2009-01-28 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / vec.h
blob06d9f6e8ebe047c81ca278862252bde33da20911
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_VEC_H
22 #define GCC_VEC_H
24 /* The macros here implement a set of templated vector types and
25 associated interfaces. These templates are implemented with
26 macros, as we're not in C++ land. The interface functions are
27 typesafe and use static inline functions, sometimes backed by
28 out-of-line generic functions. The vectors are designed to
29 interoperate with the GTY machinery.
31 Because of the different behavior of structure objects, scalar
32 objects and of pointers, there are three flavors, one for each of
33 these variants. Both the structure object and pointer variants
34 pass pointers to objects around -- in the former case the pointers
35 are stored into the vector and in the latter case the pointers are
36 dereferenced and the objects copied into the vector. The scalar
37 object variant is suitable for int-like objects, and the vector
38 elements are returned by value.
40 There are both 'index' and 'iterate' accessors. The iterator
41 returns a boolean iteration condition and updates the iteration
42 variable passed by reference. Because the iterator will be
43 inlined, the address-of can be optimized away.
45 The vectors are implemented using the trailing array idiom, thus
46 they are not resizeable without changing the address of the vector
47 object itself. This means you cannot have variables or fields of
48 vector type -- always use a pointer to a vector. The one exception
49 is the final field of a structure, which could be a vector type.
50 You will have to use the embedded_size & embedded_init calls to
51 create such objects, and they will probably not be resizeable (so
52 don't use the 'safe' allocation variants). The trailing array
53 idiom is used (rather than a pointer to an array of data), because,
54 if we allow NULL to also represent an empty vector, empty vectors
55 occupy minimal space in the structure containing them.
57 Each operation that increases the number of active elements is
58 available in 'quick' and 'safe' variants. The former presumes that
59 there is sufficient allocated space for the operation to succeed
60 (it dies if there is not). The latter will reallocate the
61 vector, if needed. Reallocation causes an exponential increase in
62 vector size. If you know you will be adding N elements, it would
63 be more efficient to use the reserve operation before adding the
64 elements with the 'quick' operation. This will ensure there are at
65 least as many elements as you ask for, it will exponentially
66 increase if there are too few spare slots. If you want reserve a
67 specific number of slots, but do not want the exponential increase
68 (for instance, you know this is the last allocation), use the
69 reserve_exact operation. You can also create a vector of a
70 specific size from the get go.
72 You should prefer the push and pop operations, as they append and
73 remove from the end of the vector. If you need to remove several
74 items in one go, use the truncate operation. The insert and remove
75 operations allow you to change elements in the middle of the
76 vector. There are two remove operations, one which preserves the
77 element ordering 'ordered_remove', and one which does not
78 'unordered_remove'. The latter function copies the end element
79 into the removed slot, rather than invoke a memmove operation. The
80 'lower_bound' function will determine where to place an item in the
81 array using insert that will maintain sorted order.
83 When a vector type is defined, first a non-memory managed version
84 is created. You can then define either or both garbage collected
85 and heap allocated versions. The allocation mechanism is specified
86 when the type is defined, and is therefore part of the type. If
87 you need both gc'd and heap allocated versions, you still must have
88 *exactly* one definition of the common non-memory managed base vector.
90 If you need to directly manipulate a vector, then the 'address'
91 accessor will return the address of the start of the vector. Also
92 the 'space' predicate will tell you whether there is spare capacity
93 in the vector. You will not normally need to use these two functions.
95 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
96 get the non-memory allocation version, and then a
97 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
98 vectors. Variables of vector type are declared using a
99 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
100 allocation strategy, and can be either 'gc' or 'heap' for garbage
101 collected and heap allocated respectively. It can be 'none' to get
102 a vector that must be explicitly allocated (for instance as a
103 trailing array of another structure). The characters O, P and I
104 indicate whether TYPEDEF is a pointer (P), object (O) or integral
105 (I) type. Be careful to pick the correct one, as you'll get an
106 awkward and inefficient API if you use the wrong one. There is a
107 check, which results in a compile-time warning, for the P and I
108 versions, but there is no check for the O versions, as that is not
109 possible in plain C. Due to the way GTY works, you must annotate
110 any structures you wish to insert or reference from a vector with a
111 GTY(()) tag. You need to do this even if you never declare the GC
112 allocated variants.
