3 # Script to analyze results of our branch prediction heuristics
5 # This file is part of GCC.
7 # GCC is free software; you can redistribute it and/or modify it under
8 # the terms of the GNU General Public License as published by the Free
9 # Software Foundation; either version 3, or (at your option) any later
12 # GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 # WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 # You should have received a copy of the GNU General Public License
18 # along with GCC; see the file COPYING3. If not see
19 # <http://www.gnu.org/licenses/>. */
23 # This script is used to calculate two basic properties of the branch prediction
24 # heuristics - coverage and hitrate. Coverage is number of executions
25 # of a given branch matched by the heuristics and hitrate is probability
26 # that once branch is predicted as taken it is really taken.
28 # These values are useful to determine the quality of given heuristics.
29 # Hitrate may be directly used in predict.def.
32 # Step 1: Compile and profile your program. You need to use -fprofile-generate
33 # flag to get the profiles.
34 # Step 2: Make a reference run of the intrumented application.
35 # Step 3: Compile the program with collected profile and dump IPA profiles
36 # (-fprofile-use -fdump-ipa-profile-details)
37 # Step 4: Collect all generated dump files:
38 # find . -name '*.profile' | xargs cat > dump_file
39 # Step 5: Run the script:
40 # ./analyze_brprob.py dump_file
41 # and read results. Basically the following table is printed:
43 # HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL)
44 # early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0%
45 # guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0%
46 # call 18 1.4% 31.95% / 69.95% 51880179 0.2%
47 # loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2%
48 # opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8%
49 # opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6%
50 # loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5%
51 # loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4%
52 # DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9%
53 # no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0%
54 # guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1%
55 # first match 708 55.2% 82.30% / 82.31% 22489588691 69.0%
56 # combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0%
59 # The heuristics called "first match" is a heuristics used by GCC branch
60 # prediction pass and it predicts 55.2% branches correctly. As you can,
61 # the heuristics has very good covertage (69.05%). On the other hand,
62 # "opcode values nonequal (on trees)" heuristics has good hirate, but poor
72 counter_aggregates
= set(['combined', 'first match', 'DS theory',
80 return 1.0 * sum(values
) / len(values
)
82 def average_cutoff(values
, cut
):
84 skip
= floor(l
* cut
/ 2)
87 values
= values
[skip
:-skip
]
88 return average(values
)
92 return values
[int(len(values
) / 2)]
95 def __init__(self
, path
):
99 def parse_and_modify(self
, heuristics
, write_def_file
):
100 lines
= [x
.rstrip() for x
in open(self
.path
).readlines()]
105 if l
.startswith('DEF_PREDICTOR'):
106 m
= re
.match('.*"(.*)".*', l
)
112 heuristic
= [x
for x
in heuristics
if x
.name
== p
]
113 heuristic
= heuristic
[0] if len(heuristic
) == 1 else None
115 m
= re
.match('.*HITRATE \(([^)]*)\).*', l
)
117 self
.predictors
[p
] = int(m
.group(1))
120 if heuristic
!= None:
121 new_line
= (l
[:m
.start(1)]
122 + str(round(heuristic
.get_hitrate()))
126 elif 'PROB_VERY_LIKELY' in l
:
127 self
.predictors
[p
] = 100
128 modified_lines
.append(l
)
132 with
open(self
.path
, 'w+') as f
:
133 for l
in modified_lines
:
136 def __init__(self
, count
, hits
, fits
):
142 def __init__(self
, name
):
147 return len(self
.edges
)
150 return sum([x
.hits
for x
in self
.edges
])
153 return sum([x
.fits
for x
in self
.edges
])
156 return sum([x
.count
for x
in self
.edges
])
158 def successfull_branches(self
):
159 return len([x
for x
in self
.edges
if 2 * x
.hits
>= x
.count
])
161 def get_hitrate(self
):
162 return 100.0 * self
.hits() / self
.count()
164 def get_branch_hitrate(self
):
165 return 100.0 * self
.successfull_branches() / self
.branches()
167 def count_formatted(self
):
169 for unit
in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']:
171 return "%3.2f%s" % (v
, unit
)
173 return "%.1f%s" % (v
, 'Y')
176 return sum([x
.count
for x
in self
.edges
])
178 def print(self
, branches_max
, count_max
, predict_def
):
179 # filter out most hot edges (if requested)
180 self
.edges
= sorted(self
.edges
, reverse
= True, key
= lambda x
: x
.count
)
181 if args
.coverage_threshold
!= None:
182 threshold
= args
.coverage_threshold
