PR libstdc++/78595 implement insertion into maps in terms of emplace
[official-gcc.git] / libstdc++-v3 / include / bits / unordered_map.h
blob94ce8cdb482de5991a2b64acd5a1701c77f003a3
1 // unordered_map implementation -*- C++ -*-
3 // Copyright (C) 2010-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file bits/unordered_map.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map}
30 #ifndef _UNORDERED_MAP_H
31 #define _UNORDERED_MAP_H
33 namespace std _GLIBCXX_VISIBILITY(default)
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
38 /// Base types for unordered_map.
39 template<bool _Cache>
40 using __umap_traits = __detail::_Hashtable_traits<_Cache, false, true>;
42 template<typename _Key,
43 typename _Tp,
44 typename _Hash = hash<_Key>,
45 typename _Pred = std::equal_to<_Key>,
46 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
47 typename _Tr = __umap_traits<__cache_default<_Key, _Hash>::value>>
48 using __umap_hashtable = _Hashtable<_Key, std::pair<const _Key, _Tp>,
49 _Alloc, __detail::_Select1st,
50 _Pred, _Hash,
51 __detail::_Mod_range_hashing,
52 __detail::_Default_ranged_hash,
53 __detail::_Prime_rehash_policy, _Tr>;
55 /// Base types for unordered_multimap.
56 template<bool _Cache>
57 using __ummap_traits = __detail::_Hashtable_traits<_Cache, false, false>;
59 template<typename _Key,
60 typename _Tp,
61 typename _Hash = hash<_Key>,
62 typename _Pred = std::equal_to<_Key>,
63 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
64 typename _Tr = __ummap_traits<__cache_default<_Key, _Hash>::value>>
65 using __ummap_hashtable = _Hashtable<_Key, std::pair<const _Key, _Tp>,
66 _Alloc, __detail::_Select1st,
67 _Pred, _Hash,
68 __detail::_Mod_range_hashing,
69 __detail::_Default_ranged_hash,
70 __detail::_Prime_rehash_policy, _Tr>;
72 template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
73 class unordered_multimap;
75 /**
76 * @brief A standard container composed of unique keys (containing
77 * at most one of each key value) that associates values of another type
78 * with the keys.
80 * @ingroup unordered_associative_containers
82 * @tparam _Key Type of key objects.
83 * @tparam _Tp Type of mapped objects.
84 * @tparam _Hash Hashing function object type, defaults to hash<_Value>.
85 * @tparam _Pred Predicate function object type, defaults
86 * to equal_to<_Value>.
87 * @tparam _Alloc Allocator type, defaults to
88 * std::allocator<std::pair<const _Key, _Tp>>.
90 * Meets the requirements of a <a href="tables.html#65">container</a>, and
91 * <a href="tables.html#xx">unordered associative container</a>
93 * The resulting value type of the container is std::pair<const _Key, _Tp>.
95 * Base is _Hashtable, dispatched at compile time via template
96 * alias __umap_hashtable.
98 template<typename _Key, typename _Tp,
99 typename _Hash = hash<_Key>,
100 typename _Pred = equal_to<_Key>,
101 typename _Alloc = allocator<std::pair<const _Key, _Tp>>>
102 class unordered_map
104 typedef __umap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc> _Hashtable;
105 _Hashtable _M_h;
107 public:
108 // typedefs:
109 //@{
110 /// Public typedefs.
111 typedef typename _Hashtable::key_type key_type;
112 typedef typename _Hashtable::value_type value_type;
113 typedef typename _Hashtable::mapped_type mapped_type;
114 typedef typename _Hashtable::hasher hasher;
115 typedef typename _Hashtable::key_equal key_equal;
116 typedef typename _Hashtable::allocator_type allocator_type;
117 //@}
119 //@{
120 /// Iterator-related typedefs.
121 typedef typename _Hashtable::pointer pointer;
122 typedef typename _Hashtable::const_pointer const_pointer;
123 typedef typename _Hashtable::reference reference;
124 typedef typename _Hashtable::const_reference const_reference;
125 typedef typename _Hashtable::iterator iterator;
126 typedef typename _Hashtable::const_iterator const_iterator;
127 typedef typename _Hashtable::local_iterator local_iterator;
128 typedef typename _Hashtable::const_local_iterator const_local_iterator;
129 typedef typename _Hashtable::size_type size_type;
130 typedef typename _Hashtable::difference_type difference_type;
131 //@}
133 #if __cplusplus > 201402L
134 using node_type = typename _Hashtable::node_type;
135 using insert_return_type = typename _Hashtable::insert_return_type;
136 #endif
138 //construct/destroy/copy
140 /// Default constructor.
141 unordered_map() = default;
144 * @brief Default constructor creates no elements.
145 * @param __n Minimal initial number of buckets.
146 * @param __hf A hash functor.
147 * @param __eql A key equality functor.
148 * @param __a An allocator object.
150 explicit
151 unordered_map(size_type __n,
152 const hasher& __hf = hasher(),
153 const key_equal& __eql = key_equal(),
154 const allocator_type& __a = allocator_type())
155 : _M_h(__n, __hf, __eql, __a)
159 * @brief Builds an %unordered_map from a range.
160 * @param __first An input iterator.
161 * @param __last An input iterator.
162 * @param __n Minimal initial number of buckets.
163 * @param __hf A hash functor.
164 * @param __eql A key equality functor.
165 * @param __a An allocator object.
167 * Create an %unordered_map consisting of copies of the elements from
168 * [__first,__last). This is linear in N (where N is
169 * distance(__first,__last)).
171 template<typename _InputIterator>
172 unordered_map(_InputIterator __first, _InputIterator __last,
173 size_type __n = 0,
174 const hasher& __hf = hasher(),
175 const key_equal& __eql = key_equal(),
176 const allocator_type& __a = allocator_type())
177 : _M_h(__first, __last, __n, __hf, __eql, __a)
180 /// Copy constructor.
181 unordered_map(const unordered_map&) = default;
183 /// Move constructor.
184 unordered_map(unordered_map&&) = default;
187 * @brief Creates an %unordered_map with no elements.
188 * @param __a An allocator object.
190 explicit
191 unordered_map(const allocator_type& __a)
192 : _M_h(__a)
196 * @brief Copy constructor with allocator argument.
197 * @param __uset Input %unordered_map to copy.
198 * @param __a An allocator object.
200 unordered_map(const unordered_map& __umap,
201 const allocator_type& __a)
202 : _M_h(__umap._M_h, __a)
206 * @brief Move constructor with allocator argument.
207 * @param __uset Input %unordered_map to move.
208 * @param __a An allocator object.
210 unordered_map(unordered_map&& __umap,
211 const allocator_type& __a)
212 : _M_h(std::move(__umap._M_h), __a)
216 * @brief Builds an %unordered_map from an initializer_list.
217 * @param __l An initializer_list.
218 * @param __n Minimal initial number of buckets.
219 * @param __hf A hash functor.
220 * @param __eql A key equality functor.
221 * @param __a An allocator object.
223 * Create an %unordered_map consisting of copies of the elements in the
224 * list. This is linear in N (where N is @a __l.size()).
226 unordered_map(initializer_list<value_type> __l,
227 size_type __n = 0,
228 const hasher& __hf = hasher(),
229 const key_equal& __eql = key_equal(),
230 const allocator_type& __a = allocator_type())
231 : _M_h(__l, __n, __hf, __eql, __a)
234 unordered_map(size_type __n, const allocator_type& __a)
235 : unordered_map(__n, hasher(), key_equal(), __a)
238 unordered_map(size_type __n, const hasher& __hf,
239 const allocator_type& __a)
240 : unordered_map(__n, __hf, key_equal(), __a)
243 template<typename _InputIterator>
244 unordered_map(_InputIterator __first, _InputIterator __last,
245 size_type __n,
246 const allocator_type& __a)
247 : unordered_map(__first, __last, __n, hasher(), key_equal(), __a)
250 template<typename _InputIterator>
251 unordered_map(_InputIterator __first, _InputIterator __last,
252 size_type __n, const hasher& __hf,
253 const allocator_type& __a)
254 : unordered_map(__first, __last, __n, __hf, key_equal(), __a)
257 unordered_map(initializer_list<value_type> __l,
258 size_type __n,
259 const allocator_type& __a)
260 : unordered_map(__l, __n, hasher(), key_equal(), __a)
263 unordered_map(initializer_list<value_type> __l,
264 size_type __n, const hasher& __hf,
265 const allocator_type& __a)
266 : unordered_map(__l, __n, __hf, key_equal(), __a)
269 /// Copy assignment operator.
