re PR fortran/88048 (ICE in check_data_variable, at fortran/resolve.c:15491)
[official-gcc.git] / gcc / tree-vrp.c
blob15ac65b7dd435a714c6a3b8418a2c5e9749fa52a
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-dfa.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-ssa-loop.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "intl.h"
52 #include "cfgloop.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-ssa-propagate.h"
55 #include "tree-chrec.h"
56 #include "tree-ssa-threadupdate.h"
57 #include "tree-ssa-scopedtables.h"
58 #include "tree-ssa-threadedge.h"
59 #include "omp-general.h"
60 #include "target.h"
61 #include "case-cfn-macros.h"
62 #include "params.h"
63 #include "alloc-pool.h"
64 #include "domwalk.h"
65 #include "tree-cfgcleanup.h"
66 #include "stringpool.h"
67 #include "attribs.h"
68 #include "vr-values.h"
69 #include "builtins.h"
70 #include "wide-int-range.h"
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
76 void
77 value_range_base::set (enum value_range_kind kind, tree min, tree max)
79 m_kind = kind;
80 m_min = min;
81 m_max = max;
82 if (flag_checking)
83 check ();
86 void
87 value_range::set_equiv (bitmap equiv)
89 /* Since updating the equivalence set involves deep copying the
90 bitmaps, only do it if absolutely necessary.
92 All equivalence bitmaps are allocated from the same obstack. So
93 we can use the obstack associated with EQUIV to allocate vr->equiv. */
94 if (m_equiv == NULL
95 && equiv != NULL)
96 m_equiv = BITMAP_ALLOC (equiv->obstack);
98 if (equiv != m_equiv)
100 if (equiv && !bitmap_empty_p (equiv))
101 bitmap_copy (m_equiv, equiv);
102 else
103 bitmap_clear (m_equiv);
107 /* Initialize value_range. */
109 void
110 value_range::set (enum value_range_kind kind, tree min, tree max,
111 bitmap equiv)
113 value_range_base::set (kind, min, max);
114 set_equiv (equiv);
115 if (flag_checking)
116 check ();
119 value_range_base::value_range_base (value_range_kind kind, tree min, tree max)
121 set (kind, min, max);
124 value_range::value_range (value_range_kind kind, tree min, tree max,
125 bitmap equiv)
127 m_equiv = NULL;
128 set (kind, min, max, equiv);
131 value_range::value_range (const value_range_base &other)
133 m_equiv = NULL;
134 set (other.kind (), other.min(), other.max (), NULL);
137 /* Like set, but keep the equivalences in place. */
139 void
140 value_range::update (value_range_kind kind, tree min, tree max)
142 set (kind, min, max,
143 (kind != VR_UNDEFINED && kind != VR_VARYING) ? m_equiv : NULL);
146 /* Copy value_range in FROM into THIS while avoiding bitmap sharing.
148 Note: The code that avoids the bitmap sharing looks at the existing
149 this->m_equiv, so this function cannot be used to initalize an
150 object. Use the constructors for initialization. */
152 void
153 value_range::deep_copy (const value_range *from)
155 set (from->m_kind, from->min (), from->max (), from->m_equiv);
158 void
159 value_range::move (value_range *from)
161 set (from->m_kind, from->min (), from->max ());
162 m_equiv = from->m_equiv;
163 from->m_equiv = NULL;
166 /* Check the validity of the range. */
168 void
169 value_range_base::check ()
171 switch (m_kind)
173 case VR_RANGE:
174 case VR_ANTI_RANGE:
176 int cmp;
178 gcc_assert (m_min && m_max);
180 gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
182 /* Creating ~[-MIN, +MAX] is stupid because that would be
183 the empty set. */
184 if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
185 gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
187 cmp = compare_values (m_min, m_max);
188 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
189 break;
191 case VR_UNDEFINED:
192 case VR_VARYING:
193 gcc_assert (!min () && !max ());
194 break;
195 default:
196 gcc_unreachable ();
200 void
201 value_range::check ()
203 value_range_base::check ();
204 switch (m_kind)
206 case VR_UNDEFINED:
207 case VR_VARYING:
208 gcc_assert (!m_equiv || bitmap_empty_p (m_equiv));
209 default:;
213 /* Equality operator. We purposely do not overload ==, to avoid
214 confusion with the equality bitmap in the derived value_range
215 class. */
217 bool
218 value_range_base::equal_p (const value_range_base &other) const
220 return (m_kind == other.m_kind
221 && vrp_operand_equal_p (m_min, other.m_min)
222 && vrp_operand_equal_p (m_max, other.m_max));
225 /* Returns TRUE if THIS == OTHER. Ignores the equivalence bitmap if
226 IGNORE_EQUIVS is TRUE. */
228 bool
229 value_range::equal_p (const value_range &other, bool ignore_equivs) const
231 return (value_range_base::equal_p (other)
232 && (ignore_equivs
233 || vrp_bitmap_equal_p (m_equiv, other.m_equiv)));
236 /* Return TRUE if this is a symbolic range. */
238 bool
239 value_range_base::symbolic_p () const
241 return (!varying_p ()
242 && !undefined_p ()
243 && (!is_gimple_min_invariant (m_min)
244 || !is_gimple_min_invariant (m_max)));
247 /* NOTE: This is not the inverse of symbolic_p because the range
248 could also be varying or undefined. Ideally they should be inverse
249 of each other, with varying only applying to symbolics. Varying of
250 constants would be represented as [-MIN, +MAX]. */
252 bool
253 value_range_base::constant_p () const
255 return (!varying_p ()
256 && !undefined_p ()
257 && TREE_CODE (m_min) == INTEGER_CST
258 && TREE_CODE (m_max) == INTEGER_CST);
261 void
262 value_range_base::set_undefined ()
264 set (VR_UNDEFINED, NULL, NULL);
267 void
268 value_range::set_undefined ()
270 set (VR_UNDEFINED, NULL, NULL, NULL);
273 void
274 value_range_base::set_varying ()
276 set (VR_VARYING, NULL, NULL);
279 void
280 value_range::set_varying ()
282 set (VR_VARYING, NULL, NULL, NULL);
285 /* Return TRUE if it is possible that range contains VAL. */
287 bool
288 value_range_base::may_contain_p (tree val) const
290 if (varying_p ())
291 return true;
293 if (undefined_p ())
294 return true;
296 if (m_kind == VR_ANTI_RANGE)
298 int res = value_inside_range (val, min (), max ());
299 return res == 0 || res == -2;
301 return value_inside_range (val, min (), max ()) != 0;
304 void
305 value_range::equiv_clear ()
307 if (m_equiv)
308 bitmap_clear (m_equiv);
311 /* Add VAR and VAR's equivalence set (VAR_VR) to the equivalence
312 bitmap. If no equivalence table has been created, OBSTACK is the
313 obstack to use (NULL for the default obstack).
315 This is the central point where equivalence processing can be
316 turned on/off. */
318 void
319 value_range::equiv_add (const_tree var,
320 const value_range *var_vr,
321 bitmap_obstack *obstack)
323 if (!m_equiv)
324 m_equiv = BITMAP_ALLOC (obstack);
325 unsigned ver = SSA_NAME_VERSION (var);
326 bitmap_set_bit (m_equiv, ver);
327 if (var_vr && var_vr->m_equiv)
328 bitmap_ior_into (m_equiv, var_vr->m_equiv);
331 /* If range is a singleton, place it in RESULT and return TRUE.
332 Note: A singleton can be any gimple invariant, not just constants.
333 So, [&x, &x] counts as a singleton. */
335 bool
336 value_range_base::singleton_p (tree *result) const
338 if (m_kind == VR_RANGE
339 && vrp_operand_equal_p (min (), max ())
340 && is_gimple_min_invariant (min ()))
342 if (result)
343 *result = min ();
344 return true;
346 return false;
349 tree
350 value_range_base::type () const
352 /* Types are only valid for VR_RANGE and VR_ANTI_RANGE, which are
353 known to have non-zero min/max. */
354 gcc_assert (min ());
355 return TREE_TYPE (min ());
358 void
359 value_range_base::dump (FILE *file) const
361 if (undefined_p ())
362 fprintf (file, "UNDEFINED");
363 else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
365 tree ttype = type ();
367 print_generic_expr (file, ttype);
368 fprintf (file, " ");
370 fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
372 if (INTEGRAL_TYPE_P (ttype)
373 && !TYPE_UNSIGNED (ttype)
374 && vrp_val_is_min (min ())
375 && TYPE_PRECISION (ttype) != 1)
376 fprintf (file, "-INF");
377 else
378 print_generic_expr (file, min ());
380 fprintf (file, ", ");
382 if (INTEGRAL_TYPE_P (ttype)
383 && vrp_val_is_max (max ())
384 && TYPE_PRECISION (ttype) != 1)
385 fprintf (file, "+INF");
386 else
387 print_generic_expr (file, max ());
389 fprintf (file, "]");
391 else if (varying_p ())
392 fprintf (file, "VARYING");
393 else
394 gcc_unreachable ();
397 void
398 value_range::dump (FILE *file) const
400 value_range_base::dump (file);
401 if ((m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
402 && m_equiv)
404 bitmap_iterator bi;
405 unsigned i, c = 0;
407 fprintf (file, " EQUIVALENCES: { ");
409 EXECUTE_IF_SET_IN_BITMAP (m_equiv, 0, i, bi)
411 print_generic_expr (file, ssa_name (i));
412 fprintf (file, " ");
413 c++;
416 fprintf (file, "} (%u elements)", c);
420 void
421 dump_value_range (FILE *file, const value_range *vr)
423 if (!vr)
424 fprintf (file, "[]");
425 else
426 vr->dump (file);
429 void
430 dump_value_range (FILE *file, const value_range_base *vr)
432 if (!vr)
433 fprintf (file, "[]");
434 else
435 vr->dump (file);
438 DEBUG_FUNCTION void
439 debug (const value_range_base *vr)
441 dump_value_range (stderr, vr);
444 DEBUG_FUNCTION void
445 debug (const value_range_base &vr)
447 dump_value_range (stderr, &vr);
450 DEBUG_FUNCTION void
451 debug (const value_range *vr)
453 dump_value_range (stderr, vr);
456 DEBUG_FUNCTION void
457 debug (const value_range &vr)
459 dump_value_range (stderr, &vr);
462 /* Return true if the SSA name NAME is live on the edge E. */
464 static bool
465 live_on_edge (edge e, tree name)
467 return (live[e->dest->index]
468 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
471 /* Location information for ASSERT_EXPRs. Each instance of this
472 structure describes an ASSERT_EXPR for an SSA name. Since a single
473 SSA name may have more than one assertion associated with it, these
474 locations are kept in a linked list attached to the corresponding
475 SSA name. */
476 struct assert_locus
478 /* Basic block where the assertion would be inserted. */
479 basic_block bb;
481 /* Some assertions need to be inserted on an edge (e.g., assertions
482 generated by COND_EXPRs). In those cases, BB will be NULL. */
483 edge e;
485 /* Pointer to the statement that generated this assertion. */
486 gimple_stmt_iterator si;
488 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
489 enum tree_code comp_code;
491 /* Value being compared against. */
492 tree val;
494 /* Expression to compare. */
495 tree expr;
497 /* Next node in the linked list. */
498 assert_locus *next;
501 /* If bit I is present, it means that SSA name N_i has a list of
502 assertions that should be inserted in the IL. */
503 static bitmap need_assert_for;
505 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
506 holds a list of ASSERT_LOCUS_T nodes that describe where
507 ASSERT_EXPRs for SSA name N_I should be inserted. */
508 static assert_locus **asserts_for;
510 /* Return the maximum value for TYPE. */
512 tree
513 vrp_val_max (const_tree type)
515 if (!INTEGRAL_TYPE_P (type))
516 return NULL_TREE;
518 return TYPE_MAX_VALUE (type);
521 /* Return the minimum value for TYPE. */
523 tree
524 vrp_val_min (const_tree type)
526 if (!INTEGRAL_TYPE_P (type))
527 return NULL_TREE;
529 return TYPE_MIN_VALUE (type);
532 /* Return whether VAL is equal to the maximum value of its type.
533 We can't do a simple equality comparison with TYPE_MAX_VALUE because
534 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
535 is not == to the integer constant with the same value in the type. */
537 bool
538 vrp_val_is_max (const_tree val)
540 tree type_max = vrp_val_max (TREE_TYPE (val));
541 return (val == type_max
542 || (type_max != NULL_TREE
543 && operand_equal_p (val, type_max, 0)));
546 /* Return whether VAL is equal to the minimum value of its type. */
548 bool
549 vrp_val_is_min (const_tree val)
551 tree type_min = vrp_val_min (TREE_TYPE (val));
552 return (val == type_min
553 || (type_min != NULL_TREE
554 && operand_equal_p (val, type_min, 0)));
557 /* VR_TYPE describes a range with mininum value *MIN and maximum
558 value *MAX. Restrict the range to the set of values that have
559 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
560 return the new range type.
562 SGN gives the sign of the values described by the range. */
564 enum value_range_kind
565 intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
566 wide_int *min, wide_int *max,
567 const wide_int &nonzero_bits,
568 signop sgn)
570 if (vr_type == VR_ANTI_RANGE)
572 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
573 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
574 to create an inclusive upper bound for A and an inclusive lower
575 bound for B. */
576 wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
577 wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);
579 /* If the calculation of A_MAX wrapped, A is effectively empty
580 and A_MAX is the highest value that satisfies NONZERO_BITS.
581 Likewise if the calculation of B_MIN wrapped, B is effectively
582 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
583 bool a_empty = wi::ge_p (a_max, *min, sgn);
584 bool b_empty = wi::le_p (b_min, *max, sgn);
586 /* If both A and B are empty, there are no valid values. */
587 if (a_empty && b_empty)
588 return VR_UNDEFINED;
590 /* If exactly one of A or B is empty, return a VR_RANGE for the
591 other one. */
592 if (a_empty || b_empty)
594 *min = b_min;
595 *max = a_max;
596 gcc_checking_assert (wi::le_p (*min, *max, sgn));
597 return VR_RANGE;
600 /* Update the VR_ANTI_RANGE bounds. */
601 *min = a_max + 1;
602 *max = b_min - 1;
603 gcc_checking_assert (wi::le_p (*min, *max, sgn));
605 /* Now check whether the excluded range includes any values that
606 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
607 if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
609 unsigned int precision = min->get_precision ();
610 *min = wi::min_value (precision, sgn);
611 *max = wi::max_value (precision, sgn);
612 vr_type = VR_RANGE;
615 if (vr_type == VR_RANGE)
617 *max = wi::round_down_for_mask (*max, nonzero_bits);
619 /* Check that the range contains at least one valid value. */
620 if (wi::gt_p (*min, *max, sgn))
621 return VR_UNDEFINED;
623 *min = wi::round_up_for_mask (*min, nonzero_bits);
624 gcc_checking_assert (wi::le_p (*min, *max, sgn));
626 return vr_type;
630 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
631 This means adjusting VRTYPE, MIN and MAX representing the case of a
632 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
633 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
634 In corner cases where MAX+1 or MIN-1 wraps this will fall back
635 to varying.
636 This routine exists to ease canonicalization in the case where we
637 extract ranges from var + CST op limit. */
639 void
640 value_range_base::set_and_canonicalize (enum value_range_kind kind,
641 tree min, tree max)
643 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
644 if (kind == VR_UNDEFINED)
646 set_undefined ();
647 return;
649 else if (kind == VR_VARYING)
651 set_varying ();
652 return;
655 /* Nothing to canonicalize for symbolic ranges. */
656 if (TREE_CODE (min) != INTEGER_CST
657 || TREE_CODE (max) != INTEGER_CST)
659 set (kind, min, max);
660 return;
663 /* Wrong order for min and max, to swap them and the VR type we need
664 to adjust them. */
665 if (tree_int_cst_lt (max, min))
667 tree one, tmp;
669 /* For one bit precision if max < min, then the swapped
670 range covers all values, so for VR_RANGE it is varying and
671 for VR_ANTI_RANGE empty range, so drop to varying as well. */
672 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
674 set_varying ();
675 return;
678 one = build_int_cst (TREE_TYPE (min), 1);
679 tmp = int_const_binop (PLUS_EXPR, max, one);
680 max = int_const_binop (MINUS_EXPR, min, one);
681 min = tmp;
683 /* There's one corner case, if we had [C+1, C] before we now have
684 that again. But this represents an empty value range, so drop
685 to varying in this case. */
686 if (tree_int_cst_lt (max, min))
688 set_varying ();
689 return;
692 kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
695 /* Anti-ranges that can be represented as ranges should be so. */
696 if (kind == VR_ANTI_RANGE)
698 /* For -fstrict-enums we may receive out-of-range ranges so consider
699 values < -INF and values > INF as -INF/INF as well. */
700 tree type = TREE_TYPE (min);
701 bool is_min = (INTEGRAL_TYPE_P (type)
702 && tree_int_cst_compare (min, TYPE_MIN_VALUE (type)) <= 0);
703 bool is_max = (INTEGRAL_TYPE_P (type)
704 && tree_int_cst_compare (max, TYPE_MAX_VALUE (type)) >= 0);
706 if (is_min && is_max)
708 /* We cannot deal with empty ranges, drop to varying.
709 ??? This could be VR_UNDEFINED instead. */
710 set_varying ();
711 return;
713 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
714 && (is_min || is_max))
716 /* Non-empty boolean ranges can always be represented
717 as a singleton range. */
718 if (is_min)
719 min = max = vrp_val_max (TREE_TYPE (min));
720 else
721 min = max = vrp_val_min (TREE_TYPE (min));
722 kind = VR_RANGE;
724 else if (is_min
725 /* As a special exception preserve non-null ranges. */
726 && !(TYPE_UNSIGNED (TREE_TYPE (min))
727 && integer_zerop (max)))
729 tree one = build_int_cst (TREE_TYPE (max), 1);
730 min = int_const_binop (PLUS_EXPR, max, one);
731 max = vrp_val_max (TREE_TYPE (max));
732 kind = VR_RANGE;
734 else if (is_max)
736 tree one = build_int_cst (TREE_TYPE (min), 1);
737 max = int_const_binop (MINUS_EXPR, min, one);
738 min = vrp_val_min (TREE_TYPE (min));
739 kind = VR_RANGE;
743 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
744 to make sure VRP iteration terminates, otherwise we can get into
745 oscillations. */
747 set (kind, min, max);
750 void
751 value_range::set_and_canonicalize (enum value_range_kind kind,
752 tree min, tree max, bitmap equiv)
754 value_range_base::set_and_canonicalize (kind, min, max);
755 if (this->kind () == VR_RANGE || this->kind () == VR_ANTI_RANGE)
756 set_equiv (equiv);
757 else
758 equiv_clear ();
761 void
762 value_range_base::set (tree val)
764 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
765 if (TREE_OVERFLOW_P (val))
766 val = drop_tree_overflow (val);
767 set (VR_RANGE, val, val);
770 void
771 value_range::set (tree val)
773 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
774 if (TREE_OVERFLOW_P (val))
775 val = drop_tree_overflow (val);
776 set (VR_RANGE, val, val, NULL);
779 /* Set value range VR to a non-NULL range of type TYPE. */
781 void
782 value_range_base::set_nonnull (tree type)
784 tree zero = build_int_cst (type, 0);
785 set (VR_ANTI_RANGE, zero, zero);
788 void
789 value_range::set_nonnull (tree type)
791 tree zero = build_int_cst (type, 0);
792 set (VR_ANTI_RANGE, zero, zero, NULL);
795 /* Set value range VR to a NULL range of type TYPE. */
797 void
798 value_range_base::set_null (tree type)
800 set (build_int_cst (type, 0));
803 void
804 value_range::set_null (tree type)
806 set (build_int_cst (type, 0));
809 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
811 bool
812 vrp_operand_equal_p (const_tree val1, const_tree val2)
814 if (val1 == val2)
815 return true;
816 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
817 return false;
818 return true;
821 /* Return true, if the bitmaps B1 and B2 are equal. */
823 bool
824 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
826 return (b1 == b2
827 || ((!b1 || bitmap_empty_p (b1))
828 && (!b2 || bitmap_empty_p (b2)))
829 || (b1 && b2
830 && bitmap_equal_p (b1, b2)));
833 /* Return true if VR is [0, 0]. */
835 static inline bool
836 range_is_null (const value_range_base *vr)
838 return vr->zero_p ();
841 static inline bool
842 range_is_nonnull (const value_range_base *vr)
844 return (vr->kind () == VR_ANTI_RANGE
845 && vr->min () == vr->max ()
846 && integer_zerop (vr->min ()));
849 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
850 a singleton. */
852 bool
853 range_int_cst_p (const value_range_base *vr)
855 return (vr->kind () == VR_RANGE
856 && TREE_CODE (vr->min ()) == INTEGER_CST
857 && TREE_CODE (vr->max ()) == INTEGER_CST);
860 /* Return true if VR is a INTEGER_CST singleton. */
862 bool
863 range_int_cst_singleton_p (const value_range_base *vr)
865 return (range_int_cst_p (vr)
866 && tree_int_cst_equal (vr->min (), vr->max ()));
869 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
870 otherwise. We only handle additive operations and set NEG to true if the
871 symbol is negated and INV to the invariant part, if any. */
873 tree
874 get_single_symbol (tree t, bool *neg, tree *inv)
876 bool neg_;
877 tree inv_;
879 *inv = NULL_TREE;
880 *neg = false;
882 if (TREE_CODE (t) == PLUS_EXPR
883 || TREE_CODE (t) == POINTER_PLUS_EXPR
884 || TREE_CODE (t) == MINUS_EXPR)
886 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
888 neg_ = (TREE_CODE (t) == MINUS_EXPR);
889 inv_ = TREE_OPERAND (t, 0);
890 t = TREE_OPERAND (t, 1);
892 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
894 neg_ = false;
895 inv_ = TREE_OPERAND (t, 1);
896 t = TREE_OPERAND (t, 0);
898 else
899 return NULL_TREE;
901 else
903 neg_ = false;
904 inv_ = NULL_TREE;
907 if (TREE_CODE (t) == NEGATE_EXPR)
909 t = TREE_OPERAND (t, 0);
910 neg_ = !neg_;
913 if (TREE_CODE (t) != SSA_NAME)
914 return NULL_TREE;
916 if (inv_ && TREE_OVERFLOW_P (inv_))
917 inv_ = drop_tree_overflow (inv_);
919 *neg = neg_;
920 *inv = inv_;
921 return t;
924 /* The reverse operation: build a symbolic expression with TYPE
925 from symbol SYM, negated according to NEG, and invariant INV. */
927 static tree
928 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
930 const bool pointer_p = POINTER_TYPE_P (type);
931 tree t = sym;
933 if (neg)
934 t = build1 (NEGATE_EXPR, type, t);
936 if (integer_zerop (inv))
937 return t;
939 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
942 /* Return
943 1 if VAL < VAL2
944 0 if !(VAL < VAL2)
945 -2 if those are incomparable. */
947 operand_less_p (tree val, tree val2)
949 /* LT is folded faster than GE and others. Inline the common case. */
950 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
951 return tree_int_cst_lt (val, val2);
952 else
954 tree tcmp;
956 fold_defer_overflow_warnings ();
958 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
960 fold_undefer_and_ignore_overflow_warnings ();
962 if (!tcmp
963 || TREE_CODE (tcmp) != INTEGER_CST)
964 return -2;
966 if (!integer_zerop (tcmp))
967 return 1;
970 return 0;
973 /* Compare two values VAL1 and VAL2. Return
975 -2 if VAL1 and VAL2 cannot be compared at compile-time,
976 -1 if VAL1 < VAL2,
977 0 if VAL1 == VAL2,
978 +1 if VAL1 > VAL2, and
979 +2 if VAL1 != VAL2
981 This is similar to tree_int_cst_compare but supports pointer values
982 and values that cannot be compared at compile time.
984 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
985 true if the return value is only valid if we assume that signed
986 overflow is undefined. */
989 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
991 if (val1 == val2)
992 return 0;
994 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
995 both integers. */
996 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
997 == POINTER_TYPE_P (TREE_TYPE (val2)));
999 /* Convert the two values into the same type. This is needed because
1000 sizetype causes sign extension even for unsigned types. */
1001 val2 = fold_convert (TREE_TYPE (val1), val2);
1002 STRIP_USELESS_TYPE_CONVERSION (val2);
1004 const bool overflow_undefined
1005 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1006 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1007 tree inv1, inv2;
1008 bool neg1, neg2;
1009 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1010 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1012 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1013 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1014 if (sym1 && sym2)
1016 /* Both values must use the same name with the same sign. */
1017 if (sym1 != sym2 || neg1 != neg2)
1018 return -2;
1020 /* [-]NAME + CST == [-]NAME + CST. */
1021 if (inv1 == inv2)
1022 return 0;
1024 /* If overflow is defined we cannot simplify more. */
1025 if (!overflow_undefined)
1026 return -2;
1028 if (strict_overflow_p != NULL
1029 /* Symbolic range building sets TREE_NO_WARNING to declare
1030 that overflow doesn't happen. */
1031 && (!inv1 || !TREE_NO_WARNING (val1))
1032 && (!inv2 || !TREE_NO_WARNING (val2)))
1033 *strict_overflow_p = true;
1035 if (!inv1)
1036 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1037 if (!inv2)
1038 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1040 return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
1041 TYPE_SIGN (TREE_TYPE (val1)));
1044 const bool cst1 = is_gimple_min_invariant (val1);
1045 const bool cst2 = is_gimple_min_invariant (val2);
1047 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1048 it might be possible to say something depending on the constants. */
1049 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1051 if (!overflow_undefined)
1052 return -2;
1054 if (strict_overflow_p != NULL
1055 /* Symbolic range building sets TREE_NO_WARNING to declare
1056 that overflow doesn't happen. */
1057 && (!sym1 || !TREE_NO_WARNING (val1))
1058 && (!sym2 || !TREE_NO_WARNING (val2)))
1059 *strict_overflow_p = true;
1061 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1062 tree cst = cst1 ? val1 : val2;
1063 tree inv = cst1 ? inv2 : inv1;
1065 /* Compute the difference between the constants. If it overflows or
1066 underflows, this means that we can trivially compare the NAME with
1067 it and, consequently, the two values with each other. */
1068 wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
1069 if (wi::cmp (0, wi::to_wide (inv), sgn)
1070 != wi::cmp (diff, wi::to_wide (cst), sgn))
1072 const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
1073 return cst1 ? res : -res;
1076 return -2;
1079 /* We cannot say anything more for non-constants. */
1080 if (!cst1 || !cst2)
1081 return -2;
1083 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1085 /* We cannot compare overflowed values. */
1086 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1087 return -2;
1089 if (TREE_CODE (val1) == INTEGER_CST
1090 && TREE_CODE (val2) == INTEGER_CST)
1091 return tree_int_cst_compare (val1, val2);
1093 if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
1095 if (known_eq (wi::to_poly_widest (val1),
1096 wi::to_poly_widest (val2)))
1097 return 0;
1098 if (known_lt (wi::to_poly_widest (val1),
1099 wi::to_poly_widest (val2)))
1100 return -1;
1101 if (known_gt (wi::to_poly_widest (val1),
1102 wi::to_poly_widest (val2)))
1103 return 1;
1106 return -2;
1108 else
1110 tree t;
1112 /* First see if VAL1 and VAL2 are not the same. */
1113 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1114 return 0;
1116 /* If VAL1 is a lower address than VAL2, return -1. */
1117 if (operand_less_p (val1, val2) == 1)
1118 return -1;
1120 /* If VAL1 is a higher address than VAL2, return +1. */
1121 if (operand_less_p (val2, val1) == 1)
1122 return 1;
1124 /* If VAL1 is different than VAL2, return +2.
