gcc/
[official-gcc.git] / gcc / postreload.c
blob7f333063e19879a477fbd3b74d6ea901c40d5781
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "diagnostic-core.h"
44 #include "except.h"
45 #include "tree.h"
46 #include "target.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "df.h"
50 #include "dbgcnt.h"
52 static int reload_cse_noop_set_p (rtx);
53 static void reload_cse_simplify (rtx, rtx);
54 static void reload_cse_regs_1 (rtx);
55 static int reload_cse_simplify_set (rtx, rtx);
56 static int reload_cse_simplify_operands (rtx, rtx);
58 static void reload_combine (void);
59 static void reload_combine_note_use (rtx *, rtx, int, rtx);
60 static void reload_combine_note_store (rtx, const_rtx, void *);
62 static bool reload_cse_move2add (rtx);
63 static void move2add_note_store (rtx, const_rtx, void *);
65 /* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
68 static void
69 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
71 bool moves_converted;
72 reload_cse_regs_1 (first);
73 reload_combine ();
74 moves_converted = reload_cse_move2add (first);
75 if (flag_expensive_optimizations)
77 if (moves_converted)
78 reload_combine ();
79 reload_cse_regs_1 (first);
83 /* See whether a single set SET is a noop. */
84 static int
85 reload_cse_noop_set_p (rtx set)
87 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
88 return 0;
90 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
93 /* Try to simplify INSN. */
94 static void
95 reload_cse_simplify (rtx insn, rtx testreg)
97 rtx body = PATTERN (insn);
99 if (GET_CODE (body) == SET)
101 int count = 0;
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
110 if (!count && reload_cse_noop_set_p (body))
112 rtx value = SET_DEST (body);
113 if (REG_P (value)
114 && ! REG_FUNCTION_VALUE_P (value))
115 value = 0;
116 if (check_for_inc_dec (insn))
117 delete_insn_and_edges (insn);
118 return;
121 if (count > 0)
122 apply_change_group ();
123 else
124 reload_cse_simplify_operands (insn, testreg);
126 else if (GET_CODE (body) == PARALLEL)
128 int i;
129 int count = 0;
130 rtx value = NULL_RTX;
132 /* Registers mentioned in the clobber list for an asm cannot be reused
133 within the body of the asm. Invalidate those registers now so that
134 we don't try to substitute values for them. */
135 if (asm_noperands (body) >= 0)
137 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
139 rtx part = XVECEXP (body, 0, i);
140 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
141 cselib_invalidate_rtx (XEXP (part, 0));
145 /* If every action in a PARALLEL is a noop, we can delete
146 the entire PARALLEL. */
147 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
149 rtx part = XVECEXP (body, 0, i);
150 if (GET_CODE (part) == SET)
152 if (! reload_cse_noop_set_p (part))
153 break;
154 if (REG_P (SET_DEST (part))
155 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
157 if (value)
158 break;
159 value = SET_DEST (part);
162 else if (GET_CODE (part) != CLOBBER)
163 break;
166 if (i < 0)
168 if (check_for_inc_dec (insn))
169 delete_insn_and_edges (insn);
170 /* We're done with this insn. */
171 return;
174 /* It's not a no-op, but we can try to simplify it. */
175 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
176 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
177 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
179 if (count > 0)
180 apply_change_group ();
181 else
182 reload_cse_simplify_operands (insn, testreg);
186 /* Do a very simple CSE pass over the hard registers.
188 This function detects no-op moves where we happened to assign two
189 different pseudo-registers to the same hard register, and then
190 copied one to the other. Reload will generate a useless
191 instruction copying a register to itself.
193 This function also detects cases where we load a value from memory
194 into two different registers, and (if memory is more expensive than
195 registers) changes it to simply copy the first register into the
196 second register.
198 Another optimization is performed that scans the operands of each
199 instruction to see whether the value is already available in a
200 hard register. It then replaces the operand with the hard register
201 if possible, much like an optional reload would. */
203 static void
204 reload_cse_regs_1 (rtx first)
206 rtx insn;
207 rtx testreg = gen_rtx_REG (VOIDmode, -1);
209 cselib_init (CSELIB_RECORD_MEMORY);
210 init_alias_analysis ();
212 for (insn = first; insn; insn = NEXT_INSN (insn))
214 if (INSN_P (insn))
215 reload_cse_simplify (insn, testreg);
217 cselib_process_insn (insn);
220 /* Clean up. */
221 end_alias_analysis ();
222 cselib_finish ();
225 /* Try to simplify a single SET instruction. SET is the set pattern.
226 INSN is the instruction it came from.
227 This function only handles one case: if we set a register to a value
228 which is not a register, we try to find that value in some other register
229 and change the set into a register copy. */
231 static int
232 reload_cse_simplify_set (rtx set, rtx insn)
234 int did_change = 0;
235 int dreg;
236 rtx src;
237 reg_class_t dclass;
238 int old_cost;
239 cselib_val *val;
240 struct elt_loc_list *l;
241 #ifdef LOAD_EXTEND_OP
242 enum rtx_code extend_op = UNKNOWN;
243 #endif
244 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
246 dreg = true_regnum (SET_DEST (set));
247 if (dreg < 0)
248 return 0;
250 src = SET_SRC (set);
251 if (side_effects_p (src) || true_regnum (src) >= 0)
252 return 0;
254 dclass = REGNO_REG_CLASS (dreg);
256 #ifdef LOAD_EXTEND_OP
257 /* When replacing a memory with a register, we need to honor assumptions
258 that combine made wrt the contents of sign bits. We'll do this by
259 generating an extend instruction instead of a reg->reg copy. Thus
260 the destination must be a register that we can widen. */
261 if (MEM_P (src)
262 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
263 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
264 && !REG_P (SET_DEST (set)))
265 return 0;
266 #endif
268 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
269 if (! val)
270 return 0;
272 /* If memory loads are cheaper than register copies, don't change them. */
273 if (MEM_P (src))
274 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
275 else if (REG_P (src))
276 old_cost = register_move_cost (GET_MODE (src),
277 REGNO_REG_CLASS (REGNO (src)), dclass);
278 else
279 old_cost = set_src_cost (src, speed);
281 for (l = val->locs; l; l = l->next)
283 rtx this_rtx = l->loc;
284 int this_cost;
286 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
288 #ifdef LOAD_EXTEND_OP
289 if (extend_op != UNKNOWN)
291 HOST_WIDE_INT this_val;
293 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
294 constants, such as SYMBOL_REF, cannot be extended. */
295 if (!CONST_INT_P (this_rtx))
296 continue;
298 this_val = INTVAL (this_rtx);
299 switch (extend_op)
301 case ZERO_EXTEND:
302 this_val &= GET_MODE_MASK (GET_MODE (src));
303 break;
304 case SIGN_EXTEND:
305 /* ??? In theory we're already extended. */
306 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
307 break;
308 default:
309 gcc_unreachable ();
311 this_rtx = GEN_INT (this_val);
313 #endif
314 this_cost = set_src_cost (this_rtx, speed);
316 else if (REG_P (this_rtx))
318 #ifdef LOAD_EXTEND_OP
319 if (extend_op != UNKNOWN)
321 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
322 this_cost = set_src_cost (this_rtx, speed);
324 else
325 #endif
326 this_cost = register_move_cost (GET_MODE (this_rtx),
327 REGNO_REG_CLASS (REGNO (this_rtx)),
328 dclass);
330 else
331 continue;
333 /* If equal costs, prefer registers over anything else. That
334 tends to lead to smaller instructions on some machines. */
335 if (this_cost < old_cost
336 || (this_cost == old_cost
337 && REG_P (this_rtx)
338 && !REG_P (SET_SRC (set))))
340 #ifdef LOAD_EXTEND_OP
341 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
342 && extend_op != UNKNOWN
343 #ifdef CANNOT_CHANGE_MODE_CLASS
344 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
345 word_mode,
346 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
347 #endif
350 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
351 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
352 validate_change (insn, &SET_DEST (set), wide_dest, 1);
354 #endif
356 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
357 old_cost = this_cost, did_change = 1;
361 return did_change;
364 /* Try to replace operands in INSN with equivalent values that are already
365 in registers. This can be viewed as optional reloading.