270 unordered_map&
271 operator=(const unordered_map&) = default;
273 /// Move assignment operator.
274 unordered_map&
275 operator=(unordered_map&&) = default;
278 * @brief %Unordered_map list assignment operator.
279 * @param __l An initializer_list.
281 * This function fills an %unordered_map with copies of the elements in
282 * the initializer list @a __l.
284 * Note that the assignment completely changes the %unordered_map and
285 * that the resulting %unordered_map's size is the same as the number
286 * of elements assigned.
288 unordered_map&
289 operator=(initializer_list<value_type> __l)
291 _M_h = __l;
292 return *this;
295 /// Returns the allocator object used by the %unordered_map.
296 allocator_type
297 get_allocator() const noexcept
298 { return _M_h.get_allocator(); }
300 // size and capacity:
302 /// Returns true if the %unordered_map is empty.
303 bool
304 empty() const noexcept
305 { return _M_h.empty(); }
307 /// Returns the size of the %unordered_map.
308 size_type
309 size() const noexcept
310 { return _M_h.size(); }
312 /// Returns the maximum size of the %unordered_map.
313 size_type
314 max_size() const noexcept
315 { return _M_h.max_size(); }
317 // iterators.
320 * Returns a read/write iterator that points to the first element in the
321 * %unordered_map.
323 iterator
324 begin() noexcept
325 { return _M_h.begin(); }
327 //@{
329 * Returns a read-only (constant) iterator that points to the first
330 * element in the %unordered_map.
332 const_iterator
333 begin() const noexcept
334 { return _M_h.begin(); }
336 const_iterator
337 cbegin() const noexcept
338 { return _M_h.begin(); }
339 //@}
342 * Returns a read/write iterator that points one past the last element in
343 * the %unordered_map.
345 iterator
346 end() noexcept
347 { return _M_h.end(); }
349 //@{
351 * Returns a read-only (constant) iterator that points one past the last
352 * element in the %unordered_map.
354 const_iterator
355 end() const noexcept
356 { return _M_h.end(); }
358 const_iterator
359 cend() const noexcept
360 { return _M_h.end(); }
361 //@}
363 // modifiers.
366 * @brief Attempts to build and insert a std::pair into the
367 * %unordered_map.
369 * @param __args Arguments used to generate a new pair instance (see
370 * std::piecewise_contruct for passing arguments to each
371 * part of the pair constructor).
373 * @return A pair, of which the first element is an iterator that points
374 * to the possibly inserted pair, and the second is a bool that
375 * is true if the pair was actually inserted.
377 * This function attempts to build and insert a (key, value) %pair into
378 * the %unordered_map.
379 * An %unordered_map relies on unique keys and thus a %pair is only
380 * inserted if its first element (the key) is not already present in the
381 * %unordered_map.
383 * Insertion requires amortized constant time.
385 template<typename... _Args>
386 std::pair<iterator, bool>
387 emplace(_Args&&... __args)
388 { return _M_h.emplace(std::forward<_Args>(__args)...); }
391 * @brief Attempts to build and insert a std::pair into the
392 * %unordered_map.
394 * @param __pos An iterator that serves as a hint as to where the pair
395 * should be inserted.
396 * @param __args Arguments used to generate a new pair instance (see
397 * std::piecewise_contruct for passing arguments to each
398 * part of the pair constructor).
399 * @return An iterator that points to the element with key of the
400 * std::pair built from @a __args (may or may not be that
401 * std::pair).
403 * This function is not concerned about whether the insertion took place,
404 * and thus does not return a boolean like the single-argument emplace()
405 * does.
406 * Note that the first parameter is only a hint and can potentially
407 * improve the performance of the insertion process. A bad hint would
408 * cause no gains in efficiency.
410 * See
411 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
412 * for more on @a hinting.
414 * Insertion requires amortized constant time.
416 template<typename... _Args>
417 iterator
418 emplace_hint(const_iterator __pos, _Args&&... __args)
419 { return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
421 #if __cplusplus > 201402L
422 /// Extract a node.
423 node_type
424 extract(const_iterator __pos)
426 __glibcxx_assert(__pos != end());
427 return _M_h.extract(__pos);
430 /// Extract a node.
431 node_type
432 extract(const key_type& __key)
433 { return _M_h.extract(__key); }
435 /// Re-insert an extracted node.
436 insert_return_type
437 insert(node_type&& __nh)
438 { return _M_h._M_reinsert_node(std::move(__nh)); }
440 /// Re-insert an extracted node.
441 iterator
442 insert(const_iterator, node_type&& __nh)
443 { return _M_h._M_reinsert_node(std::move(__nh)).position; }
445 #define __cpp_lib_unordered_map_try_emplace 201411
447 * @brief Attempts to build and insert a std::pair into the
448 * %unordered_map.
450 * @param __k Key to use for finding a possibly existing pair in
451 * the unordered_map.
452 * @param __args Arguments used to generate the .second for a
453 * new pair instance.
455 * @return A pair, of which the first element is an iterator that points
456 * to the possibly inserted pair, and the second is a bool that
457 * is true if the pair was actually inserted.
459 * This function attempts to build and insert a (key, value) %pair into
460 * the %unordered_map.
461 * An %unordered_map relies on unique keys and thus a %pair is only
462 * inserted if its first element (the key) is not already present in the
463 * %unordered_map.
464 * If a %pair is not inserted, this function has no effect.
466 * Insertion requires amortized constant time.
468 template <typename... _Args>
469 pair<iterator, bool>
470 try_emplace(const key_type& __k, _Args&&... __args)
472 iterator __i = find(__k);
473 if (__i == end())
475 __i = emplace(std::piecewise_construct,
476 std::forward_as_tuple(__k),
477 std::forward_as_tuple(
478 std::forward<_Args>(__args)...))
479 .first;
480 return {__i, true};
482 return {__i, false};
485 // move-capable overload
486 template <typename... _Args>
487 pair<iterator, bool>
488 try_emplace(key_type&& __k, _Args&&... __args)
490 iterator __i = find(__k);
491 if (__i == end())
493 __i = emplace(std::piecewise_construct,
494 std::forward_as_tuple(std::move(__k)),
495 std::forward_as_tuple(
496 std::forward<_Args>(__args)...))
497 .first;
498 return {__i, true};
500 return {__i, false};
504 * @brief Attempts to build and insert a std::pair into the
505 * %unordered_map.
507 * @param __hint An iterator that serves as a hint as to where the pair
508 * should be inserted.
509 * @param __k Key to use for finding a possibly existing pair in
510 * the unordered_map.
511 * @param __args Arguments used to generate the .second for a
512 * new pair instance.
513 * @return An iterator that points to the element with key of the
514 * std::pair built from @a __args (may or may not be that
515 * std::pair).
517 * This function is not concerned about whether the insertion took place,
518 * and thus does not return a boolean like the single-argument emplace()
519 * does. However, if insertion did not take place,
520 * this function has no effect.
521 * Note that the first parameter is only a hint and can potentially
522 * improve the performance of the insertion process. A bad hint would
523 * cause no gains in efficiency.
525 * See
526 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
527 * for more on @a hinting.
529 * Insertion requires amortized constant time.
531 template <typename... _Args>
532 iterator
533 try_emplace(const_iterator __hint, const key_type& __k,
534 _Args&&... __args)
536 iterator __i = find(__k);
537 if (__i == end())
538 __i = emplace_hint(__hint, std::piecewise_construct,
539 std::forward_as_tuple(__k),
540 std::forward_as_tuple(
541 std::forward<_Args>(__args)...));
542 return __i;
545 // move-capable overload
546 template <typename... _Args>
547 iterator
548 try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
550 iterator __i = find(__k);
551 if (__i == end())
552 __i = emplace_hint(__hint, std::piecewise_construct,
553 std::forward_as_tuple(std::move(__k)),
554 std::forward_as_tuple(
555 std::forward<_Args>(__args)...));
556 return __i;
558 #endif // C++17
560 //@{
562 * @brief Attempts to insert a std::pair into the %unordered_map.
564 * @param __x Pair to be inserted (see std::make_pair for easy
565 * creation of pairs).
567 * @return A pair, of which the first element is an iterator that
568 * points to the possibly inserted pair, and the second is
569 * a bool that is true if the pair was actually inserted.
571 * This function attempts to insert a (key, value) %pair into the
572 * %unordered_map. An %unordered_map relies on unique keys and thus a
573 * %pair is only inserted if its first element (the key) is not already
574 * present in the %unordered_map.
576 * Insertion requires amortized constant time.