1125 For integer constants we either have already returned -1 or 1
1126 or they are equivalent. We still might succeed in proving
1127 something about non-trivial operands. */
1128 if (TREE_CODE (val1) != INTEGER_CST
1129 || TREE_CODE (val2) != INTEGER_CST)
1131 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1132 if (t && integer_onep (t))
1133 return 2;
1136 return -2;
1140 /* Compare values like compare_values_warnv. */
1143 compare_values (tree val1, tree val2)
1145 bool sop;
1146 return compare_values_warnv (val1, val2, &sop);
1150 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1151 0 if VAL is not inside [MIN, MAX],
1152 -2 if we cannot tell either way.
1154 Benchmark compile/20001226-1.c compilation time after changing this
1155 function. */
1158 value_inside_range (tree val, tree min, tree max)
1160 int cmp1, cmp2;
1162 cmp1 = operand_less_p (val, min);
1163 if (cmp1 == -2)
1164 return -2;
1165 if (cmp1 == 1)
1166 return 0;
1168 cmp2 = operand_less_p (max, val);
1169 if (cmp2 == -2)
1170 return -2;
1172 return !cmp2;
1176 /* Return TRUE if *VR includes the value zero. */
1178 bool
1179 range_includes_zero_p (const value_range_base *vr)
1181 if (vr->varying_p () || vr->undefined_p ())
1182 return true;
1183 tree zero = build_int_cst (vr->type (), 0);
1184 return vr->may_contain_p (zero);
1187 /* If *VR has a value range that is a single constant value return that,
1188 otherwise return NULL_TREE.
1190 ?? This actually returns TRUE for [&x, &x], so perhaps "constant"
1191 is not the best name. */
1193 tree
1194 value_range_constant_singleton (const value_range_base *vr)
1196 tree result = NULL;
1197 if (vr->singleton_p (&result))
1198 return result;
1199 return NULL;
1202 /* Value range wrapper for wide_int_range_set_zero_nonzero_bits.
1204 Compute MAY_BE_NONZERO and MUST_BE_NONZERO bit masks for range in VR.
1206 Return TRUE if VR was a constant range and we were able to compute
1207 the bit masks. */
1209 bool
1210 vrp_set_zero_nonzero_bits (const tree expr_type,
1211 const value_range_base *vr,
1212 wide_int *may_be_nonzero,
1213 wide_int *must_be_nonzero)
1215 if (!range_int_cst_p (vr))
1217 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1218 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1219 return false;
1221 wide_int_range_set_zero_nonzero_bits (TYPE_SIGN (expr_type),
1222 wi::to_wide (vr->min ()),
1223 wi::to_wide (vr->max ()),
1224 *may_be_nonzero, *must_be_nonzero);
1225 return true;
1228 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1229 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1230 false otherwise. If *AR can be represented with a single range
1231 *VR1 will be VR_UNDEFINED. */
1233 static bool
1234 ranges_from_anti_range (const value_range_base *ar,
1235 value_range_base *vr0, value_range_base *vr1)
1237 tree type = ar->type ();
1239 vr0->set_undefined ();
1240 vr1->set_undefined ();
1242 /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
1243 [A+1, +INF]. Not sure if this helps in practice, though. */
1245 if (ar->kind () != VR_ANTI_RANGE
1246 || TREE_CODE (ar->min ()) != INTEGER_CST
1247 || TREE_CODE (ar->max ()) != INTEGER_CST
1248 || !vrp_val_min (type)
1249 || !vrp_val_max (type))
1250 return false;
1252 if (tree_int_cst_lt (vrp_val_min (type), ar->min ()))
1253 vr0->set (VR_RANGE,
1254 vrp_val_min (type),
1255 wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
1256 if (tree_int_cst_lt (ar->max (), vrp_val_max (type)))
1257 vr1->set (VR_RANGE,
1258 wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
1259 vrp_val_max (type));
1260 if (vr0->undefined_p ())
1262 *vr0 = *vr1;
1263 vr1->set_undefined ();
1266 return !vr0->undefined_p ();
1269 /* Extract the components of a value range into a pair of wide ints in
1270 [WMIN, WMAX].
1272 If the value range is anything but a VR_*RANGE of constants, the
1273 resulting wide ints are set to [-MIN, +MAX] for the type. */
1275 static void inline
1276 extract_range_into_wide_ints (const value_range_base *vr,
1277 signop sign, unsigned prec,
1278 wide_int &wmin, wide_int &wmax)
1280 gcc_assert (vr->kind () != VR_ANTI_RANGE || vr->symbolic_p ());
1281 if (range_int_cst_p (vr))
1283 wmin = wi::to_wide (vr->min ());
1284 wmax = wi::to_wide (vr->max ());
1286 else
1288 wmin = wi::min_value (prec, sign);
1289 wmax = wi::max_value (prec, sign);
1293 /* Value range wrapper for wide_int_range_multiplicative_op:
1295 *VR = *VR0 .CODE. *VR1. */
1297 static void
1298 extract_range_from_multiplicative_op (value_range_base *vr,
1299 enum tree_code code,
1300 const value_range_base *vr0,
1301 const value_range_base *vr1)
1303 gcc_assert (code == MULT_EXPR
1304 || code == TRUNC_DIV_EXPR
1305 || code == FLOOR_DIV_EXPR
1306 || code == CEIL_DIV_EXPR
1307 || code == EXACT_DIV_EXPR
1308 || code == ROUND_DIV_EXPR
1309 || code == RSHIFT_EXPR
1310 || code == LSHIFT_EXPR);
1311 gcc_assert (vr0->kind () == VR_RANGE
1312 && vr0->kind () == vr1->kind ());
1314 tree type = vr0->type ();
1315 wide_int res_lb, res_ub;
1316 wide_int vr0_lb = wi::to_wide (vr0->min ());
1317 wide_int vr0_ub = wi::to_wide (vr0->max ());
1318 wide_int vr1_lb = wi::to_wide (vr1->min ());
1319 wide_int vr1_ub = wi::to_wide (vr1->max ());
1320 bool overflow_undefined = TYPE_OVERFLOW_UNDEFINED (type);
1321 unsigned prec = TYPE_PRECISION (type);
1323 if (wide_int_range_multiplicative_op (res_lb, res_ub,
1324 code, TYPE_SIGN (type), prec,
1325 vr0_lb, vr0_ub, vr1_lb, vr1_ub,
1326 overflow_undefined))
1327 vr->set_and_canonicalize (VR_RANGE,
1328 wide_int_to_tree (type, res_lb),
1329 wide_int_to_tree (type, res_ub));
1330 else
1331 vr->set_varying ();
1334 /* If BOUND will include a symbolic bound, adjust it accordingly,
1335 otherwise leave it as is.
1337 CODE is the original operation that combined the bounds (PLUS_EXPR
1338 or MINUS_EXPR).
1340 TYPE is the type of the original operation.
1342 SYM_OPn is the symbolic for OPn if it has a symbolic.
1344 NEG_OPn is TRUE if the OPn was negated. */
1346 static void
1347 adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
1348 tree sym_op0, tree sym_op1,
1349 bool neg_op0, bool neg_op1)
1351 bool minus_p = (code == MINUS_EXPR);
1352 /* If the result bound is constant, we're done; otherwise, build the
1353 symbolic lower bound. */
1354 if (sym_op0 == sym_op1)
1356 else if (sym_op0)
1357 bound = build_symbolic_expr (type, sym_op0,
1358 neg_op0, bound);
1359 else if (sym_op1)
1361 /* We may not negate if that might introduce
1362 undefined overflow. */
1363 if (!minus_p
1364 || neg_op1
1365 || TYPE_OVERFLOW_WRAPS (type))
1366 bound = build_symbolic_expr (type, sym_op1,
1367 neg_op1 ^ minus_p, bound);
1368 else
1369 bound = NULL_TREE;
1373 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
1374 int bound according to CODE. CODE is the operation combining the
1375 bound (either a PLUS_EXPR or a MINUS_EXPR).
1377 TYPE is the type of the combine operation.
1379 WI is the wide int to store the result.
1381 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
1382 if over/underflow occurred. */
1384 static void
1385 combine_bound (enum tree_code code, wide_int &wi, wi::overflow_type &ovf,
1386 tree type, tree op0, tree op1)
1388 bool minus_p = (code == MINUS_EXPR);
1389 const signop sgn = TYPE_SIGN (type);
1390 const unsigned int prec = TYPE_PRECISION (type);
1392 /* Combine the bounds, if any. */
1393 if (op0 && op1)
1395 if (minus_p)
1396 wi = wi::sub (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1397 else
1398 wi = wi::add (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1400 else if (op0)
1401 wi = wi::to_wide (op0);
1402 else if (op1)
1404 if (minus_p)
1405 wi = wi::neg (wi::to_wide (op1), &ovf);
1406 else
1407 wi = wi::to_wide (op1);
1409 else
1410 wi = wi::shwi (0, prec);
1413 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
1414 put the result in VR.
1416 TYPE is the type of the range.
1418 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
1419 occurred while originally calculating WMIN or WMAX. -1 indicates
1420 underflow. +1 indicates overflow. 0 indicates neither. */
1422 static void
1423 set_value_range_with_overflow (value_range_kind &kind, tree &min, tree &max,
1424 tree type,
1425 const wide_int &wmin, const wide_int &wmax,
1426 wi::overflow_type min_ovf,
1427 wi::overflow_type max_ovf)
1429 const signop sgn = TYPE_SIGN (type);
1430 const unsigned int prec = TYPE_PRECISION (type);
1432 /* For one bit precision if max < min, then the swapped
1433 range covers all values. */
1434 if (prec == 1 && wi::lt_p (wmax, wmin, sgn))
1436 kind = VR_VARYING;
1437 return;
1440 if (TYPE_OVERFLOW_WRAPS (type))
1442 /* If overflow wraps, truncate the values and adjust the
1443 range kind and bounds appropriately. */
1444 wide_int tmin = wide_int::from (wmin, prec, sgn);
1445 wide_int tmax = wide_int::from (wmax, prec, sgn);
1446 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
1448 /* If the limits are swapped, we wrapped around and cover
1449 the entire range. We have a similar check at the end of
1450 extract_range_from_binary_expr. */
1451 if (wi::gt_p (tmin, tmax, sgn))
1452 kind = VR_VARYING;
1453 else
1455 kind = VR_RANGE;
1456 /* No overflow or both overflow or underflow. The
1457 range kind stays VR_RANGE. */
1458 min = wide_int_to_tree (type, tmin);
1459 max = wide_int_to_tree (type, tmax);
1461 return;
1463 else if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
1464 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
1466 /* Min underflow or max overflow. The range kind
1467 changes to VR_ANTI_RANGE. */
1468 bool covers = false;
1469 wide_int tem = tmin;
1470 tmin = tmax + 1;
1471 if (wi::cmp (tmin, tmax, sgn) < 0)
1472 covers = true;
1473 tmax = tem - 1;
1474 if (wi::cmp (tmax, tem, sgn) > 0)
1475 covers = true;
1476 /* If the anti-range would cover nothing, drop to varying.
1477 Likewise if the anti-range bounds are outside of the
1478 types values. */
1479 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
1481 kind = VR_VARYING;
1482 return;
1484 kind = VR_ANTI_RANGE;
1485 min = wide_int_to_tree (type, tmin);
1486 max = wide_int_to_tree (type, tmax);
1487 return;
1489 else
1491 /* Other underflow and/or overflow, drop to VR_VARYING. */
1492 kind = VR_VARYING;
1493 return;
1496 else
1498 /* If overflow does not wrap, saturate to the types min/max
1499 value. */
1500 wide_int type_min = wi::min_value (prec, sgn);
1501 wide_int type_max = wi::max_value (prec, sgn);
1502 kind = VR_RANGE;
1503 if (min_ovf == wi::OVF_UNDERFLOW)
1504 min = wide_int_to_tree (type, type_min);
1505 else if (min_ovf == wi::OVF_OVERFLOW)
1506 min = wide_int_to_tree (type, type_max);
1507 else
1508 min = wide_int_to_tree (type, wmin);
1510 if (max_ovf == wi::OVF_UNDERFLOW)
1511 max = wide_int_to_tree (type, type_min);
1512 else if (max_ovf == wi::OVF_OVERFLOW)
1513 max = wide_int_to_tree (type, type_max);
1514 else
1515 max = wide_int_to_tree (type, wmax);
1519 /* Extract range information from a binary operation CODE based on
1520 the ranges of each of its operands *VR0 and *VR1 with resulting
1521 type EXPR_TYPE. The resulting range is stored in *VR. */
1523 void
1524 extract_range_from_binary_expr (value_range_base *vr,
1525 enum tree_code code, tree expr_type,
1526 const value_range_base *vr0_,
1527 const value_range_base *vr1_)
1529 signop sign = TYPE_SIGN (expr_type);
1530 unsigned int prec = TYPE_PRECISION (expr_type);
1531 value_range_base vr0 = *vr0_, vr1 = *vr1_;
1532 value_range_base vrtem0, vrtem1;
1533 enum value_range_kind type;
1534 tree min = NULL_TREE, max = NULL_TREE;
1535 int cmp;
1537 if (!INTEGRAL_TYPE_P (expr_type)
1538 && !POINTER_TYPE_P (expr_type))
1540 vr->set_varying ();
1541 return;
1544 /* Not all binary expressions can be applied to ranges in a
1545 meaningful way. Handle only arithmetic operations. */
1546 if (code != PLUS_EXPR
1547 && code != MINUS_EXPR
1548 && code != POINTER_PLUS_EXPR
1549 && code != MULT_EXPR
1550 && code != TRUNC_DIV_EXPR
1551 && code != FLOOR_DIV_EXPR
1552 && code != CEIL_DIV_EXPR
1553 && code != EXACT_DIV_EXPR
1554 && code != ROUND_DIV_EXPR
1555 && code != TRUNC_MOD_EXPR
1556 && code != RSHIFT_EXPR
1557 && code != LSHIFT_EXPR
1558 && code != MIN_EXPR
1559 && code != MAX_EXPR
1560 && code != BIT_AND_EXPR
1561 && code != BIT_IOR_EXPR
1562 && code != BIT_XOR_EXPR)
1564 vr->set_varying ();
1565 return;
1568 /* If both ranges are UNDEFINED, so is the result. */
1569 if (vr0.undefined_p () && vr1.undefined_p ())
1571 vr->set_undefined ();
1572 return;
1574 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1575 code. At some point we may want to special-case operations that
1576 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1577 operand. */
1578 else if (vr0.undefined_p ())
1579 vr0.set_varying ();
1580 else if (vr1.undefined_p ())
1581 vr1.set_varying ();
1583 /* We get imprecise results from ranges_from_anti_range when
1584 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
1585 range, but then we also need to hack up vrp_union. It's just
1586 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
1587 if (code == EXACT_DIV_EXPR && range_is_nonnull (&vr0))
1589 vr->set_nonnull (expr_type);
1590 return;
1593 /* Now canonicalize anti-ranges to ranges when they are not symbolic
1594 and express ~[] op X as ([]' op X) U ([]'' op X). */
1595 if (vr0.kind () == VR_ANTI_RANGE
1596 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
1598 extract_range_from_binary_expr (vr, code, expr_type, &vrtem0, vr1_);
1599 if (!vrtem1.undefined_p ())
1601 value_range_base vrres;
1602 extract_range_from_binary_expr (&vrres, code, expr_type,
1603 &vrtem1, vr1_);
1604 vr->union_ (&vrres);
1606 return;
1608 /* Likewise for X op ~[]. */
1609 if (vr1.kind () == VR_ANTI_RANGE
1610 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
1612 extract_range_from_binary_expr (vr, code, expr_type, vr0_, &vrtem0);
1613 if (!vrtem1.undefined_p ())
1615 value_range_base vrres;
1616 extract_range_from_binary_expr (&vrres, code, expr_type,
1617 vr0_, &vrtem1);
1618 vr->union_ (&vrres);
1620 return;
1623 /* The type of the resulting value range defaults to VR0.TYPE. */
1624 type = vr0.kind ();
1626 /* Refuse to operate on VARYING ranges, ranges of different kinds
1627 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
1628 because we may be able to derive a useful range even if one of
1629 the operands is VR_VARYING or symbolic range. Similarly for
1630 divisions, MIN/MAX and PLUS/MINUS.
1632 TODO, we may be able to derive anti-ranges in some cases. */
1633 if (code != BIT_AND_EXPR
1634 && code != BIT_IOR_EXPR
1635 && code != TRUNC_DIV_EXPR
1636 && code != FLOOR_DIV_EXPR
1637 && code != CEIL_DIV_EXPR
1638 && code != EXACT_DIV_EXPR
1639 && code != ROUND_DIV_EXPR
1640 && code != TRUNC_MOD_EXPR
1641 && code != MIN_EXPR
1642 && code != MAX_EXPR
1643 && code != PLUS_EXPR
1644 && code != MINUS_EXPR
1645 && code != RSHIFT_EXPR
1646 && code != POINTER_PLUS_EXPR
1647 && (vr0.varying_p ()
1648 || vr1.varying_p ()
1649 || vr0.kind () != vr1.kind ()
1650 || vr0.symbolic_p ()
1651 || vr1.symbolic_p ()))
1653 vr->set_varying ();
1654 return;
1657 /* Now evaluate the expression to determine the new range. */
1658 if (POINTER_TYPE_P (expr_type))
1660 if (code == MIN_EXPR || code == MAX_EXPR)
1662 /* For MIN/MAX expressions with pointers, we only care about
1663 nullness, if both are non null, then the result is nonnull.
1664 If both are null, then the result is null. Otherwise they
1665 are varying. */
1666 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1667 vr->set_nonnull (expr_type);
1668 else if (range_is_null (&vr0) && range_is_null (&vr1))
1669 vr->set_null (expr_type);
1670 else
1671 vr->set_varying ();
1673 else if (code == POINTER_PLUS_EXPR)
1675 /* For pointer types, we are really only interested in asserting
1676 whether the expression evaluates to non-NULL.
1677 With -fno-delete-null-pointer-checks we need to be more
1678 conservative. As some object might reside at address 0,
1679 then some offset could be added to it and the same offset
1680 subtracted again and the result would be NULL.
1681 E.g.
1682 static int a[12]; where &a[0] is NULL and
1683 ptr = &a[6];
1684 ptr -= 6;
1685 ptr will be NULL here, even when there is POINTER_PLUS_EXPR
1686 where the first range doesn't include zero and the second one
1687 doesn't either. As the second operand is sizetype (unsigned),
1688 consider all ranges where the MSB could be set as possible
1689 subtractions where the result might be NULL. */
1690 if ((!range_includes_zero_p (&vr0)
1691 || !range_includes_zero_p (&vr1))
1692 && !TYPE_OVERFLOW_WRAPS (expr_type)
1693 && (flag_delete_null_pointer_checks
1694 || (range_int_cst_p (&vr1)
1695 && !tree_int_cst_sign_bit (vr1.max ()))))
1696 vr->set_nonnull (expr_type);
1697 else if (range_is_null (&vr0) && range_is_null (&vr1))
1698 vr->set_null (expr_type);
1699 else
1700 vr->set_varying ();
1702 else if (code == BIT_AND_EXPR)
1704 /* For pointer types, we are really only interested in asserting
1705 whether the expression evaluates to non-NULL. */
1706 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1707 vr->set_nonnull (expr_type);
1708 else if (range_is_null (&vr0) || range_is_null (&vr1))
1709 vr->set_null (expr_type);
1710 else
1711 vr->set_varying ();
1713 else
1714 vr->set_varying ();
1716 return;
1719 /* For integer ranges, apply the operation to each end of the
1720 range and see what we end up with. */
1721 if (code == PLUS_EXPR || code == MINUS_EXPR)
1723 /* This will normalize things such that calculating
1724 [0,0] - VR_VARYING is not dropped to varying, but is
1725 calculated as [MIN+1, MAX]. */
1726 if (vr0.varying_p ())
1727 vr0.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1728 if (vr1.varying_p ())
1729 vr1.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1731 const bool minus_p = (code == MINUS_EXPR);
1732 tree min_op0 = vr0.min ();
1733 tree min_op1 = minus_p ? vr1.max () : vr1.min ();
1734 tree max_op0 = vr0.max ();
1735 tree max_op1 = minus_p ? vr1.min () : vr1.max ();
1736 tree sym_min_op0 = NULL_TREE;
1737 tree sym_min_op1 = NULL_TREE;
1738 tree sym_max_op0 = NULL_TREE;
1739 tree sym_max_op1 = NULL_TREE;
1740 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
1742 neg_min_op0 = neg_min_op1 = neg_max_op0 = neg_max_op1 = false;
1744 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
1745 single-symbolic ranges, try to compute the precise resulting range,
1746 but only if we know that this resulting range will also be constant
1747 or single-symbolic. */
1748 if (vr0.kind () == VR_RANGE && vr1.kind () == VR_RANGE
1749 && (TREE_CODE (min_op0) == INTEGER_CST
1750 || (sym_min_op0
1751 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
1752 && (TREE_CODE (min_op1) == INTEGER_CST
1753 || (sym_min_op1
1754 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
1755 && (!(sym_min_op0 && sym_min_op1)
1756 || (sym_min_op0 == sym_min_op1
1757 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
1758 && (TREE_CODE (max_op0) == INTEGER_CST
1759 || (sym_max_op0
1760 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
1761 && (TREE_CODE (max_op1) == INTEGER_CST
1762 || (sym_max_op1
1763 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
1764 && (!(sym_max_op0 && sym_max_op1)
1765 || (sym_max_op0 == sym_max_op1
1766 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
1768 wide_int wmin, wmax;
1769 wi::overflow_type min_ovf = wi::OVF_NONE;
1770 wi::overflow_type max_ovf = wi::OVF_NONE;
1772 /* Build the bounds. */
1773 combine_bound (code, wmin, min_ovf, expr_type, min_op0, min_op1);
1774 combine_bound (code, wmax, max_ovf, expr_type, max_op0, max_op1);
1776 /* If we have overflow for the constant part and the resulting
1777 range will be symbolic, drop to VR_VARYING. */
1778 if (((bool)min_ovf && sym_min_op0 != sym_min_op1)
1779 || ((bool)max_ovf && sym_max_op0 != sym_max_op1))
1781 vr->set_varying ();
1782 return;
1785 /* Adjust the range for possible overflow. */
1786 min = NULL_TREE;
1787 max = NULL_TREE;
1788 set_value_range_with_overflow (type, min, max, expr_type,
1789 wmin, wmax, min_ovf, max_ovf);
1790 if (type == VR_VARYING)
1792 vr->set_varying ();
1793 return;
1796 /* Build the symbolic bounds if needed. */
1797 adjust_symbolic_bound (min, code, expr_type,
1798 sym_min_op0, sym_min_op1,
1799 neg_min_op0, neg_min_op1);
1800 adjust_symbolic_bound (max, code, expr_type,
1801 sym_max_op0, sym_max_op1,
1802 neg_max_op0, neg_max_op1);
1804 else
1806 /* For other cases, for example if we have a PLUS_EXPR with two
1807 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
1808 to compute a precise range for such a case.
1809 ??? General even mixed range kind operations can be expressed
1810 by for example transforming ~[3, 5] + [1, 2] to range-only
1811 operations and a union primitive:
1812 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
1813 [-INF+1, 4] U [6, +INF(OVF)]
1814 though usually the union is not exactly representable with
1815 a single range or anti-range as the above is
1816 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
1817 but one could use a scheme similar to equivalences for this. */
1818 vr->set_varying ();
1819 return;
1822 else if (code == MIN_EXPR
1823 || code == MAX_EXPR)
1825 wide_int wmin, wmax;
1826 wide_int vr0_min, vr0_max;
1827 wide_int vr1_min, vr1_max;
1828 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1829 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1830 if (wide_int_range_min_max (wmin, wmax, code, sign, prec,
1831 vr0_min, vr0_max, vr1_min, vr1_max))
1832 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1833 wide_int_to_tree (expr_type, wmax));
1834 else
1835 vr->set_varying ();
1836 return;
1838 else if (code == MULT_EXPR)
1840 if (!range_int_cst_p (&vr0)
1841 || !range_int_cst_p (&vr1))
1843 vr->set_varying ();
1844 return;
1846 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1847 return;
1849 else if (code == RSHIFT_EXPR
1850 || code == LSHIFT_EXPR)
1852 if (range_int_cst_p (&vr1)
1853 && !wide_int_range_shift_undefined_p
1854 (TYPE_SIGN (TREE_TYPE (vr1.min ())),
1855 prec,
1856 wi::to_wide (vr1.min ()),
1857 wi::to_wide (vr1.max ())))
1859 if (code == RSHIFT_EXPR)
1861 /* Even if vr0 is VARYING or otherwise not usable, we can derive
1862 useful ranges just from the shift count. E.g.