114 An example of their use would be,
116 DEF_VEC_P(tree); // non-managed tree vector.
117 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
118 // appear at file scope.
120 struct my_struct {
121 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
124 struct my_struct *s;
126 if (VEC_length(tree,s->v)) { we have some contents }
127 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
128 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
129 { do something with elt }
133 /* Macros to invoke API calls. A single macro works for both pointer
134 and object vectors, but the argument and return types might well be
135 different. In each macro, T is the typedef of the vector elements,
136 and A is the allocation strategy. The allocation strategy is only
137 present when it is required. Some of these macros pass the vector,
138 V, by reference (by taking its address), this is noted in the
139 descriptions. */
141 /* Length of vector
142 unsigned VEC_T_length(const VEC(T) *v);
144 Return the number of active elements in V. V can be NULL, in which
145 case zero is returned. */
147 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
150 /* Check if vector is empty
151 int VEC_T_empty(const VEC(T) *v);
153 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
155 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
158 /* Get the final element of the vector.
159 T VEC_T_last(VEC(T) *v); // Integer
160 T VEC_T_last(VEC(T) *v); // Pointer
161 T *VEC_T_last(VEC(T) *v); // Object
163 Return the final element. V must not be empty. */
165 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
167 /* Index into vector
168 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
169 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
170 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
172 Return the IX'th element. If IX must be in the domain of V. */
174 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
176 /* Iterate over vector
177 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
178 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
179 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
181 Return iteration condition and update PTR to point to the IX'th
182 element. At the end of iteration, sets PTR to NULL. Use this to
183 iterate over the elements of a vector as follows,
185 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
186 continue; */
188 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
190 /* Allocate new vector.
191 VEC(T,A) *VEC_T_A_alloc(int reserve);
193 Allocate a new vector with space for RESERVE objects. If RESERVE
194 is zero, NO vector is created. */
196 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
198 /* Free a vector.
199 void VEC_T_A_free(VEC(T,A) *&);
201 Free a vector and set it to NULL. */
203 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
205 /* Use these to determine the required size and initialization of a
206 vector embedded within another structure (as the final member).
208 size_t VEC_T_embedded_size(int reserve);
209 void VEC_T_embedded_init(VEC(T) *v, int reserve);
211 These allow the caller to perform the memory allocation. */
213 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
214 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
216 /* Copy a vector.
217 VEC(T,A) *VEC_T_A_copy(VEC(T) *);
219 Copy the live elements of a vector into a new vector. The new and
220 old vectors need not be allocated by the same mechanism. */
222 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
224 /* Determine if a vector has additional capacity.
226 int VEC_T_space (VEC(T) *v,int reserve)
228 If V has space for RESERVE additional entries, return nonzero. You
229 usually only need to use this if you are doing your own vector
230 reallocation, for instance on an embedded vector. This returns
231 nonzero in exactly the same circumstances that VEC_T_reserve
232 will. */
234 #define VEC_space(T,V,R) \
235 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
237 /* Reserve space.
238 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
240 Ensure that V has at least RESERVE slots available. This will
241 create additional headroom. Note this can cause V to be
242 reallocated. Returns nonzero iff reallocation actually
243 occurred. */
245 #define VEC_reserve(T,A,V,R) \
246 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
248 /* Reserve space exactly.
249 int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
251 Ensure that V has at least RESERVE slots available. This will not
252 create additional headroom. Note this can cause V to be
253 reallocated. Returns nonzero iff reallocation actually
254 occurred. */
256 #define VEC_reserve_exact(T,A,V,R) \
257 (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
259 /* Push object with no reallocation
260 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
261 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
262 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
264 Push a new element onto the end, returns a pointer to the slot
265 filled in. For object vectors, the new value can be NULL, in which
266 case NO initialization is performed. There must
267 be sufficient space in the vector. */
269 #define VEC_quick_push(T,V,O) \
270 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
272 /* Push object with reallocation
273 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
274 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
275 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
277 Push a new element onto the end, returns a pointer to the slot
278 filled in. For object vectors, the new value can be NULL, in which
279 case NO initialization is performed. Reallocates V, if needed. */
281 #define VEC_safe_push(T,A,V,O) \
282 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
284 /* Pop element off end
285 T VEC_T_pop (VEC(T) *v); // Integer
286 T VEC_T_pop (VEC(T) *v); // Pointer
287 void VEC_T_pop (VEC(T) *v); // Object
289 Pop the last element off the end. Returns the element popped, for
290 pointer vectors. */
292 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
294 /* Truncate to specific length
295 void VEC_T_truncate (VEC(T) *v, unsigned len);
297 Set the length as specified. The new length must be less than or
298 equal to the current length. This is an O(1) operation. */
300 #define VEC_truncate(T,V,I) \
301 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
303 /* Grow to a specific length.
