gcc/
[official-gcc.git] / gcc / sel-sched-ir.c
blobc53d2e1a8e9edf27c5e40dc690081d46d78bd477
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 /* We don't have to use it except for sel_print_insn. */
51 #include "sel-sched-dump.h"
53 /* A vector holding bb info for whole scheduling pass. */
54 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
56 /* A vector holding bb info. */
57 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
59 /* A pool for allocating all lists. */
60 alloc_pool sched_lists_pool;
62 /* This contains information about successors for compute_av_set. */
63 struct succs_info current_succs;
65 /* Data structure to describe interaction with the generic scheduler utils. */
66 static struct common_sched_info_def sel_common_sched_info;
68 /* The loop nest being pipelined. */
69 struct loop *current_loop_nest;
71 /* LOOP_NESTS is a vector containing the corresponding loop nest for
72 each region. */
73 static VEC(loop_p, heap) *loop_nests = NULL;
75 /* Saves blocks already in loop regions, indexed by bb->index. */
76 static sbitmap bbs_in_loop_rgns = NULL;
78 /* CFG hooks that are saved before changing create_basic_block hook. */
79 static struct cfg_hooks orig_cfg_hooks;
82 /* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84 static int *rev_top_order_index = NULL;
86 /* Length of the above array. */
87 static int rev_top_order_index_len = -1;
89 /* A regset pool structure. */
90 static struct
92 /* The stack to which regsets are returned. */
93 regset *v;
95 /* Its pointer. */
96 int n;
98 /* Its size. */
99 int s;
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
103 back to pool. */
104 regset *vv;
106 /* The pointer of VV stack. */
107 int nn;
109 /* Its size. */
110 int ss;
112 /* The difference between allocated and returned regsets. */
113 int diff;
114 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
116 /* This represents the nop pool. */
117 static struct
119 /* The vector which holds previously emitted nops. */
120 insn_t *v;
122 /* Its pointer. */
123 int n;
125 /* Its size. */
126 int s;
127 } nop_pool = { NULL, 0, 0 };
129 /* The pool for basic block notes. */
130 static rtx_vec_t bb_note_pool;
132 /* A NOP pattern used to emit placeholder insns. */
133 rtx nop_pattern = NULL_RTX;
134 /* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136 rtx exit_insn = NULL_RTX;
138 /* TRUE if while scheduling current region, which is loop, its preheader
139 was removed. */
140 bool preheader_removed = false;
143 /* Forward static declarations. */
144 static void fence_clear (fence_t);
146 static void deps_init_id (idata_t, insn_t, bool);
147 static void init_id_from_df (idata_t, insn_t, bool);
148 static expr_t set_insn_init (expr_t, vinsn_t, int);
150 static void cfg_preds (basic_block, insn_t **, int *);
151 static void prepare_insn_expr (insn_t, int);
152 static void free_history_vect (VEC (expr_history_def, heap) **);
154 static void move_bb_info (basic_block, basic_block);
155 static void remove_empty_bb (basic_block, bool);
156 static void sel_merge_blocks (basic_block, basic_block);
157 static void sel_remove_loop_preheader (void);
158 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
160 static bool insn_is_the_only_one_in_bb_p (insn_t);
161 static void create_initial_data_sets (basic_block);
163 static void free_av_set (basic_block);
164 static void invalidate_av_set (basic_block);
165 static void extend_insn_data (void);
166 static void sel_init_new_insn (insn_t, int);
167 static void finish_insns (void);
169 /* Various list functions. */
171 /* Copy an instruction list L. */
172 ilist_t
173 ilist_copy (ilist_t l)
175 ilist_t head = NULL, *tailp = &head;
177 while (l)
179 ilist_add (tailp, ILIST_INSN (l));
180 tailp = &ILIST_NEXT (*tailp);
181 l = ILIST_NEXT (l);
184 return head;
187 /* Invert an instruction list L. */
188 ilist_t
189 ilist_invert (ilist_t l)
191 ilist_t res = NULL;
193 while (l)
195 ilist_add (&res, ILIST_INSN (l));
196 l = ILIST_NEXT (l);
199 return res;
202 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
203 void
204 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
206 bnd_t bnd;
208 _list_add (lp);
209 bnd = BLIST_BND (*lp);
211 BND_TO (bnd) = to;
212 BND_PTR (bnd) = ptr;
213 BND_AV (bnd) = NULL;
214 BND_AV1 (bnd) = NULL;
215 BND_DC (bnd) = dc;
218 /* Remove the list note pointed to by LP. */
219 void
220 blist_remove (blist_t *lp)
222 bnd_t b = BLIST_BND (*lp);
224 av_set_clear (&BND_AV (b));
225 av_set_clear (&BND_AV1 (b));
226 ilist_clear (&BND_PTR (b));
228 _list_remove (lp);
231 /* Init a fence tail L. */
232 void
233 flist_tail_init (flist_tail_t l)
235 FLIST_TAIL_HEAD (l) = NULL;
236 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
239 /* Try to find fence corresponding to INSN in L. */
240 fence_t
241 flist_lookup (flist_t l, insn_t insn)
243 while (l)
245 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246 return FLIST_FENCE (l);
248 l = FLIST_NEXT (l);
251 return NULL;
254 /* Init the fields of F before running fill_insns. */
255 static void
256 init_fence_for_scheduling (fence_t f)
258 FENCE_BNDS (f) = NULL;
259 FENCE_PROCESSED_P (f) = false;
260 FENCE_SCHEDULED_P (f) = false;
263 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
264 static void
265 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
267 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
268 int cycle, int cycle_issued_insns, int issue_more,
269 bool starts_cycle_p, bool after_stall_p)
271 fence_t f;
273 _list_add (lp);
274 f = FLIST_FENCE (*lp);
276 FENCE_INSN (f) = insn;
278 gcc_assert (state != NULL);
279 FENCE_STATE (f) = state;
281 FENCE_CYCLE (f) = cycle;
282 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284 FENCE_AFTER_STALL_P (f) = after_stall_p;
286 gcc_assert (dc != NULL);
287 FENCE_DC (f) = dc;
289 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290 FENCE_TC (f) = tc;
292 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
293 FENCE_ISSUE_MORE (f) = issue_more;
294 FENCE_EXECUTING_INSNS (f) = executing_insns;
295 FENCE_READY_TICKS (f) = ready_ticks;
296 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297 FENCE_SCHED_NEXT (f) = sched_next;
299 init_fence_for_scheduling (f);
302 /* Remove the head node of the list pointed to by LP. */
303 static void
304 flist_remove (flist_t *lp)
306 if (FENCE_INSN (FLIST_FENCE (*lp)))
307 fence_clear (FLIST_FENCE (*lp));
308 _list_remove (lp);
311 /* Clear the fence list pointed to by LP. */
312 void
313 flist_clear (flist_t *lp)
315 while (*lp)
316 flist_remove (lp);
319 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
320 void
321 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
323 def_t d;
325 _list_add (dl);
326 d = DEF_LIST_DEF (*dl);
328 d->orig_insn = original_insn;
329 d->crosses_call = crosses_call;
333 /* Functions to work with target contexts. */
335 /* Bulk target context. It is convenient for debugging purposes to ensure
336 that there are no uninitialized (null) target contexts. */
337 static tc_t bulk_tc = (tc_t) 1;
339 /* Target hooks wrappers. In the future we can provide some default
340 implementations for them. */
342 /* Allocate a store for the target context. */
343 static tc_t
344 alloc_target_context (void)
346 return (targetm.sched.alloc_sched_context
347 ? targetm.sched.alloc_sched_context () : bulk_tc);
350 /* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
353 static void
354 init_target_context (tc_t tc, bool clean_p)
356 if (targetm.sched.init_sched_context)
357 targetm.sched.init_sched_context (tc, clean_p);
360 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
362 tc_t
363 create_target_context (bool clean_p)
365 tc_t tc = alloc_target_context ();
367 init_target_context (tc, clean_p);
368 return tc;
371 /* Copy TC to the current backend context. */
372 void
373 set_target_context (tc_t tc)
375 if (targetm.sched.set_sched_context)
376 targetm.sched.set_sched_context (tc);
379 /* TC is about to be destroyed. Free any internal data. */
380 static void
381 clear_target_context (tc_t tc)
383 if (targetm.sched.clear_sched_context)
384 targetm.sched.clear_sched_context (tc);
387 /* Clear and free it. */
388 static void
389 delete_target_context (tc_t tc)
391 clear_target_context (tc);
393 if (targetm.sched.free_sched_context)
394 targetm.sched.free_sched_context (tc);
397 /* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
399 static void
400 copy_target_context (tc_t to, tc_t from)
402 tc_t tmp = create_target_context (false);
404 set_target_context (from);
405 init_target_context (to, false);
407 set_target_context (tmp);
408 delete_target_context (tmp);
411 /* Create a copy of TC. */
412 static tc_t
413 create_copy_of_target_context (tc_t tc)
415 tc_t copy = alloc_target_context ();
417 copy_target_context (copy, tc);
419 return copy;
422 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
424 void
425 reset_target_context (tc_t tc, bool clean_p)
427 clear_target_context (tc);
428 init_target_context (tc, clean_p);
431 /* Functions to work with dependence contexts.
432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
436 /* Make a copy of FROM in TO. */
437 static void
438 copy_deps_context (deps_t to, deps_t from)
440 init_deps (to, false);
441 deps_join (to, from);
444 /* Allocate store for dep context. */
445 static deps_t
446 alloc_deps_context (void)
448 return XNEW (struct deps_desc);
451 /* Allocate and initialize dep context. */
452 static deps_t
453 create_deps_context (void)
455 deps_t dc = alloc_deps_context ();
457 init_deps (dc, false);
458 return dc;
461 /* Create a copy of FROM. */
462 static deps_t
463 create_copy_of_deps_context (deps_t from)
465 deps_t to = alloc_deps_context ();
467 copy_deps_context (to, from);
468 return to;
471 /* Clean up internal data of DC. */
472 static void
473 clear_deps_context (deps_t dc)
475 free_deps (dc);
478 /* Clear and free DC. */
479 static void
480 delete_deps_context (deps_t dc)
482 clear_deps_context (dc);
483 free (dc);
486 /* Clear and init DC. */
487 static void
488 reset_deps_context (deps_t dc)
490 clear_deps_context (dc);
491 init_deps (dc, false);
494 /* This structure describes the dependence analysis hooks for advancing
495 dependence context. */
496 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
498 NULL,
500 NULL, /* start_insn */
501 NULL, /* finish_insn */
502 NULL, /* start_lhs */
503 NULL, /* finish_lhs */
504 NULL, /* start_rhs */
505 NULL, /* finish_rhs */
506 haifa_note_reg_set,
507 haifa_note_reg_clobber,
508 haifa_note_reg_use,
509 NULL, /* note_mem_dep */
510 NULL, /* note_dep */
512 0, 0, 0
515 /* Process INSN and add its impact on DC. */
516 void
517 advance_deps_context (deps_t dc, insn_t insn)
519 sched_deps_info = &advance_deps_context_sched_deps_info;
520 deps_analyze_insn (dc, insn);
524 /* Functions to work with DFA states. */
526 /* Allocate store for a DFA state. */
527 static state_t
528 state_alloc (void)
530 return xmalloc (dfa_state_size);
533 /* Allocate and initialize DFA state. */
534 static state_t
535 state_create (void)
537 state_t state = state_alloc ();
539 state_reset (state);
540 advance_state (state);
541 return state;
544 /* Free DFA state. */
545 static void
546 state_free (state_t state)
548 free (state);
551 /* Make a copy of FROM in TO. */
552 static void
553 state_copy (state_t to, state_t from)
555 memcpy (to, from, dfa_state_size);
558 /* Create a copy of FROM. */
559 static state_t
560 state_create_copy (state_t from)
562 state_t to = state_alloc ();
564 state_copy (to, from);
565 return to;
569 /* Functions to work with fences. */
571 /* Clear the fence. */
572 static void
573 fence_clear (fence_t f)
575 state_t s = FENCE_STATE (f);
576 deps_t dc = FENCE_DC (f);
577 void *tc = FENCE_TC (f);
579 ilist_clear (&FENCE_BNDS (f));
581 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582 || (s == NULL && dc == NULL && tc == NULL));
584 free (s);
586 if (dc != NULL)
587 delete_deps_context (dc);
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
596 /* Init a list of fences with successors of OLD_FENCE. */
597 void
598 init_fences (insn_t old_fence)
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX /* last_scheduled_insn */,
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 state_t state, deps_t dc, void *tc,
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
660 state_reset (FENCE_STATE (f));
661 state_free (state);
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
682 else
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
724 else
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
738 if (succ == insn)
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
749 if (succ == insn)
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
772 else
773 if (edge_new->probability > edge_old->probability)
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
784 else
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814 if (! f)
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 last_scheduled_insn, executing_insns, ready_ticks,
818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 issue_rate, starts_cycle_p, after_stall_p);
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 else
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
828 sched_next, cycle, issue_rate, after_stall_p);
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839 old = FLIST_FENCE (old_fences);
840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
847 old->sched_next, old->cycle, old->issue_more,
848 old->after_stall_p);
850 else
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 FENCE_INSN (old) = NULL;
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861 as a clean one. */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865 int ready_ticks_size = get_max_uid () + 1;
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
870 NULL_RTX, NULL,
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
890 FENCE_LAST_SCHEDULED_INSN (fence),
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
897 FENCE_ISSUE_MORE (fence),
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
903 /* Functions to work with regset and nop pools. */
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907 regset
908 get_regset_from_pool (void)
910 regset rs;
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
917 rs = ALLOC_REG_SET (&reg_obstack);
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
925 regset_pool.diff++;
927 return rs;
930 /* Same as above, but returns the empty regset. */
931 regset
932 get_clear_regset_from_pool (void)
934 regset rs = get_regset_from_pool ();
936 CLEAR_REG_SET (rs);
937 return rs;
940 /* Return regset RS to the pool for future use. */
941 void
942 return_regset_to_pool (regset rs)
944 gcc_assert (rs);
945 regset_pool.diff--;
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956 static int
957 cmp_v_in_regset_pool (const void *x, const void *xx)
959 return *((const regset *) x) - *((const regset *) xx);
961 #endif
963 /* Free the regset pool possibly checking for memory leaks. */
964 void
965 free_regset_pool (void)
967 #ifdef ENABLE_CHECKING
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
977 int diff = 0;
979 gcc_assert (n <= nn);
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985 while (ii < nn)
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
993 ii++;
996 gcc_assert (diff == regset_pool.diff);
998 #endif
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1003 while (regset_pool.n)
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1018 regset_pool.diff = 0;
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1043 nop = emit_insn_before (nop, insn);
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1053 return nop;
1056 /* Remove NOP from the instruction stream and return it to the pool. */
1057 void
1058 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 gcc_assert (INSN_IN_STREAM_P (nop));
1061 sel_remove_insn (nop, false, full_tidying);
1063 if (nop_pool.n == nop_pool.s)
1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1069 /* Free the nop pool. */
1070 void
1071 free_nop_pool (void)
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1080 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083 static int
1084 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1107 return 0;
1110 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113 static int
1114 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1117 if (GET_CODE (x) == UNSPEC
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1121 *nx = XVECEXP (x, 0 ,0);
1122 *nmode = VOIDmode;
1123 return 1;
1126 return 0;
1129 /* Returns LHS and RHS are ok to be scheduled separately. */
1130 static bool
1131 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1151 /* See comment at find_used_regs_1 (*1) for explanation of this
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1162 return true;
1165 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1167 used e.g. for insns from recovery blocks. */
1168 static void
1169 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
1178 if (INSN_NOP_P (insn))
1179 return;
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1190 rtx rhs = VINSN_RHS (vi);
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1198 else
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1215 /* Indicate that VI has become the part of an rtx object. */
1216 void
1217 vinsn_attach (vinsn_t vi)
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1222 VINSN_COUNT (vi)++;
1225 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1226 VINSN_TYPE (VI). */
1227 static vinsn_t
1228 vinsn_create (insn_t insn, bool force_unique_p)
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1236 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
1238 vinsn_t
1239 vinsn_copy (vinsn_t vi, bool reattach_p)
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1253 return new_vi;
1256 /* Delete the VI vinsn and free its data. */
1257 static void
1258 vinsn_delete (vinsn_t vi)
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1269 free (vi);
1272 /* Indicate that VI is no longer a part of some rtx object.
