gcc/
[official-gcc.git] / gcc / recog.c
blobc5725d2abdff41501cc0cec2fadb738f4483fb68
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
49 #else
50 #define STACK_PUSH_CODE PRE_INC
51 #endif
52 #endif
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
57 #else
58 #define STACK_POP_CODE POST_DEC
59 #endif
60 #endif
62 #ifndef HAVE_ATTR_enabled
63 static inline bool
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
66 return true;
68 #endif
70 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
71 static void validate_replace_src_1 (rtx *, void *);
72 static rtx split_insn (rtx);
74 /* Nonzero means allow operands to be volatile.
75 This should be 0 if you are generating rtl, such as if you are calling
76 the functions in optabs.c and expmed.c (most of the time).
77 This should be 1 if all valid insns need to be recognized,
78 such as in reginfo.c and final.c and reload.c.
80 init_recog and init_recog_no_volatile are responsible for setting this. */
82 int volatile_ok;
84 struct recog_data recog_data;
86 /* Contains a vector of operand_alternative structures for every operand.
87 Set up by preprocess_constraints. */
88 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
90 /* On return from `constrain_operands', indicate which alternative
91 was satisfied. */
93 int which_alternative;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
99 int reload_completed;
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
108 void
109 init_recog_no_volatile (void)
111 volatile_ok = 0;
114 void
115 init_recog (void)
117 volatile_ok = 1;
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
123 static bool
124 asm_labels_ok (rtx body)
126 rtx asmop;
127 int i;
129 asmop = extract_asm_operands (body);
130 if (asmop == NULL_RTX)
131 return true;
133 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135 return false;
137 return true;
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
144 check_asm_operands (rtx x)
146 int noperands;
147 rtx *operands;
148 const char **constraints;
149 int i;
151 if (!asm_labels_ok (x))
152 return 0;
154 /* Post-reload, be more strict with things. */
155 if (reload_completed)
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x));
159 constrain_operands (1);
160 return which_alternative >= 0;
163 noperands = asm_noperands (x);
164 if (noperands < 0)
165 return 0;
166 if (noperands == 0)
167 return 1;
169 operands = XALLOCAVEC (rtx, noperands);
170 constraints = XALLOCAVEC (const char *, noperands);
172 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
174 for (i = 0; i < noperands; i++)
176 const char *c = constraints[i];
177 if (c[0] == '%')
178 c++;
179 if (! asm_operand_ok (operands[i], c, constraints))
180 return 0;
183 return 1;
186 /* Static data for the next two routines. */
188 typedef struct change_t
190 rtx object;
191 int old_code;
192 rtx *loc;
193 rtx old;
194 bool unshare;
195 } change_t;
197 static change_t *changes;
198 static int changes_allocated;
200 static int num_changes = 0;
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 the change in place.
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
223 rtx old = *loc;
225 if (old == new_rtx || rtx_equal_p (old, new_rtx))
226 return 1;
228 gcc_assert (in_group != 0 || num_changes == 0);
230 *loc = new_rtx;
232 /* Save the information describing this change. */
233 if (num_changes >= changes_allocated)
235 if (changes_allocated == 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated = MAX_RECOG_OPERANDS * 5;
239 else
240 changes_allocated *= 2;
242 changes = XRESIZEVEC (change_t, changes, changes_allocated);
245 changes[num_changes].object = object;
246 changes[num_changes].loc = loc;
247 changes[num_changes].old = old;
248 changes[num_changes].unshare = unshare;
250 if (object && !MEM_P (object))
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
253 case invalid. */
254 changes[num_changes].old_code = INSN_CODE (object);
255 INSN_CODE (object) = -1;
258 num_changes++;
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
263 if (in_group)
264 return 1;
265 else
266 return apply_change_group ();
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to false. */
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
275 return validate_change_1 (object, loc, new_rtx, in_group, false);
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279 UNSHARE to true. */
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
284 return validate_change_1 (object, loc, new_rtx, in_group, true);
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
292 Return true if anything was changed. */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
296 if (COMMUTATIVE_P (x)
297 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem = XEXP (x, 0);
302 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304 return true;
306 else
307 return false;
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized.
314 If IN_GROUP is true clobbers which have to be added in order to
315 match the instructions will be added to the current change group.
316 Otherwise the changes will take effect immediately. */
319 insn_invalid_p (rtx insn, bool in_group)
321 rtx pat = PATTERN (insn);
322 int num_clobbers = 0;
323 /* If we are before reload and the pattern is a SET, see if we can add
324 clobbers. */
325 int icode = recog (pat, insn,
326 (GET_CODE (pat) == SET
327 && ! reload_completed && ! reload_in_progress)
328 ? &num_clobbers : 0);
329 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
332 /* If this is an asm and the operand aren't legal, then fail. Likewise if
333 this is not an asm and the insn wasn't recognized. */
334 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
335 || (!is_asm && icode < 0))
336 return 1;
338 /* If we have to add CLOBBERs, fail if we have to add ones that reference
339 hard registers since our callers can't know if they are live or not.
340 Otherwise, add them. */
341 if (num_clobbers > 0)
343 rtx newpat;
345 if (added_clobbers_hard_reg_p (icode))
346 return 1;
348 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
349 XVECEXP (newpat, 0, 0) = pat;
350 add_clobbers (newpat, icode);
351 if (in_group)
352 validate_change (insn, &PATTERN (insn), newpat, 1);
353 else
354 PATTERN (insn) = pat = newpat;
357 /* After reload, verify that all constraints are satisfied. */
358 if (reload_completed)
360 extract_insn (insn);
362 if (! constrain_operands (1))
363 return 1;
366 INSN_CODE (insn) = icode;
367 return 0;
370 /* Return number of changes made and not validated yet. */
372 num_changes_pending (void)
374 return num_changes;
377 /* Tentatively apply the changes numbered NUM and up.
378 Return 1 if all changes are valid, zero otherwise. */
381 verify_changes (int num)
383 int i;
384 rtx last_validated = NULL_RTX;
386 /* The changes have been applied and all INSN_CODEs have been reset to force
387 rerecognition.
389 The changes are valid if we aren't given an object, or if we are
390 given a MEM and it still is a valid address, or if this is in insn
391 and it is recognized. In the latter case, if reload has completed,
392 we also require that the operands meet the constraints for
393 the insn. */
395 for (i = num; i < num_changes; i++)
397 rtx object = changes[i].object;
399 /* If there is no object to test or if it is the same as the one we
400 already tested, ignore it. */
401 if (object == 0 || object == last_validated)
402 continue;
404 if (MEM_P (object))
406 if (! memory_address_addr_space_p (GET_MODE (object),
407 XEXP (object, 0),
408 MEM_ADDR_SPACE (object)))
409 break;
411 else if (REG_P (changes[i].old)
412 && asm_noperands (PATTERN (object)) > 0
413 && REG_EXPR (changes[i].old) != NULL_TREE
414 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
415 && DECL_REGISTER (REG_EXPR (changes[i].old)))
417 /* Don't allow changes of hard register operands to inline
418 assemblies if they have been defined as register asm ("x"). */
419 break;
421 else if (DEBUG_INSN_P (object))
422 continue;
423 else if (insn_invalid_p (object, true))
425 rtx pat = PATTERN (object);
427 /* Perhaps we couldn't recognize the insn because there were
428 extra CLOBBERs at the end. If so, try to re-recognize
429 without the last CLOBBER (later iterations will cause each of
430 them to be eliminated, in turn). But don't do this if we
431 have an ASM_OPERAND. */
432 if (GET_CODE (pat) == PARALLEL
433 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
434 && asm_noperands (PATTERN (object)) < 0)
436 rtx newpat;
438 if (XVECLEN (pat, 0) == 2)
439 newpat = XVECEXP (pat, 0, 0);
440 else
442 int j;
444 newpat
445 = gen_rtx_PARALLEL (VOIDmode,
446 rtvec_alloc (XVECLEN (pat, 0) - 1));
447 for (j = 0; j < XVECLEN (newpat, 0); j++)
448 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
451 /* Add a new change to this group to replace the pattern
452 with this new pattern. Then consider this change
453 as having succeeded. The change we added will
454 cause the entire call to fail if things remain invalid.
456 Note that this can lose if a later change than the one
457 we are processing specified &XVECEXP (PATTERN (object), 0, X)
458 but this shouldn't occur. */
460 validate_change (object, &PATTERN (object), newpat, 1);
461 continue;
463 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
464 || GET_CODE (pat) == VAR_LOCATION)
465 /* If this insn is a CLOBBER or USE, it is always valid, but is
466 never recognized. */
467 continue;
468 else
469 break;
471 last_validated = object;
474 return (i == num_changes);
477 /* A group of changes has previously been issued with validate_change
478 and verified with verify_changes. Call df_insn_rescan for each of
479 the insn changed and clear num_changes. */
481 void
482 confirm_change_group (void)
484 int i;
485 rtx last_object = NULL;
487 for (i = 0; i < num_changes; i++)
489 rtx object = changes[i].object;
491 if (changes[i].unshare)
492 *changes[i].loc = copy_rtx (*changes[i].loc);
494 /* Avoid unnecessary rescanning when multiple changes to same instruction
495 are made. */
496 if (object)
498 if (object != last_object && last_object && INSN_P (last_object))
499 df_insn_rescan (last_object);
500 last_object = object;
504 if (last_object && INSN_P (last_object))
505 df_insn_rescan (last_object);
506 num_changes = 0;
509 /* Apply a group of changes previously issued with `validate_change'.
510 If all changes are valid, call confirm_change_group and return 1,
511 otherwise, call cancel_changes and return 0. */
514 apply_change_group (void)
516 if (verify_changes (0))
518 confirm_change_group ();
519 return 1;
521 else
523 cancel_changes (0);
524 return 0;
529 /* Return the number of changes so far in the current group. */
532 num_validated_changes (void)
534 return num_changes;
537 /* Retract the changes numbered NUM and up. */
539 void
540 cancel_changes (int num)
542 int i;
544 /* Back out all the changes. Do this in the opposite order in which
545 they were made. */
546 for (i = num_changes - 1; i >= num; i--)
548 *changes[i].loc = changes[i].old;
549 if (changes[i].object && !MEM_P (changes[i].object))
550 INSN_CODE (changes[i].object) = changes[i].old_code;
552 num_changes = num;
555 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
556 rtx. */
558 static void
559 simplify_while_replacing (rtx *loc, rtx to, rtx object,
560 enum machine_mode op0_mode)
562 rtx x = *loc;
563 enum rtx_code code = GET_CODE (x);
564 rtx new_rtx;
566 if (SWAPPABLE_OPERANDS_P (x)
567 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
569 validate_unshare_change (object, loc,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
571 : swap_condition (code),
572 GET_MODE (x), XEXP (x, 1),
573 XEXP (x, 0)), 1);
574 x = *loc;
575 code = GET_CODE (x);
578 switch (code)
580 case PLUS:
581 /* If we have a PLUS whose second operand is now a CONST_INT, use
582 simplify_gen_binary to try to simplify it.
