2009-01-28 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / combine.c
blob3aca075aae16d934a207f2facbb89560da0b01cd
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each label. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
345 struct undo
347 struct undo *next;
348 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
349 union { rtx r; int i; enum machine_mode m; } old_contents;
350 union { rtx *r; int *i; } where;
353 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
354 num_undo says how many are currently recorded.
356 other_insn is nonzero if we have modified some other insn in the process
357 of working on subst_insn. It must be verified too. */
359 struct undobuf
361 struct undo *undos;
362 struct undo *frees;
363 rtx other_insn;
366 static struct undobuf undobuf;
368 /* Number of times the pseudo being substituted for
369 was found and replaced. */
371 static int n_occurrences;
373 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
374 enum machine_mode,
375 unsigned HOST_WIDE_INT,
376 unsigned HOST_WIDE_INT *);
377 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
378 enum machine_mode,
379 unsigned int, unsigned int *);
380 static void do_SUBST (rtx *, rtx);
381 static void do_SUBST_INT (int *, int);
382 static void init_reg_last (void);
383 static void setup_incoming_promotions (rtx);
384 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
385 static int cant_combine_insn_p (rtx);
386 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
387 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
388 static int contains_muldiv (rtx);
389 static rtx try_combine (rtx, rtx, rtx, int *);
390 static void undo_all (void);
391 static void undo_commit (void);
392 static rtx *find_split_point (rtx *, rtx);
393 static rtx subst (rtx, rtx, rtx, int, int);
394 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
395 static rtx simplify_if_then_else (rtx);
396 static rtx simplify_set (rtx);
397 static rtx simplify_logical (rtx);
398 static rtx expand_compound_operation (rtx);
399 static const_rtx expand_field_assignment (const_rtx);
400 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
401 rtx, unsigned HOST_WIDE_INT, int, int, int);
402 static rtx extract_left_shift (rtx, int);
403 static rtx make_compound_operation (rtx, enum rtx_code);
404 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
405 unsigned HOST_WIDE_INT *);
406 static rtx canon_reg_for_combine (rtx, rtx);
407 static rtx force_to_mode (rtx, enum machine_mode,
408 unsigned HOST_WIDE_INT, int);
409 static rtx if_then_else_cond (rtx, rtx *, rtx *);
410 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
411 static int rtx_equal_for_field_assignment_p (rtx, rtx);
412 static rtx make_field_assignment (rtx);
413 static rtx apply_distributive_law (rtx);
414 static rtx distribute_and_simplify_rtx (rtx, int);
415 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
416 unsigned HOST_WIDE_INT);
417 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
420 HOST_WIDE_INT, enum machine_mode, int *);
421 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
422 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
423 int);
424 static int recog_for_combine (rtx *, rtx, rtx *);
425 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
426 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
427 static void update_table_tick (rtx);
428 static void record_value_for_reg (rtx, rtx, rtx);
429 static void check_promoted_subreg (rtx, rtx);
430 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
431 static void record_dead_and_set_regs (rtx);
432 static int get_last_value_validate (rtx *, rtx, int, int);
433 static rtx get_last_value (const_rtx);
434 static int use_crosses_set_p (const_rtx, int);
435 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
436 static int reg_dead_at_p (rtx, rtx);
437 static void move_deaths (rtx, rtx, int, rtx, rtx *);
438 static int reg_bitfield_target_p (rtx, rtx);
439 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
440 static void distribute_links (rtx);
441 static void mark_used_regs_combine (rtx);
442 static void record_promoted_value (rtx, rtx);
443 static int unmentioned_reg_p_1 (rtx *, void *);
444 static bool unmentioned_reg_p (rtx, rtx);
445 static int record_truncated_value (rtx *, void *);
446 static void record_truncated_values (rtx *, void *);
447 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
448 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 /* It is not safe to use ordinary gen_lowpart in combine.
452 See comments in gen_lowpart_for_combine. */
453 #undef RTL_HOOKS_GEN_LOWPART
454 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
456 /* Our implementation of gen_lowpart never emits a new pseudo. */
457 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
458 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
460 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
461 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
463 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
464 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
466 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
467 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
469 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
473 PATTERN can not be split. Otherwise, it returns an insn sequence.
474 This is a wrapper around split_insns which ensures that the
475 reg_stat vector is made larger if the splitter creates a new
476 register. */
478 static rtx
479 combine_split_insns (rtx pattern, rtx insn)
481 rtx ret;
482 unsigned int nregs;
484 ret = split_insns (pattern, insn);
485 nregs = max_reg_num ();
486 if (nregs > VEC_length (reg_stat_type, reg_stat))
487 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
488 return ret;
491 /* This is used by find_single_use to locate an rtx in LOC that
492 contains exactly one use of DEST, which is typically either a REG
493 or CC0. It returns a pointer to the innermost rtx expression
494 containing DEST. Appearances of DEST that are being used to
495 totally replace it are not counted. */
497 static rtx *
498 find_single_use_1 (rtx dest, rtx *loc)
500 rtx x = *loc;
501 enum rtx_code code = GET_CODE (x);
502 rtx *result = NULL;
503 rtx *this_result;
504 int i;
505 const char *fmt;
507 switch (code)
509 case CONST_INT:
510 case CONST:
511 case LABEL_REF:
512 case SYMBOL_REF:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case CLOBBER:
516 return 0;
518 case SET:
519 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
520 of a REG that occupies all of the REG, the insn uses DEST if
521 it is mentioned in the destination or the source. Otherwise, we
522 need just check the source. */
523 if (GET_CODE (SET_DEST (x)) != CC0
524 && GET_CODE (SET_DEST (x)) != PC
525 && !REG_P (SET_DEST (x))
526 && ! (GET_CODE (SET_DEST (x)) == SUBREG
527 && REG_P (SUBREG_REG (SET_DEST (x)))
528 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
530 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
532 break;
534 return find_single_use_1 (dest, &SET_SRC (x));
536 case MEM:
537 case SUBREG:
538 return find_single_use_1 (dest, &XEXP (x, 0));
540 default:
541 break;
544 /* If it wasn't one of the common cases above, check each expression and
545 vector of this code. Look for a unique usage of DEST. */
547 fmt = GET_RTX_FORMAT (code);
548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
550 if (fmt[i] == 'e')
552 if (dest == XEXP (x, i)
553 || (REG_P (dest) && REG_P (XEXP (x, i))
554 && REGNO (dest) == REGNO (XEXP (x, i))))
555 this_result = loc;
556 else
557 this_result = find_single_use_1 (dest, &XEXP (x, i));
559 if (result == NULL)
560 result = this_result;
561 else if (this_result)
562 /* Duplicate usage. */
563 return NULL;
565 else if (fmt[i] == 'E')
567 int j;
569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
571 if (XVECEXP (x, i, j) == dest
572 || (REG_P (dest)
573 && REG_P (XVECEXP (x, i, j))
574 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
575 this_result = loc;
576 else
577 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
579 if (result == NULL)
580 result = this_result;
581 else if (this_result)
582 return NULL;
587 return result;
591 /* See if DEST, produced in INSN, is used only a single time in the
592 sequel. If so, return a pointer to the innermost rtx expression in which
593 it is used.
595 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
597 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
598 care about REG_DEAD notes or LOG_LINKS.
