* config/mips/mips.md (mulsi3_mul3, muldi3_mul3): Merge these ...
[official-gcc.git] / gcc / tree-parloops.c
blob0373205c9f3db1afd8721bb6abda642d0e12735c
1 /* Loop autoparallelization.
2 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
4 Zdenek Dvorak <dvorakz@suse.cz>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tree-flow.h"
30 #include "cfgloop.h"
31 #include "ggc.h"
32 #include "tree-data-ref.h"
33 #include "diagnostic.h"
34 #include "tree-pass.h"
35 #include "tree-scalar-evolution.h"
36 #include "hashtab.h"
37 #include "langhooks.h"
38 #include "tree-vectorizer.h"
40 /* This pass tries to distribute iterations of loops into several threads.
41 The implementation is straightforward -- for each loop we test whether its
42 iterations are independent, and if it is the case (and some additional
43 conditions regarding profitability and correctness are satisfied), we
44 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
45 machinery do its job.
47 The most of the complexity is in bringing the code into shape expected
48 by the omp expanders:
49 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
50 variable and that the exit test is at the start of the loop body
51 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
52 variables by accesses through pointers, and breaking up ssa chains
53 by storing the values incoming to the parallelized loop to a structure
54 passed to the new function as an argument (something similar is done
55 in omp gimplification, unfortunately only a small part of the code
56 can be shared).
58 TODO:
59 -- if there are several parallelizable loops in a function, it may be
60 possible to generate the threads just once (using synchronization to
61 ensure that cross-loop dependences are obeyed).
62 -- handling of common scalar dependence patterns (accumulation, ...)
63 -- handling of non-innermost loops */
65 /*
66 Reduction handling:
67 currently we use vect_is_simple_reduction() to detect reduction patterns.
68 The code transformation will be introduced by an example.
71 parloop
73 int sum=1;
75 for (i = 0; i < N; i++)
77 x[i] = i + 3;
78 sum+=x[i];
82 gimple-like code:
83 header_bb:
85 # sum_29 = PHI <sum_11(5), 1(3)>
86 # i_28 = PHI <i_12(5), 0(3)>
87 D.1795_8 = i_28 + 3;
88 x[i_28] = D.1795_8;
89 sum_11 = D.1795_8 + sum_29;
90 i_12 = i_28 + 1;
91 if (N_6(D) > i_12)
92 goto header_bb;
95 exit_bb:
97 # sum_21 = PHI <sum_11(4)>
98 printf (&"%d"[0], sum_21);
101 after reduction transformation (only relevant parts):
103 parloop
106 ....
109 # Storing the initial value given by the user. #
111 .paral_data_store.32.sum.27 = 1;
113 #pragma omp parallel num_threads(4)
115 #pragma omp for schedule(static)
117 # The neutral element corresponding to the particular
118 reduction's operation, e.g. 0 for PLUS_EXPR,
119 1 for MULT_EXPR, etc. replaces the user's initial value. #
121 # sum.27_29 = PHI <sum.27_11, 0>
123 sum.27_11 = D.1827_8 + sum.27_29;
125 GIMPLE_OMP_CONTINUE
127 # Adding this reduction phi is done at create_phi_for_local_result() #
128 # sum.27_56 = PHI <sum.27_11, 0>
129 GIMPLE_OMP_RETURN
131 # Creating the atomic operation is done at
132 create_call_for_reduction_1() #
134 #pragma omp atomic_load
135 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
136 D.1840_60 = sum.27_56 + D.1839_59;
137 #pragma omp atomic_store (D.1840_60);
139 GIMPLE_OMP_RETURN
141 # collecting the result after the join of the threads is done at
142 create_loads_for_reductions().
143 The value computed by the threads is loaded from the
144 shared struct. #
147 .paral_data_load.33_52 = &.paral_data_store.32;
148 sum_37 = .paral_data_load.33_52->sum.27;
149 sum_43 = D.1795_41 + sum_37;
151 exit bb:
152 # sum_21 = PHI <sum_43, sum_26>
153 printf (&"%d"[0], sum_21);
161 /* Minimal number of iterations of a loop that should be executed in each
162 thread. */
163 #define MIN_PER_THREAD 100
165 /* Element of the hashtable, representing a
166 reduction in the current loop. */
167 struct reduction_info
169 gimple reduc_stmt; /* reduction statement. */
170 gimple reduc_phi; /* The phi node defining the reduction. */
171 enum tree_code reduction_code;/* code for the reduction operation. */
172 gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
173 of the reduction variable when existing the loop. */
174 tree initial_value; /* The initial value of the reduction var before entering the loop. */
175 tree field; /* the name of the field in the parloop data structure intended for reduction. */
176 tree init; /* reduction initialization value. */
177 gimple new_phi; /* (helper field) Newly created phi node whose result
178 will be passed to the atomic operation. Represents
179 the local result each thread computed for the reduction
180 operation. */
183 /* Equality and hash functions for hashtab code. */
185 static int
186 reduction_info_eq (const void *aa, const void *bb)
188 const struct reduction_info *a = (const struct reduction_info *) aa;
189 const struct reduction_info *b = (const struct reduction_info *) bb;
191 return (a->reduc_phi == b->reduc_phi);
194 static hashval_t
195 reduction_info_hash (const void *aa)
197 const struct reduction_info *a = (const struct reduction_info *) aa;
199 return htab_hash_pointer (a->reduc_phi);
202 static struct reduction_info *
203 reduction_phi (htab_t reduction_list, gimple phi)
205 struct reduction_info tmpred, *red;
207 if (htab_elements (reduction_list) == 0)
208 return NULL;
210 tmpred.reduc_phi = phi;
211 red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
213 return red;
216 /* Element of hashtable of names to copy. */
218 struct name_to_copy_elt
220 unsigned version; /* The version of the name to copy. */
221 tree new_name; /* The new name used in the copy. */
222 tree field; /* The field of the structure used to pass the
223 value. */
226 /* Equality and hash functions for hashtab code. */
228 static int
229 name_to_copy_elt_eq (const void *aa, const void *bb)
231 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
232 const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
234 return a->version == b->version;
237 static hashval_t
238 name_to_copy_elt_hash (const void *aa)
240 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
242 return (hashval_t) a->version;
245 /* Returns true if the iterations of LOOP are independent on each other (that
246 is, if we can execute them in parallel), and if LOOP satisfies other
247 conditions that we need to be able to parallelize it. Description of number
248 of iterations is stored to NITER. Reduction analysis is done, if