304 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
306 Grow the vector to a specific length. The LEN must be as
307 long or longer than the current length. The new elements are
308 uninitialized. */
310 #define VEC_safe_grow(T,A,V,I) \
311 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
313 /* Grow to a specific length.
314 void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
316 Grow the vector to a specific length. The LEN must be as
317 long or longer than the current length. The new elements are
318 initialized to zero. */
320 #define VEC_safe_grow_cleared(T,A,V,I) \
321 (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
323 /* Replace element
324 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
325 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
326 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
328 Replace the IXth element of V with a new value, VAL. For pointer
329 vectors returns the original value. For object vectors returns a
330 pointer to the new value. For object vectors the new value can be
331 NULL, in which case no overwriting of the slot is actually
332 performed. */
334 #define VEC_replace(T,V,I,O) \
335 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
337 /* Insert object with no reallocation
338 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
339 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
340 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
342 Insert an element, VAL, at the IXth position of V. Return a pointer
343 to the slot created. For vectors of object, the new value can be
344 NULL, in which case no initialization of the inserted slot takes
345 place. There must be sufficient space. */
347 #define VEC_quick_insert(T,V,I,O) \
348 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
350 /* Insert object with reallocation
351 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
352 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
353 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
355 Insert an element, VAL, at the IXth position of V. Return a pointer
356 to the slot created. For vectors of object, the new value can be
357 NULL, in which case no initialization of the inserted slot takes
358 place. Reallocate V, if necessary. */
360 #define VEC_safe_insert(T,A,V,I,O) \
361 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
363 /* Remove element retaining order
364 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
365 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
366 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
368 Remove an element from the IXth position of V. Ordering of
369 remaining elements is preserved. For pointer vectors returns the
370 removed object. This is an O(N) operation due to a memmove. */
372 #define VEC_ordered_remove(T,V,I) \
373 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
375 /* Remove element destroying order
376 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
377 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
378 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
380 Remove an element from the IXth position of V. Ordering of
381 remaining elements is destroyed. For pointer vectors returns the
382 removed object. This is an O(1) operation. */
384 #define VEC_unordered_remove(T,V,I) \
385 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
387 /* Remove a block of elements
388 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
390 Remove LEN elements starting at the IXth. Ordering is retained.
391 This is an O(1) operation. */
393 #define VEC_block_remove(T,V,I,L) \
394 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
396 /* Get the address of the array of elements
397 T *VEC_T_address (VEC(T) v)
399 If you need to directly manipulate the array (for instance, you
400 want to feed it to qsort), use this accessor. */
402 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
404 /* Find the first index in the vector not less than the object.