600 Otherwise, we find the single use by finding an insn that has a
601 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
602 only referenced once in that insn, we know that it must be the first
603 and last insn referencing DEST. */
605 static rtx *
606 find_single_use (rtx dest, rtx insn, rtx *ploc)
608 rtx next;
609 rtx *result;
610 rtx link;
612 #ifdef HAVE_cc0
613 if (dest == cc0_rtx)
615 next = NEXT_INSN (insn);
616 if (next == 0
617 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
618 return 0;
620 result = find_single_use_1 (dest, &PATTERN (next));
621 if (result && ploc)
622 *ploc = next;
623 return result;
625 #endif
627 if (!REG_P (dest))
628 return 0;
630 for (next = next_nonnote_insn (insn);
631 next != 0 && !LABEL_P (next);
632 next = next_nonnote_insn (next))
633 if (INSN_P (next) && dead_or_set_p (next, dest))
635 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
636 if (XEXP (link, 0) == insn)
637 break;
639 if (link)
641 result = find_single_use_1 (dest, &PATTERN (next));
642 if (ploc)
643 *ploc = next;
644 return result;
648 return 0;
651 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
652 insn. The substitution can be undone by undo_all. If INTO is already
653 set to NEWVAL, do not record this change. Because computing NEWVAL might
654 also call SUBST, we have to compute it before we put anything into
655 the undo table. */
657 static void
658 do_SUBST (rtx *into, rtx newval)
660 struct undo *buf;
661 rtx oldval = *into;
663 if (oldval == newval)
664 return;
666 /* We'd like to catch as many invalid transformations here as
667 possible. Unfortunately, there are way too many mode changes
668 that are perfectly valid, so we'd waste too much effort for
669 little gain doing the checks here. Focus on catching invalid
670 transformations involving integer constants. */
671 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
672 && GET_CODE (newval) == CONST_INT)
674 /* Sanity check that we're replacing oldval with a CONST_INT
675 that is a valid sign-extension for the original mode. */
676 gcc_assert (INTVAL (newval)
677 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
679 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
680 CONST_INT is not valid, because after the replacement, the
681 original mode would be gone. Unfortunately, we can't tell
682 when do_SUBST is called to replace the operand thereof, so we
683 perform this test on oldval instead, checking whether an
684 invalid replacement took place before we got here. */
685 gcc_assert (!(GET_CODE (oldval) == SUBREG
686 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
687 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
688 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
691 if (undobuf.frees)
692 buf = undobuf.frees, undobuf.frees = buf->next;
693 else
694 buf = XNEW (struct undo);
696 buf->kind = UNDO_RTX;
697 buf->where.r = into;
698 buf->old_contents.r = oldval;
699 *into = newval;
701 buf->next = undobuf.undos, undobuf.undos = buf;
704 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
706 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
707 for the value of a HOST_WIDE_INT value (including CONST_INT) is
708 not safe. */
710 static void
711 do_SUBST_INT (int *into, int newval)
713 struct undo *buf;
714 int oldval = *into;
716 if (oldval == newval)
717 return;
719 if (undobuf.frees)
720 buf = undobuf.frees, undobuf.frees = buf->next;
721 else
722 buf = XNEW (struct undo);
724 buf->kind = UNDO_INT;
725 buf->where.i = into;
726 buf->old_contents.i = oldval;
727 *into = newval;
729 buf->next = undobuf.undos, undobuf.undos = buf;
732 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
734 /* Similar to SUBST, but just substitute the mode. This is used when
735 changing the mode of a pseudo-register, so that any other
736 references to the entry in the regno_reg_rtx array will change as
737 well. */
739 static void
740 do_SUBST_MODE (rtx *into, enum machine_mode newval)
742 struct undo *buf;
743 enum machine_mode oldval = GET_MODE (*into);
745 if (oldval == newval)
746 return;
748 if (undobuf.frees)
749 buf = undobuf.frees, undobuf.frees = buf->next;
750 else
751 buf = XNEW (struct undo);
753 buf->kind = UNDO_MODE;
754 buf->where.r = into;
755 buf->old_contents.m = oldval;
756 adjust_reg_mode (*into, newval);
758 buf->next = undobuf.undos, undobuf.undos = buf;
761 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
763 /* Subroutine of try_combine. Determine whether the combine replacement
764 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
765 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
766 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
767 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
768 function returns false, if the costs of all instructions can be
769 estimated, and the replacements are more expensive than the original
770 sequence. */
772 static bool
773 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
774 rtx newotherpat)
776 int i1_cost, i2_cost, i3_cost;
777 int new_i2_cost, new_i3_cost;
778 int old_cost, new_cost;
780 /* Lookup the original insn_rtx_costs. */
781 i2_cost = INSN_COST (i2);
782 i3_cost = INSN_COST (i3);
784 if (i1)
786 i1_cost = INSN_COST (i1);
787 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
788 ? i1_cost + i2_cost + i3_cost : 0;
790 else
792 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
793 i1_cost = 0;
796 /* Calculate the replacement insn_rtx_costs. */
797 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
798 if (newi2pat)
800 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
801 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
802 ? new_i2_cost + new_i3_cost : 0;
804 else
806 new_cost = new_i3_cost;
807 new_i2_cost = 0;
810 if (undobuf.other_insn)
812 int old_other_cost, new_other_cost;
814 old_other_cost = INSN_COST (undobuf.other_insn);
815 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
816 if (old_other_cost > 0 && new_other_cost > 0)
818 old_cost += old_other_cost;
819 new_cost += new_other_cost;
821 else
822 old_cost = 0;
825 /* Disallow this recombination if both new_cost and old_cost are
826 greater than zero, and new_cost is greater than old cost. */
827 if (old_cost > 0
828 && new_cost > old_cost)
830 if (dump_file)
832 if (i1)
834 fprintf (dump_file,
835 "rejecting combination of insns %d, %d and %d\n",
836 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
837 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
838 i1_cost, i2_cost, i3_cost, old_cost);
840 else
842 fprintf (dump_file,
843 "rejecting combination of insns %d and %d\n",
844 INSN_UID (i2), INSN_UID (i3));
845 fprintf (dump_file, "original costs %d + %d = %d\n",
846 i2_cost, i3_cost, old_cost);
849 if (newi2pat)
851 fprintf (dump_file, "replacement costs %d + %d = %d\n",
852 new_i2_cost, new_i3_cost, new_cost);
854 else
855 fprintf (dump_file, "replacement cost %d\n", new_cost);
858 return false;
861 /* Update the uid_insn_cost array with the replacement costs. */
862 INSN_COST (i2) = new_i2_cost;
863 INSN_COST (i3) = new_i3_cost;
864 if (i1)
865 INSN_COST (i1) = 0;
867 return true;
871 /* Delete any insns that copy a register to itself. */
873 static void
874 delete_noop_moves (void)
876 rtx insn, next;
877 basic_block bb;
879 FOR_EACH_BB (bb)
881 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
883 next = NEXT_INSN (insn);
884 if (INSN_P (insn) && noop_move_p (insn))
886 if (dump_file)
887 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
889 delete_insn_and_edges (insn);
896 /* Fill in log links field for all insns. */
898 static void
899 create_log_links (void)
901 basic_block bb;
902 rtx *next_use, insn;
903 df_ref *def_vec, *use_vec;
905 next_use = XCNEWVEC (rtx, max_reg_num ());
907 /* Pass through each block from the end, recording the uses of each
908 register and establishing log links when def is encountered.
909 Note that we do not clear next_use array in order to save time,
910 so we have to test whether the use is in the same basic block as def.
912 There are a few cases below when we do not consider the definition or
913 usage -- these are taken from original flow.c did. Don't ask me why it is
914 done this way; I don't know and if it works, I don't want to know. */
916 FOR_EACH_BB (bb)
918 FOR_BB_INSNS_REVERSE (bb, insn)
920 if (!INSN_P (insn))
921 continue;
923 /* Log links are created only once. */
924 gcc_assert (!LOG_LINKS (insn));
926 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
928 df_ref def = *def_vec;
929 int regno = DF_REF_REGNO (def);
930 rtx use_insn;
932 if (!next_use[regno])
933 continue;
935 /* Do not consider if it is pre/post modification in MEM. */
936 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
937 continue;
939 /* Do not make the log link for frame pointer. */
940 if ((regno == FRAME_POINTER_REGNUM
941 && (! reload_completed || frame_pointer_needed))
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 || (regno == HARD_FRAME_POINTER_REGNUM
944 && (! reload_completed || frame_pointer_needed))
945 #endif
946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
947 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
948 #endif
950 continue;
952 use_insn = next_use[regno];
953 if (BLOCK_FOR_INSN (use_insn) == bb)
955 /* flow.c claimed:
957 We don't build a LOG_LINK for hard registers contained
958 in ASM_OPERANDs. If these registers get replaced,
959 we might wind up changing the semantics of the insn,
960 even if reload can make what appear to be valid
961 assignments later. */
962 if (regno >= FIRST_PSEUDO_REGISTER
963 || asm_noperands (PATTERN (use_insn)) < 0)
965 /* Don't add duplicate links between instructions. */
966 rtx links;
967 for (links = LOG_LINKS (use_insn); links;
968 links = XEXP (links, 1))
969 if (insn == XEXP (links, 0))
970 break;
972 if (!links)
973 LOG_LINKS (use_insn) =
974 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
977 next_use[regno] = NULL_RTX;
980 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
982 df_ref use = *use_vec;
983 int regno = DF_REF_REGNO (use);
985 /* Do not consider the usage of the stack pointer
986 by function call. */
987 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
988 continue;
990 next_use[regno] = insn;
995 free (next_use);
998 /* Clear LOG_LINKS fields of insns. */
1000 static void
1001 clear_log_links (void)
1003 rtx insn;
1005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1006 if (INSN_P (insn))
1007 free_INSN_LIST_list (&LOG_LINKS (insn));
1013 /* Main entry point for combiner. F is the first insn of the function.
1014 NREGS is the first unused pseudo-reg number.
1016 Return nonzero if the combiner has turned an indirect jump
1017 instruction into a direct jump. */
1018 static int
1019 combine_instructions (rtx f, unsigned int nregs)
1021 rtx insn, next;
1022 #ifdef HAVE_cc0
1023 rtx prev;
1024 #endif
1025 rtx links, nextlinks;
1026 rtx first;
1028 int new_direct_jump_p = 0;
1030 for (first = f; first && !INSN_P (first); )
1031 first = NEXT_INSN (first);
1032 if (!first)
1033 return 0;
1035 combine_attempts = 0;
1036 combine_merges = 0;
1037 combine_extras = 0;
1038 combine_successes = 0;
1040 rtl_hooks = combine_rtl_hooks;
1042 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1044 init_recog_no_volatile ();
1046 /* Allocate array for insn info. */
1047 max_uid_known = get_max_uid ();
1048 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1049 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1051 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1053 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1054 problems when, for example, we have j <<= 1 in a loop. */
1056 nonzero_sign_valid = 0;
1058 /* Scan all SETs and see if we can deduce anything about what
1059 bits are known to be zero for some registers and how many copies
1060 of the sign bit are known to exist for those registers.