583 ??? We may want later to remove this, once simplification is
584 separated from this function. */
585 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
586 validate_change (object, loc,
587 simplify_gen_binary
588 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
589 break;
590 case MINUS:
591 if (CONST_INT_P (XEXP (x, 1))
592 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
593 validate_change (object, loc,
594 simplify_gen_binary
595 (PLUS, GET_MODE (x), XEXP (x, 0),
596 simplify_gen_unary (NEG,
597 GET_MODE (x), XEXP (x, 1),
598 GET_MODE (x))), 1);
599 break;
600 case ZERO_EXTEND:
601 case SIGN_EXTEND:
602 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
604 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
605 op0_mode);
606 /* If any of the above failed, substitute in something that
607 we know won't be recognized. */
608 if (!new_rtx)
609 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
610 validate_change (object, loc, new_rtx, 1);
612 break;
613 case SUBREG:
614 /* All subregs possible to simplify should be simplified. */
615 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
616 SUBREG_BYTE (x));
618 /* Subregs of VOIDmode operands are incorrect. */
619 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
620 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
621 if (new_rtx)
622 validate_change (object, loc, new_rtx, 1);
623 break;
624 case ZERO_EXTRACT:
625 case SIGN_EXTRACT:
626 /* If we are replacing a register with memory, try to change the memory
627 to be the mode required for memory in extract operations (this isn't
628 likely to be an insertion operation; if it was, nothing bad will
629 happen, we might just fail in some cases). */
631 if (MEM_P (XEXP (x, 0))
632 && CONST_INT_P (XEXP (x, 1))
633 && CONST_INT_P (XEXP (x, 2))
634 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
635 && !MEM_VOLATILE_P (XEXP (x, 0)))
637 enum machine_mode wanted_mode = VOIDmode;
638 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
639 int pos = INTVAL (XEXP (x, 2));
641 if (GET_CODE (x) == ZERO_EXTRACT)
643 enum machine_mode new_mode
644 = mode_for_extraction (EP_extzv, 1);
645 if (new_mode != MAX_MACHINE_MODE)
646 wanted_mode = new_mode;
648 else if (GET_CODE (x) == SIGN_EXTRACT)
650 enum machine_mode new_mode
651 = mode_for_extraction (EP_extv, 1);
652 if (new_mode != MAX_MACHINE_MODE)
653 wanted_mode = new_mode;
656 /* If we have a narrower mode, we can do something. */
657 if (wanted_mode != VOIDmode
658 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
660 int offset = pos / BITS_PER_UNIT;
661 rtx newmem;
663 /* If the bytes and bits are counted differently, we
664 must adjust the offset. */
665 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
666 offset =
667 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
668 offset);
670 gcc_assert (GET_MODE_PRECISION (wanted_mode)
671 == GET_MODE_BITSIZE (wanted_mode));
672 pos %= GET_MODE_BITSIZE (wanted_mode);
674 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
676 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
677 validate_change (object, &XEXP (x, 0), newmem, 1);
681 break;
683 default:
684 break;
688 /* Replace every occurrence of FROM in X with TO. Mark each change with
689 validate_change passing OBJECT. */
691 static void
692 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
693 bool simplify)
695 int i, j;
696 const char *fmt;
697 rtx x = *loc;
698 enum rtx_code code;
699 enum machine_mode op0_mode = VOIDmode;
700 int prev_changes = num_changes;
702 if (!x)
703 return;
705 code = GET_CODE (x);
706 fmt = GET_RTX_FORMAT (code);
707 if (fmt[0] == 'e')
708 op0_mode = GET_MODE (XEXP (x, 0));
710 /* X matches FROM if it is the same rtx or they are both referring to the
711 same register in the same mode. Avoid calling rtx_equal_p unless the
712 operands look similar. */
714 if (x == from
715 || (REG_P (x) && REG_P (from)
716 && GET_MODE (x) == GET_MODE (from)
717 && REGNO (x) == REGNO (from))
718 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
719 && rtx_equal_p (x, from)))
721 validate_unshare_change (object, loc, to, 1);
722 return;
725 /* Call ourself recursively to perform the replacements.
726 We must not replace inside already replaced expression, otherwise we
727 get infinite recursion for replacements like (reg X)->(subreg (reg X))
728 done by regmove, so we must special case shared ASM_OPERANDS. */
730 if (GET_CODE (x) == PARALLEL)
732 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
734 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
735 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
737 /* Verify that operands are really shared. */
738 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
739 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
740 (x, 0, j))));
741 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
742 from, to, object, simplify);
744 else
745 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
746 simplify);
749 else
750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
752 if (fmt[i] == 'e')
753 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
754 else if (fmt[i] == 'E')
755 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
756 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
757 simplify);
760 /* If we didn't substitute, there is nothing more to do. */
761 if (num_changes == prev_changes)
762 return;
764 /* Allow substituted expression to have different mode. This is used by
765 regmove to change mode of pseudo register. */
766 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
767 op0_mode = GET_MODE (XEXP (x, 0));
769 /* Do changes needed to keep rtx consistent. Don't do any other
770 simplifications, as it is not our job. */
771 if (simplify)
772 simplify_while_replacing (loc, to, object, op0_mode);
775 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
776 with TO. After all changes have been made, validate by seeing
777 if INSN is still valid. */
780 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
782 validate_replace_rtx_1 (loc, from, to, insn, true);
783 return apply_change_group ();
786 /* Try replacing every occurrence of FROM in INSN with TO. After all
787 changes have been made, validate by seeing if INSN is still valid. */
790 validate_replace_rtx (rtx from, rtx to, rtx insn)
792 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
793 return apply_change_group ();
796 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
797 is a part of INSN. After all changes have been made, validate by seeing if
798 INSN is still valid.
799 validate_replace_rtx (from, to, insn) is equivalent to
800 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
803 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
805 validate_replace_rtx_1 (where, from, to, insn, true);
806 return apply_change_group ();
809 /* Same as above, but do not simplify rtx afterwards. */
811 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
812 rtx insn)
814 validate_replace_rtx_1 (where, from, to, insn, false);
815 return apply_change_group ();
819 /* Try replacing every occurrence of FROM in INSN with TO. This also
820 will replace in REG_EQUAL and REG_EQUIV notes. */
822 void
823 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
825 rtx note;
826 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
827 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
828 if (REG_NOTE_KIND (note) == REG_EQUAL
829 || REG_NOTE_KIND (note) == REG_EQUIV)
830 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
833 /* Function called by note_uses to replace used subexpressions. */
834 struct validate_replace_src_data
836 rtx from; /* Old RTX */
837 rtx to; /* New RTX */
838 rtx insn; /* Insn in which substitution is occurring. */
841 static void
842 validate_replace_src_1 (rtx *x, void *data)
844 struct validate_replace_src_data *d
845 = (struct validate_replace_src_data *) data;
847 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
850 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
851 SET_DESTs. */
853 void
854 validate_replace_src_group (rtx from, rtx to, rtx insn)
856 struct validate_replace_src_data d;
858 d.from = from;
859 d.to = to;
860 d.insn = insn;
861 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
864 /* Try simplify INSN.
865 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
866 pattern and return true if something was simplified. */
868 bool
869 validate_simplify_insn (rtx insn)
871 int i;
872 rtx pat = NULL;
873 rtx newpat = NULL;
875 pat = PATTERN (insn);
877 if (GET_CODE (pat) == SET)
879 newpat = simplify_rtx (SET_SRC (pat));
880 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
881 validate_change (insn, &SET_SRC (pat), newpat, 1);
882 newpat = simplify_rtx (SET_DEST (pat));
883 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
884 validate_change (insn, &SET_DEST (pat), newpat, 1);
886 else if (GET_CODE (pat) == PARALLEL)
887 for (i = 0; i < XVECLEN (pat, 0); i++)
889 rtx s = XVECEXP (pat, 0, i);
891 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
893 newpat = simplify_rtx (SET_SRC (s));
894 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
895 validate_change (insn, &SET_SRC (s), newpat, 1);
896 newpat = simplify_rtx (SET_DEST (s));
897 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
898 validate_change (insn, &SET_DEST (s), newpat, 1);
901 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
904 #ifdef HAVE_cc0
905 /* Return 1 if the insn using CC0 set by INSN does not contain
906 any ordered tests applied to the condition codes.
907 EQ and NE tests do not count. */
910 next_insn_tests_no_inequality (rtx insn)
912 rtx next = next_cc0_user (insn);
914 /* If there is no next insn, we have to take the conservative choice. */
915 if (next == 0)
916 return 0;
918 return (INSN_P (next)
919 && ! inequality_comparisons_p (PATTERN (next)));
921 #endif
923 /* Return 1 if OP is a valid general operand for machine mode MODE.
924 This is either a register reference, a memory reference,
925 or a constant. In the case of a memory reference, the address
926 is checked for general validity for the target machine.
928 Register and memory references must have mode MODE in order to be valid,
929 but some constants have no machine mode and are valid for any mode.
931 If MODE is VOIDmode, OP is checked for validity for whatever mode
932 it has.
934 The main use of this function is as a predicate in match_operand
935 expressions in the machine description. */
938 general_operand (rtx op, enum machine_mode mode)
940 enum rtx_code code = GET_CODE (op);
942 if (mode == VOIDmode)
943 mode = GET_MODE (op);
945 /* Don't accept CONST_INT or anything similar
946 if the caller wants something floating. */
947 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
948 && GET_MODE_CLASS (mode) != MODE_INT
949 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
950 return 0;
952 if (CONST_INT_P (op)
953 && mode != VOIDmode
954 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
955 return 0;
957 if (CONSTANT_P (op))
958 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
959 || mode == VOIDmode)
960 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
961 && targetm.legitimate_constant_p (mode == VOIDmode
962 ? GET_MODE (op)
963 : mode, op));
965 /* Except for certain constants with VOIDmode, already checked for,
966 OP's mode must match MODE if MODE specifies a mode. */
968 if (GET_MODE (op) != mode)
969 return 0;
971 if (code == SUBREG)
973 rtx sub = SUBREG_REG (op);
975 #ifdef INSN_SCHEDULING
976 /* On machines that have insn scheduling, we want all memory
977 reference to be explicit, so outlaw paradoxical SUBREGs.
978 However, we must allow them after reload so that they can
979 get cleaned up by cleanup_subreg_operands. */
980 if (!reload_completed && MEM_P (sub)
981 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
982 return 0;
983 #endif
984 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
985 may result in incorrect reference. We should simplify all valid
986 subregs of MEM anyway. But allow this after reload because we
987 might be called from cleanup_subreg_operands.
989 ??? This is a kludge. */
990 if (!reload_completed && SUBREG_BYTE (op) != 0
991 && MEM_P (sub))
992 return 0;
994 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
995 create such rtl, and we must reject it. */
996 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
997 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
998 return 0;
1000 op = sub;
1001 code = GET_CODE (op);
1004 if (code == REG)
1005 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1006 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1008 if (code == MEM)
1010 rtx y = XEXP (op, 0);
1012 if (! volatile_ok && MEM_VOLATILE_P (op))
1013 return 0;
1015 /* Use the mem's mode, since it will be reloaded thus. */
1016 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1017 return 1;
1020 return 0;
1023 /* Return 1 if OP is a valid memory address for a memory reference
1024 of mode MODE.
1026 The main use of this function is as a predicate in match_operand
1027 expressions in the machine description. */
1030 address_operand (rtx op, enum machine_mode mode)
1032 return memory_address_p (mode, op);
1035 /* Return 1 if OP is a register reference of mode MODE.
1036 If MODE is VOIDmode, accept a register in any mode.
1038 The main use of this function is as a predicate in match_operand
1039 expressions in the machine description. */
1042 register_operand (rtx op, enum machine_mode mode)
1044 if (GET_MODE (op) != mode && mode != VOIDmode)
1045 return 0;
1047 if (GET_CODE (op) == SUBREG)
1049 rtx sub = SUBREG_REG (op);
1051 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1052 because it is guaranteed to be reloaded into one.
1053 Just make sure the MEM is valid in itself.
1054 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1055 but currently it does result from (SUBREG (REG)...) where the
1056 reg went on the stack.) */
1057 if (! reload_completed && MEM_P (sub))
1058 return general_operand (op, mode);
1060 #ifdef CANNOT_CHANGE_MODE_CLASS
1061 if (REG_P (sub)
1062 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1063 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1064 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1065 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1066 return 0;
1067 #endif
1069 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1070 create such rtl, and we must reject it. */
1071 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1072 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1073 return 0;
1075 op = sub;
1078 return (REG_P (op)
1079 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1080 || in_hard_reg_set_p (operand_reg_set,
1081 GET_MODE (op), REGNO (op))));
1084 /* Return 1 for a register in Pmode; ignore the tested mode. */
1087 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1089 return register_operand (op, Pmode);
1092 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1093 or a hard register. */
1096 scratch_operand (rtx op, enum machine_mode mode)
1098 if (GET_MODE (op) != mode && mode != VOIDmode)
1099 return 0;
1101 return (GET_CODE (op) == SCRATCH
1102 || (REG_P (op)
1103 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1106 /* Return 1 if OP is a valid immediate operand for mode MODE.