1273 Remove VI if it is no longer needed. */
1274 void
1275 vinsn_detach (vinsn_t vi)
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1283 /* Returns TRUE if VI is a branch. */
1284 bool
1285 vinsn_cond_branch_p (vinsn_t vi)
1287 insn_t insn;
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1296 return control_flow_insn_p (insn);
1299 /* Return latency of INSN. */
1300 static int
1301 sel_insn_rtx_cost (rtx insn)
1303 int cost;
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1313 cost = insn_default_latency (insn);
1315 if (cost < 0)
1316 cost = 0;
1319 return cost;
1322 /* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1325 sel_vinsn_cost (vinsn_t vi)
1327 int cost = vi->cost;
1329 if (cost < 0)
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1335 return cost;
1339 /* Functions for insn emitting. */
1341 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343 insn_t
1344 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1346 insn_t new_insn;
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1354 return new_insn;
1357 /* Force newly generated vinsns to be unique. */
1358 static bool init_insn_force_unique_p = false;
1360 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362 insn_t
1363 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1366 insn_t insn;
1368 gcc_assert (!init_insn_force_unique_p);
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1375 return insn;
1378 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
1381 simplify_changed_insns. */
1382 insn_t
1383 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384 insn_t after)
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1400 return insn;
1403 /* Move insn from EXPR after AFTER. */
1404 insn_t
1405 sel_move_insn (expr_t expr, int seqno, insn_t after)
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1429 /* Functions to work with right-hand sides. */
1431 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432 VECT and return true when found. Use NEW_VINSN for comparison only when
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
1435 retain VECT's sort order. */
1436 static bool
1437 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
1439 bool compare_vinsns, int *indp)
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1444 if (len == 0)
1446 *indp = 0;
1447 return false;
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1453 while (i <= j)
1455 unsigned auid = arr[i].uid;
1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
1458 if (auid == uid
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
1463 && (! compare_vinsns
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1466 *indp = i;
1467 return true;
1469 else if (auid > uid)
1470 break;
1471 i++;
1474 *indp = i;
1475 return false;
1478 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1482 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483 vinsn_t new_vinsn, bool originators_p)
1485 int ind;
1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488 false, &ind))
1489 return ind;
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1493 unsigned uid;
1494 bitmap_iterator bi;
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1501 return -1;
1504 /* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508 void
1509 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512 ds_t spec_ds)
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1521 if (res)
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1525 /* It is possible that speculation types of expressions that were
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
1535 temp.new_expr_vinsn = new_expr_vinsn;
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1545 /* Free history vector PVECT. */
1546 static void
1547 free_history_vect (VEC (expr_history_def, heap) **pvect)
1549 unsigned i;
1550 expr_history_def *phist;
1552 if (! *pvect)
1553 return;
1555 for (i = 0;
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1567 /* Merge vector FROM to PVECT. */
1568 static void
1569 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570 VEC (expr_history_def, heap) *from)
1572 expr_history_def *phist;
1573 int i;
1575 /* We keep this vector sorted. */
1576 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577 insert_in_history_vect (pvect, phist->uid, phist->type,
1578 phist->old_expr_vinsn, phist->new_expr_vinsn,
1579 phist->spec_ds);
1582 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1583 bool
1584 vinsn_equal_p (vinsn_t x, vinsn_t y)
1586 rtx_equal_p_callback_function repcf;
1588 if (x == y)
1589 return true;
1591 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592 return false;
1594 if (VINSN_HASH (x) != VINSN_HASH (y))
1595 return false;
1597 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1598 if (VINSN_SEPARABLE_P (x))
1600 /* Compare RHSes of VINSNs. */
1601 gcc_assert (VINSN_RHS (x));
1602 gcc_assert (VINSN_RHS (y));
1604 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1607 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1611 /* Functions for working with expressions. */
1613 /* Initialize EXPR. */
1614 static void
1615 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617 ds_t spec_to_check_ds, int orig_sched_cycle,
1618 VEC(expr_history_def, heap) *history, signed char target_available,
1619 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620 bool cant_move)
1622 vinsn_attach (vi);
1624 EXPR_VINSN (expr) = vi;
1625 EXPR_SPEC (expr) = spec;
1626 EXPR_USEFULNESS (expr) = use;
1627 EXPR_PRIORITY (expr) = priority;
1628 EXPR_PRIORITY_ADJ (expr) = 0;
1629 EXPR_SCHED_TIMES (expr) = sched_times;
1630 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1635 if (history)
1636 EXPR_HISTORY_OF_CHANGES (expr) = history;
1637 else
1638 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1640 EXPR_TARGET_AVAILABLE (expr) = target_available;
1641 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642 EXPR_WAS_RENAMED (expr) = was_renamed;
1643 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644 EXPR_CANT_MOVE (expr) = cant_move;
1647 /* Make a copy of the expr FROM into the expr TO. */
1648 void
1649 copy_expr (expr_t to, expr_t from)
1651 VEC(expr_history_def, heap) *temp = NULL;
1653 if (EXPR_HISTORY_OF_CHANGES (from))
1655 unsigned i;
1656 expr_history_def *phist;
1658 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1659 for (i = 0;
1660 VEC_iterate (expr_history_def, temp, i, phist);
1661 i++)
1663 vinsn_attach (phist->old_expr_vinsn);
1664 vinsn_attach (phist->new_expr_vinsn);
1668 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1669 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1672 EXPR_ORIG_SCHED_CYCLE (from), temp,
1673 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1674 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675 EXPR_CANT_MOVE (from));
1678 /* Same, but the final expr will not ever be in av sets, so don't copy
1679 "uninteresting" data such as bitmap cache. */
1680 void
1681 copy_expr_onside (expr_t to, expr_t from)
1683 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688 EXPR_CANT_MOVE (from));
1691 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1692 initializing new insns. */
1693 static void
1694 prepare_insn_expr (insn_t insn, int seqno)
1696 expr_t expr = INSN_EXPR (insn);
1697 ds_t ds;
1699 INSN_SEQNO (insn) = seqno;
1700 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701 EXPR_SPEC (expr) = 0;
1702 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703 EXPR_WAS_SUBSTITUTED (expr) = 0;
1704 EXPR_WAS_RENAMED (expr) = 0;
1705 EXPR_TARGET_AVAILABLE (expr) = 1;
1706 INSN_LIVE_VALID_P (insn) = false;
1708 /* ??? If this expression is speculative, make its dependence
1709 as weak as possible. We can filter this expression later
1710 in process_spec_exprs, because we do not distinguish
1711 between the status we got during compute_av_set and the
1712 existing status. To be fixed. */
1713 ds = EXPR_SPEC_DONE_DS (expr);
1714 if (ds)
1715 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1717 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1720 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1721 is non-null when expressions are merged from different successors at
1722 a split point. */
1723 static void
1724 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1726 if (EXPR_TARGET_AVAILABLE (to) < 0
1727 || EXPR_TARGET_AVAILABLE (from) < 0)
1728 EXPR_TARGET_AVAILABLE (to) = -1;
1729 else
1731 /* We try to detect the case when one of the expressions
1732 can only be reached through another one. In this case,
1733 we can do better. */
1734 if (split_point == NULL)
1736 int toind, fromind;
1738 toind = EXPR_ORIG_BB_INDEX (to);
1739 fromind = EXPR_ORIG_BB_INDEX (from);
1741 if (toind && toind == fromind)
1742 /* Do nothing -- everything is done in
1743 merge_with_other_exprs. */
1745 else
1746 EXPR_TARGET_AVAILABLE (to) = -1;
1748 else if (EXPR_TARGET_AVAILABLE (from) == 0
1749 && EXPR_LHS (from)
1750 && REG_P (EXPR_LHS (from))
1751 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1752 EXPR_TARGET_AVAILABLE (to) = -1;
1753 else
1754 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1758 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1759 is non-null when expressions are merged from different successors at
1760 a split point. */
1761 static void
1762 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1764 ds_t old_to_ds, old_from_ds;
1766 old_to_ds = EXPR_SPEC_DONE_DS (to);
1767 old_from_ds = EXPR_SPEC_DONE_DS (from);
1769 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1770 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1771 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1773 /* When merging e.g. control & data speculative exprs, or a control
1774 speculative with a control&data speculative one, we really have
1775 to change vinsn too. Also, when speculative status is changed,
1776 we also need to record this as a transformation in expr's history. */
1777 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1779 old_to_ds = ds_get_speculation_types (old_to_ds);
1780 old_from_ds = ds_get_speculation_types (old_from_ds);
1782 if (old_to_ds != old_from_ds)
1784 ds_t record_ds;
1786 /* When both expressions are speculative, we need to change
1787 the vinsn first. */
1788 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1790 int res;
1792 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1793 gcc_assert (res >= 0);
1796 if (split_point != NULL)
1798 /* Record the change with proper status. */
1799 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1800 record_ds &= ~(old_to_ds & SPECULATIVE);
1801 record_ds &= ~(old_from_ds & SPECULATIVE);
1803 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1804 INSN_UID (split_point), TRANS_SPECULATION,
1805 EXPR_VINSN (from), EXPR_VINSN (to),
1806 record_ds);
1813 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1814 this is done along different paths. */
1815 void
1816 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1818 /* Choose the maximum of the specs of merged exprs. This is required
1819 for correctness of bookkeeping. */
1820 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1821 EXPR_SPEC (to) = EXPR_SPEC (from);
1823 if (split_point)
1824 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1825 else
1826 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1827 EXPR_USEFULNESS (from));
1829 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1830 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1832 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1833 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1835 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1836 EXPR_ORIG_BB_INDEX (to) = 0;
1838 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1839 EXPR_ORIG_SCHED_CYCLE (from));
1841 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1842 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1843 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1845 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1846 EXPR_HISTORY_OF_CHANGES (from));
1847 update_target_availability (to, from, split_point);
1848 update_speculative_bits (to, from, split_point);
1851 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1852 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1853 are merged from different successors at a split point. */
1854 void
1855 merge_expr (expr_t to, expr_t from, insn_t split_point)
1857 vinsn_t to_vi = EXPR_VINSN (to);
1858 vinsn_t from_vi = EXPR_VINSN (from);
1860 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1862 /* Make sure that speculative pattern is propagated into exprs that
1863 have non-speculative one. This will provide us with consistent
1864 speculative bits and speculative patterns inside expr. */
1865 if (EXPR_SPEC_DONE_DS (to) == 0
1866 && EXPR_SPEC_DONE_DS (from) != 0)
1867 change_vinsn_in_expr (to, EXPR_VINSN (from));
1869 merge_expr_data (to, from, split_point);
1870 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1873 /* Clear the information of this EXPR. */
1874 void
1875 clear_expr (expr_t expr)
1878 vinsn_detach (EXPR_VINSN (expr));
1879 EXPR_VINSN (expr) = NULL;
1881 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1884 /* For a given LV_SET, mark EXPR having unavailable target register. */
1885 static void
1886 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1888 if (EXPR_SEPARABLE_P (expr))
1890 if (REG_P (EXPR_LHS (expr))
1891 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1893 /* If it's an insn like r1 = use (r1, ...), and it exists in
1894 different forms in each of the av_sets being merged, we can't say
1895 whether original destination register is available or not.
1896 However, this still works if destination register is not used
1897 in the original expression: if the branch at which LV_SET we're
1898 looking here is not actually 'other branch' in sense that same
1899 expression is available through it (but it can't be determined
1900 at computation stage because of transformations on one of the
1901 branches), it still won't affect the availability.
1902 Liveness of a register somewhere on a code motion path means
1903 it's either read somewhere on a codemotion path, live on
1904 'other' branch, live at the point immediately following
1905 the original operation, or is read by the original operation.
1906 The latter case is filtered out in the condition below.
1907 It still doesn't cover the case when register is defined and used
1908 somewhere within the code motion path, and in this case we could
1909 miss a unifying code motion along both branches using a renamed
1910 register, but it won't affect a code correctness since upon
1911 an actual code motion a bookkeeping code would be generated. */
1912 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1913 EXPR_LHS (expr)))
1914 EXPR_TARGET_AVAILABLE (expr) = -1;
1915 else
1916 EXPR_TARGET_AVAILABLE (expr) = false;
1919 else
1921 unsigned regno;
1922 reg_set_iterator rsi;
1924 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1925 0, regno, rsi)
1926 if (bitmap_bit_p (lv_set, regno))
1928 EXPR_TARGET_AVAILABLE (expr) = false;
1929 break;
1932 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1933 0, regno, rsi)
1934 if (bitmap_bit_p (lv_set, regno))
1936 EXPR_TARGET_AVAILABLE (expr) = false;
1937 break;
1942 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1943 or dependence status have changed, 2 when also the target register
1944 became unavailable, 0 if nothing had to be changed. */
1946 speculate_expr (expr_t expr, ds_t ds)
1948 int res;
1949 rtx orig_insn_rtx;
1950 rtx spec_pat;
1951 ds_t target_ds, current_ds;
1953 /* Obtain the status we need to put on EXPR. */
1954 target_ds = (ds & SPECULATIVE);
1955 current_ds = EXPR_SPEC_DONE_DS (expr);
1956 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1958 orig_insn_rtx = EXPR_INSN_RTX (expr);
1960 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1962 switch (res)
1964 case 0:
1965 EXPR_SPEC_DONE_DS (expr) = ds;
1966 return current_ds != ds ? 1 : 0;
1968 case 1:
1970 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1971 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1973 change_vinsn_in_expr (expr, spec_vinsn);
1974 EXPR_SPEC_DONE_DS (expr) = ds;
1975 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1977 /* Do not allow clobbering the address register of speculative
1978 insns. */
1979 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1980 expr_dest_reg (expr)))
1982 EXPR_TARGET_AVAILABLE (expr) = false;
1983 return 2;
1986 return 1;
1989 case -1:
1990 return -1;
1992 default:
1993 gcc_unreachable ();
1994 return -1;
1998 /* Return a destination register, if any, of EXPR. */
2000 expr_dest_reg (expr_t expr)
2002 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2004 if (dest != NULL_RTX && REG_P (dest))
2005 return dest;
2007 return NULL_RTX;
2010 /* Returns the REGNO of the R's destination. */
2011 unsigned
2012 expr_dest_regno (expr_t expr)
2014 rtx dest = expr_dest_reg (expr);
2016 gcc_assert (dest != NULL_RTX);
2017 return REGNO (dest);
2020 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2021 AV_SET having unavailable target register. */
2022 void
2023 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2025 expr_t expr;
2026 av_set_iterator avi;
2028 FOR_EACH_EXPR (expr, avi, join_set)
2029 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2030 set_unavailable_target_for_expr (expr, lv_set);
2034 /* Returns true if REG (at least partially) is present in REGS. */
2035 bool
2036 register_unavailable_p (regset regs, rtx reg)
2038 unsigned regno, end_regno;
2040 regno = REGNO (reg);
2041 if (bitmap_bit_p (regs, regno))
2042 return true;
2044 end_regno = END_REGNO (reg);
2046 while (++regno < end_regno)
2047 if (bitmap_bit_p (regs, regno))
2048 return true;
2050 return false;
2053 /* Av set functions. */
2055 /* Add a new element to av set SETP.