1062 Also set any known values so that we can use it while searching
1063 for what bits are known to be set. */
1065 label_tick = label_tick_ebb_start = 1;
1067 setup_incoming_promotions (first);
1069 create_log_links ();
1070 FOR_EACH_BB (this_basic_block)
1072 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1073 last_call_luid = 0;
1074 mem_last_set = -1;
1075 label_tick++;
1076 FOR_BB_INSNS (this_basic_block, insn)
1077 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1079 subst_low_luid = DF_INSN_LUID (insn);
1080 subst_insn = insn;
1082 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1083 insn);
1084 record_dead_and_set_regs (insn);
1086 #ifdef AUTO_INC_DEC
1087 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1088 if (REG_NOTE_KIND (links) == REG_INC)
1089 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1090 insn);
1091 #endif
1093 /* Record the current insn_rtx_cost of this instruction. */
1094 if (NONJUMP_INSN_P (insn))
1095 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1096 optimize_this_for_speed_p);
1097 if (dump_file)
1098 fprintf(dump_file, "insn_cost %d: %d\n",
1099 INSN_UID (insn), INSN_COST (insn));
1101 else if (LABEL_P (insn))
1102 label_tick_ebb_start = label_tick;
1105 nonzero_sign_valid = 1;
1107 /* Now scan all the insns in forward order. */
1109 label_tick = label_tick_ebb_start = 1;
1110 init_reg_last ();
1111 setup_incoming_promotions (first);
1113 FOR_EACH_BB (this_basic_block)
1115 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1116 last_call_luid = 0;
1117 mem_last_set = -1;
1118 label_tick++;
1119 rtl_profile_for_bb (this_basic_block);
1120 for (insn = BB_HEAD (this_basic_block);
1121 insn != NEXT_INSN (BB_END (this_basic_block));
1122 insn = next ? next : NEXT_INSN (insn))
1124 next = 0;
1125 if (INSN_P (insn))
1127 /* See if we know about function return values before this
1128 insn based upon SUBREG flags. */
1129 check_promoted_subreg (insn, PATTERN (insn));
1131 /* See if we can find hardregs and subreg of pseudos in
1132 narrower modes. This could help turning TRUNCATEs
1133 into SUBREGs. */
1134 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1136 /* Try this insn with each insn it links back to. */
1138 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1139 if ((next = try_combine (insn, XEXP (links, 0),
1140 NULL_RTX, &new_direct_jump_p)) != 0)
1141 goto retry;
1143 /* Try each sequence of three linked insns ending with this one. */
1145 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1147 rtx link = XEXP (links, 0);
1149 /* If the linked insn has been replaced by a note, then there
1150 is no point in pursuing this chain any further. */
1151 if (NOTE_P (link))
1152 continue;
1154 for (nextlinks = LOG_LINKS (link);
1155 nextlinks;
1156 nextlinks = XEXP (nextlinks, 1))
1157 if ((next = try_combine (insn, link,
1158 XEXP (nextlinks, 0),
1159 &new_direct_jump_p)) != 0)
1160 goto retry;
1163 #ifdef HAVE_cc0
1164 /* Try to combine a jump insn that uses CC0
1165 with a preceding insn that sets CC0, and maybe with its
1166 logical predecessor as well.
1167 This is how we make decrement-and-branch insns.
1168 We need this special code because data flow connections
1169 via CC0 do not get entered in LOG_LINKS. */
1171 if (JUMP_P (insn)
1172 && (prev = prev_nonnote_insn (insn)) != 0
1173 && NONJUMP_INSN_P (prev)
1174 && sets_cc0_p (PATTERN (prev)))
1176 if ((next = try_combine (insn, prev,
1177 NULL_RTX, &new_direct_jump_p)) != 0)
1178 goto retry;
1180 for (nextlinks = LOG_LINKS (prev); nextlinks;
1181 nextlinks = XEXP (nextlinks, 1))
1182 if ((next = try_combine (insn, prev,
1183 XEXP (nextlinks, 0),
1184 &new_direct_jump_p)) != 0)
1185 goto retry;
1188 /* Do the same for an insn that explicitly references CC0. */
1189 if (NONJUMP_INSN_P (insn)
1190 && (prev = prev_nonnote_insn (insn)) != 0
1191 && NONJUMP_INSN_P (prev)
1192 && sets_cc0_p (PATTERN (prev))
1193 && GET_CODE (PATTERN (insn)) == SET
1194 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1196 if ((next = try_combine (insn, prev,
1197 NULL_RTX, &new_direct_jump_p)) != 0)
1198 goto retry;
1200 for (nextlinks = LOG_LINKS (prev); nextlinks;
1201 nextlinks = XEXP (nextlinks, 1))
1202 if ((next = try_combine (insn, prev,
1203 XEXP (nextlinks, 0),
1204 &new_direct_jump_p)) != 0)
1205 goto retry;
1208 /* Finally, see if any of the insns that this insn links to
1209 explicitly references CC0. If so, try this insn, that insn,
1210 and its predecessor if it sets CC0. */
1211 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1212 if (NONJUMP_INSN_P (XEXP (links, 0))
1213 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1214 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1215 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1216 && NONJUMP_INSN_P (prev)
1217 && sets_cc0_p (PATTERN (prev))
1218 && (next = try_combine (insn, XEXP (links, 0),
1219 prev, &new_direct_jump_p)) != 0)
1220 goto retry;
1221 #endif
1223 /* Try combining an insn with two different insns whose results it
1224 uses. */
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 for (nextlinks = XEXP (links, 1); nextlinks;
1227 nextlinks = XEXP (nextlinks, 1))
1228 if ((next = try_combine (insn, XEXP (links, 0),
1229 XEXP (nextlinks, 0),
1230 &new_direct_jump_p)) != 0)
1231 goto retry;
1233 /* Try this insn with each REG_EQUAL note it links back to. */
1234 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1236 rtx set, note;
1237 rtx temp = XEXP (links, 0);
1238 if ((set = single_set (temp)) != 0
1239 && (note = find_reg_equal_equiv_note (temp)) != 0
1240 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1241 /* Avoid using a register that may already been marked
1242 dead by an earlier instruction. */
1243 && ! unmentioned_reg_p (note, SET_SRC (set))
1244 && (GET_MODE (note) == VOIDmode
1245 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1246 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1248 /* Temporarily replace the set's source with the
1249 contents of the REG_EQUAL note. The insn will
1250 be deleted or recognized by try_combine. */
1251 rtx orig = SET_SRC (set);
1252 SET_SRC (set) = note;
1253 i2mod = temp;
1254 i2mod_old_rhs = copy_rtx (orig);
1255 i2mod_new_rhs = copy_rtx (note);
1256 next = try_combine (insn, i2mod, NULL_RTX,
1257 &new_direct_jump_p);
1258 i2mod = NULL_RTX;
1259 if (next)
1260 goto retry;
1261 SET_SRC (set) = orig;
1265 if (!NOTE_P (insn))
1266 record_dead_and_set_regs (insn);
1268 retry:
1271 else if (LABEL_P (insn))
1272 label_tick_ebb_start = label_tick;
1276 default_rtl_profile ();
1277 clear_log_links ();
1278 clear_bb_flags ();
1279 new_direct_jump_p |= purge_all_dead_edges ();
1280 delete_noop_moves ();
1282 /* Clean up. */
1283 free (uid_log_links);
1284 free (uid_insn_cost);
1285 VEC_free (reg_stat_type, heap, reg_stat);
1288 struct undo *undo, *next;
1289 for (undo = undobuf.frees; undo; undo = next)
1291 next = undo->next;
1292 free (undo);
1294 undobuf.frees = 0;
1297 total_attempts += combine_attempts;
1298 total_merges += combine_merges;
1299 total_extras += combine_extras;
1300 total_successes += combine_successes;
1302 nonzero_sign_valid = 0;
1303 rtl_hooks = general_rtl_hooks;
1305 /* Make recognizer allow volatile MEMs again. */
1306 init_recog ();
1308 return new_direct_jump_p;
1311 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1313 static void
1314 init_reg_last (void)
1316 unsigned int i;
1317 reg_stat_type *p;
1319 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1320 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1323 /* Set up any promoted values for incoming argument registers. */
1325 static void
1326 setup_incoming_promotions (rtx first)
1328 tree arg;
1329 bool strictly_local = false;
1331 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1332 return;
1334 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1335 arg = TREE_CHAIN (arg))
1337 rtx reg = DECL_INCOMING_RTL (arg);
1338 int uns1, uns3;
1339 enum machine_mode mode1, mode2, mode3, mode4;
1341 /* Only continue if the incoming argument is in a register. */
1342 if (!REG_P (reg))
1343 continue;
1345 /* Determine, if possible, whether all call sites of the current
1346 function lie within the current compilation unit. (This does
1347 take into account the exporting of a function via taking its
1348 address, and so forth.) */
1349 strictly_local = cgraph_local_info (current_function_decl)->local;
1351 /* The mode and signedness of the argument before any promotions happen
1352 (equal to the mode of the pseudo holding it at that stage). */
1353 mode1 = TYPE_MODE (TREE_TYPE (arg));
1354 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1356 /* The mode and signedness of the argument after any source language and
1357 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1358 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1359 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1361 /* The mode and signedness of the argument as it is actually passed,
1362 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1363 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1365 /* The mode of the register in which the argument is being passed. */
1366 mode4 = GET_MODE (reg);
1368 /* Eliminate sign extensions in the callee when possible. Only
1369 do this when:
1370 (a) a mode promotion has occurred;
1371 (b) the mode of the register is the same as the mode of
1372 the argument as it is passed; and
1373 (c) the signedness does not change across any of the promotions; and
1374 (d) when no language-level promotions (which we cannot guarantee
1375 will have been done by an external caller) are necessary,
1376 unless we know that this function is only ever called from
1377 the current compilation unit -- all of whose call sites will
1378 do the mode1 --> mode2 promotion. */
1379 if (mode1 != mode3
1380 && mode3 == mode4
1381 && uns1 == uns3
1382 && (mode1 == mode2 || strictly_local))
1384 /* Record that the value was promoted from mode1 to mode3,
1385 so that any sign extension at the head of the current
1386 function may be eliminated. */
1387 rtx x;
1388 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1389 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1390 record_value_for_reg (reg, first, x);
1395 /* Called via note_stores. If X is a pseudo that is narrower than
1396 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1398 If we are setting only a portion of X and we can't figure out what
1399 portion, assume all bits will be used since we don't know what will
1400 be happening.
1402 Similarly, set how many bits of X are known to be copies of the sign bit
1403 at all locations in the function. This is the smallest number implied
1404 by any set of X. */
1406 static void
1407 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1409 rtx insn = (rtx) data;
1410 unsigned int num;
1412 if (REG_P (x)
1413 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1414 /* If this register is undefined at the start of the file, we can't
1415 say what its contents were. */
1416 && ! REGNO_REG_SET_P
1417 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1418 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1420 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1422 if (set == 0 || GET_CODE (set) == CLOBBER)
1424 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1425 rsp->sign_bit_copies = 1;
1426 return;
1429 /* If this register is being initialized using itself, and the
1430 register is uninitialized in this basic block, and there are
1431 no LOG_LINKS which set the register, then part of the
1432 register is uninitialized. In that case we can't assume
1433 anything about the number of nonzero bits.