1108 The main use of this function is as a predicate in match_operand
1109 expressions in the machine description. */
1112 immediate_operand (rtx op, enum machine_mode mode)
1114 /* Don't accept CONST_INT or anything similar
1115 if the caller wants something floating. */
1116 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1117 && GET_MODE_CLASS (mode) != MODE_INT
1118 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1119 return 0;
1121 if (CONST_INT_P (op)
1122 && mode != VOIDmode
1123 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1124 return 0;
1126 return (CONSTANT_P (op)
1127 && (GET_MODE (op) == mode || mode == VOIDmode
1128 || GET_MODE (op) == VOIDmode)
1129 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1130 && targetm.legitimate_constant_p (mode == VOIDmode
1131 ? GET_MODE (op)
1132 : mode, op));
1135 /* Returns 1 if OP is an operand that is a CONST_INT. */
1138 const_int_operand (rtx op, enum machine_mode mode)
1140 if (!CONST_INT_P (op))
1141 return 0;
1143 if (mode != VOIDmode
1144 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1145 return 0;
1147 return 1;
1150 /* Returns 1 if OP is an operand that is a constant integer or constant
1151 floating-point number. */
1154 const_double_operand (rtx op, enum machine_mode mode)
1156 /* Don't accept CONST_INT or anything similar
1157 if the caller wants something floating. */
1158 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1159 && GET_MODE_CLASS (mode) != MODE_INT
1160 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1161 return 0;
1163 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1164 && (mode == VOIDmode || GET_MODE (op) == mode
1165 || GET_MODE (op) == VOIDmode));
1168 /* Return 1 if OP is a general operand that is not an immediate operand. */
1171 nonimmediate_operand (rtx op, enum machine_mode mode)
1173 return (general_operand (op, mode) && ! CONSTANT_P (op));
1176 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1179 nonmemory_operand (rtx op, enum machine_mode mode)
1181 if (CONSTANT_P (op))
1182 return immediate_operand (op, mode);
1184 if (GET_MODE (op) != mode && mode != VOIDmode)
1185 return 0;
1187 if (GET_CODE (op) == SUBREG)
1189 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1190 because it is guaranteed to be reloaded into one.
1191 Just make sure the MEM is valid in itself.
1192 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1193 but currently it does result from (SUBREG (REG)...) where the
1194 reg went on the stack.) */
1195 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1196 return general_operand (op, mode);
1197 op = SUBREG_REG (op);
1200 return (REG_P (op)
1201 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1202 || in_hard_reg_set_p (operand_reg_set,
1203 GET_MODE (op), REGNO (op))));
1206 /* Return 1 if OP is a valid operand that stands for pushing a
1207 value of mode MODE onto the stack.
1209 The main use of this function is as a predicate in match_operand
1210 expressions in the machine description. */
1213 push_operand (rtx op, enum machine_mode mode)
1215 unsigned int rounded_size = GET_MODE_SIZE (mode);
1217 #ifdef PUSH_ROUNDING
1218 rounded_size = PUSH_ROUNDING (rounded_size);
1219 #endif
1221 if (!MEM_P (op))
1222 return 0;
1224 if (mode != VOIDmode && GET_MODE (op) != mode)
1225 return 0;
1227 op = XEXP (op, 0);
1229 if (rounded_size == GET_MODE_SIZE (mode))
1231 if (GET_CODE (op) != STACK_PUSH_CODE)
1232 return 0;
1234 else
1236 if (GET_CODE (op) != PRE_MODIFY
1237 || GET_CODE (XEXP (op, 1)) != PLUS
1238 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1239 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1240 #ifdef STACK_GROWS_DOWNWARD
1241 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1242 #else
1243 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1244 #endif
1246 return 0;
1249 return XEXP (op, 0) == stack_pointer_rtx;
1252 /* Return 1 if OP is a valid operand that stands for popping a
1253 value of mode MODE off the stack.
1255 The main use of this function is as a predicate in match_operand
1256 expressions in the machine description. */
1259 pop_operand (rtx op, enum machine_mode mode)
1261 if (!MEM_P (op))
1262 return 0;
1264 if (mode != VOIDmode && GET_MODE (op) != mode)
1265 return 0;
1267 op = XEXP (op, 0);
1269 if (GET_CODE (op) != STACK_POP_CODE)
1270 return 0;
1272 return XEXP (op, 0) == stack_pointer_rtx;
1275 /* Return 1 if ADDR is a valid memory address
1276 for mode MODE in address space AS. */
1279 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1280 rtx addr, addr_space_t as)
1282 #ifdef GO_IF_LEGITIMATE_ADDRESS
1283 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1284 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1285 return 0;
1287 win:
1288 return 1;
1289 #else
1290 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1291 #endif
1294 /* Return 1 if OP is a valid memory reference with mode MODE,
1295 including a valid address.
1297 The main use of this function is as a predicate in match_operand
1298 expressions in the machine description. */
1301 memory_operand (rtx op, enum machine_mode mode)
1303 rtx inner;
1305 if (! reload_completed)
1306 /* Note that no SUBREG is a memory operand before end of reload pass,
1307 because (SUBREG (MEM...)) forces reloading into a register. */
1308 return MEM_P (op) && general_operand (op, mode);
1310 if (mode != VOIDmode && GET_MODE (op) != mode)
1311 return 0;
1313 inner = op;
1314 if (GET_CODE (inner) == SUBREG)
1315 inner = SUBREG_REG (inner);
1317 return (MEM_P (inner) && general_operand (op, mode));
1320 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1321 that is, a memory reference whose address is a general_operand. */
1324 indirect_operand (rtx op, enum machine_mode mode)
1326 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1327 if (! reload_completed
1328 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1330 int offset = SUBREG_BYTE (op);
1331 rtx inner = SUBREG_REG (op);
1333 if (mode != VOIDmode && GET_MODE (op) != mode)
1334 return 0;
1336 /* The only way that we can have a general_operand as the resulting
1337 address is if OFFSET is zero and the address already is an operand
1338 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1339 operand. */
1341 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1342 || (GET_CODE (XEXP (inner, 0)) == PLUS
1343 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1344 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1345 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1348 return (MEM_P (op)
1349 && memory_operand (op, mode)
1350 && general_operand (XEXP (op, 0), Pmode));
1353 /* Return 1 if this is an ordered comparison operator (not including
1354 ORDERED and UNORDERED). */
1357 ordered_comparison_operator (rtx op, enum machine_mode mode)
1359 if (mode != VOIDmode && GET_MODE (op) != mode)
1360 return false;
1361 switch (GET_CODE (op))
1363 case EQ:
1364 case NE:
1365 case LT:
1366 case LTU:
1367 case LE:
1368 case LEU:
1369 case GT:
1370 case GTU:
1371 case GE:
1372 case GEU:
1373 return true;
1374 default:
1375 return false;
1379 /* Return 1 if this is a comparison operator. This allows the use of
1380 MATCH_OPERATOR to recognize all the branch insns. */
1383 comparison_operator (rtx op, enum machine_mode mode)
1385 return ((mode == VOIDmode || GET_MODE (op) == mode)
1386 && COMPARISON_P (op));
1389 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1392 extract_asm_operands (rtx body)
1394 rtx tmp;
1395 switch (GET_CODE (body))
1397 case ASM_OPERANDS:
1398 return body;
1400 case SET:
1401 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1402 tmp = SET_SRC (body);
1403 if (GET_CODE (tmp) == ASM_OPERANDS)
1404 return tmp;
1405 break;
1407 case PARALLEL:
1408 tmp = XVECEXP (body, 0, 0);
1409 if (GET_CODE (tmp) == ASM_OPERANDS)
1410 return tmp;
1411 if (GET_CODE (tmp) == SET)
1413 tmp = SET_SRC (tmp);
1414 if (GET_CODE (tmp) == ASM_OPERANDS)
1415 return tmp;
1417 break;
1419 default:
1420 break;
1422 return NULL;
1425 /* If BODY is an insn body that uses ASM_OPERANDS,
1426 return the number of operands (both input and output) in the insn.
1427 Otherwise return -1. */
1430 asm_noperands (const_rtx body)
1432 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1433 int n_sets = 0;
1435 if (asm_op == NULL)
1436 return -1;
1438 if (GET_CODE (body) == SET)
1439 n_sets = 1;
1440 else if (GET_CODE (body) == PARALLEL)
1442 int i;
1443 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1445 /* Multiple output operands, or 1 output plus some clobbers:
1446 body is
1447 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1448 /* Count backwards through CLOBBERs to determine number of SETs. */
1449 for (i = XVECLEN (body, 0); i > 0; i--)
1451 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1452 break;
1453 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1454 return -1;
1457 /* N_SETS is now number of output operands. */
1458 n_sets = i;
1460 /* Verify that all the SETs we have
1461 came from a single original asm_operands insn
1462 (so that invalid combinations are blocked). */
1463 for (i = 0; i < n_sets; i++)
1465 rtx elt = XVECEXP (body, 0, i);
1466 if (GET_CODE (elt) != SET)
1467 return -1;
1468 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1469 return -1;
1470 /* If these ASM_OPERANDS rtx's came from different original insns
1471 then they aren't allowed together. */
1472 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1473 != ASM_OPERANDS_INPUT_VEC (asm_op))
1474 return -1;
1477 else
1479 /* 0 outputs, but some clobbers:
1480 body is [(asm_operands ...) (clobber (reg ...))...]. */
1481 /* Make sure all the other parallel things really are clobbers. */
1482 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1483 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1484 return -1;
1488 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1489 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1492 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1493 copy its operands (both input and output) into the vector OPERANDS,
1494 the locations of the operands within the insn into the vector OPERAND_LOCS,
1495 and the constraints for the operands into CONSTRAINTS.
1496 Write the modes of the operands into MODES.
1497 Return the assembler-template.
1499 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1500 we don't store that info. */
1502 const char *
1503 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1504 const char **constraints, enum machine_mode *modes,
1505 location_t *loc)
1507 int nbase = 0, n, i;
1508 rtx asmop;
1510 switch (GET_CODE (body))
1512 case ASM_OPERANDS:
1513 /* Zero output asm: BODY is (asm_operands ...). */
1514 asmop = body;
1515 break;
1517 case SET:
1518 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1519 asmop = SET_SRC (body);
1521 /* The output is in the SET.
1522 Its constraint is in the ASM_OPERANDS itself. */
1523 if (operands)
1524 operands[0] = SET_DEST (body);
1525 if (operand_locs)
1526 operand_locs[0] = &SET_DEST (body);
1527 if (constraints)
1528 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1529 if (modes)
1530 modes[0] = GET_MODE (SET_DEST (body));
1531 nbase = 1;
1532 break;
1534 case PARALLEL:
1536 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1538 asmop = XVECEXP (body, 0, 0);
1539 if (GET_CODE (asmop) == SET)
1541 asmop = SET_SRC (asmop);
1543 /* At least one output, plus some CLOBBERs. The outputs are in
1544 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1545 for (i = 0; i < nparallel; i++)
1547 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1548 break; /* Past last SET */
1549 if (operands)
1550 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1551 if (operand_locs)
1552 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1553 if (constraints)
1554 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1555 if (modes)
1556 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1558 nbase = i;
1560 break;
1563 default:
1564 gcc_unreachable ();
1567 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1568 for (i = 0; i < n; i++)
1570 if (operand_locs)
1571 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1572 if (operands)
1573 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1574 if (constraints)
1575 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1576 if (modes)
1577 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1579 nbase += n;
1581 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1582 for (i = 0; i < n; i++)
1584 if (operand_locs)
1585 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1586 if (operands)
1587 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1588 if (constraints)
1589 constraints[nbase + i] = "";
1590 if (modes)
1591 modes[nbase + i] = Pmode;
1594 if (loc)
1595 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1597 return ASM_OPERANDS_TEMPLATE (asmop);
1600 /* Check if an asm_operand matches its constraints.
