PR c/21536
[official-gcc.git] / gcc / postreload-gcse.c
blobb821db1a122a48472102e95e68d58ca7711587bf
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "intl.h"
43 #include "obstack.h"
44 #include "hashtab.h"
45 #include "params.h"
46 #include "target.h"
48 /* The following code implements gcse after reload, the purpose of this
49 pass is to cleanup redundant loads generated by reload and other
50 optimizations that come after gcse. It searches for simple inter-block
51 redundancies and tries to eliminate them by adding moves and loads
52 in cold places.
54 Perform partially redundant load elimination, try to eliminate redundant
55 loads created by the reload pass. We try to look for full or partial
56 redundant loads fed by one or more loads/stores in predecessor BBs,
57 and try adding loads to make them fully redundant. We also check if
58 it's worth adding loads to be able to delete the redundant load.
60 Algorithm:
61 1. Build available expressions hash table:
62 For each load/store instruction, if the loaded/stored memory didn't
63 change until the end of the basic block add this memory expression to
64 the hash table.
65 2. Perform Redundancy elimination:
66 For each load instruction do the following:
67 perform partial redundancy elimination, check if it's worth adding
68 loads to make the load fully redundant. If so add loads and
69 register copies and delete the load.
70 3. Delete instructions made redundant in step 2.
72 Future enhancement:
73 If the loaded register is used/defined between load and some store,
74 look for some other free register between load and all its stores,
75 and replace the load with a copy from this register to the loaded
76 register.
80 /* Keep statistics of this pass. */
81 static struct
83 int moves_inserted;
84 int copies_inserted;
85 int insns_deleted;
86 } stats;
88 /* We need to keep a hash table of expressions. The table entries are of
89 type 'struct expr', and for each expression there is a single linked
90 list of occurrences. */
92 /* The table itself. */
93 static htab_t expr_table;
95 /* Expression elements in the hash table. */
96 struct expr
98 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
99 rtx expr;
101 /* The same hash for this entry. */
102 hashval_t hash;
104 /* List of available occurrence in basic blocks in the function. */
105 struct occr *avail_occr;
108 static struct obstack expr_obstack;
110 /* Occurrence of an expression.
111 There is at most one occurrence per basic block. If a pattern appears
112 more than once, the last appearance is used. */
114 struct occr
116 /* Next occurrence of this expression. */
117 struct occr *next;
118 /* The insn that computes the expression. */
119 rtx insn;
120 /* Nonzero if this [anticipatable] occurrence has been deleted. */
121 char deleted_p;
124 static struct obstack occr_obstack;
126 /* The following structure holds the information about the occurrences of
127 the redundant instructions. */
128 struct unoccr
130 struct unoccr *next;
131 edge pred;
132 rtx insn;
135 static struct obstack unoccr_obstack;
137 /* Array where each element is the CUID if the insn that last set the hard
138 register with the number of the element, since the start of the current
139 basic block.
141 This array is used during the building of the hash table (step 1) to
142 determine if a reg is killed before the end of a basic block.
144 It is also used when eliminating partial redundancies (step 2) to see
145 if a reg was modified since the start of a basic block. */
146 static int *reg_avail_info;
148 /* A list of insns that may modify memory within the current basic block. */
149 struct modifies_mem
151 rtx insn;
152 struct modifies_mem *next;
154 static struct modifies_mem *modifies_mem_list;
156 /* The modifies_mem structs also go on an obstack, only this obstack is
157 freed each time after completing the analysis or transformations on
158 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
159 object on the obstack to keep track of the bottom of the obstack. */
160 static struct obstack modifies_mem_obstack;
161 static struct modifies_mem *modifies_mem_obstack_bottom;
163 /* Mapping of insn UIDs to CUIDs.