249 reductions are found, they are inserted to the REDUCTION_LIST. */
251 static bool
252 loop_parallel_p (struct loop *loop, htab_t reduction_list,
253 struct tree_niter_desc *niter)
255 edge exit = single_dom_exit (loop);
256 VEC (ddr_p, heap) * dependence_relations;
257 VEC (data_reference_p, heap) *datarefs;
258 lambda_trans_matrix trans;
259 bool ret = false;
260 gimple_stmt_iterator gsi;
261 loop_vec_info simple_loop_info;
263 /* Only consider innermost loops with just one exit. The innermost-loop
264 restriction is not necessary, but it makes things simpler. */
265 if (loop->inner || !exit)
266 return false;
268 if (dump_file && (dump_flags & TDF_DETAILS))
269 fprintf (dump_file, "\nConsidering loop %d\n", loop->num);
271 /* We need to know # of iterations, and there should be no uses of values
272 defined inside loop outside of it, unless the values are invariants of
273 the loop. */
274 if (!number_of_iterations_exit (loop, exit, niter, false))
276 if (dump_file && (dump_flags & TDF_DETAILS))
277 fprintf (dump_file, " FAILED: number of iterations not known\n");
278 return false;
281 simple_loop_info = vect_analyze_loop_form (loop);
283 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
285 gimple phi = gsi_stmt (gsi);
286 gimple reduc_stmt = NULL;
288 /* ??? TODO: Change this into a generic function that
289 recognizes reductions. */
290 if (!is_gimple_reg (PHI_RESULT (phi)))
291 continue;
292 if (simple_loop_info)
293 reduc_stmt = vect_is_simple_reduction (simple_loop_info, phi);
295 /* Create a reduction_info struct, initialize it and insert it to
296 the reduction list. */
298 if (reduc_stmt)
300 PTR *slot;
301 struct reduction_info *new_reduction;
303 if (dump_file && (dump_flags & TDF_DETAILS))
305 fprintf (dump_file,
306 "Detected reduction. reduction stmt is: \n");
307 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
308 fprintf (dump_file, "\n");
311 new_reduction = XCNEW (struct reduction_info);
313 new_reduction->reduc_stmt = reduc_stmt;
314 new_reduction->reduc_phi = phi;
315 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
316 slot = htab_find_slot (reduction_list, new_reduction, INSERT);
317 *slot = new_reduction;
321 /* Get rid of the information created by the vectorizer functions. */
322 destroy_loop_vec_info (simple_loop_info, true);
324 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
326 gimple phi = gsi_stmt (gsi);
327 struct reduction_info *red;
328 imm_use_iterator imm_iter;
329 use_operand_p use_p;
330 gimple reduc_phi;
331 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
333 if (is_gimple_reg (val))
335 if (dump_file && (dump_flags & TDF_DETAILS))
337 fprintf (dump_file, "phi is ");
338 print_gimple_stmt (dump_file, phi, 0, 0);
339 fprintf (dump_file, "arg of phi to exit: value ");
340 print_generic_expr (dump_file, val, 0);
341 fprintf (dump_file, " used outside loop\n");
342 fprintf (dump_file,
343 " checking if it a part of reduction pattern: \n");
345 if (htab_elements (reduction_list) == 0)
347 if (dump_file && (dump_flags & TDF_DETAILS))
348 fprintf (dump_file,
349 " FAILED: it is not a part of reduction.\n");
350 return false;
352 reduc_phi = NULL;
353 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
355 if (flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
357 reduc_phi = USE_STMT (use_p);
358 break;
361 red = reduction_phi (reduction_list, reduc_phi);
362 if (red == NULL)
364 if (dump_file && (dump_flags & TDF_DETAILS))
365 fprintf (dump_file,
366 " FAILED: it is not a part of reduction.\n");
367 return false;
369 if (dump_file && (dump_flags & TDF_DETAILS))
371 fprintf (dump_file, "reduction phi is ");
372 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
373 fprintf (dump_file, "reduction stmt is ");
374 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
380 /* The iterations of the loop may communicate only through bivs whose
381 iteration space can be distributed efficiently. */
382 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
384 gimple phi = gsi_stmt (gsi);
385 tree def = PHI_RESULT (phi);
386 affine_iv iv;
388 if (is_gimple_reg (def) && !simple_iv (loop, phi, def, &iv, true))
390 struct reduction_info *red;
392 red = reduction_phi (reduction_list, phi);
393 if (red == NULL)
395 if (dump_file && (dump_flags & TDF_DETAILS))
396 fprintf (dump_file,
397 " FAILED: scalar dependency between iterations\n");
398 return false;
403 /* We need to version the loop to verify assumptions in runtime. */
404 if (!can_duplicate_loop_p (loop))
406 if (dump_file && (dump_flags & TDF_DETAILS))
407 fprintf (dump_file, " FAILED: cannot be duplicated\n");
408 return false;
411 /* Check for problems with dependences. If the loop can be reversed,
412 the iterations are independent. */
413 datarefs = VEC_alloc (data_reference_p, heap, 10);
414 dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
415 compute_data_dependences_for_loop (loop, true, &datarefs,
416 &dependence_relations);
417 if (dump_file && (dump_flags & TDF_DETAILS))
418 dump_data_dependence_relations (dump_file, dependence_relations);
420 trans = lambda_trans_matrix_new (1, 1);
421 LTM_MATRIX (trans)[0][0] = -1;
423 if (lambda_transform_legal_p (trans, 1, dependence_relations))
425 ret = true;
426 if (dump_file && (dump_flags & TDF_DETAILS))
427 fprintf (dump_file, " SUCCESS: may be parallelized\n");
429 else if (dump_file && (dump_flags & TDF_DETAILS))
430 fprintf (dump_file,
431 " FAILED: data dependencies exist across iterations\n");
433 free_dependence_relations (dependence_relations);
434 free_data_refs (datarefs);
436 return ret;
439 /* Return true when LOOP contains basic blocks marked with the
440 BB_IRREDUCIBLE_LOOP flag. */
442 static inline bool
443 loop_has_blocks_with_irreducible_flag (struct loop *loop)
445 unsigned i;
446 basic_block *bbs = get_loop_body_in_dom_order (loop);
447 bool res = true;
449 for (i = 0; i < loop->num_nodes; i++)
450 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
451 goto end;
453 res = false;
454 end:
455 free (bbs);
456 return res;
459 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
460 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
461 to their addresses that can be reused. The address of OBJ is known to
462 be invariant in the whole function. */
464 static tree
465 take_address_of (tree obj, tree type, edge entry, htab_t decl_address)
467 int uid;
468 void **dslot;
469 struct int_tree_map ielt, *nielt;
470 tree *var_p, name, bvar, addr;
471 gimple stmt;
472 gimple_seq stmts;
474 /* Since the address of OBJ is invariant, the trees may be shared.