367 For each non-register operand in the insn, see if any hard regs are
368 known to be equivalent to that operand. Record the alternatives which
369 can accept these hard registers. Among all alternatives, select the
370 ones which are better or equal to the one currently matching, where
371 "better" is in terms of '?' and '!' constraints. Among the remaining
372 alternatives, select the one which replaces most operands with
373 hard registers. */
375 static int
376 reload_cse_simplify_operands (rtx insn, rtx testreg)
378 int i, j;
380 /* For each operand, all registers that are equivalent to it. */
381 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
383 const char *constraints[MAX_RECOG_OPERANDS];
385 /* Vector recording how bad an alternative is. */
386 int *alternative_reject;
387 /* Vector recording how many registers can be introduced by choosing
388 this alternative. */
389 int *alternative_nregs;
390 /* Array of vectors recording, for each operand and each alternative,
391 which hard register to substitute, or -1 if the operand should be
392 left as it is. */
393 int *op_alt_regno[MAX_RECOG_OPERANDS];
394 /* Array of alternatives, sorted in order of decreasing desirability. */
395 int *alternative_order;
397 extract_insn (insn);
399 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
400 return 0;
402 /* Figure out which alternative currently matches. */
403 if (! constrain_operands (1))
404 fatal_insn_not_found (insn);
406 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
407 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
408 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
409 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
410 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
412 /* For each operand, find out which regs are equivalent. */
413 for (i = 0; i < recog_data.n_operands; i++)
415 cselib_val *v;
416 struct elt_loc_list *l;
417 rtx op;
419 CLEAR_HARD_REG_SET (equiv_regs[i]);
421 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
422 right, so avoid the problem here. Likewise if we have a constant
423 and the insn pattern doesn't tell us the mode we need. */
424 if (LABEL_P (recog_data.operand[i])
425 || (CONSTANT_P (recog_data.operand[i])
426 && recog_data.operand_mode[i] == VOIDmode))
427 continue;
429 op = recog_data.operand[i];
430 #ifdef LOAD_EXTEND_OP
431 if (MEM_P (op)
432 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
433 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
435 rtx set = single_set (insn);
437 /* We might have multiple sets, some of which do implicit
438 extension. Punt on this for now. */
439 if (! set)
440 continue;
441 /* If the destination is also a MEM or a STRICT_LOW_PART, no
442 extension applies.
443 Also, if there is an explicit extension, we don't have to
444 worry about an implicit one. */
445 else if (MEM_P (SET_DEST (set))
446 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
447 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
448 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
449 ; /* Continue ordinary processing. */
450 #ifdef CANNOT_CHANGE_MODE_CLASS
451 /* If the register cannot change mode to word_mode, it follows that
452 it cannot have been used in word_mode. */
453 else if (REG_P (SET_DEST (set))
454 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
455 word_mode,
456 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
457 ; /* Continue ordinary processing. */
458 #endif
459 /* If this is a straight load, make the extension explicit. */
460 else if (REG_P (SET_DEST (set))
461 && recog_data.n_operands == 2
462 && SET_SRC (set) == op
463 && SET_DEST (set) == recog_data.operand[1-i])
465 validate_change (insn, recog_data.operand_loc[i],
466 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
467 word_mode, op),
469 validate_change (insn, recog_data.operand_loc[1-i],
470 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
472 if (! apply_change_group ())
473 return 0;
474 return reload_cse_simplify_operands (insn, testreg);
476 else
477 /* ??? There might be arithmetic operations with memory that are
478 safe to optimize, but is it worth the trouble? */
479 continue;
481 #endif /* LOAD_EXTEND_OP */
482 if (side_effects_p (op))
483 continue;
484 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
485 if (! v)
486 continue;
488 for (l = v->locs; l; l = l->next)
489 if (REG_P (l->loc))
490 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
493 for (i = 0; i < recog_data.n_operands; i++)
495 enum machine_mode mode;
496 int regno;
497 const char *p;
499 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
500 for (j = 0; j < recog_data.n_alternatives; j++)
501 op_alt_regno[i][j] = -1;
503 p = constraints[i] = recog_data.constraints[i];
504 mode = recog_data.operand_mode[i];
506 /* Add the reject values for each alternative given by the constraints
507 for this operand. */
508 j = 0;
509 while (*p != '\0')
511 char c = *p++;
512 if (c == ',')
513 j++;
514 else if (c == '?')
515 alternative_reject[j] += 3;
516 else if (c == '!')
517 alternative_reject[j] += 300;
520 /* We won't change operands which are already registers. We
521 also don't want to modify output operands. */
522 regno = true_regnum (recog_data.operand[i]);
523 if (regno >= 0
524 || constraints[i][0] == '='
525 || constraints[i][0] == '+')
526 continue;
528 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
530 enum reg_class rclass = NO_REGS;
532 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
533 continue;
535 SET_REGNO_RAW (testreg, regno);
536 PUT_MODE (testreg, mode);
538 /* We found a register equal to this operand. Now look for all
539 alternatives that can accept this register and have not been
540 assigned a register they can use yet. */
541 j = 0;
542 p = constraints[i];
543 for (;;)
545 char c = *p;
547 switch (c)
549 case '=': case '+': case '?':
550 case '#': case '&': case '!':
551 case '*': case '%':
552 case '0': case '1': case '2': case '3': case '4':
553 case '5': case '6': case '7': case '8': case '9':
554 case '<': case '>': case 'V': case 'o':
555 case 'E': case 'F': case 'G': case 'H':
556 case 's': case 'i': case 'n':
557 case 'I': case 'J': case 'K': case 'L':
558 case 'M': case 'N': case 'O': case 'P':
559 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
560 /* These don't say anything we care about. */
561 break;
563 case 'g': case 'r':
564 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
565 break;
567 default:
568 rclass
569 = (reg_class_subunion
570 [(int) rclass]
571 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
572 break;
574 case ',': case '\0':
575 /* See if REGNO fits this alternative, and set it up as the
576 replacement register if we don't have one for this
577 alternative yet and the operand being replaced is not
578 a cheap CONST_INT. */
579 if (op_alt_regno[i][j] == -1
580 && recog_data.alternative_enabled_p[j]
581 && reg_fits_class_p (testreg, rclass, 0, mode)
582 && (!CONST_INT_P (recog_data.operand[i])
583 || (set_src_cost (recog_data.operand[i],
584 optimize_bb_for_speed_p
585 (BLOCK_FOR_INSN (insn)))
586 > set_src_cost (testreg,
587 optimize_bb_for_speed_p
588 (BLOCK_FOR_INSN (insn))))))
590 alternative_nregs[j]++;
591 op_alt_regno[i][j] = regno;
593 j++;
594 rclass = NO_REGS;
595 break;
597 p += CONSTRAINT_LEN (c, p);
599 if (c == '\0')
600 break;
605 /* Record all alternatives which are better or equal to the currently
606 matching one in the alternative_order array. */
607 for (i = j = 0; i < recog_data.n_alternatives; i++)
608 if (alternative_reject[i] <= alternative_reject[which_alternative])
609 alternative_order[j++] = i;
610 recog_data.n_alternatives = j;
612 /* Sort it. Given a small number of alternatives, a dumb algorithm
613 won't hurt too much. */
614 for (i = 0; i < recog_data.n_alternatives - 1; i++)
616 int best = i;
617 int best_reject = alternative_reject[alternative_order[i]];
618 int best_nregs = alternative_nregs[alternative_order[i]];
619 int tmp;
621 for (j = i + 1; j < recog_data.n_alternatives; j++)
623 int this_reject = alternative_reject[alternative_order[j]];
624 int this_nregs = alternative_nregs[alternative_order[j]];
626 if (this_reject < best_reject
627 || (this_reject == best_reject && this_nregs > best_nregs))
629 best = j;
630 best_reject = this_reject;
631 best_nregs = this_nregs;
635 tmp = alternative_order[best];
636 alternative_order[best] = alternative_order[i];
637 alternative_order[i] = tmp;
640 /* Substitute the operands as determined by op_alt_regno for the best
641 alternative. */
642 j = alternative_order[0];
644 for (i = 0; i < recog_data.n_operands; i++)
646 enum machine_mode mode = recog_data.operand_mode[i];
647 if (op_alt_regno[i][j] == -1)
648 continue;
650 validate_change (insn, recog_data.operand_loc[i],
651 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
654 for (i = recog_data.n_dups - 1; i >= 0; i--)
656 int op = recog_data.dup_num[i];
657 enum machine_mode mode = recog_data.operand_mode[op];
659 if (op_alt_regno[op][j] == -1)
660 continue;
662 validate_change (insn, recog_data.dup_loc[i],
663 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
666 return apply_change_group ();
669 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
670 addressing now.