1601 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1604 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1606 int result = 0;
1607 #ifdef AUTO_INC_DEC
1608 bool incdec_ok = false;
1609 #endif
1611 /* Use constrain_operands after reload. */
1612 gcc_assert (!reload_completed);
1614 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1615 many alternatives as required to match the other operands. */
1616 if (*constraint == '\0')
1617 result = 1;
1619 while (*constraint)
1621 char c = *constraint;
1622 int len;
1623 switch (c)
1625 case ',':
1626 constraint++;
1627 continue;
1628 case '=':
1629 case '+':
1630 case '*':
1631 case '%':
1632 case '!':
1633 case '#':
1634 case '&':
1635 case '?':
1636 break;
1638 case '0': case '1': case '2': case '3': case '4':
1639 case '5': case '6': case '7': case '8': case '9':
1640 /* If caller provided constraints pointer, look up
1641 the maching constraint. Otherwise, our caller should have
1642 given us the proper matching constraint, but we can't
1643 actually fail the check if they didn't. Indicate that
1644 results are inconclusive. */
1645 if (constraints)
1647 char *end;
1648 unsigned long match;
1650 match = strtoul (constraint, &end, 10);
1651 if (!result)
1652 result = asm_operand_ok (op, constraints[match], NULL);
1653 constraint = (const char *) end;
1655 else
1658 constraint++;
1659 while (ISDIGIT (*constraint));
1660 if (! result)
1661 result = -1;
1663 continue;
1665 case 'p':
1666 if (address_operand (op, VOIDmode))
1667 result = 1;
1668 break;
1670 case TARGET_MEM_CONSTRAINT:
1671 case 'V': /* non-offsettable */
1672 if (memory_operand (op, VOIDmode))
1673 result = 1;
1674 break;
1676 case 'o': /* offsettable */
1677 if (offsettable_nonstrict_memref_p (op))
1678 result = 1;
1679 break;
1681 case '<':
1682 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1683 excepting those that expand_call created. Further, on some
1684 machines which do not have generalized auto inc/dec, an inc/dec
1685 is not a memory_operand.
1687 Match any memory and hope things are resolved after reload. */
1689 if (MEM_P (op)
1690 && (1
1691 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1692 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1693 result = 1;
1694 #ifdef AUTO_INC_DEC
1695 incdec_ok = true;
1696 #endif
1697 break;
1699 case '>':
1700 if (MEM_P (op)
1701 && (1
1702 || GET_CODE (XEXP (op, 0)) == PRE_INC
1703 || GET_CODE (XEXP (op, 0)) == POST_INC))
1704 result = 1;
1705 #ifdef AUTO_INC_DEC
1706 incdec_ok = true;
1707 #endif
1708 break;
1710 case 'E':
1711 case 'F':
1712 if (GET_CODE (op) == CONST_DOUBLE
1713 || (GET_CODE (op) == CONST_VECTOR
1714 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1715 result = 1;
1716 break;
1718 case 'G':
1719 if (GET_CODE (op) == CONST_DOUBLE
1720 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1721 result = 1;
1722 break;
1723 case 'H':
1724 if (GET_CODE (op) == CONST_DOUBLE
1725 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1726 result = 1;
1727 break;
1729 case 's':
1730 if (CONST_INT_P (op)
1731 || (GET_CODE (op) == CONST_DOUBLE
1732 && GET_MODE (op) == VOIDmode))
1733 break;
1734 /* Fall through. */
1736 case 'i':
1737 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1738 result = 1;
1739 break;
1741 case 'n':
1742 if (CONST_INT_P (op)
1743 || (GET_CODE (op) == CONST_DOUBLE
1744 && GET_MODE (op) == VOIDmode))
1745 result = 1;
1746 break;
1748 case 'I':
1749 if (CONST_INT_P (op)
1750 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1751 result = 1;
1752 break;
1753 case 'J':
1754 if (CONST_INT_P (op)
1755 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1756 result = 1;
1757 break;
1758 case 'K':
1759 if (CONST_INT_P (op)
1760 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1761 result = 1;
1762 break;
1763 case 'L':
1764 if (CONST_INT_P (op)
1765 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1766 result = 1;
1767 break;
1768 case 'M':
1769 if (CONST_INT_P (op)
1770 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1771 result = 1;
1772 break;
1773 case 'N':
1774 if (CONST_INT_P (op)
1775 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1776 result = 1;
1777 break;
1778 case 'O':
1779 if (CONST_INT_P (op)
1780 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1781 result = 1;
1782 break;
1783 case 'P':
1784 if (CONST_INT_P (op)
1785 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1786 result = 1;
1787 break;
1789 case 'X':
1790 result = 1;
1791 break;
1793 case 'g':
1794 if (general_operand (op, VOIDmode))
1795 result = 1;
1796 break;
1798 default:
1799 /* For all other letters, we first check for a register class,
1800 otherwise it is an EXTRA_CONSTRAINT. */
1801 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1803 case 'r':
1804 if (GET_MODE (op) == BLKmode)
1805 break;
1806 if (register_operand (op, VOIDmode))
1807 result = 1;
1809 #ifdef EXTRA_CONSTRAINT_STR
1810 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1811 /* Every memory operand can be reloaded to fit. */
1812 result = result || memory_operand (op, VOIDmode);
1813 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1814 /* Every address operand can be reloaded to fit. */
1815 result = result || address_operand (op, VOIDmode);
1816 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1817 result = 1;
1818 #endif
1819 break;
1821 len = CONSTRAINT_LEN (c, constraint);
1823 constraint++;
1824 while (--len && *constraint);
1825 if (len)
1826 return 0;
1829 #ifdef AUTO_INC_DEC
1830 /* For operands without < or > constraints reject side-effects. */
1831 if (!incdec_ok && result && MEM_P (op))
1832 switch (GET_CODE (XEXP (op, 0)))
1834 case PRE_INC:
1835 case POST_INC:
1836 case PRE_DEC:
1837 case POST_DEC:
1838 case PRE_MODIFY:
1839 case POST_MODIFY:
1840 return 0;
1841 default:
1842 break;
1844 #endif
1846 return result;
1849 /* Given an rtx *P, if it is a sum containing an integer constant term,
1850 return the location (type rtx *) of the pointer to that constant term.
1851 Otherwise, return a null pointer. */
1853 rtx *
1854 find_constant_term_loc (rtx *p)
1856 rtx *tem;
1857 enum rtx_code code = GET_CODE (*p);
1859 /* If *P IS such a constant term, P is its location. */
1861 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1862 || code == CONST)
1863 return p;
1865 /* Otherwise, if not a sum, it has no constant term. */
1867 if (GET_CODE (*p) != PLUS)
1868 return 0;
1870 /* If one of the summands is constant, return its location. */
1872 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1873 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1874 return p;
1876 /* Otherwise, check each summand for containing a constant term. */
1878 if (XEXP (*p, 0) != 0)
1880 tem = find_constant_term_loc (&XEXP (*p, 0));
1881 if (tem != 0)
1882 return tem;
1885 if (XEXP (*p, 1) != 0)
1887 tem = find_constant_term_loc (&XEXP (*p, 1));
1888 if (tem != 0)
1889 return tem;
1892 return 0;
1895 /* Return 1 if OP is a memory reference
1896 whose address contains no side effects
1897 and remains valid after the addition
1898 of a positive integer less than the
1899 size of the object being referenced.
1901 We assume that the original address is valid and do not check it.
1903 This uses strict_memory_address_p as a subroutine, so
1904 don't use it before reload. */
1907 offsettable_memref_p (rtx op)
1909 return ((MEM_P (op))
1910 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1911 MEM_ADDR_SPACE (op)));
1914 /* Similar, but don't require a strictly valid mem ref:
1915 consider pseudo-regs valid as index or base regs. */
1918 offsettable_nonstrict_memref_p (rtx op)
1920 return ((MEM_P (op))
1921 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1922 MEM_ADDR_SPACE (op)));
1925 /* Return 1 if Y is a memory address which contains no side effects
1926 and would remain valid for address space AS after the addition of
1927 a positive integer less than the size of that mode.
1929 We assume that the original address is valid and do not check it.
1930 We do check that it is valid for narrower modes.
1932 If STRICTP is nonzero, we require a strictly valid address,
1933 for the sake of use in reload.c. */
1936 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1937 addr_space_t as)
1939 enum rtx_code ycode = GET_CODE (y);
1940 rtx z;
1941 rtx y1 = y;
1942 rtx *y2;
1943 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1944 (strictp ? strict_memory_address_addr_space_p
1945 : memory_address_addr_space_p);
1946 unsigned int mode_sz = GET_MODE_SIZE (mode);
1948 if (CONSTANT_ADDRESS_P (y))
1949 return 1;
1951 /* Adjusting an offsettable address involves changing to a narrower mode.
1952 Make sure that's OK. */
1954 if (mode_dependent_address_p (y))
1955 return 0;
1957 /* ??? How much offset does an offsettable BLKmode reference need?
1958 Clearly that depends on the situation in which it's being used.
1959 However, the current situation in which we test 0xffffffff is
1960 less than ideal. Caveat user. */
1961 if (mode_sz == 0)
1962 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1964 /* If the expression contains a constant term,
1965 see if it remains valid when max possible offset is added. */
1967 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1969 int good;
1971 y1 = *y2;
1972 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1973 /* Use QImode because an odd displacement may be automatically invalid
1974 for any wider mode. But it should be valid for a single byte. */
1975 good = (*addressp) (QImode, y, as);
1977 /* In any case, restore old contents of memory. */
1978 *y2 = y1;
1979 return good;
1982 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1983 return 0;
1985 /* The offset added here is chosen as the maximum offset that
1986 any instruction could need to add when operating on something
1987 of the specified mode. We assume that if Y and Y+c are
1988 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1989 go inside a LO_SUM here, so we do so as well. */
1990 if (GET_CODE (y) == LO_SUM
1991 && mode != BLKmode
1992 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1993 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1994 plus_constant (GET_MODE (y), XEXP (y, 1),
1995 mode_sz - 1));
1996 else
1997 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
1999 /* Use QImode because an odd displacement may be automatically invalid
2000 for any wider mode. But it should be valid for a single byte. */
2001 return (*addressp) (QImode, z, as);
2004 /* Return 1 if ADDR is an address-expression whose effect depends
2005 on the mode of the memory reference it is used in.
2007 Autoincrement addressing is a typical example of mode-dependence
2008 because the amount of the increment depends on the mode. */
2010 bool
2011 mode_dependent_address_p (rtx addr)
2013 /* Auto-increment addressing with anything other than post_modify
2014 or pre_modify always introduces a mode dependency. Catch such
2015 cases now instead of deferring to the target. */
2016 if (GET_CODE (addr) == PRE_INC
2017 || GET_CODE (addr) == POST_INC
2018 || GET_CODE (addr) == PRE_DEC
2019 || GET_CODE (addr) == POST_DEC)
2020 return true;
2022 return targetm.mode_dependent_address_p (addr);
2025 /* Like extract_insn, but save insn extracted and don't extract again, when
2026 called again for the same insn expecting that recog_data still contain the
2027 valid information. This is used primary by gen_attr infrastructure that
2028 often does extract insn again and again. */
2029 void
2030 extract_insn_cached (rtx insn)
2032 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2033 return;
2034 extract_insn (insn);
2035 recog_data.insn = insn;
2038 /* Do cached extract_insn, constrain_operands and complain about failures.