1863 x >> 63 for signed 64-bit x is always [-1, 0]. */
1864 if (vr0.kind () != VR_RANGE || vr0.symbolic_p ())
1865 vr0.set (VR_RANGE, vrp_val_min (expr_type),
1866 vrp_val_max (expr_type));
1867 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1868 return;
1870 else if (code == LSHIFT_EXPR
1871 && range_int_cst_p (&vr0))
1873 wide_int res_lb, res_ub;
1874 if (wide_int_range_lshift (res_lb, res_ub, sign, prec,
1875 wi::to_wide (vr0.min ()),
1876 wi::to_wide (vr0.max ()),
1877 wi::to_wide (vr1.min ()),
1878 wi::to_wide (vr1.max ()),
1879 TYPE_OVERFLOW_UNDEFINED (expr_type)))
1881 min = wide_int_to_tree (expr_type, res_lb);
1882 max = wide_int_to_tree (expr_type, res_ub);
1883 vr->set_and_canonicalize (VR_RANGE, min, max);
1884 return;
1888 vr->set_varying ();
1889 return;
1891 else if (code == TRUNC_DIV_EXPR
1892 || code == FLOOR_DIV_EXPR
1893 || code == CEIL_DIV_EXPR
1894 || code == EXACT_DIV_EXPR
1895 || code == ROUND_DIV_EXPR)
1897 wide_int dividend_min, dividend_max, divisor_min, divisor_max;
1898 wide_int wmin, wmax, extra_min, extra_max;
1899 bool extra_range_p;
1901 /* Special case explicit division by zero as undefined. */
1902 if (range_is_null (&vr1))
1904 vr->set_undefined ();
1905 return;
1908 /* First, normalize ranges into constants we can handle. Note
1909 that VR_ANTI_RANGE's of constants were already normalized
1910 before arriving here.
1912 NOTE: As a future improvement, we may be able to do better
1913 with mixed symbolic (anti-)ranges like [0, A]. See note in
1914 ranges_from_anti_range. */
1915 extract_range_into_wide_ints (&vr0, sign, prec,
1916 dividend_min, dividend_max);
1917 extract_range_into_wide_ints (&vr1, sign, prec,
1918 divisor_min, divisor_max);
1919 if (!wide_int_range_div (wmin, wmax, code, sign, prec,
1920 dividend_min, dividend_max,
1921 divisor_min, divisor_max,
1922 TYPE_OVERFLOW_UNDEFINED (expr_type),
1923 extra_range_p, extra_min, extra_max))
1925 vr->set_varying ();
1926 return;
1928 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1929 wide_int_to_tree (expr_type, wmax));
1930 if (extra_range_p)
1932 value_range_base
1933 extra_range (VR_RANGE, wide_int_to_tree (expr_type, extra_min),
1934 wide_int_to_tree (expr_type, extra_max));
1935 vr->union_ (&extra_range);
1937 return;
1939 else if (code == TRUNC_MOD_EXPR)
1941 if (range_is_null (&vr1))
1943 vr->set_undefined ();
1944 return;
1946 wide_int wmin, wmax, tmp;
1947 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1948 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1949 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1950 wide_int_range_trunc_mod (wmin, wmax, sign, prec,
1951 vr0_min, vr0_max, vr1_min, vr1_max);
1952 min = wide_int_to_tree (expr_type, wmin);
1953 max = wide_int_to_tree (expr_type, wmax);
1954 vr->set (VR_RANGE, min, max);
1955 return;
1957 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
1959 wide_int may_be_nonzero0, may_be_nonzero1;
1960 wide_int must_be_nonzero0, must_be_nonzero1;
1961 wide_int wmin, wmax;
1962 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1963 vrp_set_zero_nonzero_bits (expr_type, &vr0,
1964 &may_be_nonzero0, &must_be_nonzero0);
1965 vrp_set_zero_nonzero_bits (expr_type, &vr1,
1966 &may_be_nonzero1, &must_be_nonzero1);
1967 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1968 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1969 if (code == BIT_AND_EXPR)
1971 if (wide_int_range_bit_and (wmin, wmax, sign, prec,
1972 vr0_min, vr0_max,
1973 vr1_min, vr1_max,
1974 must_be_nonzero0,
1975 may_be_nonzero0,
1976 must_be_nonzero1,
1977 may_be_nonzero1))
1979 min = wide_int_to_tree (expr_type, wmin);
1980 max = wide_int_to_tree (expr_type, wmax);
1981 vr->set (VR_RANGE, min, max);
1983 else
1984 vr->set_varying ();
1985 return;
1987 else if (code == BIT_IOR_EXPR)
1989 if (wide_int_range_bit_ior (wmin, wmax, sign,
1990 vr0_min, vr0_max,
1991 vr1_min, vr1_max,
1992 must_be_nonzero0,
1993 may_be_nonzero0,
1994 must_be_nonzero1,
1995 may_be_nonzero1))
1997 min = wide_int_to_tree (expr_type, wmin);
1998 max = wide_int_to_tree (expr_type, wmax);
1999 vr->set (VR_RANGE, min, max);
2001 else
2002 vr->set_varying ();
2003 return;
2005 else if (code == BIT_XOR_EXPR)
2007 if (wide_int_range_bit_xor (wmin, wmax, sign, prec,
2008 must_be_nonzero0,
2009 may_be_nonzero0,
2010 must_be_nonzero1,
2011 may_be_nonzero1))
2013 min = wide_int_to_tree (expr_type, wmin);
2014 max = wide_int_to_tree (expr_type, wmax);
2015 vr->set (VR_RANGE, min, max);
2017 else
2018 vr->set_varying ();
2019 return;
2022 else
2023 gcc_unreachable ();
2025 /* If either MIN or MAX overflowed, then set the resulting range to
2026 VARYING. */
2027 if (min == NULL_TREE
2028 || TREE_OVERFLOW_P (min)
2029 || max == NULL_TREE
2030 || TREE_OVERFLOW_P (max))
2032 vr->set_varying ();
2033 return;
2036 /* We punt for [-INF, +INF].
2037 We learn nothing when we have INF on both sides.
2038 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
2039 if (vrp_val_is_min (min) && vrp_val_is_max (max))
2041 vr->set_varying ();
2042 return;
2045 cmp = compare_values (min, max);
2046 if (cmp == -2 || cmp == 1)
2048 /* If the new range has its limits swapped around (MIN > MAX),
2049 then the operation caused one of them to wrap around, mark
2050 the new range VARYING. */
2051 vr->set_varying ();
2053 else
2054 vr->set (type, min, max);
2057 /* Extract range information from a unary operation CODE based on
2058 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2059 The resulting range is stored in *VR. */
2061 void
2062 extract_range_from_unary_expr (value_range_base *vr,
2063 enum tree_code code, tree type,
2064 const value_range_base *vr0_, tree op0_type)
2066 signop sign = TYPE_SIGN (type);
2067 unsigned int prec = TYPE_PRECISION (type);
2068 value_range_base vr0 = *vr0_;
2069 value_range_base vrtem0, vrtem1;
2071 /* VRP only operates on integral and pointer types. */
2072 if (!(INTEGRAL_TYPE_P (op0_type)
2073 || POINTER_TYPE_P (op0_type))
2074 || !(INTEGRAL_TYPE_P (type)
2075 || POINTER_TYPE_P (type)))
2077 vr->set_varying ();
2078 return;
2081 /* If VR0 is UNDEFINED, so is the result. */
2082 if (vr0.undefined_p ())
2084 vr->set_undefined ();
2085 return;
2088 /* Handle operations that we express in terms of others. */
2089 if (code == PAREN_EXPR)
2091 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
2092 *vr = vr0;
2093 return;
2095 else if (code == NEGATE_EXPR)
2097 /* -X is simply 0 - X, so re-use existing code that also handles
2098 anti-ranges fine. */
2099 value_range_base zero;
2100 zero.set (build_int_cst (type, 0));
2101 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &zero, &vr0);
2102 return;
2104 else if (code == BIT_NOT_EXPR)
2106 /* ~X is simply -1 - X, so re-use existing code that also handles
2107 anti-ranges fine. */
2108 value_range_base minusone;
2109 minusone.set (build_int_cst (type, -1));
2110 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &minusone, &vr0);
2111 return;
2114 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2115 and express op ~[] as (op []') U (op []''). */
2116 if (vr0.kind () == VR_ANTI_RANGE
2117 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2119 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
2120 if (!vrtem1.undefined_p ())
2122 value_range_base vrres;
2123 extract_range_from_unary_expr (&vrres, code, type,
2124 &vrtem1, op0_type);
2125 vr->union_ (&vrres);
2127 return;
2130 if (CONVERT_EXPR_CODE_P (code))
2132 tree inner_type = op0_type;
2133 tree outer_type = type;
2135 /* If the expression involves a pointer, we are only interested in
2136 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).
2138 This may lose precision when converting (char *)~[0,2] to
2139 int, because we'll forget that the pointer can also not be 1
2140 or 2. In practice we don't care, as this is some idiot
2141 storing a magic constant to a pointer. */
2142 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2144 if (!range_includes_zero_p (&vr0))
2145 vr->set_nonnull (type);
2146 else if (range_is_null (&vr0))
2147 vr->set_null (type);
2148 else
2149 vr->set_varying ();
2150 return;
2153 /* The POINTER_TYPE_P code above will have dealt with all
2154 pointer anti-ranges. Any remaining anti-ranges at this point
2155 will be integer conversions from SSA names that will be
2156 normalized into VARYING. For instance: ~[x_55, x_55]. */
2157 gcc_assert (vr0.kind () != VR_ANTI_RANGE
2158 || TREE_CODE (vr0.min ()) != INTEGER_CST);
2160 /* NOTES: Previously we were returning VARYING for all symbolics, but
2161 we can do better by treating them as [-MIN, +MAX]. For
2162 example, converting [SYM, SYM] from INT to LONG UNSIGNED,
2163 we can return: ~[0x8000000, 0xffffffff7fffffff].
2165 We were also failing to convert ~[0,0] from char* to unsigned,
2166 instead choosing to return VR_VARYING. Now we return ~[0,0]. */
2167 wide_int vr0_min, vr0_max, wmin, wmax;
2168 signop inner_sign = TYPE_SIGN (inner_type);
2169 signop outer_sign = TYPE_SIGN (outer_type);
2170 unsigned inner_prec = TYPE_PRECISION (inner_type);
2171 unsigned outer_prec = TYPE_PRECISION (outer_type);
2172 extract_range_into_wide_ints (&vr0, inner_sign, inner_prec,
2173 vr0_min, vr0_max);
2174 if (wide_int_range_convert (wmin, wmax,
2175 inner_sign, inner_prec,
2176 outer_sign, outer_prec,
2177 vr0_min, vr0_max))
2179 tree min = wide_int_to_tree (outer_type, wmin);
2180 tree max = wide_int_to_tree (outer_type, wmax);
2181 vr->set_and_canonicalize (VR_RANGE, min, max);
2183 else
2184 vr->set_varying ();
2185 return;
2187 else if (code == ABS_EXPR)
2189 wide_int wmin, wmax;
2190 wide_int vr0_min, vr0_max;
2191 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
2192 if (wide_int_range_abs (wmin, wmax, sign, prec, vr0_min, vr0_max,
2193 TYPE_OVERFLOW_UNDEFINED (type)))
2194 vr->set (VR_RANGE, wide_int_to_tree (type, wmin),
2195 wide_int_to_tree (type, wmax));
2196 else
2197 vr->set_varying ();
2198 return;
2201 /* For unhandled operations fall back to varying. */
2202 vr->set_varying ();
2203 return;
2206 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2207 create a new SSA name N and return the assertion assignment
2208 'N = ASSERT_EXPR <V, V OP W>'. */
2210 static gimple *
2211 build_assert_expr_for (tree cond, tree v)
2213 tree a;
2214 gassign *assertion;
2216 gcc_assert (TREE_CODE (v) == SSA_NAME
2217 && COMPARISON_CLASS_P (cond));
2219 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2220 assertion = gimple_build_assign (NULL_TREE, a);
2222 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2223 operand of the ASSERT_EXPR. Create it so the new name and the old one
2224 are registered in the replacement table so that we can fix the SSA web
2225 after adding all the ASSERT_EXPRs. */
2226 tree new_def = create_new_def_for (v, assertion, NULL);
2227 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2228 given we have to be able to fully propagate those out to re-create
2229 valid SSA when removing the asserts. */
2230 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
2231 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
2233 return assertion;
2237 /* Return false if EXPR is a predicate expression involving floating
2238 point values. */
2240 static inline bool
2241 fp_predicate (gimple *stmt)
2243 GIMPLE_CHECK (stmt, GIMPLE_COND);
2245 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
2248 /* If the range of values taken by OP can be inferred after STMT executes,
2249 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2250 describes the inferred range. Return true if a range could be
2251 inferred. */
2253 bool
2254 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
2256 *val_p = NULL_TREE;
2257 *comp_code_p = ERROR_MARK;
2259 /* Do not attempt to infer anything in names that flow through
2260 abnormal edges. */
2261 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2262 return false;
2264 /* If STMT is the last statement of a basic block with no normal
2265 successors, there is no point inferring anything about any of its
2266 operands. We would not be able to find a proper insertion point
2267 for the assertion, anyway. */
2268 if (stmt_ends_bb_p (stmt))
2270 edge_iterator ei;
2271 edge e;
2273 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
2274 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
2275 break;
2276 if (e == NULL)
2277 return false;
2280 if (infer_nonnull_range (stmt, op))
2282 *val_p = build_int_cst (TREE_TYPE (op), 0);
2283 *comp_code_p = NE_EXPR;
2284 return true;
2287 return false;
2291 void dump_asserts_for (FILE *, tree);
2292 void debug_asserts_for (tree);
2293 void dump_all_asserts (FILE *);
2294 void debug_all_asserts (void);
2296 /* Dump all the registered assertions for NAME to FILE. */
2298 void
2299 dump_asserts_for (FILE *file, tree name)
2301 assert_locus *loc;
2303 fprintf (file, "Assertions to be inserted for ");
2304 print_generic_expr (file, name);
2305 fprintf (file, "\n");
2307 loc = asserts_for[SSA_NAME_VERSION (name)];
2308 while (loc)
2310 fprintf (file, "\t");
2311 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
2312 fprintf (file, "\n\tBB #%d", loc->bb->index);
2313 if (loc->e)
2315 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2316 loc->e->dest->index);
2317 dump_edge_info (file, loc->e, dump_flags, 0);
2319 fprintf (file, "\n\tPREDICATE: ");
2320 print_generic_expr (file, loc->expr);
2321 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
2322 print_generic_expr (file, loc->val);
2323 fprintf (file, "\n\n");
2324 loc = loc->next;
2327 fprintf (file, "\n");
2331 /* Dump all the registered assertions for NAME to stderr. */
2333 DEBUG_FUNCTION void
2334 debug_asserts_for (tree name)
2336 dump_asserts_for (stderr, name);
2340 /* Dump all the registered assertions for all the names to FILE. */
2342 void
2343 dump_all_asserts (FILE *file)
2345 unsigned i;
2346 bitmap_iterator bi;
2348 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2349 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2350 dump_asserts_for (file, ssa_name (i));
2351 fprintf (file, "\n");
2355 /* Dump all the registered assertions for all the names to stderr. */
2357 DEBUG_FUNCTION void
2358 debug_all_asserts (void)
2360 dump_all_asserts (stderr);
2363 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
2365 static void
2366 add_assert_info (vec<assert_info> &asserts,
2367 tree name, tree expr, enum tree_code comp_code, tree val)
2369 assert_info info;
2370 info.comp_code = comp_code;
2371 info.name = name;
2372 if (TREE_OVERFLOW_P (val))
2373 val = drop_tree_overflow (val);
2374 info.val = val;
2375 info.expr = expr;
2376 asserts.safe_push (info);
2377 if (dump_enabled_p ())
2378 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
2379 "Adding assert for %T from %T %s %T\n",
2380 name, expr, op_symbol_code (comp_code), val);
2383 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2384 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2385 E->DEST, then register this location as a possible insertion point
2386 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2388 BB, E and SI provide the exact insertion point for the new
2389 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2390 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2391 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2392 must not be NULL. */
2394 static void
2395 register_new_assert_for (tree name, tree expr,
2396 enum tree_code comp_code,
2397 tree val,
2398 basic_block bb,
2399 edge e,
2400 gimple_stmt_iterator si)
2402 assert_locus *n, *loc, *last_loc;
2403 basic_block dest_bb;
2405 gcc_checking_assert (bb == NULL || e == NULL);
2407 if (e == NULL)
2408 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
2409 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
2411 /* Never build an assert comparing against an integer constant with
2412 TREE_OVERFLOW set. This confuses our undefined overflow warning
2413 machinery. */
2414 if (TREE_OVERFLOW_P (val))
2415 val = drop_tree_overflow (val);
2417 /* The new assertion A will be inserted at BB or E. We need to
2418 determine if the new location is dominated by a previously
2419 registered location for A. If we are doing an edge insertion,
2420 assume that A will be inserted at E->DEST. Note that this is not
2421 necessarily true.
2423 If E is a critical edge, it will be split. But even if E is
2424 split, the new block will dominate the same set of blocks that
2425 E->DEST dominates.
2427 The reverse, however, is not true, blocks dominated by E->DEST
2428 will not be dominated by the new block created to split E. So,
2429 if the insertion location is on a critical edge, we will not use
2430 the new location to move another assertion previously registered
2431 at a block dominated by E->DEST. */
2432 dest_bb = (bb) ? bb : e->dest;
2434 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2435 VAL at a block dominating DEST_BB, then we don't need to insert a new
2436 one. Similarly, if the same assertion already exists at a block
2437 dominated by DEST_BB and the new location is not on a critical
2438 edge, then update the existing location for the assertion (i.e.,
2439 move the assertion up in the dominance tree).
2441 Note, this is implemented as a simple linked list because there
2442 should not be more than a handful of assertions registered per
2443 name. If this becomes a performance problem, a table hashed by
2444 COMP_CODE and VAL could be implemented. */
2445 loc = asserts_for[SSA_NAME_VERSION (name)];
2446 last_loc = loc;
2447 while (loc)
2449 if (loc->comp_code == comp_code
2450 && (loc->val == val
2451 || operand_equal_p (loc->val, val, 0))
2452 && (loc->expr == expr
2453 || operand_equal_p (loc->expr, expr, 0)))
2455 /* If E is not a critical edge and DEST_BB
2456 dominates the existing location for the assertion, move
2457 the assertion up in the dominance tree by updating its
2458 location information. */
2459 if ((e == NULL || !EDGE_CRITICAL_P (e))
2460 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2462 loc->bb = dest_bb;
2463 loc->e = e;
2464 loc->si = si;
2465 return;
2469 /* Update the last node of the list and move to the next one. */
2470 last_loc = loc;
2471 loc = loc->next;
2474 /* If we didn't find an assertion already registered for
2475 NAME COMP_CODE VAL, add a new one at the end of the list of
2476 assertions associated with NAME. */
2477 n = XNEW (struct assert_locus);
2478 n->bb = dest_bb;
2479 n->e = e;
2480 n->si = si;
2481 n->comp_code = comp_code;
2482 n->val = val;
2483 n->expr = expr;
2484 n->next = NULL;
2486 if (last_loc)
2487 last_loc->next = n;
2488 else
2489 asserts_for[SSA_NAME_VERSION (name)] = n;
2491 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2494 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
2495 Extract a suitable test code and value and store them into *CODE_P and
2496 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
2498 If no extraction was possible, return FALSE, otherwise return TRUE.
2500 If INVERT is true, then we invert the result stored into *CODE_P. */
2502 static bool
2503 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
2504 tree cond_op0, tree cond_op1,
2505 bool invert, enum tree_code *code_p,
2506 tree *val_p)
2508 enum tree_code comp_code;
2509 tree val;
2511 /* Otherwise, we have a comparison of the form NAME COMP VAL
2512 or VAL COMP NAME. */
2513 if (name == cond_op1)
2515 /* If the predicate is of the form VAL COMP NAME, flip
2516 COMP around because we need to register NAME as the
2517 first operand in the predicate. */
2518 comp_code = swap_tree_comparison (cond_code);
2519 val = cond_op0;
2521 else if (name == cond_op0)
2523 /* The comparison is of the form NAME COMP VAL, so the
2524 comparison code remains unchanged. */
2525 comp_code = cond_code;
2526 val = cond_op1;
2528 else
2529 gcc_unreachable ();
2531 /* Invert the comparison code as necessary. */
2532 if (invert)
2533 comp_code = invert_tree_comparison (comp_code, 0);
2535 /* VRP only handles integral and pointer types. */
2536 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
2537 && ! POINTER_TYPE_P (TREE_TYPE (val)))
2538 return false;
2540 /* Do not register always-false predicates.
2541 FIXME: this works around a limitation in fold() when dealing with
2542 enumerations. Given 'enum { N1, N2 } x;', fold will not
2543 fold 'if (x > N2)' to 'if (0)'. */
2544 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2545 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2547 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2548 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2550 if (comp_code == GT_EXPR
2551 && (!max
2552 || compare_values (val, max) == 0))
2553 return false;
2555 if (comp_code == LT_EXPR
2556 && (!min
2557 || compare_values (val, min) == 0))
2558 return false;
2560 *code_p = comp_code;
2561 *val_p = val;
2562 return true;
2565 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
2566 (otherwise return VAL). VAL and MASK must be zero-extended for
2567 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
2568 (to transform signed values into unsigned) and at the end xor
2569 SGNBIT back. */
2571 static wide_int
2572 masked_increment (const wide_int &val_in, const wide_int &mask,
2573 const wide_int &sgnbit, unsigned int prec)
2575 wide_int bit = wi::one (prec), res;
2576 unsigned int i;
2578 wide_int val = val_in ^ sgnbit;
2579 for (i = 0; i < prec; i++, bit += bit)
2581 res = mask;
2582 if ((res & bit) == 0)
2583 continue;
2584 res = bit - 1;
2585 res = wi::bit_and_not (val + bit, res);
2586 res &= mask;
2587 if (wi::gtu_p (res, val))
2588 return res ^ sgnbit;
2590 return val ^ sgnbit;
2593 /* Helper for overflow_comparison_p
2595 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2596 OP1's defining statement to see if it ultimately has the form
2597 OP0 CODE (OP0 PLUS INTEGER_CST)
2599 If so, return TRUE indicating this is an overflow test and store into
2600 *NEW_CST an updated constant that can be used in a narrowed range test.
2602 REVERSED indicates if the comparison was originally:
2604 OP1 CODE' OP0.
2606 This affects how we build the updated constant. */
2608 static bool
2609 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
2610 bool follow_assert_exprs, bool reversed, tree *new_cst)
2612 /* See if this is a relational operation between two SSA_NAMES with
2613 unsigned, overflow wrapping values. If so, check it more deeply. */
2614 if ((code == LT_EXPR || code == LE_EXPR
2615 || code == GE_EXPR || code == GT_EXPR)
2616 && TREE_CODE (op0) == SSA_NAME
2617 && TREE_CODE (op1) == SSA_NAME
2618 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
2619 && TYPE_UNSIGNED (TREE_TYPE (op0))
2620 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
2622 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
2624 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
2625 if (follow_assert_exprs)
2627 while (gimple_assign_single_p (op1_def)
2628 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
2630 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
2631 if (TREE_CODE (op1) != SSA_NAME)
2632 break;
2633 op1_def = SSA_NAME_DEF_STMT (op1);
2637 /* Now look at the defining statement of OP1 to see if it adds
2638 or subtracts a nonzero constant from another operand. */
2639 if (op1_def
2640 && is_gimple_assign (op1_def)
2641 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
2642 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
2643 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
2645 tree target = gimple_assign_rhs1 (op1_def);
2647 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
2648 for one where TARGET appears on the RHS. */
2649 if (follow_assert_exprs)
2651 /* Now see if that "other operand" is op0, following the chain
2652 of ASSERT_EXPRs if necessary. */
2653 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
2654 while (op0 != target
2655 && gimple_assign_single_p (op0_def)
2656 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
2658 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
2659 if (TREE_CODE (op0) != SSA_NAME)
2660 break;
2661 op0_def = SSA_NAME_DEF_STMT (op0);
2665 /* If we did not find our target SSA_NAME, then this is not
2666 an overflow test. */
2667 if (op0 != target)
2668 return false;
2670 tree type = TREE_TYPE (op0);
2671 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
2672 tree inc = gimple_assign_rhs2 (op1_def);
2673 if (reversed)
2674 *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
2675 else
2676 *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
2677 return true;
2680 return false;
2683 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2684 OP1's defining statement to see if it ultimately has the form
2685 OP0 CODE (OP0 PLUS INTEGER_CST)
2687 If so, return TRUE indicating this is an overflow test and store into
2688 *NEW_CST an updated constant that can be used in a narrowed range test.
2690 These statements are left as-is in the IL to facilitate discovery of
2691 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
2692 the alternate range representation is often useful within VRP. */
2694 bool
2695 overflow_comparison_p (tree_code code, tree name, tree val,
2696 bool use_equiv_p, tree *new_cst)
2698 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
2699 return true;
2700 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
2701 use_equiv_p, true, new_cst);
2705 /* Try to register an edge assertion for SSA name NAME on edge E for
2706 the condition COND contributing to the conditional jump pointed to by BSI.