2056 Return the element added. */
2057 static av_set_t
2058 av_set_add_element (av_set_t *setp)
2060 /* Insert at the beginning of the list. */
2061 _list_add (setp);
2062 return *setp;
2065 /* Add EXPR to SETP. */
2066 void
2067 av_set_add (av_set_t *setp, expr_t expr)
2069 av_set_t elem;
2071 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2072 elem = av_set_add_element (setp);
2073 copy_expr (_AV_SET_EXPR (elem), expr);
2076 /* Same, but do not copy EXPR. */
2077 static void
2078 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2080 av_set_t elem;
2082 elem = av_set_add_element (setp);
2083 *_AV_SET_EXPR (elem) = *expr;
2086 /* Remove expr pointed to by IP from the av_set. */
2087 void
2088 av_set_iter_remove (av_set_iterator *ip)
2090 clear_expr (_AV_SET_EXPR (*ip->lp));
2091 _list_iter_remove (ip);
2094 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2095 sense of vinsn_equal_p function. Return NULL if no such expr is
2096 in SET was found. */
2097 expr_t
2098 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2100 expr_t expr;
2101 av_set_iterator i;
2103 FOR_EACH_EXPR (expr, i, set)
2104 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2105 return expr;
2106 return NULL;
2109 /* Same, but also remove the EXPR found. */
2110 static expr_t
2111 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2113 expr_t expr;
2114 av_set_iterator i;
2116 FOR_EACH_EXPR_1 (expr, i, setp)
2117 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2119 _list_iter_remove_nofree (&i);
2120 return expr;
2122 return NULL;
2125 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2126 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2127 Returns NULL if no such expr is in SET was found. */
2128 static expr_t
2129 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2131 expr_t cur_expr;
2132 av_set_iterator i;
2134 FOR_EACH_EXPR (cur_expr, i, set)
2136 if (cur_expr == expr)
2137 continue;
2138 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2139 return cur_expr;
2142 return NULL;
2145 /* If other expression is already in AVP, remove one of them. */
2146 expr_t
2147 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2149 expr_t expr2;
2151 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2152 if (expr2 != NULL)
2154 /* Reset target availability on merge, since taking it only from one
2155 of the exprs would be controversial for different code. */
2156 EXPR_TARGET_AVAILABLE (expr2) = -1;
2157 EXPR_USEFULNESS (expr2) = 0;
2159 merge_expr (expr2, expr, NULL);
2161 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2162 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2164 av_set_iter_remove (ip);
2165 return expr2;
2168 return expr;
2171 /* Return true if there is an expr that correlates to VI in SET. */
2172 bool
2173 av_set_is_in_p (av_set_t set, vinsn_t vi)
2175 return av_set_lookup (set, vi) != NULL;
2178 /* Return a copy of SET. */
2179 av_set_t
2180 av_set_copy (av_set_t set)
2182 expr_t expr;
2183 av_set_iterator i;
2184 av_set_t res = NULL;
2186 FOR_EACH_EXPR (expr, i, set)
2187 av_set_add (&res, expr);
2189 return res;
2192 /* Join two av sets that do not have common elements by attaching second set
2193 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2194 _AV_SET_NEXT of first set's last element). */
2195 static void
2196 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2198 gcc_assert (*to_tailp == NULL);
2199 *to_tailp = *fromp;
2200 *fromp = NULL;
2203 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2204 pointed to by FROMP afterwards. */
2205 void
2206 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2208 expr_t expr1;
2209 av_set_iterator i;
2211 /* Delete from TOP all exprs, that present in FROMP. */
2212 FOR_EACH_EXPR_1 (expr1, i, top)
2214 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2216 if (expr2)
2218 merge_expr (expr2, expr1, insn);
2219 av_set_iter_remove (&i);
2223 join_distinct_sets (i.lp, fromp);
2226 /* Same as above, but also update availability of target register in
2227 TOP judging by TO_LV_SET and FROM_LV_SET. */
2228 void
2229 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2230 regset from_lv_set, insn_t insn)
2232 expr_t expr1;
2233 av_set_iterator i;
2234 av_set_t *to_tailp, in_both_set = NULL;
2236 /* Delete from TOP all expres, that present in FROMP. */
2237 FOR_EACH_EXPR_1 (expr1, i, top)
2239 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2241 if (expr2)
2243 /* It may be that the expressions have different destination
2244 registers, in which case we need to check liveness here. */
2245 if (EXPR_SEPARABLE_P (expr1))
2247 int regno1 = (REG_P (EXPR_LHS (expr1))
2248 ? (int) expr_dest_regno (expr1) : -1);
2249 int regno2 = (REG_P (EXPR_LHS (expr2))
2250 ? (int) expr_dest_regno (expr2) : -1);
2252 /* ??? We don't have a way to check restrictions for
2253 *other* register on the current path, we did it only
2254 for the current target register. Give up. */
2255 if (regno1 != regno2)
2256 EXPR_TARGET_AVAILABLE (expr2) = -1;
2258 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2259 EXPR_TARGET_AVAILABLE (expr2) = -1;
2261 merge_expr (expr2, expr1, insn);
2262 av_set_add_nocopy (&in_both_set, expr2);
2263 av_set_iter_remove (&i);
2265 else
2266 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2267 FROM_LV_SET. */
2268 set_unavailable_target_for_expr (expr1, from_lv_set);
2270 to_tailp = i.lp;
2272 /* These expressions are not present in TOP. Check liveness
2273 restrictions on TO_LV_SET. */
2274 FOR_EACH_EXPR (expr1, i, *fromp)
2275 set_unavailable_target_for_expr (expr1, to_lv_set);
2277 join_distinct_sets (i.lp, &in_both_set);
2278 join_distinct_sets (to_tailp, fromp);
2281 /* Clear av_set pointed to by SETP. */
2282 void
2283 av_set_clear (av_set_t *setp)
2285 expr_t expr;
2286 av_set_iterator i;
2288 FOR_EACH_EXPR_1 (expr, i, setp)
2289 av_set_iter_remove (&i);
2291 gcc_assert (*setp == NULL);
2294 /* Leave only one non-speculative element in the SETP. */
2295 void
2296 av_set_leave_one_nonspec (av_set_t *setp)
2298 expr_t expr;
2299 av_set_iterator i;
2300 bool has_one_nonspec = false;
2302 /* Keep all speculative exprs, and leave one non-speculative
2303 (the first one). */
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2306 if (!EXPR_SPEC_DONE_DS (expr))
2308 if (has_one_nonspec)
2309 av_set_iter_remove (&i);
2310 else
2311 has_one_nonspec = true;
2316 /* Return the N'th element of the SET. */
2317 expr_t
2318 av_set_element (av_set_t set, int n)
2320 expr_t expr;
2321 av_set_iterator i;
2323 FOR_EACH_EXPR (expr, i, set)
2324 if (n-- == 0)
2325 return expr;
2327 gcc_unreachable ();
2328 return NULL;
2331 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2332 void
2333 av_set_substract_cond_branches (av_set_t *avp)
2335 av_set_iterator i;
2336 expr_t expr;
2338 FOR_EACH_EXPR_1 (expr, i, avp)
2339 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2340 av_set_iter_remove (&i);
2343 /* Multiplies usefulness attribute of each member of av-set *AVP by
2344 value PROB / ALL_PROB. */
2345 void
2346 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2348 av_set_iterator i;
2349 expr_t expr;
2351 FOR_EACH_EXPR (expr, i, av)
2352 EXPR_USEFULNESS (expr) = (all_prob
2353 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2354 : 0);
2357 /* Leave in AVP only those expressions, which are present in AV,
2358 and return it, merging history expressions. */
2359 void
2360 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2362 av_set_iterator i;
2363 expr_t expr, expr2;
2365 FOR_EACH_EXPR_1 (expr, i, avp)
2366 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2367 av_set_iter_remove (&i);
2368 else
2369 /* When updating av sets in bookkeeping blocks, we can add more insns
2370 there which will be transformed but the upper av sets will not
2371 reflect those transformations. We then fail to undo those
2372 when searching for such insns. So merge the history saved
2373 in the av set of the block we are processing. */
2374 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2375 EXPR_HISTORY_OF_CHANGES (expr2));
2380 /* Dependence hooks to initialize insn data. */
2382 /* This is used in hooks callable from dependence analysis when initializing
2383 instruction's data. */
2384 static struct
2386 /* Where the dependence was found (lhs/rhs). */
2387 deps_where_t where;
2389 /* The actual data object to initialize. */
2390 idata_t id;
2392 /* True when the insn should not be made clonable. */
2393 bool force_unique_p;
2395 /* True when insn should be treated as of type USE, i.e. never renamed. */
2396 bool force_use_p;
2397 } deps_init_id_data;
2400 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2401 clonable. */
2402 static void
2403 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2405 int type;
2407 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2408 That clonable insns which can be separated into lhs and rhs have type SET.
2409 Other clonable insns have type USE. */
2410 type = GET_CODE (insn);
2412 /* Only regular insns could be cloned. */
2413 if (type == INSN && !force_unique_p)
2414 type = SET;
2415 else if (type == JUMP_INSN && simplejump_p (insn))
2416 type = PC;
2417 else if (type == DEBUG_INSN)
2418 type = !force_unique_p ? USE : INSN;
2420 IDATA_TYPE (id) = type;
2421 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2422 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2423 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2426 /* Start initializing insn data. */
2427 static void
2428 deps_init_id_start_insn (insn_t insn)
2430 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2432 setup_id_for_insn (deps_init_id_data.id, insn,
2433 deps_init_id_data.force_unique_p);
2434 deps_init_id_data.where = DEPS_IN_INSN;
2437 /* Start initializing lhs data. */
2438 static void
2439 deps_init_id_start_lhs (rtx lhs)
2441 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2442 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2444 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2446 IDATA_LHS (deps_init_id_data.id) = lhs;
2447 deps_init_id_data.where = DEPS_IN_LHS;
2451 /* Finish initializing lhs data. */
2452 static void
2453 deps_init_id_finish_lhs (void)
2455 deps_init_id_data.where = DEPS_IN_INSN;
2458 /* Note a set of REGNO. */
2459 static void
2460 deps_init_id_note_reg_set (int regno)
2462 haifa_note_reg_set (regno);
2464 if (deps_init_id_data.where == DEPS_IN_RHS)
2465 deps_init_id_data.force_use_p = true;
2467 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2468 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2470 #ifdef STACK_REGS
2471 /* Make instructions that set stack registers to be ineligible for
2472 renaming to avoid issues with find_used_regs. */
2473 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2474 deps_init_id_data.force_use_p = true;
2475 #endif
2478 /* Note a clobber of REGNO. */
2479 static void
2480 deps_init_id_note_reg_clobber (int regno)
2482 haifa_note_reg_clobber (regno);
2484 if (deps_init_id_data.where == DEPS_IN_RHS)
2485 deps_init_id_data.force_use_p = true;
2487 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2488 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2491 /* Note a use of REGNO. */
2492 static void
2493 deps_init_id_note_reg_use (int regno)
2495 haifa_note_reg_use (regno);
2497 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2498 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2501 /* Start initializing rhs data. */
2502 static void
2503 deps_init_id_start_rhs (rtx rhs)
2505 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2507 /* And there was no sel_deps_reset_to_insn (). */
2508 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2510 IDATA_RHS (deps_init_id_data.id) = rhs;
2511 deps_init_id_data.where = DEPS_IN_RHS;
2515 /* Finish initializing rhs data. */
2516 static void
2517 deps_init_id_finish_rhs (void)
2519 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2520 || deps_init_id_data.where == DEPS_IN_INSN);
2521 deps_init_id_data.where = DEPS_IN_INSN;
2524 /* Finish initializing insn data. */
2525 static void
2526 deps_init_id_finish_insn (void)
2528 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2530 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2532 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2533 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2535 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2536 || deps_init_id_data.force_use_p)
2538 /* This should be a USE, as we don't want to schedule its RHS
2539 separately. However, we still want to have them recorded
2540 for the purposes of substitution. That's why we don't
2541 simply call downgrade_to_use () here. */
2542 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2543 gcc_assert (!lhs == !rhs);
2545 IDATA_TYPE (deps_init_id_data.id) = USE;
2549 deps_init_id_data.where = DEPS_IN_NOWHERE;
2552 /* This is dependence info used for initializing insn's data. */
2553 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2555 /* This initializes most of the static part of the above structure. */
2556 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2558 NULL,
2560 deps_init_id_start_insn,
2561 deps_init_id_finish_insn,
2562 deps_init_id_start_lhs,
2563 deps_init_id_finish_lhs,
2564 deps_init_id_start_rhs,
2565 deps_init_id_finish_rhs,
2566 deps_init_id_note_reg_set,
2567 deps_init_id_note_reg_clobber,
2568 deps_init_id_note_reg_use,
2569 NULL, /* note_mem_dep */
2570 NULL, /* note_dep */
2572 0, /* use_cselib */
2573 0, /* use_deps_list */
2574 0 /* generate_spec_deps */
2577 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2578 we don't actually need information about lhs and rhs. */
2579 static void
2580 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2582 rtx pat = PATTERN (insn);
2584 if (NONJUMP_INSN_P (insn)
2585 && GET_CODE (pat) == SET
2586 && !force_unique_p)
2588 IDATA_RHS (id) = SET_SRC (pat);
2589 IDATA_LHS (id) = SET_DEST (pat);
2591 else
2592 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2595 /* Possibly downgrade INSN to USE. */
2596 static void
2597 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2599 bool must_be_use = false;
2600 unsigned uid = INSN_UID (insn);
2601 df_ref *rec;
2602 rtx lhs = IDATA_LHS (id);
2603 rtx rhs = IDATA_RHS (id);
2605 /* We downgrade only SETs. */
2606 if (IDATA_TYPE (id) != SET)
2607 return;
2609 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2611 IDATA_TYPE (id) = USE;
2612 return;
2615 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2617 df_ref def = *rec;
2619 if (DF_REF_INSN (def)
2620 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2621 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2623 must_be_use = true;
2624 break;
2627 #ifdef STACK_REGS
2628 /* Make instructions that set stack registers to be ineligible for
2629 renaming to avoid issues with find_used_regs. */
2630 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2632 must_be_use = true;
2633 break;
2635 #endif
2638 if (must_be_use)
2639 IDATA_TYPE (id) = USE;
2642 /* Setup register sets describing INSN in ID. */
2643 static void
2644 setup_id_reg_sets (idata_t id, insn_t insn)
2646 unsigned uid = INSN_UID (insn);
2647 df_ref *rec;
2648 regset tmp = get_clear_regset_from_pool ();
2650 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2652 df_ref def = *rec;
2653 unsigned int regno = DF_REF_REGNO (def);
2655 /* Post modifies are treated like clobbers by sched-deps.c. */
2656 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2657 | DF_REF_PRE_POST_MODIFY)))
2658 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2659 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2661 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2663 #ifdef STACK_REGS
2664 /* For stack registers, treat writes to them as writes
2665 to the first one to be consistent with sched-deps.c. */
2666 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2667 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2668 #endif
2670 /* Mark special refs that generate read/write def pair. */
2671 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2672 || regno == STACK_POINTER_REGNUM)
2673 bitmap_set_bit (tmp, regno);
2676 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2678 df_ref use = *rec;
2679 unsigned int regno = DF_REF_REGNO (use);
2681 /* When these refs are met for the first time, skip them, as
2682 these uses are just counterparts of some defs. */
2683 if (bitmap_bit_p (tmp, regno))
2684 bitmap_clear_bit (tmp, regno);
2685 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2687 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2689 #ifdef STACK_REGS
2690 /* For stack registers, treat reads from them as reads from
2691 the first one to be consistent with sched-deps.c. */
2692 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2693 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2694 #endif
2698 return_regset_to_pool (tmp);
2701 /* Initialize instruction data for INSN in ID using DF's data. */
2702 static void
2703 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2705 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2707 setup_id_for_insn (id, insn, force_unique_p);
2708 setup_id_lhs_rhs (id, insn, force_unique_p);
2710 if (INSN_NOP_P (insn))
2711 return;
2713 maybe_downgrade_id_to_use (id, insn);
2714 setup_id_reg_sets (id, insn);
2717 /* Initialize instruction data for INSN in ID. */
2718 static void
2719 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2721 struct deps_desc _dc, *dc = &_dc;
2723 deps_init_id_data.where = DEPS_IN_NOWHERE;
2724 deps_init_id_data.id = id;
2725 deps_init_id_data.force_unique_p = force_unique_p;
2726 deps_init_id_data.force_use_p = false;
2728 init_deps (dc, false);
2730 memcpy (&deps_init_id_sched_deps_info,
2731 &const_deps_init_id_sched_deps_info,
2732 sizeof (deps_init_id_sched_deps_info));
2734 if (spec_info != NULL)
2735 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2737 sched_deps_info = &deps_init_id_sched_deps_info;
2739 deps_analyze_insn (dc, insn);
2741 free_deps (dc);
2743 deps_init_id_data.id = NULL;
2747 struct sched_scan_info_def
2749 /* This hook notifies scheduler frontend to extend its internal per basic
2750 block data structures. This hook should be called once before a series of
2751 calls to bb_init (). */
2752 void (*extend_bb) (void);
2754 /* This hook makes scheduler frontend to initialize its internal data
2755 structures for the passed basic block. */
2756 void (*init_bb) (basic_block);
2758 /* This hook notifies scheduler frontend to extend its internal per insn data
2759 structures. This hook should be called once before a series of calls to
2760 insn_init (). */
2761 void (*extend_insn) (void);
2763 /* This hook makes scheduler frontend to initialize its internal data
2764 structures for the passed insn. */
2765 void (*init_insn) (rtx);
2768 /* A driver function to add a set of basic blocks (BBS) to the
2769 scheduling region. */
2770 static void
2771 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2773 unsigned i;
2774 basic_block bb;
2776 if (ssi->extend_bb)
2777 ssi->extend_bb ();
2779 if (ssi->init_bb)
2780 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2781 ssi->init_bb (bb);
2783 if (ssi->extend_insn)
2784 ssi->extend_insn ();
2786 if (ssi->init_insn)
2787 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2789 rtx insn;
2791 FOR_BB_INSNS (bb, insn)
2792 ssi->init_insn (insn);
2796 /* Implement hooks for collecting fundamental insn properties like if insn is
2797 an ASM or is within a SCHED_GROUP. */
2799 /* True when a "one-time init" data for INSN was already inited. */
2800 static bool
2801 first_time_insn_init (insn_t insn)
2803 return INSN_LIVE (insn) == NULL;
2806 /* Hash an entry in a transformed_insns hashtable. */
2807 static hashval_t
2808 hash_transformed_insns (const void *p)
2810 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2813 /* Compare the entries in a transformed_insns hashtable. */
2814 static int
2815 eq_transformed_insns (const void *p, const void *q)
2817 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2818 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2820 if (INSN_UID (i1) == INSN_UID (i2))
2821 return 1;
2822 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2825 /* Free an entry in a transformed_insns hashtable. */
2826 static void
2827 free_transformed_insns (void *p)
2829 struct transformed_insns *pti = (struct transformed_insns *) p;
2831 vinsn_detach (pti->vinsn_old);
2832 vinsn_detach (pti->vinsn_new);
2833 free (pti);
2836 /* Init the s_i_d data for INSN which should be inited just once, when
2837 we first see the insn. */
2838 static void
2839 init_first_time_insn_data (insn_t insn)
2841 /* This should not be set if this is the first time we init data for
2842 insn. */
2843 gcc_assert (first_time_insn_init (insn));
2845 /* These are needed for nops too. */
2846 INSN_LIVE (insn) = get_regset_from_pool ();
2847 INSN_LIVE_VALID_P (insn) = false;
2849 if (!INSN_NOP_P (insn))
2851 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2852 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2853 INSN_TRANSFORMED_INSNS (insn)
2854 = htab_create (16, hash_transformed_insns,
2855 eq_transformed_insns, free_transformed_insns);
2856 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2860 /* Free almost all above data for INSN that is scheduled already.
