2013-11-28 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / predict.c
blob822343b1295ad6e187f133ca25461b61791037b5
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "pointer-set.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimple-ssa.h"
62 #include "cgraph.h"
63 #include "tree-cfg.h"
64 #include "tree-phinodes.h"
65 #include "ssa-iterators.h"
66 #include "tree-ssa-loop-niter.h"
67 #include "tree-ssa-loop.h"
68 #include "tree-pass.h"
69 #include "tree-scalar-evolution.h"
70 #include "cfgloop.h"
72 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
73 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
74 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
75 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
77 /* Random guesstimation given names.
78 PROV_VERY_UNLIKELY should be small enough so basic block predicted
79 by it gets below HOT_BB_FREQUENCY_FRACTION. */
80 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
81 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
82 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
83 #define PROB_ALWAYS (REG_BR_PROB_BASE)
85 static void combine_predictions_for_insn (rtx, basic_block);
86 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
87 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
88 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
89 static bool can_predict_insn_p (const_rtx);
91 /* Information we hold about each branch predictor.
92 Filled using information from predict.def. */
94 struct predictor_info
96 const char *const name; /* Name used in the debugging dumps. */
97 const int hitrate; /* Expected hitrate used by
98 predict_insn_def call. */
99 const int flags;
102 /* Use given predictor without Dempster-Shaffer theory if it matches
103 using first_match heuristics. */
104 #define PRED_FLAG_FIRST_MATCH 1
106 /* Recompute hitrate in percent to our representation. */
108 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
110 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
111 static const struct predictor_info predictor_info[]= {
112 #include "predict.def"
114 /* Upper bound on predictors. */
115 {NULL, 0, 0}
117 #undef DEF_PREDICTOR
119 /* Return TRUE if frequency FREQ is considered to be hot. */
121 static inline bool
122 maybe_hot_frequency_p (struct function *fun, int freq)
124 struct cgraph_node *node = cgraph_get_node (fun->decl);
125 if (!profile_info || !flag_branch_probabilities)
127 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
128 return false;
129 if (node->frequency == NODE_FREQUENCY_HOT)
130 return true;
132 if (profile_status_for_function (fun) == PROFILE_ABSENT)
133 return true;
134 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
135 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
136 return false;
137 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
138 return false;
139 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
140 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
141 return false;
142 return true;
145 static gcov_type min_count = -1;
147 /* Determine the threshold for hot BB counts. */
149 gcov_type
150 get_hot_bb_threshold ()
152 gcov_working_set_t *ws;
153 if (min_count == -1)
155 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
156 gcc_assert (ws);
157 min_count = ws->min_counter;
159 return min_count;
162 /* Set the threshold for hot BB counts. */
164 void
165 set_hot_bb_threshold (gcov_type min)
167 min_count = min;
170 /* Return TRUE if frequency FREQ is considered to be hot. */
172 static inline bool
173 maybe_hot_count_p (struct function *fun, gcov_type count)
175 if (fun && profile_status_for_function (fun) != PROFILE_READ)
176 return true;
177 /* Code executed at most once is not hot. */
178 if (profile_info->runs >= count)
179 return false;
180 return (count >= get_hot_bb_threshold ());
183 /* Return true in case BB can be CPU intensive and should be optimized
184 for maximal performance. */
186 bool
187 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
189 gcc_checking_assert (fun);
190 if (profile_status_for_function (fun) == PROFILE_READ)
191 return maybe_hot_count_p (fun, bb->count);
192 return maybe_hot_frequency_p (fun, bb->frequency);
195 /* Return true if the call can be hot. */
197 bool
198 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
200 if (profile_info && flag_branch_probabilities
201 && !maybe_hot_count_p (NULL,
202 edge->count))
203 return false;
204 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
205 || (edge->callee
206 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
207 return false;
208 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
209 && (edge->callee
210 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
211 return false;
212 if (optimize_size)
213 return false;
214 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
215 return true;
216 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
217 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
218 return false;
219 if (flag_guess_branch_prob)
221 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
222 || edge->frequency <= (CGRAPH_FREQ_BASE
223 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
224 return false;
226 return true;
229 /* Return true in case BB can be CPU intensive and should be optimized
230 for maximal performance. */
232 bool
233 maybe_hot_edge_p (edge e)
235 if (profile_status == PROFILE_READ)
236 return maybe_hot_count_p (cfun, e->count);
237 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
242 /* Return true if profile COUNT and FREQUENCY, or function FUN static
243 node frequency reflects never being executed. */
245 static bool
246 probably_never_executed (struct function *fun,
247 gcov_type count, int frequency)
249 gcc_checking_assert (fun);
250 if (profile_status_for_function (fun) == PROFILE_READ)
252 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
253 if (count * unlikely_count_fraction >= profile_info->runs)
254 return false;
255 if (!frequency)
256 return true;
257 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
258 return false;
259 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
261 gcov_type computed_count;
262 /* Check for possibility of overflow, in which case entry bb count
263 is large enough to do the division first without losing much
264 precision. */
265 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
266 REG_BR_PROB_BASE)
268 gcov_type scaled_count
269 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
270 unlikely_count_fraction;
271 computed_count = RDIV (scaled_count,
272 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
274 else
276 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
277 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
278 computed_count *= frequency * unlikely_count_fraction;
280 if (computed_count >= profile_info->runs)
281 return false;
283 return true;
285 if ((!profile_info || !flag_branch_probabilities)
286 && (cgraph_get_node (fun->decl)->frequency
287 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
288 return true;
289 return false;
293 /* Return true in case BB is probably never executed. */
295 bool
296 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
298 return probably_never_executed (fun, bb->count, bb->frequency);
302 /* Return true in case edge E is probably never executed. */
304 bool
305 probably_never_executed_edge_p (struct function *fun, edge e)
307 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
310 /* Return true if NODE should be optimized for size. */
312 bool
313 cgraph_optimize_for_size_p (struct cgraph_node *node)
315 if (optimize_size)
316 return true;
317 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
318 return true;
319 else
320 return false;
323 /* Return true when current function should always be optimized for size. */
325 bool
326 optimize_function_for_size_p (struct function *fun)
328 if (optimize_size)
329 return true;
330 if (!fun || !fun->decl)
331 return false;
332 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
335 /* Return true when current function should always be optimized for speed. */
337 bool
338 optimize_function_for_speed_p (struct function *fun)
340 return !optimize_function_for_size_p (fun);
343 /* Return TRUE when BB should be optimized for size. */
345 bool
346 optimize_bb_for_size_p (const_basic_block bb)
348 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
351 /* Return TRUE when BB should be optimized for speed. */
353 bool
354 optimize_bb_for_speed_p (const_basic_block bb)
356 return !optimize_bb_for_size_p (bb);
359 /* Return TRUE when BB should be optimized for size. */
361 bool
362 optimize_edge_for_size_p (edge e)
364 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
367 /* Return TRUE when BB should be optimized for speed. */
369 bool
370 optimize_edge_for_speed_p (edge e)
372 return !optimize_edge_for_size_p (e);
375 /* Return TRUE when BB should be optimized for size. */
377 bool
378 optimize_insn_for_size_p (void)
380 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
383 /* Return TRUE when BB should be optimized for speed. */
385 bool
386 optimize_insn_for_speed_p (void)
388 return !optimize_insn_for_size_p ();
391 /* Return TRUE when LOOP should be optimized for size. */
393 bool
394 optimize_loop_for_size_p (struct loop *loop)
396 return optimize_bb_for_size_p (loop->header);
399 /* Return TRUE when LOOP should be optimized for speed. */
401 bool
402 optimize_loop_for_speed_p (struct loop *loop)
404 return optimize_bb_for_speed_p (loop->header);
407 /* Return TRUE when LOOP nest should be optimized for speed. */
409 bool
410 optimize_loop_nest_for_speed_p (struct loop *loop)
412 struct loop *l = loop;
413 if (optimize_loop_for_speed_p (loop))
414 return true;
415 l = loop->inner;
416 while (l && l != loop)
418 if (optimize_loop_for_speed_p (l))
419 return true;
420 if (l->inner)
421 l = l->inner;
422 else if (l->next)
423 l = l->next;
424 else
426 while (l != loop && !l->next)
427 l = loop_outer (l);
428 if (l != loop)
429 l = l->next;
432 return false;
435 /* Return TRUE when LOOP nest should be optimized for size. */
437 bool
438 optimize_loop_nest_for_size_p (struct loop *loop)
440 return !optimize_loop_nest_for_speed_p (loop);
443 /* Return true when edge E is likely to be well predictable by branch
444 predictor. */
446 bool
447 predictable_edge_p (edge e)
449 if (profile_status == PROFILE_ABSENT)
450 return false;
451 if ((e->probability
452 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
453 || (REG_BR_PROB_BASE - e->probability
454 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
455 return true;
456 return false;
460 /* Set RTL expansion for BB profile. */
462 void
463 rtl_profile_for_bb (basic_block bb)
465 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
468 /* Set RTL expansion for edge profile. */
470 void
471 rtl_profile_for_edge (edge e)
473 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
476 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
477 void
478 default_rtl_profile (void)
480 crtl->maybe_hot_insn_p = true;
483 /* Return true if the one of outgoing edges is already predicted by
484 PREDICTOR. */
486 bool
487 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
489 rtx note;
490 if (!INSN_P (BB_END (bb)))
491 return false;
492 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
493 if (REG_NOTE_KIND (note) == REG_BR_PRED
494 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
495 return true;
496 return false;
499 /* This map contains for a basic block the list of predictions for the
500 outgoing edges. */
502 static struct pointer_map_t *bb_predictions;
504 /* Structure representing predictions in tree level. */
506 struct edge_prediction {
507 struct edge_prediction *ep_next;
508 edge ep_edge;
509 enum br_predictor ep_predictor;
510 int ep_probability;
513 /* Return true if the one of outgoing edges is already predicted by
514 PREDICTOR. */
516 bool
517 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
519 struct edge_prediction *i;
520 void **preds = pointer_map_contains (bb_predictions, bb);
522 if (!preds)
523 return false;
525 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
526 if (i->ep_predictor == predictor)
527 return true;
528 return false;
531 /* Return true when the probability of edge is reliable.