671 This code might also be useful when reload gave up on reg+reg addressing
672 because of clashes between the return register and INDEX_REG_CLASS. */
674 /* The maximum number of uses of a register we can keep track of to
675 replace them with reg+reg addressing. */
676 #define RELOAD_COMBINE_MAX_USES 16
678 /* Describes a recorded use of a register. */
679 struct reg_use
681 /* The insn where a register has been used. */
682 rtx insn;
683 /* Points to the memory reference enclosing the use, if any, NULL_RTX
684 otherwise. */
685 rtx containing_mem;
686 /* Location of the register withing INSN. */
687 rtx *usep;
688 /* The reverse uid of the insn. */
689 int ruid;
692 /* If the register is used in some unknown fashion, USE_INDEX is negative.
693 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
694 indicates where it is first set or clobbered.
695 Otherwise, USE_INDEX is the index of the last encountered use of the
696 register (which is first among these we have seen since we scan backwards).
697 USE_RUID indicates the first encountered, i.e. last, of these uses.
698 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
699 with a constant offset; OFFSET contains this constant in that case.
700 STORE_RUID is always meaningful if we only want to use a value in a
701 register in a different place: it denotes the next insn in the insn
702 stream (i.e. the last encountered) that sets or clobbers the register.
703 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
704 static struct
706 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
707 rtx offset;
708 int use_index;
709 int store_ruid;
710 int real_store_ruid;
711 int use_ruid;
712 bool all_offsets_match;
713 } reg_state[FIRST_PSEUDO_REGISTER];
715 /* Reverse linear uid. This is increased in reload_combine while scanning
716 the instructions from last to first. It is used to set last_label_ruid
717 and the store_ruid / use_ruid fields in reg_state. */
718 static int reload_combine_ruid;
720 /* The RUID of the last label we encountered in reload_combine. */
721 static int last_label_ruid;
723 /* The RUID of the last jump we encountered in reload_combine. */
724 static int last_jump_ruid;
726 /* The register numbers of the first and last index register. A value of
727 -1 in LAST_INDEX_REG indicates that we've previously computed these
728 values and found no suitable index registers. */
729 static int first_index_reg = -1;
730 static int last_index_reg;
732 #define LABEL_LIVE(LABEL) \
733 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
735 /* Subroutine of reload_combine_split_ruids, called to fix up a single
736 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
738 static inline void
739 reload_combine_split_one_ruid (int *pruid, int split_ruid)
741 if (*pruid > split_ruid)
742 (*pruid)++;
745 /* Called when we insert a new insn in a position we've already passed in
746 the scan. Examine all our state, increasing all ruids that are higher
747 than SPLIT_RUID by one in order to make room for a new insn. */
749 static void
750 reload_combine_split_ruids (int split_ruid)
752 unsigned i;
754 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
755 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
756 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
758 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
760 int j, idx = reg_state[i].use_index;
761 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
762 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
763 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
764 split_ruid);
765 if (idx < 0)
766 continue;
767 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
769 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
770 split_ruid);
775 /* Called when we are about to rescan a previously encountered insn with
776 reload_combine_note_use after modifying some part of it. This clears all
777 information about uses in that particular insn. */
779 static void
780 reload_combine_purge_insn_uses (rtx insn)
782 unsigned i;
784 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
786 int j, k, idx = reg_state[i].use_index;
787 if (idx < 0)
788 continue;
789 j = k = RELOAD_COMBINE_MAX_USES;
790 while (j-- > idx)
792 if (reg_state[i].reg_use[j].insn != insn)
794 k--;
795 if (k != j)
796 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
799 reg_state[i].use_index = k;
803 /* Called when we need to forget about all uses of REGNO after an insn
804 which is identified by RUID. */
806 static void
807 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
809 int j, k, idx = reg_state[regno].use_index;
810 if (idx < 0)
811 return;
812 j = k = RELOAD_COMBINE_MAX_USES;
813 while (j-- > idx)
815 if (reg_state[regno].reg_use[j].ruid >= ruid)
817 k--;
818 if (k != j)
819 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
822 reg_state[regno].use_index = k;
825 /* Find the use of REGNO with the ruid that is highest among those
826 lower than RUID_LIMIT, and return it if it is the only use of this
827 reg in the insn. Return NULL otherwise. */
829 static struct reg_use *
830 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
832 int i, best_ruid = 0;
833 int use_idx = reg_state[regno].use_index;
834 struct reg_use *retval;
836 if (use_idx < 0)
837 return NULL;
838 retval = NULL;
839 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
841 struct reg_use *use = reg_state[regno].reg_use + i;
842 int this_ruid = use->ruid;
843 if (this_ruid >= ruid_limit)
844 continue;
845 if (this_ruid > best_ruid)
847 best_ruid = this_ruid;
848 retval = use;
850 else if (this_ruid == best_ruid)
851 retval = NULL;
853 if (last_label_ruid >= best_ruid)
854 return NULL;
855 return retval;
858 /* After we've moved an add insn, fix up any debug insns that occur
859 between the old location of the add and the new location. REG is
860 the destination register of the add insn; REPLACEMENT is the
861 SET_SRC of the add. FROM and TO specify the range in which we
862 should make this change on debug insns. */
864 static void
865 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
867 rtx insn;
868 for (insn = from; insn != to; insn = NEXT_INSN (insn))
870 rtx t;
872 if (!DEBUG_INSN_P (insn))
873 continue;
875 t = INSN_VAR_LOCATION_LOC (insn);
876 t = simplify_replace_rtx (t, reg, replacement);
877 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
881 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
882 with SRC in the insn described by USE, taking costs into account. Return
883 true if we made the replacement. */
885 static bool
886 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
888 rtx use_insn = use->insn;
889 rtx mem = use->containing_mem;
890 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
892 if (mem != NULL_RTX)
894 addr_space_t as = MEM_ADDR_SPACE (mem);
895 rtx oldaddr = XEXP (mem, 0);
896 rtx newaddr = NULL_RTX;
897 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
898 int new_cost;
900 newaddr = simplify_replace_rtx (oldaddr, reg, src);
901 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
903 XEXP (mem, 0) = newaddr;
904 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
905 XEXP (mem, 0) = oldaddr;
906 if (new_cost <= old_cost
907 && validate_change (use_insn,
908 &XEXP (mem, 0), newaddr, 0))
909 return true;
912 else
914 rtx new_set = single_set (use_insn);
915 if (new_set
916 && REG_P (SET_DEST (new_set))
917 && GET_CODE (SET_SRC (new_set)) == PLUS
918 && REG_P (XEXP (SET_SRC (new_set), 0))
919 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
921 rtx new_src;
922 int old_cost = set_src_cost (SET_SRC (new_set), speed);
924 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
925 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
927 if (set_src_cost (new_src, speed) <= old_cost
928 && validate_change (use_insn, &SET_SRC (new_set),
929 new_src, 0))
930 return true;
933 return false;
936 /* Called by reload_combine when scanning INSN. This function tries to detect
937 patterns where a constant is added to a register, and the result is used
938 in an address.