578 std::pair<iterator, bool>
579 insert(const value_type& __x)
580 { return _M_h.insert(__x); }
582 // _GLIBCXX_RESOLVE_LIB_DEFECTS
583 // 2354. Unnecessary copying when inserting into maps with braced-init
584 std::pair<iterator, bool>
585 insert(value_type&& __x)
586 { return _M_h.insert(std::move(__x)); }
588 template<typename _Pair>
589 __enable_if_t<is_constructible<value_type, _Pair&&>::value,
590 pair<iterator, bool>>
591 insert(_Pair&& __x)
592 { return _M_h.emplace(std::forward<_Pair>(__x)); }
593 //@}
595 //@{
597 * @brief Attempts to insert a std::pair into the %unordered_map.
598 * @param __hint An iterator that serves as a hint as to where the
599 * pair should be inserted.
600 * @param __x Pair to be inserted (see std::make_pair for easy creation
601 * of pairs).
602 * @return An iterator that points to the element with key of
603 * @a __x (may or may not be the %pair passed in).
605 * This function is not concerned about whether the insertion took place,
606 * and thus does not return a boolean like the single-argument insert()
607 * does. Note that the first parameter is only a hint and can
608 * potentially improve the performance of the insertion process. A bad
609 * hint would cause no gains in efficiency.
611 * See
612 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
613 * for more on @a hinting.
615 * Insertion requires amortized constant time.
617 iterator
618 insert(const_iterator __hint, const value_type& __x)
619 { return _M_h.insert(__hint, __x); }
621 // _GLIBCXX_RESOLVE_LIB_DEFECTS
622 // 2354. Unnecessary copying when inserting into maps with braced-init
623 iterator
624 insert(const_iterator __hint, value_type&& __x)
625 { return _M_h.insert(__hint, std::move(__x)); }
627 template<typename _Pair>
628 __enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
629 insert(const_iterator __hint, _Pair&& __x)
630 { return _M_h.emplace_hint(__hint, std::forward<_Pair>(__x)); }
631 //@}
634 * @brief A template function that attempts to insert a range of
635 * elements.
636 * @param __first Iterator pointing to the start of the range to be
637 * inserted.
638 * @param __last Iterator pointing to the end of the range.
640 * Complexity similar to that of the range constructor.
642 template<typename _InputIterator>
643 void
644 insert(_InputIterator __first, _InputIterator __last)
645 { _M_h.insert(__first, __last); }
648 * @brief Attempts to insert a list of elements into the %unordered_map.
649 * @param __l A std::initializer_list<value_type> of elements
650 * to be inserted.
652 * Complexity similar to that of the range constructor.
654 void
655 insert(initializer_list<value_type> __l)
656 { _M_h.insert(__l); }
659 #if __cplusplus > 201402L
660 #define __cpp_lib_unordered_map_insertion 201411
662 * @brief Attempts to insert a std::pair into the %unordered_map.
663 * @param __k Key to use for finding a possibly existing pair in
664 * the map.
665 * @param __obj Argument used to generate the .second for a pair
666 * instance.
668 * @return A pair, of which the first element is an iterator that
669 * points to the possibly inserted pair, and the second is
670 * a bool that is true if the pair was actually inserted.
672 * This function attempts to insert a (key, value) %pair into the
673 * %unordered_map. An %unordered_map relies on unique keys and thus a
674 * %pair is only inserted if its first element (the key) is not already
675 * present in the %unordered_map.
676 * If the %pair was already in the %unordered_map, the .second of
677 * the %pair is assigned from __obj.
679 * Insertion requires amortized constant time.
681 template <typename _Obj>
682 pair<iterator, bool>
683 insert_or_assign(const key_type& __k, _Obj&& __obj)
685 iterator __i = find(__k);
686 if (__i == end())
688 __i = emplace(std::piecewise_construct,
689 std::forward_as_tuple(__k),
690 std::forward_as_tuple(std::forward<_Obj>(__obj)))
691 .first;
692 return {__i, true};
694 (*__i).second = std::forward<_Obj>(__obj);
695 return {__i, false};
698 // move-capable overload
699 template <typename _Obj>
700 pair<iterator, bool>
701 insert_or_assign(key_type&& __k, _Obj&& __obj)
703 iterator __i = find(__k);
704 if (__i == end())
706 __i = emplace(std::piecewise_construct,
707 std::forward_as_tuple(std::move(__k)),
708 std::forward_as_tuple(std::forward<_Obj>(__obj)))
709 .first;
710 return {__i, true};
712 (*__i).second = std::forward<_Obj>(__obj);
713 return {__i, false};
717 * @brief Attempts to insert a std::pair into the %unordered_map.
718 * @param __hint An iterator that serves as a hint as to where the
719 * pair should be inserted.
720 * @param __k Key to use for finding a possibly existing pair in
721 * the unordered_map.
722 * @param __obj Argument used to generate the .second for a pair
723 * instance.
724 * @return An iterator that points to the element with key of
725 * @a __x (may or may not be the %pair passed in).
727 * This function is not concerned about whether the insertion took place,
728 * and thus does not return a boolean like the single-argument insert()
729 * does.
730 * If the %pair was already in the %unordered map, the .second of
731 * the %pair is assigned from __obj.
732 * Note that the first parameter is only a hint and can
733 * potentially improve the performance of the insertion process. A bad
734 * hint would cause no gains in efficiency.
736 * See
737 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
738 * for more on @a hinting.
740 * Insertion requires amortized constant time.
742 template <typename _Obj>
743 iterator
744 insert_or_assign(const_iterator __hint, const key_type& __k,
745 _Obj&& __obj)
747 iterator __i = find(__k);
748 if (__i == end())
750 return emplace_hint(__hint, std::piecewise_construct,
751 std::forward_as_tuple(__k),
752 std::forward_as_tuple(
753 std::forward<_Obj>(__obj)));
755 (*__i).second = std::forward<_Obj>(__obj);
756 return __i;
759 // move-capable overload
760 template <typename _Obj>
761 iterator
762 insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
764 iterator __i = find(__k);
765 if (__i == end())
767 return emplace_hint(__hint, std::piecewise_construct,
768 std::forward_as_tuple(std::move(__k)),
769 std::forward_as_tuple(
770 std::forward<_Obj>(__obj)));
772 (*__i).second = std::forward<_Obj>(__obj);
773 return __i;
775 #endif
777 //@{
779 * @brief Erases an element from an %unordered_map.
780 * @param __position An iterator pointing to the element to be erased.
781 * @return An iterator pointing to the element immediately following
782 * @a __position prior to the element being erased. If no such
783 * element exists, end() is returned.
785 * This function erases an element, pointed to by the given iterator,
786 * from an %unordered_map.
787 * Note that this function only erases the element, and that if the
788 * element is itself a pointer, the pointed-to memory is not touched in
789 * any way. Managing the pointer is the user's responsibility.
791 iterator
792 erase(const_iterator __position)
793 { return _M_h.erase(__position); }
795 // LWG 2059.
796 iterator
797 erase(iterator __position)
798 { return _M_h.erase(__position); }
799 //@}
802 * @brief Erases elements according to the provided key.
803 * @param __x Key of element to be erased.
804 * @return The number of elements erased.
806 * This function erases all the elements located by the given key from
807 * an %unordered_map. For an %unordered_map the result of this function
808 * can only be 0 (not present) or 1 (present).
809 * Note that this function only erases the element, and that if the
810 * element is itself a pointer, the pointed-to memory is not touched in
811 * any way. Managing the pointer is the user's responsibility.
813 size_type
814 erase(const key_type& __x)
815 { return _M_h.erase(__x); }
818 * @brief Erases a [__first,__last) range of elements from an
819 * %unordered_map.
820 * @param __first Iterator pointing to the start of the range to be
821 * erased.
822 * @param __last Iterator pointing to the end of the range to
823 * be erased.
824 * @return The iterator @a __last.
826 * This function erases a sequence of elements from an %unordered_map.
827 * Note that this function only erases the elements, and that if
828 * the element is itself a pointer, the pointed-to memory is not touched
829 * in any way. Managing the pointer is the user's responsibility.
831 iterator
832 erase(const_iterator __first, const_iterator __last)
833 { return _M_h.erase(__first, __last); }
836 * Erases all elements in an %unordered_map.
837 * Note that this function only erases the elements, and that if the
838 * elements themselves are pointers, the pointed-to memory is not touched
839 * in any way. Managing the pointer is the user's responsibility.
841 void
842 clear() noexcept
843 { _M_h.clear(); }
846 * @brief Swaps data with another %unordered_map.
847 * @param __x An %unordered_map of the same element and allocator
848 * types.
