* config/mips/mips.md (mulsi3_mul3, muldi3_mul3): Merge these ...
[official-gcc.git] / gcc / tree-data-ref.h
blobee514c5ee922a7ea18a1149aa7e9a9ae25c6d634
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
24 #include "graphds.h"
25 #include "lambda.h"
26 #include "omega.h"
27 #include "tree-chrec.h"
30 innermost_loop_behavior describes the evolution of the address of the memory
31 reference in the innermost enclosing loop. The address is expressed as
32 BASE + STEP * # of iteration, and base is further decomposed as the base
33 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34 constant offset (INIT). Examples, in loop nest
36 for (i = 0; i < 100; i++)
37 for (j = 3; j < 100; j++)
39 Example 1 Example 2
40 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
43 innermost_loop_behavior
44 base_address &a p
45 offset i * D_i x
46 init 3 * D_j + offsetof (b) 28
47 step D_j 4
50 struct innermost_loop_behavior
52 tree base_address;
53 tree offset;
54 tree init;
55 tree step;
57 /* Alignment information. ALIGNED_TO is set to the largest power of two
58 that divides OFFSET. */
59 tree aligned_to;
62 /* Describes the evolutions of indices of the memory reference. The indices
63 are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
64 For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
65 (note that this reference does not have to be valid, if zero does not
66 belong to the range of the array; hence it is not recommended to use
67 BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
68 set to the loop-invariant part of the address of the object, except for
69 the constant offset. For the examples above,
71 base_object: a[0].b[0][0] *(p + x + 4B * j_0)
72 indices: {j_0, +, 1}_2 {16, +, 4}_2
73 {i_0, +, 1}_1
74 {j_0, +, 1}_2
77 struct indices
79 /* The object. */
80 tree base_object;
82 /* A list of chrecs. Access functions of the indices. */
83 VEC(tree,heap) *access_fns;
86 struct dr_alias
88 /* The alias information that should be used for new pointers to this
89 location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
90 tree symbol_tag;
91 struct ptr_info_def *ptr_info;
93 /* The set of virtual operands corresponding to this memory reference,
94 serving as a description of the alias information for the memory
95 reference. This could be eliminated if we had alias oracle. */
96 bitmap vops;
99 typedef struct scop *scop_p;
101 /* Each vector of the access matrix represents a linear access
102 function for a subscript. First elements correspond to the
103 leftmost indices, ie. for a[i][j] the first vector corresponds to
104 the subscript in "i". The elements of a vector are relative to
105 the loop nests in which the data reference is considered,
106 i.e. the vector is relative to the SCoP that provides the context
107 in which this data reference occurs.
109 For example, in
111 | loop_1
112 | loop_2
113 | a[i+3][2*j+n-1]
115 if "i" varies in loop_1 and "j" varies in loop_2, the access
116 matrix with respect to the loop nest {loop_1, loop_2} is:
118 | loop_1 loop_2 param_n cst
119 | 1 0 0 3
120 | 0 2 1 -1
122 whereas the access matrix with respect to loop_2 considers "i" as
123 a parameter:
125 | loop_2 param_i param_n cst
126 | 0 1 0 3
127 | 2 0 1 -1
129 struct access_matrix
131 int loop_nest_num;
132 int nb_induction_vars;
133 VEC (tree, heap) *parameters;
134 VEC (lambda_vector, heap) *matrix;
137 #define AM_LOOP_NEST_NUM(M) (M)->loop_nest_num
138 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
139 #define AM_PARAMETERS(M) (M)->parameters
140 #define AM_MATRIX(M) (M)->matrix
141 #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
142 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
143 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
144 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
145 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
147 /* Return the column in the access matrix of LOOP_NUM. */
149 static inline int
150 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
152 gcc_assert (loop_num >= AM_LOOP_NEST_NUM (access_matrix));
153 return loop_num - AM_LOOP_NEST_NUM (access_matrix);
156 int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
158 struct data_reference
160 /* A pointer to the statement that contains this DR. */
161 gimple stmt;
163 /* A pointer to the memory reference. */
164 tree ref;
166 /* Auxiliary info specific to a pass. */
167 void *aux;
169 /* True when the data reference is in RHS of a stmt. */
170 bool is_read;
172 /* Behavior of the memory reference in the innermost loop. */
173 struct innermost_loop_behavior innermost;
175 /* Subscripts of this data reference. */
