC_OP %s not implememnted\n",
3008 dwarf_stack_op_name (ptr->dw_loc_opc));
3012 #endif /* .debug_frame support */
3014 /* And now, the support for symbolic debugging information. */
3015 #ifdef DWARF2_DEBUGGING_INFO
3017 static void dwarf2out_init PARAMS ((const char *));
3018 static void dwarf2out_finish PARAMS ((const char *));
3019 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3020 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3021 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3022 static void dwarf2out_end_source_file PARAMS ((unsigned));
3023 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3024 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3025 static bool dwarf2out_ignore_block PARAMS ((tree));
3026 static void dwarf2out_global_decl PARAMS ((tree));
3027 static void dwarf2out_abstract_function PARAMS ((tree));
3029 /* The debug hooks structure. */
3031 struct gcc_debug_hooks dwarf2_debug_hooks =
3033 dwarf2out_init,
3034 dwarf2out_finish,
3035 dwarf2out_define,
3036 dwarf2out_undef,
3037 dwarf2out_start_source_file,
3038 dwarf2out_end_source_file,
3039 dwarf2out_begin_block,
3040 dwarf2out_end_block,
3041 dwarf2out_ignore_block,
3042 dwarf2out_source_line,
3043 dwarf2out_begin_prologue,
3044 debug_nothing_int, /* end_prologue */
3045 dwarf2out_end_epilogue,
3046 debug_nothing_tree, /* begin_function */
3047 debug_nothing_int, /* end_function */
3048 dwarf2out_decl, /* function_decl */
3049 dwarf2out_global_decl,
3050 debug_nothing_tree, /* deferred_inline_function */
3051 /* The DWARF 2 backend tries to reduce debugging bloat by not
3052 emitting the abstract description of inline functions until
3053 something tries to reference them. */
3054 dwarf2out_abstract_function, /* outlining_inline_function */
3055 debug_nothing_rtx /* label */
3058 /* NOTE: In the comments in this file, many references are made to
3059 "Debugging Information Entries". This term is abbreviated as `DIE'
3060 throughout the remainder of this file. */
3062 /* An internal representation of the DWARF output is built, and then
3063 walked to generate the DWARF debugging info. The walk of the internal
3064 representation is done after the entire program has been compiled.
3065 The types below are used to describe the internal representation. */
3067 /* Various DIE's use offsets relative to the beginning of the
3068 .debug_info section to refer to each other. */
3070 typedef long int dw_offset;
3072 /* Define typedefs here to avoid circular dependencies. */
3074 typedef struct dw_attr_struct *dw_attr_ref;
3075 typedef struct dw_line_info_struct *dw_line_info_ref;
3076 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3077 typedef struct pubname_struct *pubname_ref;
3078 typedef struct dw_ranges_struct *dw_ranges_ref;
3080 /* Each entry in the line_info_table maintains the file and
3081 line number associated with the label generated for that
3082 entry. The label gives the PC value associated with
3083 the line number entry. */
3085 typedef struct dw_line_info_struct
3087 unsigned long dw_file_num;
3088 unsigned long dw_line_num;
3090 dw_line_info_entry;
3092 /* Line information for functions in separate sections; each one gets its
3093 own sequence. */
3094 typedef struct dw_separate_line_info_struct
3096 unsigned long dw_file_num;
3097 unsigned long dw_line_num;
3098 unsigned long function;
3100 dw_separate_line_info_entry;
3102 /* Each DIE attribute has a field specifying the attribute kind,
3103 a link to the next attribute in the chain, and an attribute value.
3104 Attributes are typically linked below the DIE they modify. */
3106 typedef struct dw_attr_struct
3108 enum dwarf_attribute dw_attr;
3109 dw_attr_ref dw_attr_next;
3110 dw_val_node dw_attr_val;
3112 dw_attr_node;
3114 /* The Debugging Information Entry (DIE) structure */
3116 typedef struct die_struct
3118 enum dwarf_tag die_tag;
3119 char *die_symbol;
3120 dw_attr_ref die_attr;
3121 dw_die_ref die_parent;
3122 dw_die_ref die_child;
3123 dw_die_ref die_sib;
3124 dw_offset die_offset;
3125 unsigned long die_abbrev;
3126 int die_mark;
3128 die_node;
3130 /* The pubname structure */
3132 typedef struct pubname_struct
3134 dw_die_ref die;
3135 char *name;
3137 pubname_entry;
3139 struct dw_ranges_struct
3141 int block_num;
3144 /* The limbo die list structure. */
3145 typedef struct limbo_die_struct
3147 dw_die_ref die;
3148 struct limbo_die_struct *next;
3150 limbo_die_node;
3152 /* How to start an assembler comment. */
3153 #ifndef ASM_COMMENT_START
3154 #define ASM_COMMENT_START ";#"
3155 #endif
3157 /* Define a macro which returns non-zero for a TYPE_DECL which was
3158 implicitly generated for a tagged type.
3160 Note that unlike the gcc front end (which generates a NULL named
3161 TYPE_DECL node for each complete tagged type, each array type, and
3162 each function type node created) the g++ front end generates a
3163 _named_ TYPE_DECL node for each tagged type node created.
3164 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3165 generate a DW_TAG_typedef DIE for them. */
3167 #define TYPE_DECL_IS_STUB(decl) \
3168 (DECL_NAME (decl) == NULL_TREE \
3169 || (DECL_ARTIFICIAL (decl) \
3170 && is_tagged_type (TREE_TYPE (decl)) \
3171 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3172 /* This is necessary for stub decls that \
3173 appear in nested inline functions. */ \
3174 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3175 && (decl_ultimate_origin (decl) \
3176 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3178 /* Information concerning the compilation unit's programming
3179 language, and compiler version. */
3181 extern int flag_traditional;
3183 /* Fixed size portion of the DWARF compilation unit header. */
3184 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3186 /* Fixed size portion of debugging line information prolog. */
3187 #define DWARF_LINE_PROLOG_HEADER_SIZE 5
3189 /* Fixed size portion of public names info. */
3190 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3192 /* Fixed size portion of the address range info. */
3193 #define DWARF_ARANGES_HEADER_SIZE \
3194 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3195 - DWARF_OFFSET_SIZE)
3197 /* Size of padding portion in the address range info. It must be
3198 aligned to twice the pointer size. */
3199 #define DWARF_ARANGES_PAD_SIZE \
3200 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3201 - (2 * DWARF_OFFSET_SIZE + 4))
3203 /* Use assembler line directives if available. */
3204 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3205 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3206 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3207 #else
3208 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3209 #endif
3210 #endif
3212 /* Define the architecture-dependent minimum instruction length (in bytes).
3213 In this implementation of DWARF, this field is used for information
3214 purposes only. Since GCC generates assembly language, we have
3215 no a priori knowledge of how many instruction bytes are generated
3216 for each source line, and therefore can use only the DW_LNE_set_address
3217 and DW_LNS_fixed_advance_pc line information commands. */
3219 #ifndef DWARF_LINE_MIN_INSTR_LENGTH
3220 #define DWARF_LINE_MIN_INSTR_LENGTH 4
3221 #endif
3223 /* Minimum line offset in a special line info. opcode.
3224 This value was chosen to give a reasonable range of values. */
3225 #define DWARF_LINE_BASE -10
3227 /* First special line opcde - leave room for the standard opcodes. */
3228 #define DWARF_LINE_OPCODE_BASE 10
3230 /* Range of line offsets in a special line info. opcode. */
3231 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3233 /* Flag that indicates the initial value of the is_stmt_start flag.
3234 In the present implementation, we do not mark any lines as
3235 the beginning of a source statement, because that information
3236 is not made available by the GCC front-end. */
3237 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3239 /* This location is used by calc_die_sizes() to keep track
3240 the offset of each DIE within the .debug_info section. */
3241 static unsigned long next_die_offset;
3243 /* Record the root of the DIE's built for the current compilation unit. */
3244 static dw_die_ref comp_unit_die;
3246 /* A list of DIEs with a NULL parent waiting to be relocated. */
3247 static limbo_die_node *limbo_die_list = 0;
3249 /* Structure used by lookup_filename to manage sets of filenames. */
3250 struct file_table
3252 char **table;
3253 unsigned allocated;
3254 unsigned in_use;
3255 unsigned last_lookup_index;
3258 /* Size (in elements) of increments by which we may expand the filename
3259 table. */
3260 #define FILE_TABLE_INCREMENT 64
3262 /* Filenames referenced by this compilation unit. */
3263 static struct file_table file_table;
3265 /* Local pointer to the name of the main input file. Initialized in
3266 dwarf2out_init. */
3267 static const char *primary_filename;
3269 /* A pointer to the base of a table of references to DIE's that describe
3270 declarations. The table is indexed by DECL_UID() which is a unique
3271 number identifying each decl. */
3272 static dw_die_ref *decl_die_table;
3274 /* Number of elements currently allocated for the decl_die_table. */
3275 static unsigned decl_die_table_allocated;
3277 /* Number of elements in decl_die_table currently in use. */
3278 static unsigned decl_die_table_in_use;
3280 /* Size (in elements) of increments by which we may expand the
3281 decl_die_table. */
3282 #define DECL_DIE_TABLE_INCREMENT 256
3284 /* A pointer to the base of a table of references to declaration
3285 scopes. This table is a display which tracks the nesting
3286 of declaration scopes at the current scope and containing
3287 scopes. This table is used to find the proper place to
3288 define type declaration DIE's. */
3289 varray_type decl_scope_table;
3291 /* A pointer to the base of a list of references to DIE's that
3292 are uniquely identified by their tag, presence/absence of
3293 children DIE's, and list of attribute/value pairs. */
3294 static dw_die_ref *abbrev_die_table;
3296 /* Number of elements currently allocated for abbrev_die_table. */
3297 static unsigned abbrev_die_table_allocated;
3299 /* Number of elements in type_die_table currently in use. */
3300 static unsigned abbrev_die_table_in_use;
3302 /* Size (in elements) of increments by which we may expand the
3303 abbrev_die_table. */
3304 #define ABBREV_DIE_TABLE_INCREMENT 256
3306 /* A pointer to the base of a table that contains line information
3307 for each source code line in .text in the compilation unit. */
3308 static dw_line_info_ref line_info_table;
3310 /* Number of elements currently allocated for line_info_table. */
3311 static unsigned line_info_table_allocated;
3313 /* Number of elements in separate_line_info_table currently in use. */
3314 static unsigned separate_line_info_table_in_use;
3316 /* A pointer to the base of a table that contains line information
3317 for each source code line outside of .text in the compilation unit. */
3318 static dw_separate_line_info_ref separate_line_info_table;
3320 /* Number of elements currently allocated for separate_line_info_table. */
3321 static unsigned separate_line_info_table_allocated;
3323 /* Number of elements in line_info_table currently in use. */
3324 static unsigned line_info_table_in_use;
3326 /* Size (in elements) of increments by which we may expand the
3327 line_info_table. */
3328 #define LINE_INFO_TABLE_INCREMENT 1024
3330 /* A pointer to the base of a table that contains a list of publicly
3331 accessible names. */
3332 static pubname_ref pubname_table;
3334 /* Number of elements currently allocated for pubname_table. */
3335 static unsigned pubname_table_allocated;
3337 /* Number of elements in pubname_table currently in use. */
3338 static unsigned pubname_table_in_use;
3340 /* Size (in elements) of increments by which we may expand the
3341 pubname_table. */
3342 #define PUBNAME_TABLE_INCREMENT 64
3344 /* Array of dies for which we should generate .debug_arange info. */
3345 static dw_die_ref *arange_table;
3347 /* Number of elements currently allocated for arange_table. */
3348 static unsigned arange_table_allocated;
3350 /* Number of elements in arange_table currently in use. */
3351 static unsigned arange_table_in_use;
3353 /* Size (in elements) of increments by which we may expand the
3354 arange_table. */
3355 #define ARANGE_TABLE_INCREMENT 64
3357 /* Array of dies for which we should generate .debug_ranges info. */
3358 static dw_ranges_ref ranges_table;
3360 /* Number of elements currently allocated for ranges_table. */
3361 static unsigned ranges_table_allocated;
3363 /* Number of elements in ranges_table currently in use. */
3364 static unsigned ranges_table_in_use;
3366 /* Size (in elements) of increments by which we may expand the
3367 ranges_table. */
3368 #define RANGES_TABLE_INCREMENT 64
3370 /* Whether we have location lists that need outputting */
3371 static unsigned have_location_lists;
3373 /* A pointer to the base of a list of incomplete types which might be
3374 completed at some later time. incomplete_types_list needs to be a VARRAY
3375 because we want to tell the garbage collector about it. If we don't tell
3376 the garbage collector about it, we can garbage collect live data.
3377 Bug 4215.*/
3378 varray_type incomplete_types;
3380 /* Record whether the function being analyzed contains inlined functions. */
3381 static int current_function_has_inlines;
3382 #if 0 && defined (MIPS_DEBUGGING_INFO)
3383 static int comp_unit_has_inlines;
3384 #endif
3386 /* Array of RTXes referenced by the debugging information, which therefore
3387 must be kept around forever. We do this rather than perform GC on
3388 the dwarf info because almost all of the dwarf info lives forever, and
3389 it's easier to support non-GC frontends this way. */
3390 static varray_type used_rtx_varray;
3392 /* Forward declarations for functions defined in this file. */
3394 static int is_pseudo_reg PARAMS ((rtx));
3395 static tree type_main_variant PARAMS ((tree));
3396 static int is_tagged_type PARAMS ((tree));
3397 static const char *dwarf_tag_name PARAMS ((unsigned));
3398 static const char *dwarf_attr_name PARAMS ((unsigned));
3399 static const char *dwarf_form_name PARAMS ((unsigned));
3400 #if 0
3401 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3402 #endif
3403 static tree decl_ultimate_origin PARAMS ((tree));
3404 static tree block_ultimate_origin PARAMS ((tree));
3405 static tree decl_class_context PARAMS ((tree));
3406 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3407 static void add_AT_flag PARAMS ((dw_die_ref,
3408 enum dwarf_attribute,
3409 unsigned));
3410 static void add_AT_int PARAMS ((dw_die_ref,
3411 enum dwarf_attribute, long));
3412 static void add_AT_unsigned PARAMS ((dw_die_ref,
3413 enum dwarf_attribute,
3414 unsigned long));
3415 static void add_AT_long_long PARAMS ((dw_die_ref,
3416 enum dwarf_attribute,
3417 unsigned long,
3418 unsigned long));
3419 static void add_AT_float PARAMS ((dw_die_ref,
3420 enum dwarf_attribute,
3421 unsigned, long *));
3422 static void add_AT_string PARAMS ((dw_die_ref,
3423 enum dwarf_attribute,
3424 const char *));
3425 static void add_AT_die_ref PARAMS ((dw_die_ref,
3426 enum dwarf_attribute,
3427 dw_die_ref));
3428 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3429 enum dwarf_attribute,
3430 unsigned));
3431 static void add_AT_loc PARAMS ((dw_die_ref,
3432 enum dwarf_attribute,
3433 dw_loc_descr_ref));
3434 static void add_AT_loc_list PARAMS ((dw_die_ref,
3435 enum dwarf_attribute,
3436 dw_loc_list_ref));
3437 static void add_AT_addr PARAMS ((dw_die_ref,
3438 enum dwarf_attribute,
3439 rtx));
3440 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3441 enum dwarf_attribute,
3442 const char *));
3443 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3444 enum dwarf_attribute,
3445 const char *));
3446 static void add_AT_offset PARAMS ((dw_die_ref,
3447 enum dwarf_attribute,
3448 unsigned long));
3449 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3450 enum dwarf_attribute));
3451 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3452 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3453 static const char *get_AT_string PARAMS ((dw_die_ref,
3454 enum dwarf_attribute));
3455 static int get_AT_flag PARAMS ((dw_die_ref,
3456 enum dwarf_attribute));
3457 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3458 enum dwarf_attribute));
3459 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3460 enum dwarf_attribute));
3461 static int is_c_family PARAMS ((void));
3462 static int is_java PARAMS ((void));
3463 static int is_fortran PARAMS ((void));
3464 static void remove_AT PARAMS ((dw_die_ref,
3465 enum dwarf_attribute));
3466 static void remove_children PARAMS ((dw_die_ref));
3467 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3468 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref));
3469 static dw_die_ref lookup_type_die PARAMS ((tree));
3470 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3471 static dw_die_ref lookup_decl_die PARAMS ((tree));
3472 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3473 static void print_spaces PARAMS ((FILE *));
3474 static void print_die PARAMS ((dw_die_ref, FILE *));
3475 static void print_dwarf_line_table PARAMS ((FILE *));
3476 static void reverse_die_lists PARAMS ((dw_die_ref));
3477 static void reverse_all_dies PARAMS ((dw_die_ref));
3478 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3479 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3480 static void loc_checksum PARAMS ((dw_loc_descr_ref, struct md5_ctx *));
3481 static void attr_checksum PARAMS ((dw_attr_ref, struct md5_ctx *));
3482 static void die_checksum PARAMS ((dw_die_ref, struct md5_ctx *));
3483 static void compute_section_prefix PARAMS ((dw_die_ref));
3484 static int is_type_die PARAMS ((dw_die_ref));
3485 static int is_comdat_die PARAMS ((dw_die_ref));
3486 static int is_symbol_die PARAMS ((dw_die_ref));
3487 static void assign_symbol_names PARAMS ((dw_die_ref));
3488 static void break_out_includes PARAMS ((dw_die_ref));
3489 static void add_sibling_attributes PARAMS ((dw_die_ref));
3490 static void build_abbrev_table PARAMS ((dw_die_ref));
3491 static void output_location_lists PARAMS ((dw_die_ref));
3492 static int constant_size PARAMS ((long unsigned));
3493 static unsigned long size_of_die PARAMS ((dw_die_ref));
3494 static void calc_die_sizes PARAMS ((dw_die_ref));
3495 static void mark_dies PARAMS ((dw_die_ref));
3496 static void unmark_dies PARAMS ((dw_die_ref));
3497 static unsigned long size_of_pubnames PARAMS ((void));
3498 static unsigned long size_of_aranges PARAMS ((void));
3499 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3500 static void output_value_format PARAMS ((dw_attr_ref));
3501 static void output_abbrev_section PARAMS ((void));
3502 static void output_die_symbol PARAMS ((dw_die_ref));
3503 static void output_die PARAMS ((dw_die_ref));
3504 static void output_compilation_unit_header PARAMS ((void));
3505 static void output_comp_unit PARAMS ((dw_die_ref));
3506 static const char *dwarf2_name PARAMS ((tree, int));
3507 static void add_pubname PARAMS ((tree, dw_die_ref));
3508 static void output_pubnames PARAMS ((void));
3509 static void add_arange PARAMS ((tree, dw_die_ref));
3510 static void output_aranges PARAMS ((void));
3511 static unsigned int add_ranges PARAMS ((tree));
3512 static void output_ranges PARAMS ((void));
3513 static void output_line_info PARAMS ((void));
3514 static void output_file_names PARAMS ((void));
3515 static dw_die_ref base_type_die PARAMS ((tree));
3516 static tree root_type PARAMS ((tree));
3517 static int is_base_type PARAMS ((tree));
3518 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3519 static int type_is_enum PARAMS ((tree));
3520 static unsigned int reg_number PARAMS ((rtx));
3521 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3522 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3523 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3524 static int is_based_loc PARAMS ((rtx));
3525 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3526 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3527 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3528 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3529 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3530 static tree field_type PARAMS ((tree));
3531 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3532 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3533 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3534 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3535 static void add_AT_location_description PARAMS ((dw_die_ref,
3536 enum dwarf_attribute, rtx));
3537 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3538 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3539 static rtx rtl_for_decl_location PARAMS ((tree));
3540 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3541 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3542 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3543 static void add_bound_info PARAMS ((dw_die_ref,
3544 enum dwarf_attribute, tree));
3545 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3546 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3547 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3548 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3549 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3550 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3551 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3552 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3553 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3554 static void push_decl_scope PARAMS ((tree));
3555 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3556 static void pop_decl_scope PARAMS ((void));
3557 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3558 dw_die_ref));
3559 static const char *type_tag PARAMS ((tree));
3560 static tree member_declared_type PARAMS ((tree));
3561 #if 0
3562 static const char *decl_start_label PARAMS ((tree));
3563 #endif
3564 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3565 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3566 #if 0
3567 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3568 #endif
3569 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3570 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3571 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3572 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3573 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3574 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3575 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3576 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3577 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3578 static void gen_label_die PARAMS ((tree, dw_die_ref));
3579 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3580 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3581 static void gen_field_die PARAMS ((tree, dw_die_ref));
3582 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3583 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3584 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3585 static void gen_inheritance_die PARAMS ((tree, dw_die_ref));
3586 static void gen_member_die PARAMS ((tree, dw_die_ref));
3587 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3588 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3589 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3590 static void gen_type_die PARAMS ((tree, dw_die_ref));
3591 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3592 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3593 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3594 static int is_redundant_typedef PARAMS ((tree));
3595 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3596 static unsigned lookup_filename PARAMS ((const char *));
3597 static void init_file_table PARAMS ((void));
3598 static void add_incomplete_type PARAMS ((tree));
3599 static void retry_incomplete_types PARAMS ((void));
3600 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3601 static rtx save_rtx PARAMS ((rtx));
3602 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3603 static int file_info_cmp PARAMS ((const void *, const void *));
3604 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3605 const char *, const char *,
3606 const char *, unsigned));
3607 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3608 dw_loc_descr_ref,
3609 const char *, const char *, const char *));
3610 static void output_loc_list PARAMS ((dw_loc_list_ref));
3611 static char *gen_internal_sym PARAMS ((const char *));
3613 /* Section names used to hold DWARF debugging information. */
3614 #ifndef DEBUG_INFO_SECTION
3615 #define DEBUG_INFO_SECTION ".debug_info"
3616 #endif
3617 #ifndef DEBUG_ABBREV_SECTION
3618 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3619 #endif
3620 #ifndef DEBUG_ARANGES_SECTION
3621 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3622 #endif
3623 #ifndef DEBUG_MACINFO_SECTION
3624 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3625 #endif
3626 #ifndef DEBUG_LINE_SECTION
3627 #define DEBUG_LINE_SECTION ".debug_line"
3628 #endif
3629 #ifndef DEBUG_LOC_SECTION
3630 #define DEBUG_LOC_SECTION ".debug_loc"
3631 #endif
3632 #ifndef DEBUG_PUBNAMES_SECTION
3633 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3634 #endif
3635 #ifndef DEBUG_STR_SECTION
3636 #define DEBUG_STR_SECTION ".debug_str"
3637 #endif
3638 #ifndef DEBUG_RANGES_SECTION
3639 #define DEBUG_RANGES_SECTION ".debug_ranges"
3640 #endif
3642 /* Standard ELF section names for compiled code and data. */
3643 #ifndef TEXT_SECTION_NAME
3644 #define TEXT_SECTION_NAME ".text"
3645 #endif
3647 /* Section flags for .debug_str section. */
3648 #ifdef HAVE_GAS_SHF_MERGE
3649 #define DEBUG_STR_SECTION_FLAGS \
3650 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3651 #else
3652 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3653 #endif
3655 /* Labels we insert at beginning sections we can reference instead of
3656 the section names themselves. */
3658 #ifndef TEXT_SECTION_LABEL
3659 #define TEXT_SECTION_LABEL "Ltext"
3660 #endif
3661 #ifndef DEBUG_LINE_SECTION_LABEL
3662 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3663 #endif
3664 #ifndef DEBUG_INFO_SECTION_LABEL
3665 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3666 #endif
3667 #ifndef DEBUG_ABBREV_SECTION_LABEL
3668 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3669 #endif
3670 #ifndef DEBUG_LOC_SECTION_LABEL
3671 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3672 #endif
3673 #ifndef DEBUG_MACINFO_SECTION_LABEL
3674 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3675 #endif
3677 /* Definitions of defaults for formats and names of various special
3678 (artificial) labels which may be generated within this file (when the -g
3679 options is used and DWARF_DEBUGGING_INFO is in effect.