2707 Invert the condition COND if INVERT is true. */
2709 static void
2710 register_edge_assert_for_2 (tree name, edge e,
2711 enum tree_code cond_code,
2712 tree cond_op0, tree cond_op1, bool invert,
2713 vec<assert_info> &asserts)
2715 tree val;
2716 enum tree_code comp_code;
2718 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
2719 cond_op0,
2720 cond_op1,
2721 invert, &comp_code, &val))
2722 return;
2724 /* Queue the assert. */
2725 tree x;
2726 if (overflow_comparison_p (comp_code, name, val, false, &x))
2728 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
2729 ? GT_EXPR : LE_EXPR);
2730 add_assert_info (asserts, name, name, new_code, x);
2732 add_assert_info (asserts, name, name, comp_code, val);
2734 /* In the case of NAME <= CST and NAME being defined as
2735 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
2736 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
2737 This catches range and anti-range tests. */
2738 if ((comp_code == LE_EXPR
2739 || comp_code == GT_EXPR)
2740 && TREE_CODE (val) == INTEGER_CST
2741 && TYPE_UNSIGNED (TREE_TYPE (val)))
2743 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2744 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2746 /* Extract CST2 from the (optional) addition. */
2747 if (is_gimple_assign (def_stmt)
2748 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2750 name2 = gimple_assign_rhs1 (def_stmt);
2751 cst2 = gimple_assign_rhs2 (def_stmt);
2752 if (TREE_CODE (name2) == SSA_NAME
2753 && TREE_CODE (cst2) == INTEGER_CST)
2754 def_stmt = SSA_NAME_DEF_STMT (name2);
2757 /* Extract NAME2 from the (optional) sign-changing cast. */
2758 if (gimple_assign_cast_p (def_stmt))
2760 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
2761 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2762 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
2763 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
2764 name3 = gimple_assign_rhs1 (def_stmt);
2767 /* If name3 is used later, create an ASSERT_EXPR for it. */
2768 if (name3 != NULL_TREE
2769 && TREE_CODE (name3) == SSA_NAME
2770 && (cst2 == NULL_TREE
2771 || TREE_CODE (cst2) == INTEGER_CST)
2772 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
2774 tree tmp;
2776 /* Build an expression for the range test. */
2777 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
2778 if (cst2 != NULL_TREE)
2779 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2780 add_assert_info (asserts, name3, tmp, comp_code, val);
2783 /* If name2 is used later, create an ASSERT_EXPR for it. */
2784 if (name2 != NULL_TREE
2785 && TREE_CODE (name2) == SSA_NAME
2786 && TREE_CODE (cst2) == INTEGER_CST
2787 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
2789 tree tmp;
2791 /* Build an expression for the range test. */
2792 tmp = name2;
2793 if (TREE_TYPE (name) != TREE_TYPE (name2))
2794 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
2795 if (cst2 != NULL_TREE)
2796 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2797 add_assert_info (asserts, name2, tmp, comp_code, val);
2801 /* In the case of post-in/decrement tests like if (i++) ... and uses
2802 of the in/decremented value on the edge the extra name we want to
2803 assert for is not on the def chain of the name compared. Instead
2804 it is in the set of use stmts.
2805 Similar cases happen for conversions that were simplified through
2806 fold_{sign_changed,widened}_comparison. */
2807 if ((comp_code == NE_EXPR
2808 || comp_code == EQ_EXPR)
2809 && TREE_CODE (val) == INTEGER_CST)
2811 imm_use_iterator ui;
2812 gimple *use_stmt;
2813 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
2815 if (!is_gimple_assign (use_stmt))
2816 continue;
2818 /* Cut off to use-stmts that are dominating the predecessor. */
2819 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
2820 continue;
2822 tree name2 = gimple_assign_lhs (use_stmt);
2823 if (TREE_CODE (name2) != SSA_NAME)
2824 continue;
2826 enum tree_code code = gimple_assign_rhs_code (use_stmt);
2827 tree cst;
2828 if (code == PLUS_EXPR
2829 || code == MINUS_EXPR)
2831 cst = gimple_assign_rhs2 (use_stmt);
2832 if (TREE_CODE (cst) != INTEGER_CST)
2833 continue;
2834 cst = int_const_binop (code, val, cst);
2836 else if (CONVERT_EXPR_CODE_P (code))
2838 /* For truncating conversions we cannot record
2839 an inequality. */
2840 if (comp_code == NE_EXPR
2841 && (TYPE_PRECISION (TREE_TYPE (name2))
2842 < TYPE_PRECISION (TREE_TYPE (name))))
2843 continue;
2844 cst = fold_convert (TREE_TYPE (name2), val);
2846 else
2847 continue;
2849 if (TREE_OVERFLOW_P (cst))
2850 cst = drop_tree_overflow (cst);
2851 add_assert_info (asserts, name2, name2, comp_code, cst);
2855 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
2856 && TREE_CODE (val) == INTEGER_CST)
2858 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2859 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
2860 tree val2 = NULL_TREE;
2861 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
2862 wide_int mask = wi::zero (prec);
2863 unsigned int nprec = prec;
2864 enum tree_code rhs_code = ERROR_MARK;
2866 if (is_gimple_assign (def_stmt))
2867 rhs_code = gimple_assign_rhs_code (def_stmt);
2869 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
2870 assert that A != CST1 -+ CST2. */
2871 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
2872 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
2874 tree op0 = gimple_assign_rhs1 (def_stmt);
2875 tree op1 = gimple_assign_rhs2 (def_stmt);
2876 if (TREE_CODE (op0) == SSA_NAME
2877 && TREE_CODE (op1) == INTEGER_CST)
2879 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
2880 ? MINUS_EXPR : PLUS_EXPR);
2881 op1 = int_const_binop (reverse_op, val, op1);
2882 if (TREE_OVERFLOW (op1))
2883 op1 = drop_tree_overflow (op1);
2884 add_assert_info (asserts, op0, op0, comp_code, op1);
2888 /* Add asserts for NAME cmp CST and NAME being defined
2889 as NAME = (int) NAME2. */
2890 if (!TYPE_UNSIGNED (TREE_TYPE (val))
2891 && (comp_code == LE_EXPR || comp_code == LT_EXPR
2892 || comp_code == GT_EXPR || comp_code == GE_EXPR)
2893 && gimple_assign_cast_p (def_stmt))
2895 name2 = gimple_assign_rhs1 (def_stmt);
2896 if (CONVERT_EXPR_CODE_P (rhs_code)
2897 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2898 && TYPE_UNSIGNED (TREE_TYPE (name2))
2899 && prec == TYPE_PRECISION (TREE_TYPE (name2))
2900 && (comp_code == LE_EXPR || comp_code == GT_EXPR
2901 || !tree_int_cst_equal (val,
2902 TYPE_MIN_VALUE (TREE_TYPE (val)))))
2904 tree tmp, cst;
2905 enum tree_code new_comp_code = comp_code;
2907 cst = fold_convert (TREE_TYPE (name2),
2908 TYPE_MIN_VALUE (TREE_TYPE (val)));
2909 /* Build an expression for the range test. */
2910 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
2911 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
2912 fold_convert (TREE_TYPE (name2), val));
2913 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2915 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
2916 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
2917 build_int_cst (TREE_TYPE (name2), 1));
2919 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
2923 /* Add asserts for NAME cmp CST and NAME being defined as
2924 NAME = NAME2 >> CST2.
2926 Extract CST2 from the right shift. */
2927 if (rhs_code == RSHIFT_EXPR)
2929 name2 = gimple_assign_rhs1 (def_stmt);
2930 cst2 = gimple_assign_rhs2 (def_stmt);
2931 if (TREE_CODE (name2) == SSA_NAME
2932 && tree_fits_uhwi_p (cst2)
2933 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2934 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
2935 && type_has_mode_precision_p (TREE_TYPE (val)))
2937 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
2938 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
2941 if (val2 != NULL_TREE
2942 && TREE_CODE (val2) == INTEGER_CST
2943 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
2944 TREE_TYPE (val),
2945 val2, cst2), val))
2947 enum tree_code new_comp_code = comp_code;
2948 tree tmp, new_val;
2950 tmp = name2;
2951 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
2953 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
2955 tree type = build_nonstandard_integer_type (prec, 1);
2956 tmp = build1 (NOP_EXPR, type, name2);
2957 val2 = fold_convert (type, val2);
2959 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
2960 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
2961 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
2963 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2965 wide_int minval
2966 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2967 new_val = val2;
2968 if (minval == wi::to_wide (new_val))
2969 new_val = NULL_TREE;
2971 else
2973 wide_int maxval
2974 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2975 mask |= wi::to_wide (val2);
2976 if (wi::eq_p (mask, maxval))
2977 new_val = NULL_TREE;
2978 else
2979 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
2982 if (new_val)
2983 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
2986 /* If we have a conversion that doesn't change the value of the source
2987 simply register the same assert for it. */
2988 if (CONVERT_EXPR_CODE_P (rhs_code))
2990 wide_int rmin, rmax;
2991 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2992 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2993 /* Make sure the relation preserves the upper/lower boundary of
2994 the range conservatively. */
2995 && (comp_code == NE_EXPR
2996 || comp_code == EQ_EXPR
2997 || (TYPE_SIGN (TREE_TYPE (name))
2998 == TYPE_SIGN (TREE_TYPE (rhs1)))
2999 || ((comp_code == LE_EXPR
3000 || comp_code == LT_EXPR)
3001 && !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
3002 || ((comp_code == GE_EXPR
3003 || comp_code == GT_EXPR)
3004 && TYPE_UNSIGNED (TREE_TYPE (rhs1))))
3005 /* And the conversion does not alter the value we compare
3006 against and all values in rhs1 can be represented in
3007 the converted to type. */
3008 && int_fits_type_p (val, TREE_TYPE (rhs1))
3009 && ((TYPE_PRECISION (TREE_TYPE (name))
3010 > TYPE_PRECISION (TREE_TYPE (rhs1)))
3011 || (get_range_info (rhs1, &rmin, &rmax) == VR_RANGE
3012 && wi::fits_to_tree_p (rmin, TREE_TYPE (name))
3013 && wi::fits_to_tree_p (rmax, TREE_TYPE (name)))))
3014 add_assert_info (asserts, rhs1, rhs1,
3015 comp_code, fold_convert (TREE_TYPE (rhs1), val));
3018 /* Add asserts for NAME cmp CST and NAME being defined as
3019 NAME = NAME2 & CST2.
3021 Extract CST2 from the and.
3023 Also handle
3024 NAME = (unsigned) NAME2;
3025 casts where NAME's type is unsigned and has smaller precision
3026 than NAME2's type as if it was NAME = NAME2 & MASK. */
3027 names[0] = NULL_TREE;
3028 names[1] = NULL_TREE;
3029 cst2 = NULL_TREE;
3030 if (rhs_code == BIT_AND_EXPR
3031 || (CONVERT_EXPR_CODE_P (rhs_code)
3032 && INTEGRAL_TYPE_P (TREE_TYPE (val))
3033 && TYPE_UNSIGNED (TREE_TYPE (val))
3034 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
3035 > prec))
3037 name2 = gimple_assign_rhs1 (def_stmt);
3038 if (rhs_code == BIT_AND_EXPR)
3039 cst2 = gimple_assign_rhs2 (def_stmt);
3040 else
3042 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
3043 nprec = TYPE_PRECISION (TREE_TYPE (name2));
3045 if (TREE_CODE (name2) == SSA_NAME
3046 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
3047 && TREE_CODE (cst2) == INTEGER_CST
3048 && !integer_zerop (cst2)
3049 && (nprec > 1
3050 || TYPE_UNSIGNED (TREE_TYPE (val))))
3052 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
3053 if (gimple_assign_cast_p (def_stmt2))
3055 names[1] = gimple_assign_rhs1 (def_stmt2);
3056 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
3057 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
3058 || (TYPE_PRECISION (TREE_TYPE (name2))
3059 != TYPE_PRECISION (TREE_TYPE (names[1]))))
3060 names[1] = NULL_TREE;
3062 names[0] = name2;
3065 if (names[0] || names[1])
3067 wide_int minv, maxv, valv, cst2v;
3068 wide_int tem, sgnbit;
3069 bool valid_p = false, valn, cst2n;
3070 enum tree_code ccode = comp_code;
3072 valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED);
3073 cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED);
3074 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
3075 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
3076 /* If CST2 doesn't have most significant bit set,
3077 but VAL is negative, we have comparison like
3078 if ((x & 0x123) > -4) (always true). Just give up. */
3079 if (!cst2n && valn)
3080 ccode = ERROR_MARK;
3081 if (cst2n)
3082 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3083 else
3084 sgnbit = wi::zero (nprec);
3085 minv = valv & cst2v;
3086 switch (ccode)
3088 case EQ_EXPR:
3089 /* Minimum unsigned value for equality is VAL & CST2
3090 (should be equal to VAL, otherwise we probably should
3091 have folded the comparison into false) and
3092 maximum unsigned value is VAL | ~CST2. */
3093 maxv = valv | ~cst2v;
3094 valid_p = true;
3095 break;
3097 case NE_EXPR:
3098 tem = valv | ~cst2v;
3099 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
3100 if (valv == 0)
3102 cst2n = false;
3103 sgnbit = wi::zero (nprec);
3104 goto gt_expr;
3106 /* If (VAL | ~CST2) is all ones, handle it as
3107 (X & CST2) < VAL. */
3108 if (tem == -1)
3110 cst2n = false;
3111 valn = false;
3112 sgnbit = wi::zero (nprec);
3113 goto lt_expr;
3115 if (!cst2n && wi::neg_p (cst2v))
3116 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3117 if (sgnbit != 0)
3119 if (valv == sgnbit)
3121 cst2n = true;
3122 valn = true;
3123 goto gt_expr;
3125 if (tem == wi::mask (nprec - 1, false, nprec))
3127 cst2n = true;
3128 goto lt_expr;
3130 if (!cst2n)
3131 sgnbit = wi::zero (nprec);
3133 break;
3135 case GE_EXPR:
3136 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
3137 is VAL and maximum unsigned value is ~0. For signed
3138 comparison, if CST2 doesn't have most significant bit
3139 set, handle it similarly. If CST2 has MSB set,
3140 the minimum is the same, and maximum is ~0U/2. */
3141 if (minv != valv)
3143 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
3144 VAL. */
3145 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3146 if (minv == valv)
3147 break;
3149 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3150 valid_p = true;
3151 break;
3153 case GT_EXPR:
3154 gt_expr:
3155 /* Find out smallest MINV where MINV > VAL
3156 && (MINV & CST2) == MINV, if any. If VAL is signed and
3157 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
3158 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3159 if (minv == valv)
3160 break;
3161 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3162 valid_p = true;
3163 break;
3165 case LE_EXPR:
3166 /* Minimum unsigned value for <= is 0 and maximum
3167 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
3168 Otherwise, find smallest VAL2 where VAL2 > VAL
3169 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3170 as maximum.
3171 For signed comparison, if CST2 doesn't have most
3172 significant bit set, handle it similarly. If CST2 has
3173 MSB set, the maximum is the same and minimum is INT_MIN. */
3174 if (minv == valv)
3175 maxv = valv;
3176 else
3178 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3179 if (maxv == valv)
3180 break;
3181 maxv -= 1;
3183 maxv |= ~cst2v;
3184 minv = sgnbit;
3185 valid_p = true;
3186 break;
3188 case LT_EXPR:
3189 lt_expr:
3190 /* Minimum unsigned value for < is 0 and maximum
3191 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
3192 Otherwise, find smallest VAL2 where VAL2 > VAL
3193 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3194 as maximum.
3195 For signed comparison, if CST2 doesn't have most
3196 significant bit set, handle it similarly. If CST2 has
3197 MSB set, the maximum is the same and minimum is INT_MIN. */
3198 if (minv == valv)
3200 if (valv == sgnbit)
3201 break;
3202 maxv = valv;
3204 else
3206 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3207 if (maxv == valv)
3208 break;
3210 maxv -= 1;
3211 maxv |= ~cst2v;
3212 minv = sgnbit;
3213 valid_p = true;
3214 break;
3216 default:
3217 break;
3219 if (valid_p
3220 && (maxv - minv) != -1)
3222 tree tmp, new_val, type;
3223 int i;
3225 for (i = 0; i < 2; i++)
3226 if (names[i])
3228 wide_int maxv2 = maxv;
3229 tmp = names[i];
3230 type = TREE_TYPE (names[i]);
3231 if (!TYPE_UNSIGNED (type))
3233 type = build_nonstandard_integer_type (nprec, 1);
3234 tmp = build1 (NOP_EXPR, type, names[i]);
3236 if (minv != 0)
3238 tmp = build2 (PLUS_EXPR, type, tmp,
3239 wide_int_to_tree (type, -minv));
3240 maxv2 = maxv - minv;
3242 new_val = wide_int_to_tree (type, maxv2);
3243 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
3250 /* OP is an operand of a truth value expression which is known to have
3251 a particular value. Register any asserts for OP and for any
3252 operands in OP's defining statement.
3254 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3255 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3257 static void
3258 register_edge_assert_for_1 (tree op, enum tree_code code,
3259 edge e, vec<assert_info> &asserts)
3261 gimple *op_def;
3262 tree val;
3263 enum tree_code rhs_code;
3265 /* We only care about SSA_NAMEs. */
3266 if (TREE_CODE (op) != SSA_NAME)
3267 return;
3269 /* We know that OP will have a zero or nonzero value. */
3270 val = build_int_cst (TREE_TYPE (op), 0);
3271 add_assert_info (asserts, op, op, code, val);
3273 /* Now look at how OP is set. If it's set from a comparison,
3274 a truth operation or some bit operations, then we may be able
3275 to register information about the operands of that assignment. */
3276 op_def = SSA_NAME_DEF_STMT (op);
3277 if (gimple_code (op_def) != GIMPLE_ASSIGN)
3278 return;
3280 rhs_code = gimple_assign_rhs_code (op_def);
3282 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3284 bool invert = (code == EQ_EXPR ? true : false);
3285 tree op0 = gimple_assign_rhs1 (op_def);
3286 tree op1 = gimple_assign_rhs2 (op_def);
3288 if (TREE_CODE (op0) == SSA_NAME)
3289 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
3290 if (TREE_CODE (op1) == SSA_NAME)
3291 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
3293 else if ((code == NE_EXPR
3294 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
3295 || (code == EQ_EXPR
3296 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
3298 /* Recurse on each operand. */
3299 tree op0 = gimple_assign_rhs1 (op_def);
3300 tree op1 = gimple_assign_rhs2 (op_def);
3301 if (TREE_CODE (op0) == SSA_NAME
3302 && has_single_use (op0))
3303 register_edge_assert_for_1 (op0, code, e, asserts);
3304 if (TREE_CODE (op1) == SSA_NAME
3305 && has_single_use (op1))
3306 register_edge_assert_for_1 (op1, code, e, asserts);
3308 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
3309 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
3311 /* Recurse, flipping CODE. */
3312 code = invert_tree_comparison (code, false);
3313 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3315 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
3317 /* Recurse through the copy. */
3318 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3320 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
3322 /* Recurse through the type conversion, unless it is a narrowing
3323 conversion or conversion from non-integral type. */
3324 tree rhs = gimple_assign_rhs1 (op_def);
3325 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3326 && (TYPE_PRECISION (TREE_TYPE (rhs))
3327 <= TYPE_PRECISION (TREE_TYPE (op))))
3328 register_edge_assert_for_1 (rhs, code, e, asserts);
3332 /* Check if comparison
3333 NAME COND_OP INTEGER_CST
3334 has a form of
3335 (X & 11...100..0) COND_OP XX...X00...0
3336 Such comparison can yield assertions like
3337 X >= XX...X00...0
3338 X <= XX...X11...1
3339 in case of COND_OP being EQ_EXPR or
3340 X < XX...X00...0
3341 X > XX...X11...1
3342 in case of NE_EXPR. */
3344 static bool
3345 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
3346 tree *new_name, tree *low, enum tree_code *low_code,
3347 tree *high, enum tree_code *high_code)
3349 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3351 if (!is_gimple_assign (def_stmt)
3352 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
3353 return false;
3355 tree t = gimple_assign_rhs1 (def_stmt);
3356 tree maskt = gimple_assign_rhs2 (def_stmt);
3357 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
3358 return false;
3360 wi::tree_to_wide_ref mask = wi::to_wide (maskt);
3361 wide_int inv_mask = ~mask;
3362 /* Must have been removed by now so don't bother optimizing. */
3363 if (mask == 0 || inv_mask == 0)
3364 return false;
3366 /* Assume VALT is INTEGER_CST. */
3367 wi::tree_to_wide_ref val = wi::to_wide (valt);
3369 if ((inv_mask & (inv_mask + 1)) != 0
3370 || (val & mask) != val)
3371 return false;
3373 bool is_range = cond_code == EQ_EXPR;
3375 tree type = TREE_TYPE (t);
3376 wide_int min = wi::min_value (type),
3377 max = wi::max_value (type);
3379 if (is_range)
3381 *low_code = val == min ? ERROR_MARK : GE_EXPR;
3382 *high_code = val == max ? ERROR_MARK : LE_EXPR;
3384 else
3386 /* We can still generate assertion if one of alternatives
3387 is known to always be false. */
3388 if (val == min)
3390 *low_code = (enum tree_code) 0;
3391 *high_code = GT_EXPR;
3393 else if ((val | inv_mask) == max)
3395 *low_code = LT_EXPR;
3396 *high_code = (enum tree_code) 0;
3398 else
3399 return false;
3402 *new_name = t;
3403 *low = wide_int_to_tree (type, val);
3404 *high = wide_int_to_tree (type, val | inv_mask);
3406 return true;
3409 /* Try to register an edge assertion for SSA name NAME on edge E for
3410 the condition COND contributing to the conditional jump pointed to by
3411 SI. */
3413 void
3414 register_edge_assert_for (tree name, edge e,
3415 enum tree_code cond_code, tree cond_op0,
3416 tree cond_op1, vec<assert_info> &asserts)
3418 tree val;
3419 enum tree_code comp_code;
3420 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3422 /* Do not attempt to infer anything in names that flow through
3423 abnormal edges. */
3424 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3425 return;
3427 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3428 cond_op0, cond_op1,
3429 is_else_edge,
3430 &comp_code, &val))
3431 return;
3433 /* Register ASSERT_EXPRs for name. */
3434 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
3435 cond_op1, is_else_edge, asserts);
3438 /* If COND is effectively an equality test of an SSA_NAME against
3439 the value zero or one, then we may be able to assert values
3440 for SSA_NAMEs which flow into COND. */
3442 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
3443 statement of NAME we can assert both operands of the BIT_AND_EXPR
3444 have nonzero value. */
3445 if (((comp_code == EQ_EXPR && integer_onep (val))
3446 || (comp_code == NE_EXPR && integer_zerop (val))))
3448 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3450 if (is_gimple_assign (def_stmt)
3451 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
3453 tree op0 = gimple_assign_rhs1 (def_stmt);
3454 tree op1 = gimple_assign_rhs2 (def_stmt);
3455 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
3456 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
3460 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
3461 statement of NAME we can assert both operands of the BIT_IOR_EXPR
3462 have zero value. */
3463 if (((comp_code == EQ_EXPR && integer_zerop (val))
3464 || (comp_code == NE_EXPR && integer_onep (val))))
3466 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3468 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3469 necessarily zero value, or if type-precision is one. */
3470 if (is_gimple_assign (def_stmt)
3471 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
3472 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
3473 || comp_code == EQ_EXPR)))
3475 tree op0 = gimple_assign_rhs1 (def_stmt);
3476 tree op1 = gimple_assign_rhs2 (def_stmt);
3477 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
3478 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
3482 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
3483 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
3484 && TREE_CODE (val) == INTEGER_CST)
3486 enum tree_code low_code, high_code;
3487 tree low, high;
3488 if (is_masked_range_test (name, val, comp_code, &name, &low,
3489 &low_code, &high, &high_code))
3491 if (low_code != ERROR_MARK)
3492 register_edge_assert_for_2 (name, e, low_code, name,
3493 low, /*invert*/false, asserts);
3494 if (high_code != ERROR_MARK)
3495 register_edge_assert_for_2 (name, e, high_code, name,
3496 high, /*invert*/false, asserts);
3501 /* Finish found ASSERTS for E and register them at GSI. */
3503 static void
3504 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
3505 vec<assert_info> &asserts)
3507 for (unsigned i = 0; i < asserts.length (); ++i)
3508 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3509 reachable from E. */
3510 if (live_on_edge (e, asserts[i].name))
3511 register_new_assert_for (asserts[i].name, asserts[i].expr,
3512 asserts[i].comp_code, asserts[i].val,
3513 NULL, e, gsi);
3518 /* Determine whether the outgoing edges of BB should receive an
3519 ASSERT_EXPR for each of the operands of BB's LAST statement.
3520 The last statement of BB must be a COND_EXPR.
3522 If any of the sub-graphs rooted at BB have an interesting use of
3523 the predicate operands, an assert location node is added to the
3524 list of assertions for the corresponding operands. */
3526 static void
3527 find_conditional_asserts (basic_block bb, gcond *last)
3529 gimple_stmt_iterator bsi;
3530 tree op;
3531 edge_iterator ei;
3532 edge e;
3533 ssa_op_iter iter;
3535 bsi = gsi_for_stmt (last);
3537 /* Look for uses of the operands in each of the sub-graphs
3538 rooted at BB. We need to check each of the outgoing edges
3539 separately, so that we know what kind of ASSERT_EXPR to
3540 insert. */
3541 FOR_EACH_EDGE (e, ei, bb->succs)
3543 if (e->dest == bb)
3544 continue;
3546 /* Register the necessary assertions for each operand in the
3547 conditional predicate. */
3548 auto_vec<assert_info, 8> asserts;
3549 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3550 register_edge_assert_for (op, e,
3551 gimple_cond_code (last),
3552 gimple_cond_lhs (last),
3553 gimple_cond_rhs (last), asserts);
3554 finish_register_edge_assert_for (e, bsi, asserts);
3558 struct case_info
3560 tree expr;
3561 basic_block bb;
3564 /* Compare two case labels sorting first by the destination bb index
3565 and then by the case value. */
3567 static int
3568 compare_case_labels (const void *p1, const void *p2)
3570 const struct case_info *ci1 = (const struct case_info *) p1;
3571 const struct case_info *ci2 = (const struct case_info *) p2;
3572 int idx1 = ci1->bb->index;
3573 int idx2 = ci2->bb->index;
3575 if (idx1 < idx2)
3576 return -1;
3577 else if (idx1 == idx2)
3579 /* Make sure the default label is first in a group. */
3580 if (!CASE_LOW (ci1->expr))
3581 return -1;
3582 else if (!CASE_LOW (ci2->expr))
3583 return 1;
3584 else
3585 return tree_int_cst_compare (CASE_LOW (ci1->expr),
3586 CASE_LOW (ci2->expr));
3588 else
3589 return 1;