176 struct indices indices;
178 /* Alias information for the data reference. */
179 struct dr_alias alias;
181 /* The SCoP in which the data reference was analyzed. */
182 scop_p scop;
184 /* Matrix representation for the data access functions. */
185 struct access_matrix *access_matrix;
188 #define DR_SCOP(DR) (DR)->scop
189 #define DR_STMT(DR) (DR)->stmt
190 #define DR_REF(DR) (DR)->ref
191 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
192 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
193 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
194 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
195 #define DR_IS_READ(DR) (DR)->is_read
196 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
197 #define DR_OFFSET(DR) (DR)->innermost.offset
198 #define DR_INIT(DR) (DR)->innermost.init
199 #define DR_STEP(DR) (DR)->innermost.step
200 #define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag
201 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
202 #define DR_VOPS(DR) (DR)->alias.vops
203 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
204 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
206 typedef struct data_reference *data_reference_p;
207 DEF_VEC_P(data_reference_p);
208 DEF_VEC_ALLOC_P (data_reference_p, heap);
210 enum data_dependence_direction {
211 dir_positive,
212 dir_negative,
213 dir_equal,
214 dir_positive_or_negative,
215 dir_positive_or_equal,
216 dir_negative_or_equal,
217 dir_star,
218 dir_independent
221 /* The description of the grid of iterations that overlap. At most
222 two loops are considered at the same time just now, hence at most
223 two functions are needed. For each of the functions, we store
224 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
225 where x, y, ... are variables. */
227 #define MAX_DIM 2
229 /* Special values of N. */
230 #define NO_DEPENDENCE 0
231 #define NOT_KNOWN (MAX_DIM + 1)
232 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
233 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
234 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
236 typedef VEC (tree, heap) *affine_fn;
238 typedef struct
240 unsigned n;
241 affine_fn fns[MAX_DIM];
242 } conflict_function;
244 /* What is a subscript? Given two array accesses a subscript is the
245 tuple composed of the access functions for a given dimension.
246 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
247 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
248 are stored in the data_dependence_relation structure under the form
249 of an array of subscripts. */
251 struct subscript
253 /* A description of the iterations for which the elements are
254 accessed twice. */
255 conflict_function *conflicting_iterations_in_a;
256 conflict_function *conflicting_iterations_in_b;
258 /* This field stores the information about the iteration domain
259 validity of the dependence relation. */
260 tree last_conflict;
262 /* Distance from the iteration that access a conflicting element in
263 A to the iteration that access this same conflicting element in
264 B. The distance is a tree scalar expression, i.e. a constant or a
265 symbolic expression, but certainly not a chrec function. */
266 tree distance;
269 typedef struct subscript *subscript_p;
270 DEF_VEC_P(subscript_p);
271 DEF_VEC_ALLOC_P (subscript_p, heap);
273 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
274 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
275 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
276 #define SUB_DISTANCE(SUB) SUB->distance
278 /* A data_dependence_relation represents a relation between two
279 data_references A and B. */
281 struct data_dependence_relation
284 struct data_reference *a;
285 struct data_reference *b;
287 /* When the dependence relation is affine, it can be represented by
288 a distance vector. */
289 bool affine_p;
291 /* Set to true when the dependence relation is on the same data
292 access. */
293 bool self_reference_p;
295 /* A "yes/no/maybe" field for the dependence relation:
297 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
298 relation between A and B, and the description of this relation
299 is given in the SUBSCRIPTS array,
301 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
302 SUBSCRIPTS is empty,
304 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
305 but the analyzer cannot be more specific. */
306 tree are_dependent;
308 /* For each subscript in the dependence test, there is an element in
309 this array. This is the attribute that labels the edge A->B of
310 the data_dependence_relation. */
311 VEC (subscript_p, heap) *subscripts;