3680 If necessary, these may be overridden from within the tm.h file, but
3681 typically, overriding these defaults is unnecessary. */
3683 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3684 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3685 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3686 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3687 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3688 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3689 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3690 #ifndef TEXT_END_LABEL
3691 #define TEXT_END_LABEL "Letext"
3692 #endif
3693 #ifndef DATA_END_LABEL
3694 #define DATA_END_LABEL "Ledata"
3695 #endif
3696 #ifndef BSS_END_LABEL
3697 #define BSS_END_LABEL "Lebss"
3698 #endif
3699 #ifndef BLOCK_BEGIN_LABEL
3700 #define BLOCK_BEGIN_LABEL "LBB"
3701 #endif
3702 #ifndef BLOCK_END_LABEL
3703 #define BLOCK_END_LABEL "LBE"
3704 #endif
3705 #ifndef BODY_BEGIN_LABEL
3706 #define BODY_BEGIN_LABEL "Lbb"
3707 #endif
3708 #ifndef BODY_END_LABEL
3709 #define BODY_END_LABEL "Lbe"
3710 #endif
3711 #ifndef LINE_CODE_LABEL
3712 #define LINE_CODE_LABEL "LM"
3713 #endif
3714 #ifndef SEPARATE_LINE_CODE_LABEL
3715 #define SEPARATE_LINE_CODE_LABEL "LSM"
3716 #endif
3718 /* We allow a language front-end to designate a function that is to be
3719 called to "demangle" any name before it it put into a DIE. */
3721 static const char *(*demangle_name_func) PARAMS ((const char *));
3723 void
3724 dwarf2out_set_demangle_name_func (func)
3725 const char *(*func) PARAMS ((const char *));
3727 demangle_name_func = func;
3730 /* Return an rtx like ORIG which lives forever. If we're doing GC,
3731 that means adding it to used_rtx_varray. If not, that means making
3732 a copy on the permanent_obstack. */
3734 static rtx
3735 save_rtx (orig)
3736 rtx orig;
3738 VARRAY_PUSH_RTX (used_rtx_varray, orig);
3740 return orig;
3743 /* Test if rtl node points to a pseudo register. */
3745 static inline int
3746 is_pseudo_reg (rtl)
3747 rtx rtl;
3749 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3750 || (GET_CODE (rtl) == SUBREG
3751 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3754 /* Return a reference to a type, with its const and volatile qualifiers
3755 removed. */
3757 static inline tree
3758 type_main_variant (type)
3759 tree type;
3761 type = TYPE_MAIN_VARIANT (type);
3763 /* There really should be only one main variant among any group of variants
3764 of a given type (and all of the MAIN_VARIANT values for all members of
3765 the group should point to that one type) but sometimes the C front-end
3766 messes this up for array types, so we work around that bug here. */
3768 if (TREE_CODE (type) == ARRAY_TYPE)
3769 while (type != TYPE_MAIN_VARIANT (type))
3770 type = TYPE_MAIN_VARIANT (type);
3772 return type;
3775 /* Return non-zero if the given type node represents a tagged type. */
3777 static inline int
3778 is_tagged_type (type)
3779 tree type;
3781 enum tree_code code = TREE_CODE (type);
3783 return (code == RECORD_TYPE || code == UNION_TYPE
3784 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3787 /* Convert a DIE tag into its string name. */
3789 static const char *
3790 dwarf_tag_name (tag)
3791 unsigned tag;
3793 switch (tag)
3795 case DW_TAG_padding:
3796 return "DW_TAG_padding";
3797 case DW_TAG_array_type:
3798 return "DW_TAG_array_type";
3799 case DW_TAG_class_type:
3800 return "DW_TAG_class_type";
3801 case DW_TAG_entry_point:
3802 return "DW_TAG_entry_point";
3803 case DW_TAG_enumeration_type:
3804 return "DW_TAG_enumeration_type";
3805 case DW_TAG_formal_parameter:
3806 return "DW_TAG_formal_parameter";
3807 case DW_TAG_imported_declaration:
3808 return "DW_TAG_imported_declaration";
3809 case DW_TAG_label:
3810 return "DW_TAG_label";
3811 case DW_TAG_lexical_block:
3812 return "DW_TAG_lexical_block";
3813 case DW_TAG_member:
3814 return "DW_TAG_member";
3815 case DW_TAG_pointer_type:
3816 return "DW_TAG_pointer_type";
3817 case DW_TAG_reference_type:
3818 return "DW_TAG_reference_type";
3819 case DW_TAG_compile_unit:
3820 return "DW_TAG_compile_unit";
3821 case DW_TAG_string_type:
3822 return "DW_TAG_string_type";
3823 case DW_TAG_structure_type:
3824 return "DW_TAG_structure_type";
3825 case DW_TAG_subroutine_type:
3826 return "DW_TAG_subroutine_type";
3827 case DW_TAG_typedef:
3828 return "DW_TAG_typedef";
3829 case DW_TAG_union_type:
3830 return "DW_TAG_union_type";
3831 case DW_TAG_unspecified_parameters:
3832 return "DW_TAG_unspecified_parameters";
3833 case DW_TAG_variant:
3834 return "DW_TAG_variant";
3835 case DW_TAG_common_block:
3836 return "DW_TAG_common_block";
3837 case DW_TAG_common_inclusion:
3838 return "DW_TAG_common_inclusion";
3839 case DW_TAG_inheritance:
3840 return "DW_TAG_inheritance";
3841 case DW_TAG_inlined_subroutine:
3842 return "DW_TAG_inlined_subroutine";
3843 case DW_TAG_module:
3844 return "DW_TAG_module";
3845 case DW_TAG_ptr_to_member_type:
3846 return "DW_TAG_ptr_to_member_type";
3847 case DW_TAG_set_type:
3848 return "DW_TAG_set_type";
3849 case DW_TAG_subrange_type:
3850 return "DW_TAG_subrange_type";
3851 case DW_TAG_with_stmt:
3852 return "DW_TAG_with_stmt";
3853 case DW_TAG_access_declaration:
3854 return "DW_TAG_access_declaration";
3855 case DW_TAG_base_type:
3856 return "DW_TAG_base_type";
3857 case DW_TAG_catch_block:
3858 return "DW_TAG_catch_block";
3859 case DW_TAG_const_type:
3860 return "DW_TAG_const_type";
3861 case DW_TAG_constant:
3862 return "DW_TAG_constant";
3863 case DW_TAG_enumerator:
3864 return "DW_TAG_enumerator";
3865 case DW_TAG_file_type:
3866 return "DW_TAG_file_type";
3867 case DW_TAG_friend:
3868 return "DW_TAG_friend";
3869 case DW_TAG_namelist:
3870 return "DW_TAG_namelist";
3871 case DW_TAG_namelist_item:
3872 return "DW_TAG_namelist_item";
3873 case DW_TAG_packed_type:
3874 return "DW_TAG_packed_type";
3875 case DW_TAG_subprogram:
3876 return "DW_TAG_subprogram";
3877 case DW_TAG_template_type_param:
3878 return "DW_TAG_template_type_param";
3879 case DW_TAG_template_value_param:
3880 return "DW_TAG_template_value_param";
3881 case DW_TAG_thrown_type:
3882 return "DW_TAG_thrown_type";
3883 case DW_TAG_try_block:
3884 return "DW_TAG_try_block";
3885 case DW_TAG_variant_part:
3886 return "DW_TAG_variant_part";
3887 case DW_TAG_variable:
3888 return "DW_TAG_variable";
3889 case DW_TAG_volatile_type:
3890 return "DW_TAG_volatile_type";
3891 case DW_TAG_MIPS_loop:
3892 return "DW_TAG_MIPS_loop";
3893 case DW_TAG_format_label:
3894 return "DW_TAG_format_label";
3895 case DW_TAG_function_template:
3896 return "DW_TAG_function_template";
3897 case DW_TAG_class_template:
3898 return "DW_TAG_class_template";
3899 case DW_TAG_GNU_BINCL:
3900 return "DW_TAG_GNU_BINCL";
3901 case DW_TAG_GNU_EINCL:
3902 return "DW_TAG_GNU_EINCL";
3903 default:
3904 return "DW_TAG_<unknown>";
3908 /* Convert a DWARF attribute code into its string name. */
3910 static const char *
3911 dwarf_attr_name (attr)
3912 unsigned attr;
3914 switch (attr)
3916 case DW_AT_sibling:
3917 return "DW_AT_sibling";
3918 case DW_AT_location:
3919 return "DW_AT_location";
3920 case DW_AT_name:
3921 return "DW_AT_name";
3922 case DW_AT_ordering:
3923 return "DW_AT_ordering";
3924 case DW_AT_subscr_data:
3925 return "DW_AT_subscr_data";
3926 case DW_AT_byte_size:
3927 return "DW_AT_byte_size";
3928 case DW_AT_bit_offset:
3929 return "DW_AT_bit_offset";
3930 case DW_AT_bit_size:
3931 return "DW_AT_bit_size";
3932 case DW_AT_element_list:
3933 return "DW_AT_element_list";
3934 case DW_AT_stmt_list:
3935 return "DW_AT_stmt_list";
3936 case DW_AT_low_pc:
3937 return "DW_AT_low_pc";
3938 case DW_AT_high_pc:
3939 return "DW_AT_high_pc";
3940 case DW_AT_language:
3941 return "DW_AT_language";
3942 case DW_AT_member:
3943 return "DW_AT_member";
3944 case DW_AT_discr:
3945 return "DW_AT_discr";
3946 case DW_AT_discr_value:
3947 return "DW_AT_discr_value";
3948 case DW_AT_visibility:
3949 return "DW_AT_visibility";
3950 case DW_AT_import:
3951 return "DW_AT_import";
3952 case DW_AT_string_length:
3953 return "DW_AT_string_length";
3954 case DW_AT_common_reference:
3955 return "DW_AT_common_reference";
3956 case DW_AT_comp_dir:
3957 return "DW_AT_comp_dir";
3958 case DW_AT_const_value:
3959 return "DW_AT_const_value";
3960 case DW_AT_containing_type:
3961 return "DW_AT_containing_type";
3962 case DW_AT_default_value:
3963 return "DW_AT_default_value";
3964 case DW_AT_inline:
3965 return "DW_AT_inline";
3966 case DW_AT_is_optional:
3967 return "DW_AT_is_optional";
3968 case DW_AT_lower_bound:
3969 return "DW_AT_lower_bound";
3970 case DW_AT_producer:
3971 return "DW_AT_producer";
3972 case DW_AT_prototyped:
3973 return "DW_AT_prototyped";
3974 case DW_AT_return_addr:
3975 return "DW_AT_return_addr";
3976 case DW_AT_start_scope:
3977 return "DW_AT_start_scope";
3978 case DW_AT_stride_size:
3979 return "DW_AT_stride_size";
3980 case DW_AT_upper_bound:
3981 return "DW_AT_upper_bound";
3982 case DW_AT_abstract_origin:
3983 return "DW_AT_abstract_origin";
3984 case DW_AT_accessibility:
3985 return "DW_AT_accessibility";
3986 case DW_AT_address_class:
3987 return "DW_AT_address_class";
3988 case DW_AT_artificial:
3989 return "DW_AT_artificial";
3990 case DW_AT_base_types:
3991 return "DW_AT_base_types";
3992 case DW_AT_calling_convention:
3993 return "DW_AT_calling_convention";
3994 case DW_AT_count:
3995 return "DW_AT_count";
3996 case DW_AT_data_member_location:
3997 return "DW_AT_data_member_location";
3998 case DW_AT_decl_column:
3999 return "DW_AT_decl_column";
4000 case DW_AT_decl_file:
4001 return "DW_AT_decl_file";
4002 case DW_AT_decl_line:
4003 return "DW_AT_decl_line";
4004 case DW_AT_declaration:
4005 return "DW_AT_declaration";
4006 case DW_AT_discr_list:
4007 return "DW_AT_discr_list";
4008 case DW_AT_encoding:
4009 return "DW_AT_encoding";
4010 case DW_AT_external:
4011 return "DW_AT_external";
4012 case DW_AT_frame_base:
4013 return "DW_AT_frame_base";
4014 case DW_AT_friend:
4015 return "DW_AT_friend";
4016 case DW_AT_identifier_case:
4017 return "DW_AT_identifier_case";
4018 case DW_AT_macro_info:
4019 return "DW_AT_macro_info";
4020 case DW_AT_namelist_items:
4021 return "DW_AT_namelist_items";
4022 case DW_AT_priority:
4023 return "DW_AT_priority";
4024 case DW_AT_segment:
4025 return "DW_AT_segment";
4026 case DW_AT_specification:
4027 return "DW_AT_specification";
4028 case DW_AT_static_link:
4029 return "DW_AT_static_link";
4030 case DW_AT_type:
4031 return "DW_AT_type";
4032 case DW_AT_use_location:
4033 return "DW_AT_use_location";
4034 case DW_AT_variable_parameter:
4035 return "DW_AT_variable_parameter";
4036 case DW_AT_virtuality:
4037 return "DW_AT_virtuality";
4038 case DW_AT_vtable_elem_location:
4039 return "DW_AT_vtable_elem_location";
4041 case DW_AT_allocated:
4042 return "DW_AT_allocated";
4043 case DW_AT_associated:
4044 return "DW_AT_associated";
4045 case DW_AT_data_location:
4046 return "DW_AT_data_location";
4047 case DW_AT_stride:
4048 return "DW_AT_stride";
4049 case DW_AT_entry_pc:
4050 return "DW_AT_entry_pc";
4051 case DW_AT_use_UTF8:
4052 return "DW_AT_use_UTF8";
4053 case DW_AT_extension:
4054 return "DW_AT_extension";
4055 case DW_AT_ranges:
4056 return "DW_AT_ranges";
4057 case DW_AT_trampoline:
4058 return "DW_AT_trampoline";
4059 case DW_AT_call_column:
4060 return "DW_AT_call_column";
4061 case DW_AT_call_file:
4062 return "DW_AT_call_file";
4063 case DW_AT_call_line:
4064 return "DW_AT_call_line";
4066 case DW_AT_MIPS_fde:
4067 return "DW_AT_MIPS_fde";
4068 case DW_AT_MIPS_loop_begin:
4069 return "DW_AT_MIPS_loop_begin";
4070 case DW_AT_MIPS_tail_loop_begin:
4071 return "DW_AT_MIPS_tail_loop_begin";
4072 case DW_AT_MIPS_epilog_begin:
4073 return "DW_AT_MIPS_epilog_begin";
4074 case DW_AT_MIPS_loop_unroll_factor:
4075 return "DW_AT_MIPS_loop_unroll_factor";
4076 case DW_AT_MIPS_software_pipeline_depth:
4077 return "DW_AT_MIPS_software_pipeline_depth";
4078 case DW_AT_MIPS_linkage_name:
4079 return "DW_AT_MIPS_linkage_name";
4080 case DW_AT_MIPS_stride:
4081 return "DW_AT_MIPS_stride";
4082 case DW_AT_MIPS_abstract_name:
4083 return "DW_AT_MIPS_abstract_name";
4084 case DW_AT_MIPS_clone_origin:
4085 return "DW_AT_MIPS_clone_origin";
4086 case DW_AT_MIPS_has_inlines:
4087 return "DW_AT_MIPS_has_inlines";
4089 case DW_AT_sf_names:
4090 return "DW_AT_sf_names";
4091 case DW_AT_src_info:
4092 return "DW_AT_src_info";
4093 case DW_AT_mac_info:
4094 return "DW_AT_mac_info";
4095 case DW_AT_src_coords:
4096 return "DW_AT_src_coords";
4097 case DW_AT_body_begin:
4098 return "DW_AT_body_begin";
4099 case DW_AT_body_end:
4100 return "DW_AT_body_end";
4101 default:
4102 return "DW_AT_<unknown>";
4106 /* Convert a DWARF value form code into its string name. */
4108 static const char *
4109 dwarf_form_name (form)
4110 unsigned form;
4112 switch (form)
4114 case DW_FORM_addr:
4115 return "DW_FORM_addr";
4116 case DW_FORM_block2:
4117 return "DW_FORM_block2";
4118 case DW_FORM_block4:
4119 return "DW_FORM_block4";
4120 case DW_FORM_data2:
4121 return "DW_FORM_data2";
4122 case DW_FORM_data4:
4123 return "DW_FORM_data4";
4124 case DW_FORM_data8:
4125 return "DW_FORM_data8";
4126 case DW_FORM_string:
4127 return "DW_FORM_string";
4128 case DW_FORM_block:
4129 return "DW_FORM_block";
4130 case DW_FORM_block1:
4131 return "DW_FORM_block1";
4132 case DW_FORM_data1:
4133 return "DW_FORM_data1";
4134 case DW_FORM_flag:
4135 return "DW_FORM_flag";
4136 case DW_FORM_sdata:
4137 return "DW_FORM_sdata";
4138 case DW_FORM_strp:
4139 return "DW_FORM_strp";
4140 case DW_FORM_udata:
4141 return "DW_FORM_udata";
4142 case DW_FORM_ref_addr:
4143 return "DW_FORM_ref_addr";
4144 case DW_FORM_ref1:
4145 return "DW_FORM_ref1";
4146 case DW_FORM_ref2:
4147 return "DW_FORM_ref2";
4148 case DW_FORM_ref4:
4149 return "DW_FORM_ref4";
4150 case DW_FORM_ref8:
4151 return "DW_FORM_ref8";
4152 case DW_FORM_ref_udata:
4153 return "DW_FORM_ref_udata";
4154 case DW_FORM_indirect:
4155 return "DW_FORM_indirect";
4156 default:
4157 return "DW_FORM_<unknown>";
4161 /* Convert a DWARF type code into its string name. */
4163 #if 0
4164 static const char *
4165 dwarf_type_encoding_name (enc)
4166 unsigned enc;
4168 switch (enc)
4170 case DW_ATE_address:
4171 return "DW_ATE_address";
4172 case DW_ATE_boolean:
4173 return "DW_ATE_boolean";
4174 case DW_ATE_complex_float:
4175 return "DW_ATE_complex_float";
4176 case DW_ATE_float:
4177 return "DW_ATE_float";
4178 case DW_ATE_signed:
4179 return "DW_ATE_signed";
4180 case DW_ATE_signed_char:
4181 return "DW_ATE_signed_char";
4182 case DW_ATE_unsigned:
4183 return "DW_ATE_unsigned";
4184 case DW_ATE_unsigned_char:
4185 return "DW_ATE_unsigned_char";
4186 default:
4187 return "DW_ATE_<unknown>";
4190 #endif
4192 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4193 instance of an inlined instance of a decl which is local to an inline
4194 function, so we have to trace all of the way back through the origin chain
4195 to find out what sort of node actually served as the original seed for the
4196 given block. */
4198 static tree
4199 decl_ultimate_origin (decl)
4200 tree decl;
4202 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4203 nodes in the function to point to themselves; ignore that if
4204 we're trying to output the abstract instance of this function. */
4205 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4206 return NULL_TREE;
4208 #ifdef ENABLE_CHECKING
4209 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4210 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4211 most distant ancestor, this should never happen. */
4212 abort ();
4213 #endif
4215 return DECL_ABSTRACT_ORIGIN (decl);
4218 /* Determine the "ultimate origin" of a block. The block may be an inlined
4219 instance of an inlined instance of a block which is local to an inline
4220 function, so we have to trace all of the way back through the origin chain
4221 to find out what sort of node actually served as the original seed for the
4222 given block. */
4224 static tree
4225 block_ultimate_origin (block)
4226 tree block;
4228 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4230 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4231 nodes in the function to point to themselves; ignore that if
4232 we're trying to output the abstract instance of this function. */
4233 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4234 return NULL_TREE;
4236 if (immediate_origin == NULL_TREE)
4237 return NULL_TREE;
4238 else
4240 tree ret_val;
4241 tree lookahead = immediate_origin;
4245 ret_val = lookahead;
4246 lookahead = (TREE_CODE (ret_val) == BLOCK)
4247 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
4248 : NULL;
4250 while (lookahead != NULL && lookahead != ret_val);
4252 return ret_val;
4256 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4257 of a virtual function may refer to a base class, so we check the 'this'
4258 parameter. */
4260 static tree
4261 decl_class_context (decl)
4262 tree decl;
4264 tree context = NULL_TREE;
4266 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4267 context = DECL_CONTEXT (decl);
4268 else
4269 context = TYPE_MAIN_VARIANT
4270 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4272 if (context && !TYPE_P (context))
4273 context = NULL_TREE;
4275 return context;
4278 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4279 addition order, and correct that in reverse_all_dies. */
4281 static inline void
4282 add_dwarf_attr (die, attr)
4283 dw_die_ref die;
4284 dw_attr_ref attr;
4286 if (die != NULL && attr != NULL)
4288 attr->dw_attr_next = die->die_attr;
4289 die->die_attr = attr;
4293 static inline dw_val_class AT_class PARAMS ((dw_attr_ref));
4294 static inline dw_val_class
4295 AT_class (a)
4296 dw_attr_ref a;
4298 return a->dw_attr_val.val_class;
4301 /* Add a flag value attribute to a DIE. */
4303 static inline void
4304 add_AT_flag (die, attr_kind, flag)
4305 dw_die_ref die;
4306 enum dwarf_attribute attr_kind;
4307 unsigned flag;
4309 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4311 attr->dw_attr_next = NULL;
4312 attr->dw_attr = attr_kind;
4313 attr->dw_attr_val.val_class = dw_val_class_flag;
4314 attr->dw_attr_val.v.val_flag = flag;
4315 add_dwarf_attr (die, attr);
4318 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
4319 static inline unsigned
4320 AT_flag (a)
4321 dw_attr_ref a;
4323 if (a && AT_class (a) == dw_val_class_flag)
4324 return a->dw_attr_val.v.val_flag;
4326 abort ();
4329 /* Add a signed integer attribute value to a DIE. */
4331 static inline void
4332 add_AT_int (die, attr_kind, int_val)
4333 dw_die_ref die;
4334 enum dwarf_attribute attr_kind;
4335 long int int_val;
4337 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4339 attr->dw_attr_next = NULL;
4340 attr->dw_attr = attr_kind;
4341 attr->dw_attr_val.val_class = dw_val_class_const;
4342 attr->dw_attr_val.v.val_int = int_val;
4343 add_dwarf_attr (die, attr);
4346 static inline long int AT_int PARAMS ((dw_attr_ref));
4347 static inline long int
4348 AT_int (a)
4349 dw_attr_ref a;
4351 if (a && AT_class (a) == dw_val_class_const)
4352 return a->dw_attr_val.v.val_int;
4354 abort ();
4357 /* Add an unsigned integer attribute value to a DIE. */
4359 static inline void
4360 add_AT_unsigned (die, attr_kind, unsigned_val)
4361 dw_die_ref die;
4362 enum dwarf_attribute attr_kind;
4363 unsigned long unsigned_val;
4365 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4367 attr->dw_attr_next = NULL;
4368 attr->dw_attr = attr_kind;
4369 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4370 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4371 add_dwarf_attr (die, attr);
4374 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
4375 static inline unsigned long
4376 AT_unsigned (a)
4377 dw_attr_ref a;
4379 if (a && AT_class (a) == dw_val_class_unsigned_const)
4380 return a->dw_attr_val.v.val_unsigned;
4382 abort ();
4385 /* Add an unsigned double integer attribute value to a DIE. */
4387 static inline void
4388 add_AT_long_long (die, attr_kind, val_hi, val_low)
4389 dw_die_ref die;
4390 enum dwarf_attribute attr_kind;
4391 unsigned long val_hi;
4392 unsigned long val_low;
4394 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4396 attr->dw_attr_next = NULL;
4397 attr->dw_attr = attr_kind;
4398 attr->dw_attr_val.val_class = dw_val_class_long_long;
4399 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4400 attr->dw_attr_val.v.val_long_long.low = val_low;
4401 add_dwarf_attr (die, attr);
4404 /* Add a floating point attribute value to a DIE and return it. */
4406 static inline void
4407 add_AT_float (die, attr_kind, length, array)
4408 dw_die_ref die;
4409 enum dwarf_attribute attr_kind;
4410 unsigned length;
4411 long *array;
4413 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4415 attr->dw_attr_next = NULL;
4416 attr->dw_attr = attr_kind;
4417 attr->dw_attr_val.val_class = dw_val_class_float;
4418 attr->dw_attr_val.v.val_float.length = length;
4419 attr->dw_attr_val.v.val_float.array = array;
4420 add_dwarf_attr (die, attr);
4423 /* Add a string attribute value to a DIE. */
4425 static inline void
4426 add_AT_string (die, attr_kind, str)
4427 dw_die_ref die;
4428 enum dwarf_attribute attr_kind;
4429 const char *str;
4431 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4432 struct indirect_string_node *node;
4434 if (! debug_str_hash)
4436 debug_str_hash = ht_create (10);
4437 debug_str_hash->alloc_node = indirect_string_alloc;
4440 node = (struct indirect_string_node *)
4441 ht_lookup (debug_str_hash, (const unsigned char *) str,
4442 strlen (str), HT_ALLOC);
4443 node->refcount++;
4445 attr->dw_attr_next = NULL;
4446 attr->dw_attr = attr_kind;
4447 attr->dw_attr_val.val_class = dw_val_class_str;
4448 attr->dw_attr_val.v.val_str = node;
4449 add_dwarf_attr (die, attr);
4452 static inline const char *AT_string PARAMS ((dw_attr_ref));
4453 static inline const char *
4454 AT_string (a)
4455 dw_attr_ref a;
4457 if (a && AT_class (a) == dw_val_class_str)
4458 return (const char *) HT_STR (&a->dw_attr_val.v.val_str->id);
4460 abort ();
4463 /* Find out whether a string should be output inline in DIE
4464 or out-of-line in .debug_str section. */
4466 static int AT_string_form PARAMS ((dw_attr_ref));
4467 static int
4468 AT_string_form (a)
4469 dw_attr_ref a;
4471 if (a && AT_class (a) == dw_val_class_str)
4473 struct indirect_string_node *node;
4474 unsigned int len;
4475 extern int const_labelno;
4476 char label[32];
4478 node = a->dw_attr_val.v.val_str;
4479 if (node->form)
4480 return node->form;
4482 len = HT_LEN (&node->id) + 1;
4484 /* If the string is shorter or equal to the size
4485 of the reference, it is always better to put it
4486 inline. */
4487 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4488 return node->form = DW_FORM_string;
4490 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0)
4492 /* If we cannot expect the linker to merge strings
4493 in .debug_str section, only put it into .debug_str
4494 if it is worth even in this single module. */
4495 if ((len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4496 return node->form = DW_FORM_string;
4499 ASM_GENERATE_INTERNAL_LABEL (label, "LC", const_labelno);
4500 ++const_labelno;
4501 node->label = xstrdup (label);
4502 return node->form = DW_FORM_strp;
4505 abort ();
4508 /* Add a DIE reference attribute value to a DIE. */
4510 static inline void
4511 add_AT_die_ref (die, attr_kind, targ_die)
4512 dw_die_ref die;
4513 enum dwarf_attribute attr_kind;
4514 dw_die_ref targ_die;
4516 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4518 attr->dw_attr_next = NULL;
4519 attr->dw_attr = attr_kind;
4520 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4521 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4522 attr->dw_attr_val.v.val_die_ref.external = 0;
4523 add_dwarf_attr (die, attr);
4526 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
4527 static inline dw_die_ref
4528 AT_ref (a)
4529 dw_attr_ref a;
4531 if (a && AT_class (a) == dw_val_class_die_ref)
4532 return a->dw_attr_val.v.val_die_ref.die;
4534 abort ();
4537 static inline int AT_ref_external PARAMS ((dw_attr_ref));
4538 static inline int
4539 AT_ref_external (a)
4540 dw_attr_ref a;
4542 if (a && AT_class (a) == dw_val_class_die_ref)
4543 return a->dw_attr_val.v.val_die_ref.external;
4545 return 0;
4548 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
4549 static inline void
4550 set_AT_ref_external (a, i)
4551 dw_attr_ref a;
4552 int i;
4554 if (a && AT_class (a) == dw_val_class_die_ref)
4555 a->dw_attr_val.v.val_die_ref.external = i;
4556 else
4557 abort ();
4560 /* Add an FDE reference attribute value to a DIE. */
4562 static inline void
4563 add_AT_fde_ref (die, attr_kind, targ_fde)
4564 dw_die_ref die;
4565 enum dwarf_attribute attr_kind;
4566 unsigned targ_fde;
4568 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4570 attr->dw_attr_next = NULL;
4571 attr->dw_attr = attr_kind;
4572 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4573 attr->dw_attr_val.v.val_fde_index = targ_fde;
4574 add_dwarf_attr (die, attr);
4577 /* Add a location description attribute value to a DIE. */
4579 static inline void
4580 add_AT_loc (die, attr_kind, loc)
4581 dw_die_ref die;
4582 enum dwarf_attribute attr_kind;
4583 dw_loc_descr_ref loc;
4585 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4587 attr->dw_attr_next = NULL;
4588 attr->dw_attr = attr_kind;
4589 attr->dw_attr_val.val_class = dw_val_class_loc;
4590 attr->dw_attr_val.v.val_loc = loc;
4591 add_dwarf_attr (die, attr);
4594 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
4595 static inline dw_loc_descr_ref
4596 AT_loc (a)
4597 dw_attr_ref a;
4599 if (a && AT_class (a) == dw_val_class_loc)
4600 return a->dw_attr_val.v.val_loc;
4602 abort ();
4605 static inline void
4606 add_AT_loc_list (die, attr_kind, loc_list)
4607 dw_die_ref die;
4608 enum dwarf_attribute attr_kind;
4609 dw_loc_list_ref loc_list;
4611 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4613 attr->dw_attr_next = NULL;
4614 attr->dw_attr = attr_kind;
4615 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4616 attr->dw_attr_val.v.val_loc_list = loc_list;
4617 add_dwarf_attr (die, attr);
4618 have_location_lists = 1;
4621 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
4623 static inline dw_loc_list_ref
4624 AT_loc_list (a)
4625 dw_attr_ref a;
4627 if (a && AT_class (a) == dw_val_class_loc_list)
4628 return a->dw_attr_val.v.val_loc_list;
4630 abort ();
4633 /* Add an address constant attribute value to a DIE. */
4635 static inline void
4636 add_AT_addr (die, attr_kind, addr)
4637 dw_die_ref die;
4638 enum dwarf_attribute attr_kind;
4639 rtx addr;
4641 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4643 attr->dw_attr_next = NULL;
4644 attr->dw_attr = attr_kind;
4645 attr->dw_attr_val.val_class = dw_val_class_addr;
4646 attr->dw_attr_val.v.val_addr = addr;
4647 add_dwarf_attr (die, attr);
4650 static inline rtx AT_addr PARAMS ((dw_attr_ref));
4651 static inline rtx
4652 AT_addr (a)
4653 dw_attr_ref a;
4655 if (a && AT_class (a) == dw_val_class_addr)
4656 return a->dw_attr_val.v.val_addr;
4658 abort ();
4661 /* Add a label identifier attribute value to a DIE. */
4663 static inline void
4664 add_AT_lbl_id (die, attr_kind, lbl_id)
4665 dw_die_ref die;
4666 enum dwarf_attribute attr_kind;
4667 const char *lbl_id;
4669 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4671 attr->dw_attr_next = NULL;
4672 attr->dw_attr = attr_kind;
4673 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4674 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4675 add_dwarf_attr (die, attr);
4678 /* Add a section offset attribute value to a DIE. */
4680 static inline void
4681 add_AT_lbl_offset (die, attr_kind, label)
4682 dw_die_ref die;
4683 enum dwarf_attribute attr_kind;
4684 const char *label;
4686 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4688 attr->dw_attr_next = NULL;
4689 attr->dw_attr = attr_kind;
4690 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4691 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4692 add_dwarf_attr (die, attr);
4695 /* Add an offset attribute value to a DIE. */
4697 static void
4698 add_AT_offset (die, attr_kind, offset)
4699 dw_die_ref die;
4700 enum dwarf_attribute attr_kind;
4701 unsigned long offset;
4703 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4705 attr->dw_attr_next = NULL;
4706 attr->dw_attr = attr_kind;
4707 attr->dw_attr_val.val_class = dw_val_class_offset;
4708 attr->dw_attr_val.v.val_offset = offset;
4709 add_dwarf_attr (die, attr);
4712 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
4713 static inline const char *
4714 AT_lbl (a)
4715 dw_attr_ref a;
4717 if (a && (AT_class (a) == dw_val_class_lbl_id
4718 || AT_class (a) == dw_val_class_lbl_offset))
4719 return a->dw_attr_val.v.val_lbl_id;
4721 abort ();
4724 /* Get the attribute of type attr_kind. */
4726 static inline dw_attr_ref
4727 get_AT (die, attr_kind)
4728 dw_die_ref die;
4729 enum dwarf_attribute attr_kind;
4731 dw_attr_ref a;
4732 dw_die_ref spec = NULL;
4734 if (die != NULL)
4736 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4738 if (a->dw_attr == attr_kind)
4739 return a;
4741 if (a->dw_attr == DW_AT_specification
4742 || a->dw_attr == DW_AT_abstract_origin)
4743 spec = AT_ref (a);
4746 if (spec)
4747 return get_AT (spec, attr_kind);
4750 return NULL;
4753 /* Return the "low pc" attribute value, typically associated with
4754 a subprogram DIE. Return null if the "low pc" attribute is
4755 either not prsent, or if it cannot be represented as an
4756 assembler label identifier. */
4758 static inline const char *
4759 get_AT_low_pc (die)
4760 dw_die_ref die;
4762 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4763 return a ? AT_lbl (a) : NULL;
4766 /* Return the "high pc" attribute value, typically associated with
4767 a subprogram DIE. Return null if the "high pc" attribute is
4768 either not prsent, or if it cannot be represented as an
4769 assembler label identifier. */
4771 static inline const char *
4772 get_AT_hi_pc (die)
4773 dw_die_ref die;
4775 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4776 return a ? AT_lbl (a) : NULL;
4779 /* Return the value of the string attribute designated by ATTR_KIND, or
4780 NULL if it is not present. */
4782 static inline const char *
4783 get_AT_string (die, attr_kind)
4784 dw_die_ref die;
4785 enum dwarf_attribute attr_kind;
4787 dw_attr_ref a = get_AT (die, attr_kind);
4788 return a ? AT_string (a) : NULL;
4791 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4792 if it is not present. */
4794 static inline int
4795 get_AT_flag (die, attr_kind)
4796 dw_die_ref die;
4797 enum dwarf_attribute attr_kind;
4799 dw_attr_ref a = get_AT (die, attr_kind);
4800 return a ? AT_flag (a) : 0;
4803 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4804 if it is not present. */
4806 static inline unsigned
4807 get_AT_unsigned (die, attr_kind)
4808 dw_die_ref die;
4809 enum dwarf_attribute attr_kind;
4811 dw_attr_ref a = get_AT (die, attr_kind);
4812 return a ? AT_unsigned (a) : 0;
4815 static inline dw_die_ref
4816 get_AT_ref (die, attr_kind)
4817 dw_die_ref die;
4818 enum dwarf_attribute attr_kind;
4820 dw_attr_ref a = get_AT (die, attr_kind);
4821 return a ? AT_ref (a) : NULL;
4824 static inline int
4825 is_c_family ()
4827 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4829 return (lang == DW_LANG_C || lang == DW_LANG_C89
4830 || lang == DW_LANG_C_plus_plus);
4833 static inline int
4834 is_fortran ()
4836 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4838 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
4841 static inline int
4842 is_java ()
4844 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4846 return (lang == DW_LANG_Java);
4849 /* Free up the memory used by A. */
4851 static inline void free_AT PARAMS ((dw_attr_ref));
4852 static inline void
4853 free_AT (a)
4854 dw_attr_ref a;
4856 switch (AT_class (a))
4858 case dw_val_class_str:
4859 if (a->dw_attr_val.v.val_str->refcount)
4860 a->dw_attr_val.v.val_str->refcount--;
4861 break;
4863 case dw_val_class_lbl_id:
4864 case dw_val_class_lbl_offset:
4865 free (a->dw_attr_val.v.val_lbl_id);
4866 break;
4868 case dw_val_class_float:
4869 free (a->dw_attr_val.v.val_float.array);
4870 break;
4872 default:
4873 break;
4876 free (a);
4879 /* Remove the specified attribute if present. */
4881 static void
4882 remove_AT (die, attr_kind)
4883 dw_die_ref die;
4884 enum dwarf_attribute attr_kind;
4886 dw_attr_ref *p;
4887 dw_attr_ref removed = NULL;
4889 if (die != NULL)
4891 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4892 if ((*p)->dw_attr == attr_kind)
4894 removed = *p;
4895 *p = (*p)->dw_attr_next;
4896 break;
4899 if (removed != 0)
4900 free_AT (removed);
4904 /* Free up the memory used by DIE. */
4906 static inline void free_die PARAMS ((dw_die_ref));
4907 static inline void
4908 free_die (die)
4909 dw_die_ref die;
4911 remove_children (die);
4912 free (die);
4915 /* Discard the children of this DIE. */
4917 static void
4918 remove_children (die)
4919 dw_die_ref die;
4921 dw_die_ref child_die = die->die_child;
4923 die->die_child = NULL;
4925 while (child_die != NULL)
4927 dw_die_ref tmp_die = child_die;
4928 dw_attr_ref a;
4930 child_die = child_die->die_sib;
4932 for (a = tmp_die->die_attr; a != NULL;)
4934 dw_attr_ref tmp_a = a;
4936 a = a->dw_attr_next;
4937 free_AT (tmp_a);
4940 free_die (tmp_die);
4944 /* Add a child DIE below its parent. We build the lists up in reverse
4945 addition order, and correct that in reverse_all_dies. */
4947 static inline void
4948 add_child_die (die, child_die)
4949 dw_die_ref die;
4950 dw_die_ref child_die;
4952 if (die != NULL && child_die != NULL)
4954 if (die == child_die)
4955 abort ();
4956 child_die->die_parent = die;
4957 child_die->die_sib = die->die_child;
4958 die->die_child = child_die;
4962 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
4963 is the specification, to the front of PARENT's list of children. */
4965 static void
4966 splice_child_die (parent, child)
4967 dw_die_ref parent, child;
4969 dw_die_ref *p;
4971 /* We want the declaration DIE from inside the class, not the
4972 specification DIE at toplevel. */
4973 if (child->die_parent != parent)
4975 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
4976 if (tmp)
4977 child = tmp;
4980 if (child->die_parent != parent
4981 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
4982 abort ();
4984 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
4985 if (*p == child)
4987 *p = child->die_sib;
4988 break;
4991 child->die_sib = parent->die_child;
4992 parent->die_child = child;
4995 /* Return a pointer to a newly created DIE node. */
4997 static inline dw_die_ref
4998 new_die (tag_value, parent_die)
4999 enum dwarf_tag tag_value;
5000 dw_die_ref parent_die;
5002 dw_die_ref die = (dw_die_ref) xcalloc (1, sizeof (die_node));
5004 die->die_tag = tag_value;
5006 if (parent_die != NULL)
5007 add_child_die (parent_die, die);
5008 else
5010 limbo_die_node *limbo_node;
5012 limbo_node = (limbo_die_node *) xmalloc (sizeof (limbo_die_node));
5013 limbo_node->die = die;
5014 limbo_node->next = limbo_die_list;
5015 limbo_die_list = limbo_node;
5018 return die;
5021 /* Return the DIE associated with the given type specifier. */
5023 static inline dw_die_ref
5024 lookup_type_die (type)
5025 tree type;
5027 if (TREE_CODE (type) == VECTOR_TYPE)
5028 type = TYPE_DEBUG_REPRESENTATION_TYPE (type);
5029 return (dw_die_ref) TYPE_SYMTAB_POINTER (type);
5032 /* Equate a DIE to a given type specifier. */
5034 static inline void
5035 equate_type_number_to_die (type, type_die)
5036 tree type;
5037 dw_die_ref type_die;
5039 TYPE_SYMTAB_POINTER (type) = (char *) type_die;
5042 /* Return the DIE associated with a given declaration. */
5044 static inline dw_die_ref
5045 lookup_decl_die (decl)
5046 tree decl;
5048 unsigned decl_id = DECL_UID (decl);
5050 return (decl_id < decl_die_table_in_use
5051 ? decl_die_table[decl_id] : NULL);
5054 /* Equate a DIE to a particular declaration. */
5056 static void
5057 equate_decl_number_to_die (decl, decl_die)
5058 tree decl;
5059 dw_die_ref decl_die;
5061 unsigned decl_id = DECL_UID (decl);
5062 unsigned num_allocated;
5064 if (decl_id >= decl_die_table_allocated)
5066 num_allocated
5067 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5068 / DECL_DIE_TABLE_INCREMENT)
5069 * DECL_DIE_TABLE_INCREMENT;
5071 decl_die_table
5072 = (dw_die_ref *) xrealloc (decl_die_table,
5073 sizeof (dw_die_ref) * num_allocated);
5075 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5076 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5077 decl_die_table_allocated = num_allocated;
5080 if (decl_id >= decl_die_table_in_use)
5081 decl_die_table_in_use = (decl_id + 1);
5083 decl_die_table[decl_id] = decl_die;
5086 /* Keep track of the number of spaces used to indent the
5087 output of the debugging routines that print the structure of
5088 the DIE internal representation. */
5089 static int print_indent;
5091 /* Indent the line the number of spaces given by print_indent. */
5093 static inline void
5094 print_spaces (outfile)
5095 FILE *outfile;
5097 fprintf (outfile, "%*s", print_indent, "");
5100 /* Print the information associated with a given DIE, and its children.