850 * This exchanges the elements between two %unordered_map in constant
851 * time.
852 * Note that the global std::swap() function is specialized such that
853 * std::swap(m1,m2) will feed to this function.
855 void
856 swap(unordered_map& __x)
857 noexcept( noexcept(_M_h.swap(__x._M_h)) )
858 { _M_h.swap(__x._M_h); }
860 #if __cplusplus > 201402L
861 template<typename, typename, typename>
862 friend class std::_Hash_merge_helper;
864 template<typename _H2, typename _P2>
865 void
866 merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>& __source)
868 using _Merge_helper = _Hash_merge_helper<unordered_map, _H2, _P2>;
869 _M_h._M_merge_unique(_Merge_helper::_S_get_table(__source));
872 template<typename _H2, typename _P2>
873 void
874 merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
875 { merge(__source); }
877 template<typename _H2, typename _P2>
878 void
879 merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>& __source)
881 using _Merge_helper = _Hash_merge_helper<unordered_map, _H2, _P2>;
882 _M_h._M_merge_unique(_Merge_helper::_S_get_table(__source));
885 template<typename _H2, typename _P2>
886 void
887 merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
888 { merge(__source); }
889 #endif // C++17
891 // observers.
893 /// Returns the hash functor object with which the %unordered_map was
894 /// constructed.
895 hasher
896 hash_function() const
897 { return _M_h.hash_function(); }
899 /// Returns the key comparison object with which the %unordered_map was
900 /// constructed.
901 key_equal
902 key_eq() const
903 { return _M_h.key_eq(); }
905 // lookup.
907 //@{
909 * @brief Tries to locate an element in an %unordered_map.
910 * @param __x Key to be located.
911 * @return Iterator pointing to sought-after element, or end() if not
912 * found.
914 * This function takes a key and tries to locate the element with which
915 * the key matches. If successful the function returns an iterator
916 * pointing to the sought after element. If unsuccessful it returns the
917 * past-the-end ( @c end() ) iterator.
919 iterator
920 find(const key_type& __x)
921 { return _M_h.find(__x); }
923 const_iterator
924 find(const key_type& __x) const
925 { return _M_h.find(__x); }
926 //@}
929 * @brief Finds the number of elements.
930 * @param __x Key to count.
931 * @return Number of elements with specified key.
933 * This function only makes sense for %unordered_multimap; for
934 * %unordered_map the result will either be 0 (not present) or 1
935 * (present).
937 size_type
938 count(const key_type& __x) const
939 { return _M_h.count(__x); }
941 #if __cplusplus > 201703L
943 * @brief Finds whether an element with the given key exists.
944 * @param __x Key of elements to be located.
945 * @return True if there is any element with the specified key.
947 bool
948 contains(const key_type& __x) const
949 { return _M_h.find(__x) != _M_h.end(); }
950 #endif
952 //@{
954 * @brief Finds a subsequence matching given key.
955 * @param __x Key to be located.
956 * @return Pair of iterators that possibly points to the subsequence
957 * matching given key.
959 * This function probably only makes sense for %unordered_multimap.
961 std::pair<iterator, iterator>
962 equal_range(const key_type& __x)
963 { return _M_h.equal_range(__x); }
965 std::pair<const_iterator, const_iterator>
966 equal_range(const key_type& __x) const
967 { return _M_h.equal_range(__x); }
968 //@}
970 //@{
972 * @brief Subscript ( @c [] ) access to %unordered_map data.
973 * @param __k The key for which data should be retrieved.
974 * @return A reference to the data of the (key,data) %pair.
976 * Allows for easy lookup with the subscript ( @c [] )operator. Returns
977 * data associated with the key specified in subscript. If the key does
978 * not exist, a pair with that key is created using default values, which
979 * is then returned.
981 * Lookup requires constant time.
983 mapped_type&
984 operator[](const key_type& __k)
985 { return _M_h[__k]; }
987 mapped_type&
988 operator[](key_type&& __k)
989 { return _M_h[std::move(__k)]; }
990 //@}
992 //@{
994 * @brief Access to %unordered_map data.
995 * @param __k The key for which data should be retrieved.
996 * @return A reference to the data whose key is equal to @a __k, if
997 * such a data is present in the %unordered_map.
998 * @throw std::out_of_range If no such data is present.
1000 mapped_type&
1001 at(const key_type& __k)
1002 { return _M_h.at(__k); }
1004 const mapped_type&
1005 at(const key_type& __k) const
1006 { return _M_h.at(__k); }
1007 //@}
1009 // bucket interface.
1011 /// Returns the number of buckets of the %unordered_map.
1012 size_type
1013 bucket_count() const noexcept
1014 { return _M_h.bucket_count(); }
1016 /// Returns the maximum number of buckets of the %unordered_map.
1017 size_type
1018 max_bucket_count() const noexcept
1019 { return _M_h.max_bucket_count(); }
1022 * @brief Returns the number of elements in a given bucket.
1023 * @param __n A bucket index.
1024 * @return The number of elements in the bucket.
1026 size_type
1027 bucket_size(size_type __n) const
1028 { return _M_h.bucket_size(__n); }
1031 * @brief Returns the bucket index of a given element.
1032 * @param __key A key instance.
1033 * @return The key bucket index.
1035 size_type
1036 bucket(const key_type& __key) const
1037 { return _M_h.bucket(__key); }
1040 * @brief Returns a read/write iterator pointing to the first bucket
1041 * element.
1042 * @param __n The bucket index.
1043 * @return A read/write local iterator.
1045 local_iterator
1046 begin(size_type __n)
1047 { return _M_h.begin(__n); }
1049 //@{
1051 * @brief Returns a read-only (constant) iterator pointing to the first
1052 * bucket element.
1053 * @param __n The bucket index.
1054 * @return A read-only local iterator.
1056 const_local_iterator
1057 begin(size_type __n) const
1058 { return _M_h.begin(__n); }
1060 const_local_iterator
1061 cbegin(size_type __n) const
1062 { return _M_h.cbegin(__n); }
1063 //@}
1066 * @brief Returns a read/write iterator pointing to one past the last
1067 * bucket elements.
1068 * @param __n The bucket index.
1069 * @return A read/write local iterator.
1071 local_iterator
1072 end(size_type __n)
1073 { return _M_h.end(__n); }
1075 //@{
1077 * @brief Returns a read-only (constant) iterator pointing to one past
1078 * the last bucket elements.
1079 * @param __n The bucket index.
1080 * @return A read-only local iterator.
1082 const_local_iterator
1083 end(size_type __n) const
1084 { return _M_h.end(__n); }
1086 const_local_iterator
1087 cend(size_type __n) const
1088 { return _M_h.cend(__n); }
1089 //@}
1091 // hash policy.
1093 /// Returns the average number of elements per bucket.
1094 float
1095 load_factor() const noexcept
1096 { return _M_h.load_factor(); }
1098 /// Returns a positive number that the %unordered_map tries to keep the
1099 /// load factor less than or equal to.
1100 float
1101 max_load_factor() const noexcept
1102 { return _M_h.max_load_factor(); }
1105 * @brief Change the %unordered_map maximum load factor.
1106 * @param __z The new maximum load factor.
1108 void
1109 max_load_factor(float __z)
1110 { _M_h.max_load_factor(__z); }
1113 * @brief May rehash the %unordered_map.
1114 * @param __n The new number of buckets.
1116 * Rehash will occur only if the new number of buckets respect the
1117 * %unordered_map maximum load factor.
1119 void
1120 rehash(size_type __n)
1121 { _M_h.rehash(__n); }
1124 * @brief Prepare the %unordered_map for a specified number of
1125 * elements.
1126 * @param __n Number of elements required.
1128 * Same as rehash(ceil(n / max_load_factor())).