2861 Used for extra-large basic blocks. */
2862 void
2863 free_data_for_scheduled_insn (insn_t insn)
2865 gcc_assert (! first_time_insn_init (insn));
2867 if (! INSN_ANALYZED_DEPS (insn))
2868 return;
2870 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2871 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2872 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2874 /* This is allocated only for bookkeeping insns. */
2875 if (INSN_ORIGINATORS (insn))
2876 BITMAP_FREE (INSN_ORIGINATORS (insn));
2877 free_deps (&INSN_DEPS_CONTEXT (insn));
2879 INSN_ANALYZED_DEPS (insn) = NULL;
2881 /* Clear the readonly flag so we would ICE when trying to recalculate
2882 the deps context (as we believe that it should not happen). */
2883 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2886 /* Free the same data as above for INSN. */
2887 static void
2888 free_first_time_insn_data (insn_t insn)
2890 gcc_assert (! first_time_insn_init (insn));
2892 free_data_for_scheduled_insn (insn);
2893 return_regset_to_pool (INSN_LIVE (insn));
2894 INSN_LIVE (insn) = NULL;
2895 INSN_LIVE_VALID_P (insn) = false;
2898 /* Initialize region-scope data structures for basic blocks. */
2899 static void
2900 init_global_and_expr_for_bb (basic_block bb)
2902 if (sel_bb_empty_p (bb))
2903 return;
2905 invalidate_av_set (bb);
2908 /* Data for global dependency analysis (to initialize CANT_MOVE and
2909 SCHED_GROUP_P). */
2910 static struct
2912 /* Previous insn. */
2913 insn_t prev_insn;
2914 } init_global_data;
2916 /* Determine if INSN is in the sched_group, is an asm or should not be
2917 cloned. After that initialize its expr. */
2918 static void
2919 init_global_and_expr_for_insn (insn_t insn)
2921 if (LABEL_P (insn))
2922 return;
2924 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2926 init_global_data.prev_insn = NULL_RTX;
2927 return;
2930 gcc_assert (INSN_P (insn));
2932 if (SCHED_GROUP_P (insn))
2933 /* Setup a sched_group. */
2935 insn_t prev_insn = init_global_data.prev_insn;
2937 if (prev_insn)
2938 INSN_SCHED_NEXT (prev_insn) = insn;
2940 init_global_data.prev_insn = insn;
2942 else
2943 init_global_data.prev_insn = NULL_RTX;
2945 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2946 || asm_noperands (PATTERN (insn)) >= 0)
2947 /* Mark INSN as an asm. */
2948 INSN_ASM_P (insn) = true;
2951 bool force_unique_p;
2952 ds_t spec_done_ds;
2954 /* Certain instructions cannot be cloned, and frame related insns and
2955 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2956 their block. */
2957 if (prologue_epilogue_contains (insn))
2959 if (RTX_FRAME_RELATED_P (insn))
2960 CANT_MOVE (insn) = 1;
2961 else
2963 rtx note;
2964 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2965 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2966 && ((enum insn_note) INTVAL (XEXP (note, 0))
2967 == NOTE_INSN_EPILOGUE_BEG))
2969 CANT_MOVE (insn) = 1;
2970 break;
2973 force_unique_p = true;
2975 else
2976 if (CANT_MOVE (insn)
2977 || INSN_ASM_P (insn)
2978 || SCHED_GROUP_P (insn)
2979 || CALL_P (insn)
2980 /* Exception handling insns are always unique. */
2981 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2982 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2983 || control_flow_insn_p (insn)
2984 || volatile_insn_p (PATTERN (insn))
2985 || (targetm.cannot_copy_insn_p
2986 && targetm.cannot_copy_insn_p (insn)))
2987 force_unique_p = true;
2988 else
2989 force_unique_p = false;
2991 if (targetm.sched.get_insn_spec_ds)
2993 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2994 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2996 else
2997 spec_done_ds = 0;
2999 /* Initialize INSN's expr. */
3000 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3001 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3002 spec_done_ds, 0, 0, NULL, true, false, false, false,
3003 CANT_MOVE (insn));
3006 init_first_time_insn_data (insn);
3009 /* Scan the region and initialize instruction data for basic blocks BBS. */
3010 void
3011 sel_init_global_and_expr (bb_vec_t bbs)
3013 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3014 const struct sched_scan_info_def ssi =
3016 NULL, /* extend_bb */
3017 init_global_and_expr_for_bb, /* init_bb */
3018 extend_insn_data, /* extend_insn */
3019 init_global_and_expr_for_insn /* init_insn */
3022 sched_scan (&ssi, bbs);
3025 /* Finalize region-scope data structures for basic blocks. */
3026 static void
3027 finish_global_and_expr_for_bb (basic_block bb)
3029 av_set_clear (&BB_AV_SET (bb));
3030 BB_AV_LEVEL (bb) = 0;
3033 /* Finalize INSN's data. */
3034 static void
3035 finish_global_and_expr_insn (insn_t insn)
3037 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3038 return;
3040 gcc_assert (INSN_P (insn));
3042 if (INSN_LUID (insn) > 0)
3044 free_first_time_insn_data (insn);
3045 INSN_WS_LEVEL (insn) = 0;
3046 CANT_MOVE (insn) = 0;
3048 /* We can no longer assert this, as vinsns of this insn could be
3049 easily live in other insn's caches. This should be changed to
3050 a counter-like approach among all vinsns. */
3051 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3052 clear_expr (INSN_EXPR (insn));
3056 /* Finalize per instruction data for the whole region. */
3057 void
3058 sel_finish_global_and_expr (void)
3061 bb_vec_t bbs;
3062 int i;
3064 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
3066 for (i = 0; i < current_nr_blocks; i++)
3067 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
3069 /* Clear AV_SETs and INSN_EXPRs. */
3071 const struct sched_scan_info_def ssi =
3073 NULL, /* extend_bb */
3074 finish_global_and_expr_for_bb, /* init_bb */
3075 NULL, /* extend_insn */
3076 finish_global_and_expr_insn /* init_insn */
3079 sched_scan (&ssi, bbs);
3082 VEC_free (basic_block, heap, bbs);
3085 finish_insns ();
3089 /* In the below hooks, we merely calculate whether or not a dependence
3090 exists, and in what part of insn. However, we will need more data
3091 when we'll start caching dependence requests. */
3093 /* Container to hold information for dependency analysis. */
3094 static struct
3096 deps_t dc;
3098 /* A variable to track which part of rtx we are scanning in
3099 sched-deps.c: sched_analyze_insn (). */
3100 deps_where_t where;
3102 /* Current producer. */
3103 insn_t pro;
3105 /* Current consumer. */
3106 vinsn_t con;
3108 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3109 X is from { INSN, LHS, RHS }. */
3110 ds_t has_dep_p[DEPS_IN_NOWHERE];
3111 } has_dependence_data;
3113 /* Start analyzing dependencies of INSN. */
3114 static void
3115 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3117 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3119 has_dependence_data.where = DEPS_IN_INSN;
3122 /* Finish analyzing dependencies of an insn. */
3123 static void
3124 has_dependence_finish_insn (void)
3126 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3128 has_dependence_data.where = DEPS_IN_NOWHERE;
3131 /* Start analyzing dependencies of LHS. */
3132 static void
3133 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3135 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3137 if (VINSN_LHS (has_dependence_data.con) != NULL)
3138 has_dependence_data.where = DEPS_IN_LHS;
3141 /* Finish analyzing dependencies of an lhs. */
3142 static void
3143 has_dependence_finish_lhs (void)
3145 has_dependence_data.where = DEPS_IN_INSN;
3148 /* Start analyzing dependencies of RHS. */
3149 static void
3150 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3152 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3154 if (VINSN_RHS (has_dependence_data.con) != NULL)
3155 has_dependence_data.where = DEPS_IN_RHS;
3158 /* Start analyzing dependencies of an rhs. */
3159 static void
3160 has_dependence_finish_rhs (void)
3162 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3163 || has_dependence_data.where == DEPS_IN_INSN);
3165 has_dependence_data.where = DEPS_IN_INSN;
3168 /* Note a set of REGNO. */
3169 static void
3170 has_dependence_note_reg_set (int regno)
3172 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3174 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3175 VINSN_INSN_RTX
3176 (has_dependence_data.con)))
3178 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3180 if (reg_last->sets != NULL
3181 || reg_last->clobbers != NULL)
3182 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3184 if (reg_last->uses)
3185 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3189 /* Note a clobber of REGNO. */
3190 static void
3191 has_dependence_note_reg_clobber (int regno)
3193 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3195 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3196 VINSN_INSN_RTX
3197 (has_dependence_data.con)))
3199 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3201 if (reg_last->sets)
3202 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3204 if (reg_last->uses)
3205 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3209 /* Note a use of REGNO. */
3210 static void
3211 has_dependence_note_reg_use (int regno)
3213 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3215 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3216 VINSN_INSN_RTX
3217 (has_dependence_data.con)))
3219 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3221 if (reg_last->sets)
3222 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3224 if (reg_last->clobbers)
3225 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3227 /* Handle BE_IN_SPEC. */
3228 if (reg_last->uses)
3230 ds_t pro_spec_checked_ds;
3232 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3233 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3235 if (pro_spec_checked_ds != 0
3236 && bitmap_bit_p (INSN_REG_SETS (has_dependence_data.pro), regno))
3237 /* Merge BE_IN_SPEC bits into *DSP. */
3238 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3239 NULL_RTX, NULL_RTX);
3244 /* Note a memory dependence. */
3245 static void
3246 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3247 rtx pending_mem ATTRIBUTE_UNUSED,
3248 insn_t pending_insn ATTRIBUTE_UNUSED,
3249 ds_t ds ATTRIBUTE_UNUSED)
3251 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3252 VINSN_INSN_RTX (has_dependence_data.con)))
3254 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3256 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3260 /* Note a dependence. */
3261 static void
3262 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3263 ds_t ds ATTRIBUTE_UNUSED)
3265 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3266 VINSN_INSN_RTX (has_dependence_data.con)))
3268 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3270 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3274 /* Mark the insn as having a hard dependence that prevents speculation. */
3275 void
3276 sel_mark_hard_insn (rtx insn)
3278 int i;
3280 /* Only work when we're in has_dependence_p mode.
3281 ??? This is a hack, this should actually be a hook. */
3282 if (!has_dependence_data.dc || !has_dependence_data.pro)
3283 return;
3285 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3286 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3288 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3289 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3292 /* This structure holds the hooks for the dependency analysis used when
3293 actually processing dependencies in the scheduler. */
3294 static struct sched_deps_info_def has_dependence_sched_deps_info;
3296 /* This initializes most of the fields of the above structure. */
3297 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3299 NULL,
3301 has_dependence_start_insn,
3302 has_dependence_finish_insn,
3303 has_dependence_start_lhs,
3304 has_dependence_finish_lhs,
3305 has_dependence_start_rhs,
3306 has_dependence_finish_rhs,
3307 has_dependence_note_reg_set,
3308 has_dependence_note_reg_clobber,
3309 has_dependence_note_reg_use,
3310 has_dependence_note_mem_dep,
3311 has_dependence_note_dep,
3313 0, /* use_cselib */
3314 0, /* use_deps_list */
3315 0 /* generate_spec_deps */
3318 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3319 static void
3320 setup_has_dependence_sched_deps_info (void)
3322 memcpy (&has_dependence_sched_deps_info,
3323 &const_has_dependence_sched_deps_info,
3324 sizeof (has_dependence_sched_deps_info));
3326 if (spec_info != NULL)
3327 has_dependence_sched_deps_info.generate_spec_deps = 1;
3329 sched_deps_info = &has_dependence_sched_deps_info;
3332 /* Remove all dependences found and recorded in has_dependence_data array. */
3333 void
3334 sel_clear_has_dependence (void)
3336 int i;
3338 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3339 has_dependence_data.has_dep_p[i] = 0;
3342 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3343 to the dependence information array in HAS_DEP_PP. */
3344 ds_t
3345 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3347 int i;
3348 ds_t ds;
3349 struct deps_desc *dc;
3351 if (INSN_SIMPLEJUMP_P (pred))
3352 /* Unconditional jump is just a transfer of control flow.
3353 Ignore it. */
3354 return false;
3356 dc = &INSN_DEPS_CONTEXT (pred);
3358 /* We init this field lazily. */
3359 if (dc->reg_last == NULL)
3360 init_deps_reg_last (dc);
3362 if (!dc->readonly)
3364 has_dependence_data.pro = NULL;
3365 /* Initialize empty dep context with information about PRED. */
3366 advance_deps_context (dc, pred);
3367 dc->readonly = 1;
3370 has_dependence_data.where = DEPS_IN_NOWHERE;
3371 has_dependence_data.pro = pred;
3372 has_dependence_data.con = EXPR_VINSN (expr);
3373 has_dependence_data.dc = dc;
3375 sel_clear_has_dependence ();
3377 /* Now catch all dependencies that would be generated between PRED and
3378 INSN. */
3379 setup_has_dependence_sched_deps_info ();
3380 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3381 has_dependence_data.dc = NULL;
3383 /* When a barrier was found, set DEPS_IN_INSN bits. */
3384 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3385 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3386 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3387 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3389 /* Do not allow stores to memory to move through checks. Currently
3390 we don't move this to sched-deps.c as the check doesn't have
3391 obvious places to which this dependence can be attached.
3392 FIMXE: this should go to a hook. */
3393 if (EXPR_LHS (expr)
3394 && MEM_P (EXPR_LHS (expr))
3395 && sel_insn_is_speculation_check (pred))
3396 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3398 *has_dep_pp = has_dependence_data.has_dep_p;
3399 ds = 0;
3400 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3401 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3402 NULL_RTX, NULL_RTX);
3404 return ds;
3408 /* Dependence hooks implementation that checks dependence latency constraints
3409 on the insns being scheduled. The entry point for these routines is
3410 tick_check_p predicate. */
3412 static struct
3414 /* An expr we are currently checking. */
3415 expr_t expr;
3417 /* A minimal cycle for its scheduling. */
3418 int cycle;
3420 /* Whether we have seen a true dependence while checking. */
3421 bool seen_true_dep_p;
3422 } tick_check_data;
3424 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3425 on PRO with status DS and weight DW. */
3426 static void
3427 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3429 expr_t con_expr = tick_check_data.expr;
3430 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3432 if (con_insn != pro_insn)
3434 enum reg_note dt;
3435 int tick;
3437 if (/* PROducer was removed from above due to pipelining. */
3438 !INSN_IN_STREAM_P (pro_insn)
3439 /* Or PROducer was originally on the next iteration regarding the
3440 CONsumer. */
3441 || (INSN_SCHED_TIMES (pro_insn)
3442 - EXPR_SCHED_TIMES (con_expr)) > 1)
3443 /* Don't count this dependence. */
3444 return;
3446 dt = ds_to_dt (ds);
3447 if (dt == REG_DEP_TRUE)
3448 tick_check_data.seen_true_dep_p = true;
3450 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3453 dep_def _dep, *dep = &_dep;
3455 init_dep (dep, pro_insn, con_insn, dt);
3457 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3460 /* When there are several kinds of dependencies between pro and con,
3461 only REG_DEP_TRUE should be taken into account. */
3462 if (tick > tick_check_data.cycle
3463 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3464 tick_check_data.cycle = tick;
3468 /* An implementation of note_dep hook. */
3469 static void
3470 tick_check_note_dep (insn_t pro, ds_t ds)
3472 tick_check_dep_with_dw (pro, ds, 0);
3475 /* An implementation of note_mem_dep hook. */
3476 static void
3477 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3479 dw_t dw;
3481 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3482 ? estimate_dep_weak (mem1, mem2)
3483 : 0);
3485 tick_check_dep_with_dw (pro, ds, dw);
3488 /* This structure contains hooks for dependence analysis used when determining
3489 whether an insn is ready for scheduling. */
3490 static struct sched_deps_info_def tick_check_sched_deps_info =
3492 NULL,
3494 NULL,
3495 NULL,
3496 NULL,
3497 NULL,
3498 NULL,
3499 NULL,
3500 haifa_note_reg_set,
3501 haifa_note_reg_clobber,
3502 haifa_note_reg_use,
3503 tick_check_note_mem_dep,
3504 tick_check_note_dep,
3506 0, 0, 0
3509 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3510 scheduled. Return 0 if all data from producers in DC is ready. */
3512 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3514 int cycles_left;
3515 /* Initialize variables. */
3516 tick_check_data.expr = expr;
3517 tick_check_data.cycle = 0;
3518 tick_check_data.seen_true_dep_p = false;
3519 sched_deps_info = &tick_check_sched_deps_info;
3521 gcc_assert (!dc->readonly);
3522 dc->readonly = 1;
3523 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3524 dc->readonly = 0;
3526 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3528 return cycles_left >= 0 ? cycles_left : 0;
3532 /* Functions to work with insns. */
3534 /* Returns true if LHS of INSN is the same as DEST of an insn
3535 being moved. */
3536 bool
3537 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3539 rtx lhs = INSN_LHS (insn);
3541 if (lhs == NULL || dest == NULL)
3542 return false;
3544 return rtx_equal_p (lhs, dest);
3547 /* Return s_i_d entry of INSN. Callable from debugger. */
3548 sel_insn_data_def
3549 insn_sid (insn_t insn)
3551 return *SID (insn);
3554 /* True when INSN is a speculative check. We can tell this by looking
3555 at the data structures of the selective scheduler, not by examining
3556 the pattern. */
3557 bool
3558 sel_insn_is_speculation_check (rtx insn)
3560 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3563 /* Extracts machine mode MODE and destination location DST_LOC
3564 for given INSN. */
3565 void
3566 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3568 rtx pat = PATTERN (insn);
3570 gcc_assert (dst_loc);
3571 gcc_assert (GET_CODE (pat) == SET);
3573 *dst_loc = SET_DEST (pat);
3575 gcc_assert (*dst_loc);
3576 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3578 if (mode)
3579 *mode = GET_MODE (*dst_loc);
3582 /* Returns true when moving through JUMP will result in bookkeeping
3583 creation. */
3584 bool
3585 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3587 insn_t succ;
3588 succ_iterator si;
3590 FOR_EACH_SUCC (succ, si, jump)
3591 if (sel_num_cfg_preds_gt_1 (succ))
3592 return true;
3594 return false;
3597 /* Return 'true' if INSN is the only one in its basic block. */
3598 static bool
3599 insn_is_the_only_one_in_bb_p (insn_t insn)
3601 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3604 #ifdef ENABLE_CHECKING
3605 /* Check that the region we're scheduling still has at most one
3606 backedge. */
3607 static void
3608 verify_backedges (void)
3610 if (pipelining_p)
3612 int i, n = 0;
3613 edge e;
3614 edge_iterator ei;
3616 for (i = 0; i < current_nr_blocks; i++)
3617 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3618 if (in_current_region_p (e->dest)
3619 && BLOCK_TO_BB (e->dest->index) < i)
3620 n++;
3622 gcc_assert (n <= 1);
3625 #endif
3628 /* Functions to work with control flow. */
3630 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3631 are sorted in topological order (it might have been invalidated by
3632 redirecting an edge). */
3633 static void
3634 sel_recompute_toporder (void)
3636 int i, n, rgn;
3637 int *postorder, n_blocks;
3639 postorder = XALLOCAVEC (int, n_basic_blocks);
3640 n_blocks = post_order_compute (postorder, false, false);
3642 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3643 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3644 if (CONTAINING_RGN (postorder[i]) == rgn)
3646 BLOCK_TO_BB (postorder[i]) = n;
3647 BB_TO_BLOCK (n) = postorder[i];
3648 n++;
3651 /* Assert that we updated info for all blocks. We may miss some blocks if
3652 this function is called when redirecting an edge made a block
3653 unreachable, but that block is not deleted yet. */
3654 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3657 /* Tidy the possibly empty block BB. */
3658 static bool
3659 maybe_tidy_empty_bb (basic_block bb)
3661 basic_block succ_bb, pred_bb, note_bb;
3662 VEC (basic_block, heap) *dom_bbs;
3663 edge e;
3664 edge_iterator ei;
3665 bool rescan_p;
3667 /* Keep empty bb only if this block immediately precedes EXIT and
3668 has incoming non-fallthrough edge, or it has no predecessors or
3669 successors. Otherwise remove it. */
3670 if (!sel_bb_empty_p (bb)
3671 || (single_succ_p (bb)
3672 && single_succ (bb) == EXIT_BLOCK_PTR
3673 && (!single_pred_p (bb)
3674 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3675 || EDGE_COUNT (bb->preds) == 0
3676 || EDGE_COUNT (bb->succs) == 0)
3677 return false;
3679 /* Do not attempt to redirect complex edges. */
3680 FOR_EACH_EDGE (e, ei, bb->preds)
3681 if (e->flags & EDGE_COMPLEX)
3682 return false;
3684 free_data_sets (bb);
3686 /* Do not delete BB if it has more than one successor.