3592 /* Determine whether the outgoing edges of BB should receive an
3593 ASSERT_EXPR for each of the operands of BB's LAST statement.
3594 The last statement of BB must be a SWITCH_EXPR.
3596 If any of the sub-graphs rooted at BB have an interesting use of
3597 the predicate operands, an assert location node is added to the
3598 list of assertions for the corresponding operands. */
3600 static void
3601 find_switch_asserts (basic_block bb, gswitch *last)
3603 gimple_stmt_iterator bsi;
3604 tree op;
3605 edge e;
3606 struct case_info *ci;
3607 size_t n = gimple_switch_num_labels (last);
3608 #if GCC_VERSION >= 4000
3609 unsigned int idx;
3610 #else
3611 /* Work around GCC 3.4 bug (PR 37086). */
3612 volatile unsigned int idx;
3613 #endif
3615 bsi = gsi_for_stmt (last);
3616 op = gimple_switch_index (last);
3617 if (TREE_CODE (op) != SSA_NAME)
3618 return;
3620 /* Build a vector of case labels sorted by destination label. */
3621 ci = XNEWVEC (struct case_info, n);
3622 for (idx = 0; idx < n; ++idx)
3624 ci[idx].expr = gimple_switch_label (last, idx);
3625 ci[idx].bb = label_to_block (cfun, CASE_LABEL (ci[idx].expr));
3627 edge default_edge = find_edge (bb, ci[0].bb);
3628 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
3630 for (idx = 0; idx < n; ++idx)
3632 tree min, max;
3633 tree cl = ci[idx].expr;
3634 basic_block cbb = ci[idx].bb;
3636 min = CASE_LOW (cl);
3637 max = CASE_HIGH (cl);
3639 /* If there are multiple case labels with the same destination
3640 we need to combine them to a single value range for the edge. */
3641 if (idx + 1 < n && cbb == ci[idx + 1].bb)
3643 /* Skip labels until the last of the group. */
3644 do {
3645 ++idx;
3646 } while (idx < n && cbb == ci[idx].bb);
3647 --idx;
3649 /* Pick up the maximum of the case label range. */
3650 if (CASE_HIGH (ci[idx].expr))
3651 max = CASE_HIGH (ci[idx].expr);
3652 else
3653 max = CASE_LOW (ci[idx].expr);
3656 /* Can't extract a useful assertion out of a range that includes the
3657 default label. */
3658 if (min == NULL_TREE)
3659 continue;
3661 /* Find the edge to register the assert expr on. */
3662 e = find_edge (bb, cbb);
3664 /* Register the necessary assertions for the operand in the
3665 SWITCH_EXPR. */
3666 auto_vec<assert_info, 8> asserts;
3667 register_edge_assert_for (op, e,
3668 max ? GE_EXPR : EQ_EXPR,
3669 op, fold_convert (TREE_TYPE (op), min),
3670 asserts);
3671 if (max)
3672 register_edge_assert_for (op, e, LE_EXPR, op,
3673 fold_convert (TREE_TYPE (op), max),
3674 asserts);
3675 finish_register_edge_assert_for (e, bsi, asserts);
3678 XDELETEVEC (ci);
3680 if (!live_on_edge (default_edge, op))
3681 return;
3683 /* Now register along the default label assertions that correspond to the
3684 anti-range of each label. */
3685 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
3686 if (insertion_limit == 0)
3687 return;
3689 /* We can't do this if the default case shares a label with another case. */
3690 tree default_cl = gimple_switch_default_label (last);
3691 for (idx = 1; idx < n; idx++)
3693 tree min, max;
3694 tree cl = gimple_switch_label (last, idx);
3695 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
3696 continue;
3698 min = CASE_LOW (cl);
3699 max = CASE_HIGH (cl);
3701 /* Combine contiguous case ranges to reduce the number of assertions
3702 to insert. */
3703 for (idx = idx + 1; idx < n; idx++)
3705 tree next_min, next_max;
3706 tree next_cl = gimple_switch_label (last, idx);
3707 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
3708 break;
3710 next_min = CASE_LOW (next_cl);
3711 next_max = CASE_HIGH (next_cl);
3713 wide_int difference = (wi::to_wide (next_min)
3714 - wi::to_wide (max ? max : min));
3715 if (wi::eq_p (difference, 1))
3716 max = next_max ? next_max : next_min;
3717 else
3718 break;
3720 idx--;
3722 if (max == NULL_TREE)
3724 /* Register the assertion OP != MIN. */
3725 auto_vec<assert_info, 8> asserts;
3726 min = fold_convert (TREE_TYPE (op), min);
3727 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
3728 asserts);
3729 finish_register_edge_assert_for (default_edge, bsi, asserts);
3731 else
3733 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3734 which will give OP the anti-range ~[MIN,MAX]. */
3735 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
3736 min = fold_convert (TREE_TYPE (uop), min);
3737 max = fold_convert (TREE_TYPE (uop), max);
3739 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
3740 tree rhs = int_const_binop (MINUS_EXPR, max, min);
3741 register_new_assert_for (op, lhs, GT_EXPR, rhs,
3742 NULL, default_edge, bsi);
3745 if (--insertion_limit == 0)
3746 break;
3751 /* Traverse all the statements in block BB looking for statements that
3752 may generate useful assertions for the SSA names in their operand.
3753 If a statement produces a useful assertion A for name N_i, then the
3754 list of assertions already generated for N_i is scanned to
3755 determine if A is actually needed.
3757 If N_i already had the assertion A at a location dominating the
3758 current location, then nothing needs to be done. Otherwise, the
3759 new location for A is recorded instead.
3761 1- For every statement S in BB, all the variables used by S are
3762 added to bitmap FOUND_IN_SUBGRAPH.
3764 2- If statement S uses an operand N in a way that exposes a known
3765 value range for N, then if N was not already generated by an
3766 ASSERT_EXPR, create a new assert location for N. For instance,
3767 if N is a pointer and the statement dereferences it, we can
3768 assume that N is not NULL.
3770 3- COND_EXPRs are a special case of #2. We can derive range
3771 information from the predicate but need to insert different
3772 ASSERT_EXPRs for each of the sub-graphs rooted at the
3773 conditional block. If the last statement of BB is a conditional
3774 expression of the form 'X op Y', then
3776 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3778 b) If the conditional is the only entry point to the sub-graph
3779 corresponding to the THEN_CLAUSE, recurse into it. On
3780 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3781 an ASSERT_EXPR is added for the corresponding variable.
3783 c) Repeat step (b) on the ELSE_CLAUSE.
3785 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3787 For instance,
3789 if (a == 9)
3790 b = a;
3791 else
3792 b = c + 1;
3794 In this case, an assertion on the THEN clause is useful to
3795 determine that 'a' is always 9 on that edge. However, an assertion
3796 on the ELSE clause would be unnecessary.
3798 4- If BB does not end in a conditional expression, then we recurse
3799 into BB's dominator children.
3801 At the end of the recursive traversal, every SSA name will have a
3802 list of locations where ASSERT_EXPRs should be added. When a new
3803 location for name N is found, it is registered by calling
3804 register_new_assert_for. That function keeps track of all the
3805 registered assertions to prevent adding unnecessary assertions.
3806 For instance, if a pointer P_4 is dereferenced more than once in a
3807 dominator tree, only the location dominating all the dereference of
3808 P_4 will receive an ASSERT_EXPR. */
3810 static void
3811 find_assert_locations_1 (basic_block bb, sbitmap live)
3813 gimple *last;
3815 last = last_stmt (bb);
3817 /* If BB's last statement is a conditional statement involving integer
3818 operands, determine if we need to add ASSERT_EXPRs. */
3819 if (last
3820 && gimple_code (last) == GIMPLE_COND
3821 && !fp_predicate (last)
3822 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3823 find_conditional_asserts (bb, as_a <gcond *> (last));
3825 /* If BB's last statement is a switch statement involving integer
3826 operands, determine if we need to add ASSERT_EXPRs. */
3827 if (last
3828 && gimple_code (last) == GIMPLE_SWITCH
3829 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3830 find_switch_asserts (bb, as_a <gswitch *> (last));
3832 /* Traverse all the statements in BB marking used names and looking
3833 for statements that may infer assertions for their used operands. */
3834 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
3835 gsi_prev (&si))
3837 gimple *stmt;
3838 tree op;
3839 ssa_op_iter i;
3841 stmt = gsi_stmt (si);
3843 if (is_gimple_debug (stmt))
3844 continue;
3846 /* See if we can derive an assertion for any of STMT's operands. */
3847 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3849 tree value;
3850 enum tree_code comp_code;
3852 /* If op is not live beyond this stmt, do not bother to insert
3853 asserts for it. */
3854 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
3855 continue;
3857 /* If OP is used in such a way that we can infer a value
3858 range for it, and we don't find a previous assertion for
3859 it, create a new assertion location node for OP. */
3860 if (infer_value_range (stmt, op, &comp_code, &value))
3862 /* If we are able to infer a nonzero value range for OP,
3863 then walk backwards through the use-def chain to see if OP
3864 was set via a typecast.
3866 If so, then we can also infer a nonzero value range
3867 for the operand of the NOP_EXPR. */
3868 if (comp_code == NE_EXPR && integer_zerop (value))
3870 tree t = op;
3871 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
3873 while (is_gimple_assign (def_stmt)
3874 && CONVERT_EXPR_CODE_P
3875 (gimple_assign_rhs_code (def_stmt))
3876 && TREE_CODE
3877 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
3878 && POINTER_TYPE_P
3879 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
3881 t = gimple_assign_rhs1 (def_stmt);
3882 def_stmt = SSA_NAME_DEF_STMT (t);
3884 /* Note we want to register the assert for the
3885 operand of the NOP_EXPR after SI, not after the
3886 conversion. */
3887 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
3888 register_new_assert_for (t, t, comp_code, value,
3889 bb, NULL, si);
3893 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
3897 /* Update live. */
3898 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3899 bitmap_set_bit (live, SSA_NAME_VERSION (op));
3900 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
3901 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
3904 /* Traverse all PHI nodes in BB, updating live. */
3905 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
3906 gsi_next (&si))
3908 use_operand_p arg_p;
3909 ssa_op_iter i;
3910 gphi *phi = si.phi ();
3911 tree res = gimple_phi_result (phi);
3913 if (virtual_operand_p (res))
3914 continue;
3916 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3918 tree arg = USE_FROM_PTR (arg_p);
3919 if (TREE_CODE (arg) == SSA_NAME)
3920 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
3923 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
3927 /* Do an RPO walk over the function computing SSA name liveness
3928 on-the-fly and deciding on assert expressions to insert. */
3930 static void
3931 find_assert_locations (void)
3933 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3934 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3935 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3936 int rpo_cnt, i;
3938 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
3939 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3940 for (i = 0; i < rpo_cnt; ++i)
3941 bb_rpo[rpo[i]] = i;
3943 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3944 the order we compute liveness and insert asserts we otherwise
3945 fail to insert asserts into the loop latch. */
3946 loop_p loop;
3947 FOR_EACH_LOOP (loop, 0)
3949 i = loop->latch->index;
3950 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
3951 for (gphi_iterator gsi = gsi_start_phis (loop->header);
3952 !gsi_end_p (gsi); gsi_next (&gsi))
3954 gphi *phi = gsi.phi ();
3955 if (virtual_operand_p (gimple_phi_result (phi)))
3956 continue;
3957 tree arg = gimple_phi_arg_def (phi, j);
3958 if (TREE_CODE (arg) == SSA_NAME)
3960 if (live[i] == NULL)
3962 live[i] = sbitmap_alloc (num_ssa_names);
3963 bitmap_clear (live[i]);
3965 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
3970 for (i = rpo_cnt - 1; i >= 0; --i)
3972 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3973 edge e;
3974 edge_iterator ei;
3976 if (!live[rpo[i]])
3978 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
3979 bitmap_clear (live[rpo[i]]);
3982 /* Process BB and update the live information with uses in
3983 this block. */
3984 find_assert_locations_1 (bb, live[rpo[i]]);
3986 /* Merge liveness into the predecessor blocks and free it. */
3987 if (!bitmap_empty_p (live[rpo[i]]))
3989 int pred_rpo = i;
3990 FOR_EACH_EDGE (e, ei, bb->preds)
3992 int pred = e->src->index;
3993 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
3994 continue;
3996 if (!live[pred])
3998 live[pred] = sbitmap_alloc (num_ssa_names);
3999 bitmap_clear (live[pred]);
4001 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
4003 if (bb_rpo[pred] < pred_rpo)
4004 pred_rpo = bb_rpo[pred];
4007 /* Record the RPO number of the last visited block that needs
4008 live information from this block. */
4009 last_rpo[rpo[i]] = pred_rpo;
4011 else
4013 sbitmap_free (live[rpo[i]]);
4014 live[rpo[i]] = NULL;
4017 /* We can free all successors live bitmaps if all their
4018 predecessors have been visited already. */
4019 FOR_EACH_EDGE (e, ei, bb->succs)
4020 if (last_rpo[e->dest->index] == i
4021 && live[e->dest->index])
4023 sbitmap_free (live[e->dest->index]);
4024 live[e->dest->index] = NULL;
4028 XDELETEVEC (rpo);
4029 XDELETEVEC (bb_rpo);
4030 XDELETEVEC (last_rpo);
4031 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
4032 if (live[i])
4033 sbitmap_free (live[i]);
4034 XDELETEVEC (live);
4037 /* Create an ASSERT_EXPR for NAME and insert it in the location
4038 indicated by LOC. Return true if we made any edge insertions. */
4040 static bool
4041 process_assert_insertions_for (tree name, assert_locus *loc)
4043 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4044 gimple *stmt;
4045 tree cond;
4046 gimple *assert_stmt;
4047 edge_iterator ei;
4048 edge e;
4050 /* If we have X <=> X do not insert an assert expr for that. */
4051 if (loc->expr == loc->val)
4052 return false;
4054 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4055 assert_stmt = build_assert_expr_for (cond, name);
4056 if (loc->e)
4058 /* We have been asked to insert the assertion on an edge. This
4059 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4060 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4061 || (gimple_code (gsi_stmt (loc->si))
4062 == GIMPLE_SWITCH));
4064 gsi_insert_on_edge (loc->e, assert_stmt);
4065 return true;
4068 /* If the stmt iterator points at the end then this is an insertion
4069 at the beginning of a block. */
4070 if (gsi_end_p (loc->si))
4072 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
4073 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
4074 return false;
4077 /* Otherwise, we can insert right after LOC->SI iff the
4078 statement must not be the last statement in the block. */
4079 stmt = gsi_stmt (loc->si);
4080 if (!stmt_ends_bb_p (stmt))
4082 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4083 return false;
4086 /* If STMT must be the last statement in BB, we can only insert new
4087 assertions on the non-abnormal edge out of BB. Note that since
4088 STMT is not control flow, there may only be one non-abnormal/eh edge
4089 out of BB. */
4090 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4091 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4093 gsi_insert_on_edge (e, assert_stmt);
4094 return true;
4097 gcc_unreachable ();
4100 /* Qsort helper for sorting assert locations. If stable is true, don't
4101 use iterative_hash_expr because it can be unstable for -fcompare-debug,
4102 on the other side some pointers might be NULL. */
4104 template <bool stable>
4105 static int
4106 compare_assert_loc (const void *pa, const void *pb)
4108 assert_locus * const a = *(assert_locus * const *)pa;
4109 assert_locus * const b = *(assert_locus * const *)pb;
4111 /* If stable, some asserts might be optimized away already, sort
4112 them last. */
4113 if (stable)
4115 if (a == NULL)
4116 return b != NULL;
4117 else if (b == NULL)
4118 return -1;
4121 if (a->e == NULL && b->e != NULL)
4122 return 1;
4123 else if (a->e != NULL && b->e == NULL)
4124 return -1;
4126 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
4127 no need to test both a->e and b->e. */
4129 /* Sort after destination index. */
4130 if (a->e == NULL)
4132 else if (a->e->dest->index > b->e->dest->index)
4133 return 1;
4134 else if (a->e->dest->index < b->e->dest->index)
4135 return -1;
4137 /* Sort after comp_code. */
4138 if (a->comp_code > b->comp_code)
4139 return 1;
4140 else if (a->comp_code < b->comp_code)
4141 return -1;
4143 hashval_t ha, hb;
4145 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
4146 uses DECL_UID of the VAR_DECL, so sorting might differ between
4147 -g and -g0. When doing the removal of redundant assert exprs
4148 and commonization to successors, this does not matter, but for
4149 the final sort needs to be stable. */
4150 if (stable)
4152 ha = 0;
4153 hb = 0;
4155 else
4157 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
4158 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
4161 /* Break the tie using hashing and source/bb index. */
4162 if (ha == hb)
4163 return (a->e != NULL
4164 ? a->e->src->index - b->e->src->index
4165 : a->bb->index - b->bb->index);
4166 return ha > hb ? 1 : -1;
4169 /* Process all the insertions registered for every name N_i registered
4170 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4171 found in ASSERTS_FOR[i]. */
4173 static void
4174 process_assert_insertions (void)
4176 unsigned i;
4177 bitmap_iterator bi;
4178 bool update_edges_p = false;
4179 int num_asserts = 0;
4181 if (dump_file && (dump_flags & TDF_DETAILS))
4182 dump_all_asserts (dump_file);
4184 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4186 assert_locus *loc = asserts_for[i];
4187 gcc_assert (loc);
4189 auto_vec<assert_locus *, 16> asserts;
4190 for (; loc; loc = loc->next)
4191 asserts.safe_push (loc);
4192 asserts.qsort (compare_assert_loc<false>);
4194 /* Push down common asserts to successors and remove redundant ones. */
4195 unsigned ecnt = 0;
4196 assert_locus *common = NULL;
4197 unsigned commonj = 0;
4198 for (unsigned j = 0; j < asserts.length (); ++j)
4200 loc = asserts[j];
4201 if (! loc->e)
4202 common = NULL;
4203 else if (! common
4204 || loc->e->dest != common->e->dest
4205 || loc->comp_code != common->comp_code
4206 || ! operand_equal_p (loc->val, common->val, 0)
4207 || ! operand_equal_p (loc->expr, common->expr, 0))
4209 commonj = j;
4210 common = loc;
4211 ecnt = 1;
4213 else if (loc->e == asserts[j-1]->e)
4215 /* Remove duplicate asserts. */
4216 if (commonj == j - 1)
4218 commonj = j;
4219 common = loc;
4221 free (asserts[j-1]);
4222 asserts[j-1] = NULL;
4224 else
4226 ecnt++;
4227 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
4229 /* We have the same assertion on all incoming edges of a BB.
4230 Insert it at the beginning of that block. */
4231 loc->bb = loc->e->dest;
4232 loc->e = NULL;
4233 loc->si = gsi_none ();
4234 common = NULL;
4235 /* Clear asserts commoned. */
4236 for (; commonj != j; ++commonj)
4237 if (asserts[commonj])
4239 free (asserts[commonj]);
4240 asserts[commonj] = NULL;
4246 /* The asserts vector sorting above might be unstable for
4247 -fcompare-debug, sort again to ensure a stable sort. */
4248 asserts.qsort (compare_assert_loc<true>);
4249 for (unsigned j = 0; j < asserts.length (); ++j)
4251 loc = asserts[j];
4252 if (! loc)
4253 break;
4254 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4255 num_asserts++;
4256 free (loc);
4260 if (update_edges_p)
4261 gsi_commit_edge_inserts ();
4263 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4264 num_asserts);
4268 /* Traverse the flowgraph looking for conditional jumps to insert range
4269 expressions. These range expressions are meant to provide information
4270 to optimizations that need to reason in terms of value ranges. They
4271 will not be expanded into RTL. For instance, given:
4273 x = ...
4274 y = ...
4275 if (x < y)
4276 y = x - 2;
4277 else
4278 x = y + 3;
4280 this pass will transform the code into:
4282 x = ...
4283 y = ...
4284 if (x < y)
4286 x = ASSERT_EXPR <x, x < y>
4287 y = x - 2
4289 else
4291 y = ASSERT_EXPR <y, x >= y>
4292 x = y + 3
4295 The idea is that once copy and constant propagation have run, other
4296 optimizations will be able to determine what ranges of values can 'x'
4297 take in different paths of the code, simply by checking the reaching
4298 definition of 'x'. */
4300 static void
4301 insert_range_assertions (void)
4303 need_assert_for = BITMAP_ALLOC (NULL);
4304 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
4306 calculate_dominance_info (CDI_DOMINATORS);
4308 find_assert_locations ();
4309 if (!bitmap_empty_p (need_assert_for))
4311 process_assert_insertions ();
4312 update_ssa (TODO_update_ssa_no_phi);
4315 if (dump_file && (dump_flags & TDF_DETAILS))
4317 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4318 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4321 free (asserts_for);
4322 BITMAP_FREE (need_assert_for);
4325 class vrp_prop : public ssa_propagation_engine
4327 public:
4328 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
4329 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
4331 void vrp_initialize (void);
4332 void vrp_finalize (bool);
4333 void check_all_array_refs (void);
4334 void check_array_ref (location_t, tree, bool);
4335 void check_mem_ref (location_t, tree, bool);
4336 void search_for_addr_array (tree, location_t);
4338 class vr_values vr_values;
4339 /* Temporary delegator to minimize code churn. */
4340 value_range *get_value_range (const_tree op)
4341 { return vr_values.get_value_range (op); }
4342 void set_defs_to_varying (gimple *stmt)
4343 { return vr_values.set_defs_to_varying (stmt); }
4344 void extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
4345 tree *output_p, value_range *vr)
4346 { vr_values.extract_range_from_stmt (stmt, taken_edge_p, output_p, vr); }
4347 bool update_value_range (const_tree op, value_range *vr)
4348 { return vr_values.update_value_range (op, vr); }
4349 void extract_range_basic (value_range *vr, gimple *stmt)
4350 { vr_values.extract_range_basic (vr, stmt); }
4351 void extract_range_from_phi_node (gphi *phi, value_range *vr)
4352 { vr_values.extract_range_from_phi_node (phi, vr); }
4354 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4355 and "struct" hacks. If VRP can determine that the
4356 array subscript is a constant, check if it is outside valid
4357 range. If the array subscript is a RANGE, warn if it is
4358 non-overlapping with valid range.
4359 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4361 void
4362 vrp_prop::check_array_ref (location_t location, tree ref,
4363 bool ignore_off_by_one)
4365 const value_range *vr = NULL;
4366 tree low_sub, up_sub;
4367 tree low_bound, up_bound, up_bound_p1;
4369 if (TREE_NO_WARNING (ref))
4370 return;
4372 low_sub = up_sub = TREE_OPERAND (ref, 1);
4373 up_bound = array_ref_up_bound (ref);
4375 if (!up_bound
4376 || TREE_CODE (up_bound) != INTEGER_CST
4377 || (warn_array_bounds < 2
4378 && array_at_struct_end_p (ref)))
4380 /* Accesses to trailing arrays via pointers may access storage
4381 beyond the types array bounds. For such arrays, or for flexible
4382 array members, as well as for other arrays of an unknown size,
4383 replace the upper bound with a more permissive one that assumes
4384 the size of the largest object is PTRDIFF_MAX. */
4385 tree eltsize = array_ref_element_size (ref);
4387 if (TREE_CODE (eltsize) != INTEGER_CST
4388 || integer_zerop (eltsize))
4390 up_bound = NULL_TREE;
4391 up_bound_p1 = NULL_TREE;
4393 else
4395 tree maxbound = TYPE_MAX_VALUE (ptrdiff_type_node);
4396 tree arg = TREE_OPERAND (ref, 0);
4397 poly_int64 off;
4399 if (get_addr_base_and_unit_offset (arg, &off) && known_gt (off, 0))
4400 maxbound = wide_int_to_tree (sizetype,
4401 wi::sub (wi::to_wide (maxbound),
4402 off));
4403 else
4404 maxbound = fold_convert (sizetype, maxbound);
4406 up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize);
4408 up_bound = int_const_binop (MINUS_EXPR, up_bound_p1,
4409 build_int_cst (ptrdiff_type_node, 1));
4412 else
4413 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
4414 build_int_cst (TREE_TYPE (up_bound), 1));
4416 low_bound = array_ref_low_bound (ref);
4418 tree artype = TREE_TYPE (TREE_OPERAND (ref, 0));
4420 bool warned = false;
4422 /* Empty array. */
4423 if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1))
4424 warned = warning_at (location, OPT_Warray_bounds,
4425 "array subscript %E is above array bounds of %qT",
4426 low_bound, artype);
4428 if (TREE_CODE (low_sub) == SSA_NAME)
4430 vr = get_value_range (low_sub);
4431 if (!vr->undefined_p () && !vr->varying_p ())
4433 low_sub = vr->kind () == VR_RANGE ? vr->max () : vr->min ();
4434 up_sub = vr->kind () == VR_RANGE ? vr->min () : vr->max ();
4438 if (vr && vr->kind () == VR_ANTI_RANGE)
4440 if (up_bound
4441 && TREE_CODE (up_sub) == INTEGER_CST
4442 && (ignore_off_by_one
4443 ? tree_int_cst_lt (up_bound, up_sub)
4444 : tree_int_cst_le (up_bound, up_sub))
4445 && TREE_CODE (low_sub) == INTEGER_CST
4446 && tree_int_cst_le (low_sub, low_bound))
4447 warned = warning_at (location, OPT_Warray_bounds,
4448 "array subscript [%E, %E] is outside "
4449 "array bounds of %qT",
4450 low_sub, up_sub, artype);
4452 else if (up_bound
4453 && TREE_CODE (up_sub) == INTEGER_CST
4454 && (ignore_off_by_one
4455 ? !tree_int_cst_le (up_sub, up_bound_p1)
4456 : !tree_int_cst_le (up_sub, up_bound)))
4458 if (dump_file && (dump_flags & TDF_DETAILS))
4460 fprintf (dump_file, "Array bound warning for ");
4461 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4462 fprintf (dump_file, "\n");
4464 warned = warning_at (location, OPT_Warray_bounds,
4465 "array subscript %E is above array bounds of %qT",
4466 up_sub, artype);
4468 else if (TREE_CODE (low_sub) == INTEGER_CST
4469 && tree_int_cst_lt (low_sub, low_bound))
4471 if (dump_file && (dump_flags & TDF_DETAILS))
4473 fprintf (dump_file, "Array bound warning for ");
4474 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4475 fprintf (dump_file, "\n");
4477 warned = warning_at (location, OPT_Warray_bounds,
4478 "array subscript %E is below array bounds of %qT",
4479 low_sub, artype);
4482 if (warned)
4484 ref = TREE_OPERAND (ref, 0);
4486 if (DECL_P (ref))
4487 inform (DECL_SOURCE_LOCATION (ref), "while referencing %qD", ref);
4489 TREE_NO_WARNING (ref) = 1;
4493 /* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
4494 references to string constants. If VRP can determine that the array
4495 subscript is a constant, check if it is outside valid range.