1130 void
1131 reserve(size_type __n)
1132 { _M_h.reserve(__n); }
1134 template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
1135 typename _Alloc1>
1136 friend bool
1137 operator==(const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&,
1138 const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&);
1141 #if __cpp_deduction_guides >= 201606
1143 template<typename _InputIterator,
1144 typename _Hash = hash<__iter_key_t<_InputIterator>>,
1145 typename _Pred = equal_to<__iter_key_t<_InputIterator>>,
1146 typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1147 typename = _RequireInputIter<_InputIterator>,
1148 typename = _RequireAllocator<_Allocator>>
1149 unordered_map(_InputIterator, _InputIterator,
1150 typename unordered_map<int, int>::size_type = {},
1151 _Hash = _Hash(), _Pred = _Pred(), _Allocator = _Allocator())
1152 -> unordered_map<__iter_key_t<_InputIterator>,
1153 __iter_val_t<_InputIterator>,
1154 _Hash, _Pred, _Allocator>;
1156 template<typename _Key, typename _Tp, typename _Hash = hash<_Key>,
1157 typename _Pred = equal_to<_Key>,
1158 typename _Allocator = allocator<pair<const _Key, _Tp>>,
1159 typename = _RequireAllocator<_Allocator>>
1160 unordered_map(initializer_list<pair<_Key, _Tp>>,
1161 typename unordered_map<int, int>::size_type = {},
1162 _Hash = _Hash(), _Pred = _Pred(), _Allocator = _Allocator())
1163 -> unordered_map<_Key, _Tp, _Hash, _Pred, _Allocator>;
1165 template<typename _InputIterator, typename _Allocator,
1166 typename = _RequireInputIter<_InputIterator>,
1167 typename = _RequireAllocator<_Allocator>>
1168 unordered_map(_InputIterator, _InputIterator,
1169 typename unordered_map<int, int>::size_type, _Allocator)
1170 -> unordered_map<__iter_key_t<_InputIterator>,
1171 __iter_val_t<_InputIterator>,
1172 hash<__iter_key_t<_InputIterator>>,
1173 equal_to<__iter_key_t<_InputIterator>>,
1174 _Allocator>;
1176 template<typename _InputIterator, typename _Allocator,
1177 typename = _RequireInputIter<_InputIterator>,
1178 typename = _RequireAllocator<_Allocator>>
1179 unordered_map(_InputIterator, _InputIterator, _Allocator)
1180 -> unordered_map<__iter_key_t<_InputIterator>,
1181 __iter_val_t<_InputIterator>,
1182 hash<__iter_key_t<_InputIterator>>,
1183 equal_to<__iter_key_t<_InputIterator>>,
1184 _Allocator>;
1186 template<typename _InputIterator, typename _Hash, typename _Allocator,
1187 typename = _RequireInputIter<_InputIterator>,
1188 typename = _RequireAllocator<_Allocator>>
1189 unordered_map(_InputIterator, _InputIterator,
1190 typename unordered_map<int, int>::size_type,
1191 _Hash, _Allocator)
1192 -> unordered_map<__iter_key_t<_InputIterator>,
1193 __iter_val_t<_InputIterator>, _Hash,
1194 equal_to<__iter_key_t<_InputIterator>>, _Allocator>;
1196 template<typename _Key, typename _Tp, typename _Allocator,
1197 typename = _RequireAllocator<_Allocator>>
1198 unordered_map(initializer_list<pair<_Key, _Tp>>,
1199 typename unordered_map<int, int>::size_type,
1200 _Allocator)
1201 -> unordered_map<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;
1203 template<typename _Key, typename _Tp, typename _Allocator,
1204 typename = _RequireAllocator<_Allocator>>
1205 unordered_map(initializer_list<pair<_Key, _Tp>>, _Allocator)
1206 -> unordered_map<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;
1208 template<typename _Key, typename _Tp, typename _Hash, typename _Allocator,
1209 typename = _RequireAllocator<_Allocator>>
1210 unordered_map(initializer_list<pair<_Key, _Tp>>,
1211 typename unordered_map<int, int>::size_type,
1212 _Hash, _Allocator)
1213 -> unordered_map<_Key, _Tp, _Hash, equal_to<_Key>, _Allocator>;
1215 #endif
1218 * @brief A standard container composed of equivalent keys
1219 * (possibly containing multiple of each key value) that associates
1220 * values of another type with the keys.
1222 * @ingroup unordered_associative_containers
1224 * @tparam _Key Type of key objects.
1225 * @tparam _Tp Type of mapped objects.
1226 * @tparam _Hash Hashing function object type, defaults to hash<_Value>.
1227 * @tparam _Pred Predicate function object type, defaults
1228 * to equal_to<_Value>.
1229 * @tparam _Alloc Allocator type, defaults to
1230 * std::allocator<std::pair<const _Key, _Tp>>.
1232 * Meets the requirements of a <a href="tables.html#65">container</a>, and
1233 * <a href="tables.html#xx">unordered associative container</a>
1235 * The resulting value type of the container is std::pair<const _Key, _Tp>.
1237 * Base is _Hashtable, dispatched at compile time via template
1238 * alias __ummap_hashtable.
1240 template<typename _Key, typename _Tp,
1241 typename _Hash = hash<_Key>,
1242 typename _Pred = equal_to<_Key>,
1243 typename _Alloc = allocator<std::pair<const _Key, _Tp>>>
1244 class unordered_multimap
1246 typedef __ummap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc> _Hashtable;
1247 _Hashtable _M_h;
1249 public:
1250 // typedefs:
1251 //@{
1252 /// Public typedefs.
1253 typedef typename _Hashtable::key_type key_type;
1254 typedef typename _Hashtable::value_type value_type;
1255 typedef typename _Hashtable::mapped_type mapped_type;
1256 typedef typename _Hashtable::hasher hasher;
1257 typedef typename _Hashtable::key_equal key_equal;
1258 typedef typename _Hashtable::allocator_type allocator_type;
1259 //@}
1261 //@{
1262 /// Iterator-related typedefs.
1263 typedef typename _Hashtable::pointer pointer;
1264 typedef typename _Hashtable::const_pointer const_pointer;
1265 typedef typename _Hashtable::reference reference;
1266 typedef typename _Hashtable::const_reference const_reference;
1267 typedef typename _Hashtable::iterator iterator;
1268 typedef typename _Hashtable::const_iterator const_iterator;
1269 typedef typename _Hashtable::local_iterator local_iterator;
1270 typedef typename _Hashtable::const_local_iterator const_local_iterator;
1271 typedef typename _Hashtable::size_type size_type;
1272 typedef typename _Hashtable::difference_type difference_type;
1273 //@}
1275 #if __cplusplus > 201402L
1276 using node_type = typename _Hashtable::node_type;
1277 #endif
1279 //construct/destroy/copy
1281 /// Default constructor.
1282 unordered_multimap() = default;
1285 * @brief Default constructor creates no elements.
1286 * @param __n Mnimal initial number of buckets.
1287 * @param __hf A hash functor.
1288 * @param __eql A key equality functor.
1289 * @param __a An allocator object.
1291 explicit
1292 unordered_multimap(size_type __n,
1293 const hasher& __hf = hasher(),
1294 const key_equal& __eql = key_equal(),
1295 const allocator_type& __a = allocator_type())
1296 : _M_h(__n, __hf, __eql, __a)
1300 * @brief Builds an %unordered_multimap from a range.
1301 * @param __first An input iterator.
1302 * @param __last An input iterator.
1303 * @param __n Minimal initial number of buckets.
1304 * @param __hf A hash functor.
1305 * @param __eql A key equality functor.
1306 * @param __a An allocator object.
1308 * Create an %unordered_multimap consisting of copies of the elements
1309 * from [__first,__last). This is linear in N (where N is
1310 * distance(__first,__last)).
1312 template<typename _InputIterator>
1313 unordered_multimap(_InputIterator __first, _InputIterator __last,
1314 size_type __n = 0,
1315 const hasher& __hf = hasher(),
1316 const key_equal& __eql = key_equal(),
1317 const allocator_type& __a = allocator_type())
1318 : _M_h(__first, __last, __n, __hf, __eql, __a)
1321 /// Copy constructor.
1322 unordered_multimap(const unordered_multimap&) = default;
1324 /// Move constructor.
1325 unordered_multimap(unordered_multimap&&) = default;
1328 * @brief Creates an %unordered_multimap with no elements.
1329 * @param __a An allocator object.
1331 explicit
1332 unordered_multimap(const allocator_type& __a)
1333 : _M_h(__a)
1337 * @brief Copy constructor with allocator argument.
1338 * @param __uset Input %unordered_multimap to copy.
1339 * @param __a An allocator object.
1341 unordered_multimap(const unordered_multimap& __ummap,
1342 const allocator_type& __a)
1343 : _M_h(__ummap._M_h, __a)
1347 * @brief Move constructor with allocator argument.
1348 * @param __uset Input %unordered_multimap to move.
1349 * @param __a An allocator object.
1351 unordered_multimap(unordered_multimap&& __ummap,
1352 const allocator_type& __a)
1353 : _M_h(std::move(__ummap._M_h), __a)
1357 * @brief Builds an %unordered_multimap from an initializer_list.
1358 * @param __l An initializer_list.
1359 * @param __n Minimal initial number of buckets.
1360 * @param __hf A hash functor.
1361 * @param __eql A key equality functor.
1362 * @param __a An allocator object.