1435 ??? We could do better if we checked this in
1436 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1437 could avoid making assumptions about the insn which initially
1438 sets the register, while still using the information in other
1439 insns. We would have to be careful to check every insn
1440 involved in the combination. */
1442 if (insn
1443 && reg_referenced_p (x, PATTERN (insn))
1444 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1445 REGNO (x)))
1447 rtx link;
1449 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1451 if (dead_or_set_p (XEXP (link, 0), x))
1452 break;
1454 if (!link)
1456 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1457 rsp->sign_bit_copies = 1;
1458 return;
1462 /* If this is a complex assignment, see if we can convert it into a
1463 simple assignment. */
1464 set = expand_field_assignment (set);
1466 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1467 set what we know about X. */
1469 if (SET_DEST (set) == x
1470 || (GET_CODE (SET_DEST (set)) == SUBREG
1471 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1472 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1473 && SUBREG_REG (SET_DEST (set)) == x))
1475 rtx src = SET_SRC (set);
1477 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1478 /* If X is narrower than a word and SRC is a non-negative
1479 constant that would appear negative in the mode of X,
1480 sign-extend it for use in reg_stat[].nonzero_bits because some
1481 machines (maybe most) will actually do the sign-extension
1482 and this is the conservative approach.
1484 ??? For 2.5, try to tighten up the MD files in this regard
1485 instead of this kludge. */
1487 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1488 && GET_CODE (src) == CONST_INT
1489 && INTVAL (src) > 0
1490 && 0 != (INTVAL (src)
1491 & ((HOST_WIDE_INT) 1
1492 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1493 src = GEN_INT (INTVAL (src)
1494 | ((HOST_WIDE_INT) (-1)
1495 << GET_MODE_BITSIZE (GET_MODE (x))));
1496 #endif
1498 /* Don't call nonzero_bits if it cannot change anything. */
1499 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1500 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1501 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1502 if (rsp->sign_bit_copies == 0
1503 || rsp->sign_bit_copies > num)
1504 rsp->sign_bit_copies = num;
1506 else
1508 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1509 rsp->sign_bit_copies = 1;
1514 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1515 insns that were previously combined into I3 or that will be combined
1516 into the merger of INSN and I3.
1518 Return 0 if the combination is not allowed for any reason.
1520 If the combination is allowed, *PDEST will be set to the single
1521 destination of INSN and *PSRC to the single source, and this function
1522 will return 1. */
1524 static int
1525 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1526 rtx *pdest, rtx *psrc)
1528 int i;
1529 const_rtx set = 0;
1530 rtx src, dest;
1531 rtx p;
1532 #ifdef AUTO_INC_DEC
1533 rtx link;
1534 #endif
1535 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1536 && next_active_insn (succ) == i3)
1537 : next_active_insn (insn) == i3);
1539 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1540 or a PARALLEL consisting of such a SET and CLOBBERs.
1542 If INSN has CLOBBER parallel parts, ignore them for our processing.
1543 By definition, these happen during the execution of the insn. When it
1544 is merged with another insn, all bets are off. If they are, in fact,
1545 needed and aren't also supplied in I3, they may be added by
1546 recog_for_combine. Otherwise, it won't match.
1548 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1549 note.
1551 Get the source and destination of INSN. If more than one, can't
1552 combine. */
1554 if (GET_CODE (PATTERN (insn)) == SET)
1555 set = PATTERN (insn);
1556 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1557 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1559 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1561 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1562 rtx note;
1564 switch (GET_CODE (elt))
1566 /* This is important to combine floating point insns
1567 for the SH4 port. */
1568 case USE:
1569 /* Combining an isolated USE doesn't make sense.
1570 We depend here on combinable_i3pat to reject them. */
1571 /* The code below this loop only verifies that the inputs of
1572 the SET in INSN do not change. We call reg_set_between_p
1573 to verify that the REG in the USE does not change between
1574 I3 and INSN.
1575 If the USE in INSN was for a pseudo register, the matching
1576 insn pattern will likely match any register; combining this
1577 with any other USE would only be safe if we knew that the
1578 used registers have identical values, or if there was
1579 something to tell them apart, e.g. different modes. For
1580 now, we forgo such complicated tests and simply disallow
1581 combining of USES of pseudo registers with any other USE. */
1582 if (REG_P (XEXP (elt, 0))
1583 && GET_CODE (PATTERN (i3)) == PARALLEL)
1585 rtx i3pat = PATTERN (i3);
1586 int i = XVECLEN (i3pat, 0) - 1;
1587 unsigned int regno = REGNO (XEXP (elt, 0));
1591 rtx i3elt = XVECEXP (i3pat, 0, i);
1593 if (GET_CODE (i3elt) == USE
1594 && REG_P (XEXP (i3elt, 0))
1595 && (REGNO (XEXP (i3elt, 0)) == regno
1596 ? reg_set_between_p (XEXP (elt, 0),
1597 PREV_INSN (insn), i3)
1598 : regno >= FIRST_PSEUDO_REGISTER))
1599 return 0;
1601 while (--i >= 0);
1603 break;
1605 /* We can ignore CLOBBERs. */
1606 case CLOBBER:
1607 break;
1609 case SET:
1610 /* Ignore SETs whose result isn't used but not those that
1611 have side-effects. */
1612 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1613 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1614 || INTVAL (XEXP (note, 0)) <= 0)
1615 && ! side_effects_p (elt))
1616 break;
1618 /* If we have already found a SET, this is a second one and
1619 so we cannot combine with this insn. */
1620 if (set)
1621 return 0;
1623 set = elt;
1624 break;
1626 default:
1627 /* Anything else means we can't combine. */
1628 return 0;
1632 if (set == 0
1633 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1634 so don't do anything with it. */
1635 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1636 return 0;
1638 else
1639 return 0;
1641 if (set == 0)
1642 return 0;
1644 set = expand_field_assignment (set);
1645 src = SET_SRC (set), dest = SET_DEST (set);
1647 /* Don't eliminate a store in the stack pointer. */
1648 if (dest == stack_pointer_rtx
1649 /* Don't combine with an insn that sets a register to itself if it has
1650 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1651 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1652 /* Can't merge an ASM_OPERANDS. */
1653 || GET_CODE (src) == ASM_OPERANDS
1654 /* Can't merge a function call. */
1655 || GET_CODE (src) == CALL
1656 /* Don't eliminate a function call argument. */
1657 || (CALL_P (i3)
1658 && (find_reg_fusage (i3, USE, dest)
1659 || (REG_P (dest)
1660 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1661 && global_regs[REGNO (dest)])))
1662 /* Don't substitute into an incremented register. */
1663 || FIND_REG_INC_NOTE (i3, dest)
1664 || (succ && FIND_REG_INC_NOTE (succ, dest))
1665 /* Don't substitute into a non-local goto, this confuses CFG. */
1666 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1667 /* Make sure that DEST is not used after SUCC but before I3. */
1668 || (succ && ! all_adjacent
1669 && reg_used_between_p (dest, succ, i3))
1670 /* Make sure that the value that is to be substituted for the register
1671 does not use any registers whose values alter in between. However,
1672 If the insns are adjacent, a use can't cross a set even though we
1673 think it might (this can happen for a sequence of insns each setting
1674 the same destination; last_set of that register might point to
1675 a NOTE). If INSN has a REG_EQUIV note, the register is always
1676 equivalent to the memory so the substitution is valid even if there
1677 are intervening stores. Also, don't move a volatile asm or
1678 UNSPEC_VOLATILE across any other insns. */
1679 || (! all_adjacent
1680 && (((!MEM_P (src)
1681 || ! find_reg_note (insn, REG_EQUIV, src))
1682 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1683 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1684 || GET_CODE (src) == UNSPEC_VOLATILE))
1685 /* Don't combine across a CALL_INSN, because that would possibly
1686 change whether the life span of some REGs crosses calls or not,
1687 and it is a pain to update that information.
1688 Exception: if source is a constant, moving it later can't hurt.
1689 Accept that as a special case. */
1690 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1691 return 0;
1693 /* DEST must either be a REG or CC0. */
1694 if (REG_P (dest))
1696 /* If register alignment is being enforced for multi-word items in all
1697 cases except for parameters, it is possible to have a register copy
1698 insn referencing a hard register that is not allowed to contain the
1699 mode being copied and which would not be valid as an operand of most
1700 insns. Eliminate this problem by not combining with such an insn.
1702 Also, on some machines we don't want to extend the life of a hard
1703 register. */
1705 if (REG_P (src)
1706 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1707 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1708 /* Don't extend the life of a hard register unless it is
1709 user variable (if we have few registers) or it can't
1710 fit into the desired register (meaning something special
1711 is going on).
1712 Also avoid substituting a return register into I3, because
1713 reload can't handle a conflict with constraints of other
1714 inputs. */
1715 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1716 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1717 return 0;
1719 else if (GET_CODE (dest) != CC0)
1720 return 0;
1723 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1724 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1725 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1727 /* Don't substitute for a register intended as a clobberable
1728 operand. */
1729 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1730 if (rtx_equal_p (reg, dest))
1731 return 0;
1733 /* If the clobber represents an earlyclobber operand, we must not
1734 substitute an expression containing the clobbered register.