475 Avoid rewriting unrelated parts of the code. */
476 obj = unshare_expr (obj);
477 for (var_p = &obj;
478 handled_component_p (*var_p);
479 var_p = &TREE_OPERAND (*var_p, 0))
480 continue;
481 uid = DECL_UID (*var_p);
483 ielt.uid = uid;
484 dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
485 if (!*dslot)
487 addr = build_addr (*var_p, current_function_decl);
488 bvar = create_tmp_var (TREE_TYPE (addr), get_name (*var_p));
489 add_referenced_var (bvar);
490 stmt = gimple_build_assign (bvar, addr);
491 name = make_ssa_name (bvar, stmt);
492 gimple_assign_set_lhs (stmt, name);
493 gsi_insert_on_edge_immediate (entry, stmt);
495 nielt = XNEW (struct int_tree_map);
496 nielt->uid = uid;
497 nielt->to = name;
498 *dslot = nielt;
500 else
501 name = ((struct int_tree_map *) *dslot)->to;
503 if (var_p != &obj)
505 *var_p = build1 (INDIRECT_REF, TREE_TYPE (*var_p), name);
506 name = force_gimple_operand (build_addr (obj, current_function_decl),
507 &stmts, true, NULL_TREE);
508 if (!gimple_seq_empty_p (stmts))
509 gsi_insert_seq_on_edge_immediate (entry, stmts);
512 if (TREE_TYPE (name) != type)
514 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
515 NULL_TREE);
516 if (!gimple_seq_empty_p (stmts))
517 gsi_insert_seq_on_edge_immediate (entry, stmts);
520 return name;
523 /* Callback for htab_traverse. Create the initialization statement
524 for reduction described in SLOT, and place it at the preheader of
525 the loop described in DATA. */
527 static int
528 initialize_reductions (void **slot, void *data)
530 tree init, c;
531 tree bvar, type, arg;
532 edge e;
534 struct reduction_info *const reduc = (struct reduction_info *) *slot;
535 struct loop *loop = (struct loop *) data;
537 /* Create initialization in preheader:
538 reduction_variable = initialization value of reduction. */
540 /* In the phi node at the header, replace the argument coming
541 from the preheader with the reduction initialization value. */
543 /* Create a new variable to initialize the reduction. */
544 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
545 bvar = create_tmp_var (type, "reduction");
546 add_referenced_var (bvar);
548 c = build_omp_clause (OMP_CLAUSE_REDUCTION);
549 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
550 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
552 init = omp_reduction_init (c, TREE_TYPE (bvar));
553 reduc->init = init;
555 /* Replace the argument representing the initialization value
556 with the initialization value for the reduction (neutral
557 element for the particular operation, e.g. 0 for PLUS_EXPR,
558 1 for MULT_EXPR, etc).
559 Keep the old value in a new variable "reduction_initial",
560 that will be taken in consideration after the parallel
561 computing is done. */
563 e = loop_preheader_edge (loop);
564 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
565 /* Create new variable to hold the initial value. */
567 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
568 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
569 reduc->initial_value = arg;
570 return 1;
573 struct elv_data
575 struct walk_stmt_info info;
576 edge entry;
577 htab_t decl_address;
578 bool changed;
581 /* Eliminates references to local variables in *TP out of the single
582 entry single exit region starting at DTA->ENTRY.
583 DECL_ADDRESS contains addresses of the references that had their
584 address taken already. If the expression is changed, CHANGED is
585 set to true. Callback for walk_tree. */
587 static tree
588 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
590 struct elv_data *const dta = (struct elv_data *) data;
591 tree t = *tp, var, addr, addr_type, type, obj;
593 if (DECL_P (t))
595 *walk_subtrees = 0;
597 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
598 return NULL_TREE;
600 type = TREE_TYPE (t);
601 addr_type = build_pointer_type (type);
602 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address);
603 *tp = build1 (INDIRECT_REF, TREE_TYPE (*tp), addr);
605 dta->changed = true;
606 return NULL_TREE;
609 if (TREE_CODE (t) == ADDR_EXPR)
611 /* ADDR_EXPR may appear in two contexts:
612 -- as a gimple operand, when the address taken is a function invariant
613 -- as gimple rhs, when the resulting address in not a function
614 invariant
615 We do not need to do anything special in the latter case (the base of
616 the memory reference whose address is taken may be replaced in the
617 DECL_P case). The former case is more complicated, as we need to
618 ensure that the new address is still a gimple operand. Thus, it
619 is not sufficient to replace just the base of the memory reference --
620 we need to move the whole computation of the address out of the
621 loop. */
622 if (!is_gimple_val (t))
623 return NULL_TREE;
625 *walk_subtrees = 0;
626 obj = TREE_OPERAND (t, 0);
627 var = get_base_address (obj);
628 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
629 return NULL_TREE;
631 addr_type = TREE_TYPE (t);
632 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address);
633 *tp = addr;
635 dta->changed = true;
636 return NULL_TREE;
639 if (!EXPR_P (t))
640 *walk_subtrees = 0;
642 return NULL_TREE;
645 /* Moves the references to local variables in STMT out of the single
646 entry single exit region starting at ENTRY. DECL_ADDRESS contains
647 addresses of the references that had their address taken
648 already. */
650 static void
651 eliminate_local_variables_stmt (edge entry, gimple stmt,
652 htab_t decl_address)
654 struct elv_data dta;
656 memset (&dta.info, '\0', sizeof (dta.info));
657 dta.entry = entry;
658 dta.decl_address = decl_address;
659 dta.changed = false;
661 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
663 if (dta.changed)
664 update_stmt (stmt);
667 /* Eliminates the references to local variables from the single entry
668 single exit region between the ENTRY and EXIT edges.
670 This includes:
671 1) Taking address of a local variable -- these are moved out of the
672 region (and temporary variable is created to hold the address if
673 necessary).
675 2) Dereferencing a local variable -- these are replaced with indirect
676 references. */
678 static void
679 eliminate_local_variables (edge entry, edge exit)
681 basic_block bb;
682 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
683 unsigned i;
684 gimple_stmt_iterator gsi;
685 htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
686 free);
687 basic_block entry_bb = entry->src;
688 basic_block exit_bb = exit->dest;
690 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
692 for (i = 0; VEC_iterate (basic_block, body, i, bb); i++)
693 if (bb != entry_bb && bb != exit_bb)
694 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
695 eliminate_local_variables_stmt (entry, gsi_stmt (gsi),
696 decl_address);
698 htab_delete (decl_address);
699 VEC_free (basic_block, heap, body);
702 /* Returns true if expression EXPR is not defined between ENTRY and
703 EXIT, i.e. if all its operands are defined outside of the region. */
705 static bool
706 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
708 basic_block entry_bb = entry->src;
709 basic_block exit_bb = exit->dest;
710 basic_block def_bb;
712 if (is_gimple_min_invariant (expr))
713 return true;
715 if (TREE_CODE (expr) == SSA_NAME)
717 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
718 if (def_bb
719 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
720 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
721 return false;
723 return true;
726 return false;
729 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
730 The copies are stored to NAME_COPIES, if NAME was already duplicated,
731 its duplicate stored in NAME_COPIES is returned.