1364 * Create an %unordered_multimap consisting of copies of the elements in
1365 * the list. This is linear in N (where N is @a __l.size()).
1367 unordered_multimap(initializer_list<value_type> __l,
1368 size_type __n = 0,
1369 const hasher& __hf = hasher(),
1370 const key_equal& __eql = key_equal(),
1371 const allocator_type& __a = allocator_type())
1372 : _M_h(__l, __n, __hf, __eql, __a)
1375 unordered_multimap(size_type __n, const allocator_type& __a)
1376 : unordered_multimap(__n, hasher(), key_equal(), __a)
1379 unordered_multimap(size_type __n, const hasher& __hf,
1380 const allocator_type& __a)
1381 : unordered_multimap(__n, __hf, key_equal(), __a)
1384 template<typename _InputIterator>
1385 unordered_multimap(_InputIterator __first, _InputIterator __last,
1386 size_type __n,
1387 const allocator_type& __a)
1388 : unordered_multimap(__first, __last, __n, hasher(), key_equal(), __a)
1391 template<typename _InputIterator>
1392 unordered_multimap(_InputIterator __first, _InputIterator __last,
1393 size_type __n, const hasher& __hf,
1394 const allocator_type& __a)
1395 : unordered_multimap(__first, __last, __n, __hf, key_equal(), __a)
1398 unordered_multimap(initializer_list<value_type> __l,
1399 size_type __n,
1400 const allocator_type& __a)
1401 : unordered_multimap(__l, __n, hasher(), key_equal(), __a)
1404 unordered_multimap(initializer_list<value_type> __l,
1405 size_type __n, const hasher& __hf,
1406 const allocator_type& __a)
1407 : unordered_multimap(__l, __n, __hf, key_equal(), __a)
1410 /// Copy assignment operator.
1411 unordered_multimap&
1412 operator=(const unordered_multimap&) = default;
1414 /// Move assignment operator.
1415 unordered_multimap&
1416 operator=(unordered_multimap&&) = default;
1419 * @brief %Unordered_multimap list assignment operator.
1420 * @param __l An initializer_list.
1422 * This function fills an %unordered_multimap with copies of the
1423 * elements in the initializer list @a __l.
1425 * Note that the assignment completely changes the %unordered_multimap
1426 * and that the resulting %unordered_multimap's size is the same as the
1427 * number of elements assigned.
1429 unordered_multimap&
1430 operator=(initializer_list<value_type> __l)
1432 _M_h = __l;
1433 return *this;
1436 /// Returns the allocator object used by the %unordered_multimap.
1437 allocator_type
1438 get_allocator() const noexcept
1439 { return _M_h.get_allocator(); }
1441 // size and capacity:
1443 /// Returns true if the %unordered_multimap is empty.
1444 bool
1445 empty() const noexcept
1446 { return _M_h.empty(); }
1448 /// Returns the size of the %unordered_multimap.
1449 size_type
1450 size() const noexcept
1451 { return _M_h.size(); }
1453 /// Returns the maximum size of the %unordered_multimap.
1454 size_type
1455 max_size() const noexcept
1456 { return _M_h.max_size(); }
1458 // iterators.
1461 * Returns a read/write iterator that points to the first element in the
1462 * %unordered_multimap.
1464 iterator
1465 begin() noexcept
1466 { return _M_h.begin(); }
1468 //@{
1470 * Returns a read-only (constant) iterator that points to the first
1471 * element in the %unordered_multimap.
1473 const_iterator
1474 begin() const noexcept
1475 { return _M_h.begin(); }
1477 const_iterator
1478 cbegin() const noexcept
1479 { return _M_h.begin(); }
1480 //@}
1483 * Returns a read/write iterator that points one past the last element in
1484 * the %unordered_multimap.
1486 iterator
1487 end() noexcept
1488 { return _M_h.end(); }
1490 //@{
1492 * Returns a read-only (constant) iterator that points one past the last
1493 * element in the %unordered_multimap.
1495 const_iterator
1496 end() const noexcept
1497 { return _M_h.end(); }
1499 const_iterator
1500 cend() const noexcept
1501 { return _M_h.end(); }
1502 //@}
1504 // modifiers.
1507 * @brief Attempts to build and insert a std::pair into the
1508 * %unordered_multimap.
1510 * @param __args Arguments used to generate a new pair instance (see
1511 * std::piecewise_contruct for passing arguments to each
1512 * part of the pair constructor).
1514 * @return An iterator that points to the inserted pair.
1516 * This function attempts to build and insert a (key, value) %pair into
1517 * the %unordered_multimap.
1519 * Insertion requires amortized constant time.
1521 template<typename... _Args>
1522 iterator
1523 emplace(_Args&&... __args)
1524 { return _M_h.emplace(std::forward<_Args>(__args)...); }
1527 * @brief Attempts to build and insert a std::pair into the
1528 * %unordered_multimap.
1530 * @param __pos An iterator that serves as a hint as to where the pair
1531 * should be inserted.
1532 * @param __args Arguments used to generate a new pair instance (see
1533 * std::piecewise_contruct for passing arguments to each
1534 * part of the pair constructor).
1535 * @return An iterator that points to the element with key of the
1536 * std::pair built from @a __args.
1538 * Note that the first parameter is only a hint and can potentially
1539 * improve the performance of the insertion process. A bad hint would
1540 * cause no gains in efficiency.
1542 * See
1543 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
1544 * for more on @a hinting.
1546 * Insertion requires amortized constant time.
1548 template<typename... _Args>
1549 iterator
1550 emplace_hint(const_iterator __pos, _Args&&... __args)
1551 { return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
1553 //@{
1555 * @brief Inserts a std::pair into the %unordered_multimap.
1556 * @param __x Pair to be inserted (see std::make_pair for easy
1557 * creation of pairs).
1559 * @return An iterator that points to the inserted pair.
1561 * Insertion requires amortized constant time.
1563 iterator
1564 insert(const value_type& __x)
1565 { return _M_h.insert(__x); }
1567 iterator
1568 insert(value_type&& __x)
1569 { return _M_h.insert(std::move(__x)); }
1571 template<typename _Pair>
1572 __enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
1573 insert(_Pair&& __x)
1574 { return _M_h.emplace(std::forward<_Pair>(__x)); }
1575 //@}
1577 //@{
1579 * @brief Inserts a std::pair into the %unordered_multimap.
1580 * @param __hint An iterator that serves as a hint as to where the
1581 * pair should be inserted.
1582 * @param __x Pair to be inserted (see std::make_pair for easy creation
1583 * of pairs).
1584 * @return An iterator that points to the element with key of
1585 * @a __x (may or may not be the %pair passed in).
1587 * Note that the first parameter is only a hint and can potentially
1588 * improve the performance of the insertion process. A bad hint would
1589 * cause no gains in efficiency.
1591 * See
1592 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
1593 * for more on @a hinting.
1595 * Insertion requires amortized constant time.
1597 iterator
1598 insert(const_iterator __hint, const value_type& __x)
1599 { return _M_h.insert(__hint, __x); }
1601 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1602 // 2354. Unnecessary copying when inserting into maps with braced-init
1603 iterator
1604 insert(const_iterator __hint, value_type&& __x)
1605 { return _M_h.insert(__hint, std::move(__x)); }
1607 template<typename _Pair>
1608 __enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
1609 insert(const_iterator __hint, _Pair&& __x)
1610 { return _M_h.emplace_hint(__hint, std::forward<_Pair>(__x)); }
1611 //@}
1614 * @brief A template function that attempts to insert a range of
1615 * elements.
1616 * @param __first Iterator pointing to the start of the range to be
1617 * inserted.
1618 * @param __last Iterator pointing to the end of the range.
1620 * Complexity similar to that of the range constructor.
1622 template<typename _InputIterator>
1623 void
1624 insert(_InputIterator __first, _InputIterator __last)
1625 { _M_h.insert(__first, __last); }
1628 * @brief Attempts to insert a list of elements into the
1629 * %unordered_multimap.
1630 * @param __l A std::initializer_list<value_type> of elements
1631 * to be inserted.
1633 * Complexity similar to that of the range constructor.
1635 void
1636 insert(initializer_list<value_type> __l)
1637 { _M_h.insert(__l); }
1639 #if __cplusplus > 201402L
1640 /// Extract a node.
1641 node_type
1642 extract(const_iterator __pos)
1644 __glibcxx_assert(__pos != end());
1645 return _M_h.extract(__pos);
1648 /// Extract a node.
1649 node_type
1650 extract(const key_type& __key)
1651 { return _M_h.extract(__key); }
1653 /// Re-insert an extracted node.