939 Return true if no further processing is needed on INSN; false if it wasn't
940 recognized and should be handled normally. */
942 static bool
943 reload_combine_recognize_const_pattern (rtx insn)
945 int from_ruid = reload_combine_ruid;
946 rtx set, pat, reg, src, addreg;
947 unsigned int regno;
948 struct reg_use *use;
949 bool must_move_add;
950 rtx add_moved_after_insn = NULL_RTX;
951 int add_moved_after_ruid = 0;
952 int clobbered_regno = -1;
954 set = single_set (insn);
955 if (set == NULL_RTX)
956 return false;
958 reg = SET_DEST (set);
959 src = SET_SRC (set);
960 if (!REG_P (reg)
961 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
962 || GET_MODE (reg) != Pmode
963 || reg == stack_pointer_rtx)
964 return false;
966 regno = REGNO (reg);
968 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
969 uses of REG1 inside an address, or inside another add insn. If
970 possible and profitable, merge the addition into subsequent
971 uses. */
972 if (GET_CODE (src) != PLUS
973 || !REG_P (XEXP (src, 0))
974 || !CONSTANT_P (XEXP (src, 1)))
975 return false;
977 addreg = XEXP (src, 0);
978 must_move_add = rtx_equal_p (reg, addreg);
980 pat = PATTERN (insn);
981 if (must_move_add && set != pat)
983 /* We have to be careful when moving the add; apart from the
984 single_set there may also be clobbers. Recognize one special
985 case, that of one clobber alongside the set (likely a clobber
986 of the CC register). */
987 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
988 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
989 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
990 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
991 return false;
992 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
997 use = reload_combine_closest_single_use (regno, from_ruid);
999 if (use)
1000 /* Start the search for the next use from here. */
1001 from_ruid = use->ruid;
1003 if (use && GET_MODE (*use->usep) == Pmode)
1005 bool delete_add = false;
1006 rtx use_insn = use->insn;
1007 int use_ruid = use->ruid;
1009 /* Avoid moving the add insn past a jump. */
1010 if (must_move_add && use_ruid <= last_jump_ruid)
1011 break;
1013 /* If the add clobbers another hard reg in parallel, don't move
1014 it past a real set of this hard reg. */
1015 if (must_move_add && clobbered_regno >= 0
1016 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1017 break;
1019 #ifdef HAVE_cc0
1020 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1021 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1022 break;
1023 #endif
1025 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1026 /* Avoid moving a use of ADDREG past a point where it is stored. */
1027 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1028 break;
1030 /* We also must not move the addition past an insn that sets
1031 the same register, unless we can combine two add insns. */
1032 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1034 if (use->containing_mem == NULL_RTX)
1035 delete_add = true;
1036 else
1037 break;
1040 if (try_replace_in_use (use, reg, src))
1042 reload_combine_purge_insn_uses (use_insn);
1043 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1044 use_ruid, NULL_RTX);
1046 if (delete_add)
1048 fixup_debug_insns (reg, src, insn, use_insn);
1049 delete_insn (insn);
1050 return true;
1052 if (must_move_add)
1054 add_moved_after_insn = use_insn;
1055 add_moved_after_ruid = use_ruid;
1057 continue;
1060 /* If we get here, we couldn't handle this use. */
1061 if (must_move_add)
1062 break;
1064 while (use);
1066 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1067 /* Process the add normally. */
1068 return false;
1070 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1072 reorder_insns (insn, insn, add_moved_after_insn);
1073 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1074 reload_combine_split_ruids (add_moved_after_ruid - 1);
1075 reload_combine_note_use (&PATTERN (insn), insn,
1076 add_moved_after_ruid, NULL_RTX);
1077 reg_state[regno].store_ruid = add_moved_after_ruid;
1079 return true;
1082 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1083 can handle and improve. Return true if no further processing is needed on
1084 INSN; false if it wasn't recognized and should be handled normally. */
1086 static bool
1087 reload_combine_recognize_pattern (rtx insn)
1089 rtx set, reg, src;
1090 unsigned int regno;
1092 set = single_set (insn);
1093 if (set == NULL_RTX)
1094 return false;
1096 reg = SET_DEST (set);
1097 src = SET_SRC (set);
1098 if (!REG_P (reg)
1099 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1100 return false;
1102 regno = REGNO (reg);
1104 /* Look for (set (REGX) (CONST_INT))
1105 (set (REGX) (PLUS (REGX) (REGY)))
1107 ... (MEM (REGX)) ...
1108 and convert it to
1109 (set (REGZ) (CONST_INT))
1111 ... (MEM (PLUS (REGZ) (REGY)))... .
1113 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1114 and that we know all uses of REGX before it dies.