2039 Used by insn_attrtab. */
2040 void
2041 extract_constrain_insn_cached (rtx insn)
2043 extract_insn_cached (insn);
2044 if (which_alternative == -1
2045 && !constrain_operands (reload_completed))
2046 fatal_insn_not_found (insn);
2049 /* Do cached constrain_operands and complain about failures. */
2051 constrain_operands_cached (int strict)
2053 if (which_alternative == -1)
2054 return constrain_operands (strict);
2055 else
2056 return 1;
2059 /* Analyze INSN and fill in recog_data. */
2061 void
2062 extract_insn (rtx insn)
2064 int i;
2065 int icode;
2066 int noperands;
2067 rtx body = PATTERN (insn);
2069 recog_data.n_operands = 0;
2070 recog_data.n_alternatives = 0;
2071 recog_data.n_dups = 0;
2072 recog_data.is_asm = false;
2074 switch (GET_CODE (body))
2076 case USE:
2077 case CLOBBER:
2078 case ASM_INPUT:
2079 case ADDR_VEC:
2080 case ADDR_DIFF_VEC:
2081 case VAR_LOCATION:
2082 return;
2084 case SET:
2085 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2086 goto asm_insn;
2087 else
2088 goto normal_insn;
2089 case PARALLEL:
2090 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2091 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2092 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2093 goto asm_insn;
2094 else
2095 goto normal_insn;
2096 case ASM_OPERANDS:
2097 asm_insn:
2098 recog_data.n_operands = noperands = asm_noperands (body);
2099 if (noperands >= 0)
2101 /* This insn is an `asm' with operands. */
2103 /* expand_asm_operands makes sure there aren't too many operands. */
2104 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2106 /* Now get the operand values and constraints out of the insn. */
2107 decode_asm_operands (body, recog_data.operand,
2108 recog_data.operand_loc,
2109 recog_data.constraints,
2110 recog_data.operand_mode, NULL);
2111 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2112 if (noperands > 0)
2114 const char *p = recog_data.constraints[0];
2115 recog_data.n_alternatives = 1;
2116 while (*p)
2117 recog_data.n_alternatives += (*p++ == ',');
2119 recog_data.is_asm = true;
2120 break;
2122 fatal_insn_not_found (insn);
2124 default:
2125 normal_insn:
2126 /* Ordinary insn: recognize it, get the operands via insn_extract
2127 and get the constraints. */
2129 icode = recog_memoized (insn);
2130 if (icode < 0)
2131 fatal_insn_not_found (insn);
2133 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2134 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2135 recog_data.n_dups = insn_data[icode].n_dups;
2137 insn_extract (insn);
2139 for (i = 0; i < noperands; i++)
2141 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2142 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2143 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2144 /* VOIDmode match_operands gets mode from their real operand. */
2145 if (recog_data.operand_mode[i] == VOIDmode)
2146 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2149 for (i = 0; i < noperands; i++)
2150 recog_data.operand_type[i]
2151 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2152 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2153 : OP_IN);
2155 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2157 if (INSN_CODE (insn) < 0)
2158 for (i = 0; i < recog_data.n_alternatives; i++)
2159 recog_data.alternative_enabled_p[i] = true;
2160 else
2162 recog_data.insn = insn;
2163 for (i = 0; i < recog_data.n_alternatives; i++)
2165 which_alternative = i;
2166 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2170 recog_data.insn = NULL;
2171 which_alternative = -1;
2174 /* After calling extract_insn, you can use this function to extract some
2175 information from the constraint strings into a more usable form.
2176 The collected data is stored in recog_op_alt. */
2177 void
2178 preprocess_constraints (void)
2180 int i;
2182 for (i = 0; i < recog_data.n_operands; i++)
2183 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2184 * sizeof (struct operand_alternative)));
2186 for (i = 0; i < recog_data.n_operands; i++)
2188 int j;
2189 struct operand_alternative *op_alt;
2190 const char *p = recog_data.constraints[i];
2192 op_alt = recog_op_alt[i];
2194 for (j = 0; j < recog_data.n_alternatives; j++)
2196 op_alt[j].cl = NO_REGS;
2197 op_alt[j].constraint = p;
2198 op_alt[j].matches = -1;
2199 op_alt[j].matched = -1;
2201 if (!recog_data.alternative_enabled_p[j])
2203 p = skip_alternative (p);
2204 continue;
2207 if (*p == '\0' || *p == ',')
2209 op_alt[j].anything_ok = 1;
2210 continue;
2213 for (;;)
2215 char c = *p;
2216 if (c == '#')
2218 c = *++p;
2219 while (c != ',' && c != '\0');
2220 if (c == ',' || c == '\0')
2222 p++;
2223 break;
2226 switch (c)
2228 case '=': case '+': case '*': case '%':
2229 case 'E': case 'F': case 'G': case 'H':
2230 case 's': case 'i': case 'n':
2231 case 'I': case 'J': case 'K': case 'L':
2232 case 'M': case 'N': case 'O': case 'P':
2233 /* These don't say anything we care about. */
2234 break;
2236 case '?':
2237 op_alt[j].reject += 6;
2238 break;
2239 case '!':
2240 op_alt[j].reject += 600;
2241 break;
2242 case '&':
2243 op_alt[j].earlyclobber = 1;
2244 break;
2246 case '0': case '1': case '2': case '3': case '4':
2247 case '5': case '6': case '7': case '8': case '9':
2249 char *end;
2250 op_alt[j].matches = strtoul (p, &end, 10);
2251 recog_op_alt[op_alt[j].matches][j].matched = i;
2252 p = end;
2254 continue;
2256 case TARGET_MEM_CONSTRAINT:
2257 op_alt[j].memory_ok = 1;
2258 break;
2259 case '<':
2260 op_alt[j].decmem_ok = 1;
2261 break;
2262 case '>':
2263 op_alt[j].incmem_ok = 1;
2264 break;
2265 case 'V':
2266 op_alt[j].nonoffmem_ok = 1;
2267 break;
2268 case 'o':
2269 op_alt[j].offmem_ok = 1;
2270 break;
2271 case 'X':
2272 op_alt[j].anything_ok = 1;
2273 break;
2275 case 'p':
2276 op_alt[j].is_address = 1;
2277 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2278 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2279 ADDRESS, SCRATCH)];
2280 break;
2282 case 'g':
2283 case 'r':
2284 op_alt[j].cl =
2285 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2286 break;
2288 default:
2289 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2291 op_alt[j].memory_ok = 1;
2292 break;
2294 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2296 op_alt[j].is_address = 1;
2297 op_alt[j].cl
2298 = (reg_class_subunion
2299 [(int) op_alt[j].cl]
2300 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2301 ADDRESS, SCRATCH)]);
2302 break;
2305 op_alt[j].cl
2306 = (reg_class_subunion
2307 [(int) op_alt[j].cl]
2308 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2309 break;
2311 p += CONSTRAINT_LEN (c, p);
2317 /* Check the operands of an insn against the insn's operand constraints
2318 and return 1 if they are valid.
2319 The information about the insn's operands, constraints, operand modes
2320 etc. is obtained from the global variables set up by extract_insn.
2322 WHICH_ALTERNATIVE is set to a number which indicates which
2323 alternative of constraints was matched: 0 for the first alternative,
2324 1 for the next, etc.
2326 In addition, when two operands are required to match
2327 and it happens that the output operand is (reg) while the
2328 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2329 make the output operand look like the input.
2330 This is because the output operand is the one the template will print.
2332 This is used in final, just before printing the assembler code and by
2333 the routines that determine an insn's attribute.
2335 If STRICT is a positive nonzero value, it means that we have been
2336 called after reload has been completed. In that case, we must
2337 do all checks strictly. If it is zero, it means that we have been called
2338 before reload has completed. In that case, we first try to see if we can
2339 find an alternative that matches strictly. If not, we try again, this
2340 time assuming that reload will fix up the insn. This provides a "best
2341 guess" for the alternative and is used to compute attributes of insns prior
2342 to reload. A negative value of STRICT is used for this internal call. */
2344 struct funny_match
2346 int this_op, other;
2350 constrain_operands (int strict)
2352 const char *constraints[MAX_RECOG_OPERANDS];
2353 int matching_operands[MAX_RECOG_OPERANDS];
2354 int earlyclobber[MAX_RECOG_OPERANDS];
2355 int c;
2357 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2358 int funny_match_index;
2360 which_alternative = 0;
2361 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2362 return 1;
2364 for (c = 0; c < recog_data.n_operands; c++)
2366 constraints[c] = recog_data.constraints[c];
2367 matching_operands[c] = -1;
2372 int seen_earlyclobber_at = -1;
2373 int opno;
2374 int lose = 0;
2375 funny_match_index = 0;
2377 if (!recog_data.alternative_enabled_p[which_alternative])
2379 int i;
2381 for (i = 0; i < recog_data.n_operands; i++)
2382 constraints[i] = skip_alternative (constraints[i]);
2384 which_alternative++;
2385 continue;
2388 for (opno = 0; opno < recog_data.n_operands; opno++)
2390 rtx op = recog_data.operand[opno];
2391 enum machine_mode mode = GET_MODE (op);
2392 const char *p = constraints[opno];
2393 int offset = 0;
2394 int win = 0;
2395 int val;
2396 int len;
2398 earlyclobber[opno] = 0;
2400 /* A unary operator may be accepted by the predicate, but it
2401 is irrelevant for matching constraints. */
2402 if (UNARY_P (op))
2403 op = XEXP (op, 0);
2405 if (GET_CODE (op) == SUBREG)
2407 if (REG_P (SUBREG_REG (op))
2408 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2409 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2410 GET_MODE (SUBREG_REG (op)),
2411 SUBREG_BYTE (op),
2412 GET_MODE (op));
2413 op = SUBREG_REG (op);
2416 /* An empty constraint or empty alternative
2417 allows anything which matched the pattern. */
2418 if (*p == 0 || *p == ',')
2419 win = 1;
2422 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2424 case '\0':
2425 len = 0;
2426 break;
2427 case ',':
2428 c = '\0';
2429 break;
2431 case '?': case '!': case '*': case '%':
2432 case '=': case '+':
2433 break;
2435 case '#':
2436 /* Ignore rest of this alternative as far as
2437 constraint checking is concerned. */
2439 p++;
2440 while (*p && *p != ',');
2441 len = 0;
2442 break;
2444 case '&':
2445 earlyclobber[opno] = 1;
2446 if (seen_earlyclobber_at < 0)
2447 seen_earlyclobber_at = opno;
2448 break;
2450 case '0': case '1': case '2': case '3': case '4':
2451 case '5': case '6': case '7': case '8': case '9':
2453 /* This operand must be the same as a previous one.
2454 This kind of constraint is used for instructions such
2455 as add when they take only two operands.