1735 As we do not analyze the constraint strings here, we have to
1736 make the conservative assumption. However, if the register is
1737 a fixed hard reg, the clobber cannot represent any operand;
1738 we leave it up to the machine description to either accept or
1739 reject use-and-clobber patterns. */
1740 if (!REG_P (reg)
1741 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1742 || !fixed_regs[REGNO (reg)])
1743 if (reg_overlap_mentioned_p (reg, src))
1744 return 0;
1747 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1748 or not), reject, unless nothing volatile comes between it and I3 */
1750 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1752 /* Make sure succ doesn't contain a volatile reference. */
1753 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1754 return 0;
1756 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1757 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1758 return 0;
1761 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1762 to be an explicit register variable, and was chosen for a reason. */
1764 if (GET_CODE (src) == ASM_OPERANDS
1765 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1766 return 0;
1768 /* If there are any volatile insns between INSN and I3, reject, because
1769 they might affect machine state. */
1771 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1772 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1773 return 0;
1775 /* If INSN contains an autoincrement or autodecrement, make sure that
1776 register is not used between there and I3, and not already used in
1777 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1778 Also insist that I3 not be a jump; if it were one
1779 and the incremented register were spilled, we would lose. */
1781 #ifdef AUTO_INC_DEC
1782 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1783 if (REG_NOTE_KIND (link) == REG_INC
1784 && (JUMP_P (i3)
1785 || reg_used_between_p (XEXP (link, 0), insn, i3)
1786 || (pred != NULL_RTX
1787 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1788 || (succ != NULL_RTX
1789 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1790 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1791 return 0;
1792 #endif
1794 #ifdef HAVE_cc0
1795 /* Don't combine an insn that follows a CC0-setting insn.
1796 An insn that uses CC0 must not be separated from the one that sets it.
1797 We do, however, allow I2 to follow a CC0-setting insn if that insn
1798 is passed as I1; in that case it will be deleted also.
1799 We also allow combining in this case if all the insns are adjacent
1800 because that would leave the two CC0 insns adjacent as well.
1801 It would be more logical to test whether CC0 occurs inside I1 or I2,
1802 but that would be much slower, and this ought to be equivalent. */
1804 p = prev_nonnote_insn (insn);
1805 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1806 && ! all_adjacent)
1807 return 0;
1808 #endif
1810 /* If we get here, we have passed all the tests and the combination is
1811 to be allowed. */
1813 *pdest = dest;
1814 *psrc = src;
1816 return 1;
1819 /* LOC is the location within I3 that contains its pattern or the component
1820 of a PARALLEL of the pattern. We validate that it is valid for combining.
1822 One problem is if I3 modifies its output, as opposed to replacing it
1823 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1824 so would produce an insn that is not equivalent to the original insns.
1826 Consider:
1828 (set (reg:DI 101) (reg:DI 100))
1829 (set (subreg:SI (reg:DI 101) 0) <foo>)
1831 This is NOT equivalent to:
1833 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1834 (set (reg:DI 101) (reg:DI 100))])
1836 Not only does this modify 100 (in which case it might still be valid
1837 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1839 We can also run into a problem if I2 sets a register that I1
1840 uses and I1 gets directly substituted into I3 (not via I2). In that
1841 case, we would be getting the wrong value of I2DEST into I3, so we
1842 must reject the combination. This case occurs when I2 and I1 both
1843 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1844 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1845 of a SET must prevent combination from occurring.
1847 Before doing the above check, we first try to expand a field assignment
1848 into a set of logical operations.
1850 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1851 we place a register that is both set and used within I3. If more than one
1852 such register is detected, we fail.
1854 Return 1 if the combination is valid, zero otherwise. */
1856 static int
1857 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1858 int i1_not_in_src, rtx *pi3dest_killed)
1860 rtx x = *loc;
1862 if (GET_CODE (x) == SET)
1864 rtx set = x ;
1865 rtx dest = SET_DEST (set);
1866 rtx src = SET_SRC (set);
1867 rtx inner_dest = dest;
1868 rtx subdest;
1870 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1871 || GET_CODE (inner_dest) == SUBREG
1872 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1873 inner_dest = XEXP (inner_dest, 0);
1875 /* Check for the case where I3 modifies its output, as discussed
1876 above. We don't want to prevent pseudos from being combined
1877 into the address of a MEM, so only prevent the combination if
1878 i1 or i2 set the same MEM. */
1879 if ((inner_dest != dest &&
1880 (!MEM_P (inner_dest)
1881 || rtx_equal_p (i2dest, inner_dest)
1882 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1883 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1884 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1886 /* This is the same test done in can_combine_p except we can't test
1887 all_adjacent; we don't have to, since this instruction will stay
1888 in place, thus we are not considering increasing the lifetime of
1889 INNER_DEST.
1891 Also, if this insn sets a function argument, combining it with
1892 something that might need a spill could clobber a previous
1893 function argument; the all_adjacent test in can_combine_p also
1894 checks this; here, we do a more specific test for this case. */
1896 || (REG_P (inner_dest)
1897 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1898 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1899 GET_MODE (inner_dest))))
1900 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1901 return 0;
1903 /* If DEST is used in I3, it is being killed in this insn, so
1904 record that for later. We have to consider paradoxical
1905 subregs here, since they kill the whole register, but we
1906 ignore partial subregs, STRICT_LOW_PART, etc.
1907 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1908 STACK_POINTER_REGNUM, since these are always considered to be
1909 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1910 subdest = dest;
1911 if (GET_CODE (subdest) == SUBREG
1912 && (GET_MODE_SIZE (GET_MODE (subdest))
1913 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1914 subdest = SUBREG_REG (subdest);
1915 if (pi3dest_killed
1916 && REG_P (subdest)
1917 && reg_referenced_p (subdest, PATTERN (i3))
1918 && REGNO (subdest) != FRAME_POINTER_REGNUM
1919 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1920 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1921 #endif
1922 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1923 && (REGNO (subdest) != ARG_POINTER_REGNUM
1924 || ! fixed_regs [REGNO (subdest)])
1925 #endif
1926 && REGNO (subdest) != STACK_POINTER_REGNUM)
1928 if (*pi3dest_killed)
1929 return 0;
1931 *pi3dest_killed = subdest;
1935 else if (GET_CODE (x) == PARALLEL)
1937 int i;
1939 for (i = 0; i < XVECLEN (x, 0); i++)
1940 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1941 i1_not_in_src, pi3dest_killed))
1942 return 0;
1945 return 1;
1948 /* Return 1 if X is an arithmetic expression that contains a multiplication
1949 and division. We don't count multiplications by powers of two here. */
1951 static int
1952 contains_muldiv (rtx x)
1954 switch (GET_CODE (x))
1956 case MOD: case DIV: case UMOD: case UDIV:
1957 return 1;
1959 case MULT:
1960 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1961 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1962 default:
1963 if (BINARY_P (x))
1964 return contains_muldiv (XEXP (x, 0))
1965 || contains_muldiv (XEXP (x, 1));
1967 if (UNARY_P (x))
1968 return contains_muldiv (XEXP (x, 0));
1970 return 0;
1974 /* Determine whether INSN can be used in a combination. Return nonzero if
1975 not. This is used in try_combine to detect early some cases where we
1976 can't perform combinations. */
1978 static int
1979 cant_combine_insn_p (rtx insn)
1981 rtx set;
1982 rtx src, dest;
1984 /* If this isn't really an insn, we can't do anything.
1985 This can occur when flow deletes an insn that it has merged into an
1986 auto-increment address. */
1987 if (! INSN_P (insn))
1988 return 1;
1990 /* Never combine loads and stores involving hard regs that are likely
1991 to be spilled. The register allocator can usually handle such
1992 reg-reg moves by tying. If we allow the combiner to make
1993 substitutions of likely-spilled regs, reload might die.
1994 As an exception, we allow combinations involving fixed regs; these are
1995 not available to the register allocator so there's no risk involved. */
1997 set = single_set (insn);
1998 if (! set)
1999 return 0;
2000 src = SET_SRC (set);
2001 dest = SET_DEST (set);
2002 if (GET_CODE (src) == SUBREG)
2003 src = SUBREG_REG (src);
2004 if (GET_CODE (dest) == SUBREG)
2005 dest = SUBREG_REG (dest);
2006 if (REG_P (src) && REG_P (dest)
2007 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! fixed_regs[REGNO (src)]
2009 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2010 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2011 && ! fixed_regs[REGNO (dest)]
2012 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2013 return 1;
2015 return 0;
2018 struct likely_spilled_retval_info
2020 unsigned regno, nregs;
2021 unsigned mask;
2024 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2025 hard registers that are known to be written to / clobbered in full. */
2026 static void
2027 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2029 struct likely_spilled_retval_info *const info =
2030 (struct likely_spilled_retval_info *) data;
2031 unsigned regno, nregs;
2032 unsigned new_mask;
2034 if (!REG_P (XEXP (set, 0)))
2035 return;
2036 regno = REGNO (x);
2037 if (regno >= info->regno + info->nregs)
2038 return;
2039 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2040 if (regno + nregs <= info->regno)
2041 return;
2042 new_mask = (2U << (nregs - 1)) - 1;
2043 if (regno < info->regno)
2044 new_mask >>= info->regno - regno;
2045 else
2046 new_mask <<= regno - info->regno;
2047 info->mask &= ~new_mask;
2050 /* Return nonzero iff part of the return value is live during INSN, and
2051 it is likely spilled. This can happen when more than one insn is needed
2052 to copy the return value, e.g. when we consider to combine into the
2053 second copy insn for a complex value. */
2055 static int
2056 likely_spilled_retval_p (rtx insn)
2058 rtx use = BB_END (this_basic_block);
2059 rtx reg, p;
2060 unsigned regno, nregs;
2061 /* We assume here that no machine mode needs more than
2062 32 hard registers when the value overlaps with a register
2063 for which FUNCTION_VALUE_REGNO_P is true. */
2064 unsigned mask;
2065 struct likely_spilled_retval_info info;
2067 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2068 return 0;
2069 reg = XEXP (PATTERN (use), 0);
2070 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2071 return 0;
2072 regno = REGNO (reg);
2073 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2074 if (nregs == 1)
2075 return 0;
2076 mask = (2U << (nregs - 1)) - 1;
2078 /* Disregard parts of the return value that are set later. */
2079 info.regno = regno;
2080 info.nregs = nregs;
2081 info.mask = mask;
2082 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2083 if (INSN_P (p))
2084 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2085 mask = info.mask;
2087 /* Check if any of the (probably) live return value registers is
2088 likely spilled. */
2089 nregs --;
2092 if ((mask & 1 << nregs)
2093 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2094 return 1;
2095 } while (nregs--);
2096 return 0;
2099 /* Adjust INSN after we made a change to its destination.