1115 Also, explicitly check that REGX != REGY; our life information
1116 does not yet show whether REGY changes in this insn. */
1118 if (GET_CODE (src) == PLUS
1119 && reg_state[regno].all_offsets_match
1120 && last_index_reg != -1
1121 && REG_P (XEXP (src, 1))
1122 && rtx_equal_p (XEXP (src, 0), reg)
1123 && !rtx_equal_p (XEXP (src, 1), reg)
1124 && reg_state[regno].use_index >= 0
1125 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1126 && last_label_ruid < reg_state[regno].use_ruid)
1128 rtx base = XEXP (src, 1);
1129 rtx prev = prev_nonnote_nondebug_insn (insn);
1130 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1131 rtx index_reg = NULL_RTX;
1132 rtx reg_sum = NULL_RTX;
1133 int i;
1135 /* Now we need to set INDEX_REG to an index register (denoted as
1136 REGZ in the illustration above) and REG_SUM to the expression
1137 register+register that we want to use to substitute uses of REG
1138 (typically in MEMs) with. First check REG and BASE for being
1139 index registers; we can use them even if they are not dead. */
1140 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1141 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1142 REGNO (base)))
1144 index_reg = reg;
1145 reg_sum = src;
1147 else
1149 /* Otherwise, look for a free index register. Since we have
1150 checked above that neither REG nor BASE are index registers,
1151 if we find anything at all, it will be different from these
1152 two registers. */
1153 for (i = first_index_reg; i <= last_index_reg; i++)
1155 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1156 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1157 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1158 && (call_used_regs[i] || df_regs_ever_live_p (i))
1159 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1160 && !fixed_regs[i] && !global_regs[i]
1161 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1162 && targetm.hard_regno_scratch_ok (i))
1164 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1165 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1166 break;
1171 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1172 (REGY), i.e. BASE, is not clobbered before the last use we'll
1173 create. */
1174 if (reg_sum
1175 && prev_set
1176 && CONST_INT_P (SET_SRC (prev_set))
1177 && rtx_equal_p (SET_DEST (prev_set), reg)
1178 && (reg_state[REGNO (base)].store_ruid
1179 <= reg_state[regno].use_ruid))
1181 /* Change destination register and, if necessary, the constant
1182 value in PREV, the constant loading instruction. */
1183 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1184 if (reg_state[regno].offset != const0_rtx)
1185 validate_change (prev,
1186 &SET_SRC (prev_set),
1187 GEN_INT (INTVAL (SET_SRC (prev_set))
1188 + INTVAL (reg_state[regno].offset)),
1191 /* Now for every use of REG that we have recorded, replace REG
1192 with REG_SUM. */
1193 for (i = reg_state[regno].use_index;
1194 i < RELOAD_COMBINE_MAX_USES; i++)
1195 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1196 reg_state[regno].reg_use[i].usep,
1197 /* Each change must have its own
1198 replacement. */
1199 reg_sum, 1);
1201 if (apply_change_group ())
1203 struct reg_use *lowest_ruid = NULL;
1205 /* For every new use of REG_SUM, we have to record the use
1206 of BASE therein, i.e. operand 1. */
1207 for (i = reg_state[regno].use_index;
1208 i < RELOAD_COMBINE_MAX_USES; i++)
1210 struct reg_use *use = reg_state[regno].reg_use + i;
1211 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1212 use->ruid, use->containing_mem);
1213 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1214 lowest_ruid = use;
1217 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1219 /* Delete the reg-reg addition. */
1220 delete_insn (insn);
1222 if (reg_state[regno].offset != const0_rtx)
1223 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1224 are now invalid. */
1225 remove_reg_equal_equiv_notes (prev);
1227 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1228 return true;
1232 return false;
1235 static void
1236 reload_combine (void)
1238 rtx insn, prev;
1239 basic_block bb;
1240 unsigned int r;
1241 int min_labelno, n_labels;
1242 HARD_REG_SET ever_live_at_start, *label_live;
1244 /* To avoid wasting too much time later searching for an index register,
1245 determine the minimum and maximum index register numbers. */
1246 if (INDEX_REG_CLASS == NO_REGS)
1247 last_index_reg = -1;
1248 else if (first_index_reg == -1 && last_index_reg == 0)
1250 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1251 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1253 if (first_index_reg == -1)
1254 first_index_reg = r;
1256 last_index_reg = r;
1259 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1260 to -1 so we'll know to quit early the next time we get here. */
1261 if (first_index_reg == -1)
1263 last_index_reg = -1;
1264 return;
1268 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1269 information is a bit fuzzy immediately after reload, but it's
1270 still good enough to determine which registers are live at a jump
1271 destination. */
1272 min_labelno = get_first_label_num ();
1273 n_labels = max_label_num () - min_labelno;
1274 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1275 CLEAR_HARD_REG_SET (ever_live_at_start);
1277 FOR_EACH_BB_REVERSE (bb)
1279 insn = BB_HEAD (bb);
1280 if (LABEL_P (insn))
1282 HARD_REG_SET live;
1283 bitmap live_in = df_get_live_in (bb);
1285 REG_SET_TO_HARD_REG_SET (live, live_in);
1286 compute_use_by_pseudos (&live, live_in);
1287 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1288 IOR_HARD_REG_SET (ever_live_at_start, live);
1292 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1293 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1294 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1296 reg_state[r].store_ruid = 0;
1297 reg_state[r].real_store_ruid = 0;
1298 if (fixed_regs[r])
1299 reg_state[r].use_index = -1;
1300 else
1301 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1304 for (insn = get_last_insn (); insn; insn = prev)
1306 bool control_flow_insn;
1307 rtx note;
1309 prev = PREV_INSN (insn);
1311 /* We cannot do our optimization across labels. Invalidating all the use
1312 information we have would be costly, so we just note where the label
1313 is and then later disable any optimization that would cross it. */
1314 if (LABEL_P (insn))
1315 last_label_ruid = reload_combine_ruid;
1316 else if (BARRIER_P (insn))
1318 /* Crossing a barrier resets all the use information. */
1319 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1320 if (! fixed_regs[r])
1321 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1323 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1324 /* Optimizations across insns being marked as volatile must be
1325 prevented. All the usage information is invalidated
1326 here. */
1327 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1328 if (! fixed_regs[r]
1329 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1330 reg_state[r].use_index = -1;
1332 if (! NONDEBUG_INSN_P (insn))
1333 continue;
1335 reload_combine_ruid++;
1337 control_flow_insn = control_flow_insn_p (insn);
1338 if (control_flow_insn)
1339 last_jump_ruid = reload_combine_ruid;
1341 if (reload_combine_recognize_const_pattern (insn)
1342 || reload_combine_recognize_pattern (insn))
1343 continue;
1345 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1347 if (CALL_P (insn))
1349 rtx link;
1351 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1352 if (call_used_regs[r])
1354 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1355 reg_state[r].store_ruid = reload_combine_ruid;
1358 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1359 link = XEXP (link, 1))
1361 rtx setuse = XEXP (link, 0);
1362 rtx usage_rtx = XEXP (setuse, 0);
1363 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1364 && REG_P (usage_rtx))
1366 unsigned int i;
1367 unsigned int start_reg = REGNO (usage_rtx);
1368 unsigned int num_regs
1369 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1370 unsigned int end_reg = start_reg + num_regs - 1;
1371 for (i = start_reg; i <= end_reg; i++)
1372 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1374 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1375 reg_state[i].store_ruid = reload_combine_ruid;
1377 else
1378 reg_state[i].use_index = -1;
1383 if (control_flow_insn && GET_CODE (PATTERN (insn)) != RETURN)
1385 /* Non-spill registers might be used at the call destination in
1386 some unknown fashion, so we have to mark the unknown use. */
1387 HARD_REG_SET *live;
1389 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1390 && JUMP_LABEL (insn))
1391 live = &LABEL_LIVE (JUMP_LABEL (insn));
1392 else
1393 live = &ever_live_at_start;
1395 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1396 if (TEST_HARD_REG_BIT (*live, r))
1397 reg_state[r].use_index = -1;
1400 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1401 NULL_RTX);
1403 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1405 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1407 int regno = REGNO (XEXP (note, 0));
1408 reg_state[regno].store_ruid = reload_combine_ruid;
1409 reg_state[regno].real_store_ruid = reload_combine_ruid;
1410 reg_state[regno].use_index = -1;
1415 free (label_live);
1418 /* Check if DST is a register or a subreg of a register; if it is,
1419 update store_ruid, real_store_ruid and use_index in the reg_state
1420 structure accordingly. Called via note_stores from reload_combine. */
1422 static void
1423 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1425 int regno = 0;
1426 int i;
1427 enum machine_mode mode = GET_MODE (dst);
1429 if (GET_CODE (dst) == SUBREG)
1431 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1432 GET_MODE (SUBREG_REG (dst)),
1433 SUBREG_BYTE (dst),
1434 GET_MODE (dst));
1435 dst = SUBREG_REG (dst);
1438 /* Some targets do argument pushes without adding REG_INC notes. */
1440 if (MEM_P (dst))
1442 dst = XEXP (dst, 0);
1443 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1444 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1445 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1447 regno = REGNO (XEXP (dst, 0));
1448 mode = GET_MODE (XEXP (dst, 0));
1449 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1451 /* We could probably do better, but for now mark the register
1452 as used in an unknown fashion and set/clobbered at this
1453 insn. */
1454 reg_state[i].use_index = -1;
1455 reg_state[i].store_ruid = reload_combine_ruid;
1456 reg_state[i].real_store_ruid = reload_combine_ruid;
1459 else
1460 return;
1463 if (!REG_P (dst))
1464 return;
1465 regno += REGNO (dst);
1467 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1468 careful with registers / register parts that are not full words.