313 /* The analyzed loop nest. */
314 VEC (loop_p, heap) *loop_nest;
316 /* An index in loop_nest for the innermost loop that varies for
317 this data dependence relation. */
318 unsigned inner_loop;
320 /* The classic direction vector. */
321 VEC (lambda_vector, heap) *dir_vects;
323 /* The classic distance vector. */
324 VEC (lambda_vector, heap) *dist_vects;
326 /* Is the dependence reversed with respect to the lexicographic order? */
327 bool reversed_p;
330 typedef struct data_dependence_relation *ddr_p;
331 DEF_VEC_P(ddr_p);
332 DEF_VEC_ALLOC_P(ddr_p,heap);
334 #define DDR_A(DDR) DDR->a
335 #define DDR_B(DDR) DDR->b
336 #define DDR_AFFINE_P(DDR) DDR->affine_p
337 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
338 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
339 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
340 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
342 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
343 /* The size of the direction/distance vectors: the number of loops in
344 the loop nest. */
345 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
346 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
347 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
349 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
350 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
351 #define DDR_NUM_DIST_VECTS(DDR) \
352 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
353 #define DDR_NUM_DIR_VECTS(DDR) \
354 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
355 #define DDR_DIR_VECT(DDR, I) \
356 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
357 #define DDR_DIST_VECT(DDR, I) \
358 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
359 #define DDR_REVERSED_P(DDR) DDR->reversed_p
363 /* Describes a location of a memory reference. */
365 typedef struct data_ref_loc_d
367 /* Position of the memory reference. */
368 tree *pos;
370 /* True if the memory reference is read. */
371 bool is_read;
372 } data_ref_loc;
374 DEF_VEC_O (data_ref_loc);
375 DEF_VEC_ALLOC_O (data_ref_loc, heap);
377 bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
378 void dr_analyze_innermost (struct data_reference *);
379 extern bool compute_data_dependences_for_loop (struct loop *, bool,
380 VEC (data_reference_p, heap) **,
381 VEC (ddr_p, heap) **);
382 extern tree find_data_references_in_loop (struct loop *,
383 VEC (data_reference_p, heap) **);
384 extern void print_direction_vector (FILE *, lambda_vector, int);
385 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
386 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
387 extern void dump_subscript (FILE *, struct subscript *);
388 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
389 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
390 extern void dump_data_reference (FILE *, struct data_reference *);
391 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
392 extern void debug_data_dependence_relation (struct data_dependence_relation *);
393 extern void dump_data_dependence_relation (FILE *,
394 struct data_dependence_relation *);
395 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
396 extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
397 extern void dump_data_dependence_direction (FILE *,
398 enum data_dependence_direction);
399 extern void free_dependence_relation (struct data_dependence_relation *);
400 extern void free_dependence_relations (VEC (ddr_p, heap) *);
401 extern void free_data_ref (data_reference_p);
402 extern void free_data_refs (VEC (data_reference_p, heap) *);
403 extern bool find_data_references_in_stmt (struct loop *, gimple,
404 VEC (data_reference_p, heap) **);
405 struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
406 extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
407 extern void compute_all_dependences (VEC (data_reference_p, heap) *,
408 VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
409 bool);
411 extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
412 extern bool dr_may_alias_p (const struct data_reference *,
413 const struct data_reference *);
414 extern bool stmt_simple_memref_p (struct loop *, gimple, tree);
416 /* Return true when the DDR contains two data references that have the
417 same access functions. */
419 static inline bool
420 same_access_functions (const struct data_dependence_relation *ddr)
422 unsigned i;
424 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
425 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
426 DR_ACCESS_FN (DDR_B (ddr), i)))
427 return false;
429 return true;
432 /* Return true when DDR is an anti-dependence relation. */