5101 This routine is a debugging aid only. */
5103 static void
5104 print_die (die, outfile)
5105 dw_die_ref die;
5106 FILE *outfile;
5108 dw_attr_ref a;
5109 dw_die_ref c;
5111 print_spaces (outfile);
5112 fprintf (outfile, "DIE %4lu: %s\n",
5113 die->die_offset, dwarf_tag_name (die->die_tag));
5114 print_spaces (outfile);
5115 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5116 fprintf (outfile, " offset: %lu\n", die->die_offset);
5118 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5120 print_spaces (outfile);
5121 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5123 switch (AT_class (a))
5125 case dw_val_class_addr:
5126 fprintf (outfile, "address");
5127 break;
5128 case dw_val_class_offset:
5129 fprintf (outfile, "offset");
5130 break;
5131 case dw_val_class_loc:
5132 fprintf (outfile, "location descriptor");
5133 break;
5134 case dw_val_class_loc_list:
5135 fprintf (outfile, "location list -> label:%s",
5136 AT_loc_list (a)->ll_symbol);
5137 break;
5138 case dw_val_class_const:
5139 fprintf (outfile, "%ld", AT_int (a));
5140 break;
5141 case dw_val_class_unsigned_const:
5142 fprintf (outfile, "%lu", AT_unsigned (a));
5143 break;
5144 case dw_val_class_long_long:
5145 fprintf (outfile, "constant (%lu,%lu)",
5146 a->dw_attr_val.v.val_long_long.hi,
5147 a->dw_attr_val.v.val_long_long.low);
5148 break;
5149 case dw_val_class_float:
5150 fprintf (outfile, "floating-point constant");
5151 break;
5152 case dw_val_class_flag:
5153 fprintf (outfile, "%u", AT_flag (a));
5154 break;
5155 case dw_val_class_die_ref:
5156 if (AT_ref (a) != NULL)
5158 if (AT_ref (a)->die_symbol)
5159 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5160 else
5161 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5163 else
5164 fprintf (outfile, "die -> <null>");
5165 break;
5166 case dw_val_class_lbl_id:
5167 case dw_val_class_lbl_offset:
5168 fprintf (outfile, "label: %s", AT_lbl (a));
5169 break;
5170 case dw_val_class_str:
5171 if (AT_string (a) != NULL)
5172 fprintf (outfile, "\"%s\"", AT_string (a));
5173 else
5174 fprintf (outfile, "<null>");
5175 break;
5176 default:
5177 break;
5180 fprintf (outfile, "\n");
5183 if (die->die_child != NULL)
5185 print_indent += 4;
5186 for (c = die->die_child; c != NULL; c = c->die_sib)
5187 print_die (c, outfile);
5189 print_indent -= 4;
5191 if (print_indent == 0)
5192 fprintf (outfile, "\n");
5195 /* Print the contents of the source code line number correspondence table.
5196 This routine is a debugging aid only. */
5198 static void
5199 print_dwarf_line_table (outfile)
5200 FILE *outfile;
5202 unsigned i;
5203 dw_line_info_ref line_info;
5205 fprintf (outfile, "\n\nDWARF source line information\n");
5206 for (i = 1; i < line_info_table_in_use; ++i)
5208 line_info = &line_info_table[i];
5209 fprintf (outfile, "%5d: ", i);
5210 fprintf (outfile, "%-20s", file_table.table[line_info->dw_file_num]);
5211 fprintf (outfile, "%6ld", line_info->dw_line_num);
5212 fprintf (outfile, "\n");
5215 fprintf (outfile, "\n\n");
5218 /* Print the information collected for a given DIE. */
5220 void
5221 debug_dwarf_die (die)
5222 dw_die_ref die;
5224 print_die (die, stderr);
5227 /* Print all DWARF information collected for the compilation unit.
5228 This routine is a debugging aid only. */
5230 void
5231 debug_dwarf ()
5233 print_indent = 0;
5234 print_die (comp_unit_die, stderr);
5235 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5236 print_dwarf_line_table (stderr);
5239 /* We build up the lists of children and attributes by pushing new ones
5240 onto the beginning of the list. Reverse the lists for DIE so that
5241 they are in order of addition. */
5243 static void
5244 reverse_die_lists (die)
5245 dw_die_ref die;
5247 dw_die_ref c, cp, cn;
5248 dw_attr_ref a, ap, an;
5250 for (a = die->die_attr, ap = 0; a; a = an)
5252 an = a->dw_attr_next;
5253 a->dw_attr_next = ap;
5254 ap = a;
5256 die->die_attr = ap;
5258 for (c = die->die_child, cp = 0; c; c = cn)
5260 cn = c->die_sib;
5261 c->die_sib = cp;
5262 cp = c;
5264 die->die_child = cp;
5267 /* reverse_die_lists only reverses the single die you pass it. Since
5268 we used to reverse all dies in add_sibling_attributes, which runs
5269 through all the dies, it would reverse all the dies. Now, however,
5270 since we don't call reverse_die_lists in add_sibling_attributes, we
5271 need a routine to recursively reverse all the dies. This is that
5272 routine. */
5274 static void
5275 reverse_all_dies (die)
5276 dw_die_ref die;
5278 dw_die_ref c;
5280 reverse_die_lists (die);
5282 for (c = die->die_child; c; c = c->die_sib)
5283 reverse_all_dies (c);
5286 /* Start a new compilation unit DIE for an include file. OLD_UNIT is
5287 the CU for the enclosing include file, if any. BINCL_DIE is the
5288 DW_TAG_GNU_BINCL DIE that marks the start of the DIEs for this
5289 include file. */
5291 static dw_die_ref
5292 push_new_compile_unit (old_unit, bincl_die)
5293 dw_die_ref old_unit, bincl_die;
5295 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5296 dw_die_ref new_unit = gen_compile_unit_die (filename);
5297 new_unit->die_sib = old_unit;
5298 return new_unit;
5301 /* Close an include-file CU and reopen the enclosing one. */
5303 static dw_die_ref
5304 pop_compile_unit (old_unit)
5305 dw_die_ref old_unit;
5307 dw_die_ref new_unit = old_unit->die_sib;
5308 old_unit->die_sib = NULL;
5309 return new_unit;
5312 #define PROCESS(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5313 #define PROCESS_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5315 /* Calculate the checksum of a location expression. */
5317 static inline void
5318 loc_checksum (loc, ctx)
5319 dw_loc_descr_ref loc;
5320 struct md5_ctx *ctx;
5322 PROCESS (loc->dw_loc_opc);
5323 PROCESS (loc->dw_loc_oprnd1);
5324 PROCESS (loc->dw_loc_oprnd2);
5327 /* Calculate the checksum of an attribute. */
5329 static void
5330 attr_checksum (at, ctx)
5331 dw_attr_ref at;
5332 struct md5_ctx *ctx;
5334 dw_loc_descr_ref loc;
5335 rtx r;
5337 PROCESS (at->dw_attr);
5339 /* We don't care about differences in file numbering. */
5340 if (at->dw_attr == DW_AT_decl_file
5341 /* Or that this was compiled with a different compiler snapshot; if
5342 the output is the same, that's what matters. */
5343 || at->dw_attr == DW_AT_producer)
5344 return;
5346 switch (AT_class (at))
5348 case dw_val_class_const:
5349 PROCESS (at->dw_attr_val.v.val_int);
5350 break;
5351 case dw_val_class_unsigned_const:
5352 PROCESS (at->dw_attr_val.v.val_unsigned);
5353 break;
5354 case dw_val_class_long_long:
5355 PROCESS (at->dw_attr_val.v.val_long_long);
5356 break;
5357 case dw_val_class_float:
5358 PROCESS (at->dw_attr_val.v.val_float);
5359 break;
5360 case dw_val_class_flag:
5361 PROCESS (at->dw_attr_val.v.val_flag);
5362 break;
5364 case dw_val_class_str:
5365 PROCESS_STRING (AT_string (at));
5366 break;
5368 case dw_val_class_addr:
5369 r = AT_addr (at);
5370 switch (GET_CODE (r))
5372 case SYMBOL_REF:
5373 PROCESS_STRING (XSTR (r, 0));
5374 break;
5376 default:
5377 abort ();
5379 break;
5381 case dw_val_class_offset:
5382 PROCESS (at->dw_attr_val.v.val_offset);
5383 break;
5385 case dw_val_class_loc:
5386 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5387 loc_checksum (loc, ctx);
5388 break;
5390 case dw_val_class_die_ref:
5391 if (AT_ref (at)->die_offset)
5392 PROCESS (AT_ref (at)->die_offset);
5393 /* FIXME else use target die name or something. */
5395 case dw_val_class_fde_ref:
5396 case dw_val_class_lbl_id:
5397 case dw_val_class_lbl_offset:
5398 break;
5400 default:
5401 break;
5405 /* Calculate the checksum of a DIE. */
5407 static void
5408 die_checksum (die, ctx)
5409 dw_die_ref die;
5410 struct md5_ctx *ctx;
5412 dw_die_ref c;
5413 dw_attr_ref a;
5415 PROCESS (die->die_tag);
5417 for (a = die->die_attr; a; a = a->dw_attr_next)
5418 attr_checksum (a, ctx);
5420 for (c = die->die_child; c; c = c->die_sib)
5421 die_checksum (c, ctx);
5424 #undef PROCESS
5425 #undef PROCESS_STRING
5427 /* The prefix to attach to symbols on DIEs in the current comdat debug
5428 info section. */
5429 static char *comdat_symbol_id;
5431 /* The index of the current symbol within the current comdat CU. */
5432 static unsigned int comdat_symbol_number;
5434 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5435 children, and set comdat_symbol_id accordingly. */
5437 static void
5438 compute_section_prefix (unit_die)
5439 dw_die_ref unit_die;
5441 char *name;
5442 int i;
5443 unsigned char checksum[16];
5444 struct md5_ctx ctx;
5446 md5_init_ctx (&ctx);
5447 die_checksum (unit_die, &ctx);
5448 md5_finish_ctx (&ctx, checksum);
5451 const char *p = lbasename (get_AT_string (unit_die, DW_AT_name));
5452 name = (char *) alloca (strlen (p) + 64);
5453 sprintf (name, "%s.", p);
5456 clean_symbol_name (name);
5459 char *p = name + strlen (name);
5460 for (i = 0; i < 4; ++i)
5462 sprintf (p, "%.2x", checksum[i]);
5463 p += 2;
5467 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5468 comdat_symbol_number = 0;
5471 /* Returns nonzero iff DIE represents a type, in the sense of TYPE_P. */
5473 static int
5474 is_type_die (die)
5475 dw_die_ref die;
5477 switch (die->die_tag)
5479 case DW_TAG_array_type:
5480 case DW_TAG_class_type:
5481 case DW_TAG_enumeration_type:
5482 case DW_TAG_pointer_type:
5483 case DW_TAG_reference_type:
5484 case DW_TAG_string_type:
5485 case DW_TAG_structure_type:
5486 case DW_TAG_subroutine_type:
5487 case DW_TAG_union_type:
5488 case DW_TAG_ptr_to_member_type:
5489 case DW_TAG_set_type:
5490 case DW_TAG_subrange_type:
5491 case DW_TAG_base_type:
5492 case DW_TAG_const_type:
5493 case DW_TAG_file_type:
5494 case DW_TAG_packed_type:
5495 case DW_TAG_volatile_type:
5496 return 1;
5497 default:
5498 return 0;
5502 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5503 Basically, we want to choose the bits that are likely to be shared between
5504 compilations (types) and leave out the bits that are specific to individual
5505 compilations (functions). */
5507 static int
5508 is_comdat_die (c)
5509 dw_die_ref c;
5511 #if 1
5512 /* I think we want to leave base types and __vtbl_ptr_type in the
5513 main CU, as we do for stabs. The advantage is a greater
5514 likelihood of sharing between objects that don't include headers
5515 in the same order (and therefore would put the base types in a
5516 different comdat). jason 8/28/00 */
5517 if (c->die_tag == DW_TAG_base_type)
5518 return 0;
5520 if (c->die_tag == DW_TAG_pointer_type
5521 || c->die_tag == DW_TAG_reference_type
5522 || c->die_tag == DW_TAG_const_type
5523 || c->die_tag == DW_TAG_volatile_type)
5525 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5526 return t ? is_comdat_die (t) : 0;
5528 #endif
5530 return is_type_die (c);
5533 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5534 compilation unit. */
5536 static int
5537 is_symbol_die (c)
5538 dw_die_ref c;
5540 if (is_type_die (c))
5541 return 1;
5542 if (get_AT (c, DW_AT_declaration)
5543 && ! get_AT (c, DW_AT_specification))
5544 return 1;
5545 return 0;
5548 static char *
5549 gen_internal_sym (prefix)
5550 const char *prefix;
5552 char buf[256];
5553 static int label_num;
5554 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5555 return xstrdup (buf);
5558 /* Assign symbols to all worthy DIEs under DIE. */
5560 static void
5561 assign_symbol_names (die)
5562 dw_die_ref die;
5564 dw_die_ref c;
5566 if (is_symbol_die (die))
5568 if (comdat_symbol_id)
5570 char *p = alloca (strlen (comdat_symbol_id) + 64);
5571 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5572 comdat_symbol_id, comdat_symbol_number++);
5573 die->die_symbol = xstrdup (p);
5575 else
5576 die->die_symbol = gen_internal_sym ("LDIE");
5579 for (c = die->die_child; c != NULL; c = c->die_sib)
5580 assign_symbol_names (c);
5583 /* Traverse the DIE (which is always comp_unit_die), and set up
5584 additional compilation units for each of the include files we see
5585 bracketed by BINCL/EINCL. */
5587 static void
5588 break_out_includes (die)
5589 dw_die_ref die;
5591 dw_die_ref *ptr;
5592 dw_die_ref unit = NULL;
5593 limbo_die_node *node;
5595 for (ptr = &(die->die_child); *ptr; )
5597 dw_die_ref c = *ptr;
5599 if (c->die_tag == DW_TAG_GNU_BINCL
5600 || c->die_tag == DW_TAG_GNU_EINCL
5601 || (unit && is_comdat_die (c)))
5603 /* This DIE is for a secondary CU; remove it from the main one. */
5604 *ptr = c->die_sib;
5606 if (c->die_tag == DW_TAG_GNU_BINCL)
5608 unit = push_new_compile_unit (unit, c);
5609 free_die (c);
5611 else if (c->die_tag == DW_TAG_GNU_EINCL)
5613 unit = pop_compile_unit (unit);
5614 free_die (c);
5616 else
5617 add_child_die (unit, c);
5619 else
5621 /* Leave this DIE in the main CU. */
5622 ptr = &(c->die_sib);
5623 continue;
5627 #if 0
5628 /* We can only use this in debugging, since the frontend doesn't check
5629 to make sure that we leave every include file we enter. */
5630 if (unit != NULL)
5631 abort ();
5632 #endif
5634 assign_symbol_names (die);
5635 for (node = limbo_die_list; node; node = node->next)
5637 compute_section_prefix (node->die);
5638 assign_symbol_names (node->die);
5642 /* Traverse the DIE and add a sibling attribute if it may have the
5643 effect of speeding up access to siblings. To save some space,
5644 avoid generating sibling attributes for DIE's without children. */
5646 static void
5647 add_sibling_attributes (die)
5648 dw_die_ref die;
5650 dw_die_ref c;
5652 if (die->die_tag != DW_TAG_compile_unit
5653 && die->die_sib && die->die_child != NULL)
5654 /* Add the sibling link to the front of the attribute list. */
5655 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5657 for (c = die->die_child; c != NULL; c = c->die_sib)
5658 add_sibling_attributes (c);
5661 /* Output all location lists for the DIE and it's children */
5662 static void
5663 output_location_lists (die)
5664 dw_die_ref die;
5666 dw_die_ref c;
5667 dw_attr_ref d_attr;
5668 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5670 if (AT_class (d_attr) == dw_val_class_loc_list)
5672 output_loc_list (AT_loc_list (d_attr));
5675 for (c = die->die_child; c != NULL; c = c->die_sib)
5676 output_location_lists (c);
5679 /* The format of each DIE (and its attribute value pairs)
5680 is encoded in an abbreviation table. This routine builds the
5681 abbreviation table and assigns a unique abbreviation id for
5682 each abbreviation entry. The children of each die are visited
5683 recursively. */
5685 static void
5686 build_abbrev_table (die)
5687 dw_die_ref die;
5689 unsigned long abbrev_id;
5690 unsigned int n_alloc;
5691 dw_die_ref c;
5692 dw_attr_ref d_attr, a_attr;
5694 /* Scan the DIE references, and mark as external any that refer to
5695 DIEs from other CUs (i.e. those which are not marked). */
5696 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5698 if (AT_class (d_attr) == dw_val_class_die_ref
5699 && AT_ref (d_attr)->die_mark == 0)
5701 if (AT_ref (d_attr)->die_symbol == 0)
5702 abort ();
5703 set_AT_ref_external (d_attr, 1);
5707 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
5709 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
5711 if (abbrev->die_tag == die->die_tag)
5713 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
5715 a_attr = abbrev->die_attr;
5716 d_attr = die->die_attr;
5718 while (a_attr != NULL && d_attr != NULL)
5720 if ((a_attr->dw_attr != d_attr->dw_attr)
5721 || (value_format (a_attr) != value_format (d_attr)))
5722 break;
5724 a_attr = a_attr->dw_attr_next;
5725 d_attr = d_attr->dw_attr_next;
5728 if (a_attr == NULL && d_attr == NULL)
5729 break;
5734 if (abbrev_id >= abbrev_die_table_in_use)
5736 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
5738 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
5739 abbrev_die_table
5740 = (dw_die_ref *) xrealloc (abbrev_die_table,
5741 sizeof (dw_die_ref) * n_alloc);
5743 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
5744 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
5745 abbrev_die_table_allocated = n_alloc;
5748 ++abbrev_die_table_in_use;
5749 abbrev_die_table[abbrev_id] = die;
5752 die->die_abbrev = abbrev_id;
5753 for (c = die->die_child; c != NULL; c = c->die_sib)
5754 build_abbrev_table (c);
5757 /* Return the power-of-two number of bytes necessary to represent VALUE. */
5759 static int
5760 constant_size (value)
5761 long unsigned value;
5763 int log;
5765 if (value == 0)
5766 log = 0;
5767 else
5768 log = floor_log2 (value);
5770 log = log / 8;
5771 log = 1 << (floor_log2 (log) + 1);
5773 return log;
5776 /* Return the size of a DIE, as it is represented in the
5777 .debug_info section. */
5779 static unsigned long
5780 size_of_die (die)
5781 dw_die_ref die;
5783 unsigned long size = 0;
5784 dw_attr_ref a;
5786 size += size_of_uleb128 (die->die_abbrev);
5787 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5789 switch (AT_class (a))
5791 case dw_val_class_addr:
5792 size += DWARF2_ADDR_SIZE;
5793 break;
5794 case dw_val_class_offset:
5795 size += DWARF_OFFSET_SIZE;
5796 break;
5797 case dw_val_class_loc:
5799 unsigned long lsize = size_of_locs (AT_loc (a));
5801 /* Block length. */
5802 size += constant_size (lsize);
5803 size += lsize;
5805 break;
5806 case dw_val_class_loc_list:
5807 size += DWARF_OFFSET_SIZE;
5808 break;
5809 case dw_val_class_const:
5810 size += size_of_sleb128 (AT_int (a));
5811 break;
5812 case dw_val_class_unsigned_const:
5813 size += constant_size (AT_unsigned (a));
5814 break;
5815 case dw_val_class_long_long:
5816 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
5817 break;
5818 case dw_val_class_float:
5819 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
5820 break;
5821 case dw_val_class_flag:
5822 size += 1;
5823 break;
5824 case dw_val_class_die_ref:
5825 size += DWARF_OFFSET_SIZE;
5826 break;
5827 case dw_val_class_fde_ref:
5828 size += DWARF_OFFSET_SIZE;
5829 break;
5830 case dw_val_class_lbl_id:
5831 size += DWARF2_ADDR_SIZE;
5832 break;
5833 case dw_val_class_lbl_offset:
5834 size += DWARF_OFFSET_SIZE;
5835 break;
5836 case dw_val_class_str:
5837 if (AT_string_form (a) == DW_FORM_strp)
5838 size += DWARF_OFFSET_SIZE;
5839 else
5840 size += HT_LEN (&a->dw_attr_val.v.val_str->id) + 1;
5841 break;
5842 default:
5843 abort ();
5847 return size;
5850 /* Size the debugging information associated with a given DIE.
5851 Visits the DIE's children recursively. Updates the global
5852 variable next_die_offset, on each time through. Uses the
5853 current value of next_die_offset to update the die_offset
5854 field in each DIE. */
5856 static void
5857 calc_die_sizes (die)
5858 dw_die_ref die;
5860 dw_die_ref c;
5861 die->die_offset = next_die_offset;
5862 next_die_offset += size_of_die (die);
5864 for (c = die->die_child; c != NULL; c = c->die_sib)
5865 calc_die_sizes (c);
5867 if (die->die_child != NULL)
5868 /* Count the null byte used to terminate sibling lists. */
5869 next_die_offset += 1;
5872 /* Set the marks for a die and its children. We do this so
5873 that we know whether or not a reference needs to use FORM_ref_addr; only
5874 DIEs in the same CU will be marked. We used to clear out the offset
5875 and use that as the flag, but ran into ordering problems. */
5877 static void
5878 mark_dies (die)
5879 dw_die_ref die;
5881 dw_die_ref c;
5882 die->die_mark = 1;
5883 for (c = die->die_child; c; c = c->die_sib)
5884 mark_dies (c);
5887 /* Clear the marks for a die and its children. */
5889 static void
5890 unmark_dies (die)
5891 dw_die_ref die;
5893 dw_die_ref c;
5894 die->die_mark = 0;
5895 for (c = die->die_child; c; c = c->die_sib)
5896 unmark_dies (c);
5899 /* Return the size of the .debug_pubnames table generated for the
5900 compilation unit. */
5902 static unsigned long
5903 size_of_pubnames ()
5905 unsigned long size;
5906 unsigned i;
5908 size = DWARF_PUBNAMES_HEADER_SIZE;
5909 for (i = 0; i < pubname_table_in_use; ++i)
5911 pubname_ref p = &pubname_table[i];
5912 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
5915 size += DWARF_OFFSET_SIZE;
5916 return size;
5919 /* Return the size of the information in the .debug_aranges section. */
5921 static unsigned long
5922 size_of_aranges ()
5924 unsigned long size;
5926 size = DWARF_ARANGES_HEADER_SIZE;
5928 /* Count the address/length pair for this compilation unit. */
5929 size += 2 * DWARF2_ADDR_SIZE;
5930 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
5932 /* Count the two zero words used to terminated the address range table. */
5933 size += 2 * DWARF2_ADDR_SIZE;
5934 return size;
5937 /* Select the encoding of an attribute value. */
5939 static enum dwarf_form
5940 value_format (a)
5941 dw_attr_ref a;
5943 switch (a->dw_attr_val.val_class)
5945 case dw_val_class_addr:
5946 return DW_FORM_addr;
5947 case dw_val_class_offset:
5948 if (DWARF_OFFSET_SIZE == 4)
5949 return DW_FORM_data4;
5950 if (DWARF_OFFSET_SIZE == 8)
5951 return DW_FORM_data8;
5952 abort ();
5953 case dw_val_class_loc_list:
5954 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
5955 .debug_loc section */
5956 return DW_FORM_data4;
5957 case dw_val_class_loc:
5958 switch (constant_size (size_of_locs (AT_loc (a))))
5960 case 1:
5961 return DW_FORM_block1;
5962 case 2:
5963 return DW_FORM_block2;
5964 default:
5965 abort ();
5967 case dw_val_class_const:
5968 return DW_FORM_sdata;
5969 case dw_val_class_unsigned_const:
5970 switch (constant_size (AT_unsigned (a)))
5972 case 1:
5973 return DW_FORM_data1;
5974 case 2:
5975 return DW_FORM_data2;
5976 case 4:
5977 return DW_FORM_data4;
5978 case 8:
5979 return DW_FORM_data8;
5980 default:
5981 abort ();
5983 case dw_val_class_long_long:
5984 return DW_FORM_block1;
5985 case dw_val_class_float:
5986 return DW_FORM_block1;
5987 case dw_val_class_flag:
5988 return DW_FORM_flag;
5989 case dw_val_class_die_ref:
5990 if (AT_ref_external (a))
5991 return DW_FORM_ref_addr;
5992 else
5993 return DW_FORM_ref;
5994 case dw_val_class_fde_ref:
5995 return DW_FORM_data;
5996 case dw_val_class_lbl_id:
5997 return DW_FORM_addr;
5998 case dw_val_class_lbl_offset:
5999 return DW_FORM_data;
6000 case dw_val_class_str:
6001 return AT_string_form (a);
6003 default:
6004 abort ();
6008 /* Output the encoding of an attribute value. */
6010 static void
6011 output_value_format (a)
6012 dw_attr_ref a;
6014 enum dwarf_form form = value_format (a);
6015 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6018 /* Output the .debug_abbrev section which defines the DIE abbreviation
6019 table. */
6021 static void
6022 output_abbrev_section ()
6024 unsigned long abbrev_id;
6026 dw_attr_ref a_attr;
6027 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6029 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6031 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6033 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6034 dwarf_tag_name (abbrev->die_tag));
6036 if (abbrev->die_child != NULL)
6037 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6038 else
6039 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6041 for (a_attr = abbrev->die_attr; a_attr != NULL;
6042 a_attr = a_attr->dw_attr_next)
6044 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6045 dwarf_attr_name (a_attr->dw_attr));
6046 output_value_format (a_attr);
6049 dw2_asm_output_data (1, 0, NULL);
6050 dw2_asm_output_data (1, 0, NULL);
6053 /* Terminate the table. */
6054 dw2_asm_output_data (1, 0, NULL);
6057 /* Output a symbol we can use to refer to this DIE from another CU. */
6059 static inline void
6060 output_die_symbol (die)
6061 dw_die_ref die;
6063 char *sym = die->die_symbol;
6065 if (sym == 0)
6066 return;
6068 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6069 /* We make these global, not weak; if the target doesn't support
6070 .linkonce, it doesn't support combining the sections, so debugging
6071 will break. */
6072 ASM_GLOBALIZE_LABEL (asm_out_file, sym);
6073 ASM_OUTPUT_LABEL (asm_out_file, sym);
6076 /* Return a new location list, given the begin and end range, and the
6077 expression. gensym tells us whether to generate a new internal
6078 symbol for this location list node, which is done for the head of
6079 the list only. */
6080 static inline dw_loc_list_ref
6081 new_loc_list (expr, begin, end, section, gensym)
6082 dw_loc_descr_ref expr;
6083 const char *begin;
6084 const char *end;
6085 const char *section;
6086 unsigned gensym;
6088 dw_loc_list_ref retlist
6089 = (dw_loc_list_ref) xcalloc (1, sizeof (dw_loc_list_node));
6090 retlist->begin = begin;
6091 retlist->end = end;
6092 retlist->expr = expr;
6093 retlist->section = section;
6094 if (gensym)
6095 retlist->ll_symbol = gen_internal_sym ("LLST");
6096 return retlist;
6099 /* Add a location description expression to a location list */
6100 static inline void
6101 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6102 dw_loc_list_ref *list_head;
6103 dw_loc_descr_ref descr;
6104 const char *begin;
6105 const char *end;
6106 const char *section;
6108 dw_loc_list_ref *d;
6110 /* Find the end of the chain. */
6111 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6113 /* Add a new location list node to the list */
6114 *d = new_loc_list (descr, begin, end, section, 0);
6117 /* Output the location list given to us */
6118 static void
6119 output_loc_list (list_head)
6120 dw_loc_list_ref list_head;
6122 dw_loc_list_ref curr=list_head;
6123 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6125 /* ??? This shouldn't be needed now that we've forced the
6126 compilation unit base address to zero when there is code
6127 in more than one section. */
6128 if (strcmp (curr->section, ".text") == 0)
6130 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6131 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT)0,
6132 "Location list base address specifier fake entry");
6133 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6134 "Location list base address specifier base");
6136 for (curr = list_head; curr != NULL; curr=curr->dw_loc_next)
6138 int size;
6139 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6140 "Location list begin address (%s)",
6141 list_head->ll_symbol);
6142 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6143 "Location list end address (%s)",
6144 list_head->ll_symbol);
6145 size = size_of_locs (curr->expr);
6147 /* Output the block length for this list of location operations. */
6148 dw2_asm_output_data (constant_size (size), size, "%s",
6149 "Location expression size");
6151 output_loc_sequence (curr->expr);
6153 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6154 "Location list terminator begin (%s)",
6155 list_head->ll_symbol);
6156 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6157 "Location list terminator end (%s)",
6158 list_head->ll_symbol);
6161 /* Output the DIE and its attributes. Called recursively to generate
6162 the definitions of each child DIE. */
6164 static void
6165 output_die (die)
6166 dw_die_ref die;
6168 dw_attr_ref a;
6169 dw_die_ref c;
6170 unsigned long size;
6172 /* If someone in another CU might refer to us, set up a symbol for
6173 them to point to. */
6174 if (die->die_symbol)
6175 output_die_symbol (die);
6177 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6178 die->die_offset, dwarf_tag_name (die->die_tag));
6180 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6182 const char *name = dwarf_attr_name (a->dw_attr);
6184 switch (AT_class (a))
6186 case dw_val_class_addr:
6187 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6188 break;
6190 case dw_val_class_offset:
6191 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6192 "%s", name);
6193 break;
6195 case dw_val_class_loc:
6196 size = size_of_locs (AT_loc (a));
6198 /* Output the block length for this list of location operations. */
6199 dw2_asm_output_data (constant_size (size), size, "%s", name);
6201 output_loc_sequence (AT_loc (a));
6202 break;
6204 case dw_val_class_const:
6205 /* ??? It would be slightly more efficient to use a scheme like is
6206 used for unsigned constants below, but gdb 4.x does not sign
6207 extend. Gdb 5.x does sign extend. */
6208 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6209 break;
6211 case dw_val_class_unsigned_const:
6212 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6213 AT_unsigned (a), "%s", name);
6214 break;
6216 case dw_val_class_long_long:
6218 unsigned HOST_WIDE_INT first, second;
6220 dw2_asm_output_data (1, 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6221 "%s", name);
6223 if (WORDS_BIG_ENDIAN)
6225 first = a->dw_attr_val.v.val_long_long.hi;
6226 second = a->dw_attr_val.v.val_long_long.low;
6228 else
6230 first = a->dw_attr_val.v.val_long_long.low;
6231 second = a->dw_attr_val.v.val_long_long.hi;
6233 dw2_asm_output_data (HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6234 first, "long long constant");
6235 dw2_asm_output_data (HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6236 second, NULL);
6238 break;
6240 case dw_val_class_float:
6242 unsigned int i;
6244 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6245 "%s", name);
6247 for (i = 0; i < a->dw_attr_val.v.val_float.length; ++i)
6248 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6249 "fp constant word %u", i);
6250 break;
6253 case dw_val_class_flag:
6254 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6255 break;
6257 case dw_val_class_loc_list:
6259 char *sym = AT_loc_list (a)->ll_symbol;
6260 if (sym == 0)
6261 abort();
6262 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6263 loc_section_label, "%s", name);
6265 break;
6267 case dw_val_class_die_ref:
6268 if (AT_ref_external (a))
6270 char *sym = AT_ref (a)->die_symbol;
6271 if (sym == 0)
6272 abort ();
6273 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6275 else if (AT_ref (a)->die_offset == 0)
6276 abort ();
6277 else
6278 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6279 "%s", name);
6280 break;
6282 case dw_val_class_fde_ref:
6284 char l1[20];
6285 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6286 a->dw_attr_val.v.val_fde_index * 2);
6287 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6289 break;
6291 case dw_val_class_lbl_id:
6292 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6293 break;
6295 case dw_val_class_lbl_offset:
6296 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6297 break;
6299 case dw_val_class_str:
6300 if (AT_string_form (a) == DW_FORM_strp)
6301 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6302 a->dw_attr_val.v.val_str->label,
6303 "%s", name);
6304 else
6305 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6306 break;
6308 default:
6309 abort ();
6313 for (c = die->die_child; c != NULL; c = c->die_sib)
6314 output_die (c);
6316 if (die->die_child != NULL)
6318 /* Add null byte to terminate sibling list. */
6319 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6320 die->die_offset);
6324 /* Output the compilation unit that appears at the beginning of the
6325 .debug_info section, and precedes the DIE descriptions. */
6327 static void
6328 output_compilation_unit_header ()
6330 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6331 "Length of Compilation Unit Info");
6333 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6335 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6336 "Offset Into Abbrev. Section");
6338 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6341 /* Output the compilation unit DIE and its children. */
6343 static void
6344 output_comp_unit (die)
6345 dw_die_ref die;
6347 const char *secname;
6349 /* Even if there are no children of this DIE, we must output the
6350 information about the compilation unit. Otherwise, on an empty
6351 translation unit, we will generate a present, but empty,
6352 .debug_info section. IRIX 6.5 `nm' will then complain when
6353 examining the file.