3687 That can occur when we moving a jump. */
3688 if (!single_succ_p (bb))
3690 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3691 sel_merge_blocks (bb->prev_bb, bb);
3692 return true;
3695 succ_bb = single_succ (bb);
3696 rescan_p = true;
3697 pred_bb = NULL;
3698 dom_bbs = NULL;
3700 /* Save a pred/succ from the current region to attach the notes to. */
3701 note_bb = NULL;
3702 FOR_EACH_EDGE (e, ei, bb->preds)
3703 if (in_current_region_p (e->src))
3705 note_bb = e->src;
3706 break;
3708 if (note_bb == NULL)
3709 note_bb = succ_bb;
3711 /* Redirect all non-fallthru edges to the next bb. */
3712 while (rescan_p)
3714 rescan_p = false;
3716 FOR_EACH_EDGE (e, ei, bb->preds)
3718 pred_bb = e->src;
3720 if (!(e->flags & EDGE_FALLTHRU))
3722 /* We can not invalidate computed topological order by moving
3723 the edge destination block (E->SUCC) along a fallthru edge.
3725 We will update dominators here only when we'll get
3726 an unreachable block when redirecting, otherwise
3727 sel_redirect_edge_and_branch will take care of it. */
3728 if (e->dest != bb
3729 && single_pred_p (e->dest))
3730 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3731 sel_redirect_edge_and_branch (e, succ_bb);
3732 rescan_p = true;
3733 break;
3735 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3736 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3737 still have to adjust it. */
3738 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3740 /* If possible, try to remove the unneeded conditional jump. */
3741 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3742 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3744 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3745 tidy_fallthru_edge (e);
3747 else
3748 sel_redirect_edge_and_branch (e, succ_bb);
3749 rescan_p = true;
3750 break;
3755 if (can_merge_blocks_p (bb->prev_bb, bb))
3756 sel_merge_blocks (bb->prev_bb, bb);
3757 else
3759 /* This is a block without fallthru predecessor. Just delete it. */
3760 gcc_assert (note_bb);
3761 move_bb_info (note_bb, bb);
3762 remove_empty_bb (bb, true);
3765 if (!VEC_empty (basic_block, dom_bbs))
3767 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3768 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3769 VEC_free (basic_block, heap, dom_bbs);
3772 return true;
3775 /* Tidy the control flow after we have removed original insn from
3776 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3777 is true, also try to optimize control flow on non-empty blocks. */
3778 bool
3779 tidy_control_flow (basic_block xbb, bool full_tidying)
3781 bool changed = true;
3782 insn_t first, last;
3784 /* First check whether XBB is empty. */
3785 changed = maybe_tidy_empty_bb (xbb);
3786 if (changed || !full_tidying)
3787 return changed;
3789 /* Check if there is a unnecessary jump after insn left. */
3790 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3791 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3792 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3794 if (sel_remove_insn (BB_END (xbb), false, false))
3795 return true;
3796 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3799 first = sel_bb_head (xbb);
3800 last = sel_bb_end (xbb);
3801 if (MAY_HAVE_DEBUG_INSNS)
3803 if (first != last && DEBUG_INSN_P (first))
3805 first = NEXT_INSN (first);
3806 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3808 if (first != last && DEBUG_INSN_P (last))
3810 last = PREV_INSN (last);
3811 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3813 /* Check if there is an unnecessary jump in previous basic block leading
3814 to next basic block left after removing INSN from stream.
3815 If it is so, remove that jump and redirect edge to current
3816 basic block (where there was INSN before deletion). This way
3817 when NOP will be deleted several instructions later with its
3818 basic block we will not get a jump to next instruction, which
3819 can be harmful. */
3820 if (first == last
3821 && !sel_bb_empty_p (xbb)
3822 && INSN_NOP_P (last)
3823 /* Flow goes fallthru from current block to the next. */
3824 && EDGE_COUNT (xbb->succs) == 1
3825 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3826 /* When successor is an EXIT block, it may not be the next block. */
3827 && single_succ (xbb) != EXIT_BLOCK_PTR
3828 /* And unconditional jump in previous basic block leads to
3829 next basic block of XBB and this jump can be safely removed. */
3830 && in_current_region_p (xbb->prev_bb)
3831 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3832 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3833 /* Also this jump is not at the scheduling boundary. */
3834 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3836 bool recompute_toporder_p;
3837 /* Clear data structures of jump - jump itself will be removed
3838 by sel_redirect_edge_and_branch. */
3839 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3840 recompute_toporder_p
3841 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3843 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3845 /* It can turn out that after removing unused jump, basic block
3846 that contained that jump, becomes empty too. In such case
3847 remove it too. */
3848 if (sel_bb_empty_p (xbb->prev_bb))
3849 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3850 if (recompute_toporder_p)
3851 sel_recompute_toporder ();
3854 #ifdef ENABLE_CHECKING
3855 verify_backedges ();
3856 verify_dominators (CDI_DOMINATORS);
3857 #endif
3859 return changed;
3862 /* Purge meaningless empty blocks in the middle of a region. */
3863 void
3864 purge_empty_blocks (void)
3866 int i;
3868 /* Do not attempt to delete the first basic block in the region. */
3869 for (i = 1; i < current_nr_blocks; )
3871 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3873 if (maybe_tidy_empty_bb (b))
3874 continue;
3876 i++;
3880 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3881 do not delete insn's data, because it will be later re-emitted.
3882 Return true if we have removed some blocks afterwards. */
3883 bool
3884 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3886 basic_block bb = BLOCK_FOR_INSN (insn);
3888 gcc_assert (INSN_IN_STREAM_P (insn));
3890 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3892 expr_t expr;
3893 av_set_iterator i;
3895 /* When we remove a debug insn that is head of a BB, it remains
3896 in the AV_SET of the block, but it shouldn't. */
3897 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3898 if (EXPR_INSN_RTX (expr) == insn)
3900 av_set_iter_remove (&i);
3901 break;
3905 if (only_disconnect)
3907 insn_t prev = PREV_INSN (insn);
3908 insn_t next = NEXT_INSN (insn);
3909 basic_block bb = BLOCK_FOR_INSN (insn);
3911 NEXT_INSN (prev) = next;
3912 PREV_INSN (next) = prev;
3914 if (BB_HEAD (bb) == insn)
3916 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3917 BB_HEAD (bb) = prev;
3919 if (BB_END (bb) == insn)
3920 BB_END (bb) = prev;
3922 else
3924 remove_insn (insn);
3925 clear_expr (INSN_EXPR (insn));
3928 /* It is necessary to null this fields before calling add_insn (). */
3929 PREV_INSN (insn) = NULL_RTX;
3930 NEXT_INSN (insn) = NULL_RTX;
3932 return tidy_control_flow (bb, full_tidying);
3935 /* Estimate number of the insns in BB. */
3936 static int
3937 sel_estimate_number_of_insns (basic_block bb)
3939 int res = 0;
3940 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3942 for (; insn != next_tail; insn = NEXT_INSN (insn))
3943 if (NONDEBUG_INSN_P (insn))
3944 res++;
3946 return res;
3949 /* We don't need separate luids for notes or labels. */
3950 static int
3951 sel_luid_for_non_insn (rtx x)
3953 gcc_assert (NOTE_P (x) || LABEL_P (x));
3955 return -1;
3958 /* Find the proper seqno for inserting at INSN by successors.
3959 Return -1 if no successors with positive seqno exist. */
3960 static int
3961 get_seqno_by_succs (rtx insn)
3963 basic_block bb = BLOCK_FOR_INSN (insn);
3964 rtx tmp = insn, end = BB_END (bb);
3965 int seqno;
3966 insn_t succ = NULL;
3967 succ_iterator si;
3969 while (tmp != end)
3971 tmp = NEXT_INSN (tmp);
3972 if (INSN_P (tmp))
3973 return INSN_SEQNO (tmp);
3976 seqno = INT_MAX;
3978 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3979 if (INSN_SEQNO (succ) > 0)
3980 seqno = MIN (seqno, INSN_SEQNO (succ));
3982 if (seqno == INT_MAX)
3983 return -1;
3985 return seqno;
3988 /* Compute seqno for INSN by its preds or succs. */
3989 static int
3990 get_seqno_for_a_jump (insn_t insn)
3992 int seqno;
3994 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3996 if (!sel_bb_head_p (insn))
3997 seqno = INSN_SEQNO (PREV_INSN (insn));
3998 else
4000 basic_block bb = BLOCK_FOR_INSN (insn);
4002 if (single_pred_p (bb)
4003 && !in_current_region_p (single_pred (bb)))
4005 /* We can have preds outside a region when splitting edges
4006 for pipelining of an outer loop. Use succ instead.
4007 There should be only one of them. */
4008 insn_t succ = NULL;
4009 succ_iterator si;
4010 bool first = true;
4012 gcc_assert (flag_sel_sched_pipelining_outer_loops
4013 && current_loop_nest);
4014 FOR_EACH_SUCC_1 (succ, si, insn,
4015 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4017 gcc_assert (first);
4018 first = false;
4021 gcc_assert (succ != NULL);
4022 seqno = INSN_SEQNO (succ);
4024 else
4026 insn_t *preds;
4027 int n;
4029 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4031 gcc_assert (n > 0);
4032 /* For one predecessor, use simple method. */
4033 if (n == 1)
4034 seqno = INSN_SEQNO (preds[0]);
4035 else
4036 seqno = get_seqno_by_preds (insn);
4038 free (preds);
4042 /* We were unable to find a good seqno among preds. */
4043 if (seqno < 0)
4044 seqno = get_seqno_by_succs (insn);
4046 gcc_assert (seqno >= 0);
4048 return seqno;
4051 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4052 with positive seqno exist. */
4054 get_seqno_by_preds (rtx insn)
4056 basic_block bb = BLOCK_FOR_INSN (insn);
4057 rtx tmp = insn, head = BB_HEAD (bb);
4058 insn_t *preds;
4059 int n, i, seqno;
4061 while (tmp != head)
4063 tmp = PREV_INSN (tmp);
4064 if (INSN_P (tmp))
4065 return INSN_SEQNO (tmp);
4068 cfg_preds (bb, &preds, &n);
4069 for (i = 0, seqno = -1; i < n; i++)
4070 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4072 return seqno;
4077 /* Extend pass-scope data structures for basic blocks. */
4078 void
4079 sel_extend_global_bb_info (void)
4081 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
4082 last_basic_block);
4085 /* Extend region-scope data structures for basic blocks. */
4086 static void
4087 extend_region_bb_info (void)
4089 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
4090 last_basic_block);
4093 /* Extend all data structures to fit for all basic blocks. */
4094 static void
4095 extend_bb_info (void)
4097 sel_extend_global_bb_info ();
4098 extend_region_bb_info ();
4101 /* Finalize pass-scope data structures for basic blocks. */
4102 void
4103 sel_finish_global_bb_info (void)
4105 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
4108 /* Finalize region-scope data structures for basic blocks. */
4109 static void
4110 finish_region_bb_info (void)
4112 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
4116 /* Data for each insn in current region. */
4117 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
4119 /* Extend data structures for insns from current region. */
4120 static void
4121 extend_insn_data (void)
4123 int reserve;
4125 sched_extend_target ();
4126 sched_deps_init (false);
4128 /* Extend data structures for insns from current region. */
4129 reserve = (sched_max_luid + 1
4130 - VEC_length (sel_insn_data_def, s_i_d));
4131 if (reserve > 0
4132 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4134 int size;
4136 if (sched_max_luid / 2 > 1024)
4137 size = sched_max_luid + 1024;
4138 else
4139 size = 3 * sched_max_luid / 2;
4142 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4146 /* Finalize data structures for insns from current region. */
4147 static void
4148 finish_insns (void)
4150 unsigned i;
4152 /* Clear here all dependence contexts that may have left from insns that were
4153 removed during the scheduling. */
4154 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4156 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4158 if (sid_entry->live)
4159 return_regset_to_pool (sid_entry->live);
4160 if (sid_entry->analyzed_deps)
4162 BITMAP_FREE (sid_entry->analyzed_deps);
4163 BITMAP_FREE (sid_entry->found_deps);
4164 htab_delete (sid_entry->transformed_insns);
4165 free_deps (&sid_entry->deps_context);
4167 if (EXPR_VINSN (&sid_entry->expr))
4169 clear_expr (&sid_entry->expr);
4171 /* Also, clear CANT_MOVE bit here, because we really don't want it
4172 to be passed to the next region. */
4173 CANT_MOVE_BY_LUID (i) = 0;
4177 VEC_free (sel_insn_data_def, heap, s_i_d);
4180 /* A proxy to pass initialization data to init_insn (). */
4181 static sel_insn_data_def _insn_init_ssid;
4182 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4184 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4185 static bool insn_init_create_new_vinsn_p;
4187 /* Set all necessary data for initialization of the new insn[s]. */
4188 static expr_t
4189 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4191 expr_t x = &insn_init_ssid->expr;
4193 copy_expr_onside (x, expr);
4194 if (vi != NULL)
4196 insn_init_create_new_vinsn_p = false;
4197 change_vinsn_in_expr (x, vi);
4199 else
4200 insn_init_create_new_vinsn_p = true;
4202 insn_init_ssid->seqno = seqno;
4203 return x;
4206 /* Init data for INSN. */
4207 static void
4208 init_insn_data (insn_t insn)
4210 expr_t expr;
4211 sel_insn_data_t ssid = insn_init_ssid;
4213 /* The fields mentioned below are special and hence are not being
4214 propagated to the new insns. */
4215 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4216 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4217 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4219 expr = INSN_EXPR (insn);
4220 copy_expr (expr, &ssid->expr);
4221 prepare_insn_expr (insn, ssid->seqno);
4223 if (insn_init_create_new_vinsn_p)
4224 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4226 if (first_time_insn_init (insn))
4227 init_first_time_insn_data (insn);
4230 /* This is used to initialize spurious jumps generated by
4231 sel_redirect_edge (). */
4232 static void
4233 init_simplejump_data (insn_t insn)
4235 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4236 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4237 false, true);
4238 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
4239 init_first_time_insn_data (insn);
4242 /* Perform deferred initialization of insns. This is used to process
4243 a new jump that may be created by redirect_edge. */
4244 void
4245 sel_init_new_insn (insn_t insn, int flags)
4247 /* We create data structures for bb when the first insn is emitted in it. */
4248 if (INSN_P (insn)
4249 && INSN_IN_STREAM_P (insn)
4250 && insn_is_the_only_one_in_bb_p (insn))
4252 extend_bb_info ();
4253 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4256 if (flags & INSN_INIT_TODO_LUID)
4258 sched_extend_luids ();
4259 sched_init_insn_luid (insn);
4262 if (flags & INSN_INIT_TODO_SSID)
4264 extend_insn_data ();
4265 init_insn_data (insn);
4266 clear_expr (&insn_init_ssid->expr);
4269 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4271 extend_insn_data ();
4272 init_simplejump_data (insn);
4275 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4276 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4280 /* Functions to init/finish work with lv sets. */
4282 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4283 static void
4284 init_lv_set (basic_block bb)
4286 gcc_assert (!BB_LV_SET_VALID_P (bb));
4288 BB_LV_SET (bb) = get_regset_from_pool ();
4289 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4290 BB_LV_SET_VALID_P (bb) = true;
4293 /* Copy liveness information to BB from FROM_BB. */
4294 static void
4295 copy_lv_set_from (basic_block bb, basic_block from_bb)
4297 gcc_assert (!BB_LV_SET_VALID_P (bb));
4299 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4300 BB_LV_SET_VALID_P (bb) = true;
4303 /* Initialize lv set of all bb headers. */
4304 void
4305 init_lv_sets (void)
4307 basic_block bb;
4309 /* Initialize of LV sets. */
4310 FOR_EACH_BB (bb)
4311 init_lv_set (bb);
4313 /* Don't forget EXIT_BLOCK. */
4314 init_lv_set (EXIT_BLOCK_PTR);
4317 /* Release lv set of HEAD. */
4318 static void
4319 free_lv_set (basic_block bb)
4321 gcc_assert (BB_LV_SET (bb) != NULL);
4323 return_regset_to_pool (BB_LV_SET (bb));
4324 BB_LV_SET (bb) = NULL;
4325 BB_LV_SET_VALID_P (bb) = false;
4328 /* Finalize lv sets of all bb headers. */
4329 void
4330 free_lv_sets (void)
4332 basic_block bb;
4334 /* Don't forget EXIT_BLOCK. */
4335 free_lv_set (EXIT_BLOCK_PTR);
4337 /* Free LV sets. */