164 CUIDs are like UIDs except they increase monotonically in each basic
165 block, have no gaps, and only apply to real insns. */
166 static int *uid_cuid;
167 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
170 /* Helpers for memory allocation/freeing. */
171 static void alloc_mem (void);
172 static void free_mem (void);
174 /* Support for hash table construction and transformations. */
175 static bool oprs_unchanged_p (rtx, rtx, bool);
176 static void record_last_reg_set_info (rtx, int);
177 static void record_last_mem_set_info (rtx);
178 static void record_last_set_info (rtx, rtx, void *);
179 static void record_opr_changes (rtx);
181 static void find_mem_conflicts (rtx, rtx, void *);
182 static int load_killed_in_block_p (int, rtx, bool);
183 static void reset_opr_set_tables (void);
185 /* Hash table support. */
186 static hashval_t hash_expr (rtx, int *);
187 static hashval_t hash_expr_for_htab (const void *);
188 static int expr_equiv_p (const void *, const void *);
189 static void insert_expr_in_table (rtx, rtx);
190 static struct expr *lookup_expr_in_table (rtx);
191 static int dump_hash_table_entry (void **, void *);
192 static void dump_hash_table (FILE *);
194 /* Helpers for eliminate_partially_redundant_load. */
195 static bool reg_killed_on_edge (rtx, edge);
196 static bool reg_used_on_edge (rtx, edge);
198 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
199 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
200 static rtx get_avail_load_store_reg (rtx);
202 static bool bb_has_well_behaved_predecessors (basic_block);
203 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
204 static void hash_scan_set (rtx);
205 static void compute_hash_table (void);
207 /* The work horses of this pass. */
208 static void eliminate_partially_redundant_load (basic_block,
209 rtx,
210 struct expr *);
211 static void eliminate_partially_redundant_loads (void);
214 /* Allocate memory for the CUID mapping array and register/memory
215 tracking tables. */
217 static void
218 alloc_mem (void)
220 int i;
221 basic_block bb;
222 rtx insn;
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
225 uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
226 i = 0;
227 FOR_EACH_BB (bb)
228 FOR_BB_INSNS (bb, insn)
230 if (INSN_P (insn))
231 uid_cuid[INSN_UID (insn)] = i++;
232 else
233 uid_cuid[INSN_UID (insn)] = i;
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table = htab_create (MAX (i / 4, 13),
241 hash_expr_for_htab, expr_equiv_p, NULL);
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack);
246 gcc_obstack_init (&occr_obstack);
247 gcc_obstack_init (&unoccr_obstack);
248 gcc_obstack_init (&modifies_mem_obstack);
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom =
257 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
258 sizeof (struct modifies_mem));
261 /* Free memory allocated by alloc_mem. */
263 static void
264 free_mem (void)
266 free (uid_cuid);
268 htab_delete (expr_table);
270 obstack_free (&expr_obstack, NULL);
271 obstack_free (&occr_obstack, NULL);
272 obstack_free (&unoccr_obstack, NULL);
273 obstack_free (&modifies_mem_obstack, NULL);
275 free (reg_avail_info);
279 /* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
282 table. */
284 static hashval_t
285 hash_expr (rtx x, int *do_not_record_p)
287 *do_not_record_p = 0;
288 return hash_rtx (x, GET_MODE (x), do_not_record_p,
289 NULL, /*have_reg_qty=*/false);
292 /* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
296 static hashval_t
297 hash_expr_for_htab (const void *expp)
299 struct expr *exp = (struct expr *) expp;
300 return exp->hash;
303 /* Callback for hashtab.