6355 Mark all the DIEs in this CU so we know which get local refs. */
6356 mark_dies (die);
6358 build_abbrev_table (die);
6360 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6361 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6362 calc_die_sizes (die);
6364 if (die->die_symbol)
6366 char *tmp = (char *) alloca (strlen (die->die_symbol) + 24);
6367 sprintf (tmp, ".gnu.linkonce.wi.%s", die->die_symbol);
6368 secname = tmp;
6369 die->die_symbol = NULL;
6371 else
6372 secname = (const char *) DEBUG_INFO_SECTION;
6374 /* Output debugging information. */
6375 named_section_flags (secname, SECTION_DEBUG);
6376 output_compilation_unit_header ();
6377 output_die (die);
6379 /* Leave the marks on the main CU, so we can check them in
6380 output_pubnames. */
6381 if (die->die_symbol)
6382 unmark_dies (die);
6385 /* The DWARF2 pubname for a nested thingy looks like "A::f". The output
6386 of decl_printable_name for C++ looks like "A::f(int)". Let's drop the
6387 argument list, and maybe the scope. */
6389 static const char *
6390 dwarf2_name (decl, scope)
6391 tree decl;
6392 int scope;
6394 return (*decl_printable_name) (decl, scope ? 1 : 0);
6397 /* Add a new entry to .debug_pubnames if appropriate. */
6399 static void
6400 add_pubname (decl, die)
6401 tree decl;
6402 dw_die_ref die;
6404 pubname_ref p;
6406 if (! TREE_PUBLIC (decl))
6407 return;
6409 if (pubname_table_in_use == pubname_table_allocated)
6411 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6412 pubname_table = (pubname_ref) xrealloc
6413 (pubname_table, pubname_table_allocated * sizeof (pubname_entry));
6416 p = &pubname_table[pubname_table_in_use++];
6417 p->die = die;
6419 p->name = xstrdup (dwarf2_name (decl, 1));
6422 /* Output the public names table used to speed up access to externally
6423 visible names. For now, only generate entries for externally
6424 visible procedures. */
6426 static void
6427 output_pubnames ()
6429 unsigned i;
6430 unsigned long pubnames_length = size_of_pubnames ();
6432 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6433 "Length of Public Names Info");
6435 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6437 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6438 "Offset of Compilation Unit Info");
6440 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6441 "Compilation Unit Length");
6443 for (i = 0; i < pubname_table_in_use; ++i)
6445 pubname_ref pub = &pubname_table[i];
6447 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6448 if (pub->die->die_mark == 0)
6449 abort ();
6451 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6452 "DIE offset");
6454 dw2_asm_output_nstring (pub->name, -1, "external name");
6457 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6460 /* Add a new entry to .debug_aranges if appropriate. */
6462 static void
6463 add_arange (decl, die)
6464 tree decl;
6465 dw_die_ref die;
6467 if (! DECL_SECTION_NAME (decl))
6468 return;
6470 if (arange_table_in_use == arange_table_allocated)
6472 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6473 arange_table = (dw_die_ref *)
6474 xrealloc (arange_table, arange_table_allocated * sizeof (dw_die_ref));
6477 arange_table[arange_table_in_use++] = die;
6480 /* Output the information that goes into the .debug_aranges table.
6481 Namely, define the beginning and ending address range of the
6482 text section generated for this compilation unit. */
6484 static void
6485 output_aranges ()
6487 unsigned i;
6488 unsigned long aranges_length = size_of_aranges ();
6490 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6491 "Length of Address Ranges Info");
6493 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6495 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6496 "Offset of Compilation Unit Info");
6498 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6500 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6502 /* We need to align to twice the pointer size here. */
6503 if (DWARF_ARANGES_PAD_SIZE)
6505 /* Pad using a 2 byte words so that padding is correct for any
6506 pointer size. */
6507 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6508 2 * DWARF2_ADDR_SIZE);
6509 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6510 dw2_asm_output_data (2, 0, NULL);
6513 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6514 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6515 text_section_label, "Length");
6517 for (i = 0; i < arange_table_in_use; ++i)
6519 dw_die_ref die = arange_table[i];
6521 /* We shouldn't see aranges for DIEs outside of the main CU. */
6522 if (die->die_mark == 0)
6523 abort ();
6525 if (die->die_tag == DW_TAG_subprogram)
6527 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6528 "Address");
6529 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6530 get_AT_low_pc (die), "Length");
6532 else
6534 /* A static variable; extract the symbol from DW_AT_location.
6535 Note that this code isn't currently hit, as we only emit
6536 aranges for functions (jason 9/23/99). */
6538 dw_attr_ref a = get_AT (die, DW_AT_location);
6539 dw_loc_descr_ref loc;
6540 if (! a || AT_class (a) != dw_val_class_loc)
6541 abort ();
6543 loc = AT_loc (a);
6544 if (loc->dw_loc_opc != DW_OP_addr)
6545 abort ();
6547 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6548 loc->dw_loc_oprnd1.v.val_addr, "Address");
6549 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6550 get_AT_unsigned (die, DW_AT_byte_size),
6551 "Length");
6555 /* Output the terminator words. */
6556 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6557 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6560 /* Add a new entry to .debug_ranges. Return the offset at which it
6561 was placed. */
6563 static unsigned int
6564 add_ranges (block)
6565 tree block;
6567 unsigned int in_use = ranges_table_in_use;
6569 if (in_use == ranges_table_allocated)
6571 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6572 ranges_table = (dw_ranges_ref)
6573 xrealloc (ranges_table, (ranges_table_allocated
6574 * sizeof (struct dw_ranges_struct)));
6577 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6578 ranges_table_in_use = in_use + 1;
6580 return in_use * 2 * DWARF2_ADDR_SIZE;
6583 static void
6584 output_ranges ()
6586 unsigned i;
6587 static const char *const start_fmt = "Offset 0x%x";
6588 const char *fmt = start_fmt;
6590 for (i = 0; i < ranges_table_in_use; ++i)
6592 int block_num = ranges_table[i].block_num;
6594 if (block_num)
6596 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6597 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6599 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6600 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6602 /* If all code is in the text section, then the compilation
6603 unit base address defaults to DW_AT_low_pc, which is the
6604 base of the text section. */
6605 if (separate_line_info_table_in_use == 0)
6607 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6608 text_section_label,
6609 fmt, i * 2 * DWARF2_ADDR_SIZE);
6610 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6611 text_section_label, NULL);
6613 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6614 compilation unit base address to zero, which allows us to
6615 use absolute addresses, and not worry about whether the
6616 target supports cross-section arithmetic. */
6617 else
6619 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
6620 fmt, i * 2 * DWARF2_ADDR_SIZE);
6621 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
6624 fmt = NULL;
6626 else
6628 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6629 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6630 fmt = start_fmt;
6635 /* Data structure containing information about input files. */
6636 struct file_info
6638 char *path; /* Complete file name. */
6639 char *fname; /* File name part. */
6640 int length; /* Length of entire string. */
6641 int file_idx; /* Index in input file table. */
6642 int dir_idx; /* Index in directory table. */
6645 /* Data structure containing information about directories with source
6646 files. */
6647 struct dir_info
6649 char *path; /* Path including directory name. */
6650 int length; /* Path length. */
6651 int prefix; /* Index of directory entry which is a prefix. */
6652 int count; /* Number of files in this directory. */
6653 int dir_idx; /* Index of directory used as base. */
6654 int used; /* Used in the end? */
6657 /* Callback function for file_info comparison. We sort by looking at
6658 the directories in the path. */
6660 static int
6661 file_info_cmp (p1, p2)
6662 const void *p1;
6663 const void *p2;
6665 const struct file_info *s1 = p1;
6666 const struct file_info *s2 = p2;
6667 unsigned char *cp1;
6668 unsigned char *cp2;
6670 /* Take care of file names without directories. We need to make sure that
6671 we return consistent values to qsort since some will get confused if
6672 we return the same value when identical operands are passed in opposite
6673 orders. So if neither has a directory, return 0 and otherwise return
6674 1 or -1 depending on which one has the directory. */
6675 if ((s1->path == s1->fname || s2->path == s2->fname))
6676 return (s2->path == s2->fname) - (s1->path == s1->fname);
6678 cp1 = (unsigned char *) s1->path;
6679 cp2 = (unsigned char *) s2->path;
6681 while (1)
6683 ++cp1;
6684 ++cp2;
6685 /* Reached the end of the first path? If so, handle like above. */
6686 if ((cp1 == (unsigned char *) s1->fname)
6687 || (cp2 == (unsigned char *) s2->fname))
6688 return ((cp2 == (unsigned char *) s2->fname)
6689 - (cp1 == (unsigned char *) s1->fname));
6691 /* Character of current path component the same? */
6692 else if (*cp1 != *cp2)
6693 return *cp1 - *cp2;
6697 /* Output the directory table and the file name table. We try to minimize
6698 the total amount of memory needed. A heuristic is used to avoid large
6699 slowdowns with many input files. */
6700 static void
6701 output_file_names ()
6703 struct file_info *files;
6704 struct dir_info *dirs;
6705 int *saved;
6706 int *savehere;
6707 int *backmap;
6708 int ndirs;
6709 int idx_offset;
6710 int i;
6711 int idx;
6713 /* Allocate the various arrays we need. */
6714 files = (struct file_info *) alloca (file_table.in_use
6715 * sizeof (struct file_info));
6716 dirs = (struct dir_info *) alloca (file_table.in_use
6717 * sizeof (struct dir_info));
6719 /* Sort the file names. */
6720 for (i = 1; i < (int) file_table.in_use; ++i)
6722 char *f;
6724 /* Skip all leading "./". */
6725 f = file_table.table[i];
6726 while (f[0] == '.' && f[1] == '/')
6727 f += 2;
6729 /* Create a new array entry. */
6730 files[i].path = f;
6731 files[i].length = strlen (f);
6732 files[i].file_idx = i;
6734 /* Search for the file name part. */
6735 f = strrchr (f, '/');
6736 files[i].fname = f == NULL ? files[i].path : f + 1;
6738 qsort (files + 1, file_table.in_use - 1, sizeof (files[0]), file_info_cmp);
6740 /* Find all the different directories used. */
6741 dirs[0].path = files[1].path;
6742 dirs[0].length = files[1].fname - files[1].path;
6743 dirs[0].prefix = -1;
6744 dirs[0].count = 1;
6745 dirs[0].dir_idx = 0;
6746 dirs[0].used = 0;
6747 files[1].dir_idx = 0;
6748 ndirs = 1;
6750 for (i = 2; i < (int) file_table.in_use; ++i)
6751 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
6752 && memcmp (dirs[ndirs - 1].path, files[i].path,
6753 dirs[ndirs - 1].length) == 0)
6755 /* Same directory as last entry. */
6756 files[i].dir_idx = ndirs - 1;
6757 ++dirs[ndirs - 1].count;
6759 else
6761 int j;
6763 /* This is a new directory. */
6764 dirs[ndirs].path = files[i].path;
6765 dirs[ndirs].length = files[i].fname - files[i].path;
6766 dirs[ndirs].count = 1;
6767 dirs[ndirs].dir_idx = ndirs;
6768 dirs[ndirs].used = 0;
6769 files[i].dir_idx = ndirs;
6771 /* Search for a prefix. */
6772 dirs[ndirs].prefix = -1;
6773 for (j = 0; j < ndirs; ++j)
6774 if (dirs[j].length < dirs[ndirs].length
6775 && dirs[j].length > 1
6776 && (dirs[ndirs].prefix == -1
6777 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
6778 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
6779 dirs[ndirs].prefix = j;
6781 ++ndirs;
6784 /* Now to the actual work. We have to find a subset of the
6785 directories which allow expressing the file name using references
6786 to the directory table with the least amount of characters. We
6787 do not do an exhaustive search where we would have to check out
6788 every combination of every single possible prefix. Instead we
6789 use a heuristic which provides nearly optimal results in most
6790 cases and never is much off. */
6791 saved = (int *) alloca (ndirs * sizeof (int));
6792 savehere = (int *) alloca (ndirs * sizeof (int));
6794 memset (saved, '\0', ndirs * sizeof (saved[0]));
6795 for (i = 0; i < ndirs; ++i)
6797 int j;
6798 int total;
6800 /* We can always save some space for the current directory. But
6801 this does not mean it will be enough to justify adding the
6802 directory. */
6803 savehere[i] = dirs[i].length;
6804 total = (savehere[i] - saved[i]) * dirs[i].count;
6806 for (j = i + 1; j < ndirs; ++j)
6808 savehere[j] = 0;
6810 if (saved[j] < dirs[i].length)
6812 /* Determine whether the dirs[i] path is a prefix of the
6813 dirs[j] path. */
6814 int k;
6816 k = dirs[j].prefix;
6817 while (k != -1 && k != i)
6818 k = dirs[k].prefix;
6820 if (k == i)
6822 /* Yes it is. We can possibly safe some memory but
6823 writing the filenames in dirs[j] relative to
6824 dirs[i]. */
6825 savehere[j] = dirs[i].length;
6826 total += (savehere[j] - saved[j]) * dirs[j].count;
6831 /* Check whether we can safe enough to justify adding the dirs[i]
6832 directory. */
6833 if (total > dirs[i].length + 1)
6835 /* It's worthwhile adding. */
6836 for (j = i; j < ndirs; ++j)
6837 if (savehere[j] > 0)
6839 /* Remember how much we saved for this directory so far. */
6840 saved[j] = savehere[j];
6842 /* Remember the prefix directory. */
6843 dirs[j].dir_idx = i;
6848 /* We have to emit them in the order they appear in the file_table
6849 array since the index is used in the debug info generation. To
6850 do this efficiently we generate a back-mapping of the indices
6851 first. */
6852 backmap = (int *) alloca (file_table.in_use * sizeof (int));
6853 for (i = 1; i < (int) file_table.in_use; ++i)
6855 backmap[files[i].file_idx] = i;
6856 /* Mark this directory as used. */
6857 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
6860 /* That was it. We are ready to emit the information. First the
6861 directory name table. Here we have to make sure that the first
6862 actually emitted directory name has the index one. Zero is
6863 reserved for the current working directory. Make sure we do not
6864 confuse these indices with the one for the constructed table
6865 (even though most of the time they are identical). */
6866 idx = 1;
6867 idx_offset = dirs[0].length > 0 ? 1 : 0;
6868 for (i = 1 - idx_offset; i < ndirs; ++i)
6869 if (dirs[i].used != 0)
6871 dirs[i].used = idx++;
6872 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
6873 "Directory Entry: 0x%x", dirs[i].used);
6875 dw2_asm_output_data (1, 0, "End directory table");
6877 /* Correct the index for the current working directory entry if it
6878 exists. */
6879 if (idx_offset == 0)
6880 dirs[0].used = 0;
6882 /* Now write all the file names. */
6883 for (i = 1; i < (int) file_table.in_use; ++i)
6885 int file_idx = backmap[i];
6886 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
6888 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
6889 "File Entry: 0x%x", i);
6891 /* Include directory index. */
6892 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
6894 /* Modification time. */
6895 dw2_asm_output_data_uleb128 (0, NULL);
6897 /* File length in bytes. */
6898 dw2_asm_output_data_uleb128 (0, NULL);
6900 dw2_asm_output_data (1, 0, "End file name table");
6904 /* Output the source line number correspondence information. This
6905 information goes into the .debug_line section. */
6907 static void
6908 output_line_info ()
6910 char l1[20], l2[20], p1[20], p2[20];
6911 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
6912 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
6913 unsigned opc;
6914 unsigned n_op_args;
6915 unsigned long lt_index;
6916 unsigned long current_line;
6917 long line_offset;
6918 long line_delta;
6919 unsigned long current_file;
6920 unsigned long function;
6922 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
6923 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
6924 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
6925 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
6927 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
6928 "Length of Source Line Info");
6929 ASM_OUTPUT_LABEL (asm_out_file, l1);
6931 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6933 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
6934 ASM_OUTPUT_LABEL (asm_out_file, p1);
6936 dw2_asm_output_data (1, DWARF_LINE_MIN_INSTR_LENGTH,
6937 "Minimum Instruction Length");
6939 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
6940 "Default is_stmt_start flag");
6942 dw2_asm_output_data (1, DWARF_LINE_BASE,
6943 "Line Base Value (Special Opcodes)");
6945 dw2_asm_output_data (1, DWARF_LINE_RANGE,
6946 "Line Range Value (Special Opcodes)");
6948 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
6949 "Special Opcode Base");
6951 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; ++opc)
6953 switch (opc)
6955 case DW_LNS_advance_pc:
6956 case DW_LNS_advance_line:
6957 case DW_LNS_set_file:
6958 case DW_LNS_set_column:
6959 case DW_LNS_fixed_advance_pc:
6960 n_op_args = 1;
6961 break;
6962 default:
6963 n_op_args = 0;
6964 break;
6967 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
6968 opc, n_op_args);
6971 /* Write out the information about the files we use. */
6972 output_file_names ();
6973 ASM_OUTPUT_LABEL (asm_out_file, p2);
6975 /* We used to set the address register to the first location in the text
6976 section here, but that didn't accomplish anything since we already
6977 have a line note for the opening brace of the first function. */
6979 /* Generate the line number to PC correspondence table, encoded as
6980 a series of state machine operations. */
6981 current_file = 1;
6982 current_line = 1;
6983 strcpy (prev_line_label, text_section_label);
6984 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
6986 dw_line_info_ref line_info = &line_info_table[lt_index];
6988 #if 0
6989 /* Disable this optimization for now; GDB wants to see two line notes
6990 at the beginning of a function so it can find the end of the
6991 prologue. */
6993 /* Don't emit anything for redundant notes. Just updating the
6994 address doesn't accomplish anything, because we already assume
6995 that anything after the last address is this line. */
6996 if (line_info->dw_line_num == current_line
6997 && line_info->dw_file_num == current_file)
6998 continue;
6999 #endif
7001 /* Emit debug info for the address of the current line.
7003 Unfortunately, we have little choice here currently, and must always
7004 use the most general form. Gcc does not know the address delta
7005 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7006 attributes which will give an upper bound on the address range. We
7007 could perhaps use length attributes to determine when it is safe to
7008 use DW_LNS_fixed_advance_pc. */
7010 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7011 if (0)
7013 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7014 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7015 "DW_LNS_fixed_advance_pc");
7016 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7018 else
7020 /* This can handle any delta. This takes
7021 4+DWARF2_ADDR_SIZE bytes. */
7022 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7023 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7024 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7025 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7027 strcpy (prev_line_label, line_label);
7029 /* Emit debug info for the source file of the current line, if
7030 different from the previous line. */
7031 if (line_info->dw_file_num != current_file)
7033 current_file = line_info->dw_file_num;
7034 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7035 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7036 file_table.table[current_file]);
7039 /* Emit debug info for the current line number, choosing the encoding
7040 that uses the least amount of space. */
7041 if (line_info->dw_line_num != current_line)
7043 line_offset = line_info->dw_line_num - current_line;
7044 line_delta = line_offset - DWARF_LINE_BASE;
7045 current_line = line_info->dw_line_num;
7046 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7048 /* This can handle deltas from -10 to 234, using the current
7049 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7050 takes 1 byte. */
7051 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7052 "line %lu", current_line);
7054 else
7056 /* This can handle any delta. This takes at least 4 bytes,
7057 depending on the value being encoded. */
7058 dw2_asm_output_data (1, DW_LNS_advance_line,
7059 "advance to line %lu", current_line);
7060 dw2_asm_output_data_sleb128 (line_offset, NULL);
7061 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7064 else
7066 /* We still need to start a new row, so output a copy insn. */
7067 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7071 /* Emit debug info for the address of the end of the function. */
7072 if (0)
7074 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7075 "DW_LNS_fixed_advance_pc");
7076 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7078 else
7080 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7081 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7082 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7083 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7086 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7087 dw2_asm_output_data_uleb128 (1, NULL);
7088 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7090 function = 0;
7091 current_file = 1;
7092 current_line = 1;
7093 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7095 dw_separate_line_info_ref line_info
7096 = &separate_line_info_table[lt_index];
7098 #if 0
7099 /* Don't emit anything for redundant notes. */
7100 if (line_info->dw_line_num == current_line
7101 && line_info->dw_file_num == current_file
7102 && line_info->function == function)
7103 goto cont;
7104 #endif
7106 /* Emit debug info for the address of the current line. If this is
7107 a new function, or the first line of a function, then we need
7108 to handle it differently. */
7109 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7110 lt_index);
7111 if (function != line_info->function)
7113 function = line_info->function;
7115 /* Set the address register to the first line in the function */
7116 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7117 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7118 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7119 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7121 else
7123 /* ??? See the DW_LNS_advance_pc comment above. */
7124 if (0)
7126 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7127 "DW_LNS_fixed_advance_pc");
7128 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7130 else
7132 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7133 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7134 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7135 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7138 strcpy (prev_line_label, line_label);
7140 /* Emit debug info for the source file of the current line, if
7141 different from the previous line. */
7142 if (line_info->dw_file_num != current_file)
7144 current_file = line_info->dw_file_num;
7145 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7146 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7147 file_table.table[current_file]);
7150 /* Emit debug info for the current line number, choosing the encoding
7151 that uses the least amount of space. */
7152 if (line_info->dw_line_num != current_line)
7154 line_offset = line_info->dw_line_num - current_line;
7155 line_delta = line_offset - DWARF_LINE_BASE;
7156 current_line = line_info->dw_line_num;
7157 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7158 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7159 "line %lu", current_line);
7160 else
7162 dw2_asm_output_data (1, DW_LNS_advance_line,
7163 "advance to line %lu", current_line);
7164 dw2_asm_output_data_sleb128 (line_offset, NULL);
7165 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7168 else
7169 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7171 #if 0
7172 cont:
7173 #endif
7174 ++lt_index;
7176 /* If we're done with a function, end its sequence. */
7177 if (lt_index == separate_line_info_table_in_use
7178 || separate_line_info_table[lt_index].function != function)
7180 current_file = 1;
7181 current_line = 1;
7183 /* Emit debug info for the address of the end of the function. */
7184 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7185 if (0)
7187 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7188 "DW_LNS_fixed_advance_pc");
7189 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7191 else
7193 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7194 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7195 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7196 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7199 /* Output the marker for the end of this sequence. */
7200 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7201 dw2_asm_output_data_uleb128 (1, NULL);
7202 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7206 /* Output the marker for the end of the line number info. */
7207 ASM_OUTPUT_LABEL (asm_out_file, l2);
7210 /* Given a pointer to a tree node for some base type, return a pointer to
7211 a DIE that describes the given type.
7213 This routine must only be called for GCC type nodes that correspond to
7214 Dwarf base (fundamental) types. */
7216 static dw_die_ref
7217 base_type_die (type)
7218 tree type;
7220 dw_die_ref base_type_result;
7221 const char *type_name;
7222 enum dwarf_type encoding;
7223 tree name = TYPE_NAME (type);
7225 if (TREE_CODE (type) == ERROR_MARK
7226 || TREE_CODE (type) == VOID_TYPE)
7227 return 0;
7229 if (name)
7231 if (TREE_CODE (name) == TYPE_DECL)
7232 name = DECL_NAME (name);
7234 type_name = IDENTIFIER_POINTER (name);
7236 else
7237 type_name = "__unknown__";
7239 switch (TREE_CODE (type))
7241 case INTEGER_TYPE:
7242 /* Carefully distinguish the C character types, without messing
7243 up if the language is not C. Note that we check only for the names
7244 that contain spaces; other names might occur by coincidence in other
7245 languages. */
7246 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7247 && (type == char_type_node
7248 || ! strcmp (type_name, "signed char")
7249 || ! strcmp (type_name, "unsigned char"))))
7251 if (TREE_UNSIGNED (type))
7252 encoding = DW_ATE_unsigned;
7253 else
7254 encoding = DW_ATE_signed;
7255 break;
7257 /* else fall through. */
7259 case CHAR_TYPE:
7260 /* GNU Pascal/Ada CHAR type. Not used in C. */
7261 if (TREE_UNSIGNED (type))
7262 encoding = DW_ATE_unsigned_char;
7263 else
7264 encoding = DW_ATE_signed_char;
7265 break;
7267 case REAL_TYPE:
7268 encoding = DW_ATE_float;
7269 break;
7271 /* Dwarf2 doesn't know anything about complex ints, so use
7272 a user defined type for it. */
7273 case COMPLEX_TYPE:
7274 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7275 encoding = DW_ATE_complex_float;
7276 else
7277 encoding = DW_ATE_lo_user;
7278 break;
7280 case BOOLEAN_TYPE:
7281 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7282 encoding = DW_ATE_boolean;
7283 break;
7285 default:
7286 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
7289 base_type_result = new_die (DW_TAG_base_type, comp_unit_die);
7290 if (demangle_name_func)
7291 type_name = (*demangle_name_func) (type_name);
7293 add_AT_string (base_type_result, DW_AT_name, type_name);
7294 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7295 int_size_in_bytes (type));
7296 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7298 return base_type_result;
7301 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7302 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7303 a given type is generally the same as the given type, except that if the
7304 given type is a pointer or reference type, then the root type of the given
7305 type is the root type of the "basis" type for the pointer or reference
7306 type. (This definition of the "root" type is recursive.) Also, the root
7307 type of a `const' qualified type or a `volatile' qualified type is the
7308 root type of the given type without the qualifiers. */
7310 static tree
7311 root_type (type)
7312 tree type;
7314 if (TREE_CODE (type) == ERROR_MARK)
7315 return error_mark_node;
7317 switch (TREE_CODE (type))
7319 case ERROR_MARK:
7320 return error_mark_node;
7322 case POINTER_TYPE:
7323 case REFERENCE_TYPE:
7324 return type_main_variant (root_type (TREE_TYPE (type)));
7326 default:
7327 return type_main_variant (type);
7331 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
7332 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7334 static inline int
7335 is_base_type (type)
7336 tree type;
7338 switch (TREE_CODE (type))
7340 case ERROR_MARK:
7341 case VOID_TYPE:
7342 case INTEGER_TYPE:
7343 case REAL_TYPE:
7344 case COMPLEX_TYPE:
7345 case BOOLEAN_TYPE:
7346 case CHAR_TYPE:
7347 return 1;
7349 case SET_TYPE:
7350 case ARRAY_TYPE:
7351 case RECORD_TYPE:
7352 case UNION_TYPE:
7353 case QUAL_UNION_TYPE:
7354 case ENUMERAL_TYPE:
7355 case FUNCTION_TYPE:
7356 case METHOD_TYPE:
7357 case POINTER_TYPE:
7358 case REFERENCE_TYPE:
7359 case FILE_TYPE:
7360 case OFFSET_TYPE:
7361 case LANG_TYPE:
7362 case VECTOR_TYPE:
7363 return 0;
7365 default:
7366 abort ();
7369 return 0;
7372 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7373 entry that chains various modifiers in front of the given type. */
7375 static dw_die_ref
7376 modified_type_die (type, is_const_type, is_volatile_type, context_die)
7377 tree type;
7378 int is_const_type;
7379 int is_volatile_type;
7380 dw_die_ref context_die;
7382 enum tree_code code = TREE_CODE (type);
7383 dw_die_ref mod_type_die = NULL;
7384 dw_die_ref sub_die = NULL;
7385 tree item_type = NULL;
7387 if (code != ERROR_MARK)
7389 tree qualified_type;
7391 /* See if we already have the appropriately qualified variant of
7392 this type. */
7393 qualified_type
7394 = get_qualified_type (type,
7395 ((is_const_type ? TYPE_QUAL_CONST : 0)
7396 | (is_volatile_type
7397 ? TYPE_QUAL_VOLATILE : 0)));
7398 /* If we do, then we can just use its DIE, if it exists. */
7399 if (qualified_type)
7401 mod_type_die = lookup_type_die (qualified_type);
7402 if (mod_type_die)
7403 return mod_type_die;
7406 /* Handle C typedef types. */
7407 if (qualified_type && TYPE_NAME (qualified_type)
7408 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7409 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7411 tree type_name = TYPE_NAME (qualified_type);
7412 tree dtype = TREE_TYPE (type_name);
7413 if (qualified_type == dtype)
7415 /* For a named type, use the typedef. */
7416 gen_type_die (qualified_type, context_die);
7417 mod_type_die = lookup_type_die (qualified_type);
7420 else if (is_const_type < TYPE_READONLY (dtype)
7421 || is_volatile_type < TYPE_VOLATILE (dtype))
7422 /* cv-unqualified version of named type. Just use the unnamed
7423 type to which it refers. */
7424 mod_type_die
7425 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7426 is_const_type, is_volatile_type,
7427 context_die);
7428 /* Else cv-qualified version of named type; fall through. */
7431 if (mod_type_die)
7432 /* OK. */
7434 else if (is_const_type)
7436 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die);
7437 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7439 else if (is_volatile_type)
7441 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die);
7442 sub_die = modified_type_die (type, 0, 0, context_die);
7444 else if (code == POINTER_TYPE)
7446 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die);
7447 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7448 #if 0
7449 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7450 #endif
7451 item_type = TREE_TYPE (type);
7453 else if (code == REFERENCE_TYPE)
7455 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die);
7456 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7457 #if 0
7458 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7459 #endif
7460 item_type = TREE_TYPE (type);
7462 else if (is_base_type (type))
7463 mod_type_die = base_type_die (type);
7464 else
7466 gen_type_die (type, context_die);
7468 /* We have to get the type_main_variant here (and pass that to the
7469 `lookup_type_die' routine) because the ..._TYPE node we have
7470 might simply be a *copy* of some original type node (where the
7471 copy was created to help us keep track of typedef names) and
7472 that copy might have a different TYPE_UID from the original
7473 ..._TYPE node. */
7474 mod_type_die = lookup_type_die (type_main_variant (type));
7475 if (mod_type_die == NULL)
7476 abort ();
7479 /* We want to equate the qualified type to the die below. */
7480 if (qualified_type)
7481 type = qualified_type;
7484 equate_type_number_to_die (type, mod_type_die);
7485 if (item_type)
7486 /* We must do this after the equate_type_number_to_die call, in case
7487 this is a recursive type. This ensures that the modified_type_die
7488 recursion will terminate even if the type is recursive. Recursive
7489 types are possible in Ada. */
7490 sub_die = modified_type_die (item_type,
7491 TYPE_READONLY (item_type),
7492 TYPE_VOLATILE (item_type),
7493 context_die);
7495 if (sub_die != NULL)
7496 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7498 return mod_type_die;
7501 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7502 an enumerated type. */
7504 static inline int
7505 type_is_enum (type)
7506 tree type;
7508 return TREE_CODE (type) == ENUMERAL_TYPE;
7511 /* Return the register number described by a given RTL node. */
7513 static unsigned int
7514 reg_number (rtl)
7515 rtx rtl;
7517 unsigned regno = REGNO (rtl);
7519 if (regno >= FIRST_PSEUDO_REGISTER)
7520 abort ();
7522 return DBX_REGISTER_NUMBER (regno);
7525 /* Return a location descriptor that designates a machine register or
7526 zero if there is no such. */
7528 static dw_loc_descr_ref
7529 reg_loc_descriptor (rtl)
7530 rtx rtl;
7532 dw_loc_descr_ref loc_result = NULL;
7533 unsigned reg;
7535 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
7536 return 0;
7538 reg = reg_number (rtl);
7539 if (reg <= 31)
7540 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
7541 else
7542 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
7544 return loc_result;
7547 /* Return a location descriptor that designates a constant. */
7549 static dw_loc_descr_ref
7550 int_loc_descriptor (i)
7551 HOST_WIDE_INT i;
7553 enum dwarf_location_atom op;
7555 /* Pick the smallest representation of a constant, rather than just
7556 defaulting to the LEB encoding. */
7557 if (i >= 0)
7559 if (i <= 31)
7560 op = DW_OP_lit0 + i;
7561 else if (i <= 0xff)
7562 op = DW_OP_const1u;
7563 else if (i <= 0xffff)
7564 op = DW_OP_const2u;
7565 else if (HOST_BITS_PER_WIDE_INT == 32
7566 || i <= 0xffffffff)
7567 op = DW_OP_const4u;
7568 else
7569 op = DW_OP_constu;
7571 else
7573 if (i >= -0x80)
7574 op = DW_OP_const1s;
7575 else if (i >= -0x8000)
7576 op = DW_OP_const2s;
7577 else if (HOST_BITS_PER_WIDE_INT == 32
7578 || i >= -0x80000000)
7579 op = DW_OP_const4s;
7580 else
7581 op = DW_OP_consts;
7584 return new_loc_descr (op, i, 0);
7587 /* Return a location descriptor that designates a base+offset location. */
7589 static dw_loc_descr_ref
7590 based_loc_descr (reg, offset)
7591 unsigned reg;
7592 long int offset;
7594 dw_loc_descr_ref loc_result;
7595 /* For the "frame base", we use the frame pointer or stack pointer
7596 registers, since the RTL for local variables is relative to one of
7597 them. */
7598 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
7599 ? HARD_FRAME_POINTER_REGNUM
7600 : STACK_POINTER_REGNUM);
7602 if (reg == fp_reg)
7603 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
7604 else if (reg <= 31)
7605 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
7606 else
7607 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
7609 return loc_result;
7612 /* Return true if this RTL expression describes a base+offset calculation. */
7614 static inline int
7615 is_based_loc (rtl)
7616 rtx rtl;
7618 return (GET_CODE (rtl) == PLUS
7619 && ((GET_CODE (XEXP (rtl, 0)) == REG
7620 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
7621 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
7624 /* The following routine converts the RTL for a variable or parameter
7625 (resident in memory) into an equivalent Dwarf representation of a
7626 mechanism for getting the address of that same variable onto the top of a
7627 hypothetical "address evaluation" stack.