4496 If the array subscript is a RANGE, warn if it is non-overlapping
4497 with valid range.
4498 IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
4499 (used to allow one-past-the-end indices for code that takes
4500 the address of the just-past-the-end element of an array). */
4502 void
4503 vrp_prop::check_mem_ref (location_t location, tree ref,
4504 bool ignore_off_by_one)
4506 if (TREE_NO_WARNING (ref))
4507 return;
4509 tree arg = TREE_OPERAND (ref, 0);
4510 /* The constant and variable offset of the reference. */
4511 tree cstoff = TREE_OPERAND (ref, 1);
4512 tree varoff = NULL_TREE;
4514 const offset_int maxobjsize = tree_to_shwi (max_object_size ());
4516 /* The array or string constant bounds in bytes. Initially set
4517 to [-MAXOBJSIZE - 1, MAXOBJSIZE] until a tighter bound is
4518 determined. */
4519 offset_int arrbounds[2] = { -maxobjsize - 1, maxobjsize };
4521 /* The minimum and maximum intermediate offset. For a reference
4522 to be valid, not only does the final offset/subscript must be
4523 in bounds but all intermediate offsets should be as well.
4524 GCC may be able to deal gracefully with such out-of-bounds
4525 offsets so the checking is only enbaled at -Warray-bounds=2
4526 where it may help detect bugs in uses of the intermediate
4527 offsets that could otherwise not be detectable. */
4528 offset_int ioff = wi::to_offset (fold_convert (ptrdiff_type_node, cstoff));
4529 offset_int extrema[2] = { 0, wi::abs (ioff) };
4531 /* The range of the byte offset into the reference. */
4532 offset_int offrange[2] = { 0, 0 };
4534 const value_range *vr = NULL;
4536 /* Determine the offsets and increment OFFRANGE for the bounds of each.
4537 The loop computes the the range of the final offset for expressions
4538 such as (A + i0 + ... + iN)[CSTOFF] where i0 through iN are SSA_NAMEs
4539 in some range. */
4540 while (TREE_CODE (arg) == SSA_NAME)
4542 gimple *def = SSA_NAME_DEF_STMT (arg);
4543 if (!is_gimple_assign (def))
4544 break;
4546 tree_code code = gimple_assign_rhs_code (def);
4547 if (code == POINTER_PLUS_EXPR)
4549 arg = gimple_assign_rhs1 (def);
4550 varoff = gimple_assign_rhs2 (def);
4552 else if (code == ASSERT_EXPR)
4554 arg = TREE_OPERAND (gimple_assign_rhs1 (def), 0);
4555 continue;
4557 else
4558 return;
4560 /* VAROFF should always be a SSA_NAME here (and not even
4561 INTEGER_CST) but there's no point in taking chances. */
4562 if (TREE_CODE (varoff) != SSA_NAME)
4563 break;
4565 vr = get_value_range (varoff);
4566 if (!vr || vr->undefined_p () || vr->varying_p ())
4567 break;
4569 if (!vr->constant_p ())
4570 break;
4572 if (vr->kind () == VR_RANGE)
4574 if (tree_int_cst_lt (vr->min (), vr->max ()))
4576 offset_int min
4577 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->min ()));
4578 offset_int max
4579 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->max ()));
4580 if (min < max)
4582 offrange[0] += min;
4583 offrange[1] += max;
4585 else
4587 offrange[0] += max;
4588 offrange[1] += min;
4591 else
4593 /* Conservatively add [-MAXOBJSIZE -1, MAXOBJSIZE]
4594 to OFFRANGE. */
4595 offrange[0] += arrbounds[0];
4596 offrange[1] += arrbounds[1];
4599 else
4601 /* For an anti-range, analogously to the above, conservatively
4602 add [-MAXOBJSIZE -1, MAXOBJSIZE] to OFFRANGE. */
4603 offrange[0] += arrbounds[0];
4604 offrange[1] += arrbounds[1];
4607 /* Keep track of the minimum and maximum offset. */
4608 if (offrange[1] < 0 && offrange[1] < extrema[0])
4609 extrema[0] = offrange[1];
4610 if (offrange[0] > 0 && offrange[0] > extrema[1])
4611 extrema[1] = offrange[0];
4613 if (offrange[0] < arrbounds[0])
4614 offrange[0] = arrbounds[0];
4616 if (offrange[1] > arrbounds[1])
4617 offrange[1] = arrbounds[1];
4620 if (TREE_CODE (arg) == ADDR_EXPR)
4622 arg = TREE_OPERAND (arg, 0);
4623 if (TREE_CODE (arg) != STRING_CST
4624 && TREE_CODE (arg) != VAR_DECL)
4625 return;
4627 else
4628 return;
4630 /* The type of the object being referred to. It can be an array,
4631 string literal, or a non-array type when the MEM_REF represents
4632 a reference/subscript via a pointer to an object that is not
4633 an element of an array. References to members of structs and
4634 unions are excluded because MEM_REF doesn't make it possible
4635 to identify the member where the reference originated.
4636 Incomplete types are excluded as well because their size is
4637 not known. */
4638 tree reftype = TREE_TYPE (arg);
4639 if (POINTER_TYPE_P (reftype)
4640 || !COMPLETE_TYPE_P (reftype)
4641 || TREE_CODE (TYPE_SIZE_UNIT (reftype)) != INTEGER_CST
4642 || RECORD_OR_UNION_TYPE_P (reftype))
4643 return;
4645 offset_int eltsize;
4646 if (TREE_CODE (reftype) == ARRAY_TYPE)
4648 eltsize = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (reftype)));
4650 if (tree dom = TYPE_DOMAIN (reftype))
4652 tree bnds[] = { TYPE_MIN_VALUE (dom), TYPE_MAX_VALUE (dom) };
4653 if (array_at_struct_end_p (arg)
4654 || !bnds[0] || !bnds[1])
4656 arrbounds[0] = 0;
4657 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4659 else
4661 arrbounds[0] = wi::to_offset (bnds[0]) * eltsize;
4662 arrbounds[1] = (wi::to_offset (bnds[1]) + 1) * eltsize;
4665 else
4667 arrbounds[0] = 0;
4668 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4671 if (TREE_CODE (ref) == MEM_REF)
4673 /* For MEM_REF determine a tighter bound of the non-array
4674 element type. */
4675 tree eltype = TREE_TYPE (reftype);
4676 while (TREE_CODE (eltype) == ARRAY_TYPE)
4677 eltype = TREE_TYPE (eltype);
4678 eltsize = wi::to_offset (TYPE_SIZE_UNIT (eltype));
4681 else
4683 eltsize = 1;
4684 arrbounds[0] = 0;
4685 arrbounds[1] = wi::to_offset (TYPE_SIZE_UNIT (reftype));
4688 offrange[0] += ioff;
4689 offrange[1] += ioff;
4691 /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
4692 is set (when taking the address of the one-past-last element
4693 of an array) but always use the stricter bound in diagnostics. */
4694 offset_int ubound = arrbounds[1];
4695 if (ignore_off_by_one)
4696 ubound += 1;
4698 if (offrange[0] >= ubound || offrange[1] < arrbounds[0])
4700 /* Treat a reference to a non-array object as one to an array
4701 of a single element. */
4702 if (TREE_CODE (reftype) != ARRAY_TYPE)
4703 reftype = build_array_type_nelts (reftype, 1);
4705 if (TREE_CODE (ref) == MEM_REF)
4707 /* Extract the element type out of MEM_REF and use its size
4708 to compute the index to print in the diagnostic; arrays
4709 in MEM_REF don't mean anything. */
4710 tree type = TREE_TYPE (ref);
4711 while (TREE_CODE (type) == ARRAY_TYPE)
4712 type = TREE_TYPE (type);
4713 tree size = TYPE_SIZE_UNIT (type);
4714 offrange[0] = offrange[0] / wi::to_offset (size);
4715 offrange[1] = offrange[1] / wi::to_offset (size);
4717 else
4719 /* For anything other than MEM_REF, compute the index to
4720 print in the diagnostic as the offset over element size. */
4721 offrange[0] = offrange[0] / eltsize;
4722 offrange[1] = offrange[1] / eltsize;
4725 bool warned;
4726 if (offrange[0] == offrange[1])
4727 warned = warning_at (location, OPT_Warray_bounds,
4728 "array subscript %wi is outside array bounds "
4729 "of %qT",
4730 offrange[0].to_shwi (), reftype);
4731 else
4732 warned = warning_at (location, OPT_Warray_bounds,
4733 "array subscript [%wi, %wi] is outside "
4734 "array bounds of %qT",
4735 offrange[0].to_shwi (),
4736 offrange[1].to_shwi (), reftype);
4737 if (warned && DECL_P (arg))
4738 inform (DECL_SOURCE_LOCATION (arg), "while referencing %qD", arg);
4740 TREE_NO_WARNING (ref) = 1;
4741 return;
4744 if (warn_array_bounds < 2)
4745 return;
4747 /* At level 2 check also intermediate offsets. */
4748 int i = 0;
4749 if (extrema[i] < -arrbounds[1] || extrema[i = 1] > ubound)
4751 HOST_WIDE_INT tmpidx = extrema[i].to_shwi () / eltsize.to_shwi ();
4753 warning_at (location, OPT_Warray_bounds,
4754 "intermediate array offset %wi is outside array bounds "
4755 "of %qT",
4756 tmpidx, reftype);
4757 TREE_NO_WARNING (ref) = 1;
4761 /* Searches if the expr T, located at LOCATION computes
4762 address of an ARRAY_REF, and call check_array_ref on it. */
4764 void
4765 vrp_prop::search_for_addr_array (tree t, location_t location)
4767 /* Check each ARRAY_REF and MEM_REF in the reference chain. */
4770 if (TREE_CODE (t) == ARRAY_REF)
4771 check_array_ref (location, t, true /*ignore_off_by_one*/);
4772 else if (TREE_CODE (t) == MEM_REF)
4773 check_mem_ref (location, t, true /*ignore_off_by_one*/);
4775 t = TREE_OPERAND (t, 0);
4777 while (handled_component_p (t) || TREE_CODE (t) == MEM_REF);
4779 if (TREE_CODE (t) != MEM_REF
4780 || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR
4781 || TREE_NO_WARNING (t))
4782 return;
4784 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4785 tree low_bound, up_bound, el_sz;
4786 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
4787 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
4788 || !TYPE_DOMAIN (TREE_TYPE (tem)))
4789 return;
4791 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4792 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4793 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
4794 if (!low_bound
4795 || TREE_CODE (low_bound) != INTEGER_CST
4796 || !up_bound
4797 || TREE_CODE (up_bound) != INTEGER_CST
4798 || !el_sz
4799 || TREE_CODE (el_sz) != INTEGER_CST)
4800 return;
4802 offset_int idx;
4803 if (!mem_ref_offset (t).is_constant (&idx))
4804 return;
4806 bool warned = false;
4807 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
4808 if (idx < 0)
4810 if (dump_file && (dump_flags & TDF_DETAILS))
4812 fprintf (dump_file, "Array bound warning for ");
4813 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4814 fprintf (dump_file, "\n");
4816 warned = warning_at (location, OPT_Warray_bounds,
4817 "array subscript %wi is below "
4818 "array bounds of %qT",
4819 idx.to_shwi (), TREE_TYPE (tem));
4821 else if (idx > (wi::to_offset (up_bound)
4822 - wi::to_offset (low_bound) + 1))
4824 if (dump_file && (dump_flags & TDF_DETAILS))
4826 fprintf (dump_file, "Array bound warning for ");
4827 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4828 fprintf (dump_file, "\n");
4830 warned = warning_at (location, OPT_Warray_bounds,
4831 "array subscript %wu is above "
4832 "array bounds of %qT",
4833 idx.to_uhwi (), TREE_TYPE (tem));
4836 if (warned)
4838 if (DECL_P (t))
4839 inform (DECL_SOURCE_LOCATION (t), "while referencing %qD", t);
4841 TREE_NO_WARNING (t) = 1;
4845 /* walk_tree() callback that checks if *TP is
4846 an ARRAY_REF inside an ADDR_EXPR (in which an array
4847 subscript one outside the valid range is allowed). Call
4848 check_array_ref for each ARRAY_REF found. The location is
4849 passed in DATA. */
4851 static tree
4852 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4854 tree t = *tp;
4855 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4856 location_t location;
4858 if (EXPR_HAS_LOCATION (t))
4859 location = EXPR_LOCATION (t);
4860 else
4861 location = gimple_location (wi->stmt);
4863 *walk_subtree = TRUE;
4865 vrp_prop *vrp_prop = (class vrp_prop *)wi->info;
4866 if (TREE_CODE (t) == ARRAY_REF)
4867 vrp_prop->check_array_ref (location, t, false /*ignore_off_by_one*/);
4868 else if (TREE_CODE (t) == MEM_REF)
4869 vrp_prop->check_mem_ref (location, t, false /*ignore_off_by_one*/);
4870 else if (TREE_CODE (t) == ADDR_EXPR)
4872 vrp_prop->search_for_addr_array (t, location);
4873 *walk_subtree = FALSE;
4876 return NULL_TREE;
4879 /* A dom_walker subclass for use by vrp_prop::check_all_array_refs,
4880 to walk over all statements of all reachable BBs and call
4881 check_array_bounds on them. */
4883 class check_array_bounds_dom_walker : public dom_walker
4885 public:
4886 check_array_bounds_dom_walker (vrp_prop *prop)
4887 : dom_walker (CDI_DOMINATORS,
4888 /* Discover non-executable edges, preserving EDGE_EXECUTABLE
4889 flags, so that we can merge in information on
4890 non-executable edges from vrp_folder . */
4891 REACHABLE_BLOCKS_PRESERVING_FLAGS),
4892 m_prop (prop) {}
4893 ~check_array_bounds_dom_walker () {}
4895 edge before_dom_children (basic_block) FINAL OVERRIDE;
4897 private:
4898 vrp_prop *m_prop;
4901 /* Implementation of dom_walker::before_dom_children.
4903 Walk over all statements of BB and call check_array_bounds on them,
4904 and determine if there's a unique successor edge. */
4906 edge
4907 check_array_bounds_dom_walker::before_dom_children (basic_block bb)
4909 gimple_stmt_iterator si;
4910 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4912 gimple *stmt = gsi_stmt (si);
4913 struct walk_stmt_info wi;
4914 if (!gimple_has_location (stmt)
4915 || is_gimple_debug (stmt))
4916 continue;
4918 memset (&wi, 0, sizeof (wi));
4920 wi.info = m_prop;
4922 walk_gimple_op (stmt, check_array_bounds, &wi);
4925 /* Determine if there's a unique successor edge, and if so, return
4926 that back to dom_walker, ensuring that we don't visit blocks that
4927 became unreachable during the VRP propagation
4928 (PR tree-optimization/83312). */
4929 return find_taken_edge (bb, NULL_TREE);
4932 /* Walk over all statements of all reachable BBs and call check_array_bounds
4933 on them. */
4935 void
4936 vrp_prop::check_all_array_refs ()
4938 check_array_bounds_dom_walker w (this);
4939 w.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4942 /* Return true if all imm uses of VAR are either in STMT, or
4943 feed (optionally through a chain of single imm uses) GIMPLE_COND
4944 in basic block COND_BB. */
4946 static bool
4947 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
4949 use_operand_p use_p, use2_p;
4950 imm_use_iterator iter;
4952 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
4953 if (USE_STMT (use_p) != stmt)
4955 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
4956 if (is_gimple_debug (use_stmt))
4957 continue;
4958 while (is_gimple_assign (use_stmt)
4959 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
4960 && single_imm_use (gimple_assign_lhs (use_stmt),
4961 &use2_p, &use_stmt2))
4962 use_stmt = use_stmt2;
4963 if (gimple_code (use_stmt) != GIMPLE_COND
4964 || gimple_bb (use_stmt) != cond_bb)
4965 return false;
4967 return true;
4970 /* Handle
4971 _4 = x_3 & 31;
4972 if (_4 != 0)
4973 goto <bb 6>;
4974 else
4975 goto <bb 7>;
4976 <bb 6>:
4977 __builtin_unreachable ();
4978 <bb 7>:
4979 x_5 = ASSERT_EXPR <x_3, ...>;
4980 If x_3 has no other immediate uses (checked by caller),
4981 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
4982 from the non-zero bitmask. */
4984 void
4985 maybe_set_nonzero_bits (edge e, tree var)
4987 basic_block cond_bb = e->src;
4988 gimple *stmt = last_stmt (cond_bb);
4989 tree cst;
4991 if (stmt == NULL
4992 || gimple_code (stmt) != GIMPLE_COND
4993 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
4994 ? EQ_EXPR : NE_EXPR)
4995 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
4996 || !integer_zerop (gimple_cond_rhs (stmt)))
4997 return;
4999 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
5000 if (!is_gimple_assign (stmt)
5001 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
5002 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
5003 return;
5004 if (gimple_assign_rhs1 (stmt) != var)
5006 gimple *stmt2;
5008 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
5009 return;
5010 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
5011 if (!gimple_assign_cast_p (stmt2)
5012 || gimple_assign_rhs1 (stmt2) != var
5013 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
5014 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
5015 != TYPE_PRECISION (TREE_TYPE (var))))
5016 return;
5018 cst = gimple_assign_rhs2 (stmt);
5019 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
5020 wi::to_wide (cst)));
5023 /* Convert range assertion expressions into the implied copies and
5024 copy propagate away the copies. Doing the trivial copy propagation
5025 here avoids the need to run the full copy propagation pass after
5026 VRP.
5028 FIXME, this will eventually lead to copy propagation removing the
5029 names that had useful range information attached to them. For
5030 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5031 then N_i will have the range [3, +INF].
5033 However, by converting the assertion into the implied copy
5034 operation N_i = N_j, we will then copy-propagate N_j into the uses
5035 of N_i and lose the range information. We may want to hold on to
5036 ASSERT_EXPRs a little while longer as the ranges could be used in
5037 things like jump threading.
5039 The problem with keeping ASSERT_EXPRs around is that passes after
5040 VRP need to handle them appropriately.
5042 Another approach would be to make the range information a first
5043 class property of the SSA_NAME so that it can be queried from
5044 any pass. This is made somewhat more complex by the need for
5045 multiple ranges to be associated with one SSA_NAME. */
5047 static void
5048 remove_range_assertions (void)
5050 basic_block bb;
5051 gimple_stmt_iterator si;
5052 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
5053 a basic block preceeded by GIMPLE_COND branching to it and
5054 __builtin_trap, -1 if not yet checked, 0 otherwise. */
5055 int is_unreachable;
5057 /* Note that the BSI iterator bump happens at the bottom of the
5058 loop and no bump is necessary if we're removing the statement
5059 referenced by the current BSI. */
5060 FOR_EACH_BB_FN (bb, cfun)
5061 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
5063 gimple *stmt = gsi_stmt (si);
5065 if (is_gimple_assign (stmt)
5066 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5068 tree lhs = gimple_assign_lhs (stmt);
5069 tree rhs = gimple_assign_rhs1 (stmt);
5070 tree var;
5072 var = ASSERT_EXPR_VAR (rhs);
5074 if (TREE_CODE (var) == SSA_NAME
5075 && !POINTER_TYPE_P (TREE_TYPE (lhs))
5076 && SSA_NAME_RANGE_INFO (lhs))
5078 if (is_unreachable == -1)
5080 is_unreachable = 0;
5081 if (single_pred_p (bb)
5082 && assert_unreachable_fallthru_edge_p
5083 (single_pred_edge (bb)))
5084 is_unreachable = 1;
5086 /* Handle
5087 if (x_7 >= 10 && x_7 < 20)
5088 __builtin_unreachable ();
5089 x_8 = ASSERT_EXPR <x_7, ...>;
5090 if the only uses of x_7 are in the ASSERT_EXPR and
5091 in the condition. In that case, we can copy the
5092 range info from x_8 computed in this pass also
5093 for x_7. */
5094 if (is_unreachable
5095 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
5096 single_pred (bb)))
5098 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
5099 SSA_NAME_RANGE_INFO (lhs)->get_min (),
5100 SSA_NAME_RANGE_INFO (lhs)->get_max ());
5101 maybe_set_nonzero_bits (single_pred_edge (bb), var);
5105 /* Propagate the RHS into every use of the LHS. For SSA names
5106 also propagate abnormals as it merely restores the original
5107 IL in this case (an replace_uses_by would assert). */
5108 if (TREE_CODE (var) == SSA_NAME)
5110 imm_use_iterator iter;
5111 use_operand_p use_p;
5112 gimple *use_stmt;
5113 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
5114 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5115 SET_USE (use_p, var);
5117 else
5118 replace_uses_by (lhs, var);
5120 /* And finally, remove the copy, it is not needed. */
5121 gsi_remove (&si, true);
5122 release_defs (stmt);
5124 else
5126 if (!is_gimple_debug (gsi_stmt (si)))
5127 is_unreachable = 0;
5128 gsi_next (&si);
5133 /* Return true if STMT is interesting for VRP. */
5135 bool
5136 stmt_interesting_for_vrp (gimple *stmt)
5138 if (gimple_code (stmt) == GIMPLE_PHI)
5140 tree res = gimple_phi_result (stmt);
5141 return (!virtual_operand_p (res)
5142 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
5143 || POINTER_TYPE_P (TREE_TYPE (res))));
5145 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5147 tree lhs = gimple_get_lhs (stmt);
5149 /* In general, assignments with virtual operands are not useful
5150 for deriving ranges, with the obvious exception of calls to
5151 builtin functions. */
5152 if (lhs && TREE_CODE (lhs) == SSA_NAME
5153 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5154 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5155 && (is_gimple_call (stmt)
5156 || !gimple_vuse (stmt)))
5157 return true;
5158 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5159 switch (gimple_call_internal_fn (stmt))
5161 case IFN_ADD_OVERFLOW:
5162 case IFN_SUB_OVERFLOW:
5163 case IFN_MUL_OVERFLOW:
5164 case IFN_ATOMIC_COMPARE_EXCHANGE:
5165 /* These internal calls return _Complex integer type,
5166 but are interesting to VRP nevertheless. */
5167 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5168 return true;
5169 break;
5170 default:
5171 break;
5174 else if (gimple_code (stmt) == GIMPLE_COND
5175 || gimple_code (stmt) == GIMPLE_SWITCH)
5176 return true;
5178 return false;
5181 /* Initialization required by ssa_propagate engine. */
5183 void
5184 vrp_prop::vrp_initialize ()
5186 basic_block bb;
5188 FOR_EACH_BB_FN (bb, cfun)
5190 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
5191 gsi_next (&si))
5193 gphi *phi = si.phi ();
5194 if (!stmt_interesting_for_vrp (phi))
5196 tree lhs = PHI_RESULT (phi);
5197 get_value_range (lhs)->set_varying ();
5198 prop_set_simulate_again (phi, false);
5200 else
5201 prop_set_simulate_again (phi, true);
5204 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
5205 gsi_next (&si))
5207 gimple *stmt = gsi_stmt (si);
5209 /* If the statement is a control insn, then we do not
5210 want to avoid simulating the statement once. Failure
5211 to do so means that those edges will never get added. */
5212 if (stmt_ends_bb_p (stmt))
5213 prop_set_simulate_again (stmt, true);
5214 else if (!stmt_interesting_for_vrp (stmt))
5216 set_defs_to_varying (stmt);
5217 prop_set_simulate_again (stmt, false);
5219 else
5220 prop_set_simulate_again (stmt, true);
5225 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5226 that includes the value VAL. The search is restricted to the range
5227 [START_IDX, n - 1] where n is the size of VEC.
5229 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5230 returned.
5232 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5233 it is placed in IDX and false is returned.
5235 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5236 returned. */
5238 bool
5239 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
5241 size_t n = gimple_switch_num_labels (stmt);
5242 size_t low, high;
5244 /* Find case label for minimum of the value range or the next one.
5245 At each iteration we are searching in [low, high - 1]. */
5247 for (low = start_idx, high = n; high != low; )
5249 tree t;
5250 int cmp;
5251 /* Note that i != high, so we never ask for n. */
5252 size_t i = (high + low) / 2;
5253 t = gimple_switch_label (stmt, i);
5255 /* Cache the result of comparing CASE_LOW and val. */
5256 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5258 if (cmp == 0)
5260 /* Ranges cannot be empty. */
5261 *idx = i;
5262 return true;
5264 else if (cmp > 0)
5265 high = i;
5266 else
5268 low = i + 1;
5269 if (CASE_HIGH (t) != NULL
5270 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5272 *idx = i;
5273 return true;
5278 *idx = high;
5279 return false;
5282 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5283 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5284 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5285 then MAX_IDX < MIN_IDX.