304 Return nonzero if exp1 is equivalent to exp2. */
306 static int
307 expr_equiv_p (const void *exp1p, const void *exp2p)
309 struct expr *exp1 = (struct expr *) exp1p;
310 struct expr *exp2 = (struct expr *) exp2p;
311 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
313 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
314 return equiv_p;
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
322 static void
323 insert_expr_in_table (rtx x, rtx insn)
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
330 hash = hash_expr (x, &do_not_record_p);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
367 /* If an occurrence isn't found, save a pointer to the end of
368 the list. */
369 last_occr = avail_occr;
370 avail_occr = avail_occr->next;
373 if (avail_occr)
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
377 to end. */
378 avail_occr->insn = insn;
379 else
381 /* First occurrence of this expression in this basic block. */
382 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
383 sizeof (struct occr));
385 /* First occurrence of this expression in any block? */
386 if (cur_expr->avail_occr == NULL)
387 cur_expr->avail_occr = avail_occr;
388 else
389 last_occr->next = avail_occr;
391 avail_occr->insn = insn;
392 avail_occr->next = NULL;
393 avail_occr->deleted_p = 0;
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
401 static struct expr *
402 lookup_expr_in_table (rtx pat)
404 int do_not_record_p;
405 struct expr **slot, *tmp_expr;
406 hashval_t hash = hash_expr (pat, &do_not_record_p);
408 if (do_not_record_p)
409 return NULL;
411 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
412 sizeof (struct expr));
413 tmp_expr->expr = pat;
414 tmp_expr->hash = hash;
415 tmp_expr->avail_occr = NULL;
417 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
418 hash, INSERT);
419 obstack_free (&expr_obstack, tmp_expr);
421 if (!slot)
422 return NULL;
423 else
424 return (*slot);
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
431 /* This helper is called via htab_traverse. */
432 static int
433 dump_hash_table_entry (void **slot, void *filep)
435 struct expr *expr = (struct expr *) *slot;
436 FILE *file = (FILE *) filep;
437 struct occr *occr;
439 fprintf (file, "expr: ");
440 print_rtl (file, expr->expr);
441 fprintf (file,"\nhashcode: %u\n", expr->hash);
442 fprintf (file,"list of occurrences:\n");
443 occr = expr->avail_occr;
444 while (occr)
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
451 fprintf (file, "\n");
452 return 1;
455 static void
456 dump_hash_table (FILE *file)
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table),
461 (long) htab_elements (expr_table),
462 htab_collisions (expr_table));
463 if (htab_elements (expr_table) > 0)
465 fprintf (file, "\n\ntable entries:\n");
466 htab_traverse (expr_table, dump_hash_table_entry, file);
468 fprintf (file, "\n");
472 /* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
477 static bool
478 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
480 int i, j;
481 enum rtx_code code;
482 const char *fmt;
484 if (x == 0)
485 return 1;
487 code = GET_CODE (x);
488 switch (code)
490 case REG:
491 /* We are called after register allocation. */
492 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
493 if (after_insn)
494 /* If the last CUID setting the insn is less than the CUID of
495 INSN, then reg X is not changed in or after INSN. */
496 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
497 else
498 /* Reg X is not set before INSN in the current basic block if
499 we have not yet recorded the CUID of an insn that touches
500 the reg. */
501 return reg_avail_info[REGNO (x)] == 0;
503 case MEM:
504 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
505 return 0;
506 else
507 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
509 case PC:
510 case CC0: /*FIXME*/
511 case CONST:
512 case CONST_INT:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case SYMBOL_REF:
516 case LABEL_REF:
517 case ADDR_VEC:
518 case ADDR_DIFF_VEC:
519 return 1;
521 case PRE_DEC:
522 case PRE_INC:
523 case POST_DEC:
524 case POST_INC:
525 case PRE_MODIFY:
526 case POST_MODIFY:
527 if (after_insn)
528 return 0;
529 break;
531 default:
532 break;
535 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
537 if (fmt[i] == 'e')
539 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
540 return 0;
542 else if (fmt[i] == 'E')
543 for (j = 0; j < XVECLEN (x, i); j++)
544 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
545 return 0;
548 return 1;
552 /* Used for communication between find_mem_conflicts and
553 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
554 conflict between two memory references.