2101 Changing the destination can invalidate notes that say something about
2102 the results of the insn and a LOG_LINK pointing to the insn. */
2104 static void
2105 adjust_for_new_dest (rtx insn)
2107 /* For notes, be conservative and simply remove them. */
2108 remove_reg_equal_equiv_notes (insn);
2110 /* The new insn will have a destination that was previously the destination
2111 of an insn just above it. Call distribute_links to make a LOG_LINK from
2112 the next use of that destination. */
2113 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2115 df_insn_rescan (insn);
2118 /* Return TRUE if combine can reuse reg X in mode MODE.
2119 ADDED_SETS is nonzero if the original set is still required. */
2120 static bool
2121 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2123 unsigned int regno;
2125 if (!REG_P(x))
2126 return false;
2128 regno = REGNO (x);
2129 /* Allow hard registers if the new mode is legal, and occupies no more
2130 registers than the old mode. */
2131 if (regno < FIRST_PSEUDO_REGISTER)
2132 return (HARD_REGNO_MODE_OK (regno, mode)
2133 && (hard_regno_nregs[regno][GET_MODE (x)]
2134 >= hard_regno_nregs[regno][mode]));
2136 /* Or a pseudo that is only used once. */
2137 return (REG_N_SETS (regno) == 1 && !added_sets
2138 && !REG_USERVAR_P (x));
2142 /* Check whether X, the destination of a set, refers to part of
2143 the register specified by REG. */
2145 static bool
2146 reg_subword_p (rtx x, rtx reg)
2148 /* Check that reg is an integer mode register. */
2149 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2150 return false;
2152 if (GET_CODE (x) == STRICT_LOW_PART
2153 || GET_CODE (x) == ZERO_EXTRACT)
2154 x = XEXP (x, 0);
2156 return GET_CODE (x) == SUBREG
2157 && SUBREG_REG (x) == reg
2158 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2162 /* Try to combine the insns I1 and I2 into I3.
2163 Here I1 and I2 appear earlier than I3.
2164 I1 can be zero; then we combine just I2 into I3.
2166 If we are combining three insns and the resulting insn is not recognized,
2167 try splitting it into two insns. If that happens, I2 and I3 are retained
2168 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2169 are pseudo-deleted.
2171 Return 0 if the combination does not work. Then nothing is changed.
2172 If we did the combination, return the insn at which combine should
2173 resume scanning.
2175 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2176 new direct jump instruction. */
2178 static rtx
2179 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2181 /* New patterns for I3 and I2, respectively. */
2182 rtx newpat, newi2pat = 0;
2183 rtvec newpat_vec_with_clobbers = 0;
2184 int substed_i2 = 0, substed_i1 = 0;
2185 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2186 int added_sets_1, added_sets_2;
2187 /* Total number of SETs to put into I3. */
2188 int total_sets;
2189 /* Nonzero if I2's body now appears in I3. */
2190 int i2_is_used;
2191 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2192 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2193 /* Contains I3 if the destination of I3 is used in its source, which means
2194 that the old life of I3 is being killed. If that usage is placed into
2195 I2 and not in I3, a REG_DEAD note must be made. */
2196 rtx i3dest_killed = 0;
2197 /* SET_DEST and SET_SRC of I2 and I1. */
2198 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2199 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2200 rtx i1pat = 0, i2pat = 0;
2201 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2202 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2203 int i2dest_killed = 0, i1dest_killed = 0;
2204 int i1_feeds_i3 = 0;
2205 /* Notes that must be added to REG_NOTES in I3 and I2. */
2206 rtx new_i3_notes, new_i2_notes;
2207 /* Notes that we substituted I3 into I2 instead of the normal case. */
2208 int i3_subst_into_i2 = 0;
2209 /* Notes that I1, I2 or I3 is a MULT operation. */
2210 int have_mult = 0;
2211 int swap_i2i3 = 0;
2212 int changed_i3_dest = 0;
2214 int maxreg;
2215 rtx temp;
2216 rtx link;
2217 rtx other_pat = 0;
2218 rtx new_other_notes;
2219 int i;
2221 /* Exit early if one of the insns involved can't be used for
2222 combinations. */
2223 if (cant_combine_insn_p (i3)
2224 || cant_combine_insn_p (i2)
2225 || (i1 && cant_combine_insn_p (i1))
2226 || likely_spilled_retval_p (i3))
2227 return 0;
2229 combine_attempts++;
2230 undobuf.other_insn = 0;
2232 /* Reset the hard register usage information. */
2233 CLEAR_HARD_REG_SET (newpat_used_regs);
2235 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2236 code below, set I1 to be the earlier of the two insns. */
2237 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2238 temp = i1, i1 = i2, i2 = temp;
2240 added_links_insn = 0;
2242 /* First check for one important special-case that the code below will
2243 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2244 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2245 we may be able to replace that destination with the destination of I3.
2246 This occurs in the common code where we compute both a quotient and
2247 remainder into a structure, in which case we want to do the computation
2248 directly into the structure to avoid register-register copies.
2250 Note that this case handles both multiple sets in I2 and also
2251 cases where I2 has a number of CLOBBER or PARALLELs.
2253 We make very conservative checks below and only try to handle the
2254 most common cases of this. For example, we only handle the case
2255 where I2 and I3 are adjacent to avoid making difficult register
2256 usage tests. */
2258 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2259 && REG_P (SET_SRC (PATTERN (i3)))
2260 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2261 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2262 && GET_CODE (PATTERN (i2)) == PARALLEL
2263 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2264 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2265 below would need to check what is inside (and reg_overlap_mentioned_p
2266 doesn't support those codes anyway). Don't allow those destinations;
2267 the resulting insn isn't likely to be recognized anyway. */
2268 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2269 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2270 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2271 SET_DEST (PATTERN (i3)))
2272 && next_real_insn (i2) == i3)
2274 rtx p2 = PATTERN (i2);
2276 /* Make sure that the destination of I3,
2277 which we are going to substitute into one output of I2,
2278 is not used within another output of I2. We must avoid making this:
2279 (parallel [(set (mem (reg 69)) ...)
2280 (set (reg 69) ...)])
2281 which is not well-defined as to order of actions.
2282 (Besides, reload can't handle output reloads for this.)
2284 The problem can also happen if the dest of I3 is a memory ref,
2285 if another dest in I2 is an indirect memory ref. */
2286 for (i = 0; i < XVECLEN (p2, 0); i++)
2287 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2288 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2289 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2290 SET_DEST (XVECEXP (p2, 0, i))))
2291 break;
2293 if (i == XVECLEN (p2, 0))
2294 for (i = 0; i < XVECLEN (p2, 0); i++)
2295 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2296 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2297 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2299 combine_merges++;
2301 subst_insn = i3;
2302 subst_low_luid = DF_INSN_LUID (i2);
2304 added_sets_2 = added_sets_1 = 0;
2305 i2dest = SET_SRC (PATTERN (i3));
2306 i2dest_killed = dead_or_set_p (i2, i2dest);
2308 /* Replace the dest in I2 with our dest and make the resulting
2309 insn the new pattern for I3. Then skip to where we
2310 validate the pattern. Everything was set up above. */
2311 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2312 SET_DEST (PATTERN (i3)));
2314 newpat = p2;
2315 i3_subst_into_i2 = 1;
2316 goto validate_replacement;
2320 /* If I2 is setting a pseudo to a constant and I3 is setting some
2321 sub-part of it to another constant, merge them by making a new
2322 constant. */
2323 if (i1 == 0
2324 && (temp = single_set (i2)) != 0
2325 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2326 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2327 && GET_CODE (PATTERN (i3)) == SET
2328 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2329 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2330 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2332 rtx dest = SET_DEST (PATTERN (i3));
2333 int offset = -1;
2334 int width = 0;
2336 if (GET_CODE (dest) == ZERO_EXTRACT)
2338 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2339 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2341 width = INTVAL (XEXP (dest, 1));
2342 offset = INTVAL (XEXP (dest, 2));
2343 dest = XEXP (dest, 0);
2344 if (BITS_BIG_ENDIAN)
2345 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2348 else
2350 if (GET_CODE (dest) == STRICT_LOW_PART)
2351 dest = XEXP (dest, 0);
2352 width = GET_MODE_BITSIZE (GET_MODE (dest));
2353 offset = 0;
2356 if (offset >= 0)
2358 /* If this is the low part, we're done. */
2359 if (subreg_lowpart_p (dest))
2361 /* Handle the case where inner is twice the size of outer. */
2362 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2363 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2364 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2365 /* Otherwise give up for now. */
2366 else
2367 offset = -1;
2370 if (offset >= 0
2371 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2372 <= HOST_BITS_PER_WIDE_INT * 2))
2374 HOST_WIDE_INT mhi, ohi, ihi;
2375 HOST_WIDE_INT mlo, olo, ilo;
2376 rtx inner = SET_SRC (PATTERN (i3));
2377 rtx outer = SET_SRC (temp);
2379 if (GET_CODE (outer) == CONST_INT)
2381 olo = INTVAL (outer);
2382 ohi = olo < 0 ? -1 : 0;
2384 else
2386 olo = CONST_DOUBLE_LOW (outer);
2387 ohi = CONST_DOUBLE_HIGH (outer);
2390 if (GET_CODE (inner) == CONST_INT)
2392 ilo = INTVAL (inner);
2393 ihi = ilo < 0 ? -1 : 0;
2395 else
2397 ilo = CONST_DOUBLE_LOW (inner);
2398 ihi = CONST_DOUBLE_HIGH (inner);
2401 if (width < HOST_BITS_PER_WIDE_INT)
2403 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2404 mhi = 0;
2406 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2408 mhi = ((unsigned HOST_WIDE_INT) 1
2409 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2410 mlo = -1;
2412 else
2414 mlo = -1;
2415 mhi = -1;
2418 ilo &= mlo;
2419 ihi &= mhi;
2421 if (offset >= HOST_BITS_PER_WIDE_INT)
2423 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2424 mlo = 0;
2425 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2426 ilo = 0;
2428 else if (offset > 0)
2430 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2431 >> (HOST_BITS_PER_WIDE_INT - offset));
2432 mlo = mlo << offset;
2433 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2434 >> (HOST_BITS_PER_WIDE_INT - offset));
2435 ilo = ilo << offset;
2438 olo = (olo & ~mlo) | ilo;
2439 ohi = (ohi & ~mhi) | ihi;
2441 combine_merges++;
2442 subst_insn = i3;
2443 subst_low_luid = DF_INSN_LUID (i2);
2444 added_sets_2 = added_sets_1 = 0;
2445 i2dest = SET_DEST (temp);
2446 i2dest_killed = dead_or_set_p (i2, i2dest);
2448 SUBST (SET_SRC (temp),
2449 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2451 newpat = PATTERN (i2);
2452 goto validate_replacement;
2456 #ifndef HAVE_cc0
2457 /* If we have no I1 and I2 looks like:
2458 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2459 (set Y OP)])
2460 make up a dummy I1 that is
2461 (set Y OP)
2462 and change I2 to be
2463 (set (reg:CC X) (compare:CC Y (const_int 0)))
2465 (We can ignore any trailing CLOBBERs.)