5286 Returns true if the default label is not needed. */
5288 bool
5289 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
5290 size_t *max_idx)
5292 size_t i, j;
5293 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5294 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5296 if (i == j
5297 && min_take_default
5298 && max_take_default)
5300 /* Only the default case label reached.
5301 Return an empty range. */
5302 *min_idx = 1;
5303 *max_idx = 0;
5304 return false;
5306 else
5308 bool take_default = min_take_default || max_take_default;
5309 tree low, high;
5310 size_t k;
5312 if (max_take_default)
5313 j--;
5315 /* If the case label range is continuous, we do not need
5316 the default case label. Verify that. */
5317 high = CASE_LOW (gimple_switch_label (stmt, i));
5318 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5319 high = CASE_HIGH (gimple_switch_label (stmt, i));
5320 for (k = i + 1; k <= j; ++k)
5322 low = CASE_LOW (gimple_switch_label (stmt, k));
5323 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
5325 take_default = true;
5326 break;
5328 high = low;
5329 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5330 high = CASE_HIGH (gimple_switch_label (stmt, k));
5333 *min_idx = i;
5334 *max_idx = j;
5335 return !take_default;
5339 /* Evaluate statement STMT. If the statement produces a useful range,
5340 return SSA_PROP_INTERESTING and record the SSA name with the
5341 interesting range into *OUTPUT_P.
5343 If STMT is a conditional branch and we can determine its truth
5344 value, the taken edge is recorded in *TAKEN_EDGE_P.
5346 If STMT produces a varying value, return SSA_PROP_VARYING. */
5348 enum ssa_prop_result
5349 vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
5351 tree lhs = gimple_get_lhs (stmt);
5352 value_range vr;
5353 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
5355 if (*output_p)
5357 if (update_value_range (*output_p, &vr))
5359 if (dump_file && (dump_flags & TDF_DETAILS))
5361 fprintf (dump_file, "Found new range for ");
5362 print_generic_expr (dump_file, *output_p);
5363 fprintf (dump_file, ": ");
5364 dump_value_range (dump_file, &vr);
5365 fprintf (dump_file, "\n");
5368 if (vr.varying_p ())
5369 return SSA_PROP_VARYING;
5371 return SSA_PROP_INTERESTING;
5373 return SSA_PROP_NOT_INTERESTING;
5376 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5377 switch (gimple_call_internal_fn (stmt))
5379 case IFN_ADD_OVERFLOW:
5380 case IFN_SUB_OVERFLOW:
5381 case IFN_MUL_OVERFLOW:
5382 case IFN_ATOMIC_COMPARE_EXCHANGE:
5383 /* These internal calls return _Complex integer type,
5384 which VRP does not track, but the immediate uses
5385 thereof might be interesting. */
5386 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5388 imm_use_iterator iter;
5389 use_operand_p use_p;
5390 enum ssa_prop_result res = SSA_PROP_VARYING;
5392 get_value_range (lhs)->set_varying ();
5394 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
5396 gimple *use_stmt = USE_STMT (use_p);
5397 if (!is_gimple_assign (use_stmt))
5398 continue;
5399 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
5400 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
5401 continue;
5402 tree rhs1 = gimple_assign_rhs1 (use_stmt);
5403 tree use_lhs = gimple_assign_lhs (use_stmt);
5404 if (TREE_CODE (rhs1) != rhs_code
5405 || TREE_OPERAND (rhs1, 0) != lhs
5406 || TREE_CODE (use_lhs) != SSA_NAME
5407 || !stmt_interesting_for_vrp (use_stmt)
5408 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
5409 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
5410 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
5411 continue;
5413 /* If there is a change in the value range for any of the
5414 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
5415 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
5416 or IMAGPART_EXPR immediate uses, but none of them have
5417 a change in their value ranges, return
5418 SSA_PROP_NOT_INTERESTING. If there are no
5419 {REAL,IMAG}PART_EXPR uses at all,
5420 return SSA_PROP_VARYING. */
5421 value_range new_vr;
5422 extract_range_basic (&new_vr, use_stmt);
5423 const value_range *old_vr = get_value_range (use_lhs);
5424 if (!old_vr->equal_p (new_vr, /*ignore_equivs=*/false))
5425 res = SSA_PROP_INTERESTING;
5426 else
5427 res = SSA_PROP_NOT_INTERESTING;
5428 new_vr.equiv_clear ();
5429 if (res == SSA_PROP_INTERESTING)
5431 *output_p = lhs;
5432 return res;
5436 return res;
5438 break;
5439 default:
5440 break;
5443 /* All other statements produce nothing of interest for VRP, so mark
5444 their outputs varying and prevent further simulation. */
5445 set_defs_to_varying (stmt);
5447 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5450 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5451 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5452 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5453 possible such range. The resulting range is not canonicalized. */
5455 static void
5456 union_ranges (enum value_range_kind *vr0type,
5457 tree *vr0min, tree *vr0max,
5458 enum value_range_kind vr1type,
5459 tree vr1min, tree vr1max)
5461 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5462 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5464 /* [] is vr0, () is vr1 in the following classification comments. */
5465 if (mineq && maxeq)
5467 /* [( )] */
5468 if (*vr0type == vr1type)
5469 /* Nothing to do for equal ranges. */
5471 else if ((*vr0type == VR_RANGE
5472 && vr1type == VR_ANTI_RANGE)
5473 || (*vr0type == VR_ANTI_RANGE
5474 && vr1type == VR_RANGE))
5476 /* For anti-range with range union the result is varying. */
5477 goto give_up;
5479 else
5480 gcc_unreachable ();
5482 else if (operand_less_p (*vr0max, vr1min) == 1
5483 || operand_less_p (vr1max, *vr0min) == 1)
5485 /* [ ] ( ) or ( ) [ ]
5486 If the ranges have an empty intersection, result of the union
5487 operation is the anti-range or if both are anti-ranges
5488 it covers all. */
5489 if (*vr0type == VR_ANTI_RANGE
5490 && vr1type == VR_ANTI_RANGE)
5491 goto give_up;
5492 else if (*vr0type == VR_ANTI_RANGE
5493 && vr1type == VR_RANGE)
5495 else if (*vr0type == VR_RANGE
5496 && vr1type == VR_ANTI_RANGE)
5498 *vr0type = vr1type;
5499 *vr0min = vr1min;
5500 *vr0max = vr1max;
5502 else if (*vr0type == VR_RANGE
5503 && vr1type == VR_RANGE)
5505 /* The result is the convex hull of both ranges. */
5506 if (operand_less_p (*vr0max, vr1min) == 1)
5508 /* If the result can be an anti-range, create one. */
5509 if (TREE_CODE (*vr0max) == INTEGER_CST
5510 && TREE_CODE (vr1min) == INTEGER_CST
5511 && vrp_val_is_min (*vr0min)
5512 && vrp_val_is_max (vr1max))
5514 tree min = int_const_binop (PLUS_EXPR,
5515 *vr0max,
5516 build_int_cst (TREE_TYPE (*vr0max), 1));
5517 tree max = int_const_binop (MINUS_EXPR,
5518 vr1min,
5519 build_int_cst (TREE_TYPE (vr1min), 1));
5520 if (!operand_less_p (max, min))
5522 *vr0type = VR_ANTI_RANGE;
5523 *vr0min = min;
5524 *vr0max = max;
5526 else
5527 *vr0max = vr1max;
5529 else
5530 *vr0max = vr1max;
5532 else
5534 /* If the result can be an anti-range, create one. */
5535 if (TREE_CODE (vr1max) == INTEGER_CST
5536 && TREE_CODE (*vr0min) == INTEGER_CST
5537 && vrp_val_is_min (vr1min)
5538 && vrp_val_is_max (*vr0max))
5540 tree min = int_const_binop (PLUS_EXPR,
5541 vr1max,
5542 build_int_cst (TREE_TYPE (vr1max), 1));
5543 tree max = int_const_binop (MINUS_EXPR,
5544 *vr0min,
5545 build_int_cst (TREE_TYPE (*vr0min), 1));
5546 if (!operand_less_p (max, min))
5548 *vr0type = VR_ANTI_RANGE;
5549 *vr0min = min;
5550 *vr0max = max;
5552 else
5553 *vr0min = vr1min;
5555 else
5556 *vr0min = vr1min;
5559 else
5560 gcc_unreachable ();
5562 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5563 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5565 /* [ ( ) ] or [( ) ] or [ ( )] */
5566 if (*vr0type == VR_RANGE
5567 && vr1type == VR_RANGE)
5569 else if (*vr0type == VR_ANTI_RANGE
5570 && vr1type == VR_ANTI_RANGE)
5572 *vr0type = vr1type;
5573 *vr0min = vr1min;
5574 *vr0max = vr1max;
5576 else if (*vr0type == VR_ANTI_RANGE
5577 && vr1type == VR_RANGE)
5579 /* Arbitrarily choose the right or left gap. */
5580 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
5581 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5582 build_int_cst (TREE_TYPE (vr1min), 1));
5583 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
5584 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5585 build_int_cst (TREE_TYPE (vr1max), 1));
5586 else
5587 goto give_up;
5589 else if (*vr0type == VR_RANGE
5590 && vr1type == VR_ANTI_RANGE)
5591 /* The result covers everything. */
5592 goto give_up;
5593 else
5594 gcc_unreachable ();
5596 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5597 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5599 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5600 if (*vr0type == VR_RANGE
5601 && vr1type == VR_RANGE)
5603 *vr0type = vr1type;
5604 *vr0min = vr1min;
5605 *vr0max = vr1max;
5607 else if (*vr0type == VR_ANTI_RANGE
5608 && vr1type == VR_ANTI_RANGE)
5610 else if (*vr0type == VR_RANGE
5611 && vr1type == VR_ANTI_RANGE)
5613 *vr0type = VR_ANTI_RANGE;
5614 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
5616 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5617 build_int_cst (TREE_TYPE (*vr0min), 1));
5618 *vr0min = vr1min;
5620 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
5622 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5623 build_int_cst (TREE_TYPE (*vr0max), 1));
5624 *vr0max = vr1max;
5626 else
5627 goto give_up;
5629 else if (*vr0type == VR_ANTI_RANGE
5630 && vr1type == VR_RANGE)
5631 /* The result covers everything. */
5632 goto give_up;
5633 else
5634 gcc_unreachable ();
5636 else if ((operand_less_p (vr1min, *vr0max) == 1
5637 || operand_equal_p (vr1min, *vr0max, 0))
5638 && operand_less_p (*vr0min, vr1min) == 1
5639 && operand_less_p (*vr0max, vr1max) == 1)
5641 /* [ ( ] ) or [ ]( ) */
5642 if (*vr0type == VR_RANGE
5643 && vr1type == VR_RANGE)
5644 *vr0max = vr1max;
5645 else if (*vr0type == VR_ANTI_RANGE
5646 && vr1type == VR_ANTI_RANGE)
5647 *vr0min = vr1min;
5648 else if (*vr0type == VR_ANTI_RANGE
5649 && vr1type == VR_RANGE)
5651 if (TREE_CODE (vr1min) == INTEGER_CST)
5652 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5653 build_int_cst (TREE_TYPE (vr1min), 1));
5654 else
5655 goto give_up;
5657 else if (*vr0type == VR_RANGE
5658 && vr1type == VR_ANTI_RANGE)
5660 if (TREE_CODE (*vr0max) == INTEGER_CST)
5662 *vr0type = vr1type;
5663 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5664 build_int_cst (TREE_TYPE (*vr0max), 1));
5665 *vr0max = vr1max;
5667 else
5668 goto give_up;
5670 else
5671 gcc_unreachable ();
5673 else if ((operand_less_p (*vr0min, vr1max) == 1
5674 || operand_equal_p (*vr0min, vr1max, 0))
5675 && operand_less_p (vr1min, *vr0min) == 1
5676 && operand_less_p (vr1max, *vr0max) == 1)
5678 /* ( [ ) ] or ( )[ ] */
5679 if (*vr0type == VR_RANGE
5680 && vr1type == VR_RANGE)
5681 *vr0min = vr1min;
5682 else if (*vr0type == VR_ANTI_RANGE
5683 && vr1type == VR_ANTI_RANGE)
5684 *vr0max = vr1max;
5685 else if (*vr0type == VR_ANTI_RANGE
5686 && vr1type == VR_RANGE)
5688 if (TREE_CODE (vr1max) == INTEGER_CST)
5689 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5690 build_int_cst (TREE_TYPE (vr1max), 1));
5691 else
5692 goto give_up;
5694 else if (*vr0type == VR_RANGE
5695 && vr1type == VR_ANTI_RANGE)
5697 if (TREE_CODE (*vr0min) == INTEGER_CST)
5699 *vr0type = vr1type;
5700 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5701 build_int_cst (TREE_TYPE (*vr0min), 1));
5702 *vr0min = vr1min;
5704 else
5705 goto give_up;
5707 else
5708 gcc_unreachable ();
5710 else
5711 goto give_up;
5713 return;
5715 give_up:
5716 *vr0type = VR_VARYING;
5717 *vr0min = NULL_TREE;
5718 *vr0max = NULL_TREE;
5721 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5722 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5723 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5724 possible such range. The resulting range is not canonicalized. */
5726 static void
5727 intersect_ranges (enum value_range_kind *vr0type,
5728 tree *vr0min, tree *vr0max,
5729 enum value_range_kind vr1type,
5730 tree vr1min, tree vr1max)
5732 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5733 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5735 /* [] is vr0, () is vr1 in the following classification comments. */
5736 if (mineq && maxeq)
5738 /* [( )] */
5739 if (*vr0type == vr1type)
5740 /* Nothing to do for equal ranges. */
5742 else if ((*vr0type == VR_RANGE
5743 && vr1type == VR_ANTI_RANGE)
5744 || (*vr0type == VR_ANTI_RANGE
5745 && vr1type == VR_RANGE))
5747 /* For anti-range with range intersection the result is empty. */
5748 *vr0type = VR_UNDEFINED;
5749 *vr0min = NULL_TREE;
5750 *vr0max = NULL_TREE;
5752 else
5753 gcc_unreachable ();
5755 else if (operand_less_p (*vr0max, vr1min) == 1
5756 || operand_less_p (vr1max, *vr0min) == 1)
5758 /* [ ] ( ) or ( ) [ ]
5759 If the ranges have an empty intersection, the result of the
5760 intersect operation is the range for intersecting an
5761 anti-range with a range or empty when intersecting two ranges. */
5762 if (*vr0type == VR_RANGE
5763 && vr1type == VR_ANTI_RANGE)
5765 else if (*vr0type == VR_ANTI_RANGE
5766 && vr1type == VR_RANGE)
5768 *vr0type = vr1type;
5769 *vr0min = vr1min;
5770 *vr0max = vr1max;
5772 else if (*vr0type == VR_RANGE
5773 && vr1type == VR_RANGE)
5775 *vr0type = VR_UNDEFINED;
5776 *vr0min = NULL_TREE;
5777 *vr0max = NULL_TREE;
5779 else if (*vr0type == VR_ANTI_RANGE
5780 && vr1type == VR_ANTI_RANGE)
5782 /* If the anti-ranges are adjacent to each other merge them. */
5783 if (TREE_CODE (*vr0max) == INTEGER_CST
5784 && TREE_CODE (vr1min) == INTEGER_CST
5785 && operand_less_p (*vr0max, vr1min) == 1
5786 && integer_onep (int_const_binop (MINUS_EXPR,
5787 vr1min, *vr0max)))
5788 *vr0max = vr1max;
5789 else if (TREE_CODE (vr1max) == INTEGER_CST
5790 && TREE_CODE (*vr0min) == INTEGER_CST
5791 && operand_less_p (vr1max, *vr0min) == 1
5792 && integer_onep (int_const_binop (MINUS_EXPR,
5793 *vr0min, vr1max)))
5794 *vr0min = vr1min;
5795 /* Else arbitrarily take VR0. */
5798 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5799 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5801 /* [ ( ) ] or [( ) ] or [ ( )] */
5802 if (*vr0type == VR_RANGE
5803 && vr1type == VR_RANGE)
5805 /* If both are ranges the result is the inner one. */
5806 *vr0type = vr1type;
5807 *vr0min = vr1min;
5808 *vr0max = vr1max;
5810 else if (*vr0type == VR_RANGE
5811 && vr1type == VR_ANTI_RANGE)
5813 /* Choose the right gap if the left one is empty. */
5814 if (mineq)
5816 if (TREE_CODE (vr1max) != INTEGER_CST)
5817 *vr0min = vr1max;
5818 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
5819 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
5820 *vr0min
5821 = int_const_binop (MINUS_EXPR, vr1max,
5822 build_int_cst (TREE_TYPE (vr1max), -1));
5823 else
5824 *vr0min
5825 = int_const_binop (PLUS_EXPR, vr1max,
5826 build_int_cst (TREE_TYPE (vr1max), 1));
5828 /* Choose the left gap if the right one is empty. */
5829 else if (maxeq)
5831 if (TREE_CODE (vr1min) != INTEGER_CST)
5832 *vr0max = vr1min;
5833 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
5834 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
5835 *vr0max
5836 = int_const_binop (PLUS_EXPR, vr1min,
5837 build_int_cst (TREE_TYPE (vr1min), -1));
5838 else
5839 *vr0max
5840 = int_const_binop (MINUS_EXPR, vr1min,
5841 build_int_cst (TREE_TYPE (vr1min), 1));
5843 /* Choose the anti-range if the range is effectively varying. */
5844 else if (vrp_val_is_min (*vr0min)
5845 && vrp_val_is_max (*vr0max))
5847 *vr0type = vr1type;
5848 *vr0min = vr1min;
5849 *vr0max = vr1max;
5851 /* Else choose the range. */
5853 else if (*vr0type == VR_ANTI_RANGE
5854 && vr1type == VR_ANTI_RANGE)
5855 /* If both are anti-ranges the result is the outer one. */
5857 else if (*vr0type == VR_ANTI_RANGE
5858 && vr1type == VR_RANGE)
5860 /* The intersection is empty. */
5861 *vr0type = VR_UNDEFINED;
5862 *vr0min = NULL_TREE;
5863 *vr0max = NULL_TREE;
5865 else
5866 gcc_unreachable ();
5868 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5869 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5871 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5872 if (*vr0type == VR_RANGE
5873 && vr1type == VR_RANGE)
5874 /* Choose the inner range. */
5876 else if (*vr0type == VR_ANTI_RANGE
5877 && vr1type == VR_RANGE)
5879 /* Choose the right gap if the left is empty. */
5880 if (mineq)
5882 *vr0type = VR_RANGE;
5883 if (TREE_CODE (*vr0max) != INTEGER_CST)
5884 *vr0min = *vr0max;
5885 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
5886 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
5887 *vr0min
5888 = int_const_binop (MINUS_EXPR, *vr0max,
5889 build_int_cst (TREE_TYPE (*vr0max), -1));
5890 else
5891 *vr0min
5892 = int_const_binop (PLUS_EXPR, *vr0max,
5893 build_int_cst (TREE_TYPE (*vr0max), 1));
5894 *vr0max = vr1max;
5896 /* Choose the left gap if the right is empty. */
5897 else if (maxeq)
5899 *vr0type = VR_RANGE;
5900 if (TREE_CODE (*vr0min) != INTEGER_CST)
5901 *vr0max = *vr0min;
5902 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
5903 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
5904 *vr0max
5905 = int_const_binop (PLUS_EXPR, *vr0min,
5906 build_int_cst (TREE_TYPE (*vr0min), -1));
5907 else
5908 *vr0max
5909 = int_const_binop (MINUS_EXPR, *vr0min,
5910 build_int_cst (TREE_TYPE (*vr0min), 1));
5911 *vr0min = vr1min;
5913 /* Choose the anti-range if the range is effectively varying. */
5914 else if (vrp_val_is_min (vr1min)
5915 && vrp_val_is_max (vr1max))
5917 /* Choose the anti-range if it is ~[0,0], that range is special
5918 enough to special case when vr1's range is relatively wide.
5919 At least for types bigger than int - this covers pointers
5920 and arguments to functions like ctz. */
5921 else if (*vr0min == *vr0max
5922 && integer_zerop (*vr0min)
5923 && ((TYPE_PRECISION (TREE_TYPE (*vr0min))
5924 >= TYPE_PRECISION (integer_type_node))
5925 || POINTER_TYPE_P (TREE_TYPE (*vr0min)))
5926 && TREE_CODE (vr1max) == INTEGER_CST
5927 && TREE_CODE (vr1min) == INTEGER_CST
5928 && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
5929 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
5931 /* Else choose the range. */
5932 else
5934 *vr0type = vr1type;
5935 *vr0min = vr1min;
5936 *vr0max = vr1max;
5939 else if (*vr0type == VR_ANTI_RANGE
5940 && vr1type == VR_ANTI_RANGE)
5942 /* If both are anti-ranges the result is the outer one. */
5943 *vr0type = vr1type;
5944 *vr0min = vr1min;
5945 *vr0max = vr1max;
5947 else if (vr1type == VR_ANTI_RANGE
5948 && *vr0type == VR_RANGE)
5950 /* The intersection is empty. */
5951 *vr0type = VR_UNDEFINED;
5952 *vr0min = NULL_TREE;
5953 *vr0max = NULL_TREE;
5955 else
5956 gcc_unreachable ();
5958 else if ((operand_less_p (vr1min, *vr0max) == 1
5959 || operand_equal_p (vr1min, *vr0max, 0))
5960 && operand_less_p (*vr0min, vr1min) == 1)
5962 /* [ ( ] ) or [ ]( ) */
5963 if (*vr0type == VR_ANTI_RANGE
5964 && vr1type == VR_ANTI_RANGE)
5965 *vr0max = vr1max;
5966 else if (*vr0type == VR_RANGE
5967 && vr1type == VR_RANGE)
5968 *vr0min = vr1min;
5969 else if (*vr0type == VR_RANGE
5970 && vr1type == VR_ANTI_RANGE)
5972 if (TREE_CODE (vr1min) == INTEGER_CST)
5973 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5974 build_int_cst (TREE_TYPE (vr1min), 1));
5975 else
5976 *vr0max = vr1min;
5978 else if (*vr0type == VR_ANTI_RANGE
5979 && vr1type == VR_RANGE)
5981 *vr0type = VR_RANGE;
5982 if (TREE_CODE (*vr0max) == INTEGER_CST)
5983 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5984 build_int_cst (TREE_TYPE (*vr0max), 1));
5985 else
5986 *vr0min = *vr0max;
5987 *vr0max = vr1max;
5989 else
5990 gcc_unreachable ();
5992 else if ((operand_less_p (*vr0min, vr1max) == 1
5993 || operand_equal_p (*vr0min, vr1max, 0))
5994 && operand_less_p (vr1min, *vr0min) == 1)
5996 /* ( [ ) ] or ( )[ ] */
5997 if (*vr0type == VR_ANTI_RANGE
5998 && vr1type == VR_ANTI_RANGE)
5999 *vr0min = vr1min;
6000 else if (*vr0type == VR_RANGE
6001 && vr1type == VR_RANGE)
6002 *vr0max = vr1max;
6003 else if (*vr0type == VR_RANGE
6004 && vr1type == VR_ANTI_RANGE)
6006 if (TREE_CODE (vr1max) == INTEGER_CST)
6007 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
6008 build_int_cst (TREE_TYPE (vr1max), 1));
6009 else
6010 *vr0min = vr1max;
6012 else if (*vr0type == VR_ANTI_RANGE
6013 && vr1type == VR_RANGE)
6015 *vr0type = VR_RANGE;
6016 if (TREE_CODE (*vr0min) == INTEGER_CST)
6017 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
6018 build_int_cst (TREE_TYPE (*vr0min), 1));
6019 else
6020 *vr0max = *vr0min;
6021 *vr0min = vr1min;
6023 else
6024 gcc_unreachable ();
6027 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
6028 result for the intersection. That's always a conservative
6029 correct estimate unless VR1 is a constant singleton range
6030 in which case we choose that. */
6031 if (vr1type == VR_RANGE
6032 && is_gimple_min_invariant (vr1min)
6033 && vrp_operand_equal_p (vr1min, vr1max))
6035 *vr0type = vr1type;
6036 *vr0min = vr1min;
6037 *vr0max = vr1max;
6042 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
6043 in *VR0. This may not be the smallest possible such range. */
6045 void
6046 value_range::intersect_helper (value_range *vr0, const value_range *vr1)
6048 /* If either range is VR_VARYING the other one wins. */
6049 if (vr1->varying_p ())
6050 return;
6051 if (vr0->varying_p ())
6053 vr0->deep_copy (vr1);
6054 return;
6057 /* When either range is VR_UNDEFINED the resulting range is
6058 VR_UNDEFINED, too. */
6059 if (vr0->undefined_p ())
6060 return;
6061 if (vr1->undefined_p ())
6063 vr0->set_undefined ();
6064 return;
6067 value_range_kind vr0type = vr0->kind ();
6068 tree vr0min = vr0->min ();
6069 tree vr0max = vr0->max ();
6070 intersect_ranges (&vr0type, &vr0min, &vr0max,
6071 vr1->kind (), vr1->min (), vr1->max ());
6072 /* Make sure to canonicalize the result though as the inversion of a
6073 VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
6074 fall back to vr0 when this turns things to varying. */
6075 value_range tem;
6076 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6077 /* If that failed, use the saved original VR0. */
6078 if (tem.varying_p ())
6079 return;
6080 vr0->update (tem.kind (), tem.min (), tem.max ());
6082 /* If the result is VR_UNDEFINED there is no need to mess with
6083 the equivalencies. */
6084 if (vr0->undefined_p ())
6085 return;
6087 /* The resulting set of equivalences for range intersection is the union of
6088 the two sets. */
6089 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
6090 bitmap_ior_into (vr0->m_equiv, vr1->m_equiv);
6091 else if (vr1->m_equiv && !vr0->m_equiv)
6093 /* All equivalence bitmaps are allocated from the same obstack. So
6094 we can use the obstack associated with VR to allocate vr0->equiv. */
6095 vr0->m_equiv = BITMAP_ALLOC (vr1->m_equiv->obstack);
6096 bitmap_copy (m_equiv, vr1->m_equiv);
6100 void
6101 value_range::intersect (const value_range *other)
6103 if (dump_file && (dump_flags & TDF_DETAILS))
6105 fprintf (dump_file, "Intersecting\n ");
6106 dump_value_range (dump_file, this);
6107 fprintf (dump_file, "\nand\n ");
6108 dump_value_range (dump_file, other);
6109 fprintf (dump_file, "\n");
6111 intersect_helper (this, other);
6112 if (dump_file && (dump_flags & TDF_DETAILS))
6114 fprintf (dump_file, "to\n ");
6115 dump_value_range (dump_file, this);
6116 fprintf (dump_file, "\n");
6120 /* Helper for meet operation for value ranges. Given two value ranges VR0 and
6121 VR1, return a range that contains both VR0 and VR1. This may not be the
6122 smallest possible such range. */
6124 value_range_base
6125 value_range_base::union_helper (const value_range_base *vr0,
6126 const value_range_base *vr1)
6128 /* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
6129 if (vr1->undefined_p ()
6130 || vr0->varying_p ())
6131 return *vr0;
6133 /* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
6134 if (vr0->undefined_p ()
6135 || vr1->varying_p ())
6136 return *vr1;
6138 value_range_kind vr0type = vr0->kind ();
6139 tree vr0min = vr0->min ();
6140 tree vr0max = vr0->max ();
6141 union_ranges (&vr0type, &vr0min, &vr0max,
6142 vr1->kind (), vr1->min (), vr1->max ());
6144 /* Work on a temporary so we can still use vr0 when union returns varying. */
6145 value_range tem;
6146 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6148 /* Failed to find an efficient meet. Before giving up and setting
6149 the result to VARYING, see if we can at least derive a useful
6150 anti-range. */
6151 if (tem.varying_p ()
6152 && range_includes_zero_p (vr0) == 0
6153 && range_includes_zero_p (vr1) == 0)
6155 tem.set_nonnull (vr0->type ());
6156 return tem;
6159 return tem;
6163 /* Meet operation for value ranges. Given two value ranges VR0 and
6164 VR1, store in VR0 a range that contains both VR0 and VR1. This
6165 may not be the smallest possible such range. */
6167 void
6168 value_range_base::union_ (const value_range_base *other)
6170 if (dump_file && (dump_flags & TDF_DETAILS))
6172 fprintf (dump_file, "Meeting\n ");
6173 dump_value_range (dump_file, this);
6174 fprintf (dump_file, "\nand\n ");
6175 dump_value_range (dump_file, other);
6176 fprintf (dump_file, "\n");
6179 *this = union_helper (this, other);
6181 if (dump_file && (dump_flags & TDF_DETAILS))
6183 fprintf (dump_file, "to\n ");
6184 dump_value_range (dump_file, this);
6185 fprintf (dump_file, "\n");
6189 void
6190 value_range::union_ (const value_range *other)
6192 if (dump_file && (dump_flags & TDF_DETAILS))
6194 fprintf (dump_file, "Meeting\n ");
6195 dump_value_range (dump_file, this);
6196 fprintf (dump_file, "\nand\n ");
6197 dump_value_range (dump_file, other);
6198 fprintf (dump_file, "\n");
6201 /* If THIS is undefined we want to pick up equivalences from OTHER.