555 This is a bit of a hack to work around the limitations of note_stores. */
556 static int mems_conflict_p;
558 /* DEST is the output of an instruction. If it is a memory reference, and
559 possibly conflicts with the load found in DATA, then set mems_conflict_p
560 to a nonzero value. */
562 static void
563 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
564 void *data)
566 rtx mem_op = (rtx) data;
568 while (GET_CODE (dest) == SUBREG
569 || GET_CODE (dest) == ZERO_EXTRACT
570 || GET_CODE (dest) == STRICT_LOW_PART)
571 dest = XEXP (dest, 0);
573 /* If DEST is not a MEM, then it will not conflict with the load. Note
574 that function calls are assumed to clobber memory, but are handled
575 elsewhere. */
576 if (! MEM_P (dest))
577 return;
579 if (true_dependence (dest, GET_MODE (dest), mem_op,
580 rtx_addr_varies_p))
581 mems_conflict_p = 1;
585 /* Return nonzero if the expression in X (a memory reference) is killed
586 in the current basic block before (if AFTER_INSN is false) or after
587 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
589 This function assumes that the modifies_mem table is flushed when
590 the hash table construction or redundancy elimination phases start
591 processing a new basic block. */
593 static int
594 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
596 struct modifies_mem *list_entry = modifies_mem_list;
598 while (list_entry)
600 rtx setter = list_entry->insn;
602 /* Ignore entries in the list that do not apply. */
603 if ((after_insn
604 && INSN_CUID (setter) < uid_limit)
605 || (! after_insn
606 && INSN_CUID (setter) > uid_limit))
608 list_entry = list_entry->next;
609 continue;
612 /* If SETTER is a call everything is clobbered. Note that calls
613 to pure functions are never put on the list, so we need not
614 worry about them. */
615 if (CALL_P (setter))
616 return 1;
618 /* SETTER must be an insn of some kind that sets memory. Call
619 note_stores to examine each hunk of memory that is modified.
620 It will set mems_conflict_p to nonzero if there may be a
621 conflict between X and SETTER. */
622 mems_conflict_p = 0;
623 note_stores (PATTERN (setter), find_mem_conflicts, x);
624 if (mems_conflict_p)
625 return 1;
627 list_entry = list_entry->next;
629 return 0;
633 /* Record register first/last/block set information for REGNO in INSN. */
635 static inline void
636 record_last_reg_set_info (rtx insn, int regno)
638 reg_avail_info[regno] = INSN_CUID (insn);
642 /* Record memory modification information for INSN. We do not actually care
643 about the memory location(s) that are set, or even how they are set (consider
644 a CALL_INSN). We merely need to record which insns modify memory. */
646 static void
647 record_last_mem_set_info (rtx insn)
649 struct modifies_mem *list_entry;
651 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
652 sizeof (struct modifies_mem));
653 list_entry->insn = insn;
654 list_entry->next = modifies_mem_list;
655 modifies_mem_list = list_entry;
658 /* Called from compute_hash_table via note_stores to handle one
659 SET or CLOBBER in an insn. DATA is really the instruction in which
660 the SET is taking place. */
662 static void
663 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
665 rtx last_set_insn = (rtx) data;
667 if (GET_CODE (dest) == SUBREG)
668 dest = SUBREG_REG (dest);
670 if (REG_P (dest))
671 record_last_reg_set_info (last_set_insn, REGNO (dest));
672 else if (MEM_P (dest)
673 /* Ignore pushes, they clobber nothing. */
674 && ! push_operand (dest, GET_MODE (dest)))
675 record_last_mem_set_info (last_set_insn);
679 /* Reset tables used to keep track of what's still available since the
680 start of the block. */
682 static void
683 reset_opr_set_tables (void)
685 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
686 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
687 modifies_mem_list = NULL;
691 /* Record things set by INSN.
692 This data is used by oprs_unchanged_p. */
694 static void
695 record_opr_changes (rtx insn)
697 rtx note;
699 /* Find all stores and record them. */
700 note_stores (PATTERN (insn), record_last_set_info, insn);
702 /* Also record autoincremented REGs for this insn as changed. */
703 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
704 if (REG_NOTE_KIND (note) == REG_INC)
705 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
707 /* Finally, if this is a call, record all call clobbers. */
708 if (CALL_P (insn))
710 unsigned int regno;
712 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
713 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
714 record_last_reg_set_info (insn, regno);
716 if (! CONST_OR_PURE_CALL_P (insn))
717 record_last_mem_set_info (insn);
722 /* Scan the pattern of INSN and add an entry to the hash TABLE.