7629 When creating memory location descriptors, we are effectively transforming
7630 the RTL for a memory-resident object into its Dwarf postfix expression
7631 equivalent. This routine recursively descends an RTL tree, turning
7632 it into Dwarf postfix code as it goes.
7634 MODE is the mode of the memory reference, needed to handle some
7635 autoincrement addressing modes.
7637 Return 0 if we can't represent the location. */
7639 static dw_loc_descr_ref
7640 mem_loc_descriptor (rtl, mode)
7641 rtx rtl;
7642 enum machine_mode mode;
7644 dw_loc_descr_ref mem_loc_result = NULL;
7646 /* Note that for a dynamically sized array, the location we will generate a
7647 description of here will be the lowest numbered location which is
7648 actually within the array. That's *not* necessarily the same as the
7649 zeroth element of the array. */
7651 #ifdef ASM_SIMPLIFY_DWARF_ADDR
7652 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
7653 #endif
7655 switch (GET_CODE (rtl))
7657 case POST_INC:
7658 case POST_DEC:
7659 case POST_MODIFY:
7660 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
7661 just fall into the SUBREG code. */
7663 /* Fall through. */
7665 case SUBREG:
7666 /* The case of a subreg may arise when we have a local (register)
7667 variable or a formal (register) parameter which doesn't quite fill
7668 up an entire register. For now, just assume that it is
7669 legitimate to make the Dwarf info refer to the whole register which
7670 contains the given subreg. */
7671 rtl = SUBREG_REG (rtl);
7673 /* Fall through. */
7675 case REG:
7676 /* Whenever a register number forms a part of the description of the
7677 method for calculating the (dynamic) address of a memory resident
7678 object, DWARF rules require the register number be referred to as
7679 a "base register". This distinction is not based in any way upon
7680 what category of register the hardware believes the given register
7681 belongs to. This is strictly DWARF terminology we're dealing with
7682 here. Note that in cases where the location of a memory-resident
7683 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
7684 OP_CONST (0)) the actual DWARF location descriptor that we generate
7685 may just be OP_BASEREG (basereg). This may look deceptively like
7686 the object in question was allocated to a register (rather than in
7687 memory) so DWARF consumers need to be aware of the subtle
7688 distinction between OP_REG and OP_BASEREG. */
7689 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
7690 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
7691 break;
7693 case MEM:
7694 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
7695 if (mem_loc_result != 0)
7696 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
7697 break;
7699 case LABEL_REF:
7700 /* Some ports can transform a symbol ref into a label ref, because
7701 the symbol ref is too far away and has to be dumped into a constant
7702 pool. */
7703 case CONST:
7704 case SYMBOL_REF:
7705 /* Alternatively, the symbol in the constant pool might be referenced
7706 by a different symbol. */
7707 if (GET_CODE (rtl) == SYMBOL_REF
7708 && CONSTANT_POOL_ADDRESS_P (rtl))
7710 rtx tmp = get_pool_constant (rtl);
7711 if (GET_CODE (tmp) == SYMBOL_REF)
7712 rtl = tmp;
7715 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
7716 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
7717 mem_loc_result->dw_loc_oprnd1.v.val_addr = save_rtx (rtl);
7718 break;
7720 case PRE_MODIFY:
7721 /* Extract the PLUS expression nested inside and fall into
7722 PLUS code below. */
7723 rtl = XEXP (rtl, 1);
7724 goto plus;
7726 case PRE_INC:
7727 case PRE_DEC:
7728 /* Turn these into a PLUS expression and fall into the PLUS code
7729 below. */
7730 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
7731 GEN_INT (GET_CODE (rtl) == PRE_INC
7732 ? GET_MODE_UNIT_SIZE (mode)
7733 : -GET_MODE_UNIT_SIZE (mode)));
7735 /* Fall through. */
7737 case PLUS:
7738 plus:
7739 if (is_based_loc (rtl))
7740 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
7741 INTVAL (XEXP (rtl, 1)));
7742 else
7744 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
7745 if (mem_loc_result == 0)
7746 break;
7748 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
7749 && INTVAL (XEXP (rtl, 1)) >= 0)
7750 add_loc_descr (&mem_loc_result,
7751 new_loc_descr (DW_OP_plus_uconst,
7752 INTVAL (XEXP (rtl, 1)), 0));
7753 else
7755 add_loc_descr (&mem_loc_result,
7756 mem_loc_descriptor (XEXP (rtl, 1), mode));
7757 add_loc_descr (&mem_loc_result,
7758 new_loc_descr (DW_OP_plus, 0, 0));
7761 break;
7763 case MULT:
7765 /* If a pseudo-reg is optimized away, it is possible for it to
7766 be replaced with a MEM containing a multiply. */
7767 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
7768 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
7770 if (op0 == 0 || op1 == 0)
7771 break;
7773 mem_loc_result = op0;
7774 add_loc_descr (&mem_loc_result, op1);
7775 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
7776 break;
7779 case CONST_INT:
7780 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
7781 break;
7783 default:
7784 abort ();
7787 return mem_loc_result;
7790 /* Return a descriptor that describes the concatenation of two locations.
7791 This is typically a complex variable. */
7793 static dw_loc_descr_ref
7794 concat_loc_descriptor (x0, x1)
7795 rtx x0, x1;
7797 dw_loc_descr_ref cc_loc_result = NULL;
7798 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
7799 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
7801 if (x0_ref == 0 || x1_ref == 0)
7802 return 0;
7804 cc_loc_result = x0_ref;
7805 add_loc_descr (&cc_loc_result,
7806 new_loc_descr (DW_OP_piece,
7807 GET_MODE_SIZE (GET_MODE (x0)), 0));
7809 add_loc_descr (&cc_loc_result, x1_ref);
7810 add_loc_descr (&cc_loc_result,
7811 new_loc_descr (DW_OP_piece,
7812 GET_MODE_SIZE (GET_MODE (x1)), 0));
7814 return cc_loc_result;
7817 /* Output a proper Dwarf location descriptor for a variable or parameter
7818 which is either allocated in a register or in a memory location. For a
7819 register, we just generate an OP_REG and the register number. For a
7820 memory location we provide a Dwarf postfix expression describing how to
7821 generate the (dynamic) address of the object onto the address stack.
7823 If we don't know how to describe it, return 0. */
7825 static dw_loc_descr_ref
7826 loc_descriptor (rtl)
7827 rtx rtl;
7829 dw_loc_descr_ref loc_result = NULL;
7831 switch (GET_CODE (rtl))
7833 case SUBREG:
7834 /* The case of a subreg may arise when we have a local (register)
7835 variable or a formal (register) parameter which doesn't quite fill
7836 up an entire register. For now, just assume that it is
7837 legitimate to make the Dwarf info refer to the whole register which
7838 contains the given subreg. */
7839 rtl = SUBREG_REG (rtl);
7841 /* Fall through. */
7843 case REG:
7844 loc_result = reg_loc_descriptor (rtl);
7845 break;
7847 case MEM:
7848 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
7849 break;
7851 case CONCAT:
7852 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
7853 break;
7855 default:
7856 abort ();
7859 return loc_result;
7862 /* Similar, but generate the descriptor from trees instead of rtl.
7863 This comes up particularly with variable length arrays. If ADDRESSP
7864 is nonzero, we are looking for an address. Otherwise, we return a
7865 value. If we can't find a value, return 0. */
7867 static dw_loc_descr_ref
7868 loc_descriptor_from_tree (loc, addressp)
7869 tree loc;
7870 int addressp;
7872 dw_loc_descr_ref ret, ret1;
7873 int indirect_p = 0;
7874 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
7875 enum dwarf_location_atom op;
7877 /* ??? Most of the time we do not take proper care for sign/zero
7878 extending the values properly. Hopefully this won't be a real
7879 problem... */
7881 switch (TREE_CODE (loc))
7883 case ERROR_MARK:
7884 return 0;
7886 case WITH_RECORD_EXPR:
7887 case PLACEHOLDER_EXPR:
7888 /* This case involves extracting fields from an object to determine the
7889 position of other fields. We don't try to encode this here. The
7890 only user of this is Ada, which encodes the needed information using
7891 the names of types. */
7892 return 0;
7894 case VAR_DECL:
7895 case PARM_DECL:
7897 rtx rtl = rtl_for_decl_location (loc);
7898 enum machine_mode mode = GET_MODE (rtl);
7900 if (rtl == NULL_RTX)
7901 return 0;
7902 else if (CONSTANT_P (rtl))
7904 ret = new_loc_descr (DW_OP_addr, 0, 0);
7905 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
7906 ret->dw_loc_oprnd1.v.val_addr = rtl;
7907 indirect_p = 1;
7909 else
7911 if (GET_CODE (rtl) == MEM)
7913 indirect_p = 1;
7914 rtl = XEXP (rtl, 0);
7916 ret = mem_loc_descriptor (rtl, mode);
7919 break;
7921 case INDIRECT_REF:
7922 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7923 indirect_p = 1;
7924 break;
7926 case COMPOUND_EXPR:
7927 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
7929 case NOP_EXPR:
7930 case CONVERT_EXPR:
7931 case NON_LVALUE_EXPR:
7932 case VIEW_CONVERT_EXPR:
7933 case SAVE_EXPR:
7934 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
7936 case COMPONENT_REF:
7937 case BIT_FIELD_REF:
7938 case ARRAY_REF:
7939 case ARRAY_RANGE_REF:
7941 tree obj, offset;
7942 HOST_WIDE_INT bitsize, bitpos, bytepos;
7943 enum machine_mode mode;
7944 int volatilep;
7946 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
7947 &unsignedp, &volatilep);
7949 if (obj == loc)
7950 return 0;
7952 ret = loc_descriptor_from_tree (obj, 1);
7953 if (ret == 0
7954 || bitpos % BITS_PER_UNIT != 0
7955 || bitsize % BITS_PER_UNIT != 0)
7956 return 0;
7958 if (offset != NULL_TREE)
7960 /* Variable offset. */
7961 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
7962 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
7965 if (!addressp)
7966 indirect_p = 1;
7968 bytepos = bitpos / BITS_PER_UNIT;
7969 if (bytepos > 0)
7970 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
7971 else if (bytepos < 0)
7973 add_loc_descr (&ret, int_loc_descriptor (bytepos));
7974 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
7976 break;
7979 case INTEGER_CST:
7980 if (host_integerp (loc, 0))
7981 ret = int_loc_descriptor (tree_low_cst (loc, 0));
7982 else
7983 return 0;
7984 break;
7986 case BIT_AND_EXPR:
7987 op = DW_OP_and;
7988 goto do_binop;
7990 case BIT_XOR_EXPR:
7991 op = DW_OP_xor;
7992 goto do_binop;
7994 case BIT_IOR_EXPR:
7995 op = DW_OP_or;
7996 goto do_binop;
7998 case TRUNC_DIV_EXPR:
7999 op = DW_OP_div;
8000 goto do_binop;
8002 case MINUS_EXPR:
8003 op = DW_OP_minus;
8004 goto do_binop;
8006 case TRUNC_MOD_EXPR:
8007 op = DW_OP_mod;
8008 goto do_binop;
8010 case MULT_EXPR:
8011 op = DW_OP_mul;
8012 goto do_binop;
8014 case LSHIFT_EXPR:
8015 op = DW_OP_shl;
8016 goto do_binop;
8018 case RSHIFT_EXPR:
8019 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8020 goto do_binop;
8022 case PLUS_EXPR:
8023 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8024 && host_integerp (TREE_OPERAND (loc, 1), 0))
8026 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8027 if (ret == 0)
8028 return 0;
8030 add_loc_descr (&ret,
8031 new_loc_descr (DW_OP_plus_uconst,
8032 tree_low_cst (TREE_OPERAND (loc, 1),
8034 0));
8035 break;
8038 op = DW_OP_plus;
8039 goto do_binop;
8040 case LE_EXPR:
8041 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8042 return 0;
8044 op = DW_OP_le;
8045 goto do_binop;
8047 case GE_EXPR:
8048 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8049 return 0;
8051 op = DW_OP_ge;
8052 goto do_binop;
8054 case LT_EXPR:
8055 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8056 return 0;
8058 op = DW_OP_lt;
8059 goto do_binop;
8061 case GT_EXPR:
8062 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8063 return 0;
8065 op = DW_OP_gt;
8066 goto do_binop;
8068 case EQ_EXPR:
8069 op = DW_OP_eq;
8070 goto do_binop;
8072 case NE_EXPR:
8073 op = DW_OP_ne;
8074 goto do_binop;
8076 do_binop:
8077 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8078 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8079 if (ret == 0 || ret1 == 0)
8080 return 0;
8082 add_loc_descr (&ret, ret1);
8083 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8084 break;
8086 case BIT_NOT_EXPR:
8087 op = DW_OP_not;
8088 goto do_unop;
8090 case ABS_EXPR:
8091 op = DW_OP_abs;
8092 goto do_unop;
8094 case NEGATE_EXPR:
8095 op = DW_OP_neg;
8096 goto do_unop;
8098 do_unop:
8099 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8100 if (ret == 0)
8101 return 0;
8103 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8104 break;
8106 case MAX_EXPR:
8107 loc = build (COND_EXPR, TREE_TYPE (loc),
8108 build (LT_EXPR, integer_type_node,
8109 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8110 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8111 /* FALLTHRU */
8113 case COND_EXPR:
8115 dw_loc_descr_ref lhs
8116 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8117 dw_loc_descr_ref rhs
8118 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8119 dw_loc_descr_ref bra_node, jump_node, tmp;
8121 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8122 if (ret == 0 || lhs == 0 || rhs == 0)
8123 return 0;
8125 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8126 add_loc_descr (&ret, bra_node);
8128 add_loc_descr (&ret, rhs);
8129 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8130 add_loc_descr (&ret, jump_node);
8132 add_loc_descr (&ret, lhs);
8133 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8134 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8136 /* ??? Need a node to point the skip at. Use a nop. */
8137 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8138 add_loc_descr (&ret, tmp);
8139 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8140 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8142 break;
8144 default:
8145 abort ();
8148 /* Show if we can't fill the request for an address. */
8149 if (addressp && indirect_p == 0)
8150 return 0;
8152 /* If we've got an address and don't want one, dereference. */
8153 if (!addressp && indirect_p > 0)
8155 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8157 if (size > DWARF2_ADDR_SIZE || size == -1)
8158 return 0;
8159 if (size == DWARF2_ADDR_SIZE)
8160 op = DW_OP_deref;
8161 else
8162 op = DW_OP_deref_size;
8164 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8167 return ret;
8170 /* Given a value, round it up to the lowest multiple of `boundary'
8171 which is not less than the value itself. */
8173 static inline HOST_WIDE_INT
8174 ceiling (value, boundary)
8175 HOST_WIDE_INT value;
8176 unsigned int boundary;
8178 return (((value + boundary - 1) / boundary) * boundary);
8181 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8182 pointer to the declared type for the relevant field variable, or return
8183 `integer_type_node' if the given node turns out to be an
8184 ERROR_MARK node. */
8186 static inline tree
8187 field_type (decl)
8188 tree decl;
8190 tree type;
8192 if (TREE_CODE (decl) == ERROR_MARK)
8193 return integer_type_node;
8195 type = DECL_BIT_FIELD_TYPE (decl);
8196 if (type == NULL_TREE)
8197 type = TREE_TYPE (decl);
8199 return type;
8202 /* Given a pointer to a tree node, return the alignment in bits for
8203 it, or else return BITS_PER_WORD if the node actually turns out to
8204 be an ERROR_MARK node. */
8206 static inline unsigned
8207 simple_type_align_in_bits (type)
8208 tree type;
8210 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8213 static inline unsigned
8214 simple_decl_align_in_bits (decl)
8215 tree decl;
8217 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8220 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8221 node, return the size in bits for the type if it is a constant, or else
8222 return the alignment for the type if the type's size is not constant, or
8223 else return BITS_PER_WORD if the type actually turns out to be an
8224 ERROR_MARK node. */
8226 static inline unsigned HOST_WIDE_INT
8227 simple_type_size_in_bits (type)
8228 tree type;
8230 tree type_size_tree;
8232 if (TREE_CODE (type) == ERROR_MARK)
8233 return BITS_PER_WORD;
8234 type_size_tree = TYPE_SIZE (type);
8236 if (type_size_tree == NULL_TREE)
8237 return 0;
8238 if (! host_integerp (type_size_tree, 1))
8239 return TYPE_ALIGN (type);
8240 return tree_low_cst (type_size_tree, 1);
8243 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
8244 return the byte offset of the lowest addressed byte of the "containing
8245 object" for the given FIELD_DECL, or return 0 if we are unable to
8246 determine what that offset is, either because the argument turns out to
8247 be a pointer to an ERROR_MARK node, or because the offset is actually
8248 variable. (We can't handle the latter case just yet). */
8250 static HOST_WIDE_INT
8251 field_byte_offset (decl)
8252 tree decl;
8254 unsigned int type_align_in_bits;
8255 unsigned int decl_align_in_bits;
8256 unsigned HOST_WIDE_INT type_size_in_bits;
8257 HOST_WIDE_INT object_offset_in_bits;
8258 HOST_WIDE_INT object_offset_in_bytes;
8259 tree type;
8260 tree field_size_tree;
8261 HOST_WIDE_INT bitpos_int;
8262 HOST_WIDE_INT deepest_bitpos;
8263 unsigned HOST_WIDE_INT field_size_in_bits;
8265 if (TREE_CODE (decl) == ERROR_MARK)
8266 return 0;
8268 if (TREE_CODE (decl) != FIELD_DECL)
8269 abort ();
8271 type = field_type (decl);
8272 field_size_tree = DECL_SIZE (decl);
8274 /* The size could be unspecified if there was an error, or for
8275 a flexible array member. */
8276 if (! field_size_tree)
8277 field_size_tree = bitsize_zero_node;
8279 /* We cannot yet cope with fields whose positions are variable, so
8280 for now, when we see such things, we simply return 0. Someday, we may
8281 be able to handle such cases, but it will be damn difficult. */
8282 if (! host_integerp (bit_position (decl), 0))
8283 return 0;
8285 bitpos_int = int_bit_position (decl);
8287 /* If we don't know the size of the field, pretend it's a full word. */
8288 if (host_integerp (field_size_tree, 1))
8289 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8290 else
8291 field_size_in_bits = BITS_PER_WORD;
8293 type_size_in_bits = simple_type_size_in_bits (type);
8294 type_align_in_bits = simple_type_align_in_bits (type);
8295 decl_align_in_bits = simple_decl_align_in_bits (decl);
8297 /* Note that the GCC front-end doesn't make any attempt to keep track of
8298 the starting bit offset (relative to the start of the containing
8299 structure type) of the hypothetical "containing object" for a bit-
8300 field. Thus, when computing the byte offset value for the start of the
8301 "containing object" of a bit-field, we must deduce this information on
8302 our own. This can be rather tricky to do in some cases. For example,
8303 handling the following structure type definition when compiling for an
8304 i386/i486 target (which only aligns long long's to 32-bit boundaries)
8305 can be very tricky:
8307 struct S { int field1; long long field2:31; };
8309 Fortunately, there is a simple rule-of-thumb which can be
8310 used in such cases. When compiling for an i386/i486, GCC will allocate
8311 8 bytes for the structure shown above. It decides to do this based upon
8312 one simple rule for bit-field allocation. Quite simply, GCC allocates
8313 each "containing object" for each bit-field at the first (i.e. lowest
8314 addressed) legitimate alignment boundary (based upon the required
8315 minimum alignment for the declared type of the field) which it can
8316 possibly use, subject to the condition that there is still enough
8317 available space remaining in the containing object (when allocated at
8318 the selected point) to fully accommodate all of the bits of the
8319 bit-field itself. This simple rule makes it obvious why GCC allocates
8320 8 bytes for each object of the structure type shown above. When looking
8321 for a place to allocate the "containing object" for `field2', the
8322 compiler simply tries to allocate a 64-bit "containing object" at each
8323 successive 32-bit boundary (starting at zero) until it finds a place to
8324 allocate that 64- bit field such that at least 31 contiguous (and
8325 previously unallocated) bits remain within that selected 64 bit field.
8326 (As it turns out, for the example above, the compiler finds that it is
8327 OK to allocate the "containing object" 64-bit field at bit-offset zero
8328 within the structure type.) Here we attempt to work backwards from the
8329 limited set of facts we're given, and we try to deduce from those facts,
8330 where GCC must have believed that the containing object started (within
8331 the structure type). The value we deduce is then used (by the callers of
8332 this routine) to generate DW_AT_location and DW_AT_bit_offset attributes
8333 for fields (both bit-fields and, in the case of DW_AT_location, regular
8334 fields as well). */
8336 /* Figure out the bit-distance from the start of the structure to the
8337 "deepest" bit of the bit-field. */
8338 deepest_bitpos = bitpos_int + field_size_in_bits;
8340 /* This is the tricky part. Use some fancy footwork to deduce where the
8341 lowest addressed bit of the containing object must be. */
8342 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8344 /* Round up to type_align by default. This works best for bitfields. */
8345 object_offset_in_bits += type_align_in_bits - 1;
8346 object_offset_in_bits /= type_align_in_bits;
8347 object_offset_in_bits *= type_align_in_bits;
8349 if (object_offset_in_bits > bitpos_int)
8351 /* Sigh, the decl must be packed. */
8352 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8354 /* Round up to decl_align instead. */
8355 object_offset_in_bits += decl_align_in_bits - 1;
8356 object_offset_in_bits /= decl_align_in_bits;
8357 object_offset_in_bits *= decl_align_in_bits;
8360 object_offset_in_bytes = object_offset_in_bits / BITS_PER_UNIT;
8362 return object_offset_in_bytes;
8365 /* The following routines define various Dwarf attributes and any data
8366 associated with them. */
8368 /* Add a location description attribute value to a DIE.
8370 This emits location attributes suitable for whole variables and
8371 whole parameters. Note that the location attributes for struct fields are
8372 generated by the routine `data_member_location_attribute' below. */
8374 static void
8375 add_AT_location_description (die, attr_kind, rtl)
8376 dw_die_ref die;
8377 enum dwarf_attribute attr_kind;
8378 rtx rtl;
8380 dw_loc_descr_ref descr = loc_descriptor (rtl);
8382 if (descr != 0)
8383 add_AT_loc (die, attr_kind, descr);
8386 /* Attach the specialized form of location attribute used for data
8387 members of struct and union types. In the special case of a
8388 FIELD_DECL node which represents a bit-field, the "offset" part
8389 of this special location descriptor must indicate the distance
8390 in bytes from the lowest-addressed byte of the containing struct
8391 or union type to the lowest-addressed byte of the "containing
8392 object" for the bit-field. (See the `field_byte_offset' function
8393 above).. For any given bit-field, the "containing object" is a
8394 hypothetical object (of some integral or enum type) within which
8395 the given bit-field lives. The type of this hypothetical
8396 "containing object" is always the same as the declared type of
8397 the individual bit-field itself (for GCC anyway... the DWARF
8398 spec doesn't actually mandate this). Note that it is the size
8399 (in bytes) of the hypothetical "containing object" which will
8400 be given in the DW_AT_byte_size attribute for this bit-field.
8401 (See the `byte_size_attribute' function below.) It is also used
8402 when calculating the value of the DW_AT_bit_offset attribute.
8403 (See the `bit_offset_attribute' function below). */
8405 static void
8406 add_data_member_location_attribute (die, decl)
8407 dw_die_ref die;
8408 tree decl;
8410 unsigned long offset;
8411 dw_loc_descr_ref loc_descr;
8412 enum dwarf_location_atom op;
8414 if (TREE_CODE (decl) == TREE_VEC)
8415 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
8416 else
8417 offset = field_byte_offset (decl);
8419 /* The DWARF2 standard says that we should assume that the structure address
8420 is already on the stack, so we can specify a structure field address
8421 by using DW_OP_plus_uconst. */
8423 #ifdef MIPS_DEBUGGING_INFO
8424 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst operator
8425 correctly. It works only if we leave the offset on the stack. */
8426 op = DW_OP_constu;
8427 #else
8428 op = DW_OP_plus_uconst;
8429 #endif
8431 loc_descr = new_loc_descr (op, offset, 0);
8432 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
8435 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
8436 does not have a "location" either in memory or in a register. These
8437 things can arise in GNU C when a constant is passed as an actual parameter
8438 to an inlined function. They can also arise in C++ where declared
8439 constants do not necessarily get memory "homes". */
8441 static void
8442 add_const_value_attribute (die, rtl)
8443 dw_die_ref die;
8444 rtx rtl;
8446 switch (GET_CODE (rtl))
8448 case CONST_INT:
8449 /* Note that a CONST_INT rtx could represent either an integer
8450 or a floating-point constant. A CONST_INT is used whenever
8451 the constant will fit into a single word. In all such
8452 cases, the original mode of the constant value is wiped
8453 out, and the CONST_INT rtx is assigned VOIDmode. */
8455 HOST_WIDE_INT val = INTVAL (rtl);
8457 /* ??? We really should be using HOST_WIDE_INT throughout. */
8458 if (val < 0 && (long) val == val)
8459 add_AT_int (die, DW_AT_const_value, (long) val);
8460 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
8461 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
8462 else
8464 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
8465 add_AT_long_long (die, DW_AT_const_value,
8466 val >> HOST_BITS_PER_LONG, val);
8467 #else
8468 abort ();
8469 #endif
8472 break;
8474 case CONST_DOUBLE:
8475 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
8476 floating-point constant. A CONST_DOUBLE is used whenever the
8477 constant requires more than one word in order to be adequately
8478 represented. We output CONST_DOUBLEs as blocks. */
8480 enum machine_mode mode = GET_MODE (rtl);
8482 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
8484 unsigned length = GET_MODE_SIZE (mode) / 4;
8485 long *array = (long *) xmalloc (sizeof (long) * length);
8486 REAL_VALUE_TYPE rv;
8488 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
8489 switch (mode)
8491 case SFmode:
8492 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
8493 break;
8495 case DFmode:
8496 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
8497 break;
8499 case XFmode:
8500 case TFmode:
8501 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
8502 break;
8504 default:
8505 abort ();
8508 add_AT_float (die, DW_AT_const_value, length, array);
8510 else
8512 /* ??? We really should be using HOST_WIDE_INT throughout. */
8513 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
8514 abort ();
8515 add_AT_long_long (die, DW_AT_const_value,
8516 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
8519 break;
8521 case CONST_STRING:
8522 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
8523 break;
8525 case SYMBOL_REF:
8526 case LABEL_REF:
8527 case CONST:
8528 add_AT_addr (die, DW_AT_const_value, save_rtx (rtl));
8529 break;
8531 case PLUS:
8532 /* In cases where an inlined instance of an inline function is passed
8533 the address of an `auto' variable (which is local to the caller) we
8534 can get a situation where the DECL_RTL of the artificial local
8535 variable (for the inlining) which acts as a stand-in for the
8536 corresponding formal parameter (of the inline function) will look
8537 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
8538 exactly a compile-time constant expression, but it isn't the address
8539 of the (artificial) local variable either. Rather, it represents the
8540 *value* which the artificial local variable always has during its
8541 lifetime. We currently have no way to represent such quasi-constant
8542 values in Dwarf, so for now we just punt and generate nothing. */
8543 break;
8545 default:
8546 /* No other kinds of rtx should be possible here. */
8547 abort ();
8552 static rtx
8553 rtl_for_decl_location (decl)
8554 tree decl;
8556 rtx rtl;
8558 /* Here we have to decide where we are going to say the parameter "lives"
8559 (as far as the debugger is concerned). We only have a couple of
8560 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
8562 DECL_RTL normally indicates where the parameter lives during most of the
8563 activation of the function. If optimization is enabled however, this
8564 could be either NULL or else a pseudo-reg. Both of those cases indicate
8565 that the parameter doesn't really live anywhere (as far as the code
8566 generation parts of GCC are concerned) during most of the function's
8567 activation. That will happen (for example) if the parameter is never
8568 referenced within the function.
8570 We could just generate a location descriptor here for all non-NULL
8571 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
8572 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
8573 where DECL_RTL is NULL or is a pseudo-reg.
8575 Note however that we can only get away with using DECL_INCOMING_RTL as
8576 a backup substitute for DECL_RTL in certain limited cases. In cases
8577 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
8578 we can be sure that the parameter was passed using the same type as it is
8579 declared to have within the function, and that its DECL_INCOMING_RTL
8580 points us to a place where a value of that type is passed.
8582 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
8583 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
8584 because in these cases DECL_INCOMING_RTL points us to a value of some
8585 type which is *different* from the type of the parameter itself. Thus,
8586 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
8587 such cases, the debugger would end up (for example) trying to fetch a
8588 `float' from a place which actually contains the first part of a
8589 `double'. That would lead to really incorrect and confusing
8590 output at debug-time.
8592 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
8593 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
8594 are a couple of exceptions however. On little-endian machines we can
8595 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
8596 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
8597 an integral type that is smaller than TREE_TYPE (decl). These cases arise
8598 when (on a little-endian machine) a non-prototyped function has a
8599 parameter declared to be of type `short' or `char'. In such cases,
8600 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
8601 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
8602 passed `int' value. If the debugger then uses that address to fetch
8603 a `short' or a `char' (on a little-endian machine) the result will be
8604 the correct data, so we allow for such exceptional cases below.
8606 Note that our goal here is to describe the place where the given formal
8607 parameter lives during most of the function's activation (i.e. between
8608 the end of the prologue and the start of the epilogue). We'll do that
8609 as best as we can. Note however that if the given formal parameter is
8610 modified sometime during the execution of the function, then a stack
8611 backtrace (at debug-time) will show the function as having been
8612 called with the *new* value rather than the value which was
8613 originally passed in. This happens rarely enough that it is not
8614 a major problem, but it *is* a problem, and I'd like to fix it.
8616 A future version of dwarf2out.c may generate two additional
8617 attributes for any given DW_TAG_formal_parameter DIE which will
8618 describe the "passed type" and the "passed location" for the
8619 given formal parameter in addition to the attributes we now
8620 generate to indicate the "declared type" and the "active
8621 location" for each parameter. This additional set of attributes
8622 could be used by debuggers for stack backtraces. Separately, note
8623 that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be
8624 NULL also. This happens (for example) for inlined-instances of
8625 inline function formal parameters which are never referenced.
8626 This really shouldn't be happening. All PARM_DECL nodes should
8627 get valid non-NULL DECL_INCOMING_RTL values, but integrate.c
8628 doesn't currently generate these values for inlined instances of
8629 inline function parameters, so when we see such cases, we are
8630 just out-of-luck for the time being (until integrate.c
8631 gets fixed). */
8633 /* Use DECL_RTL as the "location" unless we find something better. */
8634 rtl = DECL_RTL_IF_SET (decl);
8636 if (TREE_CODE (decl) == PARM_DECL)
8638 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
8640 tree declared_type = type_main_variant (TREE_TYPE (decl));
8641 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
8643 /* This decl represents a formal parameter which was optimized out.