733 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
734 duplicated, storing the copies in DECL_COPIES. */
736 static tree
737 separate_decls_in_region_name (tree name,
738 htab_t name_copies, htab_t decl_copies,
739 bool copy_name_p)
741 tree copy, var, var_copy;
742 unsigned idx, uid, nuid;
743 struct int_tree_map ielt, *nielt;
744 struct name_to_copy_elt elt, *nelt;
745 void **slot, **dslot;
747 if (TREE_CODE (name) != SSA_NAME)
748 return name;
750 idx = SSA_NAME_VERSION (name);
751 elt.version = idx;
752 slot = htab_find_slot_with_hash (name_copies, &elt, idx,
753 copy_name_p ? INSERT : NO_INSERT);
754 if (slot && *slot)
755 return ((struct name_to_copy_elt *) *slot)->new_name;
757 var = SSA_NAME_VAR (name);
758 uid = DECL_UID (var);
759 ielt.uid = uid;
760 dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
761 if (!*dslot)
763 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
764 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
765 add_referenced_var (var_copy);
766 nielt = XNEW (struct int_tree_map);
767 nielt->uid = uid;
768 nielt->to = var_copy;
769 *dslot = nielt;
771 /* Ensure that when we meet this decl next time, we won't duplicate
772 it again. */
773 nuid = DECL_UID (var_copy);
774 ielt.uid = nuid;
775 dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
776 gcc_assert (!*dslot);
777 nielt = XNEW (struct int_tree_map);
778 nielt->uid = nuid;
779 nielt->to = var_copy;
780 *dslot = nielt;
782 else
783 var_copy = ((struct int_tree_map *) *dslot)->to;
785 if (copy_name_p)
787 copy = duplicate_ssa_name (name, NULL);
788 nelt = XNEW (struct name_to_copy_elt);
789 nelt->version = idx;
790 nelt->new_name = copy;
791 nelt->field = NULL_TREE;
792 *slot = nelt;
794 else
796 gcc_assert (!slot);
797 copy = name;
800 SSA_NAME_VAR (copy) = var_copy;
801 return copy;
804 /* Finds the ssa names used in STMT that are defined outside the
805 region between ENTRY and EXIT and replaces such ssa names with
806 their duplicates. The duplicates are stored to NAME_COPIES. Base
807 decls of all ssa names used in STMT (including those defined in
808 LOOP) are replaced with the new temporary variables; the
809 replacement decls are stored in DECL_COPIES. */
811 static void
812 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
813 htab_t name_copies, htab_t decl_copies)
815 use_operand_p use;
816 def_operand_p def;
817 ssa_op_iter oi;
818 tree name, copy;
819 bool copy_name_p;
821 mark_virtual_ops_for_renaming (stmt);
823 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
825 name = DEF_FROM_PTR (def);
826 gcc_assert (TREE_CODE (name) == SSA_NAME);
827 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
828 false);
829 gcc_assert (copy == name);
832 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
834 name = USE_FROM_PTR (use);
835 if (TREE_CODE (name) != SSA_NAME)
836 continue;
838 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
839 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
840 copy_name_p);
841 SET_USE (use, copy);
845 /* Callback for htab_traverse. Adds a field corresponding to the reduction
846 specified in SLOT. The type is passed in DATA. */
848 static int
849 add_field_for_reduction (void **slot, void *data)
852 struct reduction_info *const red = (struct reduction_info *) *slot;
853 tree const type = (tree) data;
854 tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
855 tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
857 insert_field_into_struct (type, field);
859 red->field = field;
861 return 1;
864 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
865 described in SLOT. The type is passed in DATA. */
867 static int
868 add_field_for_name (void **slot, void *data)
870 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
871 tree type = (tree) data;
872 tree name = ssa_name (elt->version);
873 tree var = SSA_NAME_VAR (name);
874 tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
876 insert_field_into_struct (type, field);
877 elt->field = field;
879 return 1;
882 /* Callback for htab_traverse. A local result is the intermediate result
883 computed by a single
884 thread, or the initial value in case no iteration was executed.
885 This function creates a phi node reflecting these values.
886 The phi's result will be stored in NEW_PHI field of the
887 reduction's data structure. */
889 static int
890 create_phi_for_local_result (void **slot, void *data)
892 struct reduction_info *const reduc = (struct reduction_info *) *slot;
893 const struct loop *const loop = (const struct loop *) data;
894 edge e;
895 gimple new_phi;
896 basic_block store_bb;
897 tree local_res;
899 /* STORE_BB is the block where the phi
900 should be stored. It is the destination of the loop exit.
901 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
902 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
904 /* STORE_BB has two predecessors. One coming from the loop
905 (the reduction's result is computed at the loop),
906 and another coming from a block preceding the loop,
907 when no iterations
908 are executed (the initial value should be taken). */
909 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
910 e = EDGE_PRED (store_bb, 1);
911 else
912 e = EDGE_PRED (store_bb, 0);
913 local_res
914 = make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)),
915 NULL);
916 new_phi = create_phi_node (local_res, store_bb);
917 SSA_NAME_DEF_STMT (local_res) = new_phi;
918 add_phi_arg (new_phi, reduc->init, e);
919 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
920 FALLTHRU_EDGE (loop->latch));
921 reduc->new_phi = new_phi;
923 return 1;
926 struct clsn_data
928 tree store;
929 tree load;
931 basic_block store_bb;
932 basic_block load_bb;
935 /* Callback for htab_traverse. Create an atomic instruction for the
936 reduction described in SLOT.
937 DATA annotates the place in memory the atomic operation relates to,
938 and the basic block it needs to be generated in. */
940 static int
941 create_call_for_reduction_1 (void **slot, void *data)
943 struct reduction_info *const reduc = (struct reduction_info *) *slot;
944 struct clsn_data *const clsn_data = (struct clsn_data *) data;
945 gimple_stmt_iterator gsi;
946 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
947 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
948 tree load_struct;
949 basic_block bb;
950 basic_block new_bb;
951 edge e;
952 tree t, addr, addr_type, ref, x;
953 tree tmp_load, name;
954 gimple load;
956 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
957 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
958 addr_type = build_pointer_type (type);
960 addr = build_addr (t, current_function_decl);
962 /* Create phi node. */
963 bb = clsn_data->load_bb;
965 e = split_block (bb, t);
966 new_bb = e->dest;
968 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
969 add_referenced_var (tmp_load);
970 tmp_load = make_ssa_name (tmp_load, NULL);
971 load = gimple_build_omp_atomic_load (tmp_load, addr);
972 SSA_NAME_DEF_STMT (tmp_load) = load;
973 gsi = gsi_start_bb (new_bb);
974 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
976 e = split_block (new_bb, load);
977 new_bb = e->dest;
978 gsi = gsi_start_bb (new_bb);
979 ref = tmp_load;
980 x = fold_build2 (reduc->reduction_code,
981 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
982 PHI_RESULT (reduc->new_phi));
984 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
985 GSI_CONTINUE_LINKING);
987 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
988 return 1;
991 /* Create the atomic operation at the join point of the threads.