405 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
406 bool (*lessthan) (const T, const T)); // Integer
407 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
408 bool (*lessthan) (const T, const T)); // Pointer
409 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
410 bool (*lessthan) (const T*, const T*)); // Object
412 Find the first position in which VAL could be inserted without
413 changing the ordering of V. LESSTHAN is a function that returns
414 true if the first argument is strictly less than the second. */
416 #define VEC_lower_bound(T,V,O,LT) \
417 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
419 /* Reallocate an array of elements with prefix. */
420 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
421 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
422 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
423 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
424 MEM_STAT_DECL);
425 extern void ggc_free (void *);
426 #define vec_gc_free(V) ggc_free (V)
427 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
428 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
429 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
430 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
431 MEM_STAT_DECL);
432 extern void dump_vec_loc_statistics (void);
433 #ifdef GATHER_STATISTICS
434 void vec_heap_free (void *);
435 #else
436 #define vec_heap_free(V) free (V)
437 #endif
439 #if ENABLE_CHECKING
440 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
441 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
442 #define VEC_CHECK_PASS ,file_,line_,function_
444 #define VEC_ASSERT(EXPR,OP,T,A) \
445 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
447 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
448 ATTRIBUTE_NORETURN;
449 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
450 #else
451 #define VEC_CHECK_INFO
452 #define VEC_CHECK_DECL
453 #define VEC_CHECK_PASS
454 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
455 #endif
457 /* Note: gengtype has hardwired knowledge of the expansions of the
458 VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the
459 expansions of these macros you may need to change gengtype too. */
461 #define VEC(T,A) VEC_##T##_##A
462 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
464 /* Base of vector type, not user visible. */
465 #define VEC_T(T,B) \
466 typedef struct VEC(T,B) \
468 unsigned num; \
469 unsigned alloc; \
470 T vec[1]; \
471 } VEC(T,B)
473 #define VEC_T_GTY(T,B) \
474 typedef struct VEC(T,B) GTY(()) \
476 unsigned num; \
477 unsigned alloc; \
478 T GTY ((length ("%h.num"))) vec[1]; \
479 } VEC(T,B)
481 /* Derived vector type, user visible. */
482 #define VEC_TA_GTY(T,B,A,GTY) \
483 typedef struct VEC(T,A) GTY \
485 VEC(T,B) base; \
486 } VEC(T,A)
488 #define VEC_TA(T,B,A) \
489 typedef struct VEC(T,A) \
491 VEC(T,B) base; \
492 } VEC(T,A)
494 /* Convert to base type. */
495 #define VEC_BASE(P) ((P) ? &(P)->base : 0)
497 /* Vector of integer-like object. */
498 #define DEF_VEC_I(T) \
499 static inline void VEC_OP (T,must_be,integral_type) (void) \
501 (void)~(T)0; \
504 VEC_T(T,base); \
505 VEC_TA(T,base,none); \
506 DEF_VEC_FUNC_P(T) \
507 struct vec_swallow_trailing_semi
508 #define DEF_VEC_ALLOC_I(T,A) \
509 VEC_TA(T,base,A); \
510 DEF_VEC_ALLOC_FUNC_I(T,A) \
511 struct vec_swallow_trailing_semi
513 /* Vector of pointer to object. */
514 #define DEF_VEC_P(T) \
515 static inline void VEC_OP (T,must_be,pointer_type) (void) \
517 (void)((T)1 == (void *)1); \
520 VEC_T_GTY(T,base); \
521 VEC_TA(T,base,none); \
522 DEF_VEC_FUNC_P(T) \
523 struct vec_swallow_trailing_semi
524 #define DEF_VEC_ALLOC_P(T,A) \
525 VEC_TA(T,base,A); \
526 DEF_VEC_ALLOC_FUNC_P(T,A) \
527 struct vec_swallow_trailing_semi
529 #define DEF_VEC_FUNC_P(T) \
530 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
532 return vec_ ? vec_->num : 0; \
535 static inline T VEC_OP (T,base,last) \
536 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \
538 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
540 return vec_->vec[vec_->num - 1]; \
543 static inline T VEC_OP (T,base,index) \
544 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
546 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
548 return vec_->vec[ix_]; \
551 static inline int VEC_OP (T,base,iterate) \
552 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
554 if (vec_ && ix_ < vec_->num) \
556 *ptr = vec_->vec[ix_]; \
557 return 1; \
559 else \
561 *ptr = 0; \
562 return 0; \
566 static inline size_t VEC_OP (T,base,embedded_size) \
567 (int alloc_) \
569 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
572 static inline void VEC_OP (T,base,embedded_init) \
573 (VEC(T,base) *vec_, int alloc_) \
575 vec_->num = 0; \
576 vec_->alloc = alloc_; \
579 static inline int VEC_OP (T,base,space) \
580 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
582 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
583 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
586 static inline T *VEC_OP (T,base,quick_push) \