2457 Note that the lower-numbered operand is passed first.
2459 If we are not testing strictly, assume that this
2460 constraint will be satisfied. */
2462 char *end;
2463 int match;
2465 match = strtoul (p, &end, 10);
2466 p = end;
2468 if (strict < 0)
2469 val = 1;
2470 else
2472 rtx op1 = recog_data.operand[match];
2473 rtx op2 = recog_data.operand[opno];
2475 /* A unary operator may be accepted by the predicate,
2476 but it is irrelevant for matching constraints. */
2477 if (UNARY_P (op1))
2478 op1 = XEXP (op1, 0);
2479 if (UNARY_P (op2))
2480 op2 = XEXP (op2, 0);
2482 val = operands_match_p (op1, op2);
2485 matching_operands[opno] = match;
2486 matching_operands[match] = opno;
2488 if (val != 0)
2489 win = 1;
2491 /* If output is *x and input is *--x, arrange later
2492 to change the output to *--x as well, since the
2493 output op is the one that will be printed. */
2494 if (val == 2 && strict > 0)
2496 funny_match[funny_match_index].this_op = opno;
2497 funny_match[funny_match_index++].other = match;
2500 len = 0;
2501 break;
2503 case 'p':
2504 /* p is used for address_operands. When we are called by
2505 gen_reload, no one will have checked that the address is
2506 strictly valid, i.e., that all pseudos requiring hard regs
2507 have gotten them. */
2508 if (strict <= 0
2509 || (strict_memory_address_p (recog_data.operand_mode[opno],
2510 op)))
2511 win = 1;
2512 break;
2514 /* No need to check general_operand again;
2515 it was done in insn-recog.c. Well, except that reload
2516 doesn't check the validity of its replacements, but
2517 that should only matter when there's a bug. */
2518 case 'g':
2519 /* Anything goes unless it is a REG and really has a hard reg
2520 but the hard reg is not in the class GENERAL_REGS. */
2521 if (REG_P (op))
2523 if (strict < 0
2524 || GENERAL_REGS == ALL_REGS
2525 || (reload_in_progress
2526 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2527 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2528 win = 1;
2530 else if (strict < 0 || general_operand (op, mode))
2531 win = 1;
2532 break;
2534 case 'X':
2535 /* This is used for a MATCH_SCRATCH in the cases when
2536 we don't actually need anything. So anything goes
2537 any time. */
2538 win = 1;
2539 break;
2541 case TARGET_MEM_CONSTRAINT:
2542 /* Memory operands must be valid, to the extent
2543 required by STRICT. */
2544 if (MEM_P (op))
2546 if (strict > 0
2547 && !strict_memory_address_addr_space_p
2548 (GET_MODE (op), XEXP (op, 0),
2549 MEM_ADDR_SPACE (op)))
2550 break;
2551 if (strict == 0
2552 && !memory_address_addr_space_p
2553 (GET_MODE (op), XEXP (op, 0),
2554 MEM_ADDR_SPACE (op)))
2555 break;
2556 win = 1;
2558 /* Before reload, accept what reload can turn into mem. */
2559 else if (strict < 0 && CONSTANT_P (op))
2560 win = 1;
2561 /* During reload, accept a pseudo */
2562 else if (reload_in_progress && REG_P (op)
2563 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2564 win = 1;
2565 break;
2567 case '<':
2568 if (MEM_P (op)
2569 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2570 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2571 win = 1;
2572 break;
2574 case '>':
2575 if (MEM_P (op)
2576 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2577 || GET_CODE (XEXP (op, 0)) == POST_INC))
2578 win = 1;
2579 break;
2581 case 'E':
2582 case 'F':
2583 if (GET_CODE (op) == CONST_DOUBLE
2584 || (GET_CODE (op) == CONST_VECTOR
2585 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2586 win = 1;
2587 break;
2589 case 'G':
2590 case 'H':
2591 if (GET_CODE (op) == CONST_DOUBLE
2592 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2593 win = 1;
2594 break;
2596 case 's':
2597 if (CONST_INT_P (op)
2598 || (GET_CODE (op) == CONST_DOUBLE
2599 && GET_MODE (op) == VOIDmode))
2600 break;
2601 case 'i':
2602 if (CONSTANT_P (op))
2603 win = 1;
2604 break;
2606 case 'n':
2607 if (CONST_INT_P (op)
2608 || (GET_CODE (op) == CONST_DOUBLE
2609 && GET_MODE (op) == VOIDmode))
2610 win = 1;
2611 break;
2613 case 'I':
2614 case 'J':
2615 case 'K':
2616 case 'L':
2617 case 'M':
2618 case 'N':
2619 case 'O':
2620 case 'P':
2621 if (CONST_INT_P (op)
2622 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2623 win = 1;
2624 break;
2626 case 'V':
2627 if (MEM_P (op)
2628 && ((strict > 0 && ! offsettable_memref_p (op))
2629 || (strict < 0
2630 && !(CONSTANT_P (op) || MEM_P (op)))
2631 || (reload_in_progress
2632 && !(REG_P (op)
2633 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2634 win = 1;
2635 break;
2637 case 'o':
2638 if ((strict > 0 && offsettable_memref_p (op))
2639 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2640 /* Before reload, accept what reload can handle. */
2641 || (strict < 0
2642 && (CONSTANT_P (op) || MEM_P (op)))
2643 /* During reload, accept a pseudo */
2644 || (reload_in_progress && REG_P (op)
2645 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2646 win = 1;
2647 break;
2649 default:
2651 enum reg_class cl;
2653 cl = (c == 'r'
2654 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2655 if (cl != NO_REGS)
2657 if (strict < 0
2658 || (strict == 0
2659 && REG_P (op)
2660 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2661 || (strict == 0 && GET_CODE (op) == SCRATCH)
2662 || (REG_P (op)
2663 && reg_fits_class_p (op, cl, offset, mode)))
2664 win = 1;
2666 #ifdef EXTRA_CONSTRAINT_STR
2667 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2668 win = 1;
2670 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2671 /* Every memory operand can be reloaded to fit. */
2672 && ((strict < 0 && MEM_P (op))
2673 /* Before reload, accept what reload can turn
2674 into mem. */
2675 || (strict < 0 && CONSTANT_P (op))
2676 /* During reload, accept a pseudo */
2677 || (reload_in_progress && REG_P (op)
2678 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2679 win = 1;
2680 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2681 /* Every address operand can be reloaded to fit. */
2682 && strict < 0)
2683 win = 1;
2684 /* Cater to architectures like IA-64 that define extra memory
2685 constraints without using define_memory_constraint. */
2686 else if (reload_in_progress
2687 && REG_P (op)
2688 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2689 && reg_renumber[REGNO (op)] < 0
2690 && reg_equiv_mem (REGNO (op)) != 0
2691 && EXTRA_CONSTRAINT_STR
2692 (reg_equiv_mem (REGNO (op)), c, p))
2693 win = 1;
2694 #endif
2695 break;
2698 while (p += len, c);
2700 constraints[opno] = p;
2701 /* If this operand did not win somehow,
2702 this alternative loses. */
2703 if (! win)
2704 lose = 1;
2706 /* This alternative won; the operands are ok.
2707 Change whichever operands this alternative says to change. */
2708 if (! lose)
2710 int opno, eopno;
2712 /* See if any earlyclobber operand conflicts with some other
2713 operand. */
2715 if (strict > 0 && seen_earlyclobber_at >= 0)
2716 for (eopno = seen_earlyclobber_at;
2717 eopno < recog_data.n_operands;
2718 eopno++)
2719 /* Ignore earlyclobber operands now in memory,
2720 because we would often report failure when we have
2721 two memory operands, one of which was formerly a REG. */
2722 if (earlyclobber[eopno]
2723 && REG_P (recog_data.operand[eopno]))
2724 for (opno = 0; opno < recog_data.n_operands; opno++)
2725 if ((MEM_P (recog_data.operand[opno])
2726 || recog_data.operand_type[opno] != OP_OUT)
2727 && opno != eopno
2728 /* Ignore things like match_operator operands. */
2729 && *recog_data.constraints[opno] != 0
2730 && ! (matching_operands[opno] == eopno
2731 && operands_match_p (recog_data.operand[opno],
2732 recog_data.operand[eopno]))
2733 && ! safe_from_earlyclobber (recog_data.operand[opno],
2734 recog_data.operand[eopno]))
2735 lose = 1;
2737 if (! lose)
2739 while (--funny_match_index >= 0)
2741 recog_data.operand[funny_match[funny_match_index].other]
2742 = recog_data.operand[funny_match[funny_match_index].this_op];
2745 #ifdef AUTO_INC_DEC
2746 /* For operands without < or > constraints reject side-effects. */
2747 if (recog_data.is_asm)
2749 for (opno = 0; opno < recog_data.n_operands; opno++)
2750 if (MEM_P (recog_data.operand[opno]))
2751 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2753 case PRE_INC:
2754 case POST_INC:
2755 case PRE_DEC:
2756 case POST_DEC:
2757 case PRE_MODIFY:
2758 case POST_MODIFY:
2759 if (strchr (recog_data.constraints[opno], '<') == NULL
2760 && strchr (recog_data.constraints[opno], '>')
2761 == NULL)
2762 return 0;
2763 break;
2764 default:
2765 break;
2768 #endif
2769 return 1;
2773 which_alternative++;
2775 while (which_alternative < recog_data.n_alternatives);
2777 which_alternative = -1;
2778 /* If we are about to reject this, but we are not to test strictly,
2779 try a very loose test. Only return failure if it fails also. */
2780 if (strict == 0)
2781 return constrain_operands (-1);
2782 else
2783 return 0;
2786 /* Return true iff OPERAND (assumed to be a REG rtx)
2787 is a hard reg in class CLASS when its regno is offset by OFFSET
2788 and changed to mode MODE.
2789 If REG occupies multiple hard regs, all of them must be in CLASS. */
2791 bool
2792 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2793 enum machine_mode mode)
2795 int regno = REGNO (operand);
2797 if (cl == NO_REGS)
2798 return false;
2800 return (HARD_REGISTER_NUM_P (regno)
2801 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2802 mode, regno + offset));
2805 /* Split single instruction. Helper function for split_all_insns and
2806 split_all_insns_noflow. Return last insn in the sequence if successful,
2807 or NULL if unsuccessful. */
2809 static rtx
2810 split_insn (rtx insn)
2812 /* Split insns here to get max fine-grain parallelism. */
2813 rtx first = PREV_INSN (insn);
2814 rtx last = try_split (PATTERN (insn), insn, 1);
2815 rtx insn_set, last_set, note;
2817 if (last == insn)
2818 return NULL_RTX;
2820 /* If the original instruction was a single set that was known to be
2821 equivalent to a constant, see if we can say the same about the last
2822 instruction in the split sequence. The two instructions must set
2823 the same destination. */
2824 insn_set = single_set (insn);
2825 if (insn_set)
2827 last_set = single_set (last);
2828 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2830 note = find_reg_equal_equiv_note (insn);
2831 if (note && CONSTANT_P (XEXP (note, 0)))
2832 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2833 else if (CONSTANT_P (SET_SRC (insn_set)))
2834 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2838 /* try_split returns the NOTE that INSN became. */
2839 SET_INSN_DELETED (insn);
2841 /* ??? Coddle to md files that generate subregs in post-reload
2842 splitters instead of computing the proper hard register. */
2843 if (reload_completed && first != last)
2845 first = NEXT_INSN (first);
2846 for (;;)
2848 if (INSN_P (first))
2849 cleanup_subreg_operands (first);
2850 if (first == last)
2851 break;
2852 first = NEXT_INSN (first);
2856 return last;
2859 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2861 void
2862 split_all_insns (void)
2864 sbitmap blocks;
2865 bool changed;
2866 basic_block bb;
2868 blocks = sbitmap_alloc (last_basic_block);
2869 sbitmap_zero (blocks);
2870 changed = false;
2872 FOR_EACH_BB_REVERSE (bb)
2874 rtx insn, next;
2875 bool finish = false;
2877 rtl_profile_for_bb (bb);
2878 for (insn = BB_HEAD (bb); !finish ; insn = next)
2880 /* Can't use `next_real_insn' because that might go across
2881 CODE_LABELS and short-out basic blocks. */
2882 next = NEXT_INSN (insn);
2883 finish = (insn == BB_END (bb));
2884 if (INSN_P (insn))
2886 rtx set = single_set (insn);
2888 /* Don't split no-op move insns. These should silently
2889 disappear later in final. Splitting such insns would
2890 break the code that handles LIBCALL blocks. */
2891 if (set && set_noop_p (set))
2893 /* Nops get in the way while scheduling, so delete them
2894 now if register allocation has already been done. It
2895 is too risky to try to do this before register
2896 allocation, and there are unlikely to be very many
2897 nops then anyways. */
2898 if (reload_completed)
2899 delete_insn_and_edges (insn);
2901 else
2903 if (split_insn (insn))
2905 SET_BIT (blocks, bb->index);
2906 changed = true;
2913 default_rtl_profile ();
2914 if (changed)
2915 find_many_sub_basic_blocks (blocks);
2917 #ifdef ENABLE_CHECKING
2918 verify_flow_info ();
2919 #endif
2921 sbitmap_free (blocks);
2924 /* Same as split_all_insns, but do not expect CFG to be available.
2925 Used by machine dependent reorg passes. */
2927 unsigned int
2928 split_all_insns_noflow (void)
2930 rtx next, insn;
2932 for (insn = get_insns (); insn; insn = next)
2934 next = NEXT_INSN (insn);
2935 if (INSN_P (insn))
2937 /* Don't split no-op move insns. These should silently
2938 disappear later in final. Splitting such insns would
2939 break the code that handles LIBCALL blocks. */
2940 rtx set = single_set (insn);
2941 if (set && set_noop_p (set))
2943 /* Nops get in the way while scheduling, so delete them
2944 now if register allocation has already been done. It
2945 is too risky to try to do this before register
2946 allocation, and there are unlikely to be very many
2947 nops then anyways.