992 REDUCTION_LIST describes the reductions in the LOOP.
993 LD_ST_DATA describes the shared data structure where
994 shared data is stored in and loaded from. */
995 static void
996 create_call_for_reduction (struct loop *loop, htab_t reduction_list,
997 struct clsn_data *ld_st_data)
999 htab_traverse (reduction_list, create_phi_for_local_result, loop);
1000 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1001 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1002 htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
1005 /* Callback for htab_traverse. Loads the final reduction value at the
1006 join point of all threads, and inserts it in the right place. */
1008 static int
1009 create_loads_for_reductions (void **slot, void *data)
1011 struct reduction_info *const red = (struct reduction_info *) *slot;
1012 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1013 gimple stmt;
1014 gimple_stmt_iterator gsi;
1015 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1016 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
1017 tree load_struct;
1018 tree name;
1019 tree x;
1021 gsi = gsi_after_labels (clsn_data->load_bb);
1022 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
1023 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1024 NULL_TREE);
1026 x = load_struct;
1027 name = PHI_RESULT (red->keep_res);
1028 stmt = gimple_build_assign (name, x);
1029 SSA_NAME_DEF_STMT (name) = stmt;
1031 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1033 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1034 !gsi_end_p (gsi); gsi_next (&gsi))
1035 if (gsi_stmt (gsi) == red->keep_res)
1037 remove_phi_node (&gsi, false);
1038 return 1;
1040 gcc_unreachable ();
1043 /* Load the reduction result that was stored in LD_ST_DATA.
1044 REDUCTION_LIST describes the list of reductions that the
1045 loads should be generated for. */
1046 static void
1047 create_final_loads_for_reduction (htab_t reduction_list,
1048 struct clsn_data *ld_st_data)
1050 gimple_stmt_iterator gsi;
1051 tree t;
1052 gimple stmt;
1054 gsi = gsi_after_labels (ld_st_data->load_bb);
1055 t = build_fold_addr_expr (ld_st_data->store);
1056 stmt = gimple_build_assign (ld_st_data->load, t);
1058 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1059 SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
1061 htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1065 /* Callback for htab_traverse. Store the neutral value for the
1066 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1067 1 for MULT_EXPR, etc. into the reduction field.
1068 The reduction is specified in SLOT. The store information is
1069 passed in DATA. */
1071 static int
1072 create_stores_for_reduction (void **slot, void *data)
1074 struct reduction_info *const red = (struct reduction_info *) *slot;
1075 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1076 tree t;
1077 gimple stmt;
1078 gimple_stmt_iterator gsi;
1079 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1081 gsi = gsi_last_bb (clsn_data->store_bb);
1082 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1083 stmt = gimple_build_assign (t, red->initial_value);
1084 mark_virtual_ops_for_renaming (stmt);
1085 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1087 return 1;
1090 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1091 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1092 specified in SLOT. */
1094 static int
1095 create_loads_and_stores_for_name (void **slot, void *data)
1097 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
1098 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1099 tree t;
1100 gimple stmt;
1101 gimple_stmt_iterator gsi;
1102 tree type = TREE_TYPE (elt->new_name);
1103 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
1104 tree load_struct;
1106 gsi = gsi_last_bb (clsn_data->store_bb);
1107 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1108 stmt = gimple_build_assign (t, ssa_name (elt->version));
1109 mark_virtual_ops_for_renaming (stmt);
1110 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1112 gsi = gsi_last_bb (clsn_data->load_bb);
1113 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
1114 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1115 stmt = gimple_build_assign (elt->new_name, t);
1116 SSA_NAME_DEF_STMT (elt->new_name) = stmt;
1117 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1119 return 1;
1122 /* Moves all the variables used in LOOP and defined outside of it (including
1123 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1124 name) to a structure created for this purpose. The code
1126 while (1)
1128 use (a);
1129 use (b);
1132 is transformed this way:
1134 bb0:
1135 old.a = a;
1136 old.b = b;
1138 bb1:
1139 a' = new->a;
1140 b' = new->b;
1141 while (1)
1143 use (a');
1144 use (b');
1147 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1148 pointer `new' is intentionally not initialized (the loop will be split to a
1149 separate function later, and `new' will be initialized from its arguments).
1150 LD_ST_DATA holds information about the shared data structure used to pass
1151 information among the threads. It is initialized here, and
1152 gen_parallel_loop will pass it to create_call_for_reduction that
1153 needs this information. REDUCTION_LIST describes the reductions
1154 in LOOP. */
1156 static void
1157 separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
1158 tree *arg_struct, tree *new_arg_struct,
1159 struct clsn_data *ld_st_data)
1162 basic_block bb1 = split_edge (entry);
1163 basic_block bb0 = single_pred (bb1);
1164 htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1165 name_to_copy_elt_eq, free);
1166 htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1167 free);
1168 unsigned i;
1169 tree type, type_name, nvar;
1170 gimple_stmt_iterator gsi;
1171 struct clsn_data clsn_data;
1172 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
1173 basic_block bb;
1174 basic_block entry_bb = bb1;
1175 basic_block exit_bb = exit->dest;
1177 entry = single_succ_edge (entry_bb);
1178 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1180 for (i = 0; VEC_iterate (basic_block, body, i, bb); i++)
1182 if (bb != entry_bb && bb != exit_bb)
1184 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1185 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1186 name_copies, decl_copies);
1188 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1189 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1190 name_copies, decl_copies);
1194 VEC_free (basic_block, heap, body);
1196 if (htab_elements (name_copies) == 0)
1198 /* It may happen that there is nothing to copy (if there are only
1199 loop carried and external variables in the loop). */
1200 *arg_struct = NULL;
1201 *new_arg_struct = NULL;
1203 else
1205 /* Create the type for the structure to store the ssa names to. */