8644 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
8645 all* cases where (rtl == NULL_RTX) just below. */
8646 if (declared_type == passed_type)
8647 rtl = DECL_INCOMING_RTL (decl);
8648 else if (! BYTES_BIG_ENDIAN
8649 && TREE_CODE (declared_type) == INTEGER_TYPE
8650 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
8651 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
8652 rtl = DECL_INCOMING_RTL (decl);
8655 /* If the parm was passed in registers, but lives on the stack, then
8656 make a big endian correction if the mode of the type of the
8657 parameter is not the same as the mode of the rtl. */
8658 /* ??? This is the same series of checks that are made in dbxout.c before
8659 we reach the big endian correction code there. It isn't clear if all
8660 of these checks are necessary here, but keeping them all is the safe
8661 thing to do. */
8662 else if (GET_CODE (rtl) == MEM
8663 && XEXP (rtl, 0) != const0_rtx
8664 && ! CONSTANT_P (XEXP (rtl, 0))
8665 /* Not passed in memory. */
8666 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
8667 /* Not passed by invisible reference. */
8668 && (GET_CODE (XEXP (rtl, 0)) != REG
8669 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
8670 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
8671 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
8672 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
8673 #endif
8675 /* Big endian correction check. */
8676 && BYTES_BIG_ENDIAN
8677 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
8678 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
8679 < UNITS_PER_WORD))
8681 int offset = (UNITS_PER_WORD
8682 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
8683 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
8684 plus_constant (XEXP (rtl, 0), offset));
8688 if (rtl != NULL_RTX)
8690 rtl = eliminate_regs (rtl, 0, NULL_RTX);
8691 #ifdef LEAF_REG_REMAP
8692 if (current_function_uses_only_leaf_regs)
8693 leaf_renumber_regs_insn (rtl);
8694 #endif
8697 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time
8698 constant, and will have been substituted directly into all
8699 expressions that use it. C does not have such a concept, but
8700 C++ and other languages do. */
8701 else if (DECL_INITIAL (decl))
8703 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
8704 EXPAND_INITIALIZER);
8707 return rtl;
8710 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
8711 data attribute for a variable or a parameter. We generate the
8712 DW_AT_const_value attribute only in those cases where the given variable
8713 or parameter does not have a true "location" either in memory or in a
8714 register. This can happen (for example) when a constant is passed as an
8715 actual argument in a call to an inline function. (It's possible that
8716 these things can crop up in other ways also.) Note that one type of
8717 constant value which can be passed into an inlined function is a constant
8718 pointer. This can happen for example if an actual argument in an inlined
8719 function call evaluates to a compile-time constant address. */
8721 static void
8722 add_location_or_const_value_attribute (die, decl)
8723 dw_die_ref die;
8724 tree decl;
8726 rtx rtl;
8728 if (TREE_CODE (decl) == ERROR_MARK)
8729 return;
8731 if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
8732 abort ();
8734 rtl = rtl_for_decl_location (decl);
8735 if (rtl == NULL_RTX)
8736 return;
8738 /* If we don't look past the constant pool, we risk emitting a
8739 reference to a constant pool entry that isn't referenced from
8740 code, and thus is not emitted. */
8741 rtl = avoid_constant_pool_reference (rtl);
8743 switch (GET_CODE (rtl))
8745 case ADDRESSOF:
8746 /* The address of a variable that was optimized away; don't emit
8747 anything. */
8748 break;
8750 case CONST_INT:
8751 case CONST_DOUBLE:
8752 case CONST_STRING:
8753 case SYMBOL_REF:
8754 case LABEL_REF:
8755 case CONST:
8756 case PLUS:
8757 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
8758 add_const_value_attribute (die, rtl);
8759 break;
8761 case MEM:
8762 case REG:
8763 case SUBREG:
8764 case CONCAT:
8765 add_AT_location_description (die, DW_AT_location, rtl);
8766 break;
8768 default:
8769 abort ();
8773 /* If we don't have a copy of this variable in memory for some reason (such
8774 as a C++ member constant that doesn't have an out-of-line definition),
8775 we should tell the debugger about the constant value. */
8777 static void
8778 tree_add_const_value_attribute (var_die, decl)
8779 dw_die_ref var_die;
8780 tree decl;
8782 tree init = DECL_INITIAL (decl);
8783 tree type = TREE_TYPE (decl);
8785 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
8786 && initializer_constant_valid_p (init, type) == null_pointer_node)
8787 /* OK */;
8788 else
8789 return;
8791 switch (TREE_CODE (type))
8793 case INTEGER_TYPE:
8794 if (host_integerp (init, 0))
8795 add_AT_unsigned (var_die, DW_AT_const_value,
8796 TREE_INT_CST_LOW (init));
8797 else
8798 add_AT_long_long (var_die, DW_AT_const_value,
8799 TREE_INT_CST_HIGH (init),
8800 TREE_INT_CST_LOW (init));
8801 break;
8803 default:;
8807 /* Generate an DW_AT_name attribute given some string value to be included as
8808 the value of the attribute. */
8810 static inline void
8811 add_name_attribute (die, name_string)
8812 dw_die_ref die;
8813 const char *name_string;
8815 if (name_string != NULL && *name_string != 0)
8817 if (demangle_name_func)
8818 name_string = (*demangle_name_func) (name_string);
8820 add_AT_string (die, DW_AT_name, name_string);
8824 /* Given a tree node describing an array bound (either lower or upper) output
8825 a representation for that bound. */
8827 static void
8828 add_bound_info (subrange_die, bound_attr, bound)
8829 dw_die_ref subrange_die;
8830 enum dwarf_attribute bound_attr;
8831 tree bound;
8833 switch (TREE_CODE (bound))
8835 case ERROR_MARK:
8836 return;
8838 /* All fixed-bounds are represented by INTEGER_CST nodes. */
8839 case INTEGER_CST:
8840 if (! host_integerp (bound, 0)
8841 || (bound_attr == DW_AT_lower_bound
8842 && (((is_c_family () || is_java ()) && integer_zerop (bound))
8843 || (is_fortran () && integer_onep (bound)))))
8844 /* use the default */
8846 else
8847 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
8848 break;
8850 case CONVERT_EXPR:
8851 case NOP_EXPR:
8852 case NON_LVALUE_EXPR:
8853 case VIEW_CONVERT_EXPR:
8854 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
8855 break;
8857 case SAVE_EXPR:
8858 /* If optimization is turned on, the SAVE_EXPRs that describe how to
8859 access the upper bound values may be bogus. If they refer to a
8860 register, they may only describe how to get at these values at the
8861 points in the generated code right after they have just been
8862 computed. Worse yet, in the typical case, the upper bound values
8863 will not even *be* computed in the optimized code (though the
8864 number of elements will), so these SAVE_EXPRs are entirely
8865 bogus. In order to compensate for this fact, we check here to see
8866 if optimization is enabled, and if so, we don't add an attribute
8867 for the (unknown and unknowable) upper bound. This should not
8868 cause too much trouble for existing (stupid?) debuggers because
8869 they have to deal with empty upper bounds location descriptions
8870 anyway in order to be able to deal with incomplete array types.
8871 Of course an intelligent debugger (GDB?) should be able to
8872 comprehend that a missing upper bound specification in an array
8873 type used for a storage class `auto' local array variable
8874 indicates that the upper bound is both unknown (at compile- time)
8875 and unknowable (at run-time) due to optimization.
8877 We assume that a MEM rtx is safe because gcc wouldn't put the
8878 value there unless it was going to be used repeatedly in the
8879 function, i.e. for cleanups. */
8880 if (SAVE_EXPR_RTL (bound)
8881 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
8883 dw_die_ref ctx = lookup_decl_die (current_function_decl);
8884 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx);
8885 rtx loc = SAVE_EXPR_RTL (bound);
8887 /* If the RTL for the SAVE_EXPR is memory, handle the case where
8888 it references an outer function's frame. */
8890 if (GET_CODE (loc) == MEM)
8892 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
8894 if (XEXP (loc, 0) != new_addr)
8895 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
8898 add_AT_flag (decl_die, DW_AT_artificial, 1);
8899 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
8900 add_AT_location_description (decl_die, DW_AT_location, loc);
8901 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8904 /* Else leave out the attribute. */
8905 break;
8907 case VAR_DECL:
8908 case PARM_DECL:
8910 dw_die_ref decl_die = lookup_decl_die (bound);
8912 /* ??? Can this happen, or should the variable have been bound
8913 first? Probably it can, since I imagine that we try to create
8914 the types of parameters in the order in which they exist in
8915 the list, and won't have created a forward reference to a
8916 later parameter. */
8917 if (decl_die != NULL)
8918 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8919 break;
8922 default:
8924 /* Otherwise try to create a stack operation procedure to
8925 evaluate the value of the array bound. */
8927 dw_die_ref ctx, decl_die;
8928 dw_loc_descr_ref loc;
8930 loc = loc_descriptor_from_tree (bound, 0);
8931 if (loc == NULL)
8932 break;
8934 if (current_function_decl == 0)
8935 ctx = comp_unit_die;
8936 else
8937 ctx = lookup_decl_die (current_function_decl);
8939 decl_die = new_die (DW_TAG_variable, ctx);
8940 add_AT_flag (decl_die, DW_AT_artificial, 1);
8941 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
8942 add_AT_loc (decl_die, DW_AT_location, loc);
8944 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8945 break;
8950 /* Note that the block of subscript information for an array type also
8951 includes information about the element type of type given array type. */
8953 static void
8954 add_subscript_info (type_die, type)
8955 dw_die_ref type_die;
8956 tree type;
8958 #ifndef MIPS_DEBUGGING_INFO
8959 unsigned dimension_number;
8960 #endif
8961 tree lower, upper;
8962 dw_die_ref subrange_die;
8964 /* The GNU compilers represent multidimensional array types as sequences of
8965 one dimensional array types whose element types are themselves array
8966 types. Here we squish that down, so that each multidimensional array
8967 type gets only one array_type DIE in the Dwarf debugging info. The draft
8968 Dwarf specification say that we are allowed to do this kind of
8969 compression in C (because there is no difference between an array or
8970 arrays and a multidimensional array in C) but for other source languages
8971 (e.g. Ada) we probably shouldn't do this. */
8973 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
8974 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
8975 We work around this by disabling this feature. See also
8976 gen_array_type_die. */
8977 #ifndef MIPS_DEBUGGING_INFO
8978 for (dimension_number = 0;
8979 TREE_CODE (type) == ARRAY_TYPE;
8980 type = TREE_TYPE (type), dimension_number++)
8982 #endif
8983 tree domain = TYPE_DOMAIN (type);
8985 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
8986 and (in GNU C only) variable bounds. Handle all three forms
8987 here. */
8988 subrange_die = new_die (DW_TAG_subrange_type, type_die);
8989 if (domain)
8991 /* We have an array type with specified bounds. */
8992 lower = TYPE_MIN_VALUE (domain);
8993 upper = TYPE_MAX_VALUE (domain);
8995 /* define the index type. */
8996 if (TREE_TYPE (domain))
8998 /* ??? This is probably an Ada unnamed subrange type. Ignore the
8999 TREE_TYPE field. We can't emit debug info for this
9000 because it is an unnamed integral type. */
9001 if (TREE_CODE (domain) == INTEGER_TYPE
9002 && TYPE_NAME (domain) == NULL_TREE
9003 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9004 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9006 else
9007 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9008 type_die);
9011 /* ??? If upper is NULL, the array has unspecified length,
9012 but it does have a lower bound. This happens with Fortran
9013 dimension arr(N:*)
9014 Since the debugger is definitely going to need to know N
9015 to produce useful results, go ahead and output the lower
9016 bound solo, and hope the debugger can cope. */
9018 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9019 if (upper)
9020 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9022 else
9023 /* We have an array type with an unspecified length. The DWARF-2
9024 spec does not say how to handle this; let's just leave out the
9025 bounds. */
9028 #ifndef MIPS_DEBUGGING_INFO
9030 #endif
9033 static void
9034 add_byte_size_attribute (die, tree_node)
9035 dw_die_ref die;
9036 tree tree_node;
9038 unsigned size;
9040 switch (TREE_CODE (tree_node))
9042 case ERROR_MARK:
9043 size = 0;
9044 break;
9045 case ENUMERAL_TYPE:
9046 case RECORD_TYPE:
9047 case UNION_TYPE:
9048 case QUAL_UNION_TYPE:
9049 size = int_size_in_bytes (tree_node);
9050 break;
9051 case FIELD_DECL:
9052 /* For a data member of a struct or union, the DW_AT_byte_size is
9053 generally given as the number of bytes normally allocated for an
9054 object of the *declared* type of the member itself. This is true
9055 even for bit-fields. */
9056 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9057 break;
9058 default:
9059 abort ();
9062 /* Note that `size' might be -1 when we get to this point. If it is, that
9063 indicates that the byte size of the entity in question is variable. We
9064 have no good way of expressing this fact in Dwarf at the present time,
9065 so just let the -1 pass on through. */
9067 add_AT_unsigned (die, DW_AT_byte_size, size);
9070 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9071 which specifies the distance in bits from the highest order bit of the
9072 "containing object" for the bit-field to the highest order bit of the
9073 bit-field itself.
9075 For any given bit-field, the "containing object" is a hypothetical
9076 object (of some integral or enum type) within which the given bit-field
9077 lives. The type of this hypothetical "containing object" is always the
9078 same as the declared type of the individual bit-field itself. The
9079 determination of the exact location of the "containing object" for a
9080 bit-field is rather complicated. It's handled by the
9081 `field_byte_offset' function (above).
9083 Note that it is the size (in bytes) of the hypothetical "containing object"
9084 which will be given in the DW_AT_byte_size attribute for this bit-field.
9085 (See `byte_size_attribute' above). */
9087 static inline void
9088 add_bit_offset_attribute (die, decl)
9089 dw_die_ref die;
9090 tree decl;
9092 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9093 tree type = DECL_BIT_FIELD_TYPE (decl);
9094 HOST_WIDE_INT bitpos_int;
9095 HOST_WIDE_INT highest_order_object_bit_offset;
9096 HOST_WIDE_INT highest_order_field_bit_offset;
9097 HOST_WIDE_INT unsigned bit_offset;
9099 /* Must be a field and a bit field. */
9100 if (!type
9101 || TREE_CODE (decl) != FIELD_DECL)
9102 abort ();
9104 /* We can't yet handle bit-fields whose offsets are variable, so if we
9105 encounter such things, just return without generating any attribute
9106 whatsoever. Likewise for variable or too large size. */
9107 if (! host_integerp (bit_position (decl), 0)
9108 || ! host_integerp (DECL_SIZE (decl), 1))
9109 return;
9111 bitpos_int = int_bit_position (decl);
9113 /* Note that the bit offset is always the distance (in bits) from the
9114 highest-order bit of the "containing object" to the highest-order bit of
9115 the bit-field itself. Since the "high-order end" of any object or field
9116 is different on big-endian and little-endian machines, the computation
9117 below must take account of these differences. */
9118 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9119 highest_order_field_bit_offset = bitpos_int;
9121 if (! BYTES_BIG_ENDIAN)
9123 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9124 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9127 bit_offset
9128 = (! BYTES_BIG_ENDIAN
9129 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9130 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9132 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9135 /* For a FIELD_DECL node which represents a bit field, output an attribute
9136 which specifies the length in bits of the given field. */
9138 static inline void
9139 add_bit_size_attribute (die, decl)
9140 dw_die_ref die;
9141 tree decl;
9143 /* Must be a field and a bit field. */
9144 if (TREE_CODE (decl) != FIELD_DECL
9145 || ! DECL_BIT_FIELD_TYPE (decl))
9146 abort ();
9148 if (host_integerp (DECL_SIZE (decl), 1))
9149 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9152 /* If the compiled language is ANSI C, then add a 'prototyped'
9153 attribute, if arg types are given for the parameters of a function. */
9155 static inline void
9156 add_prototyped_attribute (die, func_type)
9157 dw_die_ref die;
9158 tree func_type;
9160 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9161 && TYPE_ARG_TYPES (func_type) != NULL)
9162 add_AT_flag (die, DW_AT_prototyped, 1);
9165 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9166 by looking in either the type declaration or object declaration
9167 equate table. */
9169 static inline void
9170 add_abstract_origin_attribute (die, origin)
9171 dw_die_ref die;
9172 tree origin;
9174 dw_die_ref origin_die = NULL;
9176 if (TREE_CODE (origin) != FUNCTION_DECL)
9178 /* We may have gotten separated from the block for the inlined
9179 function, if we're in an exception handler or some such; make
9180 sure that the abstract function has been written out.
9182 Doing this for nested functions is wrong, however; functions are
9183 distinct units, and our context might not even be inline. */
9184 tree fn = origin;
9185 if (TYPE_P (fn))
9186 fn = TYPE_STUB_DECL (fn);
9187 fn = decl_function_context (fn);
9188 if (fn)
9189 dwarf2out_abstract_function (fn);
9192 if (DECL_P (origin))
9193 origin_die = lookup_decl_die (origin);
9194 else if (TYPE_P (origin))
9195 origin_die = lookup_type_die (origin);
9197 if (origin_die == NULL)
9198 abort ();
9200 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9203 /* We do not currently support the pure_virtual attribute. */
9205 static inline void
9206 add_pure_or_virtual_attribute (die, func_decl)
9207 dw_die_ref die;
9208 tree func_decl;
9210 if (DECL_VINDEX (func_decl))
9212 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9214 if (host_integerp (DECL_VINDEX (func_decl), 0))
9215 add_AT_loc (die, DW_AT_vtable_elem_location,
9216 new_loc_descr (DW_OP_constu,
9217 tree_low_cst (DECL_VINDEX (func_decl), 0),
9218 0));
9220 /* GNU extension: Record what type this method came from originally. */
9221 if (debug_info_level > DINFO_LEVEL_TERSE)
9222 add_AT_die_ref (die, DW_AT_containing_type,
9223 lookup_type_die (DECL_CONTEXT (func_decl)));
9227 /* Add source coordinate attributes for the given decl. */
9229 static void
9230 add_src_coords_attributes (die, decl)
9231 dw_die_ref die;
9232 tree decl;
9234 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9236 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9237 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9240 /* Add an DW_AT_name attribute and source coordinate attribute for the
9241 given decl, but only if it actually has a name. */
9243 static void
9244 add_name_and_src_coords_attributes (die, decl)
9245 dw_die_ref die;
9246 tree decl;
9248 tree decl_name;
9250 decl_name = DECL_NAME (decl);
9251 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9253 add_name_attribute (die, dwarf2_name (decl, 0));
9254 if (! DECL_ARTIFICIAL (decl))
9255 add_src_coords_attributes (die, decl);
9257 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9258 && TREE_PUBLIC (decl)
9259 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9260 && !DECL_ABSTRACT (decl))
9261 add_AT_string (die, DW_AT_MIPS_linkage_name,
9262 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9266 /* Push a new declaration scope. */
9268 static void
9269 push_decl_scope (scope)
9270 tree scope;
9272 VARRAY_PUSH_TREE (decl_scope_table, scope);
9275 /* Pop a declaration scope. */
9276 static inline void
9277 pop_decl_scope ()
9279 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9280 abort ();
9281 VARRAY_POP (decl_scope_table);
9284 /* Return the DIE for the scope that immediately contains this type.
9285 Non-named types get global scope. Named types nested in other
9286 types get their containing scope if it's open, or global scope
9287 otherwise. All other types (i.e. function-local named types) get
9288 the current active scope. */
9290 static dw_die_ref
9291 scope_die_for (t, context_die)
9292 tree t;
9293 dw_die_ref context_die;
9295 dw_die_ref scope_die = NULL;
9296 tree containing_scope;
9297 int i;
9299 /* Non-types always go in the current scope. */
9300 if (! TYPE_P (t))
9301 abort ();
9303 containing_scope = TYPE_CONTEXT (t);
9305 /* Ignore namespaces for the moment. */
9306 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9307 containing_scope = NULL_TREE;
9309 /* Ignore function type "scopes" from the C frontend. They mean that
9310 a tagged type is local to a parmlist of a function declarator, but
9311 that isn't useful to DWARF. */
9312 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9313 containing_scope = NULL_TREE;
9315 if (containing_scope == NULL_TREE)
9316 scope_die = comp_unit_die;
9317 else if (TYPE_P (containing_scope))
9319 /* For types, we can just look up the appropriate DIE. But
9320 first we check to see if we're in the middle of emitting it
9321 so we know where the new DIE should go. */
9323 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
9324 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
9325 break;
9327 if (i < 0)
9329 if (debug_info_level > DINFO_LEVEL_TERSE
9330 && !TREE_ASM_WRITTEN (containing_scope))
9331 abort ();
9333 /* If none of the current dies are suitable, we get file scope. */
9334 scope_die = comp_unit_die;
9336 else
9337 scope_die = lookup_type_die (containing_scope);
9339 else
9340 scope_die = context_die;
9342 return scope_die;
9345 /* Returns nonzero iff CONTEXT_DIE is internal to a function. */
9347 static inline int local_scope_p PARAMS ((dw_die_ref));
9348 static inline int
9349 local_scope_p (context_die)
9350 dw_die_ref context_die;
9352 for (; context_die; context_die = context_die->die_parent)
9353 if (context_die->die_tag == DW_TAG_inlined_subroutine
9354 || context_die->die_tag == DW_TAG_subprogram)
9355 return 1;
9356 return 0;
9359 /* Returns nonzero iff CONTEXT_DIE is a class. */
9361 static inline int class_scope_p PARAMS ((dw_die_ref));
9362 static inline int
9363 class_scope_p (context_die)
9364 dw_die_ref context_die;
9366 return (context_die
9367 && (context_die->die_tag == DW_TAG_structure_type
9368 || context_die->die_tag == DW_TAG_union_type));
9371 /* Many forms of DIEs require a "type description" attribute. This
9372 routine locates the proper "type descriptor" die for the type given
9373 by 'type', and adds an DW_AT_type attribute below the given die. */
9375 static void
9376 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
9377 dw_die_ref object_die;
9378 tree type;
9379 int decl_const;
9380 int decl_volatile;
9381 dw_die_ref context_die;
9383 enum tree_code code = TREE_CODE (type);
9384 dw_die_ref type_die = NULL;
9386 /* ??? If this type is an unnamed subrange type of an integral or
9387 floating-point type, use the inner type. This is because we have no
9388 support for unnamed types in base_type_die. This can happen if this is
9389 an Ada subrange type. Correct solution is emit a subrange type die. */
9390 if ((code == INTEGER_TYPE || code == REAL_TYPE)
9391 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
9392 type = TREE_TYPE (type), code = TREE_CODE (type);
9394 if (code == ERROR_MARK)
9395 return;
9397 /* Handle a special case. For functions whose return type is void, we
9398 generate *no* type attribute. (Note that no object may have type
9399 `void', so this only applies to function return types). */
9400 if (code == VOID_TYPE)
9401 return;
9403 type_die = modified_type_die (type,
9404 decl_const || TYPE_READONLY (type),
9405 decl_volatile || TYPE_VOLATILE (type),
9406 context_die);
9407 if (type_die != NULL)
9408 add_AT_die_ref (object_die, DW_AT_type, type_die);
9411 /* Given a tree pointer to a struct, class, union, or enum type node, return
9412 a pointer to the (string) tag name for the given type, or zero if the type
9413 was declared without a tag. */
9415 static const char *
9416 type_tag (type)
9417 tree type;
9419 const char *name = 0;
9421 if (TYPE_NAME (type) != 0)
9423 tree t = 0;
9425 /* Find the IDENTIFIER_NODE for the type name. */
9426 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
9427 t = TYPE_NAME (type);
9429 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
9430 a TYPE_DECL node, regardless of whether or not a `typedef' was
9431 involved. */
9432 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
9433 && ! DECL_IGNORED_P (TYPE_NAME (type)))
9434 t = DECL_NAME (TYPE_NAME (type));
9436 /* Now get the name as a string, or invent one. */
9437 if (t != 0)
9438 name = IDENTIFIER_POINTER (t);
9441 return (name == 0 || *name == '\0') ? 0 : name;
9444 /* Return the type associated with a data member, make a special check
9445 for bit field types. */
9447 static inline tree
9448 member_declared_type (member)
9449 tree member;
9451 return (DECL_BIT_FIELD_TYPE (member)
9452 ? DECL_BIT_FIELD_TYPE (member)
9453 : TREE_TYPE (member));
9456 /* Get the decl's label, as described by its RTL. This may be different
9457 from the DECL_NAME name used in the source file. */
9459 #if 0
9460 static const char *
9461 decl_start_label (decl)
9462 tree decl;
9464 rtx x;
9465 const char *fnname;
9466 x = DECL_RTL (decl);
9467 if (GET_CODE (x) != MEM)
9468 abort ();
9470 x = XEXP (x, 0);
9471 if (GET_CODE (x) != SYMBOL_REF)
9472 abort ();
9474 fnname = XSTR (x, 0);
9475 return fnname;
9477 #endif
9479 /* These routines generate the internal representation of the DIE's for
9480 the compilation unit. Debugging information is collected by walking
9481 the declaration trees passed in from dwarf2out_decl(). */
9483 static void
9484 gen_array_type_die (type, context_die)
9485 tree type;
9486 dw_die_ref context_die;
9488 dw_die_ref scope_die = scope_die_for (type, context_die);
9489 dw_die_ref array_die;
9490 tree element_type;
9492 /* ??? The SGI dwarf reader fails for array of array of enum types unless
9493 the inner array type comes before the outer array type. Thus we must
9494 call gen_type_die before we call new_die. See below also. */
9495 #ifdef MIPS_DEBUGGING_INFO
9496 gen_type_die (TREE_TYPE (type), context_die);
9497 #endif
9499 array_die = new_die (DW_TAG_array_type, scope_die);
9501 #if 0
9502 /* We default the array ordering. SDB will probably do
9503 the right things even if DW_AT_ordering is not present. It's not even
9504 an issue until we start to get into multidimensional arrays anyway. If
9505 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
9506 then we'll have to put the DW_AT_ordering attribute back in. (But if
9507 and when we find out that we need to put these in, we will only do so
9508 for multidimensional arrays. */
9509 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
9510 #endif
9512 #ifdef MIPS_DEBUGGING_INFO
9513 /* The SGI compilers handle arrays of unknown bound by setting
9514 AT_declaration and not emitting any subrange DIEs. */
9515 if (! TYPE_DOMAIN (type))
9516 add_AT_unsigned (array_die, DW_AT_declaration, 1);
9517 else
9518 #endif
9519 add_subscript_info (array_die, type);
9521 add_name_attribute (array_die, type_tag (type));
9522 equate_type_number_to_die (type, array_die);
9524 /* Add representation of the type of the elements of this array type. */
9525 element_type = TREE_TYPE (type);
9527 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9528 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9529 We work around this by disabling this feature. See also
9530 add_subscript_info. */
9531 #ifndef MIPS_DEBUGGING_INFO
9532 while (TREE_CODE (element_type) == ARRAY_TYPE)
9533 element_type = TREE_TYPE (element_type);
9535 gen_type_die (element_type, context_die);
9536 #endif
9538 add_type_attribute (array_die, element_type, 0, 0, context_die);
9541 static void
9542 gen_set_type_die (type, context_die)
9543 tree type;
9544 dw_die_ref context_die;
9546 dw_die_ref type_die
9547 = new_die (DW_TAG_set_type, scope_die_for (type, context_die));
9549 equate_type_number_to_die (type, type_die);
9550 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
9553 #if 0
9554 static void
9555 gen_entry_point_die (decl, context_die)
9556 tree decl;
9557 dw_die_ref context_die;
9559 tree origin = decl_ultimate_origin (decl);
9560 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die);
9561 if (origin != NULL)
9562 add_abstract_origin_attribute (decl_die, origin);
9563 else
9565 add_name_and_src_coords_attributes (decl_die, decl);
9566 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
9567 0, 0, context_die);
9570 if (DECL_ABSTRACT (decl))
9571 equate_decl_number_to_die (decl, decl_die);
9572 else
9573 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
9575 #endif
9577 /* Remember a type in the incomplete_types_list. */
9578 static void
9579 add_incomplete_type (type)
9580 tree type;
9582 VARRAY_PUSH_TREE (incomplete_types, type);
9585 /* Walk through the list of incomplete types again, trying once more to
9586 emit full debugging info for them. */
9588 static void
9589 retry_incomplete_types ()
9591 int i;
9592 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
9594 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
9598 /* Generate a DIE to represent an inlined instance of an enumeration type. */
9600 static void
9601 gen_inlined_enumeration_type_die (type, context_die)
9602 tree type;
9603 dw_die_ref context_die;
9605 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die);
9606 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9607 be incomplete and such types are not marked. */
9608 add_abstract_origin_attribute (type_die, type);
9611 /* Generate a DIE to represent an inlined instance of a structure type. */
9613 static void
9614 gen_inlined_structure_type_die (type, context_die)
9615 tree type;
9616 dw_die_ref context_die;
9618 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die);
9620 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9621 be incomplete and such types are not marked. */
9622 add_abstract_origin_attribute (type_die, type);
9625 /* Generate a DIE to represent an inlined instance of a union type. */
9627 static void
9628 gen_inlined_union_type_die (type, context_die)
9629 tree type;
9630 dw_die_ref context_die;
9632 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die);
9634 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9635 be incomplete and such types are not marked. */
9636 add_abstract_origin_attribute (type_die, type);
9639 /* Generate a DIE to represent an enumeration type. Note that these DIEs
9640 include all of the information about the enumeration values also. Each
9641 enumerated type name/value is listed as a child of the enumerated type
9642 DIE. */
9644 static void
9645 gen_enumeration_type_die (type, context_die)
9646 tree type;
9647 dw_die_ref context_die;
9649 dw_die_ref type_die = lookup_type_die (type);
9651 if (type_die == NULL)
9653 type_die = new_die (DW_TAG_enumeration_type,
9654 scope_die_for (type, context_die));
9655 equate_type_number_to_die (type, type_die);
9656 add_name_attribute (type_die, type_tag (type));
9658 else if (! TYPE_SIZE (type))
9659 return;
9660 else
9661 remove_AT (type_die, DW_AT_declaration);
9663 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
9664 given enum type is incomplete, do not generate the DW_AT_byte_size
9665 attribute or the DW_AT_element_list attribute. */
9666 if (TYPE_SIZE (type))
9668 tree link;
9670 TREE_ASM_WRITTEN (type) = 1;
9671 add_byte_size_attribute (type_die, type);
9672 if (TYPE_STUB_DECL (type) != NULL_TREE)
9673 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
9675 /* If the first reference to this type was as the return type of an
9676 inline function, then it may not have a parent. Fix this now. */
9677 if (type_die->die_parent == NULL)
9678 add_child_die (scope_die_for (type, context_die), type_die);
9680 for (link = TYPE_FIELDS (type);
9681 link != NULL; link = TREE_CHAIN (link))
9683 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die);
9685 add_name_attribute (enum_die,
9686 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
9688 if (host_integerp (TREE_VALUE (link), 0))
9690 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
9691 add_AT_int (enum_die, DW_AT_const_value,
9692 tree_low_cst (TREE_VALUE (link), 0));
9693 else
9694 add_AT_unsigned (enum_die, DW_AT_const_value,
9695 tree_low_cst (TREE_VALUE (link), 0));
9699 else
9700 add_AT_flag (type_die, DW_AT_declaration, 1);
9703 /* Generate a DIE to represent either a real live formal parameter decl or to
9704 represent just the type of some formal parameter position in some function
9705 type.