533 The profile guessing code is good at predicting branch outcome (ie.
534 taken/not taken), that is predicted right slightly over 75% of time.
535 It is however notoriously poor on predicting the probability itself.
536 In general the profile appear a lot flatter (with probabilities closer
537 to 50%) than the reality so it is bad idea to use it to drive optimization
538 such as those disabling dynamic branch prediction for well predictable
539 branches.
541 There are two exceptions - edges leading to noreturn edges and edges
542 predicted by number of iterations heuristics are predicted well. This macro
543 should be able to distinguish those, but at the moment it simply check for
544 noreturn heuristic that is only one giving probability over 99% or bellow
545 1%. In future we might want to propagate reliability information across the
546 CFG if we find this information useful on multiple places. */
547 static bool
548 probability_reliable_p (int prob)
550 return (profile_status == PROFILE_READ
551 || (profile_status == PROFILE_GUESSED
552 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
555 /* Same predicate as above, working on edges. */
556 bool
557 edge_probability_reliable_p (const_edge e)
559 return probability_reliable_p (e->probability);
562 /* Same predicate as edge_probability_reliable_p, working on notes. */
563 bool
564 br_prob_note_reliable_p (const_rtx note)
566 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
567 return probability_reliable_p (XINT (note, 0));
570 static void
571 predict_insn (rtx insn, enum br_predictor predictor, int probability)
573 gcc_assert (any_condjump_p (insn));
574 if (!flag_guess_branch_prob)
575 return;
577 add_reg_note (insn, REG_BR_PRED,
578 gen_rtx_CONCAT (VOIDmode,
579 GEN_INT ((int) predictor),
580 GEN_INT ((int) probability)));
583 /* Predict insn by given predictor. */
585 void
586 predict_insn_def (rtx insn, enum br_predictor predictor,
587 enum prediction taken)
589 int probability = predictor_info[(int) predictor].hitrate;
591 if (taken != TAKEN)
592 probability = REG_BR_PROB_BASE - probability;
594 predict_insn (insn, predictor, probability);
597 /* Predict edge E with given probability if possible. */
599 void
600 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
602 rtx last_insn;
603 last_insn = BB_END (e->src);
605 /* We can store the branch prediction information only about
606 conditional jumps. */
607 if (!any_condjump_p (last_insn))
608 return;
610 /* We always store probability of branching. */
611 if (e->flags & EDGE_FALLTHRU)
612 probability = REG_BR_PROB_BASE - probability;
614 predict_insn (last_insn, predictor, probability);
617 /* Predict edge E with the given PROBABILITY. */
618 void
619 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
621 gcc_assert (profile_status != PROFILE_GUESSED);
622 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
624 && flag_guess_branch_prob && optimize)
626 struct edge_prediction *i = XNEW (struct edge_prediction);
627 void **preds = pointer_map_insert (bb_predictions, e->src);
629 i->ep_next = (struct edge_prediction *) *preds;
630 *preds = i;
631 i->ep_probability = probability;
632 i->ep_predictor = predictor;
633 i->ep_edge = e;
637 /* Remove all predictions on given basic block that are attached
638 to edge E. */
639 void
640 remove_predictions_associated_with_edge (edge e)
642 void **preds;
644 if (!bb_predictions)
645 return;
647 preds = pointer_map_contains (bb_predictions, e->src);
649 if (preds)
651 struct edge_prediction **prediction = (struct edge_prediction **) preds;
652 struct edge_prediction *next;
654 while (*prediction)
656 if ((*prediction)->ep_edge == e)
658 next = (*prediction)->ep_next;
659 free (*prediction);
660 *prediction = next;
662 else
663 prediction = &((*prediction)->ep_next);
668 /* Clears the list of predictions stored for BB. */
670 static void
671 clear_bb_predictions (basic_block bb)
673 void **preds = pointer_map_contains (bb_predictions, bb);
674 struct edge_prediction *pred, *next;
676 if (!preds)
677 return;
679 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
681 next = pred->ep_next;
682 free (pred);
684 *preds = NULL;
687 /* Return true when we can store prediction on insn INSN.
688 At the moment we represent predictions only on conditional
689 jumps, not at computed jump or other complicated cases. */
690 static bool
691 can_predict_insn_p (const_rtx insn)
693 return (JUMP_P (insn)
694 && any_condjump_p (insn)
695 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
698 /* Predict edge E by given predictor if possible. */
700 void
701 predict_edge_def (edge e, enum br_predictor predictor,
702 enum prediction taken)
704 int probability = predictor_info[(int) predictor].hitrate;
706 if (taken != TAKEN)
707 probability = REG_BR_PROB_BASE - probability;
709 predict_edge (e, predictor, probability);
712 /* Invert all branch predictions or probability notes in the INSN. This needs
713 to be done each time we invert the condition used by the jump. */
715 void
716 invert_br_probabilities (rtx insn)
718 rtx note;
720 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
721 if (REG_NOTE_KIND (note) == REG_BR_PROB)
722 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
723 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
724 XEXP (XEXP (note, 0), 1)
725 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
728 /* Dump information about the branch prediction to the output file. */
730 static void
731 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
732 basic_block bb, int used)
734 edge e;
735 edge_iterator ei;
737 if (!file)
738 return;
740 FOR_EACH_EDGE (e, ei, bb->succs)
741 if (! (e->flags & EDGE_FALLTHRU))
742 break;
744 fprintf (file, " %s heuristics%s: %.1f%%",
745 predictor_info[predictor].name,
746 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
748 if (bb->count)
750 fprintf (file, " exec ");
751 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
752 if (e)
754 fprintf (file, " hit ");
755 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
756 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
760 fprintf (file, "\n");
763 /* We can not predict the probabilities of outgoing edges of bb. Set them
764 evenly and hope for the best. */
765 static void
766 set_even_probabilities (basic_block bb)
768 int nedges = 0;
769 edge e;
770 edge_iterator ei;
772 FOR_EACH_EDGE (e, ei, bb->succs)
773 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
774 nedges ++;
775 FOR_EACH_EDGE (e, ei, bb->succs)
776 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
777 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
778 else
779 e->probability = 0;
782 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
783 note if not already present. Remove now useless REG_BR_PRED notes. */
785 static void
786 combine_predictions_for_insn (rtx insn, basic_block bb)
788 rtx prob_note;
789 rtx *pnote;
790 rtx note;
791 int best_probability = PROB_EVEN;
792 enum br_predictor best_predictor = END_PREDICTORS;
793 int combined_probability = REG_BR_PROB_BASE / 2;
794 int d;
795 bool first_match = false;
796 bool found = false;
798 if (!can_predict_insn_p (insn))
800 set_even_probabilities (bb);
801 return;
804 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
805 pnote = &REG_NOTES (insn);
806 if (dump_file)
807 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
808 bb->index);
810 /* We implement "first match" heuristics and use probability guessed
811 by predictor with smallest index. */
812 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
813 if (REG_NOTE_KIND (note) == REG_BR_PRED)
815 enum br_predictor predictor = ((enum br_predictor)
816 INTVAL (XEXP (XEXP (note, 0), 0)));
817 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
819 found = true;
820 if (best_predictor > predictor)
821 best_probability = probability, best_predictor = predictor;
823 d = (combined_probability * probability
824 + (REG_BR_PROB_BASE - combined_probability)
825 * (REG_BR_PROB_BASE - probability));
827 /* Use FP math to avoid overflows of 32bit integers. */
828 if (d == 0)
829 /* If one probability is 0% and one 100%, avoid division by zero. */
830 combined_probability = REG_BR_PROB_BASE / 2;
831 else
832 combined_probability = (((double) combined_probability) * probability
833 * REG_BR_PROB_BASE / d + 0.5);
836 /* Decide which heuristic to use. In case we didn't match anything,
837 use no_prediction heuristic, in case we did match, use either
838 first match or Dempster-Shaffer theory depending on the flags. */
840 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
841 first_match = true;
843 if (!found)
844 dump_prediction (dump_file, PRED_NO_PREDICTION,
845 combined_probability, bb, true);
846 else
848 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
849 bb, !first_match);
850 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
851 bb, first_match);
854 if (first_match)
855 combined_probability = best_probability;
856 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
858 while (*pnote)
860 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
862 enum br_predictor predictor = ((enum br_predictor)
863 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
864 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
866 dump_prediction (dump_file, predictor, probability, bb,
867 !first_match || best_predictor == predictor);
868 *pnote = XEXP (*pnote, 1);
870 else
871 pnote = &XEXP (*pnote, 1);
874 if (!prob_note)
876 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
878 /* Save the prediction into CFG in case we are seeing non-degenerated
879 conditional jump. */
880 if (!single_succ_p (bb))
882 BRANCH_EDGE (bb)->probability = combined_probability;
883 FALLTHRU_EDGE (bb)->probability
884 = REG_BR_PROB_BASE - combined_probability;
887 else if (!single_succ_p (bb))
889 int prob = XINT (prob_note, 0);
891 BRANCH_EDGE (bb)->probability = prob;
892 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
894 else
895 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
898 /* Combine predictions into single probability and store them into CFG.
899 Remove now useless prediction entries. */
901 static void
902 combine_predictions_for_bb (basic_block bb)
904 int best_probability = PROB_EVEN;
905 enum br_predictor best_predictor = END_PREDICTORS;
906 int combined_probability = REG_BR_PROB_BASE / 2;
907 int d;
908 bool first_match = false;
909 bool found = false;
910 struct edge_prediction *pred;
911 int nedges = 0;
912 edge e, first = NULL, second = NULL;
913 edge_iterator ei;
914 void **preds;
916 FOR_EACH_EDGE (e, ei, bb->succs)
917 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
919 nedges ++;
920 if (first && !second)
921 second = e;
922 if (!first)
923 first = e;
926 /* When there is no successor or only one choice, prediction is easy.