4338 FOR_EACH_BB (bb)
4339 if (BB_LV_SET (bb))
4340 free_lv_set (bb);
4343 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4344 compute_av() processes BB. This function is called when creating new basic
4345 blocks, as well as for blocks (either new or existing) where new jumps are
4346 created when the control flow is being updated. */
4347 static void
4348 invalidate_av_set (basic_block bb)
4350 BB_AV_LEVEL (bb) = -1;
4353 /* Create initial data sets for BB (they will be invalid). */
4354 static void
4355 create_initial_data_sets (basic_block bb)
4357 if (BB_LV_SET (bb))
4358 BB_LV_SET_VALID_P (bb) = false;
4359 else
4360 BB_LV_SET (bb) = get_regset_from_pool ();
4361 invalidate_av_set (bb);
4364 /* Free av set of BB. */
4365 static void
4366 free_av_set (basic_block bb)
4368 av_set_clear (&BB_AV_SET (bb));
4369 BB_AV_LEVEL (bb) = 0;
4372 /* Free data sets of BB. */
4373 void
4374 free_data_sets (basic_block bb)
4376 free_lv_set (bb);
4377 free_av_set (bb);
4380 /* Exchange lv sets of TO and FROM. */
4381 static void
4382 exchange_lv_sets (basic_block to, basic_block from)
4385 regset to_lv_set = BB_LV_SET (to);
4387 BB_LV_SET (to) = BB_LV_SET (from);
4388 BB_LV_SET (from) = to_lv_set;
4392 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4394 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4395 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4400 /* Exchange av sets of TO and FROM. */
4401 static void
4402 exchange_av_sets (basic_block to, basic_block from)
4405 av_set_t to_av_set = BB_AV_SET (to);
4407 BB_AV_SET (to) = BB_AV_SET (from);
4408 BB_AV_SET (from) = to_av_set;
4412 int to_av_level = BB_AV_LEVEL (to);
4414 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4415 BB_AV_LEVEL (from) = to_av_level;
4419 /* Exchange data sets of TO and FROM. */
4420 void
4421 exchange_data_sets (basic_block to, basic_block from)
4423 exchange_lv_sets (to, from);
4424 exchange_av_sets (to, from);
4427 /* Copy data sets of FROM to TO. */
4428 void
4429 copy_data_sets (basic_block to, basic_block from)
4431 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4432 gcc_assert (BB_AV_SET (to) == NULL);
4434 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4435 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4437 if (BB_AV_SET_VALID_P (from))
4439 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4441 if (BB_LV_SET_VALID_P (from))
4443 gcc_assert (BB_LV_SET (to) != NULL);
4444 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4448 /* Return an av set for INSN, if any. */
4449 av_set_t
4450 get_av_set (insn_t insn)
4452 av_set_t av_set;
4454 gcc_assert (AV_SET_VALID_P (insn));
4456 if (sel_bb_head_p (insn))
4457 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4458 else
4459 av_set = NULL;
4461 return av_set;
4464 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4466 get_av_level (insn_t insn)
4468 int av_level;
4470 gcc_assert (INSN_P (insn));
4472 if (sel_bb_head_p (insn))
4473 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4474 else
4475 av_level = INSN_WS_LEVEL (insn);
4477 return av_level;
4482 /* Variables to work with control-flow graph. */
4484 /* The basic block that already has been processed by the sched_data_update (),
4485 but hasn't been in sel_add_bb () yet. */
4486 static VEC (basic_block, heap) *last_added_blocks = NULL;
4488 /* A pool for allocating successor infos. */
4489 static struct
4491 /* A stack for saving succs_info structures. */
4492 struct succs_info *stack;
4494 /* Its size. */
4495 int size;
4497 /* Top of the stack. */
4498 int top;
4500 /* Maximal value of the top. */
4501 int max_top;
4502 } succs_info_pool;
4504 /* Functions to work with control-flow graph. */
4506 /* Return basic block note of BB. */
4507 insn_t
4508 sel_bb_head (basic_block bb)
4510 insn_t head;
4512 if (bb == EXIT_BLOCK_PTR)
4514 gcc_assert (exit_insn != NULL_RTX);
4515 head = exit_insn;
4517 else
4519 insn_t note;
4521 note = bb_note (bb);
4522 head = next_nonnote_insn (note);
4524 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4525 head = NULL_RTX;
4528 return head;
4531 /* Return true if INSN is a basic block header. */
4532 bool
4533 sel_bb_head_p (insn_t insn)
4535 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4538 /* Return last insn of BB. */
4539 insn_t
4540 sel_bb_end (basic_block bb)
4542 if (sel_bb_empty_p (bb))
4543 return NULL_RTX;
4545 gcc_assert (bb != EXIT_BLOCK_PTR);
4547 return BB_END (bb);
4550 /* Return true if INSN is the last insn in its basic block. */
4551 bool
4552 sel_bb_end_p (insn_t insn)
4554 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4557 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4558 bool
4559 sel_bb_empty_p (basic_block bb)
4561 return sel_bb_head (bb) == NULL;
4564 /* True when BB belongs to the current scheduling region. */
4565 bool
4566 in_current_region_p (basic_block bb)
4568 if (bb->index < NUM_FIXED_BLOCKS)
4569 return false;
4571 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4574 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4575 basic_block
4576 fallthru_bb_of_jump (rtx jump)
4578 if (!JUMP_P (jump))
4579 return NULL;
4581 if (!any_condjump_p (jump))
4582 return NULL;
4584 /* A basic block that ends with a conditional jump may still have one successor
4585 (and be followed by a barrier), we are not interested. */
4586 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4587 return NULL;
4589 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4592 /* Remove all notes from BB. */
4593 static void
4594 init_bb (basic_block bb)
4596 remove_notes (bb_note (bb), BB_END (bb));
4597 BB_NOTE_LIST (bb) = note_list;
4600 void
4601 sel_init_bbs (bb_vec_t bbs)
4603 const struct sched_scan_info_def ssi =
4605 extend_bb_info, /* extend_bb */
4606 init_bb, /* init_bb */
4607 NULL, /* extend_insn */
4608 NULL /* init_insn */
4611 sched_scan (&ssi, bbs);
4614 /* Restore notes for the whole region. */
4615 static void
4616 sel_restore_notes (void)
4618 int bb;
4619 insn_t insn;
4621 for (bb = 0; bb < current_nr_blocks; bb++)
4623 basic_block first, last;
4625 first = EBB_FIRST_BB (bb);
4626 last = EBB_LAST_BB (bb)->next_bb;
4630 note_list = BB_NOTE_LIST (first);
4631 restore_other_notes (NULL, first);
4632 BB_NOTE_LIST (first) = NULL_RTX;
4634 FOR_BB_INSNS (first, insn)
4635 if (NONDEBUG_INSN_P (insn))
4636 reemit_notes (insn);
4638 first = first->next_bb;
4640 while (first != last);
4644 /* Free per-bb data structures. */
4645 void
4646 sel_finish_bbs (void)
4648 sel_restore_notes ();
4650 /* Remove current loop preheader from this loop. */
4651 if (current_loop_nest)
4652 sel_remove_loop_preheader ();
4654 finish_region_bb_info ();
4657 /* Return true if INSN has a single successor of type FLAGS. */
4658 bool
4659 sel_insn_has_single_succ_p (insn_t insn, int flags)
4661 insn_t succ;
4662 succ_iterator si;
4663 bool first_p = true;
4665 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4667 if (first_p)
4668 first_p = false;
4669 else
4670 return false;
4673 return true;
4676 /* Allocate successor's info. */
4677 static struct succs_info *
4678 alloc_succs_info (void)
4680 if (succs_info_pool.top == succs_info_pool.max_top)
4682 int i;
4684 if (++succs_info_pool.max_top >= succs_info_pool.size)
4685 gcc_unreachable ();
4687 i = ++succs_info_pool.top;
4688 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4689 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4690 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4692 else
4693 succs_info_pool.top++;
4695 return &succs_info_pool.stack[succs_info_pool.top];
4698 /* Free successor's info. */
4699 void
4700 free_succs_info (struct succs_info * sinfo)
4702 gcc_assert (succs_info_pool.top >= 0
4703 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4704 succs_info_pool.top--;
4706 /* Clear stale info. */
4707 VEC_block_remove (rtx, sinfo->succs_ok,
4708 0, VEC_length (rtx, sinfo->succs_ok));
4709 VEC_block_remove (rtx, sinfo->succs_other,
4710 0, VEC_length (rtx, sinfo->succs_other));
4711 VEC_block_remove (int, sinfo->probs_ok,
4712 0, VEC_length (int, sinfo->probs_ok));
4713 sinfo->all_prob = 0;
4714 sinfo->succs_ok_n = 0;
4715 sinfo->all_succs_n = 0;
4718 /* Compute successor info for INSN. FLAGS are the flags passed
4719 to the FOR_EACH_SUCC_1 iterator. */
4720 struct succs_info *
4721 compute_succs_info (insn_t insn, short flags)
4723 succ_iterator si;
4724 insn_t succ;
4725 struct succs_info *sinfo = alloc_succs_info ();
4727 /* Traverse *all* successors and decide what to do with each. */
4728 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4730 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4731 perform code motion through inner loops. */
4732 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4734 if (current_flags & flags)
4736 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4737 VEC_safe_push (int, heap, sinfo->probs_ok,
4738 /* FIXME: Improve calculation when skipping
4739 inner loop to exits. */
4740 (si.bb_end
4741 ? si.e1->probability
4742 : REG_BR_PROB_BASE));
4743 sinfo->succs_ok_n++;
4745 else
4746 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4748 /* Compute all_prob. */
4749 if (!si.bb_end)
4750 sinfo->all_prob = REG_BR_PROB_BASE;
4751 else
4752 sinfo->all_prob += si.e1->probability;
4754 sinfo->all_succs_n++;
4757 return sinfo;
4760 /* Return the predecessors of BB in PREDS and their number in N.
4761 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4762 static void
4763 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4765 edge e;
4766 edge_iterator ei;
4768 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4770 FOR_EACH_EDGE (e, ei, bb->preds)
4772 basic_block pred_bb = e->src;
4773 insn_t bb_end = BB_END (pred_bb);
4775 if (!in_current_region_p (pred_bb))
4777 gcc_assert (flag_sel_sched_pipelining_outer_loops
4778 && current_loop_nest);
4779 continue;
4782 if (sel_bb_empty_p (pred_bb))
4783 cfg_preds_1 (pred_bb, preds, n, size);
4784 else
4786 if (*n == *size)
4787 *preds = XRESIZEVEC (insn_t, *preds,
4788 (*size = 2 * *size + 1));
4789 (*preds)[(*n)++] = bb_end;
4793 gcc_assert (*n != 0
4794 || (flag_sel_sched_pipelining_outer_loops
4795 && current_loop_nest));
4798 /* Find all predecessors of BB and record them in PREDS and their number
4799 in N. Empty blocks are skipped, and only normal (forward in-region)
4800 edges are processed. */
4801 static void
4802 cfg_preds (basic_block bb, insn_t **preds, int *n)
4804 int size = 0;
4806 *preds = NULL;
4807 *n = 0;
4808 cfg_preds_1 (bb, preds, n, &size);
4811 /* Returns true if we are moving INSN through join point. */
4812 bool
4813 sel_num_cfg_preds_gt_1 (insn_t insn)
4815 basic_block bb;
4817 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4818 return false;
4820 bb = BLOCK_FOR_INSN (insn);
4822 while (1)
4824 if (EDGE_COUNT (bb->preds) > 1)
4825 return true;
4827 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4828 bb = EDGE_PRED (bb, 0)->src;
4830 if (!sel_bb_empty_p (bb))
4831 break;
4834 return false;
4837 /* Returns true when BB should be the end of an ebb. Adapted from the
4838 code in sched-ebb.c. */
4839 bool
4840 bb_ends_ebb_p (basic_block bb)
4842 basic_block next_bb = bb_next_bb (bb);
4843 edge e;
4845 if (next_bb == EXIT_BLOCK_PTR
4846 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4847 || (LABEL_P (BB_HEAD (next_bb))
4848 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4849 Work around that. */
4850 && !single_pred_p (next_bb)))
4851 return true;
4853 if (!in_current_region_p (next_bb))
4854 return true;
4856 e = find_fallthru_edge (bb->succs);
4857 if (e)
4859 gcc_assert (e->dest == next_bb);
4861 return false;
4864 return true;
4867 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4868 successor of INSN. */
4869 bool
4870 in_same_ebb_p (insn_t insn, insn_t succ)
4872 basic_block ptr = BLOCK_FOR_INSN (insn);
4874 for(;;)
4876 if (ptr == BLOCK_FOR_INSN (succ))
4877 return true;
4879 if (bb_ends_ebb_p (ptr))
4880 return false;
4882 ptr = bb_next_bb (ptr);
4885 gcc_unreachable ();
4886 return false;
4889 /* Recomputes the reverse topological order for the function and
4890 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4891 modified appropriately. */
4892 static void
4893 recompute_rev_top_order (void)
4895 int *postorder;
4896 int n_blocks, i;
4898 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4900 rev_top_order_index_len = last_basic_block;
4901 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4902 rev_top_order_index_len);
4905 postorder = XNEWVEC (int, n_basic_blocks);
4907 n_blocks = post_order_compute (postorder, true, false);
4908 gcc_assert (n_basic_blocks == n_blocks);
4910 /* Build reverse function: for each basic block with BB->INDEX == K
4911 rev_top_order_index[K] is it's reverse topological sort number. */
4912 for (i = 0; i < n_blocks; i++)
4914 gcc_assert (postorder[i] < rev_top_order_index_len);
4915 rev_top_order_index[postorder[i]] = i;
4918 free (postorder);
4921 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4922 void
4923 clear_outdated_rtx_info (basic_block bb)
4925 rtx insn;
4927 FOR_BB_INSNS (bb, insn)
4928 if (INSN_P (insn))
4930 SCHED_GROUP_P (insn) = 0;
4931 INSN_AFTER_STALL_P (insn) = 0;
4932 INSN_SCHED_TIMES (insn) = 0;
4933 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4935 /* We cannot use the changed caches, as previously we could ignore
4936 the LHS dependence due to enabled renaming and transform
4937 the expression, and currently we'll be unable to do this. */
4938 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4942 /* Add BB_NOTE to the pool of available basic block notes. */
4943 static void
4944 return_bb_to_pool (basic_block bb)
4946 rtx note = bb_note (bb);
4948 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4949 && bb->aux == NULL);
4951 /* It turns out that current cfg infrastructure does not support
4952 reuse of basic blocks. Don't bother for now. */
4953 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4956 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4957 static rtx
4958 get_bb_note_from_pool (void)
4960 if (VEC_empty (rtx, bb_note_pool))
4961 return NULL_RTX;
4962 else
4964 rtx note = VEC_pop (rtx, bb_note_pool);
4966 PREV_INSN (note) = NULL_RTX;
4967 NEXT_INSN (note) = NULL_RTX;
4969 return note;
4973 /* Free bb_note_pool. */
4974 void
4975 free_bb_note_pool (void)
4977 VEC_free (rtx, heap, bb_note_pool);
4980 /* Setup scheduler pool and successor structure. */
4981 void
4982 alloc_sched_pools (void)
4984 int succs_size;
4986 succs_size = MAX_WS + 1;
4987 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4988 succs_info_pool.size = succs_size;
4989 succs_info_pool.top = -1;
4990 succs_info_pool.max_top = -1;
4992 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4993 sizeof (struct _list_node), 500);
4996 /* Free the pools. */
4997 void
4998 free_sched_pools (void)
5000 int i;
5002 free_alloc_pool (sched_lists_pool);
5003 gcc_assert (succs_info_pool.top == -1);
5004 for (i = 0; i < succs_info_pool.max_top; i++)
5006 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
5007 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
5008 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
5010 free (succs_info_pool.stack);
5014 /* Returns a position in RGN where BB can be inserted retaining
5015 topological order. */
5016 static int
5017 find_place_to_insert_bb (basic_block bb, int rgn)
5019 bool has_preds_outside_rgn = false;
5020 edge e;
5021 edge_iterator ei;
5023 /* Find whether we have preds outside the region. */
5024 FOR_EACH_EDGE (e, ei, bb->preds)
5025 if (!in_current_region_p (e->src))
5027 has_preds_outside_rgn = true;
5028 break;
5031 /* Recompute the top order -- needed when we have > 1 pred
5032 and in case we don't have preds outside. */
5033 if (flag_sel_sched_pipelining_outer_loops
5034 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5036 int i, bbi = bb->index, cur_bbi;
5038 recompute_rev_top_order ();
5039 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5041 cur_bbi = BB_TO_BLOCK (i);
5042 if (rev_top_order_index[bbi]
5043 < rev_top_order_index[cur_bbi])
5044 break;
5047 /* We skipped the right block, so we increase i. We accomodate
5048 it for increasing by step later, so we decrease i. */
5049 return (i + 1) - 1;
5051 else if (has_preds_outside_rgn)
5053 /* This is the case when we generate an extra empty block
5054 to serve as region head during pipelining. */
5055 e = EDGE_SUCC (bb, 0);
5056 gcc_assert (EDGE_COUNT (bb->succs) == 1
5057 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5058 && (BLOCK_TO_BB (e->dest->index) == 0));
5059 return -1;
5062 /* We don't have preds outside the region. We should have
5063 the only pred, because the multiple preds case comes from
5064 the pipelining of outer loops, and that is handled above.