2467 This undoes a previous combination and allows us to match a branch-and-
2468 decrement insn. */
2470 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2471 && XVECLEN (PATTERN (i2), 0) >= 2
2472 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2473 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2474 == MODE_CC)
2475 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2476 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2477 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2478 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2479 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2480 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2482 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2483 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2484 break;
2486 if (i == 1)
2488 /* We make I1 with the same INSN_UID as I2. This gives it
2489 the same DF_INSN_LUID for value tracking. Our fake I1 will
2490 never appear in the insn stream so giving it the same INSN_UID
2491 as I2 will not cause a problem. */
2493 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2494 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2495 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2497 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2498 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2499 SET_DEST (PATTERN (i1)));
2502 #endif
2504 /* Verify that I2 and I1 are valid for combining. */
2505 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2506 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2508 undo_all ();
2509 return 0;
2512 /* Record whether I2DEST is used in I2SRC and similarly for the other
2513 cases. Knowing this will help in register status updating below. */
2514 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2515 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2516 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2517 i2dest_killed = dead_or_set_p (i2, i2dest);
2518 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2520 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2521 in I2SRC. */
2522 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2524 /* Ensure that I3's pattern can be the destination of combines. */
2525 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2526 i1 && i2dest_in_i1src && i1_feeds_i3,
2527 &i3dest_killed))
2529 undo_all ();
2530 return 0;
2533 /* See if any of the insns is a MULT operation. Unless one is, we will
2534 reject a combination that is, since it must be slower. Be conservative
2535 here. */
2536 if (GET_CODE (i2src) == MULT
2537 || (i1 != 0 && GET_CODE (i1src) == MULT)
2538 || (GET_CODE (PATTERN (i3)) == SET
2539 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2540 have_mult = 1;
2542 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2543 We used to do this EXCEPT in one case: I3 has a post-inc in an
2544 output operand. However, that exception can give rise to insns like
2545 mov r3,(r3)+
2546 which is a famous insn on the PDP-11 where the value of r3 used as the
2547 source was model-dependent. Avoid this sort of thing. */
2549 #if 0
2550 if (!(GET_CODE (PATTERN (i3)) == SET
2551 && REG_P (SET_SRC (PATTERN (i3)))
2552 && MEM_P (SET_DEST (PATTERN (i3)))
2553 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2554 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2555 /* It's not the exception. */
2556 #endif
2557 #ifdef AUTO_INC_DEC
2558 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2559 if (REG_NOTE_KIND (link) == REG_INC
2560 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2561 || (i1 != 0
2562 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2564 undo_all ();
2565 return 0;
2567 #endif
2569 /* See if the SETs in I1 or I2 need to be kept around in the merged
2570 instruction: whenever the value set there is still needed past I3.
2571 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2573 For the SET in I1, we have two cases: If I1 and I2 independently
2574 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2575 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2576 in I1 needs to be kept around unless I1DEST dies or is set in either
2577 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2578 I1DEST. If so, we know I1 feeds into I2. */
2580 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2582 added_sets_1
2583 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2584 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2586 /* If the set in I2 needs to be kept around, we must make a copy of
2587 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2588 PATTERN (I2), we are only substituting for the original I1DEST, not into
2589 an already-substituted copy. This also prevents making self-referential
2590 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2591 I2DEST. */
2593 if (added_sets_2)
2595 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2596 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2597 else
2598 i2pat = copy_rtx (PATTERN (i2));
2601 if (added_sets_1)
2603 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2604 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2605 else
2606 i1pat = copy_rtx (PATTERN (i1));
2609 combine_merges++;
2611 /* Substitute in the latest insn for the regs set by the earlier ones. */
2613 maxreg = max_reg_num ();
2615 subst_insn = i3;
2617 #ifndef HAVE_cc0
2618 /* Many machines that don't use CC0 have insns that can both perform an
2619 arithmetic operation and set the condition code. These operations will
2620 be represented as a PARALLEL with the first element of the vector
2621 being a COMPARE of an arithmetic operation with the constant zero.
2622 The second element of the vector will set some pseudo to the result
2623 of the same arithmetic operation. If we simplify the COMPARE, we won't
2624 match such a pattern and so will generate an extra insn. Here we test
2625 for this case, where both the comparison and the operation result are
2626 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2627 I2SRC. Later we will make the PARALLEL that contains I2. */
2629 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2630 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2631 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2632 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2634 #ifdef SELECT_CC_MODE
2635 rtx *cc_use;
2636 enum machine_mode compare_mode;
2637 #endif
2639 newpat = PATTERN (i3);
2640 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2642 i2_is_used = 1;
2644 #ifdef SELECT_CC_MODE
2645 /* See if a COMPARE with the operand we substituted in should be done
2646 with the mode that is currently being used. If not, do the same
2647 processing we do in `subst' for a SET; namely, if the destination
2648 is used only once, try to replace it with a register of the proper
2649 mode and also replace the COMPARE. */
2650 if (undobuf.other_insn == 0
2651 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2652 &undobuf.other_insn))
2653 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2654 i2src, const0_rtx))
2655 != GET_MODE (SET_DEST (newpat))))
2657 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2658 compare_mode))
2660 unsigned int regno = REGNO (SET_DEST (newpat));
2661 rtx new_dest;
2663 if (regno < FIRST_PSEUDO_REGISTER)
2664 new_dest = gen_rtx_REG (compare_mode, regno);
2665 else
2667 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2668 new_dest = regno_reg_rtx[regno];
2671 SUBST (SET_DEST (newpat), new_dest);
2672 SUBST (XEXP (*cc_use, 0), new_dest);
2673 SUBST (SET_SRC (newpat),
2674 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2676 else
2677 undobuf.other_insn = 0;
2679 #endif
2681 else
2682 #endif
2684 /* It is possible that the source of I2 or I1 may be performing
2685 an unneeded operation, such as a ZERO_EXTEND of something
2686 that is known to have the high part zero. Handle that case
2687 by letting subst look at the innermost one of them.
2689 Another way to do this would be to have a function that tries
2690 to simplify a single insn instead of merging two or more
2691 insns. We don't do this because of the potential of infinite
2692 loops and because of the potential extra memory required.
2693 However, doing it the way we are is a bit of a kludge and
2694 doesn't catch all cases.
2696 But only do this if -fexpensive-optimizations since it slows
2697 things down and doesn't usually win.
2699 This is not done in the COMPARE case above because the
2700 unmodified I2PAT is used in the PARALLEL and so a pattern
2701 with a modified I2SRC would not match. */
2703 if (flag_expensive_optimizations)
2705 /* Pass pc_rtx so no substitutions are done, just
2706 simplifications. */
2707 if (i1)
2709 subst_low_luid = DF_INSN_LUID (i1);
2710 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2712 else
2714 subst_low_luid = DF_INSN_LUID (i2);
2715 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2719 n_occurrences = 0; /* `subst' counts here */
2721 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2722 need to make a unique copy of I2SRC each time we substitute it
2723 to avoid self-referential rtl. */
2725 subst_low_luid = DF_INSN_LUID (i2);
2726 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2727 ! i1_feeds_i3 && i1dest_in_i1src);
2728 substed_i2 = 1;
2730 /* Record whether i2's body now appears within i3's body. */
2731 i2_is_used = n_occurrences;
2734 /* If we already got a failure, don't try to do more. Otherwise,
2735 try to substitute in I1 if we have it. */
2737 if (i1 && GET_CODE (newpat) != CLOBBER)
2739 /* Check that an autoincrement side-effect on I1 has not been lost.