* self
.count() / 100
183 edges
= [x
for x
in self
.edges
if x
.count
< threshold
]
188 if predict_def
!= None and self
.name
in predict_def
.predictors
:
189 predicted_as
= predict_def
.predictors
[self
.name
]
191 print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
192 (self
.name
, self
.branches(),
193 percentage(self
.branches(), branches_max
),
194 self
.get_branch_hitrate(),
196 percentage(self
.fits(), self
.count()),
197 self
.count(), self
.count_formatted(),
198 percentage(self
.count(), count_max
)), end
= '')
200 if predicted_as
!= None:
201 print('%12i%% %5.1f%%' % (predicted_as
,
202 self
.get_hitrate() - predicted_as
), end
= '')
204 print(' ' * 20, end
= '')
206 # print details about the most important edges
207 if args
.coverage_threshold
== None:
208 edges
= [x
for x
in self
.edges
[:100] if x
.count
* hot_threshold
> self
.count()]
211 r
= 100.0 * c
.count
/ self
.count()
212 print(' %.0f%%:%d' % (r
, c
.count
), end
= '')
214 print(' %0.0f%%:%d' % (100.0 * sum([x
.count
for x
in edges
]) / self
.count(), len(edges
)), end
= '')
219 def __init__(self
, filename
):
220 self
.filename
= filename
222 self
.niter_vector
= []
224 def add(self
, name
, prediction
, count
, hits
):
225 if not name
in self
.heuristics
:
226 self
.heuristics
[name
] = Summary(name
)
228 s
= self
.heuristics
[name
]
232 remaining
= count
- hits
233 fits
= max(hits
, remaining
)
235 s
.edges
.append(Heuristics(count
, hits
, fits
))
237 def add_loop_niter(self
, niter
):
239 self
.niter_vector
.append(niter
)
241 def branches_max(self
):
242 return max([v
.branches() for k
, v
in self
.heuristics
.items()])
245 return max([v
.count() for k
, v
in self
.heuristics
.items()])
247 def print_group(self
, sorting
, group_name
, heuristics
, predict_def
):
248 count_max
= self
.count_max()
249 branches_max
= self
.branches_max()
251 sorter
= lambda x
: x
.branches()
252 if sorting
== 'branch-hitrate':
253 sorter
= lambda x
: x
.get_branch_hitrate()
254 elif sorting
== 'hitrate':
255 sorter
= lambda x
: x
.get_hitrate()
256 elif sorting
== 'coverage':
257 sorter
= lambda x
: x
.count
258 elif sorting
== 'name':
259 sorter
= lambda x
: x
.name
.lower()
261 print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s %s' %
262 ('HEURISTICS', 'BRANCHES', '(REL)',
263 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)',
264 'predict.def', '(REL)', 'HOT branches (>%d%%)' % hot_threshold
))
265 for h
in sorted(heuristics
, key
= sorter
):
266 h
.print(branches_max
, count_max
, predict_def
)
268 def dump(self
, sorting
):
269 heuristics
= self
.heuristics
.values()
270 if len(heuristics
) == 0:
271 print('No heuristics available')
275 if args
.def_file
!= None:
276 predict_def
= PredictDefFile(args
.def_file
)
277 predict_def
.parse_and_modify(heuristics
, args
.write_def_file
)
279 special
= list(filter(lambda x
: x
.name
in counter_aggregates
,
281 normal
= list(filter(lambda x
: x
.name
not in counter_aggregates
,
284 self
.print_group(sorting
, 'HEURISTICS', normal
, predict_def
)
286 self
.print_group(sorting
, 'HEURISTIC AGGREGATES', special
, predict_def
)
288 if len(self
.niter_vector
) > 0:
289 print ('\nLoop count: %d' % len(self
.niter_vector
)),
290 print(' avg. # of iter: %.2f' % average(self
.niter_vector
))
291 print(' median # of iter: %.2f' % median(self
.niter_vector
))
292 for v
in [1, 5, 10, 20, 30]:
294 print(' avg. (%d%% cutoff) # of iter: %.2f'
295 % (v
, average_cutoff(self
.niter_vector
, cut
)))
297 parser
= argparse
.ArgumentParser()
298 parser
.add_argument('dump_file', metavar
= 'dump_file',
299 help = 'IPA profile dump file')
300 parser
.add_argument('-s', '--sorting', dest
= 'sorting',
301 choices
= ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
302 default
= 'branches')
303 parser
.add_argument('-d', '--def-file', help = 'path to predict.def')
304 parser
.add_argument('-w', '--write-def-file', action
= 'store_true',
305 help = 'Modify predict.def file in order to set new numbers')
306 parser
.add_argument('-c', '--coverage-threshold', type = int,
307 help = 'Ignore edges that have percentage coverage >= coverage-threshold')
308 parser
.add_argument('-v', '--verbose', action
= 'store_true', help = 'Print verbose informations')
310 args
= parser
.parse_args()
312 profile
= Profile(args
.dump_file
)
313 loop_niter_str
= ';; profile-based iteration count: '
315 for l
in open(args
.dump_file
):
316 if l
.startswith(';;heuristics;'):
317 parts
= l
.strip().split(';')
318 assert len(parts
) == 8
320 prediction
= float(parts
[6])
321 count
= int(parts
[4])
324 profile
.add(name
, prediction
, count
, hits
)
325 elif l
.startswith(loop_niter_str
):
326 v
= int(l
[len(loop_niter_str
):])
327 profile
.add_loop_niter(v
)
329 profile
.dump(args
.sorting
)