6202 Just special-case this here rather than trying to fixup after the fact. */
6203 if (this->undefined_p ())
6204 this->deep_copy (other);
6205 else
6207 value_range_base tem = union_helper (this, other);
6208 this->update (tem.kind (), tem.min (), tem.max ());
6210 /* The resulting set of equivalences is always the intersection of
6211 the two sets. */
6212 if (this->m_equiv && other->m_equiv && this->m_equiv != other->m_equiv)
6213 bitmap_and_into (this->m_equiv, other->m_equiv);
6214 else if (this->m_equiv && !other->m_equiv)
6215 bitmap_clear (this->m_equiv);
6218 if (dump_file && (dump_flags & TDF_DETAILS))
6220 fprintf (dump_file, "to\n ");
6221 dump_value_range (dump_file, this);
6222 fprintf (dump_file, "\n");
6226 /* Visit all arguments for PHI node PHI that flow through executable
6227 edges. If a valid value range can be derived from all the incoming
6228 value ranges, set a new range for the LHS of PHI. */
6230 enum ssa_prop_result
6231 vrp_prop::visit_phi (gphi *phi)
6233 tree lhs = PHI_RESULT (phi);
6234 value_range vr_result;
6235 extract_range_from_phi_node (phi, &vr_result);
6236 if (update_value_range (lhs, &vr_result))
6238 if (dump_file && (dump_flags & TDF_DETAILS))
6240 fprintf (dump_file, "Found new range for ");
6241 print_generic_expr (dump_file, lhs);
6242 fprintf (dump_file, ": ");
6243 dump_value_range (dump_file, &vr_result);
6244 fprintf (dump_file, "\n");
6247 if (vr_result.varying_p ())
6248 return SSA_PROP_VARYING;
6250 return SSA_PROP_INTERESTING;
6253 /* Nothing changed, don't add outgoing edges. */
6254 return SSA_PROP_NOT_INTERESTING;
6257 class vrp_folder : public substitute_and_fold_engine
6259 public:
6260 tree get_value (tree) FINAL OVERRIDE;
6261 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
6262 bool fold_predicate_in (gimple_stmt_iterator *);
6264 class vr_values *vr_values;
6266 /* Delegators. */
6267 tree vrp_evaluate_conditional (tree_code code, tree op0,
6268 tree op1, gimple *stmt)
6269 { return vr_values->vrp_evaluate_conditional (code, op0, op1, stmt); }
6270 bool simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6271 { return vr_values->simplify_stmt_using_ranges (gsi); }
6272 tree op_with_constant_singleton_value_range (tree op)
6273 { return vr_values->op_with_constant_singleton_value_range (op); }
6276 /* If the statement pointed by SI has a predicate whose value can be
6277 computed using the value range information computed by VRP, compute
6278 its value and return true. Otherwise, return false. */
6280 bool
6281 vrp_folder::fold_predicate_in (gimple_stmt_iterator *si)
6283 bool assignment_p = false;
6284 tree val;
6285 gimple *stmt = gsi_stmt (*si);
6287 if (is_gimple_assign (stmt)
6288 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
6290 assignment_p = true;
6291 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
6292 gimple_assign_rhs1 (stmt),
6293 gimple_assign_rhs2 (stmt),
6294 stmt);
6296 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6297 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6298 gimple_cond_lhs (cond_stmt),
6299 gimple_cond_rhs (cond_stmt),
6300 stmt);
6301 else
6302 return false;
6304 if (val)
6306 if (assignment_p)
6307 val = fold_convert (gimple_expr_type (stmt), val);
6309 if (dump_file)
6311 fprintf (dump_file, "Folding predicate ");
6312 print_gimple_expr (dump_file, stmt, 0);
6313 fprintf (dump_file, " to ");
6314 print_generic_expr (dump_file, val);
6315 fprintf (dump_file, "\n");
6318 if (is_gimple_assign (stmt))
6319 gimple_assign_set_rhs_from_tree (si, val);
6320 else
6322 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
6323 gcond *cond_stmt = as_a <gcond *> (stmt);
6324 if (integer_zerop (val))
6325 gimple_cond_make_false (cond_stmt);
6326 else if (integer_onep (val))
6327 gimple_cond_make_true (cond_stmt);
6328 else
6329 gcc_unreachable ();
6332 return true;
6335 return false;
6338 /* Callback for substitute_and_fold folding the stmt at *SI. */
6340 bool
6341 vrp_folder::fold_stmt (gimple_stmt_iterator *si)
6343 if (fold_predicate_in (si))
6344 return true;
6346 return simplify_stmt_using_ranges (si);
6349 /* If OP has a value range with a single constant value return that,
6350 otherwise return NULL_TREE. This returns OP itself if OP is a
6351 constant.
6353 Implemented as a pure wrapper right now, but this will change. */
6355 tree
6356 vrp_folder::get_value (tree op)
6358 return op_with_constant_singleton_value_range (op);
6361 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
6362 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
6363 BB. If no such ASSERT_EXPR is found, return OP. */
6365 static tree
6366 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
6368 imm_use_iterator imm_iter;
6369 gimple *use_stmt;
6370 use_operand_p use_p;
6372 if (TREE_CODE (op) == SSA_NAME)
6374 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
6376 use_stmt = USE_STMT (use_p);
6377 if (use_stmt != stmt
6378 && gimple_assign_single_p (use_stmt)
6379 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
6380 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
6381 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
6382 return gimple_assign_lhs (use_stmt);
6385 return op;
6388 /* A hack. */
6389 static class vr_values *x_vr_values;
6391 /* A trivial wrapper so that we can present the generic jump threading
6392 code with a simple API for simplifying statements. STMT is the
6393 statement we want to simplify, WITHIN_STMT provides the location
6394 for any overflow warnings. */
6396 static tree
6397 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
6398 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
6399 basic_block bb)
6401 /* First see if the conditional is in the hash table. */
6402 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
6403 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
6404 return cached_lhs;
6406 vr_values *vr_values = x_vr_values;
6407 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6409 tree op0 = gimple_cond_lhs (cond_stmt);
6410 op0 = lhs_of_dominating_assert (op0, bb, stmt);
6412 tree op1 = gimple_cond_rhs (cond_stmt);
6413 op1 = lhs_of_dominating_assert (op1, bb, stmt);
6415 return vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6416 op0, op1, within_stmt);
6419 /* We simplify a switch statement by trying to determine which case label
6420 will be taken. If we are successful then we return the corresponding
6421 CASE_LABEL_EXPR. */
6422 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
6424 tree op = gimple_switch_index (switch_stmt);
6425 if (TREE_CODE (op) != SSA_NAME)
6426 return NULL_TREE;
6428 op = lhs_of_dominating_assert (op, bb, stmt);
6430 const value_range *vr = vr_values->get_value_range (op);
6431 if (vr->undefined_p ()
6432 || vr->varying_p ()
6433 || vr->symbolic_p ())
6434 return NULL_TREE;
6436 if (vr->kind () == VR_RANGE)
6438 size_t i, j;
6439 /* Get the range of labels that contain a part of the operand's
6440 value range. */
6441 find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
6443 /* Is there only one such label? */
6444 if (i == j)
6446 tree label = gimple_switch_label (switch_stmt, i);
6448 /* The i'th label will be taken only if the value range of the
6449 operand is entirely within the bounds of this label. */
6450 if (CASE_HIGH (label) != NULL_TREE
6451 ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
6452 && tree_int_cst_compare (CASE_HIGH (label),
6453 vr->max ()) >= 0)
6454 : (tree_int_cst_equal (CASE_LOW (label), vr->min ())
6455 && tree_int_cst_equal (vr->min (), vr->max ())))
6456 return label;
6459 /* If there are no such labels then the default label will be
6460 taken. */
6461 if (i > j)
6462 return gimple_switch_label (switch_stmt, 0);
6465 if (vr->kind () == VR_ANTI_RANGE)
6467 unsigned n = gimple_switch_num_labels (switch_stmt);
6468 tree min_label = gimple_switch_label (switch_stmt, 1);
6469 tree max_label = gimple_switch_label (switch_stmt, n - 1);
6471 /* The default label will be taken only if the anti-range of the
6472 operand is entirely outside the bounds of all the (non-default)
6473 case labels. */
6474 if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
6475 && (CASE_HIGH (max_label) != NULL_TREE
6476 ? tree_int_cst_compare (vr->max (),
6477 CASE_HIGH (max_label)) >= 0
6478 : tree_int_cst_compare (vr->max (),
6479 CASE_LOW (max_label)) >= 0))
6480 return gimple_switch_label (switch_stmt, 0);
6483 return NULL_TREE;
6486 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
6488 tree lhs = gimple_assign_lhs (assign_stmt);
6489 if (TREE_CODE (lhs) == SSA_NAME
6490 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6491 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6492 && stmt_interesting_for_vrp (stmt))
6494 edge dummy_e;
6495 tree dummy_tree;
6496 value_range new_vr;
6497 vr_values->extract_range_from_stmt (stmt, &dummy_e,
6498 &dummy_tree, &new_vr);
6499 tree singleton;
6500 if (new_vr.singleton_p (&singleton))
6501 return singleton;
6505 return NULL_TREE;
6508 class vrp_dom_walker : public dom_walker
6510 public:
6511 vrp_dom_walker (cdi_direction direction,
6512 class const_and_copies *const_and_copies,
6513 class avail_exprs_stack *avail_exprs_stack)
6514 : dom_walker (direction, REACHABLE_BLOCKS),
6515 m_const_and_copies (const_and_copies),
6516 m_avail_exprs_stack (avail_exprs_stack),
6517 m_dummy_cond (NULL) {}
6519 virtual edge before_dom_children (basic_block);
6520 virtual void after_dom_children (basic_block);
6522 class vr_values *vr_values;
6524 private:
6525 class const_and_copies *m_const_and_copies;
6526 class avail_exprs_stack *m_avail_exprs_stack;
6528 gcond *m_dummy_cond;
6532 /* Called before processing dominator children of BB. We want to look
6533 at ASSERT_EXPRs and record information from them in the appropriate
6534 tables.
6536 We could look at other statements here. It's not seen as likely
6537 to significantly increase the jump threads we discover. */
6539 edge
6540 vrp_dom_walker::before_dom_children (basic_block bb)
6542 gimple_stmt_iterator gsi;
6544 m_avail_exprs_stack->push_marker ();
6545 m_const_and_copies->push_marker ();
6546 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6548 gimple *stmt = gsi_stmt (gsi);
6549 if (gimple_assign_single_p (stmt)
6550 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
6552 tree rhs1 = gimple_assign_rhs1 (stmt);
6553 tree cond = TREE_OPERAND (rhs1, 1);
6554 tree inverted = invert_truthvalue (cond);
6555 vec<cond_equivalence> p;
6556 p.create (3);
6557 record_conditions (&p, cond, inverted);
6558 for (unsigned int i = 0; i < p.length (); i++)
6559 m_avail_exprs_stack->record_cond (&p[i]);
6561 tree lhs = gimple_assign_lhs (stmt);
6562 m_const_and_copies->record_const_or_copy (lhs,
6563 TREE_OPERAND (rhs1, 0));
6564 p.release ();
6565 continue;
6567 break;
6569 return NULL;
6572 /* Called after processing dominator children of BB. This is where we
6573 actually call into the threader. */
6574 void
6575 vrp_dom_walker::after_dom_children (basic_block bb)
6577 if (!m_dummy_cond)
6578 m_dummy_cond = gimple_build_cond (NE_EXPR,
6579 integer_zero_node, integer_zero_node,
6580 NULL, NULL);
6582 x_vr_values = vr_values;
6583 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
6584 m_avail_exprs_stack, NULL,
6585 simplify_stmt_for_jump_threading);
6586 x_vr_values = NULL;
6588 m_avail_exprs_stack->pop_to_marker ();
6589 m_const_and_copies->pop_to_marker ();
6592 /* Blocks which have more than one predecessor and more than
6593 one successor present jump threading opportunities, i.e.,
6594 when the block is reached from a specific predecessor, we
6595 may be able to determine which of the outgoing edges will
6596 be traversed. When this optimization applies, we are able
6597 to avoid conditionals at runtime and we may expose secondary
6598 optimization opportunities.
6600 This routine is effectively a driver for the generic jump
6601 threading code. It basically just presents the generic code
6602 with edges that may be suitable for jump threading.
6604 Unlike DOM, we do not iterate VRP if jump threading was successful.
6605 While iterating may expose new opportunities for VRP, it is expected
6606 those opportunities would be very limited and the compile time cost
6607 to expose those opportunities would be significant.
6609 As jump threading opportunities are discovered, they are registered
6610 for later realization. */
6612 static void
6613 identify_jump_threads (class vr_values *vr_values)
6615 /* Ugh. When substituting values earlier in this pass we can
6616 wipe the dominance information. So rebuild the dominator
6617 information as we need it within the jump threading code. */
6618 calculate_dominance_info (CDI_DOMINATORS);
6620 /* We do not allow VRP information to be used for jump threading
6621 across a back edge in the CFG. Otherwise it becomes too
6622 difficult to avoid eliminating loop exit tests. Of course
6623 EDGE_DFS_BACK is not accurate at this time so we have to
6624 recompute it. */
6625 mark_dfs_back_edges ();
6627 /* Allocate our unwinder stack to unwind any temporary equivalences
6628 that might be recorded. */
6629 const_and_copies *equiv_stack = new const_and_copies ();
6631 hash_table<expr_elt_hasher> *avail_exprs
6632 = new hash_table<expr_elt_hasher> (1024);
6633 avail_exprs_stack *avail_exprs_stack
6634 = new class avail_exprs_stack (avail_exprs);
6636 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
6637 walker.vr_values = vr_values;
6638 walker.walk (cfun->cfg->x_entry_block_ptr);
6640 /* We do not actually update the CFG or SSA graphs at this point as
6641 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6642 handle ASSERT_EXPRs gracefully. */
6643 delete equiv_stack;
6644 delete avail_exprs;
6645 delete avail_exprs_stack;
6648 /* Traverse all the blocks folding conditionals with known ranges. */
6650 void
6651 vrp_prop::vrp_finalize (bool warn_array_bounds_p)
6653 size_t i;
6655 /* We have completed propagating through the lattice. */
6656 vr_values.set_lattice_propagation_complete ();
6658 if (dump_file)
6660 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6661 vr_values.dump_all_value_ranges (dump_file);
6662 fprintf (dump_file, "\n");
6665 /* Set value range to non pointer SSA_NAMEs. */
6666 for (i = 0; i < num_ssa_names; i++)
6668 tree name = ssa_name (i);
6669 if (!name)
6670 continue;
6672 const value_range *vr = get_value_range (name);
6673 if (!name || !vr->constant_p ())
6674 continue;
6676 if (POINTER_TYPE_P (TREE_TYPE (name))
6677 && range_includes_zero_p (vr) == 0)
6678 set_ptr_nonnull (name);
6679 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
6680 set_range_info (name, *vr);
6683 /* If we're checking array refs, we want to merge information on
6684 the executability of each edge between vrp_folder and the
6685 check_array_bounds_dom_walker: each can clear the
6686 EDGE_EXECUTABLE flag on edges, in different ways.
6688 Hence, if we're going to call check_all_array_refs, set
6689 the flag on every edge now, rather than in
6690 check_array_bounds_dom_walker's ctor; vrp_folder may clear
6691 it from some edges. */
6692 if (warn_array_bounds && warn_array_bounds_p)
6693 set_all_edges_as_executable (cfun);
6695 class vrp_folder vrp_folder;
6696 vrp_folder.vr_values = &vr_values;
6697 vrp_folder.substitute_and_fold ();
6699 if (warn_array_bounds && warn_array_bounds_p)
6700 check_all_array_refs ();
6703 /* Main entry point to VRP (Value Range Propagation). This pass is
6704 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6705 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6706 Programming Language Design and Implementation, pp. 67-78, 1995.
6707 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6709 This is essentially an SSA-CCP pass modified to deal with ranges
6710 instead of constants.
6712 While propagating ranges, we may find that two or more SSA name
6713 have equivalent, though distinct ranges. For instance,
6715 1 x_9 = p_3->a;
6716 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6717 3 if (p_4 == q_2)
6718 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6719 5 endif
6720 6 if (q_2)
6722 In the code above, pointer p_5 has range [q_2, q_2], but from the
6723 code we can also determine that p_5 cannot be NULL and, if q_2 had
6724 a non-varying range, p_5's range should also be compatible with it.
6726 These equivalences are created by two expressions: ASSERT_EXPR and
6727 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6728 result of another assertion, then we can use the fact that p_5 and
6729 p_4 are equivalent when evaluating p_5's range.
6731 Together with value ranges, we also propagate these equivalences
6732 between names so that we can take advantage of information from
6733 multiple ranges when doing final replacement. Note that this
6734 equivalency relation is transitive but not symmetric.
6736 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6737 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6738 in contexts where that assertion does not hold (e.g., in line 6).
6740 TODO, the main difference between this pass and Patterson's is that
6741 we do not propagate edge probabilities. We only compute whether
6742 edges can be taken or not. That is, instead of having a spectrum
6743 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6744 DON'T KNOW. In the future, it may be worthwhile to propagate
6745 probabilities to aid branch prediction. */
6747 static unsigned int
6748 execute_vrp (bool warn_array_bounds_p)
6751 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6752 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6753 scev_initialize ();
6755 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
6756 Inserting assertions may split edges which will invalidate
6757 EDGE_DFS_BACK. */
6758 insert_range_assertions ();
6760 threadedge_initialize_values ();
6762 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
6763 mark_dfs_back_edges ();
6765 class vrp_prop vrp_prop;
6766 vrp_prop.vrp_initialize ();
6767 vrp_prop.ssa_propagate ();
6768 vrp_prop.vrp_finalize (warn_array_bounds_p);
6770 /* We must identify jump threading opportunities before we release
6771 the datastructures built by VRP. */
6772 identify_jump_threads (&vrp_prop.vr_values);
6774 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
6775 was set by a type conversion can often be rewritten to use the
6776 RHS of the type conversion.
6778 However, doing so inhibits jump threading through the comparison.
6779 So that transformation is not performed until after jump threading
6780 is complete. */
6781 basic_block bb;
6782 FOR_EACH_BB_FN (bb, cfun)
6784 gimple *last = last_stmt (bb);
6785 if (last && gimple_code (last) == GIMPLE_COND)
6786 vrp_prop.vr_values.simplify_cond_using_ranges_2 (as_a <gcond *> (last));
6789 free_numbers_of_iterations_estimates (cfun);
6791 /* ASSERT_EXPRs must be removed before finalizing jump threads
6792 as finalizing jump threads calls the CFG cleanup code which
6793 does not properly handle ASSERT_EXPRs. */
6794 remove_range_assertions ();
6796 /* If we exposed any new variables, go ahead and put them into
6797 SSA form now, before we handle jump threading. This simplifies
6798 interactions between rewriting of _DECL nodes into SSA form
6799 and rewriting SSA_NAME nodes into SSA form after block
6800 duplication and CFG manipulation. */
6801 update_ssa (TODO_update_ssa);
6803 /* We identified all the jump threading opportunities earlier, but could
6804 not transform the CFG at that time. This routine transforms the
6805 CFG and arranges for the dominator tree to be rebuilt if necessary.
6807 Note the SSA graph update will occur during the normal TODO
6808 processing by the pass manager. */
6809 thread_through_all_blocks (false);
6811 vrp_prop.vr_values.cleanup_edges_and_switches ();
6812 threadedge_finalize_values ();
6814 scev_finalize ();
6815 loop_optimizer_finalize ();
6816 return 0;
6819 namespace {
6821 const pass_data pass_data_vrp =
6823 GIMPLE_PASS, /* type */
6824 "vrp", /* name */
6825 OPTGROUP_NONE, /* optinfo_flags */
6826 TV_TREE_VRP, /* tv_id */
6827 PROP_ssa, /* properties_required */
6828 0, /* properties_provided */
6829 0, /* properties_destroyed */
6830 0, /* todo_flags_start */
6831 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
6834 class pass_vrp : public gimple_opt_pass
6836 public:
6837 pass_vrp (gcc::context *ctxt)
6838 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
6841 /* opt_pass methods: */
6842 opt_pass * clone () { return new pass_vrp (m_ctxt); }
6843 void set_pass_param (unsigned int n, bool param)
6845 gcc_assert (n == 0);
6846 warn_array_bounds_p = param;
6848 virtual bool gate (function *) { return flag_tree_vrp != 0; }
6849 virtual unsigned int execute (function *)
6850 { return execute_vrp (warn_array_bounds_p); }
6852 private:
6853 bool warn_array_bounds_p;
6854 }; // class pass_vrp
6856 } // anon namespace
6858 gimple_opt_pass *
6859 make_pass_vrp (gcc::context *ctxt)
6861 return new pass_vrp (ctxt);
6865 /* Worker for determine_value_range. */
6867 static void
6868 determine_value_range_1 (value_range_base *vr, tree expr)
6870 if (BINARY_CLASS_P (expr))
6872 value_range_base vr0, vr1;
6873 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6874 determine_value_range_1 (&vr1, TREE_OPERAND (expr, 1));
6875 extract_range_from_binary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6876 &vr0, &vr1);
6878 else if (UNARY_CLASS_P (expr))
6880 value_range_base vr0;
6881 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6882 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6883 &vr0, TREE_TYPE (TREE_OPERAND (expr, 0)));
6885 else if (TREE_CODE (expr) == INTEGER_CST)
6886 vr->set (expr);
6887 else
6889 value_range_kind kind;
6890 wide_int min, max;
6891 /* For SSA names try to extract range info computed by VRP. Otherwise
6892 fall back to varying. */
6893 if (TREE_CODE (expr) == SSA_NAME
6894 && INTEGRAL_TYPE_P (TREE_TYPE (expr))
6895 && (kind = get_range_info (expr, &min, &max)) != VR_VARYING)
6896 vr->set (kind, wide_int_to_tree (TREE_TYPE (expr), min),
6897 wide_int_to_tree (TREE_TYPE (expr), max));
6898 else
6899 vr->set_varying ();
6903 /* Compute a value-range for EXPR and set it in *MIN and *MAX. Return
6904 the determined range type. */
6906 value_range_kind
6907 determine_value_range (tree expr, wide_int *min, wide_int *max)
6909 value_range_base vr;
6910 determine_value_range_1 (&vr, expr);
6911 if (vr.constant_p ())
6913 *min = wi::to_wide (vr.min ());
6914 *max = wi::to_wide (vr.max ());
6915 return vr.kind ();
6918 return VR_VARYING;