587 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
589 T *slot_; \
591 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
592 slot_ = &vec_->vec[vec_->num++]; \
593 *slot_ = obj_; \
595 return slot_; \
598 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
600 T obj_; \
602 VEC_ASSERT (vec_->num, "pop", T, base); \
603 obj_ = vec_->vec[--vec_->num]; \
605 return obj_; \
608 static inline void VEC_OP (T,base,truncate) \
609 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
611 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
612 if (vec_) \
613 vec_->num = size_; \
616 static inline T VEC_OP (T,base,replace) \
617 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
619 T old_obj_; \
621 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
622 old_obj_ = vec_->vec[ix_]; \
623 vec_->vec[ix_] = obj_; \
625 return old_obj_; \
628 static inline T *VEC_OP (T,base,quick_insert) \
629 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
631 T *slot_; \
633 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
634 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
635 slot_ = &vec_->vec[ix_]; \
636 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
637 *slot_ = obj_; \
639 return slot_; \
642 static inline T VEC_OP (T,base,ordered_remove) \
643 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
645 T *slot_; \
646 T obj_; \
648 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
649 slot_ = &vec_->vec[ix_]; \
650 obj_ = *slot_; \
651 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
653 return obj_; \
656 static inline T VEC_OP (T,base,unordered_remove) \
657 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
659 T *slot_; \
660 T obj_; \
662 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
663 slot_ = &vec_->vec[ix_]; \
664 obj_ = *slot_; \
665 *slot_ = vec_->vec[--vec_->num]; \
667 return obj_; \
670 static inline void VEC_OP (T,base,block_remove) \
671 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
673 T *slot_; \
675 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
676 slot_ = &vec_->vec[ix_]; \
677 vec_->num -= len_; \
678 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
681 static inline T *VEC_OP (T,base,address) \
682 (VEC(T,base) *vec_) \
684 return vec_ ? vec_->vec : 0; \
687 static inline unsigned VEC_OP (T,base,lower_bound) \
688 (VEC(T,base) *vec_, const T obj_, \
689 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
691 unsigned int len_ = VEC_OP (T,base, length) (vec_); \
692 unsigned int half_, middle_; \
693 unsigned int first_ = 0; \
694 while (len_ > 0) \
696 T middle_elem_; \
697 half_ = len_ >> 1; \
698 middle_ = first_; \
699 middle_ += half_; \
700 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
701 if (lessthan_ (middle_elem_, obj_)) \
703 first_ = middle_; \
704 ++first_; \
705 len_ = len_ - half_ - 1; \
707 else \
708 len_ = half_; \
710 return first_; \
713 #define DEF_VEC_ALLOC_FUNC_P(T,A) \
714 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
715 (int alloc_ MEM_STAT_DECL) \
717 return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \
718 PASS_MEM_STAT); \
721 static inline void VEC_OP (T,A,free) \
722 (VEC(T,A) **vec_) \
724 if (*vec_) \
725 vec_##A##_free (*vec_); \
726 *vec_ = NULL; \
729 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
731 size_t len_ = vec_ ? vec_->num : 0; \
732 VEC (T,A) *new_vec_ = NULL; \
734 if (len_) \
736 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \
737 (NULL, len_ PASS_MEM_STAT)); \
739 new_vec_->base.num = len_; \
740 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
742 return new_vec_; \
745 static inline int VEC_OP (T,A,reserve) \
746 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
748 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
749 VEC_CHECK_PASS); \
751 if (extend) \
752 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
754 return extend; \
757 static inline int VEC_OP (T,A,reserve_exact) \
758 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
760 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
761 VEC_CHECK_PASS); \
763 if (extend) \
764 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \
765 PASS_MEM_STAT); \
767 return extend; \
770 static inline void VEC_OP (T,A,safe_grow) \
771 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
773 VEC_ASSERT (size_ >= 0 \
774 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
775 "grow", T, A); \
776 VEC_OP (T,A,reserve_exact) (vec_, \
777 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
778 VEC_CHECK_PASS PASS_MEM_STAT); \
779 VEC_BASE (*vec_)->num = size_; \
782 static inline void VEC_OP (T,A,safe_grow_cleared) \
783 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
785 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
786 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
787 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
788 sizeof (T) * (size_ - oldsize)); \
791 static inline T *VEC_OP (T,A,safe_push) \
792 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
794 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
796 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