723 After reload we are interested in loads/stores only. */
725 static void
726 hash_scan_set (rtx insn)
728 rtx pat = PATTERN (insn);
729 rtx src = SET_SRC (pat);
730 rtx dest = SET_DEST (pat);
732 /* We are only interested in loads and stores. */
733 if (! MEM_P (src) && ! MEM_P (dest))
734 return;
736 /* Don't mess with jumps and nops. */
737 if (JUMP_P (insn) || set_noop_p (pat))
738 return;
740 if (REG_P (dest))
742 if (/* Don't CSE something if we can't do a reg/reg copy. */
743 can_copy_p (GET_MODE (dest))
744 /* Is SET_SRC something we want to gcse? */
745 && general_operand (src, GET_MODE (src))
746 /* An expression is not available if its operands are
747 subsequently modified, including this insn. */
748 && oprs_unchanged_p (src, insn, true))
750 insert_expr_in_table (src, insn);
753 else if (REG_P (src))
755 /* Only record sets of pseudo-regs in the hash table. */
756 if (/* Don't CSE something if we can't do a reg/reg copy. */
757 can_copy_p (GET_MODE (src))
758 /* Is SET_DEST something we want to gcse? */
759 && general_operand (dest, GET_MODE (dest))
760 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
761 /* Check if the memory expression is killed after insn. */
762 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
763 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
765 insert_expr_in_table (dest, insn);
771 /* Create hash table of memory expressions available at end of basic
772 blocks. Basically you should think of this hash table as the
773 representation of AVAIL_OUT. This is the set of expressions that
774 is generated in a basic block and not killed before the end of the
775 same basic block. Notice that this is really a local computation. */
777 static void
778 compute_hash_table (void)
780 basic_block bb;
782 FOR_EACH_BB (bb)
784 rtx insn;
786 /* First pass over the instructions records information used to
787 determine when registers and memory are last set.
788 Since we compute a "local" AVAIL_OUT, reset the tables that
789 help us keep track of what has been modified since the start
790 of the block. */
791 reset_opr_set_tables ();
792 FOR_BB_INSNS (bb, insn)
794 if (INSN_P (insn))
795 record_opr_changes (insn);
798 /* The next pass actually builds the hash table. */
799 FOR_BB_INSNS (bb, insn)
800 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
801 hash_scan_set (insn);
806 /* Check if register REG is killed in any insn waiting to be inserted on
807 edge E. This function is required to check that our data flow analysis
808 is still valid prior to commit_edge_insertions. */
810 static bool
811 reg_killed_on_edge (rtx reg, edge e)
813 rtx insn;
815 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
816 if (INSN_P (insn) && reg_set_p (reg, insn))
817 return true;
819 return false;
822 /* Similar to above - check if register REG is used in any insn waiting
823 to be inserted on edge E.
824 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
825 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
827 static bool
828 reg_used_on_edge (rtx reg, edge e)
830 rtx insn;
832 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
833 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
834 return true;
836 return false;