2949 ??? Should we use delete_insn when the CFG isn't valid? */
2950 if (reload_completed)
2951 delete_insn_and_edges (insn);
2953 else
2954 split_insn (insn);
2957 return 0;
2960 #ifdef HAVE_peephole2
2961 struct peep2_insn_data
2963 rtx insn;
2964 regset live_before;
2967 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2968 static int peep2_current;
2970 static bool peep2_do_rebuild_jump_labels;
2971 static bool peep2_do_cleanup_cfg;
2973 /* The number of instructions available to match a peep2. */
2974 int peep2_current_count;
2976 /* A non-insn marker indicating the last insn of the block.
2977 The live_before regset for this element is correct, indicating
2978 DF_LIVE_OUT for the block. */
2979 #define PEEP2_EOB pc_rtx
2981 /* Wrap N to fit into the peep2_insn_data buffer. */
2983 static int
2984 peep2_buf_position (int n)
2986 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2987 n -= MAX_INSNS_PER_PEEP2 + 1;
2988 return n;
2991 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2992 does not exist. Used by the recognizer to find the next insn to match
2993 in a multi-insn pattern. */
2996 peep2_next_insn (int n)
2998 gcc_assert (n <= peep2_current_count);
3000 n = peep2_buf_position (peep2_current + n);
3002 return peep2_insn_data[n].insn;
3005 /* Return true if REGNO is dead before the Nth non-note insn
3006 after `current'. */
3009 peep2_regno_dead_p (int ofs, int regno)
3011 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3013 ofs = peep2_buf_position (peep2_current + ofs);
3015 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3017 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3020 /* Similarly for a REG. */
3023 peep2_reg_dead_p (int ofs, rtx reg)
3025 int regno, n;
3027 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3029 ofs = peep2_buf_position (peep2_current + ofs);
3031 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3033 regno = REGNO (reg);
3034 n = hard_regno_nregs[regno][GET_MODE (reg)];
3035 while (--n >= 0)
3036 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3037 return 0;
3038 return 1;
3041 /* Try to find a hard register of mode MODE, matching the register class in
3042 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3043 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3044 in which case the only condition is that the register must be available
3045 before CURRENT_INSN.
3046 Registers that already have bits set in REG_SET will not be considered.
3048 If an appropriate register is available, it will be returned and the
3049 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3050 returned. */
3053 peep2_find_free_register (int from, int to, const char *class_str,
3054 enum machine_mode mode, HARD_REG_SET *reg_set)
3056 static int search_ofs;
3057 enum reg_class cl;
3058 HARD_REG_SET live;
3059 df_ref *def_rec;
3060 int i;
3062 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3063 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3065 from = peep2_buf_position (peep2_current + from);
3066 to = peep2_buf_position (peep2_current + to);
3068 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3069 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3071 while (from != to)
3073 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3075 /* Don't use registers set or clobbered by the insn. */
3076 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3077 *def_rec; def_rec++)
3078 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3080 from = peep2_buf_position (from + 1);
3083 cl = (class_str[0] == 'r' ? GENERAL_REGS
3084 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3086 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3088 int raw_regno, regno, success, j;
3090 /* Distribute the free registers as much as possible. */
3091 raw_regno = search_ofs + i;
3092 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3093 raw_regno -= FIRST_PSEUDO_REGISTER;
3094 #ifdef REG_ALLOC_ORDER
3095 regno = reg_alloc_order[raw_regno];
3096 #else
3097 regno = raw_regno;
3098 #endif
3100 /* Don't allocate fixed registers. */
3101 if (fixed_regs[regno])
3102 continue;
3103 /* Don't allocate global registers. */
3104 if (global_regs[regno])
3105 continue;
3106 /* Make sure the register is of the right class. */
3107 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3108 continue;
3109 /* And can support the mode we need. */
3110 if (! HARD_REGNO_MODE_OK (regno, mode))
3111 continue;
3112 /* And that we don't create an extra save/restore. */
3113 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3114 continue;
3115 if (! targetm.hard_regno_scratch_ok (regno))
3116 continue;
3118 /* And we don't clobber traceback for noreturn functions. */
3119 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3120 && (! reload_completed || frame_pointer_needed))
3121 continue;
3123 success = 1;
3124 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3126 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3127 || TEST_HARD_REG_BIT (live, regno + j))
3129 success = 0;
3130 break;
3133 if (success)
3135 add_to_hard_reg_set (reg_set, mode, regno);
3137 /* Start the next search with the next register. */
3138 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3139 raw_regno = 0;
3140 search_ofs = raw_regno;
3142 return gen_rtx_REG (mode, regno);
3146 search_ofs = 0;
3147 return NULL_RTX;
3150 /* Forget all currently tracked instructions, only remember current
3151 LIVE regset. */
3153 static void
3154 peep2_reinit_state (regset live)
3156 int i;
3158 /* Indicate that all slots except the last holds invalid data. */
3159 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3160 peep2_insn_data[i].insn = NULL_RTX;
3161 peep2_current_count = 0;
3163 /* Indicate that the last slot contains live_after data. */
3164 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3165 peep2_current = MAX_INSNS_PER_PEEP2;
3167 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3170 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3171 starting at INSN. Perform the replacement, removing the old insns and
3172 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3173 if the replacement is rejected. */
3175 static rtx
3176 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3178 int i;
3179 rtx last, eh_note, as_note, before_try, x;
3180 rtx old_insn, new_insn;
3181 bool was_call = false;
3183 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3184 match more than one insn, or to be split into more than one insn. */
3185 old_insn = peep2_insn_data[peep2_current].insn;
3186 if (RTX_FRAME_RELATED_P (old_insn))
3188 bool any_note = false;
3189 rtx note;
3191 if (match_len != 0)
3192 return NULL;
3194 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3195 may be in the stream for the purpose of register allocation. */
3196 if (active_insn_p (attempt))
3197 new_insn = attempt;
3198 else
3199 new_insn = next_active_insn (attempt);
3200 if (next_active_insn (new_insn))
3201 return NULL;
3203 /* We have a 1-1 replacement. Copy over any frame-related info. */
3204 RTX_FRAME_RELATED_P (new_insn) = 1;
3206 /* Allow the backend to fill in a note during the split. */
3207 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3208 switch (REG_NOTE_KIND (note))
3210 case REG_FRAME_RELATED_EXPR:
3211 case REG_CFA_DEF_CFA:
3212 case REG_CFA_ADJUST_CFA:
3213 case REG_CFA_OFFSET:
3214 case REG_CFA_REGISTER:
3215 case REG_CFA_EXPRESSION:
3216 case REG_CFA_RESTORE:
3217 case REG_CFA_SET_VDRAP:
3218 any_note = true;
3219 break;
3220 default:
3221 break;
3224 /* If the backend didn't supply a note, copy one over. */
3225 if (!any_note)
3226 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3227 switch (REG_NOTE_KIND (note))
3229 case REG_FRAME_RELATED_EXPR:
3230 case REG_CFA_DEF_CFA:
3231 case REG_CFA_ADJUST_CFA:
3232 case REG_CFA_OFFSET:
3233 case REG_CFA_REGISTER:
3234 case REG_CFA_EXPRESSION:
3235 case REG_CFA_RESTORE:
3236 case REG_CFA_SET_VDRAP:
3237 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3238 any_note = true;
3239 break;
3240 default:
3241 break;
3244 /* If there still isn't a note, make sure the unwind info sees the
3245 same expression as before the split. */
3246 if (!any_note)
3248 rtx old_set, new_set;
3250 /* The old insn had better have been simple, or annotated. */
3251 old_set = single_set (old_insn);
3252 gcc_assert (old_set != NULL);
3254 new_set = single_set (new_insn);
3255 if (!new_set || !rtx_equal_p (new_set, old_set))
3256 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3259 /* Copy prologue/epilogue status. This is required in order to keep
3260 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3261 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3264 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3265 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3266 cfg-related call notes. */
3267 for (i = 0; i <= match_len; ++i)
3269 int j;
3270 rtx note;
3272 j = peep2_buf_position (peep2_current + i);
3273 old_insn = peep2_insn_data[j].insn;
3274 if (!CALL_P (old_insn))
3275 continue;
3276 was_call = true;
3278 new_insn = attempt;
3279 while (new_insn != NULL_RTX)
3281 if (CALL_P (new_insn))
3282 break;
3283 new_insn = NEXT_INSN (new_insn);
3286 gcc_assert (new_insn != NULL_RTX);
3288 CALL_INSN_FUNCTION_USAGE (new_insn)
3289 = CALL_INSN_FUNCTION_USAGE (old_insn);
3291 for (note = REG_NOTES (old_insn);
3292 note;
3293 note = XEXP (note, 1))
3294 switch (REG_NOTE_KIND (note))
3296 case REG_NORETURN:
3297 case REG_SETJMP:
3298 case REG_TM:
3299 add_reg_note (new_insn, REG_NOTE_KIND (note),
3300 XEXP (note, 0));
3301 break;
3302 default:
3303 /* Discard all other reg notes. */
3304 break;
3307 /* Croak if there is another call in the sequence. */
3308 while (++i <= match_len)
3310 j = peep2_buf_position (peep2_current + i);
3311 old_insn = peep2_insn_data[j].insn;
3312 gcc_assert (!CALL_P (old_insn));
3314 break;
3317 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3318 move those notes over to the new sequence. */
3319 as_note = NULL;
3320 for (i = match_len; i >= 0; --i)
3322 int j = peep2_buf_position (peep2_current + i);
3323 old_insn = peep2_insn_data[j].insn;
3325 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3326 if (as_note)
3327 break;
3330 i = peep2_buf_position (peep2_current + match_len);
3331 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3333 /* Replace the old sequence with the new. */
3334 last = emit_insn_after_setloc (attempt,
3335 peep2_insn_data[i].insn,
3336 INSN_LOCATOR (peep2_insn_data[i].insn));
3337 before_try = PREV_INSN (insn);
3338 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3340 /* Re-insert the EH_REGION notes. */
3341 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3343 edge eh_edge;
3344 edge_iterator ei;
3346 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3347 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3348 break;
3350 if (eh_note)
3351 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3353 if (eh_edge)
3354 for (x = last; x != before_try; x = PREV_INSN (x))
3355 if (x != BB_END (bb)
3356 && (can_throw_internal (x)
3357 || can_nonlocal_goto (x)))
3359 edge nfte, nehe;
3360 int flags;
3362 nfte = split_block (bb, x);
3363 flags = (eh_edge->flags
3364 & (EDGE_EH | EDGE_ABNORMAL));
3365 if (CALL_P (x))
3366 flags |= EDGE_ABNORMAL_CALL;
3367 nehe = make_edge (nfte->src, eh_edge->dest,
3368 flags);
3370 nehe->probability = eh_edge->probability;
3371 nfte->probability
3372 = REG_BR_PROB_BASE - nehe->probability;
3374 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3375 bb = nfte->src;
3376 eh_edge = nehe;
3379 /* Converting possibly trapping insn to non-trapping is
3380 possible. Zap dummy outgoing edges. */
3381 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3384 /* Re-insert the ARGS_SIZE notes. */
3385 if (as_note)
3386 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3388 /* If we generated a jump instruction, it won't have
3389 JUMP_LABEL set. Recompute after we're done. */
3390 for (x = last; x != before_try; x = PREV_INSN (x))
3391 if (JUMP_P (x))
3393 peep2_do_rebuild_jump_labels = true;
3394 break;
3397 return last;
3400 /* After performing a replacement in basic block BB, fix up the life
3401 information in our buffer. LAST is the last of the insns that we