1469 Similarly for ZERO_EXTRACT. */
1470 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1471 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1473 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1475 reg_state[i].use_index = -1;
1476 reg_state[i].store_ruid = reload_combine_ruid;
1477 reg_state[i].real_store_ruid = reload_combine_ruid;
1480 else
1482 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1484 reg_state[i].store_ruid = reload_combine_ruid;
1485 if (GET_CODE (set) == SET)
1486 reg_state[i].real_store_ruid = reload_combine_ruid;
1487 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1492 /* XP points to a piece of rtl that has to be checked for any uses of
1493 registers.
1494 *XP is the pattern of INSN, or a part of it.
1495 Called from reload_combine, and recursively by itself. */
1496 static void
1497 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1499 rtx x = *xp;
1500 enum rtx_code code = x->code;
1501 const char *fmt;
1502 int i, j;
1503 rtx offset = const0_rtx; /* For the REG case below. */
1505 switch (code)
1507 case SET:
1508 if (REG_P (SET_DEST (x)))
1510 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1511 return;
1513 break;
1515 case USE:
1516 /* If this is the USE of a return value, we can't change it. */
1517 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1519 /* Mark the return register as used in an unknown fashion. */
1520 rtx reg = XEXP (x, 0);
1521 int regno = REGNO (reg);
1522 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1524 while (--nregs >= 0)
1525 reg_state[regno + nregs].use_index = -1;
1526 return;
1528 break;
1530 case CLOBBER:
1531 if (REG_P (SET_DEST (x)))
1533 /* No spurious CLOBBERs of pseudo registers may remain. */
1534 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1535 return;
1537 break;
1539 case PLUS:
1540 /* We are interested in (plus (reg) (const_int)) . */
1541 if (!REG_P (XEXP (x, 0))
1542 || !CONST_INT_P (XEXP (x, 1)))
1543 break;
1544 offset = XEXP (x, 1);
1545 x = XEXP (x, 0);
1546 /* Fall through. */
1547 case REG:
1549 int regno = REGNO (x);
1550 int use_index;
1551 int nregs;
1553 /* No spurious USEs of pseudo registers may remain. */
1554 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1556 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1558 /* We can't substitute into multi-hard-reg uses. */
1559 if (nregs > 1)
1561 while (--nregs >= 0)
1562 reg_state[regno + nregs].use_index = -1;
1563 return;
1566 /* We may be called to update uses in previously seen insns.
1567 Don't add uses beyond the last store we saw. */
1568 if (ruid < reg_state[regno].store_ruid)
1569 return;
1571 /* If this register is already used in some unknown fashion, we
1572 can't do anything.
1573 If we decrement the index from zero to -1, we can't store more
1574 uses, so this register becomes used in an unknown fashion. */
1575 use_index = --reg_state[regno].use_index;
1576 if (use_index < 0)
1577 return;
1579 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1581 /* This is the first use of this register we have seen since we
1582 marked it as dead. */
1583 reg_state[regno].offset = offset;
1584 reg_state[regno].all_offsets_match = true;
1585 reg_state[regno].use_ruid = ruid;
1587 else
1589 if (reg_state[regno].use_ruid > ruid)
1590 reg_state[regno].use_ruid = ruid;
1592 if (! rtx_equal_p (offset, reg_state[regno].offset))
1593 reg_state[regno].all_offsets_match = false;
1596 reg_state[regno].reg_use[use_index].insn = insn;
1597 reg_state[regno].reg_use[use_index].ruid = ruid;
1598 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1599 reg_state[regno].reg_use[use_index].usep = xp;
1600 return;
1603 case MEM:
1604 containing_mem = x;
1605 break;
1607 default:
1608 break;
1611 /* Recursively process the components of X. */
1612 fmt = GET_RTX_FORMAT (code);
1613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1615 if (fmt[i] == 'e')
1616 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1617 else if (fmt[i] == 'E')
1619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1620 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1621 containing_mem);
1626 /* See if we can reduce the cost of a constant by replacing a move
1627 with an add. We track situations in which a register is set to a
1628 constant or to a register plus a constant. */
1629 /* We cannot do our optimization across labels. Invalidating all the
1630 information about register contents we have would be costly, so we
1631 use move2add_last_label_luid to note where the label is and then
1632 later disable any optimization that would cross it.
1633 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1634 are only valid if reg_set_luid[n] is greater than
1635 move2add_last_label_luid. */
1636 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1638 /* If reg_base_reg[n] is negative, register n has been set to
1639 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1640 If reg_base_reg[n] is non-negative, register n has been set to the
1641 sum of reg_offset[n] and the value of register reg_base_reg[n]
1642 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1643 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1644 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1645 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1646 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1648 /* move2add_luid is linearly increased while scanning the instructions
1649 from first to last. It is used to set reg_set_luid in
1650 reload_cse_move2add and move2add_note_store. */
1651 static int move2add_luid;
1653 /* move2add_last_label_luid is set whenever a label is found. Labels
1654 invalidate all previously collected reg_offset data. */
1655 static int move2add_last_label_luid;
1657 /* ??? We don't know how zero / sign extension is handled, hence we
1658 can't go from a narrower to a wider mode. */
1659 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1660 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1661 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1662 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1664 /* This function is called with INSN that sets REG to (SYM + OFF),
1665 while REG is known to already have value (SYM + offset).
1666 This function tries to change INSN into an add instruction
1667 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1668 It also updates the information about REG's known value.
1669 Return true if we made a change. */
1671 static bool
1672 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1674 rtx pat = PATTERN (insn);
1675 rtx src = SET_SRC (pat);
1676 int regno = REGNO (reg);
1677 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1678 GET_MODE (reg));
1679 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1680 bool changed = false;
1682 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1683 use (set (reg) (reg)) instead.
1684 We don't delete this insn, nor do we convert it into a
1685 note, to avoid losing register notes or the return
1686 value flag. jump2 already knows how to get rid of
1687 no-op moves. */
1688 if (new_src == const0_rtx)
1690 /* If the constants are different, this is a
1691 truncation, that, if turned into (set (reg)
1692 (reg)), would be discarded. Maybe we should
1693 try a truncMN pattern? */
1694 if (INTVAL (off) == reg_offset [regno])
1695 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1697 else
1699 struct full_rtx_costs oldcst, newcst;
1700 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1702 get_full_set_rtx_cost (pat, &oldcst);
1703 SET_SRC (pat) = tem;
1704 get_full_set_rtx_cost (pat, &newcst);
1705 SET_SRC (pat) = src;
1707 if (costs_lt_p (&newcst, &oldcst, speed)
1708 && have_add2_insn (reg, new_src))
1709 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1710 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1712 enum machine_mode narrow_mode;
1713 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1714 narrow_mode != VOIDmode
1715 && narrow_mode != GET_MODE (reg);
1716 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1718 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1719 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1720 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1722 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1723 REGNO (reg));
1724 rtx narrow_src = gen_int_mode (INTVAL (off),
1725 narrow_mode);
1726 rtx new_set
1727 = gen_rtx_SET (VOIDmode,
1728 gen_rtx_STRICT_LOW_PART (VOIDmode,
1729 narrow_reg),
1730 narrow_src);
1731 changed = validate_change (insn, &PATTERN (insn),
1732 new_set, 0);
1733 if (changed)
1734 break;
1739 reg_set_luid[regno] = move2add_luid;
1740 reg_base_reg[regno] = -1;
1741 reg_mode[regno] = GET_MODE (reg);
1742 reg_symbol_ref[regno] = sym;
1743 reg_offset[regno] = INTVAL (off);
1744 return changed;