799 static inline T *VEC_OP (T,A,safe_insert) \
800 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
802 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
804 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
805 VEC_CHECK_PASS); \
808 /* Vector of object. */
809 #define DEF_VEC_O(T) \
810 VEC_T_GTY(T,base); \
811 VEC_TA(T,base,none); \
812 DEF_VEC_FUNC_O(T) \
813 struct vec_swallow_trailing_semi
814 #define DEF_VEC_ALLOC_O(T,A) \
815 VEC_TA(T,base,A); \
816 DEF_VEC_ALLOC_FUNC_O(T,A) \
817 struct vec_swallow_trailing_semi
819 #define DEF_VEC_FUNC_O(T) \
820 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
822 return vec_ ? vec_->num : 0; \
825 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
827 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
829 return &vec_->vec[vec_->num - 1]; \
832 static inline T *VEC_OP (T,base,index) \
833 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
835 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
837 return &vec_->vec[ix_]; \
840 static inline int VEC_OP (T,base,iterate) \
841 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \
843 if (vec_ && ix_ < vec_->num) \
845 *ptr = &vec_->vec[ix_]; \
846 return 1; \
848 else \
850 *ptr = 0; \
851 return 0; \
855 static inline size_t VEC_OP (T,base,embedded_size) \
856 (int alloc_) \
858 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
861 static inline void VEC_OP (T,base,embedded_init) \
862 (VEC(T,base) *vec_, int alloc_) \
864 vec_->num = 0; \
865 vec_->alloc = alloc_; \
868 static inline int VEC_OP (T,base,space) \
869 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
871 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
872 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
875 static inline T *VEC_OP (T,base,quick_push) \
876 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
878 T *slot_; \
880 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
881 slot_ = &vec_->vec[vec_->num++]; \
882 if (obj_) \
883 *slot_ = *obj_; \
885 return slot_; \
888 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
890 VEC_ASSERT (vec_->num, "pop", T, base); \
891 --vec_->num; \
894 static inline void VEC_OP (T,base,truncate) \
895 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
897 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
898 if (vec_) \
899 vec_->num = size_; \
902 static inline T *VEC_OP (T,base,replace) \
903 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
905 T *slot_; \
907 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
908 slot_ = &vec_->vec[ix_]; \
909 if (obj_) \
910 *slot_ = *obj_; \
912 return slot_; \
915 static inline T *VEC_OP (T,base,quick_insert) \
916 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
918 T *slot_; \
920 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
921 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
922 slot_ = &vec_->vec[ix_]; \
923 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
924 if (obj_) \
925 *slot_ = *obj_; \
927 return slot_; \
930 static inline void VEC_OP (T,base,ordered_remove) \
931 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
933 T *slot_; \
935 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
936 slot_ = &vec_->vec[ix_]; \
937 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
940 static inline void VEC_OP (T,base,unordered_remove) \
941 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
943 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
944 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
947 static inline void VEC_OP (T,base,block_remove) \
948 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
950 T *slot_; \
952 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
953 slot_ = &vec_->vec[ix_]; \
954 vec_->num -= len_; \
955 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
958 static inline T *VEC_OP (T,base,address) \
959 (VEC(T,base) *vec_) \
961 return vec_ ? vec_->vec : 0; \
964 static inline unsigned VEC_OP (T,base,lower_bound) \
965 (VEC(T,base) *vec_, const T *obj_, \
966 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
968 unsigned int len_ = VEC_OP (T, base, length) (vec_); \
969 unsigned int half_, middle_; \
970 unsigned int first_ = 0; \
971 while (len_ > 0) \
973 T *middle_elem_; \
974 half_ = len_ >> 1; \
975 middle_ = first_; \
976 middle_ += half_; \
977 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
978 if (lessthan_ (middle_elem_, obj_)) \
980 first_ = middle_; \
981 ++first_; \
982 len_ = len_ - half_ - 1; \
984 else \
985 len_ = half_; \
987 return first_; \
990 #define DEF_VEC_ALLOC_FUNC_O(T,A) \
991 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
992 (int alloc_ MEM_STAT_DECL) \
994 return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \
995 offsetof (VEC(T,A),base.vec), \
996 sizeof (T) \
997 PASS_MEM_STAT); \
1000 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1002 size_t len_ = vec_ ? vec_->num : 0; \
1003 VEC (T,A) *new_vec_ = NULL; \
1005 if (len_) \
1007 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1008 (NULL, len_, \
1009 offsetof (VEC(T,A),base.vec), sizeof (T) \