3402 emitted as a replacement. PREV is the insn before the start of
3403 the replacement. MATCH_LEN is the number of instructions that were
3404 matched, and which now need to be replaced in the buffer. */
3406 static void
3407 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3409 int i = peep2_buf_position (peep2_current + match_len + 1);
3410 rtx x;
3411 regset_head live;
3413 INIT_REG_SET (&live);
3414 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3416 gcc_assert (peep2_current_count >= match_len + 1);
3417 peep2_current_count -= match_len + 1;
3419 x = last;
3422 if (INSN_P (x))
3424 df_insn_rescan (x);
3425 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3427 peep2_current_count++;
3428 if (--i < 0)
3429 i = MAX_INSNS_PER_PEEP2;
3430 peep2_insn_data[i].insn = x;
3431 df_simulate_one_insn_backwards (bb, x, &live);
3432 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3435 x = PREV_INSN (x);
3437 while (x != prev);
3438 CLEAR_REG_SET (&live);
3440 peep2_current = i;
3443 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3444 Return true if we added it, false otherwise. The caller will try to match
3445 peepholes against the buffer if we return false; otherwise it will try to
3446 add more instructions to the buffer. */
3448 static bool
3449 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3451 int pos;
3453 /* Once we have filled the maximum number of insns the buffer can hold,
3454 allow the caller to match the insns against peepholes. We wait until
3455 the buffer is full in case the target has similar peepholes of different
3456 length; we always want to match the longest if possible. */
3457 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3458 return false;
3460 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3461 any other pattern, lest it change the semantics of the frame info. */
3462 if (RTX_FRAME_RELATED_P (insn))
3464 /* Let the buffer drain first. */
3465 if (peep2_current_count > 0)
3466 return false;
3467 /* Now the insn will be the only thing in the buffer. */
3470 pos = peep2_buf_position (peep2_current + peep2_current_count);
3471 peep2_insn_data[pos].insn = insn;
3472 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3473 peep2_current_count++;
3475 df_simulate_one_insn_forwards (bb, insn, live);
3476 return true;
3479 /* Perform the peephole2 optimization pass. */
3481 static void
3482 peephole2_optimize (void)
3484 rtx insn;
3485 bitmap live;
3486 int i;
3487 basic_block bb;
3489 peep2_do_cleanup_cfg = false;
3490 peep2_do_rebuild_jump_labels = false;
3492 df_set_flags (DF_LR_RUN_DCE);
3493 df_note_add_problem ();
3494 df_analyze ();
3496 /* Initialize the regsets we're going to use. */
3497 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3498 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3499 live = BITMAP_ALLOC (&reg_obstack);
3501 FOR_EACH_BB_REVERSE (bb)
3503 bool past_end = false;
3504 int pos;
3506 rtl_profile_for_bb (bb);
3508 /* Start up propagation. */
3509 bitmap_copy (live, DF_LR_IN (bb));
3510 df_simulate_initialize_forwards (bb, live);
3511 peep2_reinit_state (live);
3513 insn = BB_HEAD (bb);
3514 for (;;)
3516 rtx attempt, head;
3517 int match_len;
3519 if (!past_end && !NONDEBUG_INSN_P (insn))
3521 next_insn:
3522 insn = NEXT_INSN (insn);
3523 if (insn == NEXT_INSN (BB_END (bb)))
3524 past_end = true;
3525 continue;
3527 if (!past_end && peep2_fill_buffer (bb, insn, live))
3528 goto next_insn;
3530 /* If we did not fill an empty buffer, it signals the end of the
3531 block. */
3532 if (peep2_current_count == 0)
3533 break;
3535 /* The buffer filled to the current maximum, so try to match. */
3537 pos = peep2_buf_position (peep2_current + peep2_current_count);
3538 peep2_insn_data[pos].insn = PEEP2_EOB;
3539 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3541 /* Match the peephole. */
3542 head = peep2_insn_data[peep2_current].insn;
3543 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3544 if (attempt != NULL)
3546 rtx last = peep2_attempt (bb, head, match_len, attempt);
3547 if (last)
3549 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3550 continue;
3554 /* No match: advance the buffer by one insn. */
3555 peep2_current = peep2_buf_position (peep2_current + 1);
3556 peep2_current_count--;
3560 default_rtl_profile ();
3561 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3562 BITMAP_FREE (peep2_insn_data[i].live_before);
3563 BITMAP_FREE (live);
3564 if (peep2_do_rebuild_jump_labels)
3565 rebuild_jump_labels (get_insns ());
3567 #endif /* HAVE_peephole2 */
3569 /* Common predicates for use with define_bypass. */
3571 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3572 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3573 must be either a single_set or a PARALLEL with SETs inside. */
3576 store_data_bypass_p (rtx out_insn, rtx in_insn)
3578 rtx out_set, in_set;
3579 rtx out_pat, in_pat;
3580 rtx out_exp, in_exp;
3581 int i, j;
3583 in_set = single_set (in_insn);
3584 if (in_set)
3586 if (!MEM_P (SET_DEST (in_set)))
3587 return false;
3589 out_set = single_set (out_insn);
3590 if (out_set)
3592 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3593 return false;
3595 else
3597 out_pat = PATTERN (out_insn);
3599 if (GET_CODE (out_pat) != PARALLEL)
3600 return false;
3602 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3604 out_exp = XVECEXP (out_pat, 0, i);
3606 if (GET_CODE (out_exp) == CLOBBER)
3607 continue;
3609 gcc_assert (GET_CODE (out_exp) == SET);
3611 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3612 return false;
3616 else
3618 in_pat = PATTERN (in_insn);
3619 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3621 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3623 in_exp = XVECEXP (in_pat, 0, i);
3625 if (GET_CODE (in_exp) == CLOBBER)
3626 continue;
3628 gcc_assert (GET_CODE (in_exp) == SET);
3630 if (!MEM_P (SET_DEST (in_exp)))
3631 return false;
3633 out_set = single_set (out_insn);
3634 if (out_set)
3636 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3637 return false;
3639 else
3641 out_pat = PATTERN (out_insn);
3642 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3644 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3646 out_exp = XVECEXP (out_pat, 0, j);
3648 if (GET_CODE (out_exp) == CLOBBER)
3649 continue;
3651 gcc_assert (GET_CODE (out_exp) == SET);
3653 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3654 return false;
3660 return true;
3663 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3664 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3665 or multiple set; IN_INSN should be single_set for truth, but for convenience
3666 of insn categorization may be any JUMP or CALL insn. */
3669 if_test_bypass_p (rtx out_insn, rtx in_insn)
3671 rtx out_set, in_set;
3673 in_set = single_set (in_insn);
3674 if (! in_set)
3676 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3677 return false;
3680 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3681 return false;
3682 in_set = SET_SRC (in_set);
3684 out_set = single_set (out_insn);
3685 if (out_set)
3687 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3688 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3689 return false;
3691 else
3693 rtx out_pat;
3694 int i;
3696 out_pat = PATTERN (out_insn);
3697 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3699 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3701 rtx exp = XVECEXP (out_pat, 0, i);
3703 if (GET_CODE (exp) == CLOBBER)
3704 continue;
3706 gcc_assert (GET_CODE (exp) == SET);
3708 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3709 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3710 return false;
3714 return true;
3717 static bool
3718 gate_handle_peephole2 (void)
3720 return (optimize > 0 && flag_peephole2);
3723 static unsigned int
3724 rest_of_handle_peephole2 (void)
3726 #ifdef HAVE_peephole2
3727 peephole2_optimize ();
3728 #endif
3729 return 0;
3732 struct rtl_opt_pass pass_peephole2 =
3735 RTL_PASS,
3736 "peephole2", /* name */
3737 gate_handle_peephole2, /* gate */
3738 rest_of_handle_peephole2, /* execute */
3739 NULL, /* sub */
3740 NULL, /* next */
3741 0, /* static_pass_number */
3742 TV_PEEPHOLE2, /* tv_id */
3743 0, /* properties_required */
3744 0, /* properties_provided */
3745 0, /* properties_destroyed */
3746 0, /* todo_flags_start */
3747 TODO_df_finish | TODO_verify_rtl_sharing |
3748 0 /* todo_flags_finish */
3752 static unsigned int
3753 rest_of_handle_split_all_insns (void)
3755 split_all_insns ();
3756 return 0;
3759 struct rtl_opt_pass pass_split_all_insns =
3762 RTL_PASS,
3763 "split1", /* name */
3764 NULL, /* gate */
3765 rest_of_handle_split_all_insns, /* execute */
3766 NULL, /* sub */
3767 NULL, /* next */
3768 0, /* static_pass_number */
3769 TV_NONE, /* tv_id */
3770 0, /* properties_required */
3771 0, /* properties_provided */
3772 0, /* properties_destroyed */
3773 0, /* todo_flags_start */
3774 0 /* todo_flags_finish */
3778 static unsigned int
3779 rest_of_handle_split_after_reload (void)
3781 /* If optimizing, then go ahead and split insns now. */
3782 #ifndef STACK_REGS
3783 if (optimize > 0)
3784 #endif
3785 split_all_insns ();
3786 return 0;
3789 struct rtl_opt_pass pass_split_after_reload =
3792 RTL_PASS,
3793 "split2", /* name */
3794 NULL, /* gate */
3795 rest_of_handle_split_after_reload, /* execute */
3796 NULL, /* sub */
3797 NULL, /* next */
3798 0, /* static_pass_number */
3799 TV_NONE, /* tv_id */
3800 0, /* properties_required */
3801 0, /* properties_provided */
3802 0, /* properties_destroyed */
3803 0, /* todo_flags_start */
3804 0 /* todo_flags_finish */
3808 static bool
3809 gate_handle_split_before_regstack (void)
3811 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3812 /* If flow2 creates new instructions which need splitting
3813 and scheduling after reload is not done, they might not be
3814 split until final which doesn't allow splitting
3815 if HAVE_ATTR_length. */
3816 # ifdef INSN_SCHEDULING
3817 return (optimize && !flag_schedule_insns_after_reload);
3818 # else
3819 return (optimize);
3820 # endif
3821 #else
3822 return 0;
3823 #endif
3826 static unsigned int
3827 rest_of_handle_split_before_regstack (void)
3829 split_all_insns ();
3830 return 0;
3833 struct rtl_opt_pass pass_split_before_regstack =
3836 RTL_PASS,
3837 "split3", /* name */
3838 gate_handle_split_before_regstack, /* gate */
3839 rest_of_handle_split_before_regstack, /* execute */
3840 NULL, /* sub */
3841 NULL, /* next */
3842 0, /* static_pass_number */
3843 TV_NONE, /* tv_id */
3844 0, /* properties_required */
3845 0, /* properties_provided */
3846 0, /* properties_destroyed */
3847 0, /* todo_flags_start */
3848 0 /* todo_flags_finish */
3852 static bool
3853 gate_handle_split_before_sched2 (void)
3855 #ifdef INSN_SCHEDULING
3856 return optimize > 0 && flag_schedule_insns_after_reload;
3857 #else
3858 return 0;
3859 #endif
3862 static unsigned int
3863 rest_of_handle_split_before_sched2 (void)
3865 #ifdef INSN_SCHEDULING
3866 split_all_insns ();
3867 #endif
3868 return 0;
3871 struct rtl_opt_pass pass_split_before_sched2 =
3874 RTL_PASS,
3875 "split4", /* name */
3876 gate_handle_split_before_sched2, /* gate */
3877 rest_of_handle_split_before_sched2, /* execute */
3878 NULL, /* sub */
3879 NULL, /* next */
3880 0, /* static_pass_number */
3881 TV_NONE, /* tv_id */
3882 0, /* properties_required */
3883 0, /* properties_provided */
3884 0, /* properties_destroyed */
3885 0, /* todo_flags_start */
3886 TODO_verify_flow /* todo_flags_finish */
3890 /* The placement of the splitting that we do for shorten_branches
3891 depends on whether regstack is used by the target or not. */
3892 static bool
3893 gate_do_final_split (void)
3895 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3896 return 1;
3897 #else
3898 return 0;
3899 #endif
3902 struct rtl_opt_pass pass_split_for_shorten_branches =
3905 RTL_PASS,
3906 "split5", /* name */
3907 gate_do_final_split, /* gate */
3908 split_all_insns_noflow, /* execute */
3909 NULL, /* sub */
3910 NULL, /* next */
3911 0, /* static_pass_number */
3912 TV_NONE, /* tv_id */
3913 0, /* properties_required */
3914 0, /* properties_provided */
3915 0, /* properties_destroyed */
3916 0, /* todo_flags_start */
3917 TODO_verify_rtl_sharing /* todo_flags_finish */