928 We are lazy for now and predict only basic blocks with two outgoing
929 edges. It is possible to predict generic case too, but we have to
930 ignore first match heuristics and do more involved combining. Implement
931 this later. */
932 if (nedges != 2)
934 if (!bb->count)
935 set_even_probabilities (bb);
936 clear_bb_predictions (bb);
937 if (dump_file)
938 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
939 nedges, bb->index);
940 return;
943 if (dump_file)
944 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
946 preds = pointer_map_contains (bb_predictions, bb);
947 if (preds)
949 /* We implement "first match" heuristics and use probability guessed
950 by predictor with smallest index. */
951 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
953 enum br_predictor predictor = pred->ep_predictor;
954 int probability = pred->ep_probability;
956 if (pred->ep_edge != first)
957 probability = REG_BR_PROB_BASE - probability;
959 found = true;
960 /* First match heuristics would be widly confused if we predicted
961 both directions. */
962 if (best_predictor > predictor)
964 struct edge_prediction *pred2;
965 int prob = probability;
967 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
968 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
970 int probability2 = pred->ep_probability;
972 if (pred2->ep_edge != first)
973 probability2 = REG_BR_PROB_BASE - probability2;
975 if ((probability < REG_BR_PROB_BASE / 2) !=
976 (probability2 < REG_BR_PROB_BASE / 2))
977 break;
979 /* If the same predictor later gave better result, go for it! */
980 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
981 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
982 prob = probability2;
984 if (!pred2)
985 best_probability = prob, best_predictor = predictor;
988 d = (combined_probability * probability
989 + (REG_BR_PROB_BASE - combined_probability)
990 * (REG_BR_PROB_BASE - probability));
992 /* Use FP math to avoid overflows of 32bit integers. */
993 if (d == 0)
994 /* If one probability is 0% and one 100%, avoid division by zero. */
995 combined_probability = REG_BR_PROB_BASE / 2;
996 else
997 combined_probability = (((double) combined_probability)
998 * probability
999 * REG_BR_PROB_BASE / d + 0.5);
1003 /* Decide which heuristic to use. In case we didn't match anything,
1004 use no_prediction heuristic, in case we did match, use either
1005 first match or Dempster-Shaffer theory depending on the flags. */
1007 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
1008 first_match = true;
1010 if (!found)
1011 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1012 else
1014 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1015 !first_match);
1016 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1017 first_match);
1020 if (first_match)
1021 combined_probability = best_probability;
1022 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1024 if (preds)
1026 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1028 enum br_predictor predictor = pred->ep_predictor;
1029 int probability = pred->ep_probability;
1031 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1032 probability = REG_BR_PROB_BASE - probability;
1033 dump_prediction (dump_file, predictor, probability, bb,
1034 !first_match || best_predictor == predictor);
1037 clear_bb_predictions (bb);
1039 if (!bb->count)
1041 first->probability = combined_probability;
1042 second->probability = REG_BR_PROB_BASE - combined_probability;
1046 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1047 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1049 T1 and T2 should be one of the following cases:
1050 1. T1 is SSA_NAME, T2 is NULL
1051 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1052 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1054 static tree
1055 strips_small_constant (tree t1, tree t2)
1057 tree ret = NULL;
1058 int value = 0;
1060 if (!t1)
1061 return NULL;
1062 else if (TREE_CODE (t1) == SSA_NAME)
1063 ret = t1;
1064 else if (tree_fits_shwi_p (t1))
1065 value = tree_to_shwi (t1);
1066 else
1067 return NULL;
1069 if (!t2)
1070 return ret;
1071 else if (tree_fits_shwi_p (t2))
1072 value = tree_to_shwi (t2);
1073 else if (TREE_CODE (t2) == SSA_NAME)
1075 if (ret)
1076 return NULL;
1077 else
1078 ret = t2;
1081 if (value <= 4 && value >= -4)
1082 return ret;
1083 else
1084 return NULL;
1087 /* Return the SSA_NAME in T or T's operands.
1088 Return NULL if SSA_NAME cannot be found. */
1090 static tree
1091 get_base_value (tree t)
1093 if (TREE_CODE (t) == SSA_NAME)
1094 return t;
1096 if (!BINARY_CLASS_P (t))
1097 return NULL;
1099 switch (TREE_OPERAND_LENGTH (t))
1101 case 1:
1102 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1103 case 2:
1104 return strips_small_constant (TREE_OPERAND (t, 0),
1105 TREE_OPERAND (t, 1));
1106 default:
1107 return NULL;
1111 /* Check the compare STMT in LOOP. If it compares an induction
1112 variable to a loop invariant, return true, and save
1113 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1114 Otherwise return false and set LOOP_INVAIANT to NULL. */
1116 static bool
1117 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1118 tree *loop_invariant,
1119 enum tree_code *compare_code,
1120 tree *loop_step,
1121 tree *loop_iv_base)
1123 tree op0, op1, bound, base;
1124 affine_iv iv0, iv1;
1125 enum tree_code code;
1126 tree step;
1128 code = gimple_cond_code (stmt);
1129 *loop_invariant = NULL;
1131 switch (code)
1133 case GT_EXPR:
1134 case GE_EXPR:
1135 case NE_EXPR:
1136 case LT_EXPR:
1137 case LE_EXPR:
1138 case EQ_EXPR:
1139 break;
1141 default:
1142 return false;
1145 op0 = gimple_cond_lhs (stmt);
1146 op1 = gimple_cond_rhs (stmt);
1148 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1149 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1150 return false;
1151 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1152 return false;
1153 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1154 return false;
1155 if (TREE_CODE (iv0.step) != INTEGER_CST
1156 || TREE_CODE (iv1.step) != INTEGER_CST)
1157 return false;
1158 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1159 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1160 return false;
1162 if (integer_zerop (iv0.step))
1164 if (code != NE_EXPR && code != EQ_EXPR)
1165 code = invert_tree_comparison (code, false);
1166 bound = iv0.base;
1167 base = iv1.base;
1168 if (tree_fits_shwi_p (iv1.step))
1169 step = iv1.step;
1170 else
1171 return false;
1173 else
1175 bound = iv1.base;
1176 base = iv0.base;
1177 if (tree_fits_shwi_p (iv0.step))
1178 step = iv0.step;
1179 else
1180 return false;
1183 if (TREE_CODE (bound) != INTEGER_CST)
1184 bound = get_base_value (bound);
1185 if (!bound)
1186 return false;
1187 if (TREE_CODE (base) != INTEGER_CST)
1188 base = get_base_value (base);
1189 if (!base)
1190 return false;
1192 *loop_invariant = bound;
1193 *compare_code = code;
1194 *loop_step = step;
1195 *loop_iv_base = base;
1196 return true;
1199 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1201 static bool
1202 expr_coherent_p (tree t1, tree t2)
1204 gimple stmt;
1205 tree ssa_name_1 = NULL;
1206 tree ssa_name_2 = NULL;
1208 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1209 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1211 if (t1 == t2)
1212 return true;
1214 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1215 return true;
1216 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1217 return false;
1219 /* Check to see if t1 is expressed/defined with t2. */
1220 stmt = SSA_NAME_DEF_STMT (t1);
1221 gcc_assert (stmt != NULL);
1222 if (is_gimple_assign (stmt))
1224 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1225 if (ssa_name_1 && ssa_name_1 == t2)
1226 return true;
1229 /* Check to see if t2 is expressed/defined with t1. */
1230 stmt = SSA_NAME_DEF_STMT (t2);
1231 gcc_assert (stmt != NULL);
1232 if (is_gimple_assign (stmt))
1234 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1235 if (ssa_name_2 && ssa_name_2 == t1)
1236 return true;
1239 /* Compare if t1 and t2's def_stmts are identical. */
1240 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1241 return true;
1242 else
1243 return false;
1246 /* Predict branch probability of BB when BB contains a branch that compares
1247 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1248 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1250 E.g.
1251 for (int i = 0; i < bound; i++) {
1252 if (i < bound - 2)
1253 computation_1();
1254 else
1255 computation_2();
1258 In this loop, we will predict the branch inside the loop to be taken. */
1260 static void
1261 predict_iv_comparison (struct loop *loop, basic_block bb,
1262 tree loop_bound_var,
1263 tree loop_iv_base_var,
1264 enum tree_code loop_bound_code,
1265 int loop_bound_step)
1267 gimple stmt;
1268 tree compare_var, compare_base;
1269 enum tree_code compare_code;
1270 tree compare_step_var;
1271 edge then_edge;
1272 edge_iterator ei;
1274 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1275 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1276 || predicted_by_p (bb, PRED_LOOP_EXIT))
1277 return;
1279 stmt = last_stmt (bb);
1280 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1281 return;
1282 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1283 &compare_code,
1284 &compare_step_var,
1285 &compare_base))
1286 return;
1288 /* Find the taken edge. */
1289 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1290 if (then_edge->flags & EDGE_TRUE_VALUE)
1291 break;
1293 /* When comparing an IV to a loop invariant, NE is more likely to be
1294 taken while EQ is more likely to be not-taken. */
1295 if (compare_code == NE_EXPR)
1297 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1298 return;
1300 else if (compare_code == EQ_EXPR)
1302 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1303 return;
1306 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1307 return;
1309 /* If loop bound, base and compare bound are all constants, we can
1310 calculate the probability directly. */
1311 if (tree_fits_shwi_p (loop_bound_var)
1312 && tree_fits_shwi_p (compare_var)
1313 && tree_fits_shwi_p (compare_base))
1315 int probability;
1316 bool of, overflow = false;
1317 double_int mod, compare_count, tem, loop_count;
1319 double_int loop_bound = tree_to_double_int (loop_bound_var);
1320 double_int compare_bound = tree_to_double_int (compare_var);
1321 double_int base = tree_to_double_int (compare_base);
1322 double_int compare_step = tree_to_double_int (compare_step_var);
1324 /* (loop_bound - base) / compare_step */
1325 tem = loop_bound.sub_with_overflow (base, &of);
1326 overflow |= of;
1327 loop_count = tem.divmod_with_overflow (compare_step,
1328 0, TRUNC_DIV_EXPR,
1329 &mod, &of);
1330 overflow |= of;
1332 if ((!compare_step.is_negative ())
1333 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1335 /* (loop_bound - compare_bound) / compare_step */
1336 tem = loop_bound.sub_with_overflow (compare_bound, &of);
1337 overflow |= of;
1338 compare_count = tem.divmod_with_overflow (compare_step,
1339 0, TRUNC_DIV_EXPR,
1340 &mod, &of);
1341 overflow |= of;
1343 else
1345 /* (compare_bound - base) / compare_step */
1346 tem = compare_bound.sub_with_overflow (base, &of);
1347 overflow |= of;
1348 compare_count = tem.divmod_with_overflow (compare_step,
1349 0, TRUNC_DIV_EXPR,
1350 &mod, &of);
1351 overflow |= of;
1353 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1354 ++compare_count;
1355 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1356 ++loop_count;
1357 if (compare_count.is_negative ())
1358 compare_count = double_int_zero;
1359 if (loop_count.is_negative ())
1360 loop_count = double_int_zero;
1361 if (loop_count.is_zero ())
1362 probability = 0;
1363 else if (compare_count.scmp (loop_count) == 1)
1364 probability = REG_BR_PROB_BASE;
1365 else
1367 /* If loop_count is too big, such that REG_BR_PROB_BASE * loop_count
1368 could overflow, shift both loop_count and compare_count right
1369 a bit so that it doesn't overflow. Note both counts are known not
1370 to be negative at this point. */
1371 int clz_bits = clz_hwi (loop_count.high);
1372 gcc_assert (REG_BR_PROB_BASE < 32768);
1373 if (clz_bits < 16)
1375 loop_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1376 compare_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1378 tem = compare_count.mul_with_sign (double_int::from_shwi
1379 (REG_BR_PROB_BASE), true, &of);
1380 gcc_assert (!of);
1381 tem = tem.divmod (loop_count, true, TRUNC_DIV_EXPR, &mod);
1382 probability = tem.to_uhwi ();
1385 if (!overflow)
1386 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1388 return;
1391 if (expr_coherent_p (loop_bound_var, compare_var))
1393 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1394 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1395 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1396 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1397 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1398 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1399 else if (loop_bound_code == NE_EXPR)
1401 /* If the loop backedge condition is "(i != bound)", we do
1402 the comparison based on the step of IV:
1403 * step < 0 : backedge condition is like (i > bound)
1404 * step > 0 : backedge condition is like (i < bound) */
1405 gcc_assert (loop_bound_step != 0);
1406 if (loop_bound_step > 0
1407 && (compare_code == LT_EXPR
1408 || compare_code == LE_EXPR))
1409 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1410 else if (loop_bound_step < 0
1411 && (compare_code == GT_EXPR
1412 || compare_code == GE_EXPR))
1413 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1414 else
1415 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1417 else
1418 /* The branch is predicted not-taken if loop_bound_code is
1419 opposite with compare_code. */
1420 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1422 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1424 /* For cases like:
1425 for (i = s; i < h; i++)
1426 if (i > s + 2) ....
1427 The branch should be predicted taken. */
1428 if (loop_bound_step > 0
1429 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1430 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1431 else if (loop_bound_step < 0
1432 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1433 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1434 else
1435 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1439 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1440 exits are resulted from short-circuit conditions that will generate an
1441 if_tmp. E.g.:
1443 if (foo() || global > 10)
1444 break;
1446 This will be translated into:
1448 BB3:
1449 loop header...
1450 BB4:
1451 if foo() goto BB6 else goto BB5
1452 BB5:
1453 if global > 10 goto BB6 else goto BB7
1454 BB6:
1455 goto BB7
1456 BB7:
1457 iftmp = (PHI 0(BB5), 1(BB6))
1458 if iftmp == 1 goto BB8 else goto BB3
1459 BB8:
1460 outside of the loop...
1462 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1463 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1464 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1465 exits to predict them using PRED_LOOP_EXIT. */
1467 static void
1468 predict_extra_loop_exits (edge exit_edge)
1470 unsigned i;
1471 bool check_value_one;
1472 gimple phi_stmt;
1473 tree cmp_rhs, cmp_lhs;
1474 gimple cmp_stmt = last_stmt (exit_edge->src);
1476 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1477 return;
1478 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1479 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1480 if (!TREE_CONSTANT (cmp_rhs)
1481 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1482 return;
1483 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1484 return;
1486 /* If check_value_one is true, only the phi_args with value '1' will lead
1487 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1488 loop exit. */
1489 check_value_one = (((integer_onep (cmp_rhs))
1490 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1491 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1493 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1494 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1495 return;
1497 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1499 edge e1;
1500 edge_iterator ei;
1501 tree val = gimple_phi_arg_def (phi_stmt, i);
1502 edge e = gimple_phi_arg_edge (phi_stmt, i);
1504 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1505 continue;
1506 if ((check_value_one ^ integer_onep (val)) == 1)
1507 continue;
1508 if (EDGE_COUNT (e->src->succs) != 1)
1510 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1511 continue;
1514 FOR_EACH_EDGE (e1, ei, e->src->preds)
1515 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1519 /* Predict edge probabilities by exploiting loop structure. */
1521 static void
1522 predict_loops (void)
1524 struct loop *loop;
1526 /* Try to predict out blocks in a loop that are not part of a
1527 natural loop. */
1528 FOR_EACH_LOOP (loop, 0)
1530 basic_block bb, *bbs;
1531 unsigned j, n_exits;
1532 vec<edge> exits;
1533 struct tree_niter_desc niter_desc;
1534 edge ex;
1535 struct nb_iter_bound *nb_iter;
1536 enum tree_code loop_bound_code = ERROR_MARK;
1537 tree loop_bound_step = NULL;
1538 tree loop_bound_var = NULL;
1539 tree loop_iv_base = NULL;
1540 gimple stmt = NULL;
1542 exits = get_loop_exit_edges (loop);
1543 n_exits = exits.length ();
1544 if (!n_exits)
1546 exits.release ();
1547 continue;
1550 FOR_EACH_VEC_ELT (exits, j, ex)
1552 tree niter = NULL;
1553 HOST_WIDE_INT nitercst;
1554 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1555 int probability;
1556 enum br_predictor predictor;
1558 predict_extra_loop_exits (ex);
1560 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1561 niter = niter_desc.niter;
1562 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1563 niter = loop_niter_by_eval (loop, ex);
1565 if (TREE_CODE (niter) == INTEGER_CST)
1567 if (tree_fits_uhwi_p (niter)
1568 && max
1569 && compare_tree_int (niter, max - 1) == -1)
1570 nitercst = tree_to_uhwi (niter) + 1;
1571 else
1572 nitercst = max;
1573 predictor = PRED_LOOP_ITERATIONS;
1575 /* If we have just one exit and we can derive some information about
1576 the number of iterations of the loop from the statements inside
1577 the loop, use it to predict this exit. */
1578 else if (n_exits == 1)
1580 nitercst = estimated_stmt_executions_int (loop);
1581 if (nitercst < 0)
1582 continue;
1583 if (nitercst > max)
1584 nitercst = max;
1586 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1588 else
1589 continue;
1591 /* If the prediction for number of iterations is zero, do not
1592 predict the exit edges. */
1593 if (nitercst == 0)
1594 continue;
1596 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1597 predict_edge (ex, predictor, probability);
1599 exits.release ();
1601 /* Find information about loop bound variables. */
1602 for (nb_iter = loop->bounds; nb_iter;
1603 nb_iter = nb_iter->next)
1604 if (nb_iter->stmt
1605 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1607 stmt = nb_iter->stmt;
1608 break;
1610 if (!stmt && last_stmt (loop->header)
1611 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1612 stmt = last_stmt (loop->header);
1613 if (stmt)
1614 is_comparison_with_loop_invariant_p (stmt, loop,
1615 &loop_bound_var,
1616 &loop_bound_code,
1617 &loop_bound_step,
1618 &loop_iv_base);
1620 bbs = get_loop_body (loop);
1622 for (j = 0; j < loop->num_nodes; j++)
1624 int header_found = 0;
1625 edge e;
1626 edge_iterator ei;
1628 bb = bbs[j];
1630 /* Bypass loop heuristics on continue statement. These
1631 statements construct loops via "non-loop" constructs
1632 in the source language and are better to be handled
1633 separately. */
1634 if (predicted_by_p (bb, PRED_CONTINUE))
1635 continue;
1637 /* Loop branch heuristics - predict an edge back to a
1638 loop's head as taken. */
1639 if (bb == loop->latch)
1641 e = find_edge (loop->latch, loop->header);
1642 if (e)
1644 header_found = 1;
1645 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1649 /* Loop exit heuristics - predict an edge exiting the loop if the
1650 conditional has no loop header successors as not taken. */
1651 if (!header_found
1652 /* If we already used more reliable loop exit predictors, do not
1653 bother with PRED_LOOP_EXIT. */
1654 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1655 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1657 /* For loop with many exits we don't want to predict all exits
1658 with the pretty large probability, because if all exits are
1659 considered in row, the loop would be predicted to iterate
1660 almost never. The code to divide probability by number of
1661 exits is very rough. It should compute the number of exits
1662 taken in each patch through function (not the overall number
1663 of exits that might be a lot higher for loops with wide switch
1664 statements in them) and compute n-th square root.
1666 We limit the minimal probability by 2% to avoid
1667 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1668 as this was causing regression in perl benchmark containing such
1669 a wide loop. */
1671 int probability = ((REG_BR_PROB_BASE
1672 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1673 / n_exits);
1674 if (probability < HITRATE (2))
1675 probability = HITRATE (2);
1676 FOR_EACH_EDGE (e, ei, bb->succs)
1677 if (e->dest->index < NUM_FIXED_BLOCKS
1678 || !flow_bb_inside_loop_p (loop, e->dest))
1679 predict_edge (e, PRED_LOOP_EXIT, probability);
1681 if (loop_bound_var)
1682 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1683 loop_bound_code,
1684 tree_to_shwi (loop_bound_step));
1687 /* Free basic blocks from get_loop_body. */
1688 free (bbs);
1692 /* Attempt to predict probabilities of BB outgoing edges using local
1693 properties. */
1694 static void
1695 bb_estimate_probability_locally (basic_block bb)
1697 rtx last_insn = BB_END (bb);
1698 rtx cond;
1700 if (! can_predict_insn_p (last_insn))
1701 return;
1702 cond = get_condition (last_insn, NULL, false, false);
1703 if (! cond)
1704 return;
1706 /* Try "pointer heuristic."
1707 A comparison ptr == 0 is predicted as false.
1708 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1709 if (COMPARISON_P (cond)
1710 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1711 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1713 if (GET_CODE (cond) == EQ)
1714 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1715 else if (GET_CODE (cond) == NE)
1716 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1718 else
1720 /* Try "opcode heuristic."
1721 EQ tests are usually false and NE tests are usually true. Also,
1722 most quantities are positive, so we can make the appropriate guesses
1723 about signed comparisons against zero. */
1724 switch (GET_CODE (cond))
1726 case CONST_INT:
1727 /* Unconditional branch. */
1728 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1729 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1730 break;
1732 case EQ:
1733 case UNEQ:
1734 /* Floating point comparisons appears to behave in a very
1735 unpredictable way because of special role of = tests in
1736 FP code. */
1737 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1739 /* Comparisons with 0 are often used for booleans and there is
1740 nothing useful to predict about them. */
1741 else if (XEXP (cond, 1) == const0_rtx
1742 || XEXP (cond, 0) == const0_rtx)
1744 else
1745 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1746 break;
1748 case NE:
1749 case LTGT:
1750 /* Floating point comparisons appears to behave in a very
1751 unpredictable way because of special role of = tests in
1752 FP code. */
1753 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1755 /* Comparisons with 0 are often used for booleans and there is
1756 nothing useful to predict about them. */
1757 else if (XEXP (cond, 1) == const0_rtx
1758 || XEXP (cond, 0) == const0_rtx)
1760 else
1761 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1762 break;
1764 case ORDERED:
1765 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1766 break;
1768 case UNORDERED:
1769 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1770 break;
1772 case LE:
1773 case LT:
1774 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1775 || XEXP (cond, 1) == constm1_rtx)
1776 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1777 break;
1779 case GE:
1780 case GT:
1781 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1782 || XEXP (cond, 1) == constm1_rtx)
1783 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1784 break;
1786 default:
1787 break;
1791 /* Set edge->probability for each successor edge of BB. */
1792 void
1793 guess_outgoing_edge_probabilities (basic_block bb)
1795 bb_estimate_probability_locally (bb);
1796 combine_predictions_for_insn (BB_END (bb), bb);
1799 static tree expr_expected_value (tree, bitmap);
1801 /* Helper function for expr_expected_value. */
1803 static tree
1804 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1805 tree op1, bitmap visited)
1807 gimple def;
1809 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1811 if (TREE_CONSTANT (op0))
1812 return op0;
1814 if (code != SSA_NAME)
1815 return NULL_TREE;
1817 def = SSA_NAME_DEF_STMT (op0);
1819 /* If we were already here, break the infinite cycle. */
1820 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1821 return NULL;
1823 if (gimple_code (def) == GIMPLE_PHI)
1825 /* All the arguments of the PHI node must have the same constant
1826 length. */
1827 int i, n = gimple_phi_num_args (def);
1828 tree val = NULL, new_val;
1830 for (i = 0; i < n; i++)
1832 tree arg = PHI_ARG_DEF (def, i);
1834 /* If this PHI has itself as an argument, we cannot
1835 determine the string length of this argument. However,
1836 if we can find an expected constant value for the other
1837 PHI args then we can still be sure that this is
1838 likely a constant. So be optimistic and just
1839 continue with the next argument. */
1840 if (arg == PHI_RESULT (def))
1841 continue;
1843 new_val = expr_expected_value (arg, visited);
1844 if (!new_val)
1845 return NULL;
1846 if (!val)
1847 val = new_val;
1848 else if (!operand_equal_p (val, new_val, false))
1849 return NULL;
1851 return val;
1853 if (is_gimple_assign (def))
1855 if (gimple_assign_lhs (def) != op0)
1856 return NULL;
1858 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1859 gimple_assign_rhs1 (def),
1860 gimple_assign_rhs_code (def),
1861 gimple_assign_rhs2 (def),
1862 visited);
1865 if (is_gimple_call (def))
1867 tree decl = gimple_call_fndecl (def);
1868 if (!decl)
1869 return NULL;
1870 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1871 switch (DECL_FUNCTION_CODE (decl))
1873 case BUILT_IN_EXPECT:
1875 tree val;
1876 if (gimple_call_num_args (def) != 2)
1877 return NULL;
1878 val = gimple_call_arg (def, 0);
1879 if (TREE_CONSTANT (val))
1880 return val;
1881 return gimple_call_arg (def, 1);
1884 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1885 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1886 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1887 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1888 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1889 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1890 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1891 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1892 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1893 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1894 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1895 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1897 /* Assume that any given atomic operation has low contention,
1898 and thus the compare-and-swap operation succeeds. */
1899 return boolean_true_node;
1903 return NULL;
1906 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1908 tree res;
1909 op0 = expr_expected_value (op0, visited);
1910 if (!op0)
1911 return NULL;
1912 op1 = expr_expected_value (op1, visited);
1913 if (!op1)
1914 return NULL;
1915 res = fold_build2 (code, type, op0, op1);
1916 if (TREE_CONSTANT (res))
1917 return res;
1918 return NULL;
1920 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1922 tree res;
1923 op0 = expr_expected_value (op0, visited);
1924 if (!op0)
1925 return NULL;
1926 res = fold_build1 (code, type, op0);
1927 if (TREE_CONSTANT (res))
1928 return res;
1929 return NULL;
1931 return NULL;
1934 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1935 The function is used by builtin_expect branch predictor so the evidence
1936 must come from this construct and additional possible constant folding.
1938 We may want to implement more involved value guess (such as value range
1939 propagation based prediction), but such tricks shall go to new
1940 implementation. */
1942 static tree
1943 expr_expected_value (tree expr, bitmap visited)
1945 enum tree_code code;
1946 tree op0, op1;
1948 if (TREE_CONSTANT (expr))
1949 return expr;
1951 extract_ops_from_tree (expr, &code, &op0, &op1);
1952 return expr_expected_value_1 (TREE_TYPE (expr),
1953 op0, code, op1, visited);
1957 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1958 we no longer need. */
1959 static unsigned int
1960 strip_predict_hints (void)
1962 basic_block bb;
1963 gimple ass_stmt;
1964 tree var;
1966 FOR_EACH_BB (bb)
1968 gimple_stmt_iterator bi;
1969 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1971 gimple stmt = gsi_stmt (bi);
1973 if (gimple_code (stmt) == GIMPLE_PREDICT)
1975 gsi_remove (&bi, true);
1976 continue;
1978 else if (gimple_code (stmt) == GIMPLE_CALL)
1980 tree fndecl = gimple_call_fndecl (stmt);
1982 if (fndecl
1983 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1984 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1985 && gimple_call_num_args (stmt) == 2)
1987 var = gimple_call_lhs (stmt);
1988 if (var)
1990 ass_stmt
1991 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1992 gsi_replace (&bi, ass_stmt, true);
1994 else
1996 gsi_remove (&bi, true);
1997 continue;
2001 gsi_next (&bi);
2004 return 0;
2007 /* Predict using opcode of the last statement in basic block. */
2008 static void
2009 tree_predict_by_opcode (basic_block bb)
2011 gimple stmt = last_stmt (bb);
2012 edge then_edge;
2013 tree op0, op1;
2014 tree type;
2015 tree val;
2016 enum tree_code cmp;
2017 bitmap visited;
2018 edge_iterator ei;
2020 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2021 return;
2022 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2023 if (then_edge->flags & EDGE_TRUE_VALUE)
2024 break;
2025 op0 = gimple_cond_lhs (stmt);
2026 op1 = gimple_cond_rhs (stmt);
2027 cmp = gimple_cond_code (stmt);
2028 type = TREE_TYPE (op0);
2029 visited = BITMAP_ALLOC (NULL);
2030 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
2031 BITMAP_FREE (visited);
2032 if (val)
2034 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2036 gcc_assert (percent >= 0 && percent <= 100);
2037 if (integer_zerop (val))
2038 percent = 100 - percent;
2039 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2041 /* Try "pointer heuristic."
2042 A comparison ptr == 0 is predicted as false.
2043 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2044 if (POINTER_TYPE_P (type))
2046 if (cmp == EQ_EXPR)
2047 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2048 else if (cmp == NE_EXPR)
2049 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2051 else
2053 /* Try "opcode heuristic."
2054 EQ tests are usually false and NE tests are usually true. Also,
2055 most quantities are positive, so we can make the appropriate guesses
2056 about signed comparisons against zero. */
2057 switch (cmp)
2059 case EQ_EXPR:
2060 case UNEQ_EXPR:
2061 /* Floating point comparisons appears to behave in a very
2062 unpredictable way because of special role of = tests in
2063 FP code. */
2064 if (FLOAT_TYPE_P (type))
2066 /* Comparisons with 0 are often used for booleans and there is
2067 nothing useful to predict about them. */
2068 else if (integer_zerop (op0) || integer_zerop (op1))
2070 else
2071 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2072 break;
2074 case NE_EXPR:
2075 case LTGT_EXPR:
2076 /* Floating point comparisons appears to behave in a very
2077 unpredictable way because of special role of = tests in
2078 FP code. */
2079 if (FLOAT_TYPE_P (type))
2081 /* Comparisons with 0 are often used for booleans and there is
2082 nothing useful to predict about them. */
2083 else if (integer_zerop (op0)
2084 || integer_zerop (op1))
2086 else
2087 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2088 break;
2090 case ORDERED_EXPR:
2091 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2092 break;
2094 case UNORDERED_EXPR:
2095 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2096 break;
2098 case LE_EXPR:
2099 case LT_EXPR:
2100 if (integer_zerop (op1)
2101 || integer_onep (op1)
2102 || integer_all_onesp (op1)
2103 || real_zerop (op1)
2104 || real_onep (op1)
2105 || real_minus_onep (op1))
2106 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2107 break;
2109 case GE_EXPR:
2110 case GT_EXPR:
2111 if (integer_zerop (op1)
2112 || integer_onep (op1)
2113 || integer_all_onesp (op1)
2114 || real_zerop (op1)
2115 || real_onep (op1)
2116 || real_minus_onep (op1))
2117 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2118 break;
2120 default:
2121 break;
2125 /* Try to guess whether the value of return means error code. */
2127 static enum br_predictor
2128 return_prediction (tree val, enum prediction *prediction)
2130 /* VOID. */
2131 if (!val)
2132 return PRED_NO_PREDICTION;
2133 /* Different heuristics for pointers and scalars. */
2134 if (POINTER_TYPE_P (TREE_TYPE (val)))
2136 /* NULL is usually not returned. */
2137 if (integer_zerop (val))
2139 *prediction = NOT_TAKEN;
2140 return PRED_NULL_RETURN;
2143 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2145 /* Negative return values are often used to indicate
2146 errors. */
2147 if (TREE_CODE (val) == INTEGER_CST
2148 && tree_int_cst_sgn (val) < 0)
2150 *prediction = NOT_TAKEN;
2151 return PRED_NEGATIVE_RETURN;
2153 /* Constant return values seems to be commonly taken.
2154 Zero/one often represent booleans so exclude them from the
2155 heuristics. */
2156 if (TREE_CONSTANT (val)
2157 && (!integer_zerop (val) && !integer_onep (val)))
2159 *prediction = TAKEN;
2160 return PRED_CONST_RETURN;
2163 return PRED_NO_PREDICTION;
2166 /* Find the basic block with return expression and look up for possible
2167 return value trying to apply RETURN_PREDICTION heuristics. */
2168 static void
2169 apply_return_prediction (void)
2171 gimple return_stmt = NULL;
2172 tree return_val;
2173 edge e;
2174 gimple phi;
2175 int phi_num_args, i;
2176 enum br_predictor pred;
2177 enum prediction direction;
2178 edge_iterator ei;
2180 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2182 return_stmt = last_stmt (e->src);
2183 if (return_stmt
2184 && gimple_code (return_stmt) == GIMPLE_RETURN)
2185 break;
2187 if (!e)
2188 return;
2189 return_val = gimple_return_retval (return_stmt);
2190 if (!return_val)
2191 return;
2192 if (TREE_CODE (return_val) != SSA_NAME
2193 || !SSA_NAME_DEF_STMT (return_val)
2194 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2195 return;
2196 phi = SSA_NAME_DEF_STMT (return_val);
2197 phi_num_args = gimple_phi_num_args (phi);
2198 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2200 /* Avoid the degenerate case where all return values form the function
2201 belongs to same category (ie they are all positive constants)
2202 so we can hardly say something about them. */
2203 for (i = 1; i < phi_num_args; i++)
2204 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2205 break;
2206 if (i != phi_num_args)
2207 for (i = 0; i < phi_num_args; i++)
2209 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2210 if (pred != PRED_NO_PREDICTION)
2211 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2212 direction);
2216 /* Look for basic block that contains unlikely to happen events
2217 (such as noreturn calls) and mark all paths leading to execution
2218 of this basic blocks as unlikely. */
2220 static void
2221 tree_bb_level_predictions (void)
2223 basic_block bb;
2224 bool has_return_edges = false;
2225 edge e;
2226 edge_iterator ei;
2228 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2229 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2231 has_return_edges = true;
2232 break;
2235 apply_return_prediction ();
2237 FOR_EACH_BB (bb)
2239 gimple_stmt_iterator gsi;
2241 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2243 gimple stmt = gsi_stmt (gsi);
2244 tree decl;
2246 if (is_gimple_call (stmt))
2248 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2249 && has_return_edges)
2250 predict_paths_leading_to (bb, PRED_NORETURN,
2251 NOT_TAKEN);
2252 decl = gimple_call_fndecl (stmt);
2253 if (decl
2254 && lookup_attribute ("cold",
2255 DECL_ATTRIBUTES (decl)))
2256 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2257 NOT_TAKEN);
2259 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2261 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2262 gimple_predict_outcome (stmt));
2263 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2264 hints to callers. */
2270 #ifdef ENABLE_CHECKING
2272 /* Callback for pointer_map_traverse, asserts that the pointer map is
2273 empty. */
2275 static bool
2276 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2277 void *data ATTRIBUTE_UNUSED)
2279 gcc_assert (!*value);
2280 return false;
2282 #endif
2284 /* Predict branch probabilities and estimate profile for basic block BB. */
2286 static void
2287 tree_estimate_probability_bb (basic_block bb)
2289 edge e;
2290 edge_iterator ei;
2291 gimple last;
2293 FOR_EACH_EDGE (e, ei, bb->succs)
2295 /* Predict edges to user labels with attributes. */
2296 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2298 gimple_stmt_iterator gi;
2299 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2301 gimple stmt = gsi_stmt (gi);
2302 tree decl;
2304 if (gimple_code (stmt) != GIMPLE_LABEL)
2305 break;
2306 decl = gimple_label_label (stmt);
2307 if (DECL_ARTIFICIAL (decl))
2308 continue;
2310 /* Finally, we have a user-defined label. */
2311 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2312 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2313 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2314 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2318 /* Predict early returns to be probable, as we've already taken
2319 care for error returns and other cases are often used for
2320 fast paths through function.
2322 Since we've already removed the return statements, we are
2323 looking for CFG like:
2325 if (conditional)
2328 goto return_block
2330 some other blocks
2331 return_block:
2332 return_stmt. */
2333 if (e->dest != bb->next_bb
2334 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2335 && single_succ_p (e->dest)
2336 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2337 && (last = last_stmt (e->dest)) != NULL
2338 && gimple_code (last) == GIMPLE_RETURN)
2340 edge e1;
2341 edge_iterator ei1;
2343 if (single_succ_p (bb))
2345 FOR_EACH_EDGE (e1, ei1, bb->preds)
2346 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2347 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2348 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2349 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2351 else
2352 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2353 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2354 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2355 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2358 /* Look for block we are guarding (ie we dominate it,
2359 but it doesn't postdominate us). */
2360 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2361 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2362 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2364 gimple_stmt_iterator bi;
2366 /* The call heuristic claims that a guarded function call
2367 is improbable. This is because such calls are often used
2368 to signal exceptional situations such as printing error
2369 messages. */
2370 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2371 gsi_next (&bi))
2373 gimple stmt = gsi_stmt (bi);
2374 if (is_gimple_call (stmt)
2375 /* Constant and pure calls are hardly used to signalize
2376 something exceptional. */
2377 && gimple_has_side_effects (stmt))
2379 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2380 break;
2385 tree_predict_by_opcode (bb);
2388 /* Predict branch probabilities and estimate profile of the tree CFG.
2389 This function can be called from the loop optimizers to recompute
2390 the profile information. */
2392 void
2393 tree_estimate_probability (void)
2395 basic_block bb;
2397 add_noreturn_fake_exit_edges ();
2398 connect_infinite_loops_to_exit ();
2399 /* We use loop_niter_by_eval, which requires that the loops have
2400 preheaders. */
2401 create_preheaders (CP_SIMPLE_PREHEADERS);
2402 calculate_dominance_info (CDI_POST_DOMINATORS);
2404 bb_predictions = pointer_map_create ();
2405 tree_bb_level_predictions ();
2406 record_loop_exits ();
2408 if (number_of_loops (cfun) > 1)
2409 predict_loops ();
2411 FOR_EACH_BB (bb)
2412 tree_estimate_probability_bb (bb);
2414 FOR_EACH_BB (bb)
2415 combine_predictions_for_bb (bb);
2417 #ifdef ENABLE_CHECKING
2418 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2419 #endif
2420 pointer_map_destroy (bb_predictions);
2421 bb_predictions = NULL;
2423 estimate_bb_frequencies (false);
2424 free_dominance_info (CDI_POST_DOMINATORS);
2425 remove_fake_exit_edges ();
2428 /* Predict branch probabilities and estimate profile of the tree CFG.
2429 This is the driver function for PASS_PROFILE. */
2431 static unsigned int
2432 tree_estimate_probability_driver (void)
2434 unsigned nb_loops;
2436 loop_optimizer_init (LOOPS_NORMAL);
2437 if (dump_file && (dump_flags & TDF_DETAILS))
2438 flow_loops_dump (dump_file, NULL, 0);
2440 mark_irreducible_loops ();
2442 nb_loops = number_of_loops (cfun);
2443 if (nb_loops > 1)
2444 scev_initialize ();
2446 tree_estimate_probability ();
2448 if (nb_loops > 1)
2449 scev_finalize ();
2451 loop_optimizer_finalize ();
2452 if (dump_file && (dump_flags & TDF_DETAILS))
2453 gimple_dump_cfg (dump_file, dump_flags);
2454 if (profile_status == PROFILE_ABSENT)
2455 profile_status = PROFILE_GUESSED;
2456 return 0;
2459 /* Predict edges to successors of CUR whose sources are not postdominated by
2460 BB by PRED and recurse to all postdominators. */
2462 static void
2463 predict_paths_for_bb (basic_block cur, basic_block bb,
2464 enum br_predictor pred,
2465 enum prediction taken,
2466 bitmap visited)
2468 edge e;
2469 edge_iterator ei;
2470 basic_block son;
2472 /* We are looking for all edges forming edge cut induced by
2473 set of all blocks postdominated by BB. */
2474 FOR_EACH_EDGE (e, ei, cur->preds)
2475 if (e->src->index >= NUM_FIXED_BLOCKS
2476 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2478 edge e2;
2479 edge_iterator ei2;
2480 bool found = false;
2482 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2483 if (e->flags & (EDGE_EH | EDGE_FAKE))
2484 continue;
2485 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2487 /* See if there is an edge from e->src that is not abnormal
2488 and does not lead to BB. */
2489 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2490 if (e2 != e
2491 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2492 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2494 found = true;
2495 break;
2498 /* If there is non-abnormal path leaving e->src, predict edge
2499 using predictor. Otherwise we need to look for paths
2500 leading to e->src.
2502 The second may lead to infinite loop in the case we are predicitng
2503 regions that are only reachable by abnormal edges. We simply
2504 prevent visiting given BB twice. */
2505 if (found)
2506 predict_edge_def (e, pred, taken);
2507 else if (bitmap_set_bit (visited, e->src->index))
2508 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2510 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2511 son;
2512 son = next_dom_son (CDI_POST_DOMINATORS, son))
2513 predict_paths_for_bb (son, bb, pred, taken, visited);
2516 /* Sets branch probabilities according to PREDiction and
2517 FLAGS. */
2519 static void
2520 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2521 enum prediction taken)
2523 bitmap visited = BITMAP_ALLOC (NULL);
2524 predict_paths_for_bb (bb, bb, pred, taken, visited);
2525 BITMAP_FREE (visited);
2528 /* Like predict_paths_leading_to but take edge instead of basic block. */
2530 static void
2531 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2532 enum prediction taken)
2534 bool has_nonloop_edge = false;
2535 edge_iterator ei;
2536 edge e2;
2538 basic_block bb = e->src;
2539 FOR_EACH_EDGE (e2, ei, bb->succs)
2540 if (e2->dest != e->src && e2->dest != e->dest
2541 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2542 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2544 has_nonloop_edge = true;
2545 break;
2547 if (!has_nonloop_edge)
2549 bitmap visited = BITMAP_ALLOC (NULL);
2550 predict_paths_for_bb (bb, bb, pred, taken, visited);
2551 BITMAP_FREE (visited);
2553 else
2554 predict_edge_def (e, pred, taken);
2557 /* This is used to carry information about basic blocks. It is
2558 attached to the AUX field of the standard CFG block. */
2560 typedef struct block_info_def
2562 /* Estimated frequency of execution of basic_block. */
2563 sreal frequency;
2565 /* To keep queue of basic blocks to process. */
2566 basic_block next;
2568 /* Number of predecessors we need to visit first. */
2569 int npredecessors;
2570 } *block_info;
2572 /* Similar information for edges. */
2573 typedef struct edge_info_def
2575 /* In case edge is a loopback edge, the probability edge will be reached
2576 in case header is. Estimated number of iterations of the loop can be
2577 then computed as 1 / (1 - back_edge_prob). */
2578 sreal back_edge_prob;
2579 /* True if the edge is a loopback edge in the natural loop. */
2580 unsigned int back_edge:1;
2581 } *edge_info;
2583 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2584 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2586 /* Helper function for estimate_bb_frequencies.
2587 Propagate the frequencies in blocks marked in
2588 TOVISIT, starting in HEAD. */
2590 static void
2591 propagate_freq (basic_block head, bitmap tovisit)
2593 basic_block bb;
2594 basic_block last;
2595 unsigned i;
2596 edge e;
2597 basic_block nextbb;
2598 bitmap_iterator bi;
2600 /* For each basic block we need to visit count number of his predecessors
2601 we need to visit first. */
2602 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2604 edge_iterator ei;
2605 int count = 0;
2607 bb = BASIC_BLOCK (i);
2609 FOR_EACH_EDGE (e, ei, bb->preds)
2611 bool visit = bitmap_bit_p (tovisit, e->src->index);
2613 if (visit && !(e->flags & EDGE_DFS_BACK))
2614 count++;
2615 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2616 fprintf (dump_file,
2617 "Irreducible region hit, ignoring edge to %i->%i\n",
2618 e->src->index, bb->index);
2620 BLOCK_INFO (bb)->npredecessors = count;
2621 /* When function never returns, we will never process exit block. */
2622 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2623 bb->count = bb->frequency = 0;
2626 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2627 last = head;
2628 for (bb = head; bb; bb = nextbb)
2630 edge_iterator ei;
2631 sreal cyclic_probability, frequency;
2633 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2634 memcpy (&frequency, &real_zero, sizeof (real_zero));
2636 nextbb = BLOCK_INFO (bb)->next;
2637 BLOCK_INFO (bb)->next = NULL;
2639 /* Compute frequency of basic block. */
2640 if (bb != head)
2642 #ifdef ENABLE_CHECKING
2643 FOR_EACH_EDGE (e, ei, bb->preds)
2644 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2645 || (e->flags & EDGE_DFS_BACK));
2646 #endif
2648 FOR_EACH_EDGE (e, ei, bb->preds)
2649 if (EDGE_INFO (e)->back_edge)
2651 sreal_add (&cyclic_probability, &cyclic_probability,
2652 &EDGE_INFO (e)->back_edge_prob);
2654 else if (!(e->flags & EDGE_DFS_BACK))
2656 sreal tmp;
2658 /* frequency += (e->probability
2659 * BLOCK_INFO (e->src)->frequency /
2660 REG_BR_PROB_BASE); */
2662 sreal_init (&tmp, e->probability, 0);
2663 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2664 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2665 sreal_add (&frequency, &frequency, &tmp);
2668 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2670 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2671 sizeof (frequency));
2673 else
2675 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2677 memcpy (&cyclic_probability, &real_almost_one,
2678 sizeof (real_almost_one));
2681 /* BLOCK_INFO (bb)->frequency = frequency
2682 / (1 - cyclic_probability) */
2684 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2685 sreal_div (&BLOCK_INFO (bb)->frequency,
2686 &frequency, &cyclic_probability);
2690 bitmap_clear_bit (tovisit, bb->index);
2692 e = find_edge (bb, head);
2693 if (e)
2695 sreal tmp;
2697 /* EDGE_INFO (e)->back_edge_prob
2698 = ((e->probability * BLOCK_INFO (bb)->frequency)
2699 / REG_BR_PROB_BASE); */
2701 sreal_init (&tmp, e->probability, 0);
2702 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2703 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2704 &tmp, &real_inv_br_prob_base);
2707 /* Propagate to successor blocks. */
2708 FOR_EACH_EDGE (e, ei, bb->succs)
2709 if (!(e->flags & EDGE_DFS_BACK)
2710 && BLOCK_INFO (e->dest)->npredecessors)
2712 BLOCK_INFO (e->dest)->npredecessors--;
2713 if (!BLOCK_INFO (e->dest)->npredecessors)
2715 if (!nextbb)
2716 nextbb = e->dest;
2717 else
2718 BLOCK_INFO (last)->next = e->dest;
2720 last = e->dest;
2726 /* Estimate frequencies in loops at same nest level. */
2728 static void
2729 estimate_loops_at_level (struct loop *first_loop)
2731 struct loop *loop;
2733 for (loop = first_loop; loop; loop = loop->next)
2735 edge e;
2736 basic_block *bbs;
2737 unsigned i;
2738 bitmap tovisit = BITMAP_ALLOC (NULL);
2740 estimate_loops_at_level (loop->inner);
2742 /* Find current loop back edge and mark it. */
2743 e = loop_latch_edge (loop);
2744 EDGE_INFO (e)->back_edge = 1;
2746 bbs = get_loop_body (loop);
2747 for (i = 0; i < loop->num_nodes; i++)
2748 bitmap_set_bit (tovisit, bbs[i]->index);
2749 free (bbs);
2750 propagate_freq (loop->header, tovisit);
2751 BITMAP_FREE (tovisit);
2755 /* Propagates frequencies through structure of loops. */
2757 static void
2758 estimate_loops (void)
2760 bitmap tovisit = BITMAP_ALLOC (NULL);
2761 basic_block bb;
2763 /* Start by estimating the frequencies in the loops. */
2764 if (number_of_loops (cfun) > 1)
2765 estimate_loops_at_level (current_loops->tree_root->inner);
2767 /* Now propagate the frequencies through all the blocks. */
2768 FOR_ALL_BB (bb)
2770 bitmap_set_bit (tovisit, bb->index);
2772 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2773 BITMAP_FREE (tovisit);
2776 /* Drop the profile for NODE to guessed, and update its frequency based on
2777 whether it is expected to be hot given the CALL_COUNT. */
2779 static void
2780 drop_profile (struct cgraph_node *node, gcov_type call_count)
2782 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2783 /* In the case where this was called by another function with a
2784 dropped profile, call_count will be 0. Since there are no
2785 non-zero call counts to this function, we don't know for sure
2786 whether it is hot, and therefore it will be marked normal below. */
2787 bool hot = maybe_hot_count_p (NULL, call_count);
2789 if (dump_file)
2790 fprintf (dump_file,
2791 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2792 node->name (), node->order,
2793 hot ? "Function is hot" : "Function is normal");
2794 /* We only expect to miss profiles for functions that are reached
2795 via non-zero call edges in cases where the function may have
2796 been linked from another module or library (COMDATs and extern
2797 templates). See the comments below for handle_missing_profiles.
2798 Also, only warn in cases where the missing counts exceed the
2799 number of training runs. In certain cases with an execv followed
2800 by a no-return call the profile for the no-return call is not
2801 dumped and there can be a mismatch. */
2802 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2803 && call_count > profile_info->runs)
2805 if (flag_profile_correction)
2807 if (dump_file)
2808 fprintf (dump_file,
2809 "Missing counts for called function %s/%i\n",
2810 node->name (), node->order);
2812 else
2813 warning (0, "Missing counts for called function %s/%i",
2814 node->name (), node->order);
2817 profile_status_for_function (fn)
2818 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2819 node->frequency
2820 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2823 /* In the case of COMDAT routines, multiple object files will contain the same
2824 function and the linker will select one for the binary. In that case
2825 all the other copies from the profile instrument binary will be missing
2826 profile counts. Look for cases where this happened, due to non-zero
2827 call counts going to 0-count functions, and drop the profile to guessed
2828 so that we can use the estimated probabilities and avoid optimizing only
2829 for size.
2831 The other case where the profile may be missing is when the routine
2832 is not going to be emitted to the object file, e.g. for "extern template"
2833 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2834 all other cases of non-zero calls to 0-count functions. */
2836 void
2837 handle_missing_profiles (void)
2839 struct cgraph_node *node;
2840 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2841 vec<struct cgraph_node *> worklist;
2842 worklist.create (64);
2844 /* See if 0 count function has non-0 count callers. In this case we
2845 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2846 FOR_EACH_DEFINED_FUNCTION (node)
2848 struct cgraph_edge *e;
2849 gcov_type call_count = 0;
2850 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2852 if (node->count)
2853 continue;
2854 for (e = node->callers; e; e = e->next_caller)
2855 call_count += e->count;
2856 if (call_count
2857 && fn && fn->cfg
2858 && (call_count * unlikely_count_fraction >= profile_info->runs))
2860 drop_profile (node, call_count);
2861 worklist.safe_push (node);
2865 /* Propagate the profile dropping to other 0-count COMDATs that are
2866 potentially called by COMDATs we already dropped the profile on. */
2867 while (worklist.length () > 0)
2869 struct cgraph_edge *e;
2871 node = worklist.pop ();
2872 for (e = node->callees; e; e = e->next_caller)
2874 struct cgraph_node *callee = e->callee;
2875 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2877 if (callee->count > 0)
2878 continue;
2879 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2880 && profile_status_for_function (fn) == PROFILE_READ)
2882 drop_profile (node, 0);
2883 worklist.safe_push (callee);
2887 worklist.release ();
2890 /* Convert counts measured by profile driven feedback to frequencies.
2891 Return nonzero iff there was any nonzero execution count. */
2894 counts_to_freqs (void)
2896 gcov_type count_max, true_count_max = 0;
2897 basic_block bb;
2899 /* Don't overwrite the estimated frequencies when the profile for
2900 the function is missing. We may drop this function PROFILE_GUESSED
2901 later in drop_profile (). */
2902 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2903 return 0;
2905 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2906 true_count_max = MAX (bb->count, true_count_max);
2908 count_max = MAX (true_count_max, 1);
2909 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2910 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2912 return true_count_max;
2915 /* Return true if function is likely to be expensive, so there is no point to
2916 optimize performance of prologue, epilogue or do inlining at the expense
2917 of code size growth. THRESHOLD is the limit of number of instructions
2918 function can execute at average to be still considered not expensive. */
2920 bool
2921 expensive_function_p (int threshold)
2923 unsigned int sum = 0;
2924 basic_block bb;
2925 unsigned int limit;
2927 /* We can not compute accurately for large thresholds due to scaled
2928 frequencies. */
2929 gcc_assert (threshold <= BB_FREQ_MAX);
2931 /* Frequencies are out of range. This either means that function contains
2932 internal loop executing more than BB_FREQ_MAX times or profile feedback
2933 is available and function has not been executed at all. */
2934 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2935 return true;
2937 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2938 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2939 FOR_EACH_BB (bb)
2941 rtx insn;
2943 FOR_BB_INSNS (bb, insn)
2944 if (active_insn_p (insn))
2946 sum += bb->frequency;
2947 if (sum > limit)
2948 return true;
2952 return false;
2955 /* Estimate and propagate basic block frequencies using the given branch
2956 probabilities. If FORCE is true, the frequencies are used to estimate
2957 the counts even when there are already non-zero profile counts. */
2959 void
2960 estimate_bb_frequencies (bool force)
2962 basic_block bb;
2963 sreal freq_max;
2965 if (force || profile_status != PROFILE_READ || !counts_to_freqs ())
2967 static int real_values_initialized = 0;
2969 if (!real_values_initialized)
2971 real_values_initialized = 1;
2972 sreal_init (&real_zero, 0, 0);
2973 sreal_init (&real_one, 1, 0);
2974 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2975 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2976 sreal_init (&real_one_half, 1, -1);
2977 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2978 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2981 mark_dfs_back_edges ();
2983 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2984 REG_BR_PROB_BASE;
2986 /* Set up block info for each basic block. */
2987 alloc_aux_for_blocks (sizeof (struct block_info_def));
2988 alloc_aux_for_edges (sizeof (struct edge_info_def));
2989 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2991 edge e;
2992 edge_iterator ei;
2994 FOR_EACH_EDGE (e, ei, bb->succs)
2996 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2997 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2998 &EDGE_INFO (e)->back_edge_prob,
2999 &real_inv_br_prob_base);
3003 /* First compute frequencies locally for each loop from innermost
3004 to outermost to examine frequencies for back edges. */
3005 estimate_loops ();
3007 memcpy (&freq_max, &real_zero, sizeof (real_zero));
3008 FOR_EACH_BB (bb)
3009 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
3010 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
3012 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
3013 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3015 sreal tmp;
3017 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
3018 sreal_add (&tmp, &tmp, &real_one_half);
3019 bb->frequency = sreal_to_int (&tmp);
3022 free_aux_for_blocks ();
3023 free_aux_for_edges ();
3025 compute_function_frequency ();
3028 /* Decide whether function is hot, cold or unlikely executed. */
3029 void
3030 compute_function_frequency (void)
3032 basic_block bb;
3033 struct cgraph_node *node = cgraph_get_node (current_function_decl);
3035 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3036 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3037 node->only_called_at_startup = true;
3038 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3039 node->only_called_at_exit = true;
3041 if (profile_status != PROFILE_READ)
3043 int flags = flags_from_decl_or_type (current_function_decl);
3044 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3045 != NULL)
3046 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3047 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3048 != NULL)
3049 node->frequency = NODE_FREQUENCY_HOT;
3050 else if (flags & ECF_NORETURN)
3051 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3052 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3053 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3054 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3055 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3056 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3057 return;
3060 /* Only first time try to drop function into unlikely executed.
3061 After inlining the roundoff errors may confuse us.
3062 Ipa-profile pass will drop functions only called from unlikely
3063 functions to unlikely and that is most of what we care about. */
3064 if (!cfun->after_inlining)
3065 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3066 FOR_EACH_BB (bb)
3068 if (maybe_hot_bb_p (cfun, bb))
3070 node->frequency = NODE_FREQUENCY_HOT;
3071 return;
3073 if (!probably_never_executed_bb_p (cfun, bb))
3074 node->frequency = NODE_FREQUENCY_NORMAL;
3078 static bool
3079 gate_estimate_probability (void)
3081 return flag_guess_branch_prob;
3084 /* Build PREDICT_EXPR. */
3085 tree
3086 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3088 tree t = build1 (PREDICT_EXPR, void_type_node,
3089 build_int_cst (integer_type_node, predictor));
3090 SET_PREDICT_EXPR_OUTCOME (t, taken);
3091 return t;
3094 const char *
3095 predictor_name (enum br_predictor predictor)
3097 return predictor_info[predictor].name;
3100 namespace {
3102 const pass_data pass_data_profile =
3104 GIMPLE_PASS, /* type */
3105 "profile_estimate", /* name */
3106 OPTGROUP_NONE, /* optinfo_flags */
3107 true, /* has_gate */
3108 true, /* has_execute */
3109 TV_BRANCH_PROB, /* tv_id */
3110 PROP_cfg, /* properties_required */
3111 0, /* properties_provided */
3112 0, /* properties_destroyed */
3113 0, /* todo_flags_start */
3114 TODO_verify_ssa, /* todo_flags_finish */
3117 class pass_profile : public gimple_opt_pass
3119 public:
3120 pass_profile (gcc::context *ctxt)
3121 : gimple_opt_pass (pass_data_profile, ctxt)
3124 /* opt_pass methods: */
3125 bool gate () { return gate_estimate_probability (); }
3126 unsigned int execute () { return tree_estimate_probability_driver (); }
3128 }; // class pass_profile
3130 } // anon namespace
3132 gimple_opt_pass *
3133 make_pass_profile (gcc::context *ctxt)
3135 return new pass_profile (ctxt);
3138 namespace {
3140 const pass_data pass_data_strip_predict_hints =
3142 GIMPLE_PASS, /* type */
3143 "*strip_predict_hints", /* name */
3144 OPTGROUP_NONE, /* optinfo_flags */
3145 false, /* has_gate */
3146 true, /* has_execute */
3147 TV_BRANCH_PROB, /* tv_id */
3148 PROP_cfg, /* properties_required */
3149 0, /* properties_provided */
3150 0, /* properties_destroyed */
3151 0, /* todo_flags_start */
3152 TODO_verify_ssa, /* todo_flags_finish */
3155 class pass_strip_predict_hints : public gimple_opt_pass
3157 public:
3158 pass_strip_predict_hints (gcc::context *ctxt)
3159 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3162 /* opt_pass methods: */
3163 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3164 unsigned int execute () { return strip_predict_hints (); }
3166 }; // class pass_strip_predict_hints
3168 } // anon namespace
3170 gimple_opt_pass *
3171 make_pass_strip_predict_hints (gcc::context *ctxt)
3173 return new pass_strip_predict_hints (ctxt);
3176 /* Rebuild function frequencies. Passes are in general expected to
3177 maintain profile by hand, however in some cases this is not possible:
3178 for example when inlining several functions with loops freuqencies might run
3179 out of scale and thus needs to be recomputed. */
3181 void
3182 rebuild_frequencies (void)
3184 timevar_push (TV_REBUILD_FREQUENCIES);
3186 /* When the max bb count in the function is small, there is a higher
3187 chance that there were truncation errors in the integer scaling
3188 of counts by inlining and other optimizations. This could lead
3189 to incorrect classification of code as being cold when it isn't.
3190 In that case, force the estimation of bb counts/frequencies from the
3191 branch probabilities, rather than computing frequencies from counts,
3192 which may also lead to frequencies incorrectly reduced to 0. There
3193 is less precision in the probabilities, so we only do this for small
3194 max counts. */
3195 gcov_type count_max = 0;
3196 basic_block bb;
3197 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3198 count_max = MAX (bb->count, count_max);
3200 if (profile_status == PROFILE_GUESSED
3201 || (profile_status == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3203 loop_optimizer_init (0);
3204 add_noreturn_fake_exit_edges ();
3205 mark_irreducible_loops ();
3206 connect_infinite_loops_to_exit ();
3207 estimate_bb_frequencies (true);
3208 remove_fake_exit_edges ();
3209 loop_optimizer_finalize ();
3211 else if (profile_status == PROFILE_READ)
3212 counts_to_freqs ();
3213 else
3214 gcc_unreachable ();
3215 timevar_pop (TV_REBUILD_FREQUENCIES);