1206 type = lang_hooks.types.make_type (RECORD_TYPE);
1207 type_name = build_decl (TYPE_DECL, create_tmp_var_name (".paral_data"),
1208 type);
1209 TYPE_NAME (type) = type_name;
1211 htab_traverse (name_copies, add_field_for_name, type);
1212 if (reduction_list && htab_elements (reduction_list) > 0)
1214 /* Create the fields for reductions. */
1215 htab_traverse (reduction_list, add_field_for_reduction,
1216 type);
1218 layout_type (type);
1220 /* Create the loads and stores. */
1221 *arg_struct = create_tmp_var (type, ".paral_data_store");
1222 add_referenced_var (*arg_struct);
1223 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1224 add_referenced_var (nvar);
1225 *new_arg_struct = make_ssa_name (nvar, NULL);
1227 ld_st_data->store = *arg_struct;
1228 ld_st_data->load = *new_arg_struct;
1229 ld_st_data->store_bb = bb0;
1230 ld_st_data->load_bb = bb1;
1232 htab_traverse (name_copies, create_loads_and_stores_for_name,
1233 ld_st_data);
1235 /* Load the calculation from memory (after the join of the threads). */
1237 if (reduction_list && htab_elements (reduction_list) > 0)
1239 htab_traverse (reduction_list, create_stores_for_reduction,
1240 ld_st_data);
1241 clsn_data.load = make_ssa_name (nvar, NULL);
1242 clsn_data.load_bb = exit->dest;
1243 clsn_data.store = ld_st_data->store;
1244 create_final_loads_for_reduction (reduction_list, &clsn_data);
1248 htab_delete (decl_copies);
1249 htab_delete (name_copies);
1252 /* Bitmap containing uids of functions created by parallelization. We cannot
1253 allocate it from the default obstack, as it must live across compilation
1254 of several functions; we make it gc allocated instead. */
1256 static GTY(()) bitmap parallelized_functions;
1258 /* Returns true if FN was created by create_loop_fn. */
1260 static bool
1261 parallelized_function_p (tree fn)
1263 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1264 return false;
1266 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1269 /* Creates and returns an empty function that will receive the body of
1270 a parallelized loop. */
1272 static tree
1273 create_loop_fn (void)
1275 char buf[100];
1276 char *tname;
1277 tree decl, type, name, t;
1278 struct function *act_cfun = cfun;
1279 static unsigned loopfn_num;
1281 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1282 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1283 clean_symbol_name (tname);
1284 name = get_identifier (tname);
1285 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1287 decl = build_decl (FUNCTION_DECL, name, type);
1288 if (!parallelized_functions)
1289 parallelized_functions = BITMAP_GGC_ALLOC ();
1290 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1292 TREE_STATIC (decl) = 1;
1293 TREE_USED (decl) = 1;
1294 DECL_ARTIFICIAL (decl) = 1;
1295 DECL_IGNORED_P (decl) = 0;
1296 TREE_PUBLIC (decl) = 0;
1297 DECL_UNINLINABLE (decl) = 1;
1298 DECL_EXTERNAL (decl) = 0;
1299 DECL_CONTEXT (decl) = NULL_TREE;
1300 DECL_INITIAL (decl) = make_node (BLOCK);
1302 t = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
1303 DECL_ARTIFICIAL (t) = 1;
1304 DECL_IGNORED_P (t) = 1;
1305 DECL_RESULT (decl) = t;
1307 t = build_decl (PARM_DECL, get_identifier (".paral_data_param"),
1308 ptr_type_node);
1309 DECL_ARTIFICIAL (t) = 1;
1310 DECL_ARG_TYPE (t) = ptr_type_node;
1311 DECL_CONTEXT (t) = decl;
1312 TREE_USED (t) = 1;
1313 DECL_ARGUMENTS (decl) = t;
1315 allocate_struct_function (decl, false);
1317 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1318 it. */
1319 set_cfun (act_cfun);
1321 return decl;
1324 /* Bases all the induction variables in LOOP on a single induction variable
1325 (unsigned with base 0 and step 1), whose final value is compared with
1326 NIT. The induction variable is incremented in the loop latch.
1327 REDUCTION_LIST describes the reductions in LOOP. */
1329 static void
1330 canonicalize_loop_ivs (struct loop *loop, htab_t reduction_list, tree nit)
1332 unsigned precision = TYPE_PRECISION (TREE_TYPE (nit));
1333 tree res, type, var_before, val, atype, mtype;
1334 gimple_stmt_iterator gsi, psi;
1335 gimple phi, stmt;
1336 bool ok;
1337 affine_iv iv;
1338 edge exit = single_dom_exit (loop);
1339 struct reduction_info *red;
1341 for (psi = gsi_start_phis (loop->header);
1342 !gsi_end_p (psi); gsi_next (&psi))
1344 phi = gsi_stmt (psi);
1345 res = PHI_RESULT (phi);
1347 if (is_gimple_reg (res) && TYPE_PRECISION (TREE_TYPE (res)) > precision)
1348 precision = TYPE_PRECISION (TREE_TYPE (res));
1351 type = lang_hooks.types.type_for_size (precision, 1);
1353 gsi = gsi_last_bb (loop->latch);
1354 create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1355 loop, &gsi, true, &var_before, NULL);
1357 gsi = gsi_after_labels (loop->header);
1358 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); )
1360 phi = gsi_stmt (psi);
1361 res = PHI_RESULT (phi);
1363 if (!is_gimple_reg (res) || res == var_before)
1365 gsi_next (&psi);
1366 continue;
1369 ok = simple_iv (loop, phi, res, &iv, true);
1370 red = reduction_phi (reduction_list, phi);
1371 /* We preserve the reduction phi nodes. */
1372 if (!ok && red)
1374 gsi_next (&psi);
1375 continue;
1377 else
1378 gcc_assert (ok);
1379 remove_phi_node (&psi, false);
1381 atype = TREE_TYPE (res);
1382 mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1383 val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1384 fold_convert (mtype, var_before));
1385 val = fold_build2 (POINTER_TYPE_P (atype)
1386 ? POINTER_PLUS_EXPR : PLUS_EXPR,
1387 atype, unshare_expr (iv.base), val);
1388 val = force_gimple_operand_gsi (&gsi, val, false, NULL_TREE, true,
1389 GSI_SAME_STMT);
1390 stmt = gimple_build_assign (res, val);
1391 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1392 SSA_NAME_DEF_STMT (res) = stmt;
1395 stmt = last_stmt (exit->src);
1396 /* Make the loop exit if the control condition is not satisfied. */
1397 if (exit->flags & EDGE_TRUE_VALUE)
1399 edge te, fe;
1401 extract_true_false_edges_from_block (exit->src, &te, &fe);
1402 te->flags = EDGE_FALSE_VALUE;
1403 fe->flags = EDGE_TRUE_VALUE;
1405 gimple_cond_set_code (stmt, LT_EXPR);
1406 gimple_cond_set_lhs (stmt, var_before);
1407 gimple_cond_set_rhs (stmt, nit);
1410 /* Moves the exit condition of LOOP to the beginning of its header, and
1411 duplicates the part of the last iteration that gets disabled to the
1412 exit of the loop. NIT is the number of iterations of the loop
1413 (used to initialize the variables in the duplicated part).
1415 TODO: the common case is that latch of the loop is empty and immediately
1416 follows the loop exit. In this case, it would be better not to copy the
1417 body of the loop, but only move the entry of the loop directly before the
1418 exit check and increase the number of iterations of the loop by one.