1748 /* This function is called with INSN that sets REG to (SYM + OFF),
1749 but REG doesn't have known value (SYM + offset). This function
1750 tries to find another register which is known to already have
1751 value (SYM + offset) and change INSN into an add instruction
1752 (set (REG) (plus (the found register) (OFF - offset))) if such
1753 a register is found. It also updates the information about
1754 REG's known value.
1755 Return true iff we made a change. */
1757 static bool
1758 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1760 rtx pat = PATTERN (insn);
1761 rtx src = SET_SRC (pat);
1762 int regno = REGNO (reg);
1763 int min_regno = 0;
1764 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1765 int i;
1766 bool changed = false;
1767 struct full_rtx_costs oldcst, newcst, mincst;
1768 rtx plus_expr;
1770 init_costs_to_max (&mincst);
1771 get_full_set_rtx_cost (pat, &oldcst);
1773 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1774 SET_SRC (pat) = plus_expr;
1776 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1777 if (reg_set_luid[i] > move2add_last_label_luid
1778 && reg_mode[i] == GET_MODE (reg)
1779 && reg_base_reg[i] < 0
1780 && reg_symbol_ref[i] != NULL_RTX
1781 && rtx_equal_p (sym, reg_symbol_ref[i]))
1783 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1784 GET_MODE (reg));
1785 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1786 use (set (reg) (reg)) instead.
1787 We don't delete this insn, nor do we convert it into a
1788 note, to avoid losing register notes or the return
1789 value flag. jump2 already knows how to get rid of
1790 no-op moves. */
1791 if (new_src == const0_rtx)
1793 init_costs_to_zero (&mincst);
1794 min_regno = i;
1795 break;
1797 else
1799 XEXP (plus_expr, 1) = new_src;
1800 get_full_set_rtx_cost (pat, &newcst);
1802 if (costs_lt_p (&newcst, &mincst, speed))
1804 mincst = newcst;
1805 min_regno = i;
1809 SET_SRC (pat) = src;
1811 if (costs_lt_p (&mincst, &oldcst, speed))
1813 rtx tem;
1815 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1816 if (i != min_regno)
1818 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1819 GET_MODE (reg));
1820 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1822 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1823 changed = true;
1825 reg_set_luid[regno] = move2add_luid;
1826 reg_base_reg[regno] = -1;
1827 reg_mode[regno] = GET_MODE (reg);
1828 reg_symbol_ref[regno] = sym;
1829 reg_offset[regno] = INTVAL (off);
1830 return changed;
1833 /* Convert move insns with constant inputs to additions if they are cheaper.
1834 Return true if any changes were made. */
1835 static bool
1836 reload_cse_move2add (rtx first)
1838 int i;
1839 rtx insn;
1840 bool changed = false;
1842 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1844 reg_set_luid[i] = 0;
1845 reg_offset[i] = 0;
1846 reg_base_reg[i] = 0;
1847 reg_symbol_ref[i] = NULL_RTX;
1848 reg_mode[i] = VOIDmode;
1851 move2add_last_label_luid = 0;
1852 move2add_luid = 2;
1853 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1855 rtx pat, note;
1857 if (LABEL_P (insn))
1859 move2add_last_label_luid = move2add_luid;
1860 /* We're going to increment move2add_luid twice after a
1861 label, so that we can use move2add_last_label_luid + 1 as
1862 the luid for constants. */
1863 move2add_luid++;
1864 continue;
1866 if (! INSN_P (insn))
1867 continue;
1868 pat = PATTERN (insn);
1869 /* For simplicity, we only perform this optimization on
1870 straightforward SETs. */
1871 if (GET_CODE (pat) == SET
1872 && REG_P (SET_DEST (pat)))
1874 rtx reg = SET_DEST (pat);
1875 int regno = REGNO (reg);
1876 rtx src = SET_SRC (pat);
1878 /* Check if we have valid information on the contents of this
1879 register in the mode of REG. */
1880 if (reg_set_luid[regno] > move2add_last_label_luid
1881 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1882 && dbg_cnt (cse2_move2add))
1884 /* Try to transform (set (REGX) (CONST_INT A))
1886 (set (REGX) (CONST_INT B))
1888 (set (REGX) (CONST_INT A))
1890 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1892 (set (REGX) (CONST_INT A))
1894 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1897 if (CONST_INT_P (src)
1898 && reg_base_reg[regno] < 0
1899 && reg_symbol_ref[regno] == NULL_RTX)
1901 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1902 continue;
1905 /* Try to transform (set (REGX) (REGY))
1906 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1908 (set (REGX) (REGY))
1909 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1911 (set (REGX) (REGY))
1912 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1914 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1915 else if (REG_P (src)
1916 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1917 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1918 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1919 reg_mode[REGNO (src)]))
1921 rtx next = next_nonnote_nondebug_insn (insn);
1922 rtx set = NULL_RTX;
1923 if (next)
1924 set = single_set (next);
1925 if (set
1926 && SET_DEST (set) == reg
1927 && GET_CODE (SET_SRC (set)) == PLUS
1928 && XEXP (SET_SRC (set), 0) == reg
1929 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1931 rtx src3 = XEXP (SET_SRC (set), 1);
1932 HOST_WIDE_INT added_offset = INTVAL (src3);
1933 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1934 HOST_WIDE_INT regno_offset = reg_offset[regno];
1935 rtx new_src =
1936 gen_int_mode (added_offset
1937 + base_offset
1938 - regno_offset,
1939 GET_MODE (reg));
1940 bool success = false;
1941 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1943 if (new_src == const0_rtx)
1944 /* See above why we create (set (reg) (reg)) here. */
1945 success
1946 = validate_change (next, &SET_SRC (set), reg, 0);
1947 else
1949 rtx old_src = SET_SRC (set);
1950 struct full_rtx_costs oldcst, newcst;
1951 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1953 get_full_set_rtx_cost (set, &oldcst);
1954 SET_SRC (set) = tem;
1955 get_full_set_src_cost (tem, &newcst);
1956 SET_SRC (set) = old_src;
1957 costs_add_n_insns (&oldcst, 1);
1959 if (costs_lt_p (&newcst, &oldcst, speed)
1960 && have_add2_insn (reg, new_src))
1962 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
1963 success
1964 = validate_change (next, &PATTERN (next),
1965 newpat, 0);
1968 if (success)
1969 delete_insn (insn);
1970 changed |= success;
1971 insn = next;
1972 reg_mode[regno] = GET_MODE (reg);
1973 reg_offset[regno] =
1974 trunc_int_for_mode (added_offset + base_offset,
1975 GET_MODE (reg));
1976 continue;
1981 /* Try to transform
1982 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1984 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1986 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1988 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1989 if ((GET_CODE (src) == SYMBOL_REF
1990 || (GET_CODE (src) == CONST
1991 && GET_CODE (XEXP (src, 0)) == PLUS
1992 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
1993 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
1994 && dbg_cnt (cse2_move2add))
1996 rtx sym, off;
1998 if (GET_CODE (src) == SYMBOL_REF)
2000 sym = src;
2001 off = const0_rtx;
2003 else
2005 sym = XEXP (XEXP (src, 0), 0);
2006 off = XEXP (XEXP (src, 0), 1);
2009 /* If the reg already contains the value which is sum of
2010 sym and some constant value, we can use an add2 insn. */
2011 if (reg_set_luid[regno] > move2add_last_label_luid
2012 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
2013 && reg_base_reg[regno] < 0
2014 && reg_symbol_ref[regno] != NULL_RTX
2015 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2016 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2018 /* Otherwise, we have to find a register whose value is sum
2019 of sym and some constant value. */
2020 else
2021 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2023 continue;
2027 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2029 if (REG_NOTE_KIND (note) == REG_INC
2030 && REG_P (XEXP (note, 0)))
2032 /* Reset the information about this register. */
2033 int regno = REGNO (XEXP (note, 0));
2034 if (regno < FIRST_PSEUDO_REGISTER)
2035 reg_set_luid[regno] = 0;
2038 note_stores (PATTERN (insn), move2add_note_store, insn);
2040 /* If INSN is a conditional branch, we try to extract an
2041 implicit set out of it. */
2042 if (any_condjump_p (insn))
2044 rtx cnd = fis_get_condition (insn);
2046 if (cnd != NULL_RTX
2047 && GET_CODE (cnd) == NE
2048 && REG_P (XEXP (cnd, 0))
2049 && !reg_set_p (XEXP (cnd, 0), insn)
2050 /* The following two checks, which are also in
2051 move2add_note_store, are intended to reduce the
2052 number of calls to gen_rtx_SET to avoid memory
2053 allocation if possible. */
2054 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2055 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2056 && CONST_INT_P (XEXP (cnd, 1)))
2058 rtx implicit_set =
2059 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2060 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2064 /* If this is a CALL_INSN, all call used registers are stored with
2065 unknown values. */
2066 if (CALL_P (insn))
2068 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2070 if (call_used_regs[i])
2071 /* Reset the information about this register. */
2072 reg_set_luid[i] = 0;
2076 return changed;
2079 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2080 contains SET.