840 /* Return the insn that sets register REG or clobbers it in between
841 FROM_INSN and TO_INSN (exclusive of those two).
842 Just like reg_set_between but for hard registers and not pseudos. */
844 static rtx
845 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
847 rtx insn;
849 /* We are called after register allocation. */
850 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
852 if (from_insn == to_insn)
853 return NULL_RTX;
855 for (insn = NEXT_INSN (from_insn);
856 insn != to_insn;
857 insn = NEXT_INSN (insn))
858 if (INSN_P (insn))
860 if (set_of (reg, insn) != NULL_RTX)
861 return insn;
862 if ((CALL_P (insn)
863 && call_used_regs[REGNO (reg)])
864 || find_reg_fusage (insn, CLOBBER, reg))
865 return insn;
867 if (FIND_REG_INC_NOTE (insn, reg))
868 return insn;
871 return NULL_RTX;
874 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
875 (exclusive of those two). Similar to reg_used_between but for hard
876 registers and not pseudos. */
878 static rtx
879 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
881 rtx insn;
883 /* We are called after register allocation. */
884 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
886 if (from_insn == to_insn)
887 return NULL_RTX;
889 for (insn = NEXT_INSN (from_insn);
890 insn != to_insn;
891 insn = NEXT_INSN (insn))
892 if (INSN_P (insn))
894 if (reg_overlap_mentioned_p (reg, PATTERN (insn))
895 || (CALL_P (insn)
896 && call_used_regs[REGNO (reg)])
897 || find_reg_fusage (insn, USE, reg)
898 || find_reg_fusage (insn, CLOBBER, reg))
899 return insn;
901 if (FIND_REG_INC_NOTE (insn, reg))
902 return insn;
905 return NULL_RTX;
908 /* Return true if REG is used, set, or killed between the beginning of
909 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
911 static bool
912 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
914 rtx insn, start = PREV_INSN (BB_HEAD (bb));
916 if (reg_avail_info[REGNO (reg)] != 0)
917 return true;
919 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
920 if (! insn)
921 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
923 if (insn)
924 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
926 return insn != NULL_RTX;
929 /* Return the loaded/stored register of a load/store instruction. */
931 static rtx
932 get_avail_load_store_reg (rtx insn)
934 if (REG_P (SET_DEST (PATTERN (insn))))
935 /* A load. */
936 return SET_DEST(PATTERN(insn));
937 else
939 /* A store. */
940 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
941 return SET_SRC (PATTERN (insn));
945 /* Return nonzero if the predecessors of BB are "well behaved". */
947 static bool
948 bb_has_well_behaved_predecessors (basic_block bb)
950 edge pred;
951 edge_iterator ei;
953 if (EDGE_COUNT (bb->preds) == 0)
954 return false;
956 FOR_EACH_EDGE (pred, ei, bb->preds)
958 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
959 return false;
961 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
962 return false;
964 return true;
968 /* Search for the occurrences of expression in BB. */
970 static struct occr*
971 get_bb_avail_insn (basic_block bb, struct occr *occr)
973 for (; occr != NULL; occr = occr->next)
974 if (BLOCK_FOR_INSN (occr->insn) == bb)
975 return occr;
976 return NULL;
980 /* This handles the case where several stores feed a partially redundant
981 load. It checks if the redundancy elimination is possible and if it's
982 worth it.
984 Redundancy elimination is possible if,
985 1) None of the operands of an insn have been modified since the start
986 of the current basic block.
987 2) In any predecessor of the current basic block, the same expression
988 is generated.
990 See the function body for the heuristics that determine if eliminating
991 a redundancy is also worth doing, assuming it is possible. */
993 static void
994 eliminate_partially_redundant_load (basic_block bb, rtx insn,
995 struct expr *expr)
997 edge pred;
998 rtx avail_insn = NULL_RTX;
999 rtx avail_reg;
1000 rtx dest, pat;
1001 struct occr *a_occr;
1002 struct unoccr *occr, *avail_occrs = NULL;
1003 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1004 int npred_ok = 0;
1005 gcov_type ok_count = 0; /* Redundant load execution count. */
1006 gcov_type critical_count = 0; /* Execution count of critical edges. */
1007 edge_iterator ei;
1008 bool critical_edge_split = false;
1010 /* The execution count of the loads to be added to make the