434 static inline bool
435 ddr_is_anti_dependent (ddr_p ddr)
437 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
438 && DR_IS_READ (DDR_A (ddr))
439 && !DR_IS_READ (DDR_B (ddr))
440 && !same_access_functions (ddr));
443 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
445 static inline bool
446 ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
448 unsigned i;
449 ddr_p ddr;
451 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
452 if (ddr_is_anti_dependent (ddr))
453 return true;
455 return false;
458 /* Return the dependence level for the DDR relation. */
460 static inline unsigned
461 ddr_dependence_level (ddr_p ddr)
463 unsigned vector;
464 unsigned level = 0;
466 if (DDR_DIST_VECTS (ddr))
467 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
469 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
470 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
471 DDR_NB_LOOPS (ddr)));
472 return level;
477 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
478 typedef struct rdg_vertex
480 /* The statement represented by this vertex. */
481 gimple stmt;
483 /* True when the statement contains a write to memory. */
484 bool has_mem_write;
486 /* True when the statement contains a read from memory. */
487 bool has_mem_reads;
488 } *rdg_vertex_p;
490 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
491 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
492 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
493 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
494 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
495 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
497 void dump_rdg_vertex (FILE *, struct graph *, int);
498 void debug_rdg_vertex (struct graph *, int);
499 void dump_rdg_component (FILE *, struct graph *, int, bitmap);
500 void debug_rdg_component (struct graph *, int);
501 void dump_rdg (FILE *, struct graph *);
502 void debug_rdg (struct graph *);
503 void dot_rdg (struct graph *);
504 int rdg_vertex_for_stmt (struct graph *, gimple);
506 /* Data dependence type. */
508 enum rdg_dep_type
510 /* Read After Write (RAW). */
511 flow_dd = 'f',
513 /* Write After Read (WAR). */
514 anti_dd = 'a',
516 /* Write After Write (WAW). */
517 output_dd = 'o',
519 /* Read After Read (RAR). */
520 input_dd = 'i'
523 /* Dependence information attached to an edge of the RDG. */
525 typedef struct rdg_edge
527 /* Type of the dependence. */
528 enum rdg_dep_type type;
530 /* Levels of the dependence: the depth of the loops that carry the
531 dependence. */
532 unsigned level;
534 /* Dependence relation between data dependences, NULL when one of
535 the vertices is a scalar. */
536 ddr_p relation;
537 } *rdg_edge_p;
539 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
540 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
541 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
543 struct graph *build_rdg (struct loop *);
544 struct graph *build_empty_rdg (int);
545 void free_rdg (struct graph *);
547 /* Return the index of the variable VAR in the LOOP_NEST array. */
549 static inline int
550 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
552 struct loop *loopi;
553 int var_index;
555 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
556 var_index++)
557 if (loopi->num == var)
558 break;
560 return var_index;
563 void stores_from_loop (struct loop *, VEC (gimple, heap) **);
564 void remove_similar_memory_refs (VEC (gimple, heap) **);
565 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
566 bool have_similar_memory_accesses (gimple, gimple);
568 /* Determines whether RDG vertices V1 and V2 access to similar memory
569 locations, in which case they have to be in the same partition. */
571 static inline bool
572 rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
574 return have_similar_memory_accesses (RDG_STMT (rdg, v1),
575 RDG_STMT (rdg, v2));
578 /* In lambda-code.c */
579 bool lambda_transform_legal_p (lambda_trans_matrix, int,
580 VEC (ddr_p, heap) *);
581 void lambda_collect_parameters (VEC (data_reference_p, heap) *,
582 VEC (tree, heap) **);
583 bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
584 VEC (tree, heap) *, int);
586 /* In tree-data-ref.c */
587 void split_constant_offset (tree , tree *, tree *);
589 /* Strongly connected components of the reduced data dependence graph. */
591 typedef struct rdg_component
593 int num;
594 VEC (int, heap) *vertices;
595 } *rdgc;
597 DEF_VEC_P (rdgc);
598 DEF_VEC_ALLOC_P (rdgc, heap);
600 DEF_VEC_P (bitmap);
601 DEF_VEC_ALLOC_P (bitmap, heap);
603 #endif /* GCC_TREE_DATA_REF_H */