2081 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2082 Called from reload_cse_move2add via note_stores. */
2084 static void
2085 move2add_note_store (rtx dst, const_rtx set, void *data)
2087 rtx insn = (rtx) data;
2088 unsigned int regno = 0;
2089 unsigned int nregs = 0;
2090 unsigned int i;
2091 enum machine_mode mode = GET_MODE (dst);
2093 if (GET_CODE (dst) == SUBREG)
2095 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2096 GET_MODE (SUBREG_REG (dst)),
2097 SUBREG_BYTE (dst),
2098 GET_MODE (dst));
2099 nregs = subreg_nregs (dst);
2100 dst = SUBREG_REG (dst);
2103 /* Some targets do argument pushes without adding REG_INC notes. */
2105 if (MEM_P (dst))
2107 dst = XEXP (dst, 0);
2108 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2109 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2110 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2111 return;
2113 if (!REG_P (dst))
2114 return;
2116 regno += REGNO (dst);
2117 if (!nregs)
2118 nregs = hard_regno_nregs[regno][mode];
2120 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2121 && nregs == 1 && GET_CODE (set) == SET)
2123 rtx note, sym = NULL_RTX;
2124 HOST_WIDE_INT off;
2126 note = find_reg_equal_equiv_note (insn);
2127 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2129 sym = XEXP (note, 0);
2130 off = 0;
2132 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2133 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2134 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2135 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2137 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2138 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2141 if (sym != NULL_RTX)
2143 reg_base_reg[regno] = -1;
2144 reg_symbol_ref[regno] = sym;
2145 reg_offset[regno] = off;
2146 reg_mode[regno] = mode;
2147 reg_set_luid[regno] = move2add_luid;
2148 return;
2152 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2153 && nregs == 1 && GET_CODE (set) == SET
2154 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2155 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2157 rtx src = SET_SRC (set);
2158 rtx base_reg;
2159 HOST_WIDE_INT offset;
2160 int base_regno;
2161 /* This may be different from mode, if SET_DEST (set) is a
2162 SUBREG. */
2163 enum machine_mode dst_mode = GET_MODE (dst);
2165 switch (GET_CODE (src))
2167 case PLUS:
2168 if (REG_P (XEXP (src, 0)))
2170 base_reg = XEXP (src, 0);
2172 if (CONST_INT_P (XEXP (src, 1)))
2173 offset = INTVAL (XEXP (src, 1));
2174 else if (REG_P (XEXP (src, 1))
2175 && (reg_set_luid[REGNO (XEXP (src, 1))]
2176 > move2add_last_label_luid)
2177 && (MODES_OK_FOR_MOVE2ADD
2178 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2180 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2181 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2182 offset = reg_offset[REGNO (XEXP (src, 1))];
2183 /* Maybe the first register is known to be a
2184 constant. */
2185 else if (reg_set_luid[REGNO (base_reg)]
2186 > move2add_last_label_luid
2187 && (MODES_OK_FOR_MOVE2ADD
2188 (dst_mode, reg_mode[REGNO (base_reg)]))
2189 && reg_base_reg[REGNO (base_reg)] < 0
2190 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2192 offset = reg_offset[REGNO (base_reg)];
2193 base_reg = XEXP (src, 1);
2195 else
2196 goto invalidate;
2198 else
2199 goto invalidate;
2201 break;
2204 goto invalidate;
2206 case REG:
2207 base_reg = src;
2208 offset = 0;
2209 break;
2211 case CONST_INT:
2212 /* Start tracking the register as a constant. */
2213 reg_base_reg[regno] = -1;
2214 reg_symbol_ref[regno] = NULL_RTX;
2215 reg_offset[regno] = INTVAL (SET_SRC (set));
2216 /* We assign the same luid to all registers set to constants. */
2217 reg_set_luid[regno] = move2add_last_label_luid + 1;
2218 reg_mode[regno] = mode;
2219 return;
2221 default:
2222 invalidate:
2223 /* Invalidate the contents of the register. */
2224 reg_set_luid[regno] = 0;
2225 return;
2228 base_regno = REGNO (base_reg);
2229 /* If information about the base register is not valid, set it
2230 up as a new base register, pretending its value is known
2231 starting from the current insn. */
2232 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2234 reg_base_reg[base_regno] = base_regno;
2235 reg_symbol_ref[base_regno] = NULL_RTX;
2236 reg_offset[base_regno] = 0;
2237 reg_set_luid[base_regno] = move2add_luid;
2238 reg_mode[base_regno] = mode;
2240 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2241 reg_mode[base_regno]))
2242 goto invalidate;
2244 reg_mode[regno] = mode;
2246 /* Copy base information from our base register. */
2247 reg_set_luid[regno] = reg_set_luid[base_regno];
2248 reg_base_reg[regno] = reg_base_reg[base_regno];
2249 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2251 /* Compute the sum of the offsets or constants. */
2252 reg_offset[regno] = trunc_int_for_mode (offset
2253 + reg_offset[base_regno],
2254 dst_mode);
2256 else
2258 unsigned int endregno = regno + nregs;
2260 for (i = regno; i < endregno; i++)
2261 /* Reset the information about this register. */
2262 reg_set_luid[i] = 0;
2266 static bool
2267 gate_handle_postreload (void)
2269 return (optimize > 0 && reload_completed);
2273 static unsigned int
2274 rest_of_handle_postreload (void)
2276 if (!dbg_cnt (postreload_cse))
2277 return 0;
2279 /* Do a very simple CSE pass over just the hard registers. */
2280 reload_cse_regs (get_insns ());
2281 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2282 Remove any EH edges associated with them. */
2283 if (cfun->can_throw_non_call_exceptions)
2284 purge_all_dead_edges ();
2286 return 0;
2289 struct rtl_opt_pass pass_postreload_cse =
2292 RTL_PASS,
2293 "postreload", /* name */
2294 gate_handle_postreload, /* gate */
2295 rest_of_handle_postreload, /* execute */
2296 NULL, /* sub */
2297 NULL, /* next */
2298 0, /* static_pass_number */
2299 TV_RELOAD_CSE_REGS, /* tv_id */
2300 0, /* properties_required */
2301 0, /* properties_provided */
2302 0, /* properties_destroyed */
2303 0, /* todo_flags_start */
2304 TODO_df_finish | TODO_verify_rtl_sharing |
2305 0 /* todo_flags_finish */