1011 load fully redundant. */
1012 gcov_type not_ok_count = 0;
1013 basic_block pred_bb;
1015 pat = PATTERN (insn);
1016 dest = SET_DEST (pat);
1018 /* Check that the loaded register is not used, set, or killed from the
1019 beginning of the block. */
1020 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1021 return;
1023 /* Check potential for replacing load with copy for predecessors. */
1024 FOR_EACH_EDGE (pred, ei, bb->preds)
1026 rtx next_pred_bb_end;
1028 avail_insn = NULL_RTX;
1029 avail_reg = NULL_RTX;
1030 pred_bb = pred->src;
1031 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1032 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1033 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1035 /* Check if the loaded register is not used. */
1036 avail_insn = a_occr->insn;
1037 avail_reg = get_avail_load_store_reg (avail_insn);
1038 gcc_assert (avail_reg);
1040 /* Make sure we can generate a move from register avail_reg to
1041 dest. */
1042 extract_insn (gen_move_insn (copy_rtx (dest),
1043 copy_rtx (avail_reg)));
1044 if (! constrain_operands (1)
1045 || reg_killed_on_edge (avail_reg, pred)
1046 || reg_used_on_edge (dest, pred))
1048 avail_insn = NULL;
1049 continue;
1051 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1052 next_pred_bb_end))
1053 /* AVAIL_INSN remains non-null. */
1054 break;
1055 else
1056 avail_insn = NULL;
1059 if (EDGE_CRITICAL_P (pred))
1060 critical_count += pred->count;
1062 if (avail_insn != NULL_RTX)
1064 npred_ok++;
1065 ok_count += pred->count;
1066 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1067 copy_rtx (avail_reg)))))
1069 /* Check if there is going to be a split. */
1070 if (EDGE_CRITICAL_P (pred))
1071 critical_edge_split = true;
1073 else /* Its a dead move no need to generate. */
1074 continue;
1075 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1076 sizeof (struct occr));
1077 occr->insn = avail_insn;
1078 occr->pred = pred;
1079 occr->next = avail_occrs;
1080 avail_occrs = occr;
1081 if (! rollback_unoccr)
1082 rollback_unoccr = occr;
1084 else
1086 /* Adding a load on a critical edge will cuase a split. */
1087 if (EDGE_CRITICAL_P (pred))
1088 critical_edge_split = true;
1089 not_ok_count += pred->count;
1090 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1091 sizeof (struct unoccr));
1092 unoccr->insn = NULL_RTX;
1093 unoccr->pred = pred;
1094 unoccr->next = unavail_occrs;
1095 unavail_occrs = unoccr;
1096 if (! rollback_unoccr)
1097 rollback_unoccr = unoccr;
1101 if (/* No load can be replaced by copy. */
1102 npred_ok == 0
1103 /* Prevent exploding the code. */
1104 || (optimize_size && npred_ok > 1)
1105 /* If we don't have profile information we cannot tell if splitting
1106 a critical edge is profitable or not so don't do it. */
1107 || ((! profile_info || ! flag_branch_probabilities
1108 || targetm.cannot_modify_jumps_p ())
1109 && critical_edge_split))
1110 goto cleanup;
1112 /* Check if it's worth applying the partial redundancy elimination. */
1113 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1114 goto cleanup;
1115 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1116 goto cleanup;
1118 /* Generate moves to the loaded register from where
1119 the memory is available. */
1120 for (occr = avail_occrs; occr; occr = occr->next)
1122 avail_insn = occr->insn;
1123 pred = occr->pred;
1124 /* Set avail_reg to be the register having the value of the
1125 memory. */
1126 avail_reg = get_avail_load_store_reg (avail_insn);
1127 gcc_assert (avail_reg);
1129 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1130 copy_rtx (avail_reg)),
1131 pred);
1132 stats.moves_inserted++;
1134 if (dump_file)
1135 fprintf (dump_file,
1136 "generating move from %d to %d on edge from %d to %d\n",
1137 REGNO (avail_reg),
1138 REGNO (dest),
1139 pred->src->index,
1140 pred->dest->index);
1143 /* Regenerate loads where the memory is unavailable. */
1144 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1146 pred = unoccr->pred;
1147 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1148 stats.copies_inserted++;
1150 if (dump_file)
1152 fprintf (dump_file,
1153 "generating on edge from %d to %d a copy of load: ",
1154 pred->src->index,
1155 pred->dest->index);
1156 print_rtl (dump_file, PATTERN (insn));
1157 fprintf (dump_file, "\n");
1161 /* Delete the insn if it is not available in this block and mark it