5065 Just take the bbi of this single pred. */
5066 if (EDGE_COUNT (bb->succs) > 0)
5068 int pred_bbi;
5070 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5072 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5073 return BLOCK_TO_BB (pred_bbi);
5075 else
5076 /* BB has no successors. It is safe to put it in the end. */
5077 return current_nr_blocks - 1;
5080 /* Deletes an empty basic block freeing its data. */
5081 static void
5082 delete_and_free_basic_block (basic_block bb)
5084 gcc_assert (sel_bb_empty_p (bb));
5086 if (BB_LV_SET (bb))
5087 free_lv_set (bb);
5089 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5091 /* Can't assert av_set properties because we use sel_aremove_bb
5092 when removing loop preheader from the region. At the point of
5093 removing the preheader we already have deallocated sel_region_bb_info. */
5094 gcc_assert (BB_LV_SET (bb) == NULL
5095 && !BB_LV_SET_VALID_P (bb)
5096 && BB_AV_LEVEL (bb) == 0
5097 && BB_AV_SET (bb) == NULL);
5099 delete_basic_block (bb);
5102 /* Add BB to the current region and update the region data. */
5103 static void
5104 add_block_to_current_region (basic_block bb)
5106 int i, pos, bbi = -2, rgn;
5108 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5109 bbi = find_place_to_insert_bb (bb, rgn);
5110 bbi += 1;
5111 pos = RGN_BLOCKS (rgn) + bbi;
5113 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5114 && ebb_head[bbi] == pos);
5116 /* Make a place for the new block. */
5117 extend_regions ();
5119 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5120 BLOCK_TO_BB (rgn_bb_table[i])++;
5122 memmove (rgn_bb_table + pos + 1,
5123 rgn_bb_table + pos,
5124 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5126 /* Initialize data for BB. */
5127 rgn_bb_table[pos] = bb->index;
5128 BLOCK_TO_BB (bb->index) = bbi;
5129 CONTAINING_RGN (bb->index) = rgn;
5131 RGN_NR_BLOCKS (rgn)++;
5133 for (i = rgn + 1; i <= nr_regions; i++)
5134 RGN_BLOCKS (i)++;
5137 /* Remove BB from the current region and update the region data. */
5138 static void
5139 remove_bb_from_region (basic_block bb)
5141 int i, pos, bbi = -2, rgn;
5143 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5144 bbi = BLOCK_TO_BB (bb->index);
5145 pos = RGN_BLOCKS (rgn) + bbi;
5147 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5148 && ebb_head[bbi] == pos);
5150 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5151 BLOCK_TO_BB (rgn_bb_table[i])--;
5153 memmove (rgn_bb_table + pos,
5154 rgn_bb_table + pos + 1,
5155 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5157 RGN_NR_BLOCKS (rgn)--;
5158 for (i = rgn + 1; i <= nr_regions; i++)
5159 RGN_BLOCKS (i)--;
5162 /* Add BB to the current region and update all data. If BB is NULL, add all
5163 blocks from last_added_blocks vector. */
5164 static void
5165 sel_add_bb (basic_block bb)
5167 /* Extend luids so that new notes will receive zero luids. */
5168 sched_extend_luids ();
5169 sched_init_bbs ();
5170 sel_init_bbs (last_added_blocks);
5172 /* When bb is passed explicitly, the vector should contain
5173 the only element that equals to bb; otherwise, the vector
5174 should not be NULL. */
5175 gcc_assert (last_added_blocks != NULL);
5177 if (bb != NULL)
5179 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5180 && VEC_index (basic_block,
5181 last_added_blocks, 0) == bb);
5182 add_block_to_current_region (bb);
5184 /* We associate creating/deleting data sets with the first insn
5185 appearing / disappearing in the bb. */
5186 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5187 create_initial_data_sets (bb);
5189 VEC_free (basic_block, heap, last_added_blocks);
5191 else
5192 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5194 int i;
5195 basic_block temp_bb = NULL;
5197 for (i = 0;
5198 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5200 add_block_to_current_region (bb);
5201 temp_bb = bb;
5204 /* We need to fetch at least one bb so we know the region
5205 to update. */
5206 gcc_assert (temp_bb != NULL);
5207 bb = temp_bb;
5209 VEC_free (basic_block, heap, last_added_blocks);
5212 rgn_setup_region (CONTAINING_RGN (bb->index));
5215 /* Remove BB from the current region and update all data.
5216 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5217 static void
5218 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5220 unsigned idx = bb->index;
5222 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5224 remove_bb_from_region (bb);
5225 return_bb_to_pool (bb);
5226 bitmap_clear_bit (blocks_to_reschedule, idx);
5228 if (remove_from_cfg_p)
5230 basic_block succ = single_succ (bb);
5231 delete_and_free_basic_block (bb);
5232 set_immediate_dominator (CDI_DOMINATORS, succ,
5233 recompute_dominator (CDI_DOMINATORS, succ));
5236 rgn_setup_region (CONTAINING_RGN (idx));
5239 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5240 static void
5241 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5243 if (in_current_region_p (merge_bb))
5244 concat_note_lists (BB_NOTE_LIST (empty_bb),
5245 &BB_NOTE_LIST (merge_bb));
5246 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5250 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5251 region, but keep it in CFG. */
5252 static void
5253 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5255 /* The block should contain just a note or a label.
5256 We try to check whether it is unused below. */
5257 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5258 || LABEL_P (BB_HEAD (empty_bb)));
5260 /* If basic block has predecessors or successors, redirect them. */
5261 if (remove_from_cfg_p
5262 && (EDGE_COUNT (empty_bb->preds) > 0
5263 || EDGE_COUNT (empty_bb->succs) > 0))
5265 basic_block pred;
5266 basic_block succ;
5268 /* We need to init PRED and SUCC before redirecting edges. */
5269 if (EDGE_COUNT (empty_bb->preds) > 0)
5271 edge e;
5273 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5275 e = EDGE_PRED (empty_bb, 0);
5276 gcc_assert (e->src == empty_bb->prev_bb
5277 && (e->flags & EDGE_FALLTHRU));
5279 pred = empty_bb->prev_bb;
5281 else
5282 pred = NULL;
5284 if (EDGE_COUNT (empty_bb->succs) > 0)
5286 /* We do not check fallthruness here as above, because
5287 after removing a jump the edge may actually be not fallthru. */
5288 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5289 succ = EDGE_SUCC (empty_bb, 0)->dest;
5291 else
5292 succ = NULL;
5294 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5296 edge e = EDGE_PRED (empty_bb, 0);
5298 if (e->flags & EDGE_FALLTHRU)
5299 redirect_edge_succ_nodup (e, succ);
5300 else
5301 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5304 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5306 edge e = EDGE_SUCC (empty_bb, 0);
5308 if (find_edge (pred, e->dest) == NULL)
5309 redirect_edge_pred (e, pred);
5313 /* Finish removing. */
5314 sel_remove_bb (empty_bb, remove_from_cfg_p);
5317 /* An implementation of create_basic_block hook, which additionally updates
5318 per-bb data structures. */
5319 static basic_block
5320 sel_create_basic_block (void *headp, void *endp, basic_block after)
5322 basic_block new_bb;
5323 insn_t new_bb_note;
5325 gcc_assert (flag_sel_sched_pipelining_outer_loops
5326 || last_added_blocks == NULL);
5328 new_bb_note = get_bb_note_from_pool ();
5330 if (new_bb_note == NULL_RTX)
5331 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5332 else
5334 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5335 new_bb_note, after);
5336 new_bb->aux = NULL;
5339 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5341 return new_bb;
5344 /* Implement sched_init_only_bb (). */
5345 static void
5346 sel_init_only_bb (basic_block bb, basic_block after)
5348 gcc_assert (after == NULL);
5350 extend_regions ();
5351 rgn_make_new_region_out_of_new_block (bb);
5354 /* Update the latch when we've splitted or merged it from FROM block to TO.
5355 This should be checked for all outer loops, too. */
5356 static void
5357 change_loops_latches (basic_block from, basic_block to)
5359 gcc_assert (from != to);
5361 if (current_loop_nest)
5363 struct loop *loop;
5365 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5366 if (considered_for_pipelining_p (loop) && loop->latch == from)
5368 gcc_assert (loop == current_loop_nest);
5369 loop->latch = to;
5370 gcc_assert (loop_latch_edge (loop));
5375 /* Splits BB on two basic blocks, adding it to the region and extending
5376 per-bb data structures. Returns the newly created bb. */
5377 static basic_block
5378 sel_split_block (basic_block bb, rtx after)
5380 basic_block new_bb;
5381 insn_t insn;
5383 new_bb = sched_split_block_1 (bb, after);
5384 sel_add_bb (new_bb);
5386 /* This should be called after sel_add_bb, because this uses
5387 CONTAINING_RGN for the new block, which is not yet initialized.
5388 FIXME: this function may be a no-op now. */
5389 change_loops_latches (bb, new_bb);
5391 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5392 FOR_BB_INSNS (new_bb, insn)
5393 if (INSN_P (insn))
5394 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5396 if (sel_bb_empty_p (bb))
5398 gcc_assert (!sel_bb_empty_p (new_bb));
5400 /* NEW_BB has data sets that need to be updated and BB holds
5401 data sets that should be removed. Exchange these data sets
5402 so that we won't lose BB's valid data sets. */
5403 exchange_data_sets (new_bb, bb);
5404 free_data_sets (bb);
5407 if (!sel_bb_empty_p (new_bb)
5408 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5409 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5411 return new_bb;
5414 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5415 Otherwise returns NULL. */
5416 static rtx
5417 check_for_new_jump (basic_block bb, int prev_max_uid)
5419 rtx end;
5421 end = sel_bb_end (bb);
5422 if (end && INSN_UID (end) >= prev_max_uid)
5423 return end;
5424 return NULL;
5427 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5428 New means having UID at least equal to PREV_MAX_UID. */
5429 static rtx
5430 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5432 rtx jump;
5434 /* Return immediately if no new insns were emitted. */
5435 if (get_max_uid () == prev_max_uid)
5436 return NULL;
5438 /* Now check both blocks for new jumps. It will ever be only one. */
5439 if ((jump = check_for_new_jump (from, prev_max_uid)))
5440 return jump;
5442 if (jump_bb != NULL
5443 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5444 return jump;
5445 return NULL;
5448 /* Splits E and adds the newly created basic block to the current region.
5449 Returns this basic block. */
5450 basic_block
5451 sel_split_edge (edge e)
5453 basic_block new_bb, src, other_bb = NULL;
5454 int prev_max_uid;
5455 rtx jump;
5457 src = e->src;
5458 prev_max_uid = get_max_uid ();
5459 new_bb = split_edge (e);
5461 if (flag_sel_sched_pipelining_outer_loops
5462 && current_loop_nest)
5464 int i;
5465 basic_block bb;
5467 /* Some of the basic blocks might not have been added to the loop.
5468 Add them here, until this is fixed in force_fallthru. */
5469 for (i = 0;
5470 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5471 if (!bb->loop_father)
5473 add_bb_to_loop (bb, e->dest->loop_father);
5475 gcc_assert (!other_bb && (new_bb->index != bb->index));
5476 other_bb = bb;
5480 /* Add all last_added_blocks to the region. */
5481 sel_add_bb (NULL);
5483 jump = find_new_jump (src, new_bb, prev_max_uid);
5484 if (jump)
5485 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5487 /* Put the correct lv set on this block. */
5488 if (other_bb && !sel_bb_empty_p (other_bb))
5489 compute_live (sel_bb_head (other_bb));
5491 return new_bb;
5494 /* Implement sched_create_empty_bb (). */
5495 static basic_block
5496 sel_create_empty_bb (basic_block after)
5498 basic_block new_bb;
5500 new_bb = sched_create_empty_bb_1 (after);
5502 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5503 later. */
5504 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5505 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5507 VEC_free (basic_block, heap, last_added_blocks);
5508 return new_bb;
5511 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5512 will be splitted to insert a check. */
5513 basic_block
5514 sel_create_recovery_block (insn_t orig_insn)
5516 basic_block first_bb, second_bb, recovery_block;
5517 basic_block before_recovery = NULL;
5518 rtx jump;
5520 first_bb = BLOCK_FOR_INSN (orig_insn);
5521 if (sel_bb_end_p (orig_insn))
5523 /* Avoid introducing an empty block while splitting. */
5524 gcc_assert (single_succ_p (first_bb));
5525 second_bb = single_succ (first_bb);
5527 else
5528 second_bb = sched_split_block (first_bb, orig_insn);
5530 recovery_block = sched_create_recovery_block (&before_recovery);
5531 if (before_recovery)
5532 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5534 gcc_assert (sel_bb_empty_p (recovery_block));
5535 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5536 if (current_loops != NULL)
5537 add_bb_to_loop (recovery_block, first_bb->loop_father);
5539 sel_add_bb (recovery_block);
5541 jump = BB_END (recovery_block);
5542 gcc_assert (sel_bb_head (recovery_block) == jump);
5543 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5545 return recovery_block;
5548 /* Merge basic block B into basic block A. */
5549 static void
5550 sel_merge_blocks (basic_block a, basic_block b)
5552 gcc_assert (sel_bb_empty_p (b)
5553 && EDGE_COUNT (b->preds) == 1
5554 && EDGE_PRED (b, 0)->src == b->prev_bb);
5556 move_bb_info (b->prev_bb, b);
5557 remove_empty_bb (b, false);
5558 merge_blocks (a, b);
5559 change_loops_latches (b, a);
5562 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5563 data structures for possibly created bb and insns. Returns the newly
5564 added bb or NULL, when a bb was not needed. */
5565 void
5566 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5568 basic_block jump_bb, src, orig_dest = e->dest;
5569 int prev_max_uid;
5570 rtx jump;
5572 /* This function is now used only for bookkeeping code creation, where
5573 we'll never get the single pred of orig_dest block and thus will not
5574 hit unreachable blocks when updating dominator info. */
5575 gcc_assert (!sel_bb_empty_p (e->src)
5576 && !single_pred_p (orig_dest));
5577 src = e->src;
5578 prev_max_uid = get_max_uid ();
5579 jump_bb = redirect_edge_and_branch_force (e, to);
5581 if (jump_bb != NULL)
5582 sel_add_bb (jump_bb);
5584 /* This function could not be used to spoil the loop structure by now,
5585 thus we don't care to update anything. But check it to be sure. */
5586 if (current_loop_nest
5587 && pipelining_p)
5588 gcc_assert (loop_latch_edge (current_loop_nest));
5590 jump = find_new_jump (src, jump_bb, prev_max_uid);
5591 if (jump)
5592 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5593 set_immediate_dominator (CDI_DOMINATORS, to,
5594 recompute_dominator (CDI_DOMINATORS, to));
5595 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5596 recompute_dominator (CDI_DOMINATORS, orig_dest));
5599 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5600 redirected edge are in reverse topological order. */
5601 bool
5602 sel_redirect_edge_and_branch (edge e, basic_block to)
5604 bool latch_edge_p;
5605 basic_block src, orig_dest = e->dest;
5606 int prev_max_uid;
5607 rtx jump;
5608 edge redirected;
5609 bool recompute_toporder_p = false;
5610 bool maybe_unreachable = single_pred_p (orig_dest);
5612 latch_edge_p = (pipelining_p
5613 && current_loop_nest
5614 && e == loop_latch_edge (current_loop_nest));
5616 src = e->src;
5617 prev_max_uid = get_max_uid ();
5619 redirected = redirect_edge_and_branch (e, to);
5621 gcc_assert (redirected && last_added_blocks == NULL);
5623 /* When we've redirected a latch edge, update the header. */
5624 if (latch_edge_p)
5626 current_loop_nest->header = to;
5627 gcc_assert (loop_latch_edge (current_loop_nest));
5630 /* In rare situations, the topological relation between the blocks connected
5631 by the redirected edge can change (see PR42245 for an example). Update
5632 block_to_bb/bb_to_block. */
5633 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5634 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5635 recompute_toporder_p = true;
5637 jump = find_new_jump (src, NULL, prev_max_uid);
5638 if (jump)
5639 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5641 /* Only update dominator info when we don't have unreachable blocks.