1654 iterator
1655 insert(node_type&& __nh)
1656 { return _M_h._M_reinsert_node_multi(cend(), std::move(__nh)); }
1658 /// Re-insert an extracted node.
1659 iterator
1660 insert(const_iterator __hint, node_type&& __nh)
1661 { return _M_h._M_reinsert_node_multi(__hint, std::move(__nh)); }
1662 #endif // C++17
1664 //@{
1666 * @brief Erases an element from an %unordered_multimap.
1667 * @param __position An iterator pointing to the element to be erased.
1668 * @return An iterator pointing to the element immediately following
1669 * @a __position prior to the element being erased. If no such
1670 * element exists, end() is returned.
1672 * This function erases an element, pointed to by the given iterator,
1673 * from an %unordered_multimap.
1674 * Note that this function only erases the element, and that if the
1675 * element is itself a pointer, the pointed-to memory is not touched in
1676 * any way. Managing the pointer is the user's responsibility.
1678 iterator
1679 erase(const_iterator __position)
1680 { return _M_h.erase(__position); }
1682 // LWG 2059.
1683 iterator
1684 erase(iterator __position)
1685 { return _M_h.erase(__position); }
1686 //@}
1689 * @brief Erases elements according to the provided key.
1690 * @param __x Key of elements to be erased.
1691 * @return The number of elements erased.
1693 * This function erases all the elements located by the given key from
1694 * an %unordered_multimap.
1695 * Note that this function only erases the element, and that if the
1696 * element is itself a pointer, the pointed-to memory is not touched in
1697 * any way. Managing the pointer is the user's responsibility.
1699 size_type
1700 erase(const key_type& __x)
1701 { return _M_h.erase(__x); }
1704 * @brief Erases a [__first,__last) range of elements from an
1705 * %unordered_multimap.
1706 * @param __first Iterator pointing to the start of the range to be
1707 * erased.
1708 * @param __last Iterator pointing to the end of the range to
1709 * be erased.
1710 * @return The iterator @a __last.
1712 * This function erases a sequence of elements from an
1713 * %unordered_multimap.
1714 * Note that this function only erases the elements, and that if
1715 * the element is itself a pointer, the pointed-to memory is not touched
1716 * in any way. Managing the pointer is the user's responsibility.
1718 iterator
1719 erase(const_iterator __first, const_iterator __last)
1720 { return _M_h.erase(__first, __last); }
1723 * Erases all elements in an %unordered_multimap.
1724 * Note that this function only erases the elements, and that if the
1725 * elements themselves are pointers, the pointed-to memory is not touched
1726 * in any way. Managing the pointer is the user's responsibility.
1728 void
1729 clear() noexcept
1730 { _M_h.clear(); }
1733 * @brief Swaps data with another %unordered_multimap.
1734 * @param __x An %unordered_multimap of the same element and allocator
1735 * types.
1737 * This exchanges the elements between two %unordered_multimap in
1738 * constant time.
1739 * Note that the global std::swap() function is specialized such that
1740 * std::swap(m1,m2) will feed to this function.
1742 void
1743 swap(unordered_multimap& __x)
1744 noexcept( noexcept(_M_h.swap(__x._M_h)) )
1745 { _M_h.swap(__x._M_h); }
1747 #if __cplusplus > 201402L
1748 template<typename, typename, typename>
1749 friend class std::_Hash_merge_helper;
1751 template<typename _H2, typename _P2>
1752 void
1753 merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>& __source)
1755 using _Merge_helper
1756 = _Hash_merge_helper<unordered_multimap, _H2, _P2>;
1757 _M_h._M_merge_multi(_Merge_helper::_S_get_table(__source));
1760 template<typename _H2, typename _P2>
1761 void
1762 merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
1763 { merge(__source); }
1765 template<typename _H2, typename _P2>
1766 void
1767 merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>& __source)
1769 using _Merge_helper
1770 = _Hash_merge_helper<unordered_multimap, _H2, _P2>;
1771 _M_h._M_merge_multi(_Merge_helper::_S_get_table(__source));
1774 template<typename _H2, typename _P2>
1775 void
1776 merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
1777 { merge(__source); }
1778 #endif // C++17
1780 // observers.
1782 /// Returns the hash functor object with which the %unordered_multimap
1783 /// was constructed.
1784 hasher
1785 hash_function() const
1786 { return _M_h.hash_function(); }
1788 /// Returns the key comparison object with which the %unordered_multimap
1789 /// was constructed.
1790 key_equal
1791 key_eq() const
1792 { return _M_h.key_eq(); }
1794 // lookup.
1796 //@{
1798 * @brief Tries to locate an element in an %unordered_multimap.
1799 * @param __x Key to be located.
1800 * @return Iterator pointing to sought-after element, or end() if not
1801 * found.
1803 * This function takes a key and tries to locate the element with which
1804 * the key matches. If successful the function returns an iterator
1805 * pointing to the sought after element. If unsuccessful it returns the
1806 * past-the-end ( @c end() ) iterator.
1808 iterator
1809 find(const key_type& __x)
1810 { return _M_h.find(__x); }
1812 const_iterator
1813 find(const key_type& __x) const
1814 { return _M_h.find(__x); }
1815 //@}
1818 * @brief Finds the number of elements.
1819 * @param __x Key to count.
1820 * @return Number of elements with specified key.
1822 size_type
1823 count(const key_type& __x) const
1824 { return _M_h.count(__x); }
1826 #if __cplusplus > 201703L
1828 * @brief Finds whether an element with the given key exists.
1829 * @param __x Key of elements to be located.
1830 * @return True if there is any element with the specified key.
1832 bool
1833 contains(const key_type& __x) const
1834 { return _M_h.find(__x) != _M_h.end(); }
1835 #endif
1837 //@{
1839 * @brief Finds a subsequence matching given key.
1840 * @param __x Key to be located.
1841 * @return Pair of iterators that possibly points to the subsequence
1842 * matching given key.
1844 std::pair<iterator, iterator>
1845 equal_range(const key_type& __x)
1846 { return _M_h.equal_range(__x); }
1848 std::pair<const_iterator, const_iterator>
1849 equal_range(const key_type& __x) const
1850 { return _M_h.equal_range(__x); }
1851 //@}
1853 // bucket interface.
1855 /// Returns the number of buckets of the %unordered_multimap.
1856 size_type
1857 bucket_count() const noexcept
1858 { return _M_h.bucket_count(); }
1860 /// Returns the maximum number of buckets of the %unordered_multimap.
1861 size_type
1862 max_bucket_count() const noexcept
1863 { return _M_h.max_bucket_count(); }
1866 * @brief Returns the number of elements in a given bucket.
1867 * @param __n A bucket index.
1868 * @return The number of elements in the bucket.
1870 size_type
1871 bucket_size(size_type __n) const
1872 { return _M_h.bucket_size(__n); }
1875 * @brief Returns the bucket index of a given element.
1876 * @param __key A key instance.
1877 * @return The key bucket index.
1879 size_type
1880 bucket(const key_type& __key) const
1881 { return _M_h.bucket(__key); }
1884 * @brief Returns a read/write iterator pointing to the first bucket
1885 * element.
1886 * @param __n The bucket index.
1887 * @return A read/write local iterator.
1889 local_iterator
1890 begin(size_type __n)
1891 { return _M_h.begin(__n); }
1893 //@{
1895 * @brief Returns a read-only (constant) iterator pointing to the first
1896 * bucket element.
1897 * @param __n The bucket index.
1898 * @return A read-only local iterator.
1900 const_local_iterator
1901 begin(size_type __n) const
1902 { return _M_h.begin(__n); }
1904 const_local_iterator
1905 cbegin(size_type __n) const
1906 { return _M_h.cbegin(__n); }
1907 //@}
1910 * @brief Returns a read/write iterator pointing to one past the last
1911 * bucket elements.
1912 * @param __n The bucket index.
1913 * @return A read/write local iterator.
1915 local_iterator
1916 end(size_type __n)
1917 { return _M_h.end(__n); }
1919 //@{
1921 * @brief Returns a read-only (constant) iterator pointing to one past
1922 * the last bucket elements.
1923 * @param __n The bucket index.
1924 * @return A read-only local iterator.
1926 const_local_iterator
1927 end(size_type __n) const
1928 { return _M_h.end(__n); }
1930 const_local_iterator
1931 cend(size_type __n) const
1932 { return _M_h.cend(__n); }
1933 //@}
1935 // hash policy.
1937 /// Returns the average number of elements per bucket.