1162 for deletion if it is available. If insn is available it may help
1163 discover additional redundancies, so mark it for later deletion. */
1164 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1165 a_occr && (a_occr->insn != insn);
1166 a_occr = get_bb_avail_insn (bb, a_occr->next));
1168 if (!a_occr)
1170 stats.insns_deleted++;
1172 if (dump_file)
1174 fprintf (dump_file, "deleting insn:\n");
1175 print_rtl_single (dump_file, insn);
1176 fprintf (dump_file, "\n");
1178 delete_insn (insn);
1180 else
1181 a_occr->deleted_p = 1;
1183 cleanup:
1184 if (rollback_unoccr)
1185 obstack_free (&unoccr_obstack, rollback_unoccr);
1188 /* Performing the redundancy elimination as described before. */
1190 static void
1191 eliminate_partially_redundant_loads (void)
1193 rtx insn;
1194 basic_block bb;
1196 /* Note we start at block 1. */
1198 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1199 return;
1201 FOR_BB_BETWEEN (bb,
1202 ENTRY_BLOCK_PTR->next_bb->next_bb,
1203 EXIT_BLOCK_PTR,
1204 next_bb)
1206 /* Don't try anything on basic blocks with strange predecessors. */
1207 if (! bb_has_well_behaved_predecessors (bb))
1208 continue;
1210 /* Do not try anything on cold basic blocks. */
1211 if (probably_cold_bb_p (bb))
1212 continue;
1214 /* Reset the table of things changed since the start of the current
1215 basic block. */
1216 reset_opr_set_tables ();
1218 /* Look at all insns in the current basic block and see if there are
1219 any loads in it that we can record. */
1220 FOR_BB_INSNS (bb, insn)
1222 /* Is it a load - of the form (set (reg) (mem))? */
1223 if (NONJUMP_INSN_P (insn)
1224 && GET_CODE (PATTERN (insn)) == SET
1225 && REG_P (SET_DEST (PATTERN (insn)))
1226 && MEM_P (SET_SRC (PATTERN (insn))))
1228 rtx pat = PATTERN (insn);
1229 rtx src = SET_SRC (pat);
1230 struct expr *expr;
1232 if (!MEM_VOLATILE_P (src)
1233 && GET_MODE (src) != BLKmode
1234 && general_operand (src, GET_MODE (src))
1235 /* Are the operands unchanged since the start of the
1236 block? */
1237 && oprs_unchanged_p (src, insn, false)
1238 && !(flag_non_call_exceptions && may_trap_p (src))
1239 && !side_effects_p (src)
1240 /* Is the expression recorded? */
1241 && (expr = lookup_expr_in_table (src)) != NULL)
1243 /* We now have a load (insn) and an available memory at
1244 its BB start (expr). Try to remove the loads if it is
1245 redundant. */
1246 eliminate_partially_redundant_load (bb, insn, expr);
1250 /* Keep track of everything modified by this insn, so that we
1251 know what has been modified since the start of the current
1252 basic block. */
1253 if (INSN_P (insn))
1254 record_opr_changes (insn);
1258 commit_edge_insertions ();
1261 /* Go over the expression hash table and delete insns that were
1262 marked for later deletion. */
1264 /* This helper is called via htab_traverse. */
1265 static int
1266 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1268 struct expr *expr = (struct expr *) *slot;
1269 struct occr *occr;
1271 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1273 if (occr->deleted_p)
1275 delete_insn (occr->insn);
1276 stats.insns_deleted++;
1278 if (dump_file)
1280 fprintf (dump_file, "deleting insn:\n");
1281 print_rtl_single (dump_file, occr->insn);
1282 fprintf (dump_file, "\n");
1287 return 1;
1290 static void
1291 delete_redundant_insns (void)
1293 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1294 if (dump_file)
1295 fprintf (dump_file, "\n");
1298 /* Main entry point of the GCSE after reload - clean some redundant loads
1299 due to spilling. */
1301 void
1302 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1305 memset (&stats, 0, sizeof (stats));
1307 /* Allocate ememory for this pass.
1308 Also computes and initializes the insns' CUIDs. */
1309 alloc_mem ();
1311 /* We need alias analysis. */
1312 init_alias_analysis ();
1314 compute_hash_table ();
1316 if (dump_file)
1317 dump_hash_table (dump_file);
1319 if (htab_elements (expr_table) > 0)
1321 eliminate_partially_redundant_loads ();
1322 delete_redundant_insns ();
1324 if (dump_file)
1326 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1327 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1328 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1329 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1330 fprintf (dump_file, "\n\n");
1334 /* We are finished with alias. */
1335 end_alias_analysis ();
1337 free_mem ();