9707 Note that this routine is a bit unusual because its argument may be a
9708 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
9709 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
9710 node. If it's the former then this function is being called to output a
9711 DIE to represent a formal parameter object (or some inlining thereof). If
9712 it's the latter, then this function is only being called to output a
9713 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
9714 argument type of some subprogram type. */
9716 static dw_die_ref
9717 gen_formal_parameter_die (node, context_die)
9718 tree node;
9719 dw_die_ref context_die;
9721 dw_die_ref parm_die
9722 = new_die (DW_TAG_formal_parameter, context_die);
9723 tree origin;
9725 switch (TREE_CODE_CLASS (TREE_CODE (node)))
9727 case 'd':
9728 origin = decl_ultimate_origin (node);
9729 if (origin != NULL)
9730 add_abstract_origin_attribute (parm_die, origin);
9731 else
9733 add_name_and_src_coords_attributes (parm_die, node);
9734 add_type_attribute (parm_die, TREE_TYPE (node),
9735 TREE_READONLY (node),
9736 TREE_THIS_VOLATILE (node),
9737 context_die);
9738 if (DECL_ARTIFICIAL (node))
9739 add_AT_flag (parm_die, DW_AT_artificial, 1);
9742 equate_decl_number_to_die (node, parm_die);
9743 if (! DECL_ABSTRACT (node))
9744 add_location_or_const_value_attribute (parm_die, node);
9746 break;
9748 case 't':
9749 /* We were called with some kind of a ..._TYPE node. */
9750 add_type_attribute (parm_die, node, 0, 0, context_die);
9751 break;
9753 default:
9754 abort ();
9757 return parm_die;
9760 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
9761 at the end of an (ANSI prototyped) formal parameters list. */
9763 static void
9764 gen_unspecified_parameters_die (decl_or_type, context_die)
9765 tree decl_or_type ATTRIBUTE_UNUSED;
9766 dw_die_ref context_die;
9768 new_die (DW_TAG_unspecified_parameters, context_die);
9771 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
9772 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
9773 parameters as specified in some function type specification (except for
9774 those which appear as part of a function *definition*). */
9776 static void
9777 gen_formal_types_die (function_or_method_type, context_die)
9778 tree function_or_method_type;
9779 dw_die_ref context_die;
9781 tree link;
9782 tree formal_type = NULL;
9783 tree first_parm_type;
9784 tree arg;
9786 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
9788 arg = DECL_ARGUMENTS (function_or_method_type);
9789 function_or_method_type = TREE_TYPE (function_or_method_type);
9791 else
9792 arg = NULL_TREE;
9794 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
9796 /* Make our first pass over the list of formal parameter types and output a
9797 DW_TAG_formal_parameter DIE for each one. */
9798 for (link = first_parm_type; link; )
9800 dw_die_ref parm_die;
9802 formal_type = TREE_VALUE (link);
9803 if (formal_type == void_type_node)
9804 break;
9806 /* Output a (nameless) DIE to represent the formal parameter itself. */
9807 parm_die = gen_formal_parameter_die (formal_type, context_die);
9808 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
9809 && link == first_parm_type)
9810 || (arg && DECL_ARTIFICIAL (arg)))
9811 add_AT_flag (parm_die, DW_AT_artificial, 1);
9813 link = TREE_CHAIN (link);
9814 if (arg)
9815 arg = TREE_CHAIN (arg);
9818 /* If this function type has an ellipsis, add a
9819 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
9820 if (formal_type != void_type_node)
9821 gen_unspecified_parameters_die (function_or_method_type, context_die);
9823 /* Make our second (and final) pass over the list of formal parameter types
9824 and output DIEs to represent those types (as necessary). */
9825 for (link = TYPE_ARG_TYPES (function_or_method_type);
9826 link;
9827 link = TREE_CHAIN (link))
9829 formal_type = TREE_VALUE (link);
9830 if (formal_type == void_type_node)
9831 break;
9833 gen_type_die (formal_type, context_die);
9837 /* We want to generate the DIE for TYPE so that we can generate the
9838 die for MEMBER, which has been defined; we will need to refer back
9839 to the member declaration nested within TYPE. If we're trying to
9840 generate minimal debug info for TYPE, processing TYPE won't do the
9841 trick; we need to attach the member declaration by hand. */
9843 static void
9844 gen_type_die_for_member (type, member, context_die)
9845 tree type, member;
9846 dw_die_ref context_die;
9848 gen_type_die (type, context_die);
9850 /* If we're trying to avoid duplicate debug info, we may not have
9851 emitted the member decl for this function. Emit it now. */
9852 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
9853 && ! lookup_decl_die (member))
9855 if (decl_ultimate_origin (member))
9856 abort ();
9858 push_decl_scope (type);
9859 if (TREE_CODE (member) == FUNCTION_DECL)
9860 gen_subprogram_die (member, lookup_type_die (type));
9861 else
9862 gen_variable_die (member, lookup_type_die (type));
9863 pop_decl_scope ();
9867 /* Generate the DWARF2 info for the "abstract" instance
9868 of a function which we may later generate inlined and/or
9869 out-of-line instances of. */
9871 static void
9872 dwarf2out_abstract_function (decl)
9873 tree decl;
9875 dw_die_ref old_die;
9876 tree save_fn;
9877 tree context;
9878 int was_abstract = DECL_ABSTRACT (decl);
9880 /* Make sure we have the actual abstract inline, not a clone. */
9881 decl = DECL_ORIGIN (decl);
9883 old_die = lookup_decl_die (decl);
9884 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
9885 /* We've already generated the abstract instance. */
9886 return;
9888 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
9889 we don't get confused by DECL_ABSTRACT. */
9890 if (debug_info_level > DINFO_LEVEL_TERSE)
9892 context = decl_class_context (decl);
9893 if (context)
9894 gen_type_die_for_member
9895 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
9898 /* Pretend we've just finished compiling this function. */
9899 save_fn = current_function_decl;
9900 current_function_decl = decl;
9902 set_decl_abstract_flags (decl, 1);
9903 dwarf2out_decl (decl);
9904 if (! was_abstract)
9905 set_decl_abstract_flags (decl, 0);
9907 current_function_decl = save_fn;
9910 /* Generate a DIE to represent a declared function (either file-scope or
9911 block-local). */
9913 static void
9914 gen_subprogram_die (decl, context_die)
9915 tree decl;
9916 dw_die_ref context_die;
9918 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
9919 tree origin = decl_ultimate_origin (decl);
9920 dw_die_ref subr_die;
9921 rtx fp_reg;
9922 tree fn_arg_types;
9923 tree outer_scope;
9924 dw_die_ref old_die = lookup_decl_die (decl);
9925 int declaration = (current_function_decl != decl
9926 || class_scope_p (context_die));
9928 /* Note that it is possible to have both DECL_ABSTRACT and `declaration'
9929 be true, if we started to generate the abstract instance of an inline,
9930 decided to output its containing class, and proceeded to emit the
9931 declaration of the inline from the member list for the class. In that
9932 case, `declaration' takes priority; we'll get back to the abstract
9933 instance when we're done with the class. */
9935 /* The class-scope declaration DIE must be the primary DIE. */
9936 if (origin && declaration && class_scope_p (context_die))
9938 origin = NULL;
9939 if (old_die)
9940 abort ();
9943 if (origin != NULL)
9945 if (declaration && ! local_scope_p (context_die))
9946 abort ();
9948 /* Fixup die_parent for the abstract instance of a nested
9949 inline function. */
9950 if (old_die && old_die->die_parent == NULL)
9951 add_child_die (context_die, old_die);
9953 subr_die = new_die (DW_TAG_subprogram, context_die);
9954 add_abstract_origin_attribute (subr_die, origin);
9956 else if (old_die)
9958 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9960 if (!get_AT_flag (old_die, DW_AT_declaration)
9961 /* We can have a normal definition following an inline one in the
9962 case of redefinition of GNU C extern inlines.
9963 It seems reasonable to use AT_specification in this case. */
9964 && !get_AT_unsigned (old_die, DW_AT_inline))
9966 /* ??? This can happen if there is a bug in the program, for
9967 instance, if it has duplicate function definitions. Ideally,
9968 we should detect this case and ignore it. For now, if we have
9969 already reported an error, any error at all, then assume that
9970 we got here because of an input error, not a dwarf2 bug. */
9971 if (errorcount)
9972 return;
9973 abort ();
9976 /* If the definition comes from the same place as the declaration,
9977 maybe use the old DIE. We always want the DIE for this function
9978 that has the *_pc attributes to be under comp_unit_die so the
9979 debugger can find it. We also need to do this for abstract
9980 instances of inlines, since the spec requires the out-of-line copy
9981 to have the same parent. For local class methods, this doesn't
9982 apply; we just use the old DIE. */
9983 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
9984 && (DECL_ARTIFICIAL (decl)
9985 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
9986 && (get_AT_unsigned (old_die, DW_AT_decl_line)
9987 == (unsigned) DECL_SOURCE_LINE (decl)))))
9989 subr_die = old_die;
9991 /* Clear out the declaration attribute and the parm types. */
9992 remove_AT (subr_die, DW_AT_declaration);
9993 remove_children (subr_die);
9995 else
9997 subr_die = new_die (DW_TAG_subprogram, context_die);
9998 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
9999 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10000 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10001 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10002 != (unsigned) DECL_SOURCE_LINE (decl))
10003 add_AT_unsigned
10004 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10007 else
10009 subr_die = new_die (DW_TAG_subprogram, context_die);
10011 if (TREE_PUBLIC (decl))
10012 add_AT_flag (subr_die, DW_AT_external, 1);
10014 add_name_and_src_coords_attributes (subr_die, decl);
10015 if (debug_info_level > DINFO_LEVEL_TERSE)
10017 tree type = TREE_TYPE (decl);
10019 add_prototyped_attribute (subr_die, type);
10020 add_type_attribute (subr_die, TREE_TYPE (type), 0, 0, context_die);
10023 add_pure_or_virtual_attribute (subr_die, decl);
10024 if (DECL_ARTIFICIAL (decl))
10025 add_AT_flag (subr_die, DW_AT_artificial, 1);
10026 if (TREE_PROTECTED (decl))
10027 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10028 else if (TREE_PRIVATE (decl))
10029 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10032 if (declaration)
10034 if (!(old_die && get_AT_unsigned (old_die, DW_AT_inline)))
10036 add_AT_flag (subr_die, DW_AT_declaration, 1);
10038 /* The first time we see a member function, it is in the context of
10039 the class to which it belongs. We make sure of this by emitting
10040 the class first. The next time is the definition, which is
10041 handled above. The two may come from the same source text. */
10042 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10043 equate_decl_number_to_die (decl, subr_die);
10046 else if (DECL_ABSTRACT (decl))
10048 if (DECL_INLINE (decl) && !flag_no_inline)
10050 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10051 inline functions, but not for extern inline functions.
10052 We can't get this completely correct because information
10053 about whether the function was declared inline is not
10054 saved anywhere. */
10055 if (DECL_DEFER_OUTPUT (decl))
10056 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10057 else
10058 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10060 else
10061 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10063 equate_decl_number_to_die (decl, subr_die);
10065 else if (!DECL_EXTERNAL (decl))
10067 if (!(old_die && get_AT_unsigned (old_die, DW_AT_inline)))
10068 equate_decl_number_to_die (decl, subr_die);
10070 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10071 current_funcdef_number);
10072 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10073 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10074 current_funcdef_number);
10075 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10077 add_pubname (decl, subr_die);
10078 add_arange (decl, subr_die);
10080 #ifdef MIPS_DEBUGGING_INFO
10081 /* Add a reference to the FDE for this routine. */
10082 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10083 #endif
10085 /* Define the "frame base" location for this routine. We use the
10086 frame pointer or stack pointer registers, since the RTL for local
10087 variables is relative to one of them. */
10088 fp_reg
10089 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10090 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10092 #if 0
10093 /* ??? This fails for nested inline functions, because context_display
10094 is not part of the state saved/restored for inline functions. */
10095 if (current_function_needs_context)
10096 add_AT_location_description (subr_die, DW_AT_static_link,
10097 lookup_static_chain (decl));
10098 #endif
10101 /* Now output descriptions of the arguments for this function. This gets
10102 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10103 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10104 `...' at the end of the formal parameter list. In order to find out if
10105 there was a trailing ellipsis or not, we must instead look at the type
10106 associated with the FUNCTION_DECL. This will be a node of type
10107 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10108 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10109 an ellipsis at the end. */
10111 /* In the case where we are describing a mere function declaration, all we
10112 need to do here (and all we *can* do here) is to describe the *types* of
10113 its formal parameters. */
10114 if (debug_info_level <= DINFO_LEVEL_TERSE)
10116 else if (declaration)
10117 gen_formal_types_die (decl, subr_die);
10118 else
10120 /* Generate DIEs to represent all known formal parameters */
10121 tree arg_decls = DECL_ARGUMENTS (decl);
10122 tree parm;
10124 /* When generating DIEs, generate the unspecified_parameters DIE
10125 instead if we come across the arg "__builtin_va_alist" */
10126 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10127 if (TREE_CODE (parm) == PARM_DECL)
10129 if (DECL_NAME (parm)
10130 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10131 "__builtin_va_alist"))
10132 gen_unspecified_parameters_die (parm, subr_die);
10133 else
10134 gen_decl_die (parm, subr_die);
10137 /* Decide whether we need an unspecified_parameters DIE at the end.
10138 There are 2 more cases to do this for: 1) the ansi ... declaration -
10139 this is detectable when the end of the arg list is not a
10140 void_type_node 2) an unprototyped function declaration (not a
10141 definition). This just means that we have no info about the
10142 parameters at all. */
10143 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10144 if (fn_arg_types != NULL)
10146 /* this is the prototyped case, check for ... */
10147 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10148 gen_unspecified_parameters_die (decl, subr_die);
10150 else if (DECL_INITIAL (decl) == NULL_TREE)
10151 gen_unspecified_parameters_die (decl, subr_die);
10154 /* Output Dwarf info for all of the stuff within the body of the function
10155 (if it has one - it may be just a declaration). */
10156 outer_scope = DECL_INITIAL (decl);
10158 /* Note that here, `outer_scope' is a pointer to the outermost BLOCK
10159 node created to represent a function. This outermost BLOCK actually
10160 represents the outermost binding contour for the function, i.e. the
10161 contour in which the function's formal parameters and labels get
10162 declared. Curiously, it appears that the front end doesn't actually
10163 put the PARM_DECL nodes for the current function onto the BLOCK_VARS
10164 list for this outer scope. (They are strung off of the DECL_ARGUMENTS
10165 list for the function instead.) The BLOCK_VARS list for the
10166 `outer_scope' does provide us with a list of the LABEL_DECL nodes for
10167 the function however, and we output DWARF info for those in
10168 decls_for_scope. Just within the `outer_scope' there will be a BLOCK
10169 node representing the function's outermost pair of curly braces, and
10170 any blocks used for the base and member initializers of a C++
10171 constructor function. */
10172 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10174 current_function_has_inlines = 0;
10175 decls_for_scope (outer_scope, subr_die, 0);
10177 #if 0 && defined (MIPS_DEBUGGING_INFO)
10178 if (current_function_has_inlines)
10180 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10181 if (! comp_unit_has_inlines)
10183 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10184 comp_unit_has_inlines = 1;
10187 #endif
10191 /* Generate a DIE to represent a declared data object. */
10193 static void
10194 gen_variable_die (decl, context_die)
10195 tree decl;
10196 dw_die_ref context_die;
10198 tree origin = decl_ultimate_origin (decl);
10199 dw_die_ref var_die = new_die (DW_TAG_variable, context_die);
10201 dw_die_ref old_die = lookup_decl_die (decl);
10202 int declaration = (DECL_EXTERNAL (decl)
10203 || class_scope_p (context_die));
10205 if (origin != NULL)
10206 add_abstract_origin_attribute (var_die, origin);
10207 /* Loop unrolling can create multiple blocks that refer to the same
10208 static variable, so we must test for the DW_AT_declaration flag. */
10209 /* ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10210 copy decls and set the DECL_ABSTRACT flag on them instead of
10211 sharing them. */
10212 /* ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10213 else if (old_die && TREE_STATIC (decl)
10214 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10216 /* This is a definition of a C++ class level static. */
10217 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10218 if (DECL_NAME (decl))
10220 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10222 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10223 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10225 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10226 != (unsigned) DECL_SOURCE_LINE (decl))
10228 add_AT_unsigned (var_die, DW_AT_decl_line,
10229 DECL_SOURCE_LINE (decl));
10232 else
10234 add_name_and_src_coords_attributes (var_die, decl);
10235 add_type_attribute (var_die, TREE_TYPE (decl),
10236 TREE_READONLY (decl),
10237 TREE_THIS_VOLATILE (decl), context_die);
10239 if (TREE_PUBLIC (decl))
10240 add_AT_flag (var_die, DW_AT_external, 1);
10242 if (DECL_ARTIFICIAL (decl))
10243 add_AT_flag (var_die, DW_AT_artificial, 1);
10245 if (TREE_PROTECTED (decl))
10246 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10248 else if (TREE_PRIVATE (decl))
10249 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10252 if (declaration)
10253 add_AT_flag (var_die, DW_AT_declaration, 1);
10255 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10256 equate_decl_number_to_die (decl, var_die);
10258 if (! declaration && ! DECL_ABSTRACT (decl))
10260 add_location_or_const_value_attribute (var_die, decl);
10261 add_pubname (decl, var_die);
10263 else
10264 tree_add_const_value_attribute (var_die, decl);
10267 /* Generate a DIE to represent a label identifier. */
10269 static void
10270 gen_label_die (decl, context_die)
10271 tree decl;
10272 dw_die_ref context_die;
10274 tree origin = decl_ultimate_origin (decl);
10275 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die);
10276 rtx insn;
10277 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10279 if (origin != NULL)
10280 add_abstract_origin_attribute (lbl_die, origin);
10281 else
10282 add_name_and_src_coords_attributes (lbl_die, decl);
10284 if (DECL_ABSTRACT (decl))
10285 equate_decl_number_to_die (decl, lbl_die);
10286 else
10288 insn = DECL_RTL (decl);
10290 /* Deleted labels are programmer specified labels which have been
10291 eliminated because of various optimisations. We still emit them
10292 here so that it is possible to put breakpoints on them. */
10293 if (GET_CODE (insn) == CODE_LABEL
10294 || ((GET_CODE (insn) == NOTE
10295 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10297 /* When optimization is enabled (via -O) some parts of the compiler
10298 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10299 represent source-level labels which were explicitly declared by
10300 the user. This really shouldn't be happening though, so catch
10301 it if it ever does happen. */
10302 if (INSN_DELETED_P (insn))
10303 abort ();
10305 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10306 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10311 /* Generate a DIE for a lexical block. */
10313 static void
10314 gen_lexical_block_die (stmt, context_die, depth)
10315 tree stmt;
10316 dw_die_ref context_die;
10317 int depth;
10319 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die);
10320 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10322 if (! BLOCK_ABSTRACT (stmt))
10324 if (BLOCK_FRAGMENT_CHAIN (stmt))
10326 tree chain;
10328 add_AT_offset (stmt_die, DW_AT_ranges, add_ranges (stmt));
10330 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10333 add_ranges (chain);
10334 chain = BLOCK_FRAGMENT_CHAIN (chain);
10336 while (chain);
10337 add_ranges (NULL);
10339 else
10341 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10342 BLOCK_NUMBER (stmt));
10343 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10344 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10345 BLOCK_NUMBER (stmt));
10346 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10350 decls_for_scope (stmt, stmt_die, depth);
10353 /* Generate a DIE for an inlined subprogram. */
10355 static void
10356 gen_inlined_subroutine_die (stmt, context_die, depth)
10357 tree stmt;
10358 dw_die_ref context_die;
10359 int depth;
10361 if (! BLOCK_ABSTRACT (stmt))
10363 dw_die_ref subr_die
10364 = new_die (DW_TAG_inlined_subroutine, context_die);
10365 tree decl = block_ultimate_origin (stmt);
10366 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10368 /* Emit info for the abstract instance first, if we haven't yet. */
10369 dwarf2out_abstract_function (decl);
10371 add_abstract_origin_attribute (subr_die, decl);
10372 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10373 BLOCK_NUMBER (stmt));
10374 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
10375 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10376 BLOCK_NUMBER (stmt));
10377 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
10378 decls_for_scope (stmt, subr_die, depth);
10379 current_function_has_inlines = 1;
10383 /* Generate a DIE for a field in a record, or structure. */
10385 static void
10386 gen_field_die (decl, context_die)
10387 tree decl;
10388 dw_die_ref context_die;
10390 dw_die_ref decl_die = new_die (DW_TAG_member, context_die);
10392 add_name_and_src_coords_attributes (decl_die, decl);
10393 add_type_attribute (decl_die, member_declared_type (decl),
10394 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
10395 context_die);
10397 /* If this is a bit field... */
10398 if (DECL_BIT_FIELD_TYPE (decl))
10400 add_byte_size_attribute (decl_die, decl);
10401 add_bit_size_attribute (decl_die, decl);
10402 add_bit_offset_attribute (decl_die, decl);
10405 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
10406 add_data_member_location_attribute (decl_die, decl);
10408 if (DECL_ARTIFICIAL (decl))
10409 add_AT_flag (decl_die, DW_AT_artificial, 1);
10411 if (TREE_PROTECTED (decl))
10412 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
10414 else if (TREE_PRIVATE (decl))
10415 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
10418 #if 0
10419 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10420 Use modified_type_die instead.
10421 We keep this code here just in case these types of DIEs may be needed to
10422 represent certain things in other languages (e.g. Pascal) someday. */
10423 static void
10424 gen_pointer_type_die (type, context_die)
10425 tree type;
10426 dw_die_ref context_die;
10428 dw_die_ref ptr_die
10429 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die));
10431 equate_type_number_to_die (type, ptr_die);
10432 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10433 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
10436 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10437 Use modified_type_die instead.
10438 We keep this code here just in case these types of DIEs may be needed to
10439 represent certain things in other languages (e.g. Pascal) someday. */
10440 static void
10441 gen_reference_type_die (type, context_die)
10442 tree type;
10443 dw_die_ref context_die;
10445 dw_die_ref ref_die
10446 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die));
10448 equate_type_number_to_die (type, ref_die);
10449 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
10450 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
10452 #endif
10454 /* Generate a DIE for a pointer to a member type. */
10455 static void
10456 gen_ptr_to_mbr_type_die (type, context_die)
10457 tree type;
10458 dw_die_ref context_die;
10460 dw_die_ref ptr_die
10461 = new_die (DW_TAG_ptr_to_member_type, scope_die_for (type, context_die));
10463 equate_type_number_to_die (type, ptr_die);
10464 add_AT_die_ref (ptr_die, DW_AT_containing_type,
10465 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
10466 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10469 /* Generate the DIE for the compilation unit. */
10471 static dw_die_ref
10472 gen_compile_unit_die (filename)
10473 const char *filename;
10475 dw_die_ref die;
10476 char producer[250];
10477 const char *wd = getpwd ();
10478 const char *language_string = lang_hooks.name;
10479 int language;
10481 die = new_die (DW_TAG_compile_unit, NULL);
10482 add_name_attribute (die, filename);
10484 if (wd != NULL && filename[0] != DIR_SEPARATOR)
10485 add_AT_string (die, DW_AT_comp_dir, wd);
10487 sprintf (producer, "%s %s", language_string, version_string);
10489 #ifdef MIPS_DEBUGGING_INFO
10490 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
10491 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
10492 not appear in the producer string, the debugger reaches the conclusion
10493 that the object file is stripped and has no debugging information.
10494 To get the MIPS/SGI debugger to believe that there is debugging
10495 information in the object file, we add a -g to the producer string. */
10496 if (debug_info_level > DINFO_LEVEL_TERSE)
10497 strcat (producer, " -g");
10498 #endif
10500 add_AT_string (die, DW_AT_producer, producer);
10502 if (strcmp (language_string, "GNU C++") == 0)
10503 language = DW_LANG_C_plus_plus;
10504 else if (strcmp (language_string, "GNU Ada") == 0)
10505 language = DW_LANG_Ada83;
10506 else if (strcmp (language_string, "GNU F77") == 0)
10507 language = DW_LANG_Fortran77;
10508 else if (strcmp (language_string, "GNU Pascal") == 0)
10509 language = DW_LANG_Pascal83;
10510 else if (strcmp (language_string, "GNU Java") == 0)
10511 language = DW_LANG_Java;
10512 else if (flag_traditional)
10513 language = DW_LANG_C;
10514 else
10515 language = DW_LANG_C89;
10517 add_AT_unsigned (die, DW_AT_language, language);
10519 return die;
10522 /* Generate a DIE for a string type. */
10524 static void
10525 gen_string_type_die (type, context_die)
10526 tree type;
10527 dw_die_ref context_die;
10529 dw_die_ref type_die
10530 = new_die (DW_TAG_string_type, scope_die_for (type, context_die));
10532 equate_type_number_to_die (type, type_die);
10534 /* Fudge the string length attribute for now. */
10536 /* TODO: add string length info.
10537 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
10538 bound_representation (upper_bound, 0, 'u'); */
10541 /* Generate the DIE for a base class. */
10543 static void
10544 gen_inheritance_die (binfo, context_die)
10545 tree binfo;
10546 dw_die_ref context_die;
10548 dw_die_ref die = new_die (DW_TAG_inheritance, context_die);
10550 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
10551 add_data_member_location_attribute (die, binfo);
10553 if (TREE_VIA_VIRTUAL (binfo))
10554 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10555 if (TREE_VIA_PUBLIC (binfo))
10556 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
10557 else if (TREE_VIA_PROTECTED (binfo))
10558 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
10561 /* Generate a DIE for a class member. */
10563 static void
10564 gen_member_die (type, context_die)
10565 tree type;
10566 dw_die_ref context_die;
10568 tree member;
10569 dw_die_ref child;
10571 /* If this is not an incomplete type, output descriptions of each of its
10572 members. Note that as we output the DIEs necessary to represent the
10573 members of this record or union type, we will also be trying to output
10574 DIEs to represent the *types* of those members. However the `type'
10575 function (above) will specifically avoid generating type DIEs for member
10576 types *within* the list of member DIEs for this (containing) type except
10577 for those types (of members) which are explicitly marked as also being
10578 members of this (containing) type themselves. The g++ front- end can
10579 force any given type to be treated as a member of some other
10580 (containing) type by setting the TYPE_CONTEXT of the given (member) type
10581 to point to the TREE node representing the appropriate (containing)
10582 type. */
10584 /* First output info about the base classes. */
10585 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
10587 tree bases = TYPE_BINFO_BASETYPES (type);
10588 int n_bases = TREE_VEC_LENGTH (bases);
10589 int i;
10591 for (i = 0; i < n_bases; i++)
10592 gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die);
10595 /* Now output info about the data members and type members. */
10596 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
10598 /* If we thought we were generating minimal debug info for TYPE
10599 and then changed our minds, some of the member declarations
10600 may have already been defined. Don't define them again, but
10601 do put them in the right order. */
10603 child = lookup_decl_die (member);
10604 if (child)
10605 splice_child_die (context_die, child);
10606 else
10607 gen_decl_die (member, context_die);
10610 /* Now output info about the function members (if any). */
10611 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
10613 /* Don't include clones in the member list. */
10614 if (DECL_ABSTRACT_ORIGIN (member))
10615 continue;
10617 child = lookup_decl_die (member);
10618 if (child)
10619 splice_child_die (context_die, child);
10620 else
10621 gen_decl_die (member, context_die);
10625 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
10626 is set, we pretend that the type was never defined, so we only get the
10627 member DIEs needed by later specification DIEs. */
10629 static void
10630 gen_struct_or_union_type_die (type, context_die)
10631 tree type;
10632 dw_die_ref context_die;
10634 dw_die_ref type_die = lookup_type_die (type);
10635 dw_die_ref scope_die = 0;
10636 int nested = 0;
10637 int complete = (TYPE_SIZE (type)
10638 && (! TYPE_STUB_DECL (type)
10639 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
10641 if (type_die && ! complete)
10642 return;
10644 if (TYPE_CONTEXT (type) != NULL_TREE
10645 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
10646 nested = 1;
10648 scope_die = scope_die_for (type, context_die);
10650 if (! type_die || (nested && scope_die == comp_unit_die))
10651 /* First occurrence of type or toplevel definition of nested class. */
10653 dw_die_ref old_die = type_die;
10655 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
10656 ? DW_TAG_structure_type : DW_TAG_union_type,
10657 scope_die);
10658 equate_type_number_to_die (type, type_die);
10659 if (old_die)
10660 add_AT_die_ref (type_die, DW_AT_specification, old_die);
10661 else
10662 add_name_attribute (type_die, type_tag (type));
10664 else
10665 remove_AT (type_die, DW_AT_declaration);
10667 /* If this type has been completed, then give it a byte_size attribute and
10668 then give a list of members. */
10669 if (complete)
10671 /* Prevent infinite recursion in cases where the type of some member of
10672 this type is expressed in terms of this type itself. */
10673 TREE_ASM_WRITTEN (type) = 1;
10674 add_byte_size_attribute (type_die, type);
10675 if (TYPE_STUB_DECL (type) != NULL_TREE)
10676 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10678 /* If the first reference to this type was as the return type of an
10679 inline function, then it may not have a parent. Fix this now. */
10680 if (type_die->die_parent == NULL)
10681 add_child_die (scope_die, type_die);
10683 push_decl_scope (type);
10684 gen_member_die (type, type_die);
10685 pop_decl_scope ();
10687 /* GNU extension: Record what type our vtable lives in. */
10688 if (TYPE_VFIELD (type))
10690 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
10692 gen_type_die (vtype, context_die);
10693 add_AT_die_ref (type_die, DW_AT_containing_type,
10694 lookup_type_die (vtype));
10697 else
10699 add_AT_flag (type_die, DW_AT_declaration, 1);
10701 /* We don't need to do this for function-local types. */
10702 if (! decl_function_context (TYPE_STUB_DECL (type)))
10703 add_incomplete_type (type);
10707 /* Generate a DIE for a subroutine _type_. */
10709 static void
10710 gen_subroutine_type_die (type, context_die)
10711 tree type;
10712 dw_die_ref context_die;
10714 tree return_type = TREE_TYPE (type);
10715 dw_die_ref subr_die
10716 = new_die (DW_TAG_subroutine_type, scope_die_for (type, context_die));
10718 equate_type_number_to_die (type, subr_die);
10719 add_prototyped_attribute (subr_die, type);
10720 add_type_attribute (subr_die, return_type, 0, 0, context_die);
10721 gen_formal_types_die (type, subr_die);
10724 /* Generate a DIE for a type definition */
10726 static void
10727 gen_typedef_die (decl, context_die)
10728 tree decl;
10729 dw_die_ref context_die;
10731 dw_die_ref type_die;
10732 tree origin;
10734 if (TREE_ASM_WRITTEN (decl))
10735 return;
10736 TREE_ASM_WRITTEN (decl) = 1;
10738 type_die = new_die (DW_TAG_typedef, context_die);
10739 origin = decl_ultimate_origin (decl);
10740 if (origin != NULL)
10741 add_abstract_origin_attribute (type_die, origin);
10742 else
10744 tree type;
10745 add_name_and_src_coords_attributes (type_die, decl);
10746 if (DECL_ORIGINAL_TYPE (decl))
10748 type = DECL_ORIGINAL_TYPE (decl);
10750 if (type == TREE_TYPE (decl))
10751 abort ();
10752 else
10753 equate_type_number_to_die (TREE_TYPE (decl), type_die);
10755 else
10756 type = TREE_TYPE (decl);
10757 add_type_attribute (type_die, type, TREE_READONLY (decl),
10758 TREE_THIS_VOLATILE (decl), context_die);
10761 if (DECL_ABSTRACT (decl))
10762 equate_decl_number_to_die (decl, type_die);
10765 /* Generate a type description DIE. */
10767 static void
10768 gen_type_die (type, context_die)
10769 tree type;
10770 dw_die_ref context_die;
10772 int need_pop;
10774 if (type == NULL_TREE || type == error_mark_node)
10775 return;
10777 /* We are going to output a DIE to represent the unqualified version of
10778 this type (i.e. without any const or volatile qualifiers) so get the
10779 main variant (i.e. the unqualified version) of this type now. */
10780 type = type_main_variant (type);
10782 if (TREE_ASM_WRITTEN (type))
10783 return;
10785 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10786 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
10788 TREE_ASM_WRITTEN (type) = 1;
10789 gen_decl_die (TYPE_NAME (type), context_die);
10790 return;
10793 switch (TREE_CODE (type))
10795 case ERROR_MARK:
10796 break;
10798 case POINTER_TYPE:
10799 case REFERENCE_TYPE:
10800 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
10801 ensures that the gen_type_die recursion will terminate even if the
10802 type is recursive. Recursive types are possible in Ada. */
10803 /* ??? We could perhaps do this for all types before the switch
10804 statement. */
10805 TREE_ASM_WRITTEN (type) = 1;
10807 /* For these types, all that is required is that we output a DIE (or a
10808 set of DIEs) to represent the "basis" type. */
10809 gen_type_die (TREE_TYPE (type), context_die);
10810 break;
10812 case OFFSET_TYPE:
10813 /* This code is used for C++ pointer-to-data-member types.
10814 Output a description of the relevant class type. */
10815 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
10817 /* Output a description of the type of the object pointed to. */
10818 gen_type_die (TREE_TYPE (type), context_die);
10820 /* Now output a DIE to represent this pointer-to-data-member type
10821 itself. */
10822 gen_ptr_to_mbr_type_die (type, context_die);
10823 break;
10825 case SET_TYPE:
10826 gen_type_die (TYPE_DOMAIN (type), context_die);
10827 gen_set_type_die (type, context_die);
10828 break;
10830 case FILE_TYPE:
10831 gen_type_die (TREE_TYPE (type), context_die);
10832 abort (); /* No way to represent these in Dwarf yet! */
10833 break;
10835 case FUNCTION_TYPE:
10836 /* Force out return type (in case it wasn't forced out already). */
10837 gen_type_die (TREE_TYPE (type), context_die);
10838 gen_subroutine_type_die (type, context_die);
10839 break;
10841 case METHOD_TYPE:
10842 /* Force out return type (in case it wasn't forced out already). */
10843 gen_type_die (TREE_TYPE (type), context_die);
10844 gen_subroutine_type_die (type, context_die);
10845 break;
10847 case ARRAY_TYPE:
10848 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
10850 gen_type_die (TREE_TYPE (type), context_die);
10851 gen_string_type_die (type, context_die);
10853 else
10854 gen_array_type_die (type, context_die);
10855 break;
10857 case VECTOR_TYPE:
10858 gen_type_die (TYPE_DEBUG_REPRESENTATION_TYPE (type), context_die);
10859 break;
10861 case ENUMERAL_TYPE:
10862 case RECORD_TYPE:
10863 case UNION_TYPE:
10864 case QUAL_UNION_TYPE:
10865 /* If this is a nested type whose containing class hasn't been
10866 written out yet, writing it out will cover this one, too.