1938 float
1939 load_factor() const noexcept
1940 { return _M_h.load_factor(); }
1942 /// Returns a positive number that the %unordered_multimap tries to keep
1943 /// the load factor less than or equal to.
1944 float
1945 max_load_factor() const noexcept
1946 { return _M_h.max_load_factor(); }
1949 * @brief Change the %unordered_multimap maximum load factor.
1950 * @param __z The new maximum load factor.
1952 void
1953 max_load_factor(float __z)
1954 { _M_h.max_load_factor(__z); }
1957 * @brief May rehash the %unordered_multimap.
1958 * @param __n The new number of buckets.
1960 * Rehash will occur only if the new number of buckets respect the
1961 * %unordered_multimap maximum load factor.
1963 void
1964 rehash(size_type __n)
1965 { _M_h.rehash(__n); }
1968 * @brief Prepare the %unordered_multimap for a specified number of
1969 * elements.
1970 * @param __n Number of elements required.
1972 * Same as rehash(ceil(n / max_load_factor())).
1974 void
1975 reserve(size_type __n)
1976 { _M_h.reserve(__n); }
1978 template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
1979 typename _Alloc1>
1980 friend bool
1981 operator==(const unordered_multimap<_Key1, _Tp1,
1982 _Hash1, _Pred1, _Alloc1>&,
1983 const unordered_multimap<_Key1, _Tp1,
1984 _Hash1, _Pred1, _Alloc1>&);
1987 #if __cpp_deduction_guides >= 201606
1989 template<typename _InputIterator,
1990 typename _Hash = hash<__iter_key_t<_InputIterator>>,
1991 typename _Pred = equal_to<__iter_key_t<_InputIterator>>,
1992 typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1993 typename = _RequireInputIter<_InputIterator>,
1994 typename = _RequireAllocator<_Allocator>>
1995 unordered_multimap(_InputIterator, _InputIterator,
1996 unordered_multimap<int, int>::size_type = {},
1997 _Hash = _Hash(), _Pred = _Pred(),
1998 _Allocator = _Allocator())
1999 -> unordered_multimap<__iter_key_t<_InputIterator>,
2000 __iter_val_t<_InputIterator>, _Hash, _Pred,
2001 _Allocator>;
2003 template<typename _Key, typename _Tp, typename _Hash = hash<_Key>,
2004 typename _Pred = equal_to<_Key>,
2005 typename _Allocator = allocator<pair<const _Key, _Tp>>,
2006 typename = _RequireAllocator<_Allocator>>
2007 unordered_multimap(initializer_list<pair<_Key, _Tp>>,
2008 unordered_multimap<int, int>::size_type = {},
2009 _Hash = _Hash(), _Pred = _Pred(),
2010 _Allocator = _Allocator())
2011 -> unordered_multimap<_Key, _Tp, _Hash, _Pred, _Allocator>;
2013 template<typename _InputIterator, typename _Allocator,
2014 typename = _RequireInputIter<_InputIterator>,
2015 typename = _RequireAllocator<_Allocator>>
2016 unordered_multimap(_InputIterator, _InputIterator,
2017 unordered_multimap<int, int>::size_type, _Allocator)
2018 -> unordered_multimap<__iter_key_t<_InputIterator>,
2019 __iter_val_t<_InputIterator>,
2020 hash<__iter_key_t<_InputIterator>>,
2021 equal_to<__iter_key_t<_InputIterator>>, _Allocator>;
2023 template<typename _InputIterator, typename _Allocator,
2024 typename = _RequireInputIter<_InputIterator>,
2025 typename = _RequireAllocator<_Allocator>>
2026 unordered_multimap(_InputIterator, _InputIterator, _Allocator)
2027 -> unordered_multimap<__iter_key_t<_InputIterator>,
2028 __iter_val_t<_InputIterator>,
2029 hash<__iter_key_t<_InputIterator>>,
2030 equal_to<__iter_key_t<_InputIterator>>, _Allocator>;
2032 template<typename _InputIterator, typename _Hash, typename _Allocator,
2033 typename = _RequireInputIter<_InputIterator>,
2034 typename = _RequireAllocator<_Allocator>>
2035 unordered_multimap(_InputIterator, _InputIterator,
2036 unordered_multimap<int, int>::size_type, _Hash,
2037 _Allocator)
2038 -> unordered_multimap<__iter_key_t<_InputIterator>,
2039 __iter_val_t<_InputIterator>, _Hash,
2040 equal_to<__iter_key_t<_InputIterator>>, _Allocator>;
2042 template<typename _Key, typename _Tp, typename _Allocator,
2043 typename = _RequireAllocator<_Allocator>>
2044 unordered_multimap(initializer_list<pair<_Key, _Tp>>,
2045 unordered_multimap<int, int>::size_type,
2046 _Allocator)
2047 -> unordered_multimap<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;
2049 template<typename _Key, typename _Tp, typename _Allocator,
2050 typename = _RequireAllocator<_Allocator>>
2051 unordered_multimap(initializer_list<pair<_Key, _Tp>>, _Allocator)
2052 -> unordered_multimap<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;
2054 template<typename _Key, typename _Tp, typename _Hash, typename _Allocator,
2055 typename = _RequireAllocator<_Allocator>>
2056 unordered_multimap(initializer_list<pair<_Key, _Tp>>,
2057 unordered_multimap<int, int>::size_type,
2058 _Hash, _Allocator)
2059 -> unordered_multimap<_Key, _Tp, _Hash, equal_to<_Key>, _Allocator>;
2061 #endif
2063 template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
2064 inline void
2065 swap(unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
2066 unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
2067 noexcept(noexcept(__x.swap(__y)))
2068 { __x.swap(__y); }
2070 template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
2071 inline void
2072 swap(unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
2073 unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
2074 noexcept(noexcept(__x.swap(__y)))
2075 { __x.swap(__y); }
2077 template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
2078 inline bool
2079 operator==(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
2080 const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
2081 { return __x._M_h._M_equal(__y._M_h); }
2083 template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
2084 inline bool
2085 operator!=(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
2086 const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
2087 { return !(__x == __y); }
2089 template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
2090 inline bool
2091 operator==(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
2092 const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
2093 { return __x._M_h._M_equal(__y._M_h); }
2095 template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
2096 inline bool
2097 operator!=(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
2098 const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
2099 { return !(__x == __y); }
2101 _GLIBCXX_END_NAMESPACE_CONTAINER
2103 #if __cplusplus > 201402L
2104 // Allow std::unordered_map access to internals of compatible maps.
2105 template<typename _Key, typename _Val, typename _Hash1, typename _Eq1,
2106 typename _Alloc, typename _Hash2, typename _Eq2>
2107 struct _Hash_merge_helper<
2108 _GLIBCXX_STD_C::unordered_map<_Key, _Val, _Hash1, _Eq1, _Alloc>,
2109 _Hash2, _Eq2>
2111 private:
2112 template<typename... _Tp>
2113 using unordered_map = _GLIBCXX_STD_C::unordered_map<_Tp...>;
2114 template<typename... _Tp>
2115 using unordered_multimap = _GLIBCXX_STD_C::unordered_multimap<_Tp...>;
2117 friend unordered_map<_Key, _Val, _Hash1, _Eq1, _Alloc>;
2119 static auto&
2120 _S_get_table(unordered_map<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
2121 { return __map._M_h; }
2123 static auto&
2124 _S_get_table(unordered_multimap<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
2125 { return __map._M_h; }
2128 // Allow std::unordered_multimap access to internals of compatible maps.
2129 template<typename _Key, typename _Val, typename _Hash1, typename _Eq1,
2130 typename _Alloc, typename _Hash2, typename _Eq2>
2131 struct _Hash_merge_helper<
2132 _GLIBCXX_STD_C::unordered_multimap<_Key, _Val, _Hash1, _Eq1, _Alloc>,
2133 _Hash2, _Eq2>
2135 private:
2136 template<typename... _Tp>
2137 using unordered_map = _GLIBCXX_STD_C::unordered_map<_Tp...>;
2138 template<typename... _Tp>
2139 using unordered_multimap = _GLIBCXX_STD_C::unordered_multimap<_Tp...>;
2141 friend unordered_multimap<_Key, _Val, _Hash1, _Eq1, _Alloc>;
2143 static auto&
2144 _S_get_table(unordered_map<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
2145 { return __map._M_h; }
2147 static auto&
2148 _S_get_table(unordered_multimap<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
2149 { return __map._M_h; }
2151 #endif // C++17
2153 _GLIBCXX_END_NAMESPACE_VERSION
2154 } // namespace std
2156 #endif /* _UNORDERED_MAP_H */