1010 PASS_MEM_STAT)); \
1012 new_vec_->base.num = len_; \
1013 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1015 return new_vec_; \
1018 static inline void VEC_OP (T,A,free) \
1019 (VEC(T,A) **vec_) \
1021 if (*vec_) \
1022 vec_##A##_free (*vec_); \
1023 *vec_ = NULL; \
1026 static inline int VEC_OP (T,A,reserve) \
1027 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1029 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1030 VEC_CHECK_PASS); \
1032 if (extend) \
1033 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1034 offsetof (VEC(T,A),base.vec),\
1035 sizeof (T) \
1036 PASS_MEM_STAT); \
1038 return extend; \
1041 static inline int VEC_OP (T,A,reserve_exact) \
1042 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1044 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1045 VEC_CHECK_PASS); \
1047 if (extend) \
1048 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1049 (*vec_, alloc_, \
1050 offsetof (VEC(T,A),base.vec), \
1051 sizeof (T) PASS_MEM_STAT); \
1053 return extend; \
1056 static inline void VEC_OP (T,A,safe_grow) \
1057 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1059 VEC_ASSERT (size_ >= 0 \
1060 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1061 "grow", T, A); \
1062 VEC_OP (T,A,reserve_exact) (vec_, \
1063 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1064 VEC_CHECK_PASS PASS_MEM_STAT); \
1065 VEC_BASE (*vec_)->num = size_; \
1068 static inline void VEC_OP (T,A,safe_grow_cleared) \
1069 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1071 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1072 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1073 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1074 sizeof (T) * (size_ - oldsize)); \
1077 static inline T *VEC_OP (T,A,safe_push) \
1078 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1080 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1082 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1085 static inline T *VEC_OP (T,A,safe_insert) \
1086 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
1087 VEC_CHECK_DECL MEM_STAT_DECL) \
1089 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1091 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1092 VEC_CHECK_PASS); \
1095 #define DEF_VEC_ALLOC_FUNC_I(T,A) \
1096 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1097 (int alloc_ MEM_STAT_DECL) \
1099 return (VEC(T,A) *) vec_##A##_o_reserve_exact \
1100 (NULL, alloc_, offsetof (VEC(T,A),base.vec), \
1101 sizeof (T) PASS_MEM_STAT); \
1104 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1106 size_t len_ = vec_ ? vec_->num : 0; \
1107 VEC (T,A) *new_vec_ = NULL; \
1109 if (len_) \
1111 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1112 (NULL, len_, \
1113 offsetof (VEC(T,A),base.vec), sizeof (T) \
1114 PASS_MEM_STAT)); \
1116 new_vec_->base.num = len_; \
1117 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1119 return new_vec_; \
1122 static inline void VEC_OP (T,A,free) \
1123 (VEC(T,A) **vec_) \
1125 if (*vec_) \
1126 vec_##A##_free (*vec_); \
1127 *vec_ = NULL; \
1130 static inline int VEC_OP (T,A,reserve) \
1131 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1133 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1134 VEC_CHECK_PASS); \
1136 if (extend) \
1137 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1138 offsetof (VEC(T,A),base.vec),\
1139 sizeof (T) \
1140 PASS_MEM_STAT); \
1142 return extend; \
1145 static inline int VEC_OP (T,A,reserve_exact) \
1146 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1148 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1149 VEC_CHECK_PASS); \
1151 if (extend) \
1152 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1153 (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \
1154 sizeof (T) PASS_MEM_STAT); \
1156 return extend; \
1159 static inline void VEC_OP (T,A,safe_grow) \
1160 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1162 VEC_ASSERT (size_ >= 0 \
1163 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1164 "grow", T, A); \
1165 VEC_OP (T,A,reserve_exact) (vec_, \
1166 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1167 VEC_CHECK_PASS PASS_MEM_STAT); \
1168 VEC_BASE (*vec_)->num = size_; \
1171 static inline void VEC_OP (T,A,safe_grow_cleared) \
1172 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1174 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1175 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1176 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1177 sizeof (T) * (size_ - oldsize)); \
1180 static inline T *VEC_OP (T,A,safe_push) \
1181 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1183 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1185 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1188 static inline T *VEC_OP (T,A,safe_insert) \
1189 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \
1190 VEC_CHECK_DECL MEM_STAT_DECL) \
1192 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1194 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1195 VEC_CHECK_PASS); \
1198 #endif /* GCC_VEC_H */