1419 This may need some additional preconditioning in case NIT = ~0.
1420 REDUCTION_LIST describes the reductions in LOOP. */
1422 static void
1423 transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
1425 basic_block *bbs, *nbbs, ex_bb, orig_header;
1426 unsigned n;
1427 bool ok;
1428 edge exit = single_dom_exit (loop), hpred;
1429 tree control, control_name, res, t;
1430 gimple phi, nphi, cond_stmt, stmt;
1431 gimple_stmt_iterator gsi;
1433 split_block_after_labels (loop->header);
1434 orig_header = single_succ (loop->header);
1435 hpred = single_succ_edge (loop->header);
1437 cond_stmt = last_stmt (exit->src);
1438 control = gimple_cond_lhs (cond_stmt);
1439 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1441 /* Make sure that we have phi nodes on exit for all loop header phis
1442 (create_parallel_loop requires that). */
1443 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1445 phi = gsi_stmt (gsi);
1446 res = PHI_RESULT (phi);
1447 t = make_ssa_name (SSA_NAME_VAR (res), phi);
1448 SET_PHI_RESULT (phi, t);
1450 nphi = create_phi_node (res, orig_header);
1451 SSA_NAME_DEF_STMT (res) = nphi;
1452 add_phi_arg (nphi, t, hpred);
1454 if (res == control)
1456 gimple_cond_set_lhs (cond_stmt, t);
1457 update_stmt (cond_stmt);
1458 control = t;
1462 bbs = get_loop_body_in_dom_order (loop);
1463 for (n = 0; bbs[n] != exit->src; n++)
1464 continue;
1465 nbbs = XNEWVEC (basic_block, n);
1466 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1467 bbs + 1, n, nbbs);
1468 gcc_assert (ok);
1469 free (bbs);
1470 ex_bb = nbbs[0];
1471 free (nbbs);
1473 /* Other than reductions, the only gimple reg that should be copied
1474 out of the loop is the control variable. */
1476 control_name = NULL_TREE;
1477 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
1479 phi = gsi_stmt (gsi);
1480 res = PHI_RESULT (phi);
1481 if (!is_gimple_reg (res))
1483 gsi_next (&gsi);
1484 continue;
1487 /* Check if it is a part of reduction. If it is,
1488 keep the phi at the reduction's keep_res field. The
1489 PHI_RESULT of this phi is the resulting value of the reduction
1490 variable when exiting the loop. */
1492 exit = single_dom_exit (loop);
1494 if (htab_elements (reduction_list) > 0)
1496 struct reduction_info *red;
1498 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1500 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1501 if (red)
1503 red->keep_res = phi;
1504 gsi_next (&gsi);
1505 continue;
1508 gcc_assert (control_name == NULL_TREE
1509 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1510 control_name = res;
1511 remove_phi_node (&gsi, false);
1513 gcc_assert (control_name != NULL_TREE);
1515 /* Initialize the control variable to NIT. */
1516 gsi = gsi_after_labels (ex_bb);
1517 nit = force_gimple_operand_gsi (&gsi,
1518 fold_convert (TREE_TYPE (control_name), nit),
1519 false, NULL_TREE, false, GSI_SAME_STMT);
1520 stmt = gimple_build_assign (control_name, nit);
1521 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1522 SSA_NAME_DEF_STMT (control_name) = stmt;
1525 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1526 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1527 NEW_DATA is the variable that should be initialized from the argument
1528 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1529 basic block containing GIMPLE_OMP_PARALLEL tree. */
1531 static basic_block
1532 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1533 tree new_data, unsigned n_threads)
1535 gimple_stmt_iterator gsi;
1536 basic_block bb, paral_bb, for_bb, ex_bb;
1537 tree t, param, res;
1538 gimple stmt, for_stmt, phi, cond_stmt;
1539 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1540 edge exit, nexit, guard, end, e;
1542 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1543 bb = loop_preheader_edge (loop)->src;
1544 paral_bb = single_pred (bb);
1545 gsi = gsi_last_bb (paral_bb);
1547 t = build_omp_clause (OMP_CLAUSE_NUM_THREADS);
1548 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1549 = build_int_cst (integer_type_node, n_threads);
1550 stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1552 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1554 /* Initialize NEW_DATA. */
1555 if (data)
1557 gsi = gsi_after_labels (bb);
1559 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1560 stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1561 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1562 SSA_NAME_DEF_STMT (param) = stmt;
1564 stmt = gimple_build_assign (new_data,
1565 fold_convert (TREE_TYPE (new_data), param));
1566 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1567 SSA_NAME_DEF_STMT (new_data) = stmt;
1570 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1571 bb = split_loop_exit_edge (single_dom_exit (loop));
1572 gsi = gsi_last_bb (bb);
1573 gsi_insert_after (&gsi, gimple_build_omp_return (false), GSI_NEW_STMT);
1575 /* Extract data for GIMPLE_OMP_FOR. */
1576 gcc_assert (loop->header == single_dom_exit (loop)->src);
1577 cond_stmt = last_stmt (loop->header);
1579 cvar = gimple_cond_lhs (cond_stmt);
1580 cvar_base = SSA_NAME_VAR (cvar);
1581 phi = SSA_NAME_DEF_STMT (cvar);
1582 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1583 initvar = make_ssa_name (cvar_base, NULL);
1584 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1585 initvar);
1586 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1588 gsi = gsi_last_bb (loop->latch);
1589 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1590 gsi_remove (&gsi, true);
1592 /* Prepare cfg. */
1593 for_bb = split_edge (loop_preheader_edge (loop));
1594 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1595 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1596 gcc_assert (exit == single_dom_exit (loop));
1598 guard = make_edge (for_bb, ex_bb, 0);
1599 single_succ_edge (loop->latch)->flags = 0;
1600 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1601 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1603 phi = gsi_stmt (gsi);
1604 res = PHI_RESULT (phi);
1605 stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1606 add_phi_arg (phi,
1607 PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop)),
1608 guard);
1609 add_phi_arg (phi, PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop)),
1610 end);
1612 e = redirect_edge_and_branch (exit, nexit->dest);
1613 PENDING_STMT (e) = NULL;
1615 /* Emit GIMPLE_OMP_FOR. */
1616 gimple_cond_set_lhs (cond_stmt, cvar_base);
1617 type = TREE_TYPE (cvar);
1618 t = build_omp_clause (OMP_CLAUSE_SCHEDULE);
1619 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1621 for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
1622 gimple_omp_for_set_index (for_stmt, 0, initvar);
1623 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1624 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1625 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1626 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1627 cvar_base,
1628 build_int_cst (type, 1)));
1630 gsi = gsi_last_bb (for_bb);
1631 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1632 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1634 /* Emit GIMPLE_OMP_CONTINUE. */
1635 gsi = gsi_last_bb (loop->latch);
1636 stmt = gimple_build_omp_continue (cvar_next, cvar);
1637 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1638 SSA_NAME_DEF_STMT (cvar_next) = stmt;
1640 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1641 gsi = gsi_last_bb (ex_bb);
1642 gsi_insert_after (&gsi, gimple_build_omp_return (true), GSI_NEW_STMT);
1644 return paral_bb;
1647 /* Generates code to execute the iterations of LOOP in N_THREADS threads in
1648 parallel. NITER describes number of iterations of LOOP.