10867 This does not apply to instantiations of member class templates;
10868 they need to be added to the containing class as they are
10869 generated. FIXME: This hurts the idea of combining type decls
10870 from multiple TUs, since we can't predict what set of template
10871 instantiations we'll get. */
10872 if (TYPE_CONTEXT (type)
10873 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
10874 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
10876 gen_type_die (TYPE_CONTEXT (type), context_die);
10878 if (TREE_ASM_WRITTEN (type))
10879 return;
10881 /* If that failed, attach ourselves to the stub. */
10882 push_decl_scope (TYPE_CONTEXT (type));
10883 context_die = lookup_type_die (TYPE_CONTEXT (type));
10884 need_pop = 1;
10886 else
10887 need_pop = 0;
10889 if (TREE_CODE (type) == ENUMERAL_TYPE)
10890 gen_enumeration_type_die (type, context_die);
10891 else
10892 gen_struct_or_union_type_die (type, context_die);
10894 if (need_pop)
10895 pop_decl_scope ();
10897 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
10898 it up if it is ever completed. gen_*_type_die will set it for us
10899 when appropriate. */
10900 return;
10902 case VOID_TYPE:
10903 case INTEGER_TYPE:
10904 case REAL_TYPE:
10905 case COMPLEX_TYPE:
10906 case BOOLEAN_TYPE:
10907 case CHAR_TYPE:
10908 /* No DIEs needed for fundamental types. */
10909 break;
10911 case LANG_TYPE:
10912 /* No Dwarf representation currently defined. */
10913 break;
10915 default:
10916 abort ();
10919 TREE_ASM_WRITTEN (type) = 1;
10922 /* Generate a DIE for a tagged type instantiation. */
10924 static void
10925 gen_tagged_type_instantiation_die (type, context_die)
10926 tree type;
10927 dw_die_ref context_die;
10929 if (type == NULL_TREE || type == error_mark_node)
10930 return;
10932 /* We are going to output a DIE to represent the unqualified version of
10933 this type (i.e. without any const or volatile qualifiers) so make sure
10934 that we have the main variant (i.e. the unqualified version) of this
10935 type now. */
10936 if (type != type_main_variant (type))
10937 abort ();
10939 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
10940 an instance of an unresolved type. */
10942 switch (TREE_CODE (type))
10944 case ERROR_MARK:
10945 break;
10947 case ENUMERAL_TYPE:
10948 gen_inlined_enumeration_type_die (type, context_die);
10949 break;
10951 case RECORD_TYPE:
10952 gen_inlined_structure_type_die (type, context_die);
10953 break;
10955 case UNION_TYPE:
10956 case QUAL_UNION_TYPE:
10957 gen_inlined_union_type_die (type, context_die);
10958 break;
10960 default:
10961 abort ();
10965 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
10966 things which are local to the given block. */
10968 static void
10969 gen_block_die (stmt, context_die, depth)
10970 tree stmt;
10971 dw_die_ref context_die;
10972 int depth;
10974 int must_output_die = 0;
10975 tree origin;
10976 tree decl;
10977 enum tree_code origin_code;
10979 /* Ignore blocks never really used to make RTL. */
10980 if (stmt == NULL_TREE || !TREE_USED (stmt)
10981 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
10982 return;
10984 /* If the block is one fragment of a non-contiguous block, do not
10985 process the variables, since they will have been done by the
10986 origin block. Do process subblocks. */
10987 if (BLOCK_FRAGMENT_ORIGIN (stmt))
10989 tree sub;
10991 for (sub= BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
10992 gen_block_die (sub, context_die, depth + 1);
10993 return;
10996 /* Determine the "ultimate origin" of this block. This block may be an
10997 inlined instance of an inlined instance of inline function, so we have
10998 to trace all of the way back through the origin chain to find out what
10999 sort of node actually served as the original seed for the creation of
11000 the current block. */
11001 origin = block_ultimate_origin (stmt);
11002 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11004 /* Determine if we need to output any Dwarf DIEs at all to represent this
11005 block. */
11006 if (origin_code == FUNCTION_DECL)
11007 /* The outer scopes for inlinings *must* always be represented. We
11008 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11009 must_output_die = 1;
11010 else
11012 /* In the case where the current block represents an inlining of the
11013 "body block" of an inline function, we must *NOT* output any DIE for
11014 this block because we have already output a DIE to represent the
11015 whole inlined function scope and the "body block" of any function
11016 doesn't really represent a different scope according to ANSI C
11017 rules. So we check here to make sure that this block does not
11018 represent a "body block inlining" before trying to set the
11019 `must_output_die' flag. */
11020 if (! is_body_block (origin ? origin : stmt))
11022 /* Determine if this block directly contains any "significant"
11023 local declarations which we will need to output DIEs for. */
11024 if (debug_info_level > DINFO_LEVEL_TERSE)
11025 /* We are not in terse mode so *any* local declaration counts
11026 as being a "significant" one. */
11027 must_output_die = (BLOCK_VARS (stmt) != NULL);
11028 else
11029 /* We are in terse mode, so only local (nested) function
11030 definitions count as "significant" local declarations. */
11031 for (decl = BLOCK_VARS (stmt);
11032 decl != NULL; decl = TREE_CHAIN (decl))
11033 if (TREE_CODE (decl) == FUNCTION_DECL
11034 && DECL_INITIAL (decl))
11036 must_output_die = 1;
11037 break;
11042 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11043 DIE for any block which contains no significant local declarations at
11044 all. Rather, in such cases we just call `decls_for_scope' so that any
11045 needed Dwarf info for any sub-blocks will get properly generated. Note
11046 that in terse mode, our definition of what constitutes a "significant"
11047 local declaration gets restricted to include only inlined function
11048 instances and local (nested) function definitions. */
11049 if (must_output_die)
11051 if (origin_code == FUNCTION_DECL)
11052 gen_inlined_subroutine_die (stmt, context_die, depth);
11053 else
11054 gen_lexical_block_die (stmt, context_die, depth);
11056 else
11057 decls_for_scope (stmt, context_die, depth);
11060 /* Generate all of the decls declared within a given scope and (recursively)
11061 all of its sub-blocks. */
11063 static void
11064 decls_for_scope (stmt, context_die, depth)
11065 tree stmt;
11066 dw_die_ref context_die;
11067 int depth;
11069 tree decl;
11070 tree subblocks;
11072 /* Ignore blocks never really used to make RTL. */
11073 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11074 return;
11076 /* Output the DIEs to represent all of the data objects and typedefs
11077 declared directly within this block but not within any nested
11078 sub-blocks. Also, nested function and tag DIEs have been
11079 generated with a parent of NULL; fix that up now. */
11080 for (decl = BLOCK_VARS (stmt);
11081 decl != NULL; decl = TREE_CHAIN (decl))
11083 dw_die_ref die;
11085 if (TREE_CODE (decl) == FUNCTION_DECL)
11086 die = lookup_decl_die (decl);
11087 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11088 die = lookup_type_die (TREE_TYPE (decl));
11089 else
11090 die = NULL;
11092 if (die != NULL && die->die_parent == NULL)
11093 add_child_die (context_die, die);
11094 else
11095 gen_decl_die (decl, context_die);
11098 /* Output the DIEs to represent all sub-blocks (and the items declared
11099 therein) of this block. */
11100 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11101 subblocks != NULL;
11102 subblocks = BLOCK_CHAIN (subblocks))
11103 gen_block_die (subblocks, context_die, depth + 1);
11106 /* Is this a typedef we can avoid emitting? */
11108 static inline int
11109 is_redundant_typedef (decl)
11110 tree decl;
11112 if (TYPE_DECL_IS_STUB (decl))
11113 return 1;
11115 if (DECL_ARTIFICIAL (decl)
11116 && DECL_CONTEXT (decl)
11117 && is_tagged_type (DECL_CONTEXT (decl))
11118 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11119 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11120 /* Also ignore the artificial member typedef for the class name. */
11121 return 1;
11123 return 0;
11126 /* Generate Dwarf debug information for a decl described by DECL. */
11128 static void
11129 gen_decl_die (decl, context_die)
11130 tree decl;
11131 dw_die_ref context_die;
11133 tree origin;
11135 if (TREE_CODE (decl) == ERROR_MARK)
11136 return;
11138 /* If this ..._DECL node is marked to be ignored, then ignore it. */
11139 if (DECL_IGNORED_P (decl))
11140 return;
11142 switch (TREE_CODE (decl))
11144 case CONST_DECL:
11145 /* The individual enumerators of an enum type get output when we output
11146 the Dwarf representation of the relevant enum type itself. */
11147 break;
11149 case FUNCTION_DECL:
11150 /* Don't output any DIEs to represent mere function declarations,
11151 unless they are class members or explicit block externs. */
11152 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11153 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11154 break;
11156 /* If we're emitting a clone, emit info for the abstract instance. */
11157 if (DECL_ORIGIN (decl) != decl)
11158 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11159 /* If we're emitting an out-of-line copy of an inline function,
11160 emit info for the abstract instance and set up to refer to it. */
11161 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11162 && ! class_scope_p (context_die)
11163 /* dwarf2out_abstract_function won't emit a die if this is just
11164 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11165 that case, because that works only if we have a die. */
11166 && DECL_INITIAL (decl) != NULL_TREE)
11168 dwarf2out_abstract_function (decl);
11169 set_decl_origin_self (decl);
11171 /* Otherwise we're emitting the primary DIE for this decl. */
11172 else if (debug_info_level > DINFO_LEVEL_TERSE)
11174 /* Before we describe the FUNCTION_DECL itself, make sure that we
11175 have described its return type. */
11176 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11178 /* And its virtual context. */
11179 if (DECL_VINDEX (decl) != NULL_TREE)
11180 gen_type_die (DECL_CONTEXT (decl), context_die);
11182 /* And its containing type. */
11183 origin = decl_class_context (decl);
11184 if (origin != NULL_TREE)
11185 gen_type_die_for_member (origin, decl, context_die);
11188 /* Now output a DIE to represent the function itself. */
11189 gen_subprogram_die (decl, context_die);
11190 break;
11192 case TYPE_DECL:
11193 /* If we are in terse mode, don't generate any DIEs to represent any
11194 actual typedefs. */
11195 if (debug_info_level <= DINFO_LEVEL_TERSE)
11196 break;
11198 /* In the special case of a TYPE_DECL node representing the
11199 declaration of some type tag, if the given TYPE_DECL is marked as
11200 having been instantiated from some other (original) TYPE_DECL node
11201 (e.g. one which was generated within the original definition of an
11202 inline function) we have to generate a special (abbreviated)
11203 DW_TAG_structure_type, DW_TAG_union_type, or DW_TAG_enumeration_type
11204 DIE here. */
11205 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11207 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11208 break;
11211 if (is_redundant_typedef (decl))
11212 gen_type_die (TREE_TYPE (decl), context_die);
11213 else
11214 /* Output a DIE to represent the typedef itself. */
11215 gen_typedef_die (decl, context_die);
11216 break;
11218 case LABEL_DECL:
11219 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11220 gen_label_die (decl, context_die);
11221 break;
11223 case VAR_DECL:
11224 /* If we are in terse mode, don't generate any DIEs to represent any
11225 variable declarations or definitions. */
11226 if (debug_info_level <= DINFO_LEVEL_TERSE)
11227 break;
11229 /* Output any DIEs that are needed to specify the type of this data
11230 object. */
11231 gen_type_die (TREE_TYPE (decl), context_die);
11233 /* And its containing type. */
11234 origin = decl_class_context (decl);
11235 if (origin != NULL_TREE)
11236 gen_type_die_for_member (origin, decl, context_die);
11238 /* Now output the DIE to represent the data object itself. This gets
11239 complicated because of the possibility that the VAR_DECL really
11240 represents an inlined instance of a formal parameter for an inline
11241 function. */
11242 origin = decl_ultimate_origin (decl);
11243 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11244 gen_formal_parameter_die (decl, context_die);
11245 else
11246 gen_variable_die (decl, context_die);
11247 break;
11249 case FIELD_DECL:
11250 /* Ignore the nameless fields that are used to skip bits, but
11251 handle C++ anonymous unions. */
11252 if (DECL_NAME (decl) != NULL_TREE
11253 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11255 gen_type_die (member_declared_type (decl), context_die);
11256 gen_field_die (decl, context_die);
11258 break;
11260 case PARM_DECL:
11261 gen_type_die (TREE_TYPE (decl), context_die);
11262 gen_formal_parameter_die (decl, context_die);
11263 break;
11265 case NAMESPACE_DECL:
11266 /* Ignore for now. */
11267 break;
11269 default:
11270 abort ();
11274 /* Add Ada "use" clause information for SGI Workshop debugger. */
11276 void
11277 dwarf2out_add_library_unit_info (filename, context_list)
11278 const char *filename;
11279 const char *context_list;
11281 unsigned int file_index;
11283 if (filename != NULL)
11285 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die);
11286 tree context_list_decl
11287 = build_decl (LABEL_DECL, get_identifier (context_list),
11288 void_type_node);
11290 TREE_PUBLIC (context_list_decl) = TRUE;
11291 add_name_attribute (unit_die, context_list);
11292 file_index = lookup_filename (filename);
11293 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11294 add_pubname (context_list_decl, unit_die);
11298 /* Debug information for a global DECL. Called from toplev.c after
11299 compilation proper has finished. */
11300 static void
11301 dwarf2out_global_decl (decl)
11302 tree decl;
11304 /* Output DWARF2 information for file-scope tentative data object
11305 declarations, file-scope (extern) function declarations (which
11306 had no corresponding body) and file-scope tagged type
11307 declarations and definitions which have not yet been forced out. */
11309 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11310 dwarf2out_decl (decl);
11313 /* Write the debugging output for DECL. */
11315 void
11316 dwarf2out_decl (decl)
11317 tree decl;
11319 dw_die_ref context_die = comp_unit_die;
11321 if (TREE_CODE (decl) == ERROR_MARK)
11322 return;
11324 /* If this ..._DECL node is marked to be ignored, then ignore it. */
11325 if (DECL_IGNORED_P (decl))
11326 return;
11328 switch (TREE_CODE (decl))
11330 case FUNCTION_DECL:
11331 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11332 builtin function. Explicit programmer-supplied declarations of
11333 these same functions should NOT be ignored however. */
11334 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
11335 return;
11337 /* What we would really like to do here is to filter out all mere
11338 file-scope declarations of file-scope functions which are never
11339 referenced later within this translation unit (and keep all of ones
11340 that *are* referenced later on) but we aren't clairvoyant, so we have
11341 no idea which functions will be referenced in the future (i.e. later
11342 on within the current translation unit). So here we just ignore all
11343 file-scope function declarations which are not also definitions. If
11344 and when the debugger needs to know something about these functions,
11345 it will have to hunt around and find the DWARF information associated
11346 with the definition of the function. Note that we can't just check
11347 `DECL_EXTERNAL' to find out which FUNCTION_DECL nodes represent
11348 definitions and which ones represent mere declarations. We have to
11349 check `DECL_INITIAL' instead. That's because the C front-end
11350 supports some weird semantics for "extern inline" function
11351 definitions. These can get inlined within the current translation
11352 unit (an thus, we need to generate DWARF info for their abstract
11353 instances so that the DWARF info for the concrete inlined instances
11354 can have something to refer to) but the compiler never generates any
11355 out-of-lines instances of such things (despite the fact that they
11356 *are* definitions). The important point is that the C front-end
11357 marks these "extern inline" functions as DECL_EXTERNAL, but we need
11358 to generate DWARF for them anyway. Note that the C++ front-end also
11359 plays some similar games for inline function definitions appearing
11360 within include files which also contain
11361 `#pragma interface' pragmas. */
11362 if (DECL_INITIAL (decl) == NULL_TREE)
11363 return;
11365 /* If we're a nested function, initially use a parent of NULL; if we're
11366 a plain function, this will be fixed up in decls_for_scope. If
11367 we're a method, it will be ignored, since we already have a DIE. */
11368 if (decl_function_context (decl))
11369 context_die = NULL;
11371 break;
11373 case VAR_DECL:
11374 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
11375 declaration and if the declaration was never even referenced from
11376 within this entire compilation unit. We suppress these DIEs in
11377 order to save space in the .debug section (by eliminating entries
11378 which are probably useless). Note that we must not suppress
11379 block-local extern declarations (whether used or not) because that
11380 would screw-up the debugger's name lookup mechanism and cause it to
11381 miss things which really ought to be in scope at a given point. */
11382 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
11383 return;
11385 /* If we are in terse mode, don't generate any DIEs to represent any
11386 variable declarations or definitions. */
11387 if (debug_info_level <= DINFO_LEVEL_TERSE)
11388 return;
11389 break;
11391 case TYPE_DECL:
11392 /* Don't emit stubs for types unless they are needed by other DIEs. */
11393 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
11394 return;
11396 /* Don't bother trying to generate any DIEs to represent any of the
11397 normal built-in types for the language we are compiling. */
11398 if (DECL_SOURCE_LINE (decl) == 0)
11400 /* OK, we need to generate one for `bool' so GDB knows what type
11401 comparisons have. */
11402 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
11403 == DW_LANG_C_plus_plus)
11404 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE)
11405 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
11407 return;
11410 /* If we are in terse mode, don't generate any DIEs for types. */
11411 if (debug_info_level <= DINFO_LEVEL_TERSE)
11412 return;
11414 /* If we're a function-scope tag, initially use a parent of NULL;
11415 this will be fixed up in decls_for_scope. */
11416 if (decl_function_context (decl))
11417 context_die = NULL;
11419 break;
11421 default:
11422 return;
11425 gen_decl_die (decl, context_die);
11428 /* Output a marker (i.e. a label) for the beginning of the generated code for
11429 a lexical block. */
11431 static void
11432 dwarf2out_begin_block (line, blocknum)
11433 unsigned int line ATTRIBUTE_UNUSED;
11434 unsigned int blocknum;
11436 function_section (current_function_decl);
11437 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
11440 /* Output a marker (i.e. a label) for the end of the generated code for a
11441 lexical block. */
11443 static void
11444 dwarf2out_end_block (line, blocknum)
11445 unsigned int line ATTRIBUTE_UNUSED;
11446 unsigned int blocknum;
11448 function_section (current_function_decl);
11449 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
11452 /* Returns nonzero if it is appropriate not to emit any debugging
11453 information for BLOCK, because it doesn't contain any instructions.
11455 Don't allow this for blocks with nested functions or local classes
11456 as we would end up with orphans, and in the presence of scheduling
11457 we may end up calling them anyway. */
11459 static bool
11460 dwarf2out_ignore_block (block)
11461 tree block;
11463 tree decl;
11464 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
11465 if (TREE_CODE (decl) == FUNCTION_DECL
11466 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
11467 return 0;
11468 return 1;
11471 /* Lookup a filename (in the list of filenames that we know about here in
11472 dwarf2out.c) and return its "index". The index of each (known) filename is
11473 just a unique number which is associated with only that one filename.
11474 We need such numbers for the sake of generating labels
11475 (in the .debug_sfnames section) and references to those
11476 files numbers (in the .debug_srcinfo and.debug_macinfo sections).
11477 If the filename given as an argument is not found in our current list,
11478 add it to the list and assign it the next available unique index number.
11479 In order to speed up searches, we remember the index of the filename
11480 was looked up last. This handles the majority of all searches. */
11482 static unsigned
11483 lookup_filename (file_name)
11484 const char *file_name;
11486 unsigned i;
11488 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
11489 if (strcmp (file_name, "<internal>") == 0
11490 || strcmp (file_name, "<built-in>") == 0)
11491 return 0;
11493 /* Check to see if the file name that was searched on the previous
11494 call matches this file name. If so, return the index. */
11495 if (file_table.last_lookup_index != 0)
11496 if (strcmp (file_name, file_table.table[file_table.last_lookup_index]) == 0)
11497 return file_table.last_lookup_index;
11499 /* Didn't match the previous lookup, search the table */
11500 for (i = 1; i < file_table.in_use; ++i)
11501 if (strcmp (file_name, file_table.table[i]) == 0)
11503 file_table.last_lookup_index = i;
11504 return i;
11507 /* Prepare to add a new table entry by making sure there is enough space in
11508 the table to do so. If not, expand the current table. */
11509 if (i == file_table.allocated)
11511 file_table.allocated = i + FILE_TABLE_INCREMENT;
11512 file_table.table = (char **)
11513 xrealloc (file_table.table, file_table.allocated * sizeof (char *));
11516 /* Add the new entry to the end of the filename table. */
11517 file_table.table[i] = xstrdup (file_name);
11518 file_table.in_use = i + 1;
11519 file_table.last_lookup_index = i;
11521 if (DWARF2_ASM_LINE_DEBUG_INFO)
11522 fprintf (asm_out_file, "\t.file %u \"%s\"\n", i, file_name);
11524 return i;
11527 static void
11528 init_file_table ()
11530 /* Allocate the initial hunk of the file_table. */
11531 file_table.table = (char **) xcalloc (FILE_TABLE_INCREMENT, sizeof (char *));
11532 file_table.allocated = FILE_TABLE_INCREMENT;
11534 /* Skip the first entry - file numbers begin at 1. */
11535 file_table.in_use = 1;
11536 file_table.last_lookup_index = 0;
11539 /* Output a label to mark the beginning of a source code line entry
11540 and record information relating to this source line, in
11541 'line_info_table' for later output of the .debug_line section. */
11543 static void
11544 dwarf2out_source_line (line, filename)
11545 unsigned int line;
11546 const char *filename;
11548 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11550 function_section (current_function_decl);
11552 /* If requested, emit something human-readable. */
11553 if (flag_debug_asm)
11554 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
11555 filename, line);
11557 if (DWARF2_ASM_LINE_DEBUG_INFO)
11559 unsigned file_num = lookup_filename (filename);
11561 /* Emit the .loc directive understood by GNU as. */
11562 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
11564 /* Indicate that line number info exists. */
11565 ++line_info_table_in_use;
11567 /* Indicate that multiple line number tables exist. */
11568 if (DECL_SECTION_NAME (current_function_decl))
11569 ++separate_line_info_table_in_use;
11571 else if (DECL_SECTION_NAME (current_function_decl))
11573 dw_separate_line_info_ref line_info;
11574 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL,
11575 separate_line_info_table_in_use);
11577 /* expand the line info table if necessary */
11578 if (separate_line_info_table_in_use
11579 == separate_line_info_table_allocated)
11581 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11582 separate_line_info_table
11583 = (dw_separate_line_info_ref)
11584 xrealloc (separate_line_info_table,
11585 separate_line_info_table_allocated
11586 * sizeof (dw_separate_line_info_entry));
11589 /* Add the new entry at the end of the line_info_table. */
11590 line_info
11591 = &separate_line_info_table[separate_line_info_table_in_use++];
11592 line_info->dw_file_num = lookup_filename (filename);
11593 line_info->dw_line_num = line;
11594 line_info->function = current_funcdef_number;
11596 else
11598 dw_line_info_ref line_info;
11600 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL,
11601 line_info_table_in_use);
11603 /* Expand the line info table if necessary. */
11604 if (line_info_table_in_use == line_info_table_allocated)
11606 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11607 line_info_table
11608 = (dw_line_info_ref)
11609 xrealloc (line_info_table,
11610 (line_info_table_allocated
11611 * sizeof (dw_line_info_entry)));
11614 /* Add the new entry at the end of the line_info_table. */
11615 line_info = &line_info_table[line_info_table_in_use++];
11616 line_info->dw_file_num = lookup_filename (filename);
11617 line_info->dw_line_num = line;
11622 /* Record the beginning of a new source file. */
11624 static void
11625 dwarf2out_start_source_file (lineno, filename)
11626 unsigned int lineno;
11627 const char *filename;
11629 if (flag_eliminate_dwarf2_dups)
11631 /* Record the beginning of the file for break_out_includes. */
11632 dw_die_ref bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die);
11633 add_AT_string (bincl_die, DW_AT_name, filename);
11635 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11637 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11638 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
11639 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
11640 lineno);
11641 dw2_asm_output_data_uleb128 (lookup_filename (filename),
11642 "Filename we just started");
11646 /* Record the end of a source file. */
11648 static void
11649 dwarf2out_end_source_file (lineno)
11650 unsigned int lineno ATTRIBUTE_UNUSED;
11652 if (flag_eliminate_dwarf2_dups)
11654 /* Record the end of the file for break_out_includes. */
11655 new_die (DW_TAG_GNU_EINCL, comp_unit_die);
11657 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11659 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11660 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11664 /* Called from debug_define in toplev.c. The `buffer' parameter contains
11665 the tail part of the directive line, i.e. the part which is past the
11666 initial whitespace, #, whitespace, directive-name, whitespace part. */
11668 static void
11669 dwarf2out_define (lineno, buffer)
11670 unsigned lineno ATTRIBUTE_UNUSED;
11671 const char *buffer ATTRIBUTE_UNUSED;
11673 static int initialized = 0;
11674 if (!initialized)
11676 dwarf2out_start_source_file (0, primary_filename);
11677 initialized = 1;
11679 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11681 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11682 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
11683 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11684 dw2_asm_output_nstring (buffer, -1, "The macro");
11688 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
11689 the tail part of the directive line, i.e. the part which is past the
11690 initial whitespace, #, whitespace, directive-name, whitespace part. */
11692 static void
11693 dwarf2out_undef (lineno, buffer)
11694 unsigned lineno ATTRIBUTE_UNUSED;
11695 const char *buffer ATTRIBUTE_UNUSED;
11697 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11699 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11700 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
11701 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11702 dw2_asm_output_nstring (buffer, -1, "The macro");
11706 /* Set up for Dwarf output at the start of compilation. */
11708 static void
11709 dwarf2out_init (main_input_filename)
11710 const char *main_input_filename;
11712 init_file_table ();
11714 /* Remember the name of the primary input file. */
11715 primary_filename = main_input_filename;
11717 /* Add it to the file table first, under the assumption that we'll
11718 be emitting line number data for it first, which avoids having
11719 to add an initial DW_LNS_set_file. */
11720 lookup_filename (main_input_filename);
11722 /* Allocate the initial hunk of the decl_die_table. */
11723 decl_die_table
11724 = (dw_die_ref *) xcalloc (DECL_DIE_TABLE_INCREMENT, sizeof (dw_die_ref));
11725 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
11726 decl_die_table_in_use = 0;
11728 /* Allocate the initial hunk of the decl_scope_table. */
11729 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
11730 ggc_add_tree_varray_root (&decl_scope_table, 1);
11732 /* Allocate the initial hunk of the abbrev_die_table. */
11733 abbrev_die_table
11734 = (dw_die_ref *) xcalloc (ABBREV_DIE_TABLE_INCREMENT,
11735 sizeof (dw_die_ref));
11736 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
11737 /* Zero-th entry is allocated, but unused */
11738 abbrev_die_table_in_use = 1;
11740 /* Allocate the initial hunk of the line_info_table. */
11741 line_info_table
11742 = (dw_line_info_ref) xcalloc (LINE_INFO_TABLE_INCREMENT,
11743 sizeof (dw_line_info_entry));
11744 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
11745 /* Zero-th entry is allocated, but unused */
11746 line_info_table_in_use = 1;
11748 /* Generate the initial DIE for the .debug section. Note that the (string)
11749 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
11750 will (typically) be a relative pathname and that this pathname should be
11751 taken as being relative to the directory from which the compiler was
11752 invoked when the given (base) source file was compiled. */
11753 comp_unit_die = gen_compile_unit_die (main_input_filename);
11755 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
11756 ggc_add_tree_varray_root (&incomplete_types, 1);
11758 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
11759 ggc_add_rtx_varray_root (&used_rtx_varray, 1);
11761 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
11762 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
11763 DEBUG_ABBREV_SECTION_LABEL, 0);
11764 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
11765 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
11766 else
11767 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
11768 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
11769 DEBUG_INFO_SECTION_LABEL, 0);
11770 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
11771 DEBUG_LINE_SECTION_LABEL, 0);
11772 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
11773 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
11774 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
11775 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
11776 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
11777 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
11778 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11780 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11781 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
11782 DEBUG_MACINFO_SECTION_LABEL, 0);
11783 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
11786 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
11788 text_section ();
11789 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
11793 /* Allocate a string in .debug_str hash table. */
11795 static hashnode
11796 indirect_string_alloc (tab)
11797 hash_table *tab ATTRIBUTE_UNUSED;
11799 struct indirect_string_node *node;
11801 node = xmalloc (sizeof (struct indirect_string_node));
11802 node->refcount = 0;
11803 node->form = 0;
11804 node->label = NULL;
11805 return (hashnode) node;
11808 /* A helper function for dwarf2out_finish called through
11809 ht_forall. Emit one queued .debug_str string. */
11811 static int
11812 output_indirect_string (pfile, h, v)
11813 struct cpp_reader *pfile ATTRIBUTE_UNUSED;
11814 hashnode h;
11815 const PTR v ATTRIBUTE_UNUSED;
11817 struct indirect_string_node *node;
11819 node = (struct indirect_string_node *) h;
11820 if (node->form == DW_FORM_strp)
11822 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
11823 ASM_OUTPUT_LABEL (asm_out_file, node->label);
11824 assemble_string ((const char *) HT_STR (&node->id),
11825 HT_LEN (&node->id) + 1);
11827 return 1;
11830 /* Output stuff that dwarf requires at the end of every file,
11831 and generate the DWARF-2 debugging info. */
11833 static void
11834 dwarf2out_finish (input_filename)
11835 const char *input_filename ATTRIBUTE_UNUSED;
11837 limbo_die_node *node, *next_node;
11838 dw_die_ref die = 0;
11840 /* Traverse the limbo die list, and add parent/child links. The only
11841 dies without parents that should be here are concrete instances of
11842 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
11843 For concrete instances, we can get the parent die from the abstract
11844 instance. */
11845 for (node = limbo_die_list; node; node = next_node)
11847 next_node = node->next;
11848 die = node->die;
11850 if (die->die_parent == NULL)
11852 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
11853 if (origin)
11854 add_child_die (origin->die_parent, die);
11855 else if (die == comp_unit_die)
11857 else if (errorcount > 0 || sorrycount > 0)
11858 /* It's OK to be confused by errors in the input. */
11859 add_child_die (comp_unit_die, die);
11860 else
11861 abort ();
11863 free (node);
11865 limbo_die_list = NULL;
11867 /* Walk through the list of incomplete types again, trying once more to
11868 emit full debugging info for them. */
11869 retry_incomplete_types ();
11871 /* We need to reverse all the dies before break_out_includes, or
11872 we'll see the end of an include file before the beginning. */
11873 reverse_all_dies (comp_unit_die);
11875 /* Generate separate CUs for each of the include files we've seen.
11876 They will go into limbo_die_list. */
11877 if (flag_eliminate_dwarf2_dups)
11878 break_out_includes (comp_unit_die);
11880 /* Traverse the DIE's and add add sibling attributes to those DIE's
11881 that have children. */
11882 add_sibling_attributes (comp_unit_die);
11883 for (node = limbo_die_list; node; node = node->next)
11884 add_sibling_attributes (node->die);
11886 /* Output a terminator label for the .text section. */
11887 text_section ();
11888 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0);
11890 /* Output the source line correspondence table. We must do this
11891 even if there is no line information. Otherwise, on an empty
11892 translation unit, we will generate a present, but empty,
11893 .debug_info section. IRIX 6.5 `nm' will then complain when
11894 examining the file. */
11895 if (! DWARF2_ASM_LINE_DEBUG_INFO)
11897 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
11898 output_line_info ();
11901 /* Output location list section if necessary. */
11902 if (have_location_lists)
11904 /* Output the location lists info. */
11905 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
11906 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
11907 DEBUG_LOC_SECTION_LABEL, 0);
11908 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
11909 output_location_lists (die);
11910 have_location_lists = 0;
11913 /* We can only use the low/high_pc attributes if all of the code was
11914 in .text. */
11915 if (separate_line_info_table_in_use == 0)
11917 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
11918 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
11920 /* And if it wasn't, we need to give .debug_loc and .debug_ranges
11921 an appropriate "base address". Use zero so that these addresses
11922 become absolute. */
11923 else if (have_location_lists || ranges_table_in_use)
11924 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
11926 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11927 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
11928 debug_line_section_label);
11930 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11931 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
11933 /* Output all of the compilation units. We put the main one last so that
11934 the offsets are available to output_pubnames. */
11935 for (node = limbo_die_list; node; node = node->next)
11936 output_comp_unit (node->die);
11937 output_comp_unit (comp_unit_die);
11939 /* Output the abbreviation table. */
11940 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
11941 output_abbrev_section ();
11943 if (pubname_table_in_use)
11945 /* Output public names table. */
11946 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
11947 output_pubnames ();
11950 /* We only put functions in the arange table, so don't write it out if
11951 we don't have any. */
11952 if (fde_table_in_use)
11954 /* Output the address range information. */
11955 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
11956 output_aranges ();
11959 /* Output ranges section if necessary. */
11960 if (ranges_table_in_use)
11962 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
11963 output_ranges ();
11966 /* Have to end the primary source file. */
11967 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11969 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11970 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11973 /* If we emitted any DW_FORM_strp form attribute, output string
11974 table too. */
11975 if (debug_str_hash)
11976 ht_forall (debug_str_hash, output_indirect_string, NULL);
11978 #endif /* DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO */