* tree-vectorizer.h (vect_recog_func_ptr): Change the first
[official-gcc.git] / gcc / tree-vect-loop.c
blob27305f3db66b324fa77a1dac04fd1c564df1f18e
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
5 Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "optabs.h"
39 #include "params.h"
40 #include "diagnostic-core.h"
41 #include "tree-chrec.h"
42 #include "tree-scalar-evolution.h"
43 #include "tree-vectorizer.h"
44 #include "target.h"
46 /* Loop Vectorization Pass.
48 This pass tries to vectorize loops.
50 For example, the vectorizer transforms the following simple loop:
52 short a[N]; short b[N]; short c[N]; int i;
54 for (i=0; i<N; i++){
55 a[i] = b[i] + c[i];
58 as if it was manually vectorized by rewriting the source code into:
60 typedef int __attribute__((mode(V8HI))) v8hi;
61 short a[N]; short b[N]; short c[N]; int i;
62 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
63 v8hi va, vb, vc;
65 for (i=0; i<N/8; i++){
66 vb = pb[i];
67 vc = pc[i];
68 va = vb + vc;
69 pa[i] = va;
72 The main entry to this pass is vectorize_loops(), in which
73 the vectorizer applies a set of analyses on a given set of loops,
74 followed by the actual vectorization transformation for the loops that
75 had successfully passed the analysis phase.
76 Throughout this pass we make a distinction between two types of
77 data: scalars (which are represented by SSA_NAMES), and memory references
78 ("data-refs"). These two types of data require different handling both
79 during analysis and transformation. The types of data-refs that the
80 vectorizer currently supports are ARRAY_REFS which base is an array DECL
81 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
82 accesses are required to have a simple (consecutive) access pattern.
84 Analysis phase:
85 ===============
86 The driver for the analysis phase is vect_analyze_loop().
87 It applies a set of analyses, some of which rely on the scalar evolution
88 analyzer (scev) developed by Sebastian Pop.
90 During the analysis phase the vectorizer records some information
91 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
92 loop, as well as general information about the loop as a whole, which is
93 recorded in a "loop_vec_info" struct attached to each loop.
95 Transformation phase:
96 =====================
97 The loop transformation phase scans all the stmts in the loop, and
98 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
99 the loop that needs to be vectorized. It inserts the vector code sequence
100 just before the scalar stmt S, and records a pointer to the vector code
101 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
102 attached to S). This pointer will be used for the vectorization of following
103 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
104 otherwise, we rely on dead code elimination for removing it.
106 For example, say stmt S1 was vectorized into stmt VS1:
108 VS1: vb = px[i];
109 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
110 S2: a = b;
112 To vectorize stmt S2, the vectorizer first finds the stmt that defines
113 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
114 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
115 resulting sequence would be:
117 VS1: vb = px[i];
118 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
119 VS2: va = vb;
120 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
122 Operands that are not SSA_NAMEs, are data-refs that appear in
123 load/store operations (like 'x[i]' in S1), and are handled differently.
125 Target modeling:
126 =================
127 Currently the only target specific information that is used is the
128 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
129 Targets that can support different sizes of vectors, for now will need
130 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
131 flexibility will be added in the future.
133 Since we only vectorize operations which vector form can be
134 expressed using existing tree codes, to verify that an operation is
135 supported, the vectorizer checks the relevant optab at the relevant
136 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
137 the value found is CODE_FOR_nothing, then there's no target support, and
138 we can't vectorize the stmt.
140 For additional information on this project see:
141 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
185 if (vect_print_dump_info (REPORT_DETAILS))
186 fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
188 for (i = 0; i < nbbs; i++)
190 basic_block bb = bbs[i];
192 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
194 phi = gsi_stmt (si);
195 stmt_info = vinfo_for_stmt (phi);
196 if (vect_print_dump_info (REPORT_DETAILS))
198 fprintf (vect_dump, "==> examining phi: ");
199 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
202 gcc_assert (stmt_info);
204 if (STMT_VINFO_RELEVANT_P (stmt_info))
206 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
207 scalar_type = TREE_TYPE (PHI_RESULT (phi));
209 if (vect_print_dump_info (REPORT_DETAILS))
211 fprintf (vect_dump, "get vectype for scalar type: ");
212 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
215 vectype = get_vectype_for_scalar_type (scalar_type);
216 if (!vectype)
218 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
220 fprintf (vect_dump,
221 "not vectorized: unsupported data-type ");
222 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
224 return false;
226 STMT_VINFO_VECTYPE (stmt_info) = vectype;
228 if (vect_print_dump_info (REPORT_DETAILS))
230 fprintf (vect_dump, "vectype: ");
231 print_generic_expr (vect_dump, vectype, TDF_SLIM);
234 nunits = TYPE_VECTOR_SUBPARTS (vectype);
235 if (vect_print_dump_info (REPORT_DETAILS))
236 fprintf (vect_dump, "nunits = %d", nunits);
238 if (!vectorization_factor
239 || (nunits > vectorization_factor))
240 vectorization_factor = nunits;
244 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
246 tree vf_vectype;
247 gimple stmt = gsi_stmt (si), pattern_stmt;
248 stmt_info = vinfo_for_stmt (stmt);
250 if (vect_print_dump_info (REPORT_DETAILS))
252 fprintf (vect_dump, "==> examining statement: ");
253 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
256 gcc_assert (stmt_info);
258 /* Skip stmts which do not need to be vectorized. */
259 if (!STMT_VINFO_RELEVANT_P (stmt_info)
260 && !STMT_VINFO_LIVE_P (stmt_info))
262 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
263 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
264 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
265 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
267 stmt = pattern_stmt;
268 stmt_info = vinfo_for_stmt (pattern_stmt);
269 if (vect_print_dump_info (REPORT_DETAILS))
271 fprintf (vect_dump, "==> examining pattern statement: ");
272 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
275 else
277 if (vect_print_dump_info (REPORT_DETAILS))
278 fprintf (vect_dump, "skip.");
279 continue;
283 if (gimple_get_lhs (stmt) == NULL_TREE)
285 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
287 fprintf (vect_dump, "not vectorized: irregular stmt.");
288 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
290 return false;
293 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
295 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
297 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
298 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
300 return false;
303 if (STMT_VINFO_VECTYPE (stmt_info))
305 /* The only case when a vectype had been already set is for stmts
306 that contain a dataref, or for "pattern-stmts" (stmts generated
307 by the vectorizer to represent/replace a certain idiom). */
308 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
309 || is_pattern_stmt_p (stmt_info));
310 vectype = STMT_VINFO_VECTYPE (stmt_info);
312 else
314 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
315 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
316 if (vect_print_dump_info (REPORT_DETAILS))
318 fprintf (vect_dump, "get vectype for scalar type: ");
319 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
321 vectype = get_vectype_for_scalar_type (scalar_type);
322 if (!vectype)
324 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
326 fprintf (vect_dump,
327 "not vectorized: unsupported data-type ");
328 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
330 return false;
333 STMT_VINFO_VECTYPE (stmt_info) = vectype;
336 /* The vectorization factor is according to the smallest
337 scalar type (or the largest vector size, but we only
338 support one vector size per loop). */
339 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
340 &dummy);
341 if (vect_print_dump_info (REPORT_DETAILS))
343 fprintf (vect_dump, "get vectype for scalar type: ");
344 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
346 vf_vectype = get_vectype_for_scalar_type (scalar_type);
347 if (!vf_vectype)
349 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
351 fprintf (vect_dump,
352 "not vectorized: unsupported data-type ");
353 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
355 return false;
358 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
359 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
361 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
363 fprintf (vect_dump,
364 "not vectorized: different sized vector "
365 "types in statement, ");
366 print_generic_expr (vect_dump, vectype, TDF_SLIM);
367 fprintf (vect_dump, " and ");
368 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
370 return false;
373 if (vect_print_dump_info (REPORT_DETAILS))
375 fprintf (vect_dump, "vectype: ");
376 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
379 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
380 if (vect_print_dump_info (REPORT_DETAILS))
381 fprintf (vect_dump, "nunits = %d", nunits);
383 if (!vectorization_factor
384 || (nunits > vectorization_factor))
385 vectorization_factor = nunits;
389 /* TODO: Analyze cost. Decide if worth while to vectorize. */
390 if (vect_print_dump_info (REPORT_DETAILS))
391 fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
392 if (vectorization_factor <= 1)
394 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
395 fprintf (vect_dump, "not vectorized: unsupported data-type");
396 return false;
398 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
400 return true;
404 /* Function vect_is_simple_iv_evolution.
406 FORNOW: A simple evolution of an induction variables in the loop is
407 considered a polynomial evolution with constant step. */
409 static bool
410 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
411 tree * step)
413 tree init_expr;
414 tree step_expr;
415 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
417 /* When there is no evolution in this loop, the evolution function
418 is not "simple". */
419 if (evolution_part == NULL_TREE)
420 return false;
422 /* When the evolution is a polynomial of degree >= 2
423 the evolution function is not "simple". */
424 if (tree_is_chrec (evolution_part))
425 return false;
427 step_expr = evolution_part;
428 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
430 if (vect_print_dump_info (REPORT_DETAILS))
432 fprintf (vect_dump, "step: ");
433 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
434 fprintf (vect_dump, ", init: ");
435 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
438 *init = init_expr;
439 *step = step_expr;
441 if (TREE_CODE (step_expr) != INTEGER_CST)
443 if (vect_print_dump_info (REPORT_DETAILS))
444 fprintf (vect_dump, "step unknown.");
445 return false;
448 return true;
451 /* Function vect_analyze_scalar_cycles_1.
453 Examine the cross iteration def-use cycles of scalar variables
454 in LOOP. LOOP_VINFO represents the loop that is now being
455 considered for vectorization (can be LOOP, or an outer-loop
456 enclosing LOOP). */
458 static void
459 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
461 basic_block bb = loop->header;
462 tree dumy;
463 VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
464 gimple_stmt_iterator gsi;
465 bool double_reduc;
467 if (vect_print_dump_info (REPORT_DETAILS))
468 fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
470 /* First - identify all inductions. Reduction detection assumes that all the
471 inductions have been identified, therefore, this order must not be
472 changed. */
473 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
475 gimple phi = gsi_stmt (gsi);
476 tree access_fn = NULL;
477 tree def = PHI_RESULT (phi);
478 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
480 if (vect_print_dump_info (REPORT_DETAILS))
482 fprintf (vect_dump, "Analyze phi: ");
483 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
486 /* Skip virtual phi's. The data dependences that are associated with
487 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
488 if (!is_gimple_reg (SSA_NAME_VAR (def)))
489 continue;
491 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
493 /* Analyze the evolution function. */
494 access_fn = analyze_scalar_evolution (loop, def);
495 if (access_fn)
496 STRIP_NOPS (access_fn);
497 if (access_fn && vect_print_dump_info (REPORT_DETAILS))
499 fprintf (vect_dump, "Access function of PHI: ");
500 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
503 if (!access_fn
504 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
506 VEC_safe_push (gimple, heap, worklist, phi);
507 continue;
510 if (vect_print_dump_info (REPORT_DETAILS))
511 fprintf (vect_dump, "Detected induction.");
512 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
516 /* Second - identify all reductions and nested cycles. */
517 while (VEC_length (gimple, worklist) > 0)
519 gimple phi = VEC_pop (gimple, worklist);
520 tree def = PHI_RESULT (phi);
521 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
522 gimple reduc_stmt;
523 bool nested_cycle;
525 if (vect_print_dump_info (REPORT_DETAILS))
527 fprintf (vect_dump, "Analyze phi: ");
528 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
531 gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
532 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
534 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
535 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
536 &double_reduc);
537 if (reduc_stmt)
539 if (double_reduc)
541 if (vect_print_dump_info (REPORT_DETAILS))
542 fprintf (vect_dump, "Detected double reduction.");
544 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
545 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
546 vect_double_reduction_def;
548 else
550 if (nested_cycle)
552 if (vect_print_dump_info (REPORT_DETAILS))
553 fprintf (vect_dump, "Detected vectorizable nested cycle.");
555 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
556 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
557 vect_nested_cycle;
559 else
561 if (vect_print_dump_info (REPORT_DETAILS))
562 fprintf (vect_dump, "Detected reduction.");
564 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
565 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
566 vect_reduction_def;
567 /* Store the reduction cycles for possible vectorization in
568 loop-aware SLP. */
569 VEC_safe_push (gimple, heap,
570 LOOP_VINFO_REDUCTIONS (loop_vinfo),
571 reduc_stmt);
575 else
576 if (vect_print_dump_info (REPORT_DETAILS))
577 fprintf (vect_dump, "Unknown def-use cycle pattern.");
580 VEC_free (gimple, heap, worklist);
584 /* Function vect_analyze_scalar_cycles.
586 Examine the cross iteration def-use cycles of scalar variables, by
587 analyzing the loop-header PHIs of scalar variables. Classify each
588 cycle as one of the following: invariant, induction, reduction, unknown.
589 We do that for the loop represented by LOOP_VINFO, and also to its
590 inner-loop, if exists.
591 Examples for scalar cycles:
593 Example1: reduction:
595 loop1:
596 for (i=0; i<N; i++)
597 sum += a[i];
599 Example2: induction:
601 loop2:
602 for (i=0; i<N; i++)
603 a[i] = i; */
605 static void
606 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
608 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
610 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
612 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
613 Reductions in such inner-loop therefore have different properties than
614 the reductions in the nest that gets vectorized:
615 1. When vectorized, they are executed in the same order as in the original
616 scalar loop, so we can't change the order of computation when
617 vectorizing them.
618 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
619 current checks are too strict. */
621 if (loop->inner)
622 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
625 /* Function vect_get_loop_niters.
627 Determine how many iterations the loop is executed.
628 If an expression that represents the number of iterations
629 can be constructed, place it in NUMBER_OF_ITERATIONS.
630 Return the loop exit condition. */
632 static gimple
633 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
635 tree niters;
637 if (vect_print_dump_info (REPORT_DETAILS))
638 fprintf (vect_dump, "=== get_loop_niters ===");
640 niters = number_of_exit_cond_executions (loop);
642 if (niters != NULL_TREE
643 && niters != chrec_dont_know)
645 *number_of_iterations = niters;
647 if (vect_print_dump_info (REPORT_DETAILS))
649 fprintf (vect_dump, "==> get_loop_niters:" );
650 print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
654 return get_loop_exit_condition (loop);
658 /* Function bb_in_loop_p
660 Used as predicate for dfs order traversal of the loop bbs. */
662 static bool
663 bb_in_loop_p (const_basic_block bb, const void *data)
665 const struct loop *const loop = (const struct loop *)data;
666 if (flow_bb_inside_loop_p (loop, bb))
667 return true;
668 return false;
672 /* Function new_loop_vec_info.
674 Create and initialize a new loop_vec_info struct for LOOP, as well as
675 stmt_vec_info structs for all the stmts in LOOP. */
677 static loop_vec_info
678 new_loop_vec_info (struct loop *loop)
680 loop_vec_info res;
681 basic_block *bbs;
682 gimple_stmt_iterator si;
683 unsigned int i, nbbs;
685 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
686 LOOP_VINFO_LOOP (res) = loop;
688 bbs = get_loop_body (loop);
690 /* Create/Update stmt_info for all stmts in the loop. */
691 for (i = 0; i < loop->num_nodes; i++)
693 basic_block bb = bbs[i];
695 /* BBs in a nested inner-loop will have been already processed (because
696 we will have called vect_analyze_loop_form for any nested inner-loop).
697 Therefore, for stmts in an inner-loop we just want to update the
698 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
699 loop_info of the outer-loop we are currently considering to vectorize
700 (instead of the loop_info of the inner-loop).
701 For stmts in other BBs we need to create a stmt_info from scratch. */
702 if (bb->loop_father != loop)
704 /* Inner-loop bb. */
705 gcc_assert (loop->inner && bb->loop_father == loop->inner);
706 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
708 gimple phi = gsi_stmt (si);
709 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
710 loop_vec_info inner_loop_vinfo =
711 STMT_VINFO_LOOP_VINFO (stmt_info);
712 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
713 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
715 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
717 gimple stmt = gsi_stmt (si);
718 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
719 loop_vec_info inner_loop_vinfo =
720 STMT_VINFO_LOOP_VINFO (stmt_info);
721 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
722 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
725 else
727 /* bb in current nest. */
728 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
730 gimple phi = gsi_stmt (si);
731 gimple_set_uid (phi, 0);
732 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
735 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
737 gimple stmt = gsi_stmt (si);
738 gimple_set_uid (stmt, 0);
739 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
744 /* CHECKME: We want to visit all BBs before their successors (except for
745 latch blocks, for which this assertion wouldn't hold). In the simple
746 case of the loop forms we allow, a dfs order of the BBs would the same
747 as reversed postorder traversal, so we are safe. */
749 free (bbs);
750 bbs = XCNEWVEC (basic_block, loop->num_nodes);
751 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
752 bbs, loop->num_nodes, loop);
753 gcc_assert (nbbs == loop->num_nodes);
755 LOOP_VINFO_BBS (res) = bbs;
756 LOOP_VINFO_NITERS (res) = NULL;
757 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
758 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
759 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
760 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
761 LOOP_VINFO_VECT_FACTOR (res) = 0;
762 LOOP_VINFO_LOOP_NEST (res) = VEC_alloc (loop_p, heap, 3);
763 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
764 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
765 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
766 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
767 VEC_alloc (gimple, heap,
768 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
769 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
770 VEC_alloc (ddr_p, heap,
771 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
772 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
773 LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
774 LOOP_VINFO_REDUCTION_CHAINS (res) = VEC_alloc (gimple, heap, 10);
775 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
776 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
777 LOOP_VINFO_PEELING_HTAB (res) = NULL;
778 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
780 return res;
784 /* Function destroy_loop_vec_info.
786 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
787 stmts in the loop. */
789 void
790 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
792 struct loop *loop;
793 basic_block *bbs;
794 int nbbs;
795 gimple_stmt_iterator si;
796 int j;
797 VEC (slp_instance, heap) *slp_instances;
798 slp_instance instance;
800 if (!loop_vinfo)
801 return;
803 loop = LOOP_VINFO_LOOP (loop_vinfo);
805 bbs = LOOP_VINFO_BBS (loop_vinfo);
806 nbbs = loop->num_nodes;
808 if (!clean_stmts)
810 free (LOOP_VINFO_BBS (loop_vinfo));
811 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
812 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
813 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
814 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
815 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
817 free (loop_vinfo);
818 loop->aux = NULL;
819 return;
822 for (j = 0; j < nbbs; j++)
824 basic_block bb = bbs[j];
825 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
826 free_stmt_vec_info (gsi_stmt (si));
828 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
830 gimple stmt = gsi_stmt (si);
831 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
833 if (stmt_info)
835 /* Check if this statement has a related "pattern stmt"
836 (introduced by the vectorizer during the pattern recognition
837 pass). Free pattern's stmt_vec_info. */
838 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
839 && vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info)))
840 free_stmt_vec_info (STMT_VINFO_RELATED_STMT (stmt_info));
842 /* Free stmt_vec_info. */
843 free_stmt_vec_info (stmt);
846 gsi_next (&si);
850 free (LOOP_VINFO_BBS (loop_vinfo));
851 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
852 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
853 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
854 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
855 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
856 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
857 FOR_EACH_VEC_ELT (slp_instance, slp_instances, j, instance)
858 vect_free_slp_instance (instance);
860 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
861 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
862 VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
863 VEC_free (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo));
865 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
866 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
868 free (loop_vinfo);
869 loop->aux = NULL;
873 /* Function vect_analyze_loop_1.
875 Apply a set of analyses on LOOP, and create a loop_vec_info struct
876 for it. The different analyses will record information in the
877 loop_vec_info struct. This is a subset of the analyses applied in
878 vect_analyze_loop, to be applied on an inner-loop nested in the loop
879 that is now considered for (outer-loop) vectorization. */
881 static loop_vec_info
882 vect_analyze_loop_1 (struct loop *loop)
884 loop_vec_info loop_vinfo;
886 if (vect_print_dump_info (REPORT_DETAILS))
887 fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
889 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
891 loop_vinfo = vect_analyze_loop_form (loop);
892 if (!loop_vinfo)
894 if (vect_print_dump_info (REPORT_DETAILS))
895 fprintf (vect_dump, "bad inner-loop form.");
896 return NULL;
899 return loop_vinfo;
903 /* Function vect_analyze_loop_form.
905 Verify that certain CFG restrictions hold, including:
906 - the loop has a pre-header
907 - the loop has a single entry and exit
908 - the loop exit condition is simple enough, and the number of iterations
909 can be analyzed (a countable loop). */
911 loop_vec_info
912 vect_analyze_loop_form (struct loop *loop)
914 loop_vec_info loop_vinfo;
915 gimple loop_cond;
916 tree number_of_iterations = NULL;
917 loop_vec_info inner_loop_vinfo = NULL;
919 if (vect_print_dump_info (REPORT_DETAILS))
920 fprintf (vect_dump, "=== vect_analyze_loop_form ===");
922 /* Different restrictions apply when we are considering an inner-most loop,
923 vs. an outer (nested) loop.
924 (FORNOW. May want to relax some of these restrictions in the future). */
926 if (!loop->inner)
928 /* Inner-most loop. We currently require that the number of BBs is
929 exactly 2 (the header and latch). Vectorizable inner-most loops
930 look like this:
932 (pre-header)
934 header <--------+
935 | | |
936 | +--> latch --+
938 (exit-bb) */
940 if (loop->num_nodes != 2)
942 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
943 fprintf (vect_dump, "not vectorized: control flow in loop.");
944 return NULL;
947 if (empty_block_p (loop->header))
949 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
950 fprintf (vect_dump, "not vectorized: empty loop.");
951 return NULL;
954 else
956 struct loop *innerloop = loop->inner;
957 edge entryedge;
959 /* Nested loop. We currently require that the loop is doubly-nested,
960 contains a single inner loop, and the number of BBs is exactly 5.
961 Vectorizable outer-loops look like this:
963 (pre-header)
965 header <---+
967 inner-loop |
969 tail ------+
971 (exit-bb)
973 The inner-loop has the properties expected of inner-most loops
974 as described above. */
976 if ((loop->inner)->inner || (loop->inner)->next)
978 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
979 fprintf (vect_dump, "not vectorized: multiple nested loops.");
980 return NULL;
983 /* Analyze the inner-loop. */
984 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
985 if (!inner_loop_vinfo)
987 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
988 fprintf (vect_dump, "not vectorized: Bad inner loop.");
989 return NULL;
992 if (!expr_invariant_in_loop_p (loop,
993 LOOP_VINFO_NITERS (inner_loop_vinfo)))
995 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
996 fprintf (vect_dump,
997 "not vectorized: inner-loop count not invariant.");
998 destroy_loop_vec_info (inner_loop_vinfo, true);
999 return NULL;
1002 if (loop->num_nodes != 5)
1004 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1005 fprintf (vect_dump, "not vectorized: control flow in loop.");
1006 destroy_loop_vec_info (inner_loop_vinfo, true);
1007 return NULL;
1010 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1011 entryedge = EDGE_PRED (innerloop->header, 0);
1012 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1013 entryedge = EDGE_PRED (innerloop->header, 1);
1015 if (entryedge->src != loop->header
1016 || !single_exit (innerloop)
1017 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1019 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1020 fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
1021 destroy_loop_vec_info (inner_loop_vinfo, true);
1022 return NULL;
1025 if (vect_print_dump_info (REPORT_DETAILS))
1026 fprintf (vect_dump, "Considering outer-loop vectorization.");
1029 if (!single_exit (loop)
1030 || EDGE_COUNT (loop->header->preds) != 2)
1032 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1034 if (!single_exit (loop))
1035 fprintf (vect_dump, "not vectorized: multiple exits.");
1036 else if (EDGE_COUNT (loop->header->preds) != 2)
1037 fprintf (vect_dump, "not vectorized: too many incoming edges.");
1039 if (inner_loop_vinfo)
1040 destroy_loop_vec_info (inner_loop_vinfo, true);
1041 return NULL;
1044 /* We assume that the loop exit condition is at the end of the loop. i.e,
1045 that the loop is represented as a do-while (with a proper if-guard
1046 before the loop if needed), where the loop header contains all the
1047 executable statements, and the latch is empty. */
1048 if (!empty_block_p (loop->latch)
1049 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1051 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1052 fprintf (vect_dump, "not vectorized: unexpected loop form.");
1053 if (inner_loop_vinfo)
1054 destroy_loop_vec_info (inner_loop_vinfo, true);
1055 return NULL;
1058 /* Make sure there exists a single-predecessor exit bb: */
1059 if (!single_pred_p (single_exit (loop)->dest))
1061 edge e = single_exit (loop);
1062 if (!(e->flags & EDGE_ABNORMAL))
1064 split_loop_exit_edge (e);
1065 if (vect_print_dump_info (REPORT_DETAILS))
1066 fprintf (vect_dump, "split exit edge.");
1068 else
1070 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1071 fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
1072 if (inner_loop_vinfo)
1073 destroy_loop_vec_info (inner_loop_vinfo, true);
1074 return NULL;
1078 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1079 if (!loop_cond)
1081 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1082 fprintf (vect_dump, "not vectorized: complicated exit condition.");
1083 if (inner_loop_vinfo)
1084 destroy_loop_vec_info (inner_loop_vinfo, true);
1085 return NULL;
1088 if (!number_of_iterations)
1090 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1091 fprintf (vect_dump,
1092 "not vectorized: number of iterations cannot be computed.");
1093 if (inner_loop_vinfo)
1094 destroy_loop_vec_info (inner_loop_vinfo, true);
1095 return NULL;
1098 if (chrec_contains_undetermined (number_of_iterations))
1100 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1101 fprintf (vect_dump, "Infinite number of iterations.");
1102 if (inner_loop_vinfo)
1103 destroy_loop_vec_info (inner_loop_vinfo, true);
1104 return NULL;
1107 if (!NITERS_KNOWN_P (number_of_iterations))
1109 if (vect_print_dump_info (REPORT_DETAILS))
1111 fprintf (vect_dump, "Symbolic number of iterations is ");
1112 print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
1115 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1117 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1118 fprintf (vect_dump, "not vectorized: number of iterations = 0.");
1119 if (inner_loop_vinfo)
1120 destroy_loop_vec_info (inner_loop_vinfo, false);
1121 return NULL;
1124 loop_vinfo = new_loop_vec_info (loop);
1125 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1126 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1128 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1130 /* CHECKME: May want to keep it around it in the future. */
1131 if (inner_loop_vinfo)
1132 destroy_loop_vec_info (inner_loop_vinfo, false);
1134 gcc_assert (!loop->aux);
1135 loop->aux = loop_vinfo;
1136 return loop_vinfo;
1140 /* Get cost by calling cost target builtin. */
1142 static inline int
1143 vect_get_cost (enum vect_cost_for_stmt type_of_cost)
1145 tree dummy_type = NULL;
1146 int dummy = 0;
1148 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1149 dummy_type, dummy);
1153 /* Function vect_analyze_loop_operations.
1155 Scan the loop stmts and make sure they are all vectorizable. */
1157 static bool
1158 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1160 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1161 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1162 int nbbs = loop->num_nodes;
1163 gimple_stmt_iterator si;
1164 unsigned int vectorization_factor = 0;
1165 int i;
1166 gimple phi;
1167 stmt_vec_info stmt_info;
1168 bool need_to_vectorize = false;
1169 int min_profitable_iters;
1170 int min_scalar_loop_bound;
1171 unsigned int th;
1172 bool only_slp_in_loop = true, ok;
1174 if (vect_print_dump_info (REPORT_DETAILS))
1175 fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
1177 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1178 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1179 if (slp)
1181 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1182 vectorization factor of the loop is the unrolling factor required by
1183 the SLP instances. If that unrolling factor is 1, we say, that we
1184 perform pure SLP on loop - cross iteration parallelism is not
1185 exploited. */
1186 for (i = 0; i < nbbs; i++)
1188 basic_block bb = bbs[i];
1189 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1191 gimple stmt = gsi_stmt (si);
1192 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1193 gcc_assert (stmt_info);
1194 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1195 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1196 && !PURE_SLP_STMT (stmt_info))
1197 /* STMT needs both SLP and loop-based vectorization. */
1198 only_slp_in_loop = false;
1202 if (only_slp_in_loop)
1203 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1204 else
1205 vectorization_factor = least_common_multiple (vectorization_factor,
1206 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1208 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1209 if (vect_print_dump_info (REPORT_DETAILS))
1210 fprintf (vect_dump, "Updating vectorization factor to %d ",
1211 vectorization_factor);
1214 for (i = 0; i < nbbs; i++)
1216 basic_block bb = bbs[i];
1218 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1220 phi = gsi_stmt (si);
1221 ok = true;
1223 stmt_info = vinfo_for_stmt (phi);
1224 if (vect_print_dump_info (REPORT_DETAILS))
1226 fprintf (vect_dump, "examining phi: ");
1227 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1230 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1231 (i.e., a phi in the tail of the outer-loop). */
1232 if (! is_loop_header_bb_p (bb))
1234 /* FORNOW: we currently don't support the case that these phis
1235 are not used in the outerloop (unless it is double reduction,
1236 i.e., this phi is vect_reduction_def), cause this case
1237 requires to actually do something here. */
1238 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1239 || STMT_VINFO_LIVE_P (stmt_info))
1240 && STMT_VINFO_DEF_TYPE (stmt_info)
1241 != vect_double_reduction_def)
1243 if (vect_print_dump_info (REPORT_DETAILS))
1244 fprintf (vect_dump,
1245 "Unsupported loop-closed phi in outer-loop.");
1246 return false;
1249 /* If PHI is used in the outer loop, we check that its operand
1250 is defined in the inner loop. */
1251 if (STMT_VINFO_RELEVANT_P (stmt_info))
1253 tree phi_op;
1254 gimple op_def_stmt;
1256 if (gimple_phi_num_args (phi) != 1)
1257 return false;
1259 phi_op = PHI_ARG_DEF (phi, 0);
1260 if (TREE_CODE (phi_op) != SSA_NAME)
1261 return false;
1263 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1264 if (!op_def_stmt || !vinfo_for_stmt (op_def_stmt))
1265 return false;
1267 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1268 != vect_used_in_outer
1269 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1270 != vect_used_in_outer_by_reduction)
1271 return false;
1274 continue;
1277 gcc_assert (stmt_info);
1279 if (STMT_VINFO_LIVE_P (stmt_info))
1281 /* FORNOW: not yet supported. */
1282 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1283 fprintf (vect_dump, "not vectorized: value used after loop.");
1284 return false;
1287 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1288 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1290 /* A scalar-dependence cycle that we don't support. */
1291 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1292 fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
1293 return false;
1296 if (STMT_VINFO_RELEVANT_P (stmt_info))
1298 need_to_vectorize = true;
1299 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1300 ok = vectorizable_induction (phi, NULL, NULL);
1303 if (!ok)
1305 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1307 fprintf (vect_dump,
1308 "not vectorized: relevant phi not supported: ");
1309 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1311 return false;
1315 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1317 gimple stmt = gsi_stmt (si);
1318 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1319 return false;
1321 } /* bbs */
1323 /* All operations in the loop are either irrelevant (deal with loop
1324 control, or dead), or only used outside the loop and can be moved
1325 out of the loop (e.g. invariants, inductions). The loop can be
1326 optimized away by scalar optimizations. We're better off not
1327 touching this loop. */
1328 if (!need_to_vectorize)
1330 if (vect_print_dump_info (REPORT_DETAILS))
1331 fprintf (vect_dump,
1332 "All the computation can be taken out of the loop.");
1333 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1334 fprintf (vect_dump,
1335 "not vectorized: redundant loop. no profit to vectorize.");
1336 return false;
1339 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1340 && vect_print_dump_info (REPORT_DETAILS))
1341 fprintf (vect_dump,
1342 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
1343 vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
1345 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1346 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1348 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1349 fprintf (vect_dump, "not vectorized: iteration count too small.");
1350 if (vect_print_dump_info (REPORT_DETAILS))
1351 fprintf (vect_dump,"not vectorized: iteration count smaller than "
1352 "vectorization factor.");
1353 return false;
1356 /* Analyze cost. Decide if worth while to vectorize. */
1358 /* Once VF is set, SLP costs should be updated since the number of created
1359 vector stmts depends on VF. */
1360 vect_update_slp_costs_according_to_vf (loop_vinfo);
1362 min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
1363 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1365 if (min_profitable_iters < 0)
1367 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1368 fprintf (vect_dump, "not vectorized: vectorization not profitable.");
1369 if (vect_print_dump_info (REPORT_DETAILS))
1370 fprintf (vect_dump, "not vectorized: vector version will never be "
1371 "profitable.");
1372 return false;
1375 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1376 * vectorization_factor) - 1);
1378 /* Use the cost model only if it is more conservative than user specified
1379 threshold. */
1381 th = (unsigned) min_scalar_loop_bound;
1382 if (min_profitable_iters
1383 && (!min_scalar_loop_bound
1384 || min_profitable_iters > min_scalar_loop_bound))
1385 th = (unsigned) min_profitable_iters;
1387 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1388 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1390 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1391 fprintf (vect_dump, "not vectorized: vectorization not "
1392 "profitable.");
1393 if (vect_print_dump_info (REPORT_DETAILS))
1394 fprintf (vect_dump, "not vectorized: iteration count smaller than "
1395 "user specified loop bound parameter or minimum "
1396 "profitable iterations (whichever is more conservative).");
1397 return false;
1400 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1401 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1402 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1404 if (vect_print_dump_info (REPORT_DETAILS))
1405 fprintf (vect_dump, "epilog loop required.");
1406 if (!vect_can_advance_ivs_p (loop_vinfo))
1408 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1409 fprintf (vect_dump,
1410 "not vectorized: can't create epilog loop 1.");
1411 return false;
1413 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1415 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1416 fprintf (vect_dump,
1417 "not vectorized: can't create epilog loop 2.");
1418 return false;
1422 return true;
1426 /* Function vect_analyze_loop_2.
1428 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1429 for it. The different analyses will record information in the
1430 loop_vec_info struct. */
1431 static bool
1432 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1434 bool ok, dummy, slp = false;
1435 int max_vf = MAX_VECTORIZATION_FACTOR;
1436 int min_vf = 2;
1438 /* Find all data references in the loop (which correspond to vdefs/vuses)
1439 and analyze their evolution in the loop. Also adjust the minimal
1440 vectorization factor according to the loads and stores.
1442 FORNOW: Handle only simple, array references, which
1443 alignment can be forced, and aligned pointer-references. */
1445 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1446 if (!ok)
1448 if (vect_print_dump_info (REPORT_DETAILS))
1449 fprintf (vect_dump, "bad data references.");
1450 return false;
1453 /* Classify all cross-iteration scalar data-flow cycles.
1454 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1456 vect_analyze_scalar_cycles (loop_vinfo);
1458 vect_pattern_recog (loop_vinfo);
1460 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1462 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1463 if (!ok)
1465 if (vect_print_dump_info (REPORT_DETAILS))
1466 fprintf (vect_dump, "unexpected pattern.");
1467 return false;
1470 /* Analyze data dependences between the data-refs in the loop
1471 and adjust the maximum vectorization factor according to
1472 the dependences.
1473 FORNOW: fail at the first data dependence that we encounter. */
1475 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf, &dummy);
1476 if (!ok
1477 || max_vf < min_vf)
1479 if (vect_print_dump_info (REPORT_DETAILS))
1480 fprintf (vect_dump, "bad data dependence.");
1481 return false;
1484 ok = vect_determine_vectorization_factor (loop_vinfo);
1485 if (!ok)
1487 if (vect_print_dump_info (REPORT_DETAILS))
1488 fprintf (vect_dump, "can't determine vectorization factor.");
1489 return false;
1491 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1493 if (vect_print_dump_info (REPORT_DETAILS))
1494 fprintf (vect_dump, "bad data dependence.");
1495 return false;
1498 /* Analyze the alignment of the data-refs in the loop.
1499 Fail if a data reference is found that cannot be vectorized. */
1501 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1502 if (!ok)
1504 if (vect_print_dump_info (REPORT_DETAILS))
1505 fprintf (vect_dump, "bad data alignment.");
1506 return false;
1509 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1510 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1512 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1513 if (!ok)
1515 if (vect_print_dump_info (REPORT_DETAILS))
1516 fprintf (vect_dump, "bad data access.");
1517 return false;
1520 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1521 It is important to call pruning after vect_analyze_data_ref_accesses,
1522 since we use grouping information gathered by interleaving analysis. */
1523 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1524 if (!ok)
1526 if (vect_print_dump_info (REPORT_DETAILS))
1527 fprintf (vect_dump, "too long list of versioning for alias "
1528 "run-time tests.");
1529 return false;
1532 /* This pass will decide on using loop versioning and/or loop peeling in
1533 order to enhance the alignment of data references in the loop. */
1535 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1536 if (!ok)
1538 if (vect_print_dump_info (REPORT_DETAILS))
1539 fprintf (vect_dump, "bad data alignment.");
1540 return false;
1543 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1544 ok = vect_analyze_slp (loop_vinfo, NULL);
1545 if (ok)
1547 /* Decide which possible SLP instances to SLP. */
1548 slp = vect_make_slp_decision (loop_vinfo);
1550 /* Find stmts that need to be both vectorized and SLPed. */
1551 vect_detect_hybrid_slp (loop_vinfo);
1553 else
1554 return false;
1556 /* Scan all the operations in the loop and make sure they are
1557 vectorizable. */
1559 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1560 if (!ok)
1562 if (vect_print_dump_info (REPORT_DETAILS))
1563 fprintf (vect_dump, "bad operation or unsupported loop bound.");
1564 return false;
1567 return true;
1570 /* Function vect_analyze_loop.
1572 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1573 for it. The different analyses will record information in the
1574 loop_vec_info struct. */
1575 loop_vec_info
1576 vect_analyze_loop (struct loop *loop)
1578 loop_vec_info loop_vinfo;
1579 unsigned int vector_sizes;
1581 /* Autodetect first vector size we try. */
1582 current_vector_size = 0;
1583 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1585 if (vect_print_dump_info (REPORT_DETAILS))
1586 fprintf (vect_dump, "===== analyze_loop_nest =====");
1588 if (loop_outer (loop)
1589 && loop_vec_info_for_loop (loop_outer (loop))
1590 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1592 if (vect_print_dump_info (REPORT_DETAILS))
1593 fprintf (vect_dump, "outer-loop already vectorized.");
1594 return NULL;
1597 while (1)
1599 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1600 loop_vinfo = vect_analyze_loop_form (loop);
1601 if (!loop_vinfo)
1603 if (vect_print_dump_info (REPORT_DETAILS))
1604 fprintf (vect_dump, "bad loop form.");
1605 return NULL;
1608 if (vect_analyze_loop_2 (loop_vinfo))
1610 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1612 return loop_vinfo;
1615 destroy_loop_vec_info (loop_vinfo, true);
1617 vector_sizes &= ~current_vector_size;
1618 if (vector_sizes == 0
1619 || current_vector_size == 0)
1620 return NULL;
1622 /* Try the next biggest vector size. */
1623 current_vector_size = 1 << floor_log2 (vector_sizes);
1624 if (vect_print_dump_info (REPORT_DETAILS))
1625 fprintf (vect_dump, "***** Re-trying analysis with "
1626 "vector size %d\n", current_vector_size);
1631 /* Function reduction_code_for_scalar_code
1633 Input:
1634 CODE - tree_code of a reduction operations.
1636 Output:
1637 REDUC_CODE - the corresponding tree-code to be used to reduce the
1638 vector of partial results into a single scalar result (which
1639 will also reside in a vector) or ERROR_MARK if the operation is
1640 a supported reduction operation, but does not have such tree-code.
1642 Return FALSE if CODE currently cannot be vectorized as reduction. */
1644 static bool
1645 reduction_code_for_scalar_code (enum tree_code code,
1646 enum tree_code *reduc_code)
1648 switch (code)
1650 case MAX_EXPR:
1651 *reduc_code = REDUC_MAX_EXPR;
1652 return true;
1654 case MIN_EXPR:
1655 *reduc_code = REDUC_MIN_EXPR;
1656 return true;
1658 case PLUS_EXPR:
1659 *reduc_code = REDUC_PLUS_EXPR;
1660 return true;
1662 case MULT_EXPR:
1663 case MINUS_EXPR:
1664 case BIT_IOR_EXPR:
1665 case BIT_XOR_EXPR:
1666 case BIT_AND_EXPR:
1667 *reduc_code = ERROR_MARK;
1668 return true;
1670 default:
1671 return false;
1676 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1677 STMT is printed with a message MSG. */
1679 static void
1680 report_vect_op (gimple stmt, const char *msg)
1682 fprintf (vect_dump, "%s", msg);
1683 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1687 /* Detect SLP reduction of the form:
1689 #a1 = phi <a5, a0>
1690 a2 = operation (a1)
1691 a3 = operation (a2)
1692 a4 = operation (a3)
1693 a5 = operation (a4)
1695 #a = phi <a5>
1697 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1698 FIRST_STMT is the first reduction stmt in the chain
1699 (a2 = operation (a1)).
1701 Return TRUE if a reduction chain was detected. */
1703 static bool
1704 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1706 struct loop *loop = (gimple_bb (phi))->loop_father;
1707 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1708 enum tree_code code;
1709 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1710 stmt_vec_info use_stmt_info, current_stmt_info;
1711 tree lhs;
1712 imm_use_iterator imm_iter;
1713 use_operand_p use_p;
1714 int nloop_uses, size = 0;
1715 bool found = false;
1717 if (loop != vect_loop)
1718 return false;
1720 lhs = PHI_RESULT (phi);
1721 code = gimple_assign_rhs_code (first_stmt);
1722 while (1)
1724 nloop_uses = 0;
1725 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1727 gimple use_stmt = USE_STMT (use_p);
1728 if (is_gimple_debug (use_stmt))
1729 continue;
1731 use_stmt = USE_STMT (use_p);
1733 /* Check if we got back to the reduction phi. */
1734 if (use_stmt == phi)
1736 loop_use_stmt = use_stmt;
1737 found = true;
1738 break;
1741 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1742 && vinfo_for_stmt (use_stmt)
1743 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1745 loop_use_stmt = use_stmt;
1746 nloop_uses++;
1749 if (nloop_uses > 1)
1750 return false;
1753 if (found)
1754 break;
1756 /* We reached a statement with no loop uses. */
1757 if (nloop_uses == 0)
1758 return false;
1760 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1761 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1762 return false;
1764 if (!is_gimple_assign (loop_use_stmt)
1765 || code != gimple_assign_rhs_code (loop_use_stmt)
1766 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1767 return false;
1769 /* Insert USE_STMT into reduction chain. */
1770 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
1771 if (current_stmt)
1773 current_stmt_info = vinfo_for_stmt (current_stmt);
1774 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
1775 GROUP_FIRST_ELEMENT (use_stmt_info)
1776 = GROUP_FIRST_ELEMENT (current_stmt_info);
1778 else
1779 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
1781 lhs = gimple_assign_lhs (loop_use_stmt);
1782 current_stmt = loop_use_stmt;
1783 size++;
1786 if (!found || loop_use_stmt != phi || size < 2)
1787 return false;
1789 /* Swap the operands, if needed, to make the reduction operand be the second
1790 operand. */
1791 lhs = PHI_RESULT (phi);
1792 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1793 while (next_stmt)
1795 if (gimple_assign_rhs2 (next_stmt) == lhs)
1797 tree op = gimple_assign_rhs1 (next_stmt);
1798 gimple def_stmt = NULL;
1800 if (TREE_CODE (op) == SSA_NAME)
1801 def_stmt = SSA_NAME_DEF_STMT (op);
1803 /* Check that the other def is either defined in the loop
1804 ("vect_internal_def"), or it's an induction (defined by a
1805 loop-header phi-node). */
1806 if (def_stmt
1807 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1808 && (is_gimple_assign (def_stmt)
1809 || is_gimple_call (def_stmt)
1810 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1811 == vect_induction_def
1812 || (gimple_code (def_stmt) == GIMPLE_PHI
1813 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1814 == vect_internal_def
1815 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1817 lhs = gimple_assign_lhs (next_stmt);
1818 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1819 continue;
1822 return false;
1824 else
1826 tree op = gimple_assign_rhs2 (next_stmt);
1827 gimple def_stmt = NULL;
1829 if (TREE_CODE (op) == SSA_NAME)
1830 def_stmt = SSA_NAME_DEF_STMT (op);
1832 /* Check that the other def is either defined in the loop
1833 ("vect_internal_def"), or it's an induction (defined by a
1834 loop-header phi-node). */
1835 if (def_stmt
1836 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1837 && (is_gimple_assign (def_stmt)
1838 || is_gimple_call (def_stmt)
1839 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1840 == vect_induction_def
1841 || (gimple_code (def_stmt) == GIMPLE_PHI
1842 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1843 == vect_internal_def
1844 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1846 if (vect_print_dump_info (REPORT_DETAILS))
1848 fprintf (vect_dump, "swapping oprnds: ");
1849 print_gimple_stmt (vect_dump, next_stmt, 0, TDF_SLIM);
1852 swap_tree_operands (next_stmt,
1853 gimple_assign_rhs1_ptr (next_stmt),
1854 gimple_assign_rhs2_ptr (next_stmt));
1855 mark_symbols_for_renaming (next_stmt);
1857 else
1858 return false;
1861 lhs = gimple_assign_lhs (next_stmt);
1862 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1865 /* Save the chain for further analysis in SLP detection. */
1866 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1867 VEC_safe_push (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_info), first);
1868 GROUP_SIZE (vinfo_for_stmt (first)) = size;
1870 return true;
1874 /* Function vect_is_simple_reduction_1
1876 (1) Detect a cross-iteration def-use cycle that represents a simple
1877 reduction computation. We look for the following pattern:
1879 loop_header:
1880 a1 = phi < a0, a2 >
1881 a3 = ...
1882 a2 = operation (a3, a1)
1884 such that:
1885 1. operation is commutative and associative and it is safe to
1886 change the order of the computation (if CHECK_REDUCTION is true)
1887 2. no uses for a2 in the loop (a2 is used out of the loop)
1888 3. no uses of a1 in the loop besides the reduction operation
1889 4. no uses of a1 outside the loop.
1891 Conditions 1,4 are tested here.
1892 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
1894 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
1895 nested cycles, if CHECK_REDUCTION is false.
1897 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
1898 reductions:
1900 a1 = phi < a0, a2 >
1901 inner loop (def of a3)
1902 a2 = phi < a3 >
1904 If MODIFY is true it tries also to rework the code in-place to enable
1905 detection of more reduction patterns. For the time being we rewrite
1906 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
1909 static gimple
1910 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
1911 bool check_reduction, bool *double_reduc,
1912 bool modify)
1914 struct loop *loop = (gimple_bb (phi))->loop_father;
1915 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1916 edge latch_e = loop_latch_edge (loop);
1917 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1918 gimple def_stmt, def1 = NULL, def2 = NULL;
1919 enum tree_code orig_code, code;
1920 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
1921 tree type;
1922 int nloop_uses;
1923 tree name;
1924 imm_use_iterator imm_iter;
1925 use_operand_p use_p;
1926 bool phi_def;
1928 *double_reduc = false;
1930 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
1931 otherwise, we assume outer loop vectorization. */
1932 gcc_assert ((check_reduction && loop == vect_loop)
1933 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
1935 name = PHI_RESULT (phi);
1936 nloop_uses = 0;
1937 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1939 gimple use_stmt = USE_STMT (use_p);
1940 if (is_gimple_debug (use_stmt))
1941 continue;
1943 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1945 if (vect_print_dump_info (REPORT_DETAILS))
1946 fprintf (vect_dump, "intermediate value used outside loop.");
1948 return NULL;
1951 if (vinfo_for_stmt (use_stmt)
1952 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1953 nloop_uses++;
1954 if (nloop_uses > 1)
1956 if (vect_print_dump_info (REPORT_DETAILS))
1957 fprintf (vect_dump, "reduction used in loop.");
1958 return NULL;
1962 if (TREE_CODE (loop_arg) != SSA_NAME)
1964 if (vect_print_dump_info (REPORT_DETAILS))
1966 fprintf (vect_dump, "reduction: not ssa_name: ");
1967 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1969 return NULL;
1972 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1973 if (!def_stmt)
1975 if (vect_print_dump_info (REPORT_DETAILS))
1976 fprintf (vect_dump, "reduction: no def_stmt.");
1977 return NULL;
1980 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
1982 if (vect_print_dump_info (REPORT_DETAILS))
1983 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
1984 return NULL;
1987 if (is_gimple_assign (def_stmt))
1989 name = gimple_assign_lhs (def_stmt);
1990 phi_def = false;
1992 else
1994 name = PHI_RESULT (def_stmt);
1995 phi_def = true;
1998 nloop_uses = 0;
1999 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2001 gimple use_stmt = USE_STMT (use_p);
2002 if (is_gimple_debug (use_stmt))
2003 continue;
2004 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2005 && vinfo_for_stmt (use_stmt)
2006 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2007 nloop_uses++;
2008 if (nloop_uses > 1)
2010 if (vect_print_dump_info (REPORT_DETAILS))
2011 fprintf (vect_dump, "reduction used in loop.");
2012 return NULL;
2016 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2017 defined in the inner loop. */
2018 if (phi_def)
2020 op1 = PHI_ARG_DEF (def_stmt, 0);
2022 if (gimple_phi_num_args (def_stmt) != 1
2023 || TREE_CODE (op1) != SSA_NAME)
2025 if (vect_print_dump_info (REPORT_DETAILS))
2026 fprintf (vect_dump, "unsupported phi node definition.");
2028 return NULL;
2031 def1 = SSA_NAME_DEF_STMT (op1);
2032 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2033 && loop->inner
2034 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2035 && is_gimple_assign (def1))
2037 if (vect_print_dump_info (REPORT_DETAILS))
2038 report_vect_op (def_stmt, "detected double reduction: ");
2040 *double_reduc = true;
2041 return def_stmt;
2044 return NULL;
2047 code = orig_code = gimple_assign_rhs_code (def_stmt);
2049 /* We can handle "res -= x[i]", which is non-associative by
2050 simply rewriting this into "res += -x[i]". Avoid changing
2051 gimple instruction for the first simple tests and only do this
2052 if we're allowed to change code at all. */
2053 if (code == MINUS_EXPR
2054 && modify
2055 && (op1 = gimple_assign_rhs1 (def_stmt))
2056 && TREE_CODE (op1) == SSA_NAME
2057 && SSA_NAME_DEF_STMT (op1) == phi)
2058 code = PLUS_EXPR;
2060 if (check_reduction
2061 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2063 if (vect_print_dump_info (REPORT_DETAILS))
2064 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
2065 return NULL;
2068 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2070 if (code != COND_EXPR)
2072 if (vect_print_dump_info (REPORT_DETAILS))
2073 report_vect_op (def_stmt, "reduction: not binary operation: ");
2075 return NULL;
2078 op3 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
2079 if (COMPARISON_CLASS_P (op3))
2081 op4 = TREE_OPERAND (op3, 1);
2082 op3 = TREE_OPERAND (op3, 0);
2085 op1 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 1);
2086 op2 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 2);
2088 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2090 if (vect_print_dump_info (REPORT_DETAILS))
2091 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
2093 return NULL;
2096 else
2098 op1 = gimple_assign_rhs1 (def_stmt);
2099 op2 = gimple_assign_rhs2 (def_stmt);
2101 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
2103 if (vect_print_dump_info (REPORT_DETAILS))
2104 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
2106 return NULL;
2110 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2111 if ((TREE_CODE (op1) == SSA_NAME
2112 && !types_compatible_p (type,TREE_TYPE (op1)))
2113 || (TREE_CODE (op2) == SSA_NAME
2114 && !types_compatible_p (type, TREE_TYPE (op2)))
2115 || (op3 && TREE_CODE (op3) == SSA_NAME
2116 && !types_compatible_p (type, TREE_TYPE (op3)))
2117 || (op4 && TREE_CODE (op4) == SSA_NAME
2118 && !types_compatible_p (type, TREE_TYPE (op4))))
2120 if (vect_print_dump_info (REPORT_DETAILS))
2122 fprintf (vect_dump, "reduction: multiple types: operation type: ");
2123 print_generic_expr (vect_dump, type, TDF_SLIM);
2124 fprintf (vect_dump, ", operands types: ");
2125 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
2126 fprintf (vect_dump, ",");
2127 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
2128 if (op3)
2130 fprintf (vect_dump, ",");
2131 print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
2134 if (op4)
2136 fprintf (vect_dump, ",");
2137 print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
2141 return NULL;
2144 /* Check that it's ok to change the order of the computation.
2145 Generally, when vectorizing a reduction we change the order of the
2146 computation. This may change the behavior of the program in some
2147 cases, so we need to check that this is ok. One exception is when
2148 vectorizing an outer-loop: the inner-loop is executed sequentially,
2149 and therefore vectorizing reductions in the inner-loop during
2150 outer-loop vectorization is safe. */
2152 /* CHECKME: check for !flag_finite_math_only too? */
2153 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2154 && check_reduction)
2156 /* Changing the order of operations changes the semantics. */
2157 if (vect_print_dump_info (REPORT_DETAILS))
2158 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
2159 return NULL;
2161 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2162 && check_reduction)
2164 /* Changing the order of operations changes the semantics. */
2165 if (vect_print_dump_info (REPORT_DETAILS))
2166 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
2167 return NULL;
2169 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2171 /* Changing the order of operations changes the semantics. */
2172 if (vect_print_dump_info (REPORT_DETAILS))
2173 report_vect_op (def_stmt,
2174 "reduction: unsafe fixed-point math optimization: ");
2175 return NULL;
2178 /* If we detected "res -= x[i]" earlier, rewrite it into
2179 "res += -x[i]" now. If this turns out to be useless reassoc
2180 will clean it up again. */
2181 if (orig_code == MINUS_EXPR)
2183 tree rhs = gimple_assign_rhs2 (def_stmt);
2184 tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
2185 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2186 rhs, NULL);
2187 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2188 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2189 loop_info, NULL));
2190 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2191 gimple_assign_set_rhs2 (def_stmt, negrhs);
2192 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2193 update_stmt (def_stmt);
2196 /* Reduction is safe. We're dealing with one of the following:
2197 1) integer arithmetic and no trapv
2198 2) floating point arithmetic, and special flags permit this optimization
2199 3) nested cycle (i.e., outer loop vectorization). */
2200 if (TREE_CODE (op1) == SSA_NAME)
2201 def1 = SSA_NAME_DEF_STMT (op1);
2203 if (TREE_CODE (op2) == SSA_NAME)
2204 def2 = SSA_NAME_DEF_STMT (op2);
2206 if (code != COND_EXPR
2207 && (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2)))
2209 if (vect_print_dump_info (REPORT_DETAILS))
2210 report_vect_op (def_stmt, "reduction: no defs for operands: ");
2211 return NULL;
2214 /* Check that one def is the reduction def, defined by PHI,
2215 the other def is either defined in the loop ("vect_internal_def"),
2216 or it's an induction (defined by a loop-header phi-node). */
2218 if (def2 && def2 == phi
2219 && (code == COND_EXPR
2220 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2221 && (is_gimple_assign (def1)
2222 || is_gimple_call (def1)
2223 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2224 == vect_induction_def
2225 || (gimple_code (def1) == GIMPLE_PHI
2226 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2227 == vect_internal_def
2228 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2230 if (vect_print_dump_info (REPORT_DETAILS))
2231 report_vect_op (def_stmt, "detected reduction: ");
2232 return def_stmt;
2235 if (def1 && def1 == phi
2236 && (code == COND_EXPR
2237 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2238 && (is_gimple_assign (def2)
2239 || is_gimple_call (def2)
2240 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2241 == vect_induction_def
2242 || (gimple_code (def2) == GIMPLE_PHI
2243 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2244 == vect_internal_def
2245 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2247 if (check_reduction)
2249 /* Swap operands (just for simplicity - so that the rest of the code
2250 can assume that the reduction variable is always the last (second)
2251 argument). */
2252 if (vect_print_dump_info (REPORT_DETAILS))
2253 report_vect_op (def_stmt,
2254 "detected reduction: need to swap operands: ");
2256 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2257 gimple_assign_rhs2_ptr (def_stmt));
2259 else
2261 if (vect_print_dump_info (REPORT_DETAILS))
2262 report_vect_op (def_stmt, "detected reduction: ");
2265 return def_stmt;
2268 /* Try to find SLP reduction chain. */
2269 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2271 if (vect_print_dump_info (REPORT_DETAILS))
2272 report_vect_op (def_stmt, "reduction: detected reduction chain: ");
2274 return def_stmt;
2277 if (vect_print_dump_info (REPORT_DETAILS))
2278 report_vect_op (def_stmt, "reduction: unknown pattern: ");
2280 return NULL;
2283 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2284 in-place. Arguments as there. */
2286 static gimple
2287 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2288 bool check_reduction, bool *double_reduc)
2290 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2291 double_reduc, false);
2294 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2295 in-place if it enables detection of more reductions. Arguments
2296 as there. */
2298 gimple
2299 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2300 bool check_reduction, bool *double_reduc)
2302 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2303 double_reduc, true);
2306 /* Calculate the cost of one scalar iteration of the loop. */
2308 vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
2310 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2311 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2312 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2313 int innerloop_iters, i, stmt_cost;
2315 /* Count statements in scalar loop. Using this as scalar cost for a single
2316 iteration for now.
2318 TODO: Add outer loop support.
2320 TODO: Consider assigning different costs to different scalar
2321 statements. */
2323 /* FORNOW. */
2324 innerloop_iters = 1;
2325 if (loop->inner)
2326 innerloop_iters = 50; /* FIXME */
2328 for (i = 0; i < nbbs; i++)
2330 gimple_stmt_iterator si;
2331 basic_block bb = bbs[i];
2333 if (bb->loop_father == loop->inner)
2334 factor = innerloop_iters;
2335 else
2336 factor = 1;
2338 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2340 gimple stmt = gsi_stmt (si);
2341 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2343 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2344 continue;
2346 /* Skip stmts that are not vectorized inside the loop. */
2347 if (stmt_info
2348 && !STMT_VINFO_RELEVANT_P (stmt_info)
2349 && (!STMT_VINFO_LIVE_P (stmt_info)
2350 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2351 continue;
2353 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2355 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2356 stmt_cost = vect_get_cost (scalar_load);
2357 else
2358 stmt_cost = vect_get_cost (scalar_store);
2360 else
2361 stmt_cost = vect_get_cost (scalar_stmt);
2363 scalar_single_iter_cost += stmt_cost * factor;
2366 return scalar_single_iter_cost;
2369 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2371 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2372 int *peel_iters_epilogue,
2373 int scalar_single_iter_cost)
2375 int peel_guard_costs = 0;
2376 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2378 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2380 *peel_iters_epilogue = vf/2;
2381 if (vect_print_dump_info (REPORT_COST))
2382 fprintf (vect_dump, "cost model: "
2383 "epilogue peel iters set to vf/2 because "
2384 "loop iterations are unknown .");
2386 /* If peeled iterations are known but number of scalar loop
2387 iterations are unknown, count a taken branch per peeled loop. */
2388 peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
2390 else
2392 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2393 peel_iters_prologue = niters < peel_iters_prologue ?
2394 niters : peel_iters_prologue;
2395 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2396 /* If we need to peel for gaps, but no peeling is required, we have to
2397 peel VF iterations. */
2398 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2399 *peel_iters_epilogue = vf;
2402 return (peel_iters_prologue * scalar_single_iter_cost)
2403 + (*peel_iters_epilogue * scalar_single_iter_cost)
2404 + peel_guard_costs;
2407 /* Function vect_estimate_min_profitable_iters
2409 Return the number of iterations required for the vector version of the
2410 loop to be profitable relative to the cost of the scalar version of the
2411 loop.
2413 TODO: Take profile info into account before making vectorization
2414 decisions, if available. */
2417 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
2419 int i;
2420 int min_profitable_iters;
2421 int peel_iters_prologue;
2422 int peel_iters_epilogue;
2423 int vec_inside_cost = 0;
2424 int vec_outside_cost = 0;
2425 int scalar_single_iter_cost = 0;
2426 int scalar_outside_cost = 0;
2427 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2428 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2429 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2430 int nbbs = loop->num_nodes;
2431 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2432 int peel_guard_costs = 0;
2433 int innerloop_iters = 0, factor;
2434 VEC (slp_instance, heap) *slp_instances;
2435 slp_instance instance;
2437 /* Cost model disabled. */
2438 if (!flag_vect_cost_model)
2440 if (vect_print_dump_info (REPORT_COST))
2441 fprintf (vect_dump, "cost model disabled.");
2442 return 0;
2445 /* Requires loop versioning tests to handle misalignment. */
2446 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2448 /* FIXME: Make cost depend on complexity of individual check. */
2449 vec_outside_cost +=
2450 VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
2451 if (vect_print_dump_info (REPORT_COST))
2452 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2453 "versioning to treat misalignment.\n");
2456 /* Requires loop versioning with alias checks. */
2457 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2459 /* FIXME: Make cost depend on complexity of individual check. */
2460 vec_outside_cost +=
2461 VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
2462 if (vect_print_dump_info (REPORT_COST))
2463 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2464 "versioning aliasing.\n");
2467 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2468 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2469 vec_outside_cost += vect_get_cost (cond_branch_taken);
2471 /* Count statements in scalar loop. Using this as scalar cost for a single
2472 iteration for now.
2474 TODO: Add outer loop support.
2476 TODO: Consider assigning different costs to different scalar
2477 statements. */
2479 /* FORNOW. */
2480 if (loop->inner)
2481 innerloop_iters = 50; /* FIXME */
2483 for (i = 0; i < nbbs; i++)
2485 gimple_stmt_iterator si;
2486 basic_block bb = bbs[i];
2488 if (bb->loop_father == loop->inner)
2489 factor = innerloop_iters;
2490 else
2491 factor = 1;
2493 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2495 gimple stmt = gsi_stmt (si);
2496 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2497 /* Skip stmts that are not vectorized inside the loop. */
2498 if (!STMT_VINFO_RELEVANT_P (stmt_info)
2499 && (!STMT_VINFO_LIVE_P (stmt_info)
2500 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2501 continue;
2502 vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
2503 /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
2504 some of the "outside" costs are generated inside the outer-loop. */
2505 vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
2509 scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
2511 /* Add additional cost for the peeled instructions in prologue and epilogue
2512 loop.
2514 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2515 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2517 TODO: Build an expression that represents peel_iters for prologue and
2518 epilogue to be used in a run-time test. */
2520 if (npeel < 0)
2522 peel_iters_prologue = vf/2;
2523 if (vect_print_dump_info (REPORT_COST))
2524 fprintf (vect_dump, "cost model: "
2525 "prologue peel iters set to vf/2.");
2527 /* If peeling for alignment is unknown, loop bound of main loop becomes
2528 unknown. */
2529 peel_iters_epilogue = vf/2;
2530 if (vect_print_dump_info (REPORT_COST))
2531 fprintf (vect_dump, "cost model: "
2532 "epilogue peel iters set to vf/2 because "
2533 "peeling for alignment is unknown .");
2535 /* If peeled iterations are unknown, count a taken branch and a not taken
2536 branch per peeled loop. Even if scalar loop iterations are known,
2537 vector iterations are not known since peeled prologue iterations are
2538 not known. Hence guards remain the same. */
2539 peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
2540 + vect_get_cost (cond_branch_not_taken));
2541 vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
2542 + (peel_iters_epilogue * scalar_single_iter_cost)
2543 + peel_guard_costs;
2545 else
2547 peel_iters_prologue = npeel;
2548 vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
2549 peel_iters_prologue, &peel_iters_epilogue,
2550 scalar_single_iter_cost);
2553 /* FORNOW: The scalar outside cost is incremented in one of the
2554 following ways:
2556 1. The vectorizer checks for alignment and aliasing and generates
2557 a condition that allows dynamic vectorization. A cost model
2558 check is ANDED with the versioning condition. Hence scalar code
2559 path now has the added cost of the versioning check.
2561 if (cost > th & versioning_check)
2562 jmp to vector code
2564 Hence run-time scalar is incremented by not-taken branch cost.
2566 2. The vectorizer then checks if a prologue is required. If the
2567 cost model check was not done before during versioning, it has to
2568 be done before the prologue check.
2570 if (cost <= th)
2571 prologue = scalar_iters
2572 if (prologue == 0)
2573 jmp to vector code
2574 else
2575 execute prologue
2576 if (prologue == num_iters)
2577 go to exit
2579 Hence the run-time scalar cost is incremented by a taken branch,
2580 plus a not-taken branch, plus a taken branch cost.
2582 3. The vectorizer then checks if an epilogue is required. If the
2583 cost model check was not done before during prologue check, it
2584 has to be done with the epilogue check.
2586 if (prologue == 0)
2587 jmp to vector code
2588 else
2589 execute prologue
2590 if (prologue == num_iters)
2591 go to exit
2592 vector code:
2593 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2594 jmp to epilogue
2596 Hence the run-time scalar cost should be incremented by 2 taken
2597 branches.
2599 TODO: The back end may reorder the BBS's differently and reverse
2600 conditions/branch directions. Change the estimates below to
2601 something more reasonable. */
2603 /* If the number of iterations is known and we do not do versioning, we can
2604 decide whether to vectorize at compile time. Hence the scalar version
2605 do not carry cost model guard costs. */
2606 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2607 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2608 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2610 /* Cost model check occurs at versioning. */
2611 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2612 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2613 scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
2614 else
2616 /* Cost model check occurs at prologue generation. */
2617 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2618 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
2619 + vect_get_cost (cond_branch_not_taken);
2620 /* Cost model check occurs at epilogue generation. */
2621 else
2622 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
2626 /* Add SLP costs. */
2627 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2628 FOR_EACH_VEC_ELT (slp_instance, slp_instances, i, instance)
2630 vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
2631 vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
2634 /* Calculate number of iterations required to make the vector version
2635 profitable, relative to the loop bodies only. The following condition
2636 must hold true:
2637 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2638 where
2639 SIC = scalar iteration cost, VIC = vector iteration cost,
2640 VOC = vector outside cost, VF = vectorization factor,
2641 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2642 SOC = scalar outside cost for run time cost model check. */
2644 if ((scalar_single_iter_cost * vf) > vec_inside_cost)
2646 if (vec_outside_cost <= 0)
2647 min_profitable_iters = 1;
2648 else
2650 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2651 - vec_inside_cost * peel_iters_prologue
2652 - vec_inside_cost * peel_iters_epilogue)
2653 / ((scalar_single_iter_cost * vf)
2654 - vec_inside_cost);
2656 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2657 <= ((vec_inside_cost * min_profitable_iters)
2658 + ((vec_outside_cost - scalar_outside_cost) * vf)))
2659 min_profitable_iters++;
2662 /* vector version will never be profitable. */
2663 else
2665 if (vect_print_dump_info (REPORT_COST))
2666 fprintf (vect_dump, "cost model: the vector iteration cost = %d "
2667 "divided by the scalar iteration cost = %d "
2668 "is greater or equal to the vectorization factor = %d.",
2669 vec_inside_cost, scalar_single_iter_cost, vf);
2670 return -1;
2673 if (vect_print_dump_info (REPORT_COST))
2675 fprintf (vect_dump, "Cost model analysis: \n");
2676 fprintf (vect_dump, " Vector inside of loop cost: %d\n",
2677 vec_inside_cost);
2678 fprintf (vect_dump, " Vector outside of loop cost: %d\n",
2679 vec_outside_cost);
2680 fprintf (vect_dump, " Scalar iteration cost: %d\n",
2681 scalar_single_iter_cost);
2682 fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
2683 fprintf (vect_dump, " prologue iterations: %d\n",
2684 peel_iters_prologue);
2685 fprintf (vect_dump, " epilogue iterations: %d\n",
2686 peel_iters_epilogue);
2687 fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
2688 min_profitable_iters);
2691 min_profitable_iters =
2692 min_profitable_iters < vf ? vf : min_profitable_iters;
2694 /* Because the condition we create is:
2695 if (niters <= min_profitable_iters)
2696 then skip the vectorized loop. */
2697 min_profitable_iters--;
2699 if (vect_print_dump_info (REPORT_COST))
2700 fprintf (vect_dump, " Profitability threshold = %d\n",
2701 min_profitable_iters);
2703 return min_profitable_iters;
2707 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2708 functions. Design better to avoid maintenance issues. */
2710 /* Function vect_model_reduction_cost.
2712 Models cost for a reduction operation, including the vector ops
2713 generated within the strip-mine loop, the initial definition before
2714 the loop, and the epilogue code that must be generated. */
2716 static bool
2717 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2718 int ncopies)
2720 int outer_cost = 0;
2721 enum tree_code code;
2722 optab optab;
2723 tree vectype;
2724 gimple stmt, orig_stmt;
2725 tree reduction_op;
2726 enum machine_mode mode;
2727 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2728 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2731 /* Cost of reduction op inside loop. */
2732 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2733 += ncopies * vect_get_cost (vector_stmt);
2735 stmt = STMT_VINFO_STMT (stmt_info);
2737 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2739 case GIMPLE_SINGLE_RHS:
2740 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2741 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2742 break;
2743 case GIMPLE_UNARY_RHS:
2744 reduction_op = gimple_assign_rhs1 (stmt);
2745 break;
2746 case GIMPLE_BINARY_RHS:
2747 reduction_op = gimple_assign_rhs2 (stmt);
2748 break;
2749 case GIMPLE_TERNARY_RHS:
2750 reduction_op = gimple_assign_rhs3 (stmt);
2751 break;
2752 default:
2753 gcc_unreachable ();
2756 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2757 if (!vectype)
2759 if (vect_print_dump_info (REPORT_COST))
2761 fprintf (vect_dump, "unsupported data-type ");
2762 print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
2764 return false;
2767 mode = TYPE_MODE (vectype);
2768 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2770 if (!orig_stmt)
2771 orig_stmt = STMT_VINFO_STMT (stmt_info);
2773 code = gimple_assign_rhs_code (orig_stmt);
2775 /* Add in cost for initial definition. */
2776 outer_cost += vect_get_cost (scalar_to_vec);
2778 /* Determine cost of epilogue code.
2780 We have a reduction operator that will reduce the vector in one statement.
2781 Also requires scalar extract. */
2783 if (!nested_in_vect_loop_p (loop, orig_stmt))
2785 if (reduc_code != ERROR_MARK)
2786 outer_cost += vect_get_cost (vector_stmt)
2787 + vect_get_cost (vec_to_scalar);
2788 else
2790 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
2791 tree bitsize =
2792 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
2793 int element_bitsize = tree_low_cst (bitsize, 1);
2794 int nelements = vec_size_in_bits / element_bitsize;
2796 optab = optab_for_tree_code (code, vectype, optab_default);
2798 /* We have a whole vector shift available. */
2799 if (VECTOR_MODE_P (mode)
2800 && optab_handler (optab, mode) != CODE_FOR_nothing
2801 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
2802 /* Final reduction via vector shifts and the reduction operator. Also
2803 requires scalar extract. */
2804 outer_cost += ((exact_log2(nelements) * 2)
2805 * vect_get_cost (vector_stmt)
2806 + vect_get_cost (vec_to_scalar));
2807 else
2808 /* Use extracts and reduction op for final reduction. For N elements,
2809 we have N extracts and N-1 reduction ops. */
2810 outer_cost += ((nelements + nelements - 1)
2811 * vect_get_cost (vector_stmt));
2815 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
2817 if (vect_print_dump_info (REPORT_COST))
2818 fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
2819 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2820 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2822 return true;
2826 /* Function vect_model_induction_cost.
2828 Models cost for induction operations. */
2830 static void
2831 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
2833 /* loop cost for vec_loop. */
2834 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2835 = ncopies * vect_get_cost (vector_stmt);
2836 /* prologue cost for vec_init and vec_step. */
2837 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
2838 = 2 * vect_get_cost (scalar_to_vec);
2840 if (vect_print_dump_info (REPORT_COST))
2841 fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
2842 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2843 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2847 /* Function get_initial_def_for_induction
2849 Input:
2850 STMT - a stmt that performs an induction operation in the loop.
2851 IV_PHI - the initial value of the induction variable
2853 Output:
2854 Return a vector variable, initialized with the first VF values of
2855 the induction variable. E.g., for an iv with IV_PHI='X' and
2856 evolution S, for a vector of 4 units, we want to return:
2857 [X, X + S, X + 2*S, X + 3*S]. */
2859 static tree
2860 get_initial_def_for_induction (gimple iv_phi)
2862 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
2863 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2864 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2865 tree scalar_type;
2866 tree vectype;
2867 int nunits;
2868 edge pe = loop_preheader_edge (loop);
2869 struct loop *iv_loop;
2870 basic_block new_bb;
2871 tree vec, vec_init, vec_step, t;
2872 tree access_fn;
2873 tree new_var;
2874 tree new_name;
2875 gimple init_stmt, induction_phi, new_stmt;
2876 tree induc_def, vec_def, vec_dest;
2877 tree init_expr, step_expr;
2878 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2879 int i;
2880 bool ok;
2881 int ncopies;
2882 tree expr;
2883 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
2884 bool nested_in_vect_loop = false;
2885 gimple_seq stmts = NULL;
2886 imm_use_iterator imm_iter;
2887 use_operand_p use_p;
2888 gimple exit_phi;
2889 edge latch_e;
2890 tree loop_arg;
2891 gimple_stmt_iterator si;
2892 basic_block bb = gimple_bb (iv_phi);
2893 tree stepvectype;
2894 tree resvectype;
2896 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
2897 if (nested_in_vect_loop_p (loop, iv_phi))
2899 nested_in_vect_loop = true;
2900 iv_loop = loop->inner;
2902 else
2903 iv_loop = loop;
2904 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
2906 latch_e = loop_latch_edge (iv_loop);
2907 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
2909 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
2910 gcc_assert (access_fn);
2911 STRIP_NOPS (access_fn);
2912 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
2913 &init_expr, &step_expr);
2914 gcc_assert (ok);
2915 pe = loop_preheader_edge (iv_loop);
2917 scalar_type = TREE_TYPE (init_expr);
2918 vectype = get_vectype_for_scalar_type (scalar_type);
2919 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
2920 gcc_assert (vectype);
2921 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2922 ncopies = vf / nunits;
2924 gcc_assert (phi_info);
2925 gcc_assert (ncopies >= 1);
2927 /* Find the first insertion point in the BB. */
2928 si = gsi_after_labels (bb);
2930 /* Create the vector that holds the initial_value of the induction. */
2931 if (nested_in_vect_loop)
2933 /* iv_loop is nested in the loop to be vectorized. init_expr had already
2934 been created during vectorization of previous stmts. We obtain it
2935 from the STMT_VINFO_VEC_STMT of the defining stmt. */
2936 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
2937 loop_preheader_edge (iv_loop));
2938 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
2940 else
2942 /* iv_loop is the loop to be vectorized. Create:
2943 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
2944 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
2945 add_referenced_var (new_var);
2947 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
2948 if (stmts)
2950 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2951 gcc_assert (!new_bb);
2954 t = NULL_TREE;
2955 t = tree_cons (NULL_TREE, new_name, t);
2956 for (i = 1; i < nunits; i++)
2958 /* Create: new_name_i = new_name + step_expr */
2959 enum tree_code code = POINTER_TYPE_P (scalar_type)
2960 ? POINTER_PLUS_EXPR : PLUS_EXPR;
2961 init_stmt = gimple_build_assign_with_ops (code, new_var,
2962 new_name, step_expr);
2963 new_name = make_ssa_name (new_var, init_stmt);
2964 gimple_assign_set_lhs (init_stmt, new_name);
2966 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
2967 gcc_assert (!new_bb);
2969 if (vect_print_dump_info (REPORT_DETAILS))
2971 fprintf (vect_dump, "created new init_stmt: ");
2972 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
2974 t = tree_cons (NULL_TREE, new_name, t);
2976 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
2977 vec = build_constructor_from_list (vectype, nreverse (t));
2978 vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
2982 /* Create the vector that holds the step of the induction. */
2983 if (nested_in_vect_loop)
2984 /* iv_loop is nested in the loop to be vectorized. Generate:
2985 vec_step = [S, S, S, S] */
2986 new_name = step_expr;
2987 else
2989 /* iv_loop is the loop to be vectorized. Generate:
2990 vec_step = [VF*S, VF*S, VF*S, VF*S] */
2991 expr = build_int_cst (TREE_TYPE (step_expr), vf);
2992 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2993 expr, step_expr);
2996 t = unshare_expr (new_name);
2997 gcc_assert (CONSTANT_CLASS_P (new_name));
2998 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
2999 gcc_assert (stepvectype);
3000 vec = build_vector_from_val (stepvectype, t);
3001 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
3004 /* Create the following def-use cycle:
3005 loop prolog:
3006 vec_init = ...
3007 vec_step = ...
3008 loop:
3009 vec_iv = PHI <vec_init, vec_loop>
3011 STMT
3013 vec_loop = vec_iv + vec_step; */
3015 /* Create the induction-phi that defines the induction-operand. */
3016 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3017 add_referenced_var (vec_dest);
3018 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3019 set_vinfo_for_stmt (induction_phi,
3020 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3021 induc_def = PHI_RESULT (induction_phi);
3023 /* Create the iv update inside the loop */
3024 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3025 induc_def, vec_step);
3026 vec_def = make_ssa_name (vec_dest, new_stmt);
3027 gimple_assign_set_lhs (new_stmt, vec_def);
3028 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3029 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3030 NULL));
3032 /* Set the arguments of the phi node: */
3033 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3034 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3035 UNKNOWN_LOCATION);
3038 /* In case that vectorization factor (VF) is bigger than the number
3039 of elements that we can fit in a vectype (nunits), we have to generate
3040 more than one vector stmt - i.e - we need to "unroll" the
3041 vector stmt by a factor VF/nunits. For more details see documentation
3042 in vectorizable_operation. */
3044 if (ncopies > 1)
3046 stmt_vec_info prev_stmt_vinfo;
3047 /* FORNOW. This restriction should be relaxed. */
3048 gcc_assert (!nested_in_vect_loop);
3050 /* Create the vector that holds the step of the induction. */
3051 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3052 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3053 expr, step_expr);
3054 t = unshare_expr (new_name);
3055 gcc_assert (CONSTANT_CLASS_P (new_name));
3056 vec = build_vector_from_val (stepvectype, t);
3057 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
3059 vec_def = induc_def;
3060 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3061 for (i = 1; i < ncopies; i++)
3063 /* vec_i = vec_prev + vec_step */
3064 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3065 vec_def, vec_step);
3066 vec_def = make_ssa_name (vec_dest, new_stmt);
3067 gimple_assign_set_lhs (new_stmt, vec_def);
3069 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3070 if (!useless_type_conversion_p (resvectype, vectype))
3072 new_stmt = gimple_build_assign_with_ops
3073 (VIEW_CONVERT_EXPR,
3074 vect_get_new_vect_var (resvectype, vect_simple_var,
3075 "vec_iv_"),
3076 build1 (VIEW_CONVERT_EXPR, resvectype,
3077 gimple_assign_lhs (new_stmt)), NULL_TREE);
3078 gimple_assign_set_lhs (new_stmt,
3079 make_ssa_name
3080 (gimple_assign_lhs (new_stmt), new_stmt));
3081 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3083 set_vinfo_for_stmt (new_stmt,
3084 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3085 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3086 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3090 if (nested_in_vect_loop)
3092 /* Find the loop-closed exit-phi of the induction, and record
3093 the final vector of induction results: */
3094 exit_phi = NULL;
3095 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3097 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3099 exit_phi = USE_STMT (use_p);
3100 break;
3103 if (exit_phi)
3105 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3106 /* FORNOW. Currently not supporting the case that an inner-loop induction
3107 is not used in the outer-loop (i.e. only outside the outer-loop). */
3108 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3109 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3111 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3112 if (vect_print_dump_info (REPORT_DETAILS))
3114 fprintf (vect_dump, "vector of inductions after inner-loop:");
3115 print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
3121 if (vect_print_dump_info (REPORT_DETAILS))
3123 fprintf (vect_dump, "transform induction: created def-use cycle: ");
3124 print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
3125 fprintf (vect_dump, "\n");
3126 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
3129 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3130 if (!useless_type_conversion_p (resvectype, vectype))
3132 new_stmt = gimple_build_assign_with_ops
3133 (VIEW_CONVERT_EXPR,
3134 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3135 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3136 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3137 gimple_assign_set_lhs (new_stmt, induc_def);
3138 si = gsi_start_bb (bb);
3139 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3140 set_vinfo_for_stmt (new_stmt,
3141 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3142 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3143 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3146 return induc_def;
3150 /* Function get_initial_def_for_reduction
3152 Input:
3153 STMT - a stmt that performs a reduction operation in the loop.
3154 INIT_VAL - the initial value of the reduction variable
3156 Output:
3157 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3158 of the reduction (used for adjusting the epilog - see below).
3159 Return a vector variable, initialized according to the operation that STMT
3160 performs. This vector will be used as the initial value of the
3161 vector of partial results.
3163 Option1 (adjust in epilog): Initialize the vector as follows:
3164 add/bit or/xor: [0,0,...,0,0]
3165 mult/bit and: [1,1,...,1,1]
3166 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3167 and when necessary (e.g. add/mult case) let the caller know
3168 that it needs to adjust the result by init_val.
3170 Option2: Initialize the vector as follows:
3171 add/bit or/xor: [init_val,0,0,...,0]
3172 mult/bit and: [init_val,1,1,...,1]
3173 min/max/cond_expr: [init_val,init_val,...,init_val]
3174 and no adjustments are needed.
3176 For example, for the following code:
3178 s = init_val;
3179 for (i=0;i<n;i++)
3180 s = s + a[i];
3182 STMT is 's = s + a[i]', and the reduction variable is 's'.
3183 For a vector of 4 units, we want to return either [0,0,0,init_val],
3184 or [0,0,0,0] and let the caller know that it needs to adjust
3185 the result at the end by 'init_val'.
3187 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3188 initialization vector is simpler (same element in all entries), if
3189 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3191 A cost model should help decide between these two schemes. */
3193 tree
3194 get_initial_def_for_reduction (gimple stmt, tree init_val,
3195 tree *adjustment_def)
3197 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3198 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3199 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3200 tree scalar_type = TREE_TYPE (init_val);
3201 tree vectype = get_vectype_for_scalar_type (scalar_type);
3202 int nunits;
3203 enum tree_code code = gimple_assign_rhs_code (stmt);
3204 tree def_for_init;
3205 tree init_def;
3206 tree t = NULL_TREE;
3207 int i;
3208 bool nested_in_vect_loop = false;
3209 tree init_value;
3210 REAL_VALUE_TYPE real_init_val = dconst0;
3211 int int_init_val = 0;
3212 gimple def_stmt = NULL;
3214 gcc_assert (vectype);
3215 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3217 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3218 || SCALAR_FLOAT_TYPE_P (scalar_type));
3220 if (nested_in_vect_loop_p (loop, stmt))
3221 nested_in_vect_loop = true;
3222 else
3223 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3225 /* In case of double reduction we only create a vector variable to be put
3226 in the reduction phi node. The actual statement creation is done in
3227 vect_create_epilog_for_reduction. */
3228 if (adjustment_def && nested_in_vect_loop
3229 && TREE_CODE (init_val) == SSA_NAME
3230 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3231 && gimple_code (def_stmt) == GIMPLE_PHI
3232 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3233 && vinfo_for_stmt (def_stmt)
3234 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3235 == vect_double_reduction_def)
3237 *adjustment_def = NULL;
3238 return vect_create_destination_var (init_val, vectype);
3241 if (TREE_CONSTANT (init_val))
3243 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3244 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3245 else
3246 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3248 else
3249 init_value = init_val;
3251 switch (code)
3253 case WIDEN_SUM_EXPR:
3254 case DOT_PROD_EXPR:
3255 case PLUS_EXPR:
3256 case MINUS_EXPR:
3257 case BIT_IOR_EXPR:
3258 case BIT_XOR_EXPR:
3259 case MULT_EXPR:
3260 case BIT_AND_EXPR:
3261 /* ADJUSMENT_DEF is NULL when called from
3262 vect_create_epilog_for_reduction to vectorize double reduction. */
3263 if (adjustment_def)
3265 if (nested_in_vect_loop)
3266 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3267 NULL);
3268 else
3269 *adjustment_def = init_val;
3272 if (code == MULT_EXPR)
3274 real_init_val = dconst1;
3275 int_init_val = 1;
3278 if (code == BIT_AND_EXPR)
3279 int_init_val = -1;
3281 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3282 def_for_init = build_real (scalar_type, real_init_val);
3283 else
3284 def_for_init = build_int_cst (scalar_type, int_init_val);
3286 /* Create a vector of '0' or '1' except the first element. */
3287 for (i = nunits - 2; i >= 0; --i)
3288 t = tree_cons (NULL_TREE, def_for_init, t);
3290 /* Option1: the first element is '0' or '1' as well. */
3291 if (adjustment_def)
3293 t = tree_cons (NULL_TREE, def_for_init, t);
3294 init_def = build_vector (vectype, t);
3295 break;
3298 /* Option2: the first element is INIT_VAL. */
3299 t = tree_cons (NULL_TREE, init_value, t);
3300 if (TREE_CONSTANT (init_val))
3301 init_def = build_vector (vectype, t);
3302 else
3303 init_def = build_constructor_from_list (vectype, t);
3305 break;
3307 case MIN_EXPR:
3308 case MAX_EXPR:
3309 case COND_EXPR:
3310 if (adjustment_def)
3312 *adjustment_def = NULL_TREE;
3313 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3314 break;
3317 init_def = build_vector_from_val (vectype, init_value);
3318 break;
3320 default:
3321 gcc_unreachable ();
3324 return init_def;
3328 /* Function vect_create_epilog_for_reduction
3330 Create code at the loop-epilog to finalize the result of a reduction
3331 computation.
3333 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3334 reduction statements.
3335 STMT is the scalar reduction stmt that is being vectorized.
3336 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3337 number of elements that we can fit in a vectype (nunits). In this case
3338 we have to generate more than one vector stmt - i.e - we need to "unroll"
3339 the vector stmt by a factor VF/nunits. For more details see documentation
3340 in vectorizable_operation.
3341 REDUC_CODE is the tree-code for the epilog reduction.
3342 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3343 computation.
3344 REDUC_INDEX is the index of the operand in the right hand side of the
3345 statement that is defined by REDUCTION_PHI.
3346 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3347 SLP_NODE is an SLP node containing a group of reduction statements. The
3348 first one in this group is STMT.
3350 This function:
3351 1. Creates the reduction def-use cycles: sets the arguments for
3352 REDUCTION_PHIS:
3353 The loop-entry argument is the vectorized initial-value of the reduction.
3354 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3355 sums.
3356 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3357 by applying the operation specified by REDUC_CODE if available, or by
3358 other means (whole-vector shifts or a scalar loop).
3359 The function also creates a new phi node at the loop exit to preserve
3360 loop-closed form, as illustrated below.
3362 The flow at the entry to this function:
3364 loop:
3365 vec_def = phi <null, null> # REDUCTION_PHI
3366 VECT_DEF = vector_stmt # vectorized form of STMT
3367 s_loop = scalar_stmt # (scalar) STMT
3368 loop_exit:
3369 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3370 use <s_out0>
3371 use <s_out0>
3373 The above is transformed by this function into:
3375 loop:
3376 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3377 VECT_DEF = vector_stmt # vectorized form of STMT
3378 s_loop = scalar_stmt # (scalar) STMT
3379 loop_exit:
3380 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3381 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3382 v_out2 = reduce <v_out1>
3383 s_out3 = extract_field <v_out2, 0>
3384 s_out4 = adjust_result <s_out3>
3385 use <s_out4>
3386 use <s_out4>
3389 static void
3390 vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
3391 int ncopies, enum tree_code reduc_code,
3392 VEC (gimple, heap) *reduction_phis,
3393 int reduc_index, bool double_reduc,
3394 slp_tree slp_node)
3396 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3397 stmt_vec_info prev_phi_info;
3398 tree vectype;
3399 enum machine_mode mode;
3400 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3401 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3402 basic_block exit_bb;
3403 tree scalar_dest;
3404 tree scalar_type;
3405 gimple new_phi = NULL, phi;
3406 gimple_stmt_iterator exit_gsi;
3407 tree vec_dest;
3408 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3409 gimple epilog_stmt = NULL;
3410 enum tree_code code = gimple_assign_rhs_code (stmt);
3411 gimple exit_phi;
3412 tree bitsize, bitpos;
3413 tree adjustment_def = NULL;
3414 tree vec_initial_def = NULL;
3415 tree reduction_op, expr, def;
3416 tree orig_name, scalar_result;
3417 imm_use_iterator imm_iter, phi_imm_iter;
3418 use_operand_p use_p, phi_use_p;
3419 bool extract_scalar_result = false;
3420 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3421 bool nested_in_vect_loop = false;
3422 VEC (gimple, heap) *new_phis = NULL;
3423 enum vect_def_type dt = vect_unknown_def_type;
3424 int j, i;
3425 VEC (tree, heap) *scalar_results = NULL;
3426 unsigned int group_size = 1, k, ratio;
3427 VEC (tree, heap) *vec_initial_defs = NULL;
3428 VEC (gimple, heap) *phis;
3429 bool slp_reduc = false;
3430 tree new_phi_result;
3432 if (slp_node)
3433 group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
3435 if (nested_in_vect_loop_p (loop, stmt))
3437 outer_loop = loop;
3438 loop = loop->inner;
3439 nested_in_vect_loop = true;
3440 gcc_assert (!slp_node);
3443 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3445 case GIMPLE_SINGLE_RHS:
3446 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3447 == ternary_op);
3448 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3449 break;
3450 case GIMPLE_UNARY_RHS:
3451 reduction_op = gimple_assign_rhs1 (stmt);
3452 break;
3453 case GIMPLE_BINARY_RHS:
3454 reduction_op = reduc_index ?
3455 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3456 break;
3457 case GIMPLE_TERNARY_RHS:
3458 reduction_op = gimple_op (stmt, reduc_index + 1);
3459 break;
3460 default:
3461 gcc_unreachable ();
3464 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3465 gcc_assert (vectype);
3466 mode = TYPE_MODE (vectype);
3468 /* 1. Create the reduction def-use cycle:
3469 Set the arguments of REDUCTION_PHIS, i.e., transform
3471 loop:
3472 vec_def = phi <null, null> # REDUCTION_PHI
3473 VECT_DEF = vector_stmt # vectorized form of STMT
3476 into:
3478 loop:
3479 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3480 VECT_DEF = vector_stmt # vectorized form of STMT
3483 (in case of SLP, do it for all the phis). */
3485 /* Get the loop-entry arguments. */
3486 if (slp_node)
3487 vect_get_slp_defs (reduction_op, NULL_TREE, slp_node, &vec_initial_defs,
3488 NULL, reduc_index);
3489 else
3491 vec_initial_defs = VEC_alloc (tree, heap, 1);
3492 /* For the case of reduction, vect_get_vec_def_for_operand returns
3493 the scalar def before the loop, that defines the initial value
3494 of the reduction variable. */
3495 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3496 &adjustment_def);
3497 VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
3500 /* Set phi nodes arguments. */
3501 FOR_EACH_VEC_ELT (gimple, reduction_phis, i, phi)
3503 tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
3504 tree def = VEC_index (tree, vect_defs, i);
3505 for (j = 0; j < ncopies; j++)
3507 /* Set the loop-entry arg of the reduction-phi. */
3508 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3509 UNKNOWN_LOCATION);
3511 /* Set the loop-latch arg for the reduction-phi. */
3512 if (j > 0)
3513 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3515 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3517 if (vect_print_dump_info (REPORT_DETAILS))
3519 fprintf (vect_dump, "transform reduction: created def-use"
3520 " cycle: ");
3521 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
3522 fprintf (vect_dump, "\n");
3523 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
3524 TDF_SLIM);
3527 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3531 VEC_free (tree, heap, vec_initial_defs);
3533 /* 2. Create epilog code.
3534 The reduction epilog code operates across the elements of the vector
3535 of partial results computed by the vectorized loop.
3536 The reduction epilog code consists of:
3538 step 1: compute the scalar result in a vector (v_out2)
3539 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3540 step 3: adjust the scalar result (s_out3) if needed.
3542 Step 1 can be accomplished using one the following three schemes:
3543 (scheme 1) using reduc_code, if available.
3544 (scheme 2) using whole-vector shifts, if available.
3545 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3546 combined.
3548 The overall epilog code looks like this:
3550 s_out0 = phi <s_loop> # original EXIT_PHI
3551 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3552 v_out2 = reduce <v_out1> # step 1
3553 s_out3 = extract_field <v_out2, 0> # step 2
3554 s_out4 = adjust_result <s_out3> # step 3
3556 (step 3 is optional, and steps 1 and 2 may be combined).
3557 Lastly, the uses of s_out0 are replaced by s_out4. */
3560 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3561 v_out1 = phi <VECT_DEF>
3562 Store them in NEW_PHIS. */
3564 exit_bb = single_exit (loop)->dest;
3565 prev_phi_info = NULL;
3566 new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
3567 FOR_EACH_VEC_ELT (tree, vect_defs, i, def)
3569 for (j = 0; j < ncopies; j++)
3571 phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
3572 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3573 if (j == 0)
3574 VEC_quick_push (gimple, new_phis, phi);
3575 else
3577 def = vect_get_vec_def_for_stmt_copy (dt, def);
3578 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3581 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3582 prev_phi_info = vinfo_for_stmt (phi);
3586 /* The epilogue is created for the outer-loop, i.e., for the loop being
3587 vectorized. */
3588 if (double_reduc)
3590 loop = outer_loop;
3591 exit_bb = single_exit (loop)->dest;
3594 exit_gsi = gsi_after_labels (exit_bb);
3596 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3597 (i.e. when reduc_code is not available) and in the final adjustment
3598 code (if needed). Also get the original scalar reduction variable as
3599 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3600 represents a reduction pattern), the tree-code and scalar-def are
3601 taken from the original stmt that the pattern-stmt (STMT) replaces.
3602 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3603 are taken from STMT. */
3605 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3606 if (!orig_stmt)
3608 /* Regular reduction */
3609 orig_stmt = stmt;
3611 else
3613 /* Reduction pattern */
3614 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3615 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3616 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3619 code = gimple_assign_rhs_code (orig_stmt);
3620 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3621 partial results are added and not subtracted. */
3622 if (code == MINUS_EXPR)
3623 code = PLUS_EXPR;
3625 scalar_dest = gimple_assign_lhs (orig_stmt);
3626 scalar_type = TREE_TYPE (scalar_dest);
3627 scalar_results = VEC_alloc (tree, heap, group_size);
3628 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3629 bitsize = TYPE_SIZE (scalar_type);
3631 /* In case this is a reduction in an inner-loop while vectorizing an outer
3632 loop - we don't need to extract a single scalar result at the end of the
3633 inner-loop (unless it is double reduction, i.e., the use of reduction is
3634 outside the outer-loop). The final vector of partial results will be used
3635 in the vectorized outer-loop, or reduced to a scalar result at the end of
3636 the outer-loop. */
3637 if (nested_in_vect_loop && !double_reduc)
3638 goto vect_finalize_reduction;
3640 /* SLP reduction without reduction chain, e.g.,
3641 # a1 = phi <a2, a0>
3642 # b1 = phi <b2, b0>
3643 a2 = operation (a1)
3644 b2 = operation (b1) */
3645 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
3647 /* In case of reduction chain, e.g.,
3648 # a1 = phi <a3, a0>
3649 a2 = operation (a1)
3650 a3 = operation (a2),
3652 we may end up with more than one vector result. Here we reduce them to
3653 one vector. */
3654 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
3656 tree first_vect = PHI_RESULT (VEC_index (gimple, new_phis, 0));
3657 tree tmp;
3659 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3660 for (k = 1; k < VEC_length (gimple, new_phis); k++)
3662 gimple next_phi = VEC_index (gimple, new_phis, k);
3663 tree second_vect = PHI_RESULT (next_phi);
3664 gimple new_vec_stmt;
3666 tmp = build2 (code, vectype, first_vect, second_vect);
3667 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
3668 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
3669 gimple_assign_set_lhs (new_vec_stmt, first_vect);
3670 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
3673 new_phi_result = first_vect;
3675 else
3676 new_phi_result = PHI_RESULT (VEC_index (gimple, new_phis, 0));
3678 /* 2.3 Create the reduction code, using one of the three schemes described
3679 above. In SLP we simply need to extract all the elements from the
3680 vector (without reducing them), so we use scalar shifts. */
3681 if (reduc_code != ERROR_MARK && !slp_reduc)
3683 tree tmp;
3685 /*** Case 1: Create:
3686 v_out2 = reduc_expr <v_out1> */
3688 if (vect_print_dump_info (REPORT_DETAILS))
3689 fprintf (vect_dump, "Reduce using direct vector reduction.");
3691 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3692 tmp = build1 (reduc_code, vectype, new_phi_result);
3693 epilog_stmt = gimple_build_assign (vec_dest, tmp);
3694 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3695 gimple_assign_set_lhs (epilog_stmt, new_temp);
3696 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3698 extract_scalar_result = true;
3700 else
3702 enum tree_code shift_code = ERROR_MARK;
3703 bool have_whole_vector_shift = true;
3704 int bit_offset;
3705 int element_bitsize = tree_low_cst (bitsize, 1);
3706 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3707 tree vec_temp;
3709 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3710 shift_code = VEC_RSHIFT_EXPR;
3711 else
3712 have_whole_vector_shift = false;
3714 /* Regardless of whether we have a whole vector shift, if we're
3715 emulating the operation via tree-vect-generic, we don't want
3716 to use it. Only the first round of the reduction is likely
3717 to still be profitable via emulation. */
3718 /* ??? It might be better to emit a reduction tree code here, so that
3719 tree-vect-generic can expand the first round via bit tricks. */
3720 if (!VECTOR_MODE_P (mode))
3721 have_whole_vector_shift = false;
3722 else
3724 optab optab = optab_for_tree_code (code, vectype, optab_default);
3725 if (optab_handler (optab, mode) == CODE_FOR_nothing)
3726 have_whole_vector_shift = false;
3729 if (have_whole_vector_shift && !slp_reduc)
3731 /*** Case 2: Create:
3732 for (offset = VS/2; offset >= element_size; offset/=2)
3734 Create: va' = vec_shift <va, offset>
3735 Create: va = vop <va, va'>
3736 } */
3738 if (vect_print_dump_info (REPORT_DETAILS))
3739 fprintf (vect_dump, "Reduce using vector shifts");
3741 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3742 new_temp = new_phi_result;
3743 for (bit_offset = vec_size_in_bits/2;
3744 bit_offset >= element_bitsize;
3745 bit_offset /= 2)
3747 tree bitpos = size_int (bit_offset);
3749 epilog_stmt = gimple_build_assign_with_ops (shift_code,
3750 vec_dest, new_temp, bitpos);
3751 new_name = make_ssa_name (vec_dest, epilog_stmt);
3752 gimple_assign_set_lhs (epilog_stmt, new_name);
3753 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3755 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
3756 new_name, new_temp);
3757 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3758 gimple_assign_set_lhs (epilog_stmt, new_temp);
3759 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3762 extract_scalar_result = true;
3764 else
3766 tree rhs;
3768 /*** Case 3: Create:
3769 s = extract_field <v_out2, 0>
3770 for (offset = element_size;
3771 offset < vector_size;
3772 offset += element_size;)
3774 Create: s' = extract_field <v_out2, offset>
3775 Create: s = op <s, s'> // For non SLP cases
3776 } */
3778 if (vect_print_dump_info (REPORT_DETAILS))
3779 fprintf (vect_dump, "Reduce using scalar code. ");
3781 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3782 FOR_EACH_VEC_ELT (gimple, new_phis, i, new_phi)
3784 vec_temp = PHI_RESULT (new_phi);
3785 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3786 bitsize_zero_node);
3787 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3788 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3789 gimple_assign_set_lhs (epilog_stmt, new_temp);
3790 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3792 /* In SLP we don't need to apply reduction operation, so we just
3793 collect s' values in SCALAR_RESULTS. */
3794 if (slp_reduc)
3795 VEC_safe_push (tree, heap, scalar_results, new_temp);
3797 for (bit_offset = element_bitsize;
3798 bit_offset < vec_size_in_bits;
3799 bit_offset += element_bitsize)
3801 tree bitpos = bitsize_int (bit_offset);
3802 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
3803 bitsize, bitpos);
3805 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3806 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
3807 gimple_assign_set_lhs (epilog_stmt, new_name);
3808 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3810 if (slp_reduc)
3812 /* In SLP we don't need to apply reduction operation, so
3813 we just collect s' values in SCALAR_RESULTS. */
3814 new_temp = new_name;
3815 VEC_safe_push (tree, heap, scalar_results, new_name);
3817 else
3819 epilog_stmt = gimple_build_assign_with_ops (code,
3820 new_scalar_dest, new_name, new_temp);
3821 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3822 gimple_assign_set_lhs (epilog_stmt, new_temp);
3823 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3828 /* The only case where we need to reduce scalar results in SLP, is
3829 unrolling. If the size of SCALAR_RESULTS is greater than
3830 GROUP_SIZE, we reduce them combining elements modulo
3831 GROUP_SIZE. */
3832 if (slp_reduc)
3834 tree res, first_res, new_res;
3835 gimple new_stmt;
3837 /* Reduce multiple scalar results in case of SLP unrolling. */
3838 for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
3839 j++)
3841 first_res = VEC_index (tree, scalar_results, j % group_size);
3842 new_stmt = gimple_build_assign_with_ops (code,
3843 new_scalar_dest, first_res, res);
3844 new_res = make_ssa_name (new_scalar_dest, new_stmt);
3845 gimple_assign_set_lhs (new_stmt, new_res);
3846 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
3847 VEC_replace (tree, scalar_results, j % group_size, new_res);
3850 else
3851 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
3852 VEC_safe_push (tree, heap, scalar_results, new_temp);
3854 extract_scalar_result = false;
3858 /* 2.4 Extract the final scalar result. Create:
3859 s_out3 = extract_field <v_out2, bitpos> */
3861 if (extract_scalar_result)
3863 tree rhs;
3865 if (vect_print_dump_info (REPORT_DETAILS))
3866 fprintf (vect_dump, "extract scalar result");
3868 if (BYTES_BIG_ENDIAN)
3869 bitpos = size_binop (MULT_EXPR,
3870 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
3871 TYPE_SIZE (scalar_type));
3872 else
3873 bitpos = bitsize_zero_node;
3875 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
3876 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3877 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3878 gimple_assign_set_lhs (epilog_stmt, new_temp);
3879 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3880 VEC_safe_push (tree, heap, scalar_results, new_temp);
3883 vect_finalize_reduction:
3885 if (double_reduc)
3886 loop = loop->inner;
3888 /* 2.5 Adjust the final result by the initial value of the reduction
3889 variable. (When such adjustment is not needed, then
3890 'adjustment_def' is zero). For example, if code is PLUS we create:
3891 new_temp = loop_exit_def + adjustment_def */
3893 if (adjustment_def)
3895 gcc_assert (!slp_reduc);
3896 if (nested_in_vect_loop)
3898 new_phi = VEC_index (gimple, new_phis, 0);
3899 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
3900 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
3901 new_dest = vect_create_destination_var (scalar_dest, vectype);
3903 else
3905 new_temp = VEC_index (tree, scalar_results, 0);
3906 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
3907 expr = build2 (code, scalar_type, new_temp, adjustment_def);
3908 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
3911 epilog_stmt = gimple_build_assign (new_dest, expr);
3912 new_temp = make_ssa_name (new_dest, epilog_stmt);
3913 gimple_assign_set_lhs (epilog_stmt, new_temp);
3914 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
3915 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3916 if (nested_in_vect_loop)
3918 set_vinfo_for_stmt (epilog_stmt,
3919 new_stmt_vec_info (epilog_stmt, loop_vinfo,
3920 NULL));
3921 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
3922 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
3924 if (!double_reduc)
3925 VEC_quick_push (tree, scalar_results, new_temp);
3926 else
3927 VEC_replace (tree, scalar_results, 0, new_temp);
3929 else
3930 VEC_replace (tree, scalar_results, 0, new_temp);
3932 VEC_replace (gimple, new_phis, 0, epilog_stmt);
3935 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
3936 phis with new adjusted scalar results, i.e., replace use <s_out0>
3937 with use <s_out4>.
3939 Transform:
3940 loop_exit:
3941 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3942 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3943 v_out2 = reduce <v_out1>
3944 s_out3 = extract_field <v_out2, 0>
3945 s_out4 = adjust_result <s_out3>
3946 use <s_out0>
3947 use <s_out0>
3949 into:
3951 loop_exit:
3952 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3953 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3954 v_out2 = reduce <v_out1>
3955 s_out3 = extract_field <v_out2, 0>
3956 s_out4 = adjust_result <s_out3>
3957 use <s_out4>
3958 use <s_out4> */
3961 /* In SLP reduction chain we reduce vector results into one vector if
3962 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
3963 the last stmt in the reduction chain, since we are looking for the loop
3964 exit phi node. */
3965 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
3967 scalar_dest = gimple_assign_lhs (VEC_index (gimple,
3968 SLP_TREE_SCALAR_STMTS (slp_node),
3969 group_size - 1));
3970 group_size = 1;
3973 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
3974 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
3975 need to match SCALAR_RESULTS with corresponding statements. The first
3976 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
3977 the first vector stmt, etc.
3978 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
3979 if (group_size > VEC_length (gimple, new_phis))
3981 ratio = group_size / VEC_length (gimple, new_phis);
3982 gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
3984 else
3985 ratio = 1;
3987 for (k = 0; k < group_size; k++)
3989 if (k % ratio == 0)
3991 epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
3992 reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
3995 if (slp_reduc)
3997 gimple current_stmt = VEC_index (gimple,
3998 SLP_TREE_SCALAR_STMTS (slp_node), k);
4000 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4001 /* SLP statements can't participate in patterns. */
4002 gcc_assert (!orig_stmt);
4003 scalar_dest = gimple_assign_lhs (current_stmt);
4006 phis = VEC_alloc (gimple, heap, 3);
4007 /* Find the loop-closed-use at the loop exit of the original scalar
4008 result. (The reduction result is expected to have two immediate uses -
4009 one at the latch block, and one at the loop exit). */
4010 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4011 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4012 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
4014 /* We expect to have found an exit_phi because of loop-closed-ssa
4015 form. */
4016 gcc_assert (!VEC_empty (gimple, phis));
4018 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
4020 if (outer_loop)
4022 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4023 gimple vect_phi;
4025 /* FORNOW. Currently not supporting the case that an inner-loop
4026 reduction is not used in the outer-loop (but only outside the
4027 outer-loop), unless it is double reduction. */
4028 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4029 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4030 || double_reduc);
4032 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4033 if (!double_reduc
4034 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4035 != vect_double_reduction_def)
4036 continue;
4038 /* Handle double reduction:
4040 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4041 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4042 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4043 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4045 At that point the regular reduction (stmt2 and stmt3) is
4046 already vectorized, as well as the exit phi node, stmt4.
4047 Here we vectorize the phi node of double reduction, stmt1, and
4048 update all relevant statements. */
4050 /* Go through all the uses of s2 to find double reduction phi
4051 node, i.e., stmt1 above. */
4052 orig_name = PHI_RESULT (exit_phi);
4053 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4055 stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4056 stmt_vec_info new_phi_vinfo;
4057 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4058 basic_block bb = gimple_bb (use_stmt);
4059 gimple use;
4061 /* Check that USE_STMT is really double reduction phi
4062 node. */
4063 if (gimple_code (use_stmt) != GIMPLE_PHI
4064 || gimple_phi_num_args (use_stmt) != 2
4065 || !use_stmt_vinfo
4066 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4067 != vect_double_reduction_def
4068 || bb->loop_father != outer_loop)
4069 continue;
4071 /* Create vector phi node for double reduction:
4072 vs1 = phi <vs0, vs2>
4073 vs1 was created previously in this function by a call to
4074 vect_get_vec_def_for_operand and is stored in
4075 vec_initial_def;
4076 vs2 is defined by EPILOG_STMT, the vectorized EXIT_PHI;
4077 vs0 is created here. */
4079 /* Create vector phi node. */
4080 vect_phi = create_phi_node (vec_initial_def, bb);
4081 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4082 loop_vec_info_for_loop (outer_loop), NULL);
4083 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4085 /* Create vs0 - initial def of the double reduction phi. */
4086 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4087 loop_preheader_edge (outer_loop));
4088 init_def = get_initial_def_for_reduction (stmt,
4089 preheader_arg, NULL);
4090 vect_phi_init = vect_init_vector (use_stmt, init_def,
4091 vectype, NULL);
4093 /* Update phi node arguments with vs0 and vs2. */
4094 add_phi_arg (vect_phi, vect_phi_init,
4095 loop_preheader_edge (outer_loop),
4096 UNKNOWN_LOCATION);
4097 add_phi_arg (vect_phi, PHI_RESULT (epilog_stmt),
4098 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4099 if (vect_print_dump_info (REPORT_DETAILS))
4101 fprintf (vect_dump, "created double reduction phi "
4102 "node: ");
4103 print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
4106 vect_phi_res = PHI_RESULT (vect_phi);
4108 /* Replace the use, i.e., set the correct vs1 in the regular
4109 reduction phi node. FORNOW, NCOPIES is always 1, so the
4110 loop is redundant. */
4111 use = reduction_phi;
4112 for (j = 0; j < ncopies; j++)
4114 edge pr_edge = loop_preheader_edge (loop);
4115 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4116 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4122 VEC_free (gimple, heap, phis);
4123 if (nested_in_vect_loop)
4125 if (double_reduc)
4126 loop = outer_loop;
4127 else
4128 continue;
4131 phis = VEC_alloc (gimple, heap, 3);
4132 /* Find the loop-closed-use at the loop exit of the original scalar
4133 result. (The reduction result is expected to have two immediate uses,
4134 one at the latch block, and one at the loop exit). For double
4135 reductions we are looking for exit phis of the outer loop. */
4136 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4138 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4139 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
4140 else
4142 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4144 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4146 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4148 if (!flow_bb_inside_loop_p (loop,
4149 gimple_bb (USE_STMT (phi_use_p))))
4150 VEC_safe_push (gimple, heap, phis,
4151 USE_STMT (phi_use_p));
4157 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
4159 /* Replace the uses: */
4160 orig_name = PHI_RESULT (exit_phi);
4161 scalar_result = VEC_index (tree, scalar_results, k);
4162 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4163 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4164 SET_USE (use_p, scalar_result);
4167 VEC_free (gimple, heap, phis);
4170 VEC_free (tree, heap, scalar_results);
4171 VEC_free (gimple, heap, new_phis);
4175 /* Function vectorizable_reduction.
4177 Check if STMT performs a reduction operation that can be vectorized.
4178 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4179 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4180 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4182 This function also handles reduction idioms (patterns) that have been
4183 recognized in advance during vect_pattern_recog. In this case, STMT may be
4184 of this form:
4185 X = pattern_expr (arg0, arg1, ..., X)
4186 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4187 sequence that had been detected and replaced by the pattern-stmt (STMT).
4189 In some cases of reduction patterns, the type of the reduction variable X is
4190 different than the type of the other arguments of STMT.
4191 In such cases, the vectype that is used when transforming STMT into a vector
4192 stmt is different than the vectype that is used to determine the
4193 vectorization factor, because it consists of a different number of elements
4194 than the actual number of elements that are being operated upon in parallel.
4196 For example, consider an accumulation of shorts into an int accumulator.
4197 On some targets it's possible to vectorize this pattern operating on 8
4198 shorts at a time (hence, the vectype for purposes of determining the
4199 vectorization factor should be V8HI); on the other hand, the vectype that
4200 is used to create the vector form is actually V4SI (the type of the result).
4202 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4203 indicates what is the actual level of parallelism (V8HI in the example), so
4204 that the right vectorization factor would be derived. This vectype
4205 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4206 be used to create the vectorized stmt. The right vectype for the vectorized
4207 stmt is obtained from the type of the result X:
4208 get_vectype_for_scalar_type (TREE_TYPE (X))
4210 This means that, contrary to "regular" reductions (or "regular" stmts in
4211 general), the following equation:
4212 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4213 does *NOT* necessarily hold for reduction patterns. */
4215 bool
4216 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4217 gimple *vec_stmt, slp_tree slp_node)
4219 tree vec_dest;
4220 tree scalar_dest;
4221 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4222 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4223 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4224 tree vectype_in = NULL_TREE;
4225 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4226 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4227 enum tree_code code, orig_code, epilog_reduc_code;
4228 enum machine_mode vec_mode;
4229 int op_type;
4230 optab optab, reduc_optab;
4231 tree new_temp = NULL_TREE;
4232 tree def;
4233 gimple def_stmt;
4234 enum vect_def_type dt;
4235 gimple new_phi = NULL;
4236 tree scalar_type;
4237 bool is_simple_use;
4238 gimple orig_stmt;
4239 stmt_vec_info orig_stmt_info;
4240 tree expr = NULL_TREE;
4241 int i;
4242 int ncopies;
4243 int epilog_copies;
4244 stmt_vec_info prev_stmt_info, prev_phi_info;
4245 bool single_defuse_cycle = false;
4246 tree reduc_def = NULL_TREE;
4247 gimple new_stmt = NULL;
4248 int j;
4249 tree ops[3];
4250 bool nested_cycle = false, found_nested_cycle_def = false;
4251 gimple reduc_def_stmt = NULL;
4252 /* The default is that the reduction variable is the last in statement. */
4253 int reduc_index = 2;
4254 bool double_reduc = false, dummy;
4255 basic_block def_bb;
4256 struct loop * def_stmt_loop, *outer_loop = NULL;
4257 tree def_arg;
4258 gimple def_arg_stmt;
4259 VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
4260 VEC (gimple, heap) *phis = NULL;
4261 int vec_num;
4262 tree def0, def1, tem;
4264 /* In case of reduction chain we switch to the first stmt in the chain, but
4265 we don't update STMT_INFO, since only the last stmt is marked as reduction
4266 and has reduction properties. */
4267 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4268 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4270 if (nested_in_vect_loop_p (loop, stmt))
4272 outer_loop = loop;
4273 loop = loop->inner;
4274 nested_cycle = true;
4277 /* 1. Is vectorizable reduction? */
4278 /* Not supportable if the reduction variable is used in the loop, unless
4279 it's a reduction chain. */
4280 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4281 && !GROUP_FIRST_ELEMENT (stmt_info))
4282 return false;
4284 /* Reductions that are not used even in an enclosing outer-loop,
4285 are expected to be "live" (used out of the loop). */
4286 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4287 && !STMT_VINFO_LIVE_P (stmt_info))
4288 return false;
4290 /* Make sure it was already recognized as a reduction computation. */
4291 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4292 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4293 return false;
4295 /* 2. Has this been recognized as a reduction pattern?
4297 Check if STMT represents a pattern that has been recognized
4298 in earlier analysis stages. For stmts that represent a pattern,
4299 the STMT_VINFO_RELATED_STMT field records the last stmt in
4300 the original sequence that constitutes the pattern. */
4302 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4303 if (orig_stmt)
4305 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4306 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
4307 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4308 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4311 /* 3. Check the operands of the operation. The first operands are defined
4312 inside the loop body. The last operand is the reduction variable,
4313 which is defined by the loop-header-phi. */
4315 gcc_assert (is_gimple_assign (stmt));
4317 /* Flatten RHS. */
4318 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4320 case GIMPLE_SINGLE_RHS:
4321 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4322 if (op_type == ternary_op)
4324 tree rhs = gimple_assign_rhs1 (stmt);
4325 ops[0] = TREE_OPERAND (rhs, 0);
4326 ops[1] = TREE_OPERAND (rhs, 1);
4327 ops[2] = TREE_OPERAND (rhs, 2);
4328 code = TREE_CODE (rhs);
4330 else
4331 return false;
4332 break;
4334 case GIMPLE_BINARY_RHS:
4335 code = gimple_assign_rhs_code (stmt);
4336 op_type = TREE_CODE_LENGTH (code);
4337 gcc_assert (op_type == binary_op);
4338 ops[0] = gimple_assign_rhs1 (stmt);
4339 ops[1] = gimple_assign_rhs2 (stmt);
4340 break;
4342 case GIMPLE_TERNARY_RHS:
4343 code = gimple_assign_rhs_code (stmt);
4344 op_type = TREE_CODE_LENGTH (code);
4345 gcc_assert (op_type == ternary_op);
4346 ops[0] = gimple_assign_rhs1 (stmt);
4347 ops[1] = gimple_assign_rhs2 (stmt);
4348 ops[2] = gimple_assign_rhs3 (stmt);
4349 break;
4351 case GIMPLE_UNARY_RHS:
4352 return false;
4354 default:
4355 gcc_unreachable ();
4358 scalar_dest = gimple_assign_lhs (stmt);
4359 scalar_type = TREE_TYPE (scalar_dest);
4360 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4361 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4362 return false;
4364 /* All uses but the last are expected to be defined in the loop.
4365 The last use is the reduction variable. In case of nested cycle this
4366 assumption is not true: we use reduc_index to record the index of the
4367 reduction variable. */
4368 for (i = 0; i < op_type-1; i++)
4370 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4371 if (i == 0 && code == COND_EXPR)
4372 continue;
4374 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL,
4375 &def_stmt, &def, &dt, &tem);
4376 if (!vectype_in)
4377 vectype_in = tem;
4378 gcc_assert (is_simple_use);
4380 if (dt != vect_internal_def
4381 && dt != vect_external_def
4382 && dt != vect_constant_def
4383 && dt != vect_induction_def
4384 && !(dt == vect_nested_cycle && nested_cycle))
4385 return false;
4387 if (dt == vect_nested_cycle)
4389 found_nested_cycle_def = true;
4390 reduc_def_stmt = def_stmt;
4391 reduc_index = i;
4395 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL, &def_stmt,
4396 &def, &dt, &tem);
4397 if (!vectype_in)
4398 vectype_in = tem;
4399 gcc_assert (is_simple_use);
4400 gcc_assert (dt == vect_reduction_def
4401 || dt == vect_nested_cycle
4402 || ((dt == vect_internal_def || dt == vect_external_def
4403 || dt == vect_constant_def || dt == vect_induction_def)
4404 && nested_cycle && found_nested_cycle_def));
4405 if (!found_nested_cycle_def)
4406 reduc_def_stmt = def_stmt;
4408 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4409 if (orig_stmt)
4410 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4411 reduc_def_stmt,
4412 !nested_cycle,
4413 &dummy));
4414 else
4416 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4417 !nested_cycle, &dummy);
4418 /* We changed STMT to be the first stmt in reduction chain, hence we
4419 check that in this case the first element in the chain is STMT. */
4420 gcc_assert (stmt == tmp
4421 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4424 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4425 return false;
4427 if (slp_node || PURE_SLP_STMT (stmt_info))
4428 ncopies = 1;
4429 else
4430 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4431 / TYPE_VECTOR_SUBPARTS (vectype_in));
4433 gcc_assert (ncopies >= 1);
4435 vec_mode = TYPE_MODE (vectype_in);
4437 if (code == COND_EXPR)
4439 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0))
4441 if (vect_print_dump_info (REPORT_DETAILS))
4442 fprintf (vect_dump, "unsupported condition in reduction");
4444 return false;
4447 else
4449 /* 4. Supportable by target? */
4451 /* 4.1. check support for the operation in the loop */
4452 optab = optab_for_tree_code (code, vectype_in, optab_default);
4453 if (!optab)
4455 if (vect_print_dump_info (REPORT_DETAILS))
4456 fprintf (vect_dump, "no optab.");
4458 return false;
4461 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4463 if (vect_print_dump_info (REPORT_DETAILS))
4464 fprintf (vect_dump, "op not supported by target.");
4466 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4467 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4468 < vect_min_worthwhile_factor (code))
4469 return false;
4471 if (vect_print_dump_info (REPORT_DETAILS))
4472 fprintf (vect_dump, "proceeding using word mode.");
4475 /* Worthwhile without SIMD support? */
4476 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4477 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4478 < vect_min_worthwhile_factor (code))
4480 if (vect_print_dump_info (REPORT_DETAILS))
4481 fprintf (vect_dump, "not worthwhile without SIMD support.");
4483 return false;
4487 /* 4.2. Check support for the epilog operation.
4489 If STMT represents a reduction pattern, then the type of the
4490 reduction variable may be different than the type of the rest
4491 of the arguments. For example, consider the case of accumulation
4492 of shorts into an int accumulator; The original code:
4493 S1: int_a = (int) short_a;
4494 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4496 was replaced with:
4497 STMT: int_acc = widen_sum <short_a, int_acc>
4499 This means that:
4500 1. The tree-code that is used to create the vector operation in the
4501 epilog code (that reduces the partial results) is not the
4502 tree-code of STMT, but is rather the tree-code of the original
4503 stmt from the pattern that STMT is replacing. I.e, in the example
4504 above we want to use 'widen_sum' in the loop, but 'plus' in the
4505 epilog.
4506 2. The type (mode) we use to check available target support
4507 for the vector operation to be created in the *epilog*, is
4508 determined by the type of the reduction variable (in the example
4509 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4510 However the type (mode) we use to check available target support
4511 for the vector operation to be created *inside the loop*, is
4512 determined by the type of the other arguments to STMT (in the
4513 example we'd check this: optab_handler (widen_sum_optab,
4514 vect_short_mode)).
4516 This is contrary to "regular" reductions, in which the types of all
4517 the arguments are the same as the type of the reduction variable.
4518 For "regular" reductions we can therefore use the same vector type
4519 (and also the same tree-code) when generating the epilog code and
4520 when generating the code inside the loop. */
4522 if (orig_stmt)
4524 /* This is a reduction pattern: get the vectype from the type of the
4525 reduction variable, and get the tree-code from orig_stmt. */
4526 orig_code = gimple_assign_rhs_code (orig_stmt);
4527 gcc_assert (vectype_out);
4528 vec_mode = TYPE_MODE (vectype_out);
4530 else
4532 /* Regular reduction: use the same vectype and tree-code as used for
4533 the vector code inside the loop can be used for the epilog code. */
4534 orig_code = code;
4537 if (nested_cycle)
4539 def_bb = gimple_bb (reduc_def_stmt);
4540 def_stmt_loop = def_bb->loop_father;
4541 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4542 loop_preheader_edge (def_stmt_loop));
4543 if (TREE_CODE (def_arg) == SSA_NAME
4544 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4545 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4546 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4547 && vinfo_for_stmt (def_arg_stmt)
4548 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4549 == vect_double_reduction_def)
4550 double_reduc = true;
4553 epilog_reduc_code = ERROR_MARK;
4554 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4556 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4557 optab_default);
4558 if (!reduc_optab)
4560 if (vect_print_dump_info (REPORT_DETAILS))
4561 fprintf (vect_dump, "no optab for reduction.");
4563 epilog_reduc_code = ERROR_MARK;
4566 if (reduc_optab
4567 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4569 if (vect_print_dump_info (REPORT_DETAILS))
4570 fprintf (vect_dump, "reduc op not supported by target.");
4572 epilog_reduc_code = ERROR_MARK;
4575 else
4577 if (!nested_cycle || double_reduc)
4579 if (vect_print_dump_info (REPORT_DETAILS))
4580 fprintf (vect_dump, "no reduc code for scalar code.");
4582 return false;
4586 if (double_reduc && ncopies > 1)
4588 if (vect_print_dump_info (REPORT_DETAILS))
4589 fprintf (vect_dump, "multiple types in double reduction");
4591 return false;
4594 if (!vec_stmt) /* transformation not required. */
4596 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4597 return false;
4598 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4599 return true;
4602 /** Transform. **/
4604 if (vect_print_dump_info (REPORT_DETAILS))
4605 fprintf (vect_dump, "transform reduction.");
4607 /* FORNOW: Multiple types are not supported for condition. */
4608 if (code == COND_EXPR)
4609 gcc_assert (ncopies == 1);
4611 /* Create the destination vector */
4612 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4614 /* In case the vectorization factor (VF) is bigger than the number
4615 of elements that we can fit in a vectype (nunits), we have to generate
4616 more than one vector stmt - i.e - we need to "unroll" the
4617 vector stmt by a factor VF/nunits. For more details see documentation
4618 in vectorizable_operation. */
4620 /* If the reduction is used in an outer loop we need to generate
4621 VF intermediate results, like so (e.g. for ncopies=2):
4622 r0 = phi (init, r0)
4623 r1 = phi (init, r1)
4624 r0 = x0 + r0;
4625 r1 = x1 + r1;
4626 (i.e. we generate VF results in 2 registers).
4627 In this case we have a separate def-use cycle for each copy, and therefore
4628 for each copy we get the vector def for the reduction variable from the
4629 respective phi node created for this copy.
4631 Otherwise (the reduction is unused in the loop nest), we can combine
4632 together intermediate results, like so (e.g. for ncopies=2):
4633 r = phi (init, r)
4634 r = x0 + r;
4635 r = x1 + r;
4636 (i.e. we generate VF/2 results in a single register).
4637 In this case for each copy we get the vector def for the reduction variable
4638 from the vectorized reduction operation generated in the previous iteration.
4641 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
4643 single_defuse_cycle = true;
4644 epilog_copies = 1;
4646 else
4647 epilog_copies = ncopies;
4649 prev_stmt_info = NULL;
4650 prev_phi_info = NULL;
4651 if (slp_node)
4653 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4654 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
4655 == TYPE_VECTOR_SUBPARTS (vectype_in));
4657 else
4659 vec_num = 1;
4660 vec_oprnds0 = VEC_alloc (tree, heap, 1);
4661 if (op_type == ternary_op)
4662 vec_oprnds1 = VEC_alloc (tree, heap, 1);
4665 phis = VEC_alloc (gimple, heap, vec_num);
4666 vect_defs = VEC_alloc (tree, heap, vec_num);
4667 if (!slp_node)
4668 VEC_quick_push (tree, vect_defs, NULL_TREE);
4670 for (j = 0; j < ncopies; j++)
4672 if (j == 0 || !single_defuse_cycle)
4674 for (i = 0; i < vec_num; i++)
4676 /* Create the reduction-phi that defines the reduction
4677 operand. */
4678 new_phi = create_phi_node (vec_dest, loop->header);
4679 set_vinfo_for_stmt (new_phi,
4680 new_stmt_vec_info (new_phi, loop_vinfo,
4681 NULL));
4682 if (j == 0 || slp_node)
4683 VEC_quick_push (gimple, phis, new_phi);
4687 if (code == COND_EXPR)
4689 gcc_assert (!slp_node);
4690 vectorizable_condition (stmt, gsi, vec_stmt,
4691 PHI_RESULT (VEC_index (gimple, phis, 0)),
4692 reduc_index);
4693 /* Multiple types are not supported for condition. */
4694 break;
4697 /* Handle uses. */
4698 if (j == 0)
4700 tree op0, op1 = NULL_TREE;
4702 op0 = ops[!reduc_index];
4703 if (op_type == ternary_op)
4705 if (reduc_index == 0)
4706 op1 = ops[2];
4707 else
4708 op1 = ops[1];
4711 if (slp_node)
4712 vect_get_slp_defs (op0, op1, slp_node, &vec_oprnds0, &vec_oprnds1,
4713 -1);
4714 else
4716 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
4717 stmt, NULL);
4718 VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
4719 if (op_type == ternary_op)
4721 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
4722 NULL);
4723 VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
4727 else
4729 if (!slp_node)
4731 enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
4732 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
4733 VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
4734 if (op_type == ternary_op)
4736 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
4737 loop_vec_def1);
4738 VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
4742 if (single_defuse_cycle)
4743 reduc_def = gimple_assign_lhs (new_stmt);
4745 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
4748 FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, def0)
4750 if (slp_node)
4751 reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
4752 else
4754 if (!single_defuse_cycle || j == 0)
4755 reduc_def = PHI_RESULT (new_phi);
4758 def1 = ((op_type == ternary_op)
4759 ? VEC_index (tree, vec_oprnds1, i) : NULL);
4760 if (op_type == binary_op)
4762 if (reduc_index == 0)
4763 expr = build2 (code, vectype_out, reduc_def, def0);
4764 else
4765 expr = build2 (code, vectype_out, def0, reduc_def);
4767 else
4769 if (reduc_index == 0)
4770 expr = build3 (code, vectype_out, reduc_def, def0, def1);
4771 else
4773 if (reduc_index == 1)
4774 expr = build3 (code, vectype_out, def0, reduc_def, def1);
4775 else
4776 expr = build3 (code, vectype_out, def0, def1, reduc_def);
4780 new_stmt = gimple_build_assign (vec_dest, expr);
4781 new_temp = make_ssa_name (vec_dest, new_stmt);
4782 gimple_assign_set_lhs (new_stmt, new_temp);
4783 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4785 if (slp_node)
4787 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
4788 VEC_quick_push (tree, vect_defs, new_temp);
4790 else
4791 VEC_replace (tree, vect_defs, 0, new_temp);
4794 if (slp_node)
4795 continue;
4797 if (j == 0)
4798 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4799 else
4800 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4802 prev_stmt_info = vinfo_for_stmt (new_stmt);
4803 prev_phi_info = vinfo_for_stmt (new_phi);
4806 /* Finalize the reduction-phi (set its arguments) and create the
4807 epilog reduction code. */
4808 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
4810 new_temp = gimple_assign_lhs (*vec_stmt);
4811 VEC_replace (tree, vect_defs, 0, new_temp);
4814 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
4815 epilog_reduc_code, phis, reduc_index,
4816 double_reduc, slp_node);
4818 VEC_free (gimple, heap, phis);
4819 VEC_free (tree, heap, vec_oprnds0);
4820 if (vec_oprnds1)
4821 VEC_free (tree, heap, vec_oprnds1);
4823 return true;
4826 /* Function vect_min_worthwhile_factor.
4828 For a loop where we could vectorize the operation indicated by CODE,
4829 return the minimum vectorization factor that makes it worthwhile
4830 to use generic vectors. */
4832 vect_min_worthwhile_factor (enum tree_code code)
4834 switch (code)
4836 case PLUS_EXPR:
4837 case MINUS_EXPR:
4838 case NEGATE_EXPR:
4839 return 4;
4841 case BIT_AND_EXPR:
4842 case BIT_IOR_EXPR:
4843 case BIT_XOR_EXPR:
4844 case BIT_NOT_EXPR:
4845 return 2;
4847 default:
4848 return INT_MAX;
4853 /* Function vectorizable_induction
4855 Check if PHI performs an induction computation that can be vectorized.
4856 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
4857 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
4858 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4860 bool
4861 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4862 gimple *vec_stmt)
4864 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
4865 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4866 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4867 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4868 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4869 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4870 tree vec_def;
4872 gcc_assert (ncopies >= 1);
4873 /* FORNOW. This restriction should be relaxed. */
4874 if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
4876 if (vect_print_dump_info (REPORT_DETAILS))
4877 fprintf (vect_dump, "multiple types in nested loop.");
4878 return false;
4881 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4882 return false;
4884 /* FORNOW: SLP not supported. */
4885 if (STMT_SLP_TYPE (stmt_info))
4886 return false;
4888 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
4890 if (gimple_code (phi) != GIMPLE_PHI)
4891 return false;
4893 if (!vec_stmt) /* transformation not required. */
4895 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
4896 if (vect_print_dump_info (REPORT_DETAILS))
4897 fprintf (vect_dump, "=== vectorizable_induction ===");
4898 vect_model_induction_cost (stmt_info, ncopies);
4899 return true;
4902 /** Transform. **/
4904 if (vect_print_dump_info (REPORT_DETAILS))
4905 fprintf (vect_dump, "transform induction phi.");
4907 vec_def = get_initial_def_for_induction (phi);
4908 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
4909 return true;
4912 /* Function vectorizable_live_operation.
4914 STMT computes a value that is used outside the loop. Check if
4915 it can be supported. */
4917 bool
4918 vectorizable_live_operation (gimple stmt,
4919 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4920 gimple *vec_stmt ATTRIBUTE_UNUSED)
4922 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4923 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4924 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4925 int i;
4926 int op_type;
4927 tree op;
4928 tree def;
4929 gimple def_stmt;
4930 enum vect_def_type dt;
4931 enum tree_code code;
4932 enum gimple_rhs_class rhs_class;
4934 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
4936 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
4937 return false;
4939 if (!is_gimple_assign (stmt))
4940 return false;
4942 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4943 return false;
4945 /* FORNOW. CHECKME. */
4946 if (nested_in_vect_loop_p (loop, stmt))
4947 return false;
4949 code = gimple_assign_rhs_code (stmt);
4950 op_type = TREE_CODE_LENGTH (code);
4951 rhs_class = get_gimple_rhs_class (code);
4952 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
4953 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
4955 /* FORNOW: support only if all uses are invariant. This means
4956 that the scalar operations can remain in place, unvectorized.
4957 The original last scalar value that they compute will be used. */
4959 for (i = 0; i < op_type; i++)
4961 if (rhs_class == GIMPLE_SINGLE_RHS)
4962 op = TREE_OPERAND (gimple_op (stmt, 1), i);
4963 else
4964 op = gimple_op (stmt, i + 1);
4965 if (op
4966 && !vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt))
4968 if (vect_print_dump_info (REPORT_DETAILS))
4969 fprintf (vect_dump, "use not simple.");
4970 return false;
4973 if (dt != vect_external_def && dt != vect_constant_def)
4974 return false;
4977 /* No transformation is required for the cases we currently support. */
4978 return true;
4981 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
4983 static void
4984 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
4986 ssa_op_iter op_iter;
4987 imm_use_iterator imm_iter;
4988 def_operand_p def_p;
4989 gimple ustmt;
4991 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
4993 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
4995 basic_block bb;
4997 if (!is_gimple_debug (ustmt))
4998 continue;
5000 bb = gimple_bb (ustmt);
5002 if (!flow_bb_inside_loop_p (loop, bb))
5004 if (gimple_debug_bind_p (ustmt))
5006 if (vect_print_dump_info (REPORT_DETAILS))
5007 fprintf (vect_dump, "killing debug use");
5009 gimple_debug_bind_reset_value (ustmt);
5010 update_stmt (ustmt);
5012 else
5013 gcc_unreachable ();
5019 /* Function vect_transform_loop.
5021 The analysis phase has determined that the loop is vectorizable.
5022 Vectorize the loop - created vectorized stmts to replace the scalar
5023 stmts in the loop, and update the loop exit condition. */
5025 void
5026 vect_transform_loop (loop_vec_info loop_vinfo)
5028 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5029 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5030 int nbbs = loop->num_nodes;
5031 gimple_stmt_iterator si;
5032 int i;
5033 tree ratio = NULL;
5034 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5035 bool strided_store;
5036 bool slp_scheduled = false;
5037 unsigned int nunits;
5038 tree cond_expr = NULL_TREE;
5039 gimple_seq cond_expr_stmt_list = NULL;
5040 bool do_peeling_for_loop_bound;
5042 if (vect_print_dump_info (REPORT_DETAILS))
5043 fprintf (vect_dump, "=== vec_transform_loop ===");
5045 /* Peel the loop if there are data refs with unknown alignment.
5046 Only one data ref with unknown store is allowed. */
5048 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
5049 vect_do_peeling_for_alignment (loop_vinfo);
5051 do_peeling_for_loop_bound
5052 = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5053 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5054 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
5055 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
5057 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5058 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5059 vect_loop_versioning (loop_vinfo,
5060 !do_peeling_for_loop_bound,
5061 &cond_expr, &cond_expr_stmt_list);
5063 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5064 compile time constant), or it is a constant that doesn't divide by the
5065 vectorization factor, then an epilog loop needs to be created.
5066 We therefore duplicate the loop: the original loop will be vectorized,
5067 and will compute the first (n/VF) iterations. The second copy of the loop
5068 will remain scalar and will compute the remaining (n%VF) iterations.
5069 (VF is the vectorization factor). */
5071 if (do_peeling_for_loop_bound)
5072 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
5073 cond_expr, cond_expr_stmt_list);
5074 else
5075 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5076 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5078 /* 1) Make sure the loop header has exactly two entries
5079 2) Make sure we have a preheader basic block. */
5081 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5083 split_edge (loop_preheader_edge (loop));
5085 /* FORNOW: the vectorizer supports only loops which body consist
5086 of one basic block (header + empty latch). When the vectorizer will
5087 support more involved loop forms, the order by which the BBs are
5088 traversed need to be reconsidered. */
5090 for (i = 0; i < nbbs; i++)
5092 basic_block bb = bbs[i];
5093 stmt_vec_info stmt_info;
5094 gimple phi;
5096 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5098 phi = gsi_stmt (si);
5099 if (vect_print_dump_info (REPORT_DETAILS))
5101 fprintf (vect_dump, "------>vectorizing phi: ");
5102 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
5104 stmt_info = vinfo_for_stmt (phi);
5105 if (!stmt_info)
5106 continue;
5108 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5109 vect_loop_kill_debug_uses (loop, phi);
5111 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5112 && !STMT_VINFO_LIVE_P (stmt_info))
5113 continue;
5115 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5116 != (unsigned HOST_WIDE_INT) vectorization_factor)
5117 && vect_print_dump_info (REPORT_DETAILS))
5118 fprintf (vect_dump, "multiple-types.");
5120 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5122 if (vect_print_dump_info (REPORT_DETAILS))
5123 fprintf (vect_dump, "transform phi.");
5124 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5128 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5130 gimple stmt = gsi_stmt (si), pattern_stmt;
5131 bool is_store;
5133 if (vect_print_dump_info (REPORT_DETAILS))
5135 fprintf (vect_dump, "------>vectorizing statement: ");
5136 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
5139 stmt_info = vinfo_for_stmt (stmt);
5141 /* vector stmts created in the outer-loop during vectorization of
5142 stmts in an inner-loop may not have a stmt_info, and do not
5143 need to be vectorized. */
5144 if (!stmt_info)
5146 gsi_next (&si);
5147 continue;
5150 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5151 vect_loop_kill_debug_uses (loop, stmt);
5153 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5154 && !STMT_VINFO_LIVE_P (stmt_info))
5156 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5157 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5158 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5159 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5161 stmt = pattern_stmt;
5162 stmt_info = vinfo_for_stmt (stmt);
5164 else
5166 gsi_next (&si);
5167 continue;
5171 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5172 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
5173 STMT_VINFO_VECTYPE (stmt_info));
5174 if (!STMT_SLP_TYPE (stmt_info)
5175 && nunits != (unsigned int) vectorization_factor
5176 && vect_print_dump_info (REPORT_DETAILS))
5177 /* For SLP VF is set according to unrolling factor, and not to
5178 vector size, hence for SLP this print is not valid. */
5179 fprintf (vect_dump, "multiple-types.");
5181 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5182 reached. */
5183 if (STMT_SLP_TYPE (stmt_info))
5185 if (!slp_scheduled)
5187 slp_scheduled = true;
5189 if (vect_print_dump_info (REPORT_DETAILS))
5190 fprintf (vect_dump, "=== scheduling SLP instances ===");
5192 vect_schedule_slp (loop_vinfo, NULL);
5195 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
5196 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
5198 gsi_next (&si);
5199 continue;
5203 /* -------- vectorize statement ------------ */
5204 if (vect_print_dump_info (REPORT_DETAILS))
5205 fprintf (vect_dump, "transform statement.");
5207 strided_store = false;
5208 is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
5209 if (is_store)
5211 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
5213 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
5214 interleaving chain was completed - free all the stores in
5215 the chain. */
5216 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
5217 gsi_remove (&si, true);
5218 continue;
5220 else
5222 /* Free the attached stmt_vec_info and remove the stmt. */
5223 free_stmt_vec_info (stmt);
5224 gsi_remove (&si, true);
5225 continue;
5228 gsi_next (&si);
5229 } /* stmts in BB */
5230 } /* BBs in loop */
5232 slpeel_make_loop_iterate_ntimes (loop, ratio);
5234 /* The memory tags and pointers in vectorized statements need to
5235 have their SSA forms updated. FIXME, why can't this be delayed
5236 until all the loops have been transformed? */
5237 update_ssa (TODO_update_ssa);
5239 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
5240 fprintf (vect_dump, "LOOP VECTORIZED.");
5241 if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
5242 fprintf (vect_dump, "OUTER LOOP VECTORIZED.");