1649 REDUCTION_LIST describes the reductions existent in the LOOP. */
1651 static void
1652 gen_parallel_loop (struct loop *loop, htab_t reduction_list,
1653 unsigned n_threads, struct tree_niter_desc *niter)
1655 struct loop *nloop;
1656 loop_iterator li;
1657 tree many_iterations_cond, type, nit;
1658 tree arg_struct, new_arg_struct;
1659 gimple_seq stmts;
1660 basic_block parallel_head;
1661 edge entry, exit;
1662 struct clsn_data clsn_data;
1663 unsigned prob;
1665 /* From
1667 ---------------------------------------------------------------------
1668 loop
1670 IV = phi (INIT, IV + STEP)
1671 BODY1;
1672 if (COND)
1673 break;
1674 BODY2;
1676 ---------------------------------------------------------------------
1678 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1679 we generate the following code:
1681 ---------------------------------------------------------------------
1683 if (MAY_BE_ZERO
1684 || NITER < MIN_PER_THREAD * N_THREADS)
1685 goto original;
1687 BODY1;
1688 store all local loop-invariant variables used in body of the loop to DATA.
1689 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1690 load the variables from DATA.
1691 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1692 BODY2;
1693 BODY1;
1694 GIMPLE_OMP_CONTINUE;
1695 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1696 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
1697 goto end;
1699 original:
1700 loop
1702 IV = phi (INIT, IV + STEP)
1703 BODY1;
1704 if (COND)
1705 break;
1706 BODY2;
1709 end:
1713 /* Create two versions of the loop -- in the old one, we know that the
1714 number of iterations is large enough, and we will transform it into the
1715 loop that will be split to loop_fn, the new one will be used for the
1716 remaining iterations. */
1718 type = TREE_TYPE (niter->niter);
1719 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1720 NULL_TREE);
1721 if (stmts)
1722 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1724 many_iterations_cond =
1725 fold_build2 (GE_EXPR, boolean_type_node,
1726 nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
1727 many_iterations_cond
1728 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1729 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1730 many_iterations_cond);
1731 many_iterations_cond
1732 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1733 if (stmts)
1734 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1735 if (!is_gimple_condexpr (many_iterations_cond))
1737 many_iterations_cond
1738 = force_gimple_operand (many_iterations_cond, &stmts,
1739 true, NULL_TREE);
1740 if (stmts)
1741 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1744 initialize_original_copy_tables ();
1746 /* We assume that the loop usually iterates a lot. */
1747 prob = 4 * REG_BR_PROB_BASE / 5;
1748 nloop = loop_version (loop, many_iterations_cond, NULL,
1749 prob, prob, REG_BR_PROB_BASE - prob, true);
1750 update_ssa (TODO_update_ssa);
1751 free_original_copy_tables ();
1753 /* Base all the induction variables in LOOP on a single control one. */
1754 canonicalize_loop_ivs (loop, reduction_list, nit);
1756 /* Ensure that the exit condition is the first statement in the loop. */
1757 transform_to_exit_first_loop (loop, reduction_list, nit);
1759 /* Generate initializations for reductions. */
1760 if (htab_elements (reduction_list) > 0)
1761 htab_traverse (reduction_list, initialize_reductions, loop);
1763 /* Eliminate the references to local variables from the loop. */
1764 gcc_assert (single_exit (loop));
1765 entry = loop_preheader_edge (loop);
1766 exit = single_dom_exit (loop);
1768 eliminate_local_variables (entry, exit);
1769 /* In the old loop, move all variables non-local to the loop to a structure
1770 and back, and create separate decls for the variables used in loop. */
1771 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1772 &new_arg_struct, &clsn_data);
1774 /* Create the parallel constructs. */
1775 parallel_head = create_parallel_loop (loop, create_loop_fn (), arg_struct,
1776 new_arg_struct, n_threads);
1777 if (htab_elements (reduction_list) > 0)
1778 create_call_for_reduction (loop, reduction_list, &clsn_data);
1780 scev_reset ();
1782 /* Cancel the loop (it is simpler to do it here rather than to teach the
1783 expander to do it). */
1784 cancel_loop_tree (loop);
1786 /* Free loop bound estimations that could contain references to
1787 removed statements. */
1788 FOR_EACH_LOOP (li, loop, 0)
1789 free_numbers_of_iterations_estimates_loop (loop);
1791 /* Expand the parallel constructs. We do it directly here instead of running
1792 a separate expand_omp pass, since it is more efficient, and less likely to
1793 cause troubles with further analyses not being able to deal with the
1794 OMP trees. */
1796 omp_expand_local (parallel_head);
1799 /* Returns true when LOOP contains vector phi nodes. */
1801 static bool
1802 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1804 unsigned i;
1805 basic_block *bbs = get_loop_body_in_dom_order (loop);
1806 gimple_stmt_iterator gsi;
1807 bool res = true;
1809 for (i = 0; i < loop->num_nodes; i++)
1810 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1811 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
1812 goto end;
1814 res = false;
1815 end:
1816 free (bbs);
1817 return res;
1820 /* Detect parallel loops and generate parallel code using libgomp
1821 primitives. Returns true if some loop was parallelized, false
1822 otherwise. */
1824 bool
1825 parallelize_loops (void)
1827 unsigned n_threads = flag_tree_parallelize_loops;
1828 bool changed = false;
1829 struct loop *loop;
1830 struct tree_niter_desc niter_desc;
1831 loop_iterator li;
1832 htab_t reduction_list;
1834 /* Do not parallelize loops in the functions created by parallelization. */
1835 if (parallelized_function_p (cfun->decl))
1836 return false;
1838 reduction_list = htab_create (10, reduction_info_hash,
1839 reduction_info_eq, free);
1840 init_stmt_vec_info_vec ();
1842 FOR_EACH_LOOP (li, loop, 0)
1844 htab_empty (reduction_list);
1845 if (/* Do not bother with loops in cold areas. */
1846 optimize_loop_nest_for_size_p (loop)
1847 /* Or loops that roll too little. */
1848 || expected_loop_iterations (loop) <= n_threads
1849 /* And of course, the loop must be parallelizable. */
1850 || !can_duplicate_loop_p (loop)
1851 || loop_has_blocks_with_irreducible_flag (loop)
1852 /* FIXME: the check for vector phi nodes could be removed. */
1853 || loop_has_vector_phi_nodes (loop)
1854 || !loop_parallel_p (loop, reduction_list, &niter_desc))
1855 continue;
1857 changed = true;
1858 gen_parallel_loop (loop, reduction_list, n_threads, &niter_desc);
1859 verify_flow_info ();
1860 verify_dominators (CDI_DOMINATORS);
1861 verify_loop_structure ();
1862 verify_loop_closed_ssa ();
1865 free_stmt_vec_info_vec ();
1866 htab_delete (reduction_list);
1867 return changed;
1870 #include "gt-tree-parloops.h"