5642 Otherwise we'll update in maybe_tidy_empty_bb. */
5643 if (!maybe_unreachable)
5645 set_immediate_dominator (CDI_DOMINATORS, to,
5646 recompute_dominator (CDI_DOMINATORS, to));
5647 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5648 recompute_dominator (CDI_DOMINATORS, orig_dest));
5650 return recompute_toporder_p;
5653 /* This variable holds the cfg hooks used by the selective scheduler. */
5654 static struct cfg_hooks sel_cfg_hooks;
5656 /* Register sel-sched cfg hooks. */
5657 void
5658 sel_register_cfg_hooks (void)
5660 sched_split_block = sel_split_block;
5662 orig_cfg_hooks = get_cfg_hooks ();
5663 sel_cfg_hooks = orig_cfg_hooks;
5665 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5667 set_cfg_hooks (sel_cfg_hooks);
5669 sched_init_only_bb = sel_init_only_bb;
5670 sched_split_block = sel_split_block;
5671 sched_create_empty_bb = sel_create_empty_bb;
5674 /* Unregister sel-sched cfg hooks. */
5675 void
5676 sel_unregister_cfg_hooks (void)
5678 sched_create_empty_bb = NULL;
5679 sched_split_block = NULL;
5680 sched_init_only_bb = NULL;
5682 set_cfg_hooks (orig_cfg_hooks);
5686 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5687 LABEL is where this jump should be directed. */
5689 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5691 rtx insn_rtx;
5693 gcc_assert (!INSN_P (pattern));
5695 start_sequence ();
5697 if (label == NULL_RTX)
5698 insn_rtx = emit_insn (pattern);
5699 else if (DEBUG_INSN_P (label))
5700 insn_rtx = emit_debug_insn (pattern);
5701 else
5703 insn_rtx = emit_jump_insn (pattern);
5704 JUMP_LABEL (insn_rtx) = label;
5705 ++LABEL_NUSES (label);
5708 end_sequence ();
5710 sched_extend_luids ();
5711 sched_extend_target ();
5712 sched_deps_init (false);
5714 /* Initialize INSN_CODE now. */
5715 recog_memoized (insn_rtx);
5716 return insn_rtx;
5719 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5720 must not be clonable. */
5721 vinsn_t
5722 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5724 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5726 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5727 return vinsn_create (insn_rtx, force_unique_p);
5730 /* Create a copy of INSN_RTX. */
5732 create_copy_of_insn_rtx (rtx insn_rtx)
5734 rtx res, link;
5736 if (DEBUG_INSN_P (insn_rtx))
5737 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5738 insn_rtx);
5740 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5742 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5743 NULL_RTX);
5745 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5746 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5747 there too, but are supposed to be sticky, so we copy them. */
5748 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5749 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5750 && REG_NOTE_KIND (link) != REG_EQUAL
5751 && REG_NOTE_KIND (link) != REG_EQUIV)
5753 if (GET_CODE (link) == EXPR_LIST)
5754 add_reg_note (res, REG_NOTE_KIND (link),
5755 copy_insn_1 (XEXP (link, 0)));
5756 else
5757 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5760 return res;
5763 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5764 void
5765 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5767 vinsn_detach (EXPR_VINSN (expr));
5769 EXPR_VINSN (expr) = new_vinsn;
5770 vinsn_attach (new_vinsn);
5773 /* Helpers for global init. */
5774 /* This structure is used to be able to call existing bundling mechanism
5775 and calculate insn priorities. */
5776 static struct haifa_sched_info sched_sel_haifa_sched_info =
5778 NULL, /* init_ready_list */
5779 NULL, /* can_schedule_ready_p */
5780 NULL, /* schedule_more_p */
5781 NULL, /* new_ready */
5782 NULL, /* rgn_rank */
5783 sel_print_insn, /* rgn_print_insn */
5784 contributes_to_priority,
5785 NULL, /* insn_finishes_block_p */
5787 NULL, NULL,
5788 NULL, NULL,
5789 0, 0,
5791 NULL, /* add_remove_insn */
5792 NULL, /* begin_schedule_ready */
5793 NULL, /* begin_move_insn */
5794 NULL, /* advance_target_bb */
5796 NULL,
5797 NULL,
5799 SEL_SCHED | NEW_BBS
5802 /* Setup special insns used in the scheduler. */
5803 void
5804 setup_nop_and_exit_insns (void)
5806 gcc_assert (nop_pattern == NULL_RTX
5807 && exit_insn == NULL_RTX);
5809 nop_pattern = constm1_rtx;
5811 start_sequence ();
5812 emit_insn (nop_pattern);
5813 exit_insn = get_insns ();
5814 end_sequence ();
5815 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5818 /* Free special insns used in the scheduler. */
5819 void
5820 free_nop_and_exit_insns (void)
5822 exit_insn = NULL_RTX;
5823 nop_pattern = NULL_RTX;
5826 /* Setup a special vinsn used in new insns initialization. */
5827 void
5828 setup_nop_vinsn (void)
5830 nop_vinsn = vinsn_create (exit_insn, false);
5831 vinsn_attach (nop_vinsn);
5834 /* Free a special vinsn used in new insns initialization. */
5835 void
5836 free_nop_vinsn (void)
5838 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5839 vinsn_detach (nop_vinsn);
5840 nop_vinsn = NULL;
5843 /* Call a set_sched_flags hook. */
5844 void
5845 sel_set_sched_flags (void)
5847 /* ??? This means that set_sched_flags were called, and we decided to
5848 support speculation. However, set_sched_flags also modifies flags
5849 on current_sched_info, doing this only at global init. And we
5850 sometimes change c_s_i later. So put the correct flags again. */
5851 if (spec_info && targetm.sched.set_sched_flags)
5852 targetm.sched.set_sched_flags (spec_info);
5855 /* Setup pointers to global sched info structures. */
5856 void
5857 sel_setup_sched_infos (void)
5859 rgn_setup_common_sched_info ();
5861 memcpy (&sel_common_sched_info, common_sched_info,
5862 sizeof (sel_common_sched_info));
5864 sel_common_sched_info.fix_recovery_cfg = NULL;
5865 sel_common_sched_info.add_block = NULL;
5866 sel_common_sched_info.estimate_number_of_insns
5867 = sel_estimate_number_of_insns;
5868 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5869 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5871 common_sched_info = &sel_common_sched_info;
5873 current_sched_info = &sched_sel_haifa_sched_info;
5874 current_sched_info->sched_max_insns_priority =
5875 get_rgn_sched_max_insns_priority ();
5877 sel_set_sched_flags ();
5881 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5882 *BB_ORD_INDEX after that is increased. */
5883 static void
5884 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5886 RGN_NR_BLOCKS (rgn) += 1;
5887 RGN_DONT_CALC_DEPS (rgn) = 0;
5888 RGN_HAS_REAL_EBB (rgn) = 0;
5889 CONTAINING_RGN (bb->index) = rgn;
5890 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5891 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5892 (*bb_ord_index)++;
5894 /* FIXME: it is true only when not scheduling ebbs. */
5895 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5898 /* Functions to support pipelining of outer loops. */
5900 /* Creates a new empty region and returns it's number. */
5901 static int
5902 sel_create_new_region (void)
5904 int new_rgn_number = nr_regions;
5906 RGN_NR_BLOCKS (new_rgn_number) = 0;
5908 /* FIXME: This will work only when EBBs are not created. */
5909 if (new_rgn_number != 0)
5910 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5911 RGN_NR_BLOCKS (new_rgn_number - 1);
5912 else
5913 RGN_BLOCKS (new_rgn_number) = 0;
5915 /* Set the blocks of the next region so the other functions may
5916 calculate the number of blocks in the region. */
5917 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5918 RGN_NR_BLOCKS (new_rgn_number);
5920 nr_regions++;
5922 return new_rgn_number;
5925 /* If X has a smaller topological sort number than Y, returns -1;
5926 if greater, returns 1. */
5927 static int
5928 bb_top_order_comparator (const void *x, const void *y)
5930 basic_block bb1 = *(const basic_block *) x;
5931 basic_block bb2 = *(const basic_block *) y;
5933 gcc_assert (bb1 == bb2
5934 || rev_top_order_index[bb1->index]
5935 != rev_top_order_index[bb2->index]);
5937 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5938 bbs with greater number should go earlier. */
5939 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5940 return -1;
5941 else
5942 return 1;
5945 /* Create a region for LOOP and return its number. If we don't want
5946 to pipeline LOOP, return -1. */
5947 static int
5948 make_region_from_loop (struct loop *loop)
5950 unsigned int i;
5951 int new_rgn_number = -1;
5952 struct loop *inner;
5954 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5955 int bb_ord_index = 0;
5956 basic_block *loop_blocks;
5957 basic_block preheader_block;
5959 if (loop->num_nodes
5960 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5961 return -1;
5963 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5964 for (inner = loop->inner; inner; inner = inner->inner)
5965 if (flow_bb_inside_loop_p (inner, loop->latch))
5966 return -1;
5968 loop->ninsns = num_loop_insns (loop);
5969 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5970 return -1;
5972 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5974 for (i = 0; i < loop->num_nodes; i++)
5975 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5977 free (loop_blocks);
5978 return -1;
5981 preheader_block = loop_preheader_edge (loop)->src;
5982 gcc_assert (preheader_block);
5983 gcc_assert (loop_blocks[0] == loop->header);
5985 new_rgn_number = sel_create_new_region ();
5987 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5988 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5990 for (i = 0; i < loop->num_nodes; i++)
5992 /* Add only those blocks that haven't been scheduled in the inner loop.
5993 The exception is the basic blocks with bookkeeping code - they should
5994 be added to the region (and they actually don't belong to the loop
5995 body, but to the region containing that loop body). */
5997 gcc_assert (new_rgn_number >= 0);
5999 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
6001 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6002 new_rgn_number);
6003 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
6007 free (loop_blocks);
6008 MARK_LOOP_FOR_PIPELINING (loop);
6010 return new_rgn_number;
6013 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6014 void
6015 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
6017 unsigned int i;
6018 int new_rgn_number = -1;
6019 basic_block bb;
6021 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6022 int bb_ord_index = 0;
6024 new_rgn_number = sel_create_new_region ();
6026 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
6028 gcc_assert (new_rgn_number >= 0);
6030 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6033 VEC_free (basic_block, heap, *loop_blocks);
6034 gcc_assert (*loop_blocks == NULL);
6038 /* Create region(s) from loop nest LOOP, such that inner loops will be
6039 pipelined before outer loops. Returns true when a region for LOOP
6040 is created. */
6041 static bool
6042 make_regions_from_loop_nest (struct loop *loop)
6044 struct loop *cur_loop;
6045 int rgn_number;
6047 /* Traverse all inner nodes of the loop. */
6048 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6049 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
6050 return false;
6052 /* At this moment all regular inner loops should have been pipelined.
6053 Try to create a region from this loop. */
6054 rgn_number = make_region_from_loop (loop);
6056 if (rgn_number < 0)
6057 return false;
6059 VEC_safe_push (loop_p, heap, loop_nests, loop);
6060 return true;
6063 /* Initalize data structures needed. */
6064 void
6065 sel_init_pipelining (void)
6067 /* Collect loop information to be used in outer loops pipelining. */
6068 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6069 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6070 | LOOPS_HAVE_RECORDED_EXITS
6071 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6072 current_loop_nest = NULL;
6074 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6075 sbitmap_zero (bbs_in_loop_rgns);
6077 recompute_rev_top_order ();
6080 /* Returns a struct loop for region RGN. */
6081 loop_p
6082 get_loop_nest_for_rgn (unsigned int rgn)
6084 /* Regions created with extend_rgns don't have corresponding loop nests,
6085 because they don't represent loops. */
6086 if (rgn < VEC_length (loop_p, loop_nests))
6087 return VEC_index (loop_p, loop_nests, rgn);
6088 else
6089 return NULL;
6092 /* True when LOOP was included into pipelining regions. */
6093 bool
6094 considered_for_pipelining_p (struct loop *loop)
6096 if (loop_depth (loop) == 0)
6097 return false;
6099 /* Now, the loop could be too large or irreducible. Check whether its
6100 region is in LOOP_NESTS.
6101 We determine the region number of LOOP as the region number of its
6102 latch. We can't use header here, because this header could be
6103 just removed preheader and it will give us the wrong region number.
6104 Latch can't be used because it could be in the inner loop too. */
6105 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6107 int rgn = CONTAINING_RGN (loop->latch->index);
6109 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
6110 return true;
6113 return false;
6116 /* Makes regions from the rest of the blocks, after loops are chosen
6117 for pipelining. */
6118 static void
6119 make_regions_from_the_rest (void)
6121 int cur_rgn_blocks;
6122 int *loop_hdr;
6123 int i;
6125 basic_block bb;
6126 edge e;
6127 edge_iterator ei;
6128 int *degree;
6130 /* Index in rgn_bb_table where to start allocating new regions. */
6131 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6133 /* Make regions from all the rest basic blocks - those that don't belong to
6134 any loop or belong to irreducible loops. Prepare the data structures
6135 for extend_rgns. */
6137 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6138 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6139 loop. */
6140 loop_hdr = XNEWVEC (int, last_basic_block);
6141 degree = XCNEWVEC (int, last_basic_block);
6144 /* For each basic block that belongs to some loop assign the number
6145 of innermost loop it belongs to. */
6146 for (i = 0; i < last_basic_block; i++)
6147 loop_hdr[i] = -1;
6149 FOR_EACH_BB (bb)
6151 if (bb->loop_father && !bb->loop_father->num == 0
6152 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6153 loop_hdr[bb->index] = bb->loop_father->num;
6156 /* For each basic block degree is calculated as the number of incoming
6157 edges, that are going out of bbs that are not yet scheduled.
6158 The basic blocks that are scheduled have degree value of zero. */
6159 FOR_EACH_BB (bb)
6161 degree[bb->index] = 0;
6163 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6165 FOR_EACH_EDGE (e, ei, bb->preds)
6166 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6167 degree[bb->index]++;
6169 else
6170 degree[bb->index] = -1;
6173 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6175 /* Any block that did not end up in a region is placed into a region
6176 by itself. */
6177 FOR_EACH_BB (bb)
6178 if (degree[bb->index] >= 0)
6180 rgn_bb_table[cur_rgn_blocks] = bb->index;
6181 RGN_NR_BLOCKS (nr_regions) = 1;
6182 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6183 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6184 RGN_HAS_REAL_EBB (nr_regions) = 0;
6185 CONTAINING_RGN (bb->index) = nr_regions++;
6186 BLOCK_TO_BB (bb->index) = 0;
6189 free (degree);
6190 free (loop_hdr);
6193 /* Free data structures used in pipelining of loops. */
6194 void sel_finish_pipelining (void)
6196 loop_iterator li;
6197 struct loop *loop;
6199 /* Release aux fields so we don't free them later by mistake. */
6200 FOR_EACH_LOOP (li, loop, 0)
6201 loop->aux = NULL;
6203 loop_optimizer_finalize ();
6205 VEC_free (loop_p, heap, loop_nests);
6207 free (rev_top_order_index);
6208 rev_top_order_index = NULL;
6211 /* This function replaces the find_rgns when
6212 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6213 void
6214 sel_find_rgns (void)
6216 sel_init_pipelining ();
6217 extend_regions ();
6219 if (current_loops)
6221 loop_p loop;
6222 loop_iterator li;
6224 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6225 ? LI_FROM_INNERMOST
6226 : LI_ONLY_INNERMOST))
6227 make_regions_from_loop_nest (loop);
6230 /* Make regions from all the rest basic blocks and schedule them.
6231 These blocks include blocks that don't belong to any loop or belong
6232 to irreducible loops. */
6233 make_regions_from_the_rest ();
6235 /* We don't need bbs_in_loop_rgns anymore. */
6236 sbitmap_free (bbs_in_loop_rgns);
6237 bbs_in_loop_rgns = NULL;
6240 /* Add the preheader blocks from previous loop to current region taking
6241 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6242 This function is only used with -fsel-sched-pipelining-outer-loops. */
6243 void
6244 sel_add_loop_preheaders (bb_vec_t *bbs)
6246 int i;
6247 basic_block bb;
6248 VEC(basic_block, heap) *preheader_blocks
6249 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6251 for (i = 0;
6252 VEC_iterate (basic_block, preheader_blocks, i, bb);
6253 i++)
6255 VEC_safe_push (basic_block, heap, *bbs, bb);
6256 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6257 sel_add_bb (bb);
6260 VEC_free (basic_block, heap, preheader_blocks);
6263 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6264 Please note that the function should also work when pipelining_p is
6265 false, because it is used when deciding whether we should or should
6266 not reschedule pipelined code. */
6267 bool
6268 sel_is_loop_preheader_p (basic_block bb)
6270 if (current_loop_nest)
6272 struct loop *outer;
6274 if (preheader_removed)
6275 return false;
6277 /* Preheader is the first block in the region. */
6278 if (BLOCK_TO_BB (bb->index) == 0)
6279 return true;
6281 /* We used to find a preheader with the topological information.
6282 Check that the above code is equivalent to what we did before. */
6284 if (in_current_region_p (current_loop_nest->header))
6285 gcc_assert (!(BLOCK_TO_BB (bb->index)
6286 < BLOCK_TO_BB (current_loop_nest->header->index)));
6288 /* Support the situation when the latch block of outer loop
6289 could be from here. */
6290 for (outer = loop_outer (current_loop_nest);
6291 outer;
6292 outer = loop_outer (outer))
6293 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6294 gcc_unreachable ();
6297 return false;
6300 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6301 can be removed, making the corresponding edge fallthrough (assuming that
6302 all basic blocks between JUMP_BB and DEST_BB are empty). */
6303 static bool
6304 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6306 if (!onlyjump_p (BB_END (jump_bb))
6307 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6308 return false;
6310 /* Several outgoing edges, abnormal edge or destination of jump is
6311 not DEST_BB. */
6312 if (EDGE_COUNT (jump_bb->succs) != 1
6313 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6314 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6315 return false;
6317 /* If not anything of the upper. */
6318 return true;
6321 /* Removes the loop preheader from the current region and saves it in
6322 PREHEADER_BLOCKS of the father loop, so they will be added later to
6323 region that represents an outer loop. */
6324 static void
6325 sel_remove_loop_preheader (void)
6327 int i, old_len;
6328 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6329 basic_block bb;
6330 bool all_empty_p = true;
6331 VEC(basic_block, heap) *preheader_blocks
6332 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6334 gcc_assert (current_loop_nest);
6335 old_len = VEC_length (basic_block, preheader_blocks);
6337 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6338 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6340 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6342 /* If the basic block belongs to region, but doesn't belong to
6343 corresponding loop, then it should be a preheader. */
6344 if (sel_is_loop_preheader_p (bb))
6346 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6347 if (BB_END (bb) != bb_note (bb))
6348 all_empty_p = false;
6352 /* Remove these blocks only after iterating over the whole region. */
6353 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6354 i >= old_len;
6355 i--)
6357 bb = VEC_index (basic_block, preheader_blocks, i);
6358 sel_remove_bb (bb, false);
6361 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6363 if (!all_empty_p)
6364 /* Immediately create new region from preheader. */
6365 make_region_from_loop_preheader (&preheader_blocks);
6366 else
6368 /* If all preheader blocks are empty - dont create new empty region.
6369 Instead, remove them completely. */
6370 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6372 edge e;
6373 edge_iterator ei;
6374 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6376 /* Redirect all incoming edges to next basic block. */
6377 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6379 if (! (e->flags & EDGE_FALLTHRU))
6380 redirect_edge_and_branch (e, bb->next_bb);
6381 else
6382 redirect_edge_succ (e, bb->next_bb);
6384 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6385 delete_and_free_basic_block (bb);
6387 /* Check if after deleting preheader there is a nonconditional
6388 jump in PREV_BB that leads to the next basic block NEXT_BB.
6389 If it is so - delete this jump and clear data sets of its
6390 basic block if it becomes empty. */
6391 if (next_bb->prev_bb == prev_bb
6392 && prev_bb != ENTRY_BLOCK_PTR
6393 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6395 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6396 if (BB_END (prev_bb) == bb_note (prev_bb))
6397 free_data_sets (prev_bb);
6400 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6401 recompute_dominator (CDI_DOMINATORS,
6402 next_bb));
6405 VEC_free (basic_block, heap, preheader_blocks);
6407 else
6408 /* Store preheader within the father's loop structure. */
6409 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6410 preheader_blocks);
6412 #endif