2740 This happens if I1DEST is mentioned in I2 and dies there, and
2741 has disappeared from the new pattern. */
2742 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2743 && !i1_feeds_i3
2744 && dead_or_set_p (i2, i1dest)
2745 && !reg_overlap_mentioned_p (i1dest, newpat))
2746 /* Before we can do this substitution, we must redo the test done
2747 above (see detailed comments there) that ensures that I1DEST
2748 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2749 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2751 undo_all ();
2752 return 0;
2755 n_occurrences = 0;
2756 subst_low_luid = DF_INSN_LUID (i1);
2757 newpat = subst (newpat, i1dest, i1src, 0, 0);
2758 substed_i1 = 1;
2761 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2762 to count all the ways that I2SRC and I1SRC can be used. */
2763 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2764 && i2_is_used + added_sets_2 > 1)
2765 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2766 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2767 > 1))
2768 /* Fail if we tried to make a new register. */
2769 || max_reg_num () != maxreg
2770 /* Fail if we couldn't do something and have a CLOBBER. */
2771 || GET_CODE (newpat) == CLOBBER
2772 /* Fail if this new pattern is a MULT and we didn't have one before
2773 at the outer level. */
2774 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2775 && ! have_mult))
2777 undo_all ();
2778 return 0;
2781 /* If the actions of the earlier insns must be kept
2782 in addition to substituting them into the latest one,
2783 we must make a new PARALLEL for the latest insn
2784 to hold additional the SETs. */
2786 if (added_sets_1 || added_sets_2)
2788 combine_extras++;
2790 if (GET_CODE (newpat) == PARALLEL)
2792 rtvec old = XVEC (newpat, 0);
2793 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2794 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2795 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2796 sizeof (old->elem[0]) * old->num_elem);
2798 else
2800 rtx old = newpat;
2801 total_sets = 1 + added_sets_1 + added_sets_2;
2802 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2803 XVECEXP (newpat, 0, 0) = old;
2806 if (added_sets_1)
2807 XVECEXP (newpat, 0, --total_sets) = i1pat;
2809 if (added_sets_2)
2811 /* If there is no I1, use I2's body as is. We used to also not do
2812 the subst call below if I2 was substituted into I3,
2813 but that could lose a simplification. */
2814 if (i1 == 0)
2815 XVECEXP (newpat, 0, --total_sets) = i2pat;
2816 else
2817 /* See comment where i2pat is assigned. */
2818 XVECEXP (newpat, 0, --total_sets)
2819 = subst (i2pat, i1dest, i1src, 0, 0);
2823 /* We come here when we are replacing a destination in I2 with the
2824 destination of I3. */
2825 validate_replacement:
2827 /* Note which hard regs this insn has as inputs. */
2828 mark_used_regs_combine (newpat);
2830 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2831 consider splitting this pattern, we might need these clobbers. */
2832 if (i1 && GET_CODE (newpat) == PARALLEL
2833 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2835 int len = XVECLEN (newpat, 0);
2837 newpat_vec_with_clobbers = rtvec_alloc (len);
2838 for (i = 0; i < len; i++)
2839 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2842 /* Is the result of combination a valid instruction? */
2843 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2845 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2846 the second SET's destination is a register that is unused and isn't
2847 marked as an instruction that might trap in an EH region. In that case,
2848 we just need the first SET. This can occur when simplifying a divmod
2849 insn. We *must* test for this case here because the code below that
2850 splits two independent SETs doesn't handle this case correctly when it
2851 updates the register status.
2853 It's pointless doing this if we originally had two sets, one from
2854 i3, and one from i2. Combining then splitting the parallel results
2855 in the original i2 again plus an invalid insn (which we delete).
2856 The net effect is only to move instructions around, which makes
2857 debug info less accurate.
2859 Also check the case where the first SET's destination is unused.
2860 That would not cause incorrect code, but does cause an unneeded
2861 insn to remain. */
2863 if (insn_code_number < 0
2864 && !(added_sets_2 && i1 == 0)
2865 && GET_CODE (newpat) == PARALLEL
2866 && XVECLEN (newpat, 0) == 2
2867 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2868 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2869 && asm_noperands (newpat) < 0)
2871 rtx set0 = XVECEXP (newpat, 0, 0);
2872 rtx set1 = XVECEXP (newpat, 0, 1);
2873 rtx note;
2875 if (((REG_P (SET_DEST (set1))
2876 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2877 || (GET_CODE (SET_DEST (set1)) == SUBREG
2878 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2879 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2880 || INTVAL (XEXP (note, 0)) <= 0)
2881 && ! side_effects_p (SET_SRC (set1)))
2883 newpat = set0;
2884 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2887 else if (((REG_P (SET_DEST (set0))
2888 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2889 || (GET_CODE (SET_DEST (set0)) == SUBREG
2890 && find_reg_note (i3, REG_UNUSED,
2891 SUBREG_REG (SET_DEST (set0)))))
2892 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2893 || INTVAL (XEXP (note, 0)) <= 0)
2894 && ! side_effects_p (SET_SRC (set0)))
2896 newpat = set1;
2897 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2899 if (insn_code_number >= 0)
2900 changed_i3_dest = 1;
2904 /* If we were combining three insns and the result is a simple SET
2905 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2906 insns. There are two ways to do this. It can be split using a
2907 machine-specific method (like when you have an addition of a large
2908 constant) or by combine in the function find_split_point. */
2910 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2911 && asm_noperands (newpat) < 0)
2913 rtx parallel, m_split, *split;
2915 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2916 use I2DEST as a scratch register will help. In the latter case,
2917 convert I2DEST to the mode of the source of NEWPAT if we can. */
2919 m_split = combine_split_insns (newpat, i3);
2921 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2922 inputs of NEWPAT. */
2924 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2925 possible to try that as a scratch reg. This would require adding
2926 more code to make it work though. */
2928 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2930 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2932 /* First try to split using the original register as a
2933 scratch register. */
2934 parallel = gen_rtx_PARALLEL (VOIDmode,
2935 gen_rtvec (2, newpat,
2936 gen_rtx_CLOBBER (VOIDmode,
2937 i2dest)));
2938 m_split = combine_split_insns (parallel, i3);
2940 /* If that didn't work, try changing the mode of I2DEST if
2941 we can. */
2942 if (m_split == 0
2943 && new_mode != GET_MODE (i2dest)
2944 && new_mode != VOIDmode
2945 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2947 enum machine_mode old_mode = GET_MODE (i2dest);
2948 rtx ni2dest;
2950 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2951 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2952 else
2954 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2955 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2958 parallel = (gen_rtx_PARALLEL
2959 (VOIDmode,
2960 gen_rtvec (2, newpat,
2961 gen_rtx_CLOBBER (VOIDmode,
2962 ni2dest))));
2963 m_split = combine_split_insns (parallel, i3);
2965 if (m_split == 0
2966 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2968 struct undo *buf;
2970 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
2971 buf = undobuf.undos;
2972 undobuf.undos = buf->next;
2973 buf->next = undobuf.frees;
2974 undobuf.frees = buf;
2979 /* If recog_for_combine has discarded clobbers, try to use them
2980 again for the split. */
2981 if (m_split == 0 && newpat_vec_with_clobbers)
2983 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
2984 m_split = combine_split_insns (parallel, i3);
2987 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2989 m_split = PATTERN (m_split);
2990 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2991 if (insn_code_number >= 0)
2992 newpat = m_split;
2994 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2995 && (next_real_insn (i2) == i3
2996 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
2998 rtx i2set, i3set;
2999 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3000 newi2pat = PATTERN (m_split);
3002 i3set = single_set (NEXT_INSN (m_split));
3003 i2set = single_set (m_split);
3005 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3007 /* If I2 or I3 has multiple SETs, we won't know how to track
3008 register status, so don't use these insns. If I2's destination
3009 is used between I2 and I3, we also can't use these insns. */
3011 if (i2_code_number >= 0 && i2set && i3set
3012 && (next_real_insn (i2) == i3
3013 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3014 insn_code_number = recog_for_combine (&newi3pat, i3,
3015 &new_i3_notes);
3016 if (insn_code_number >= 0)
3017 newpat = newi3pat;
3019 /* It is possible that both insns now set the destination of I3.
3020 If so, we must show an extra use of it. */
3022 if (insn_code_number >= 0)
3024 rtx new_i3_dest = SET_DEST (i3set);
3025 rtx new_i2_dest = SET_DEST (i2set);
3027 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3028 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3029 || GET_CODE (new_i3_dest) == SUBREG)
3030 new_i3_dest = XEXP (new_i3_dest, 0);
3032 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3033 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3034 || GET_CODE (new_i2_dest) == SUBREG)
3035 new_i2_dest = XEXP (new_i2_dest, 0);
3037 if (REG_P (new_i3_dest)
3038 && REG_P (new_i2_dest)
3039 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3040 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3044 /* If we can split it and use I2DEST, go ahead and see if that
3045 helps things be recognized. Verify that none of the registers
3046 are set between I2 and I3. */
3047 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3048 #ifdef HAVE_cc0
3049 && REG_P (i2dest)
3050 #endif
3051 /* We need I2DEST in the proper mode. If it is a hard register
3052 or the only use of a pseudo, we can change its mode.
3053 Make sure we don't change a hard register to have a mode that
3054 isn't valid for it, or change the number of registers. */
3055 && (GET_MODE (*split) == GET_MODE (i2dest)
3056 || GET_MODE (*split) == VOIDmode
3057 || can_change_dest_mode (i2dest, added_sets_2,
3058 GET_MODE (*split)))
3059 && (next_real_insn (i2) == i3
3060 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3061 /* We can't overwrite I2DEST if its value is still used by
3062 NEWPAT. */
3063 && ! reg_referenced_p (i2dest, newpat))
3065 rtx newdest = i2dest;
3066 enum rtx_code split_code = GET_CODE (*split);
3067 enum machine_mode split_mode = GET_MODE (*split);
3068 bool subst_done = false;
3069 newi2pat = NULL_RTX;
3071 /* Get NEWDEST as a register in the proper mode. We have already
3072 validated that we can do this. */
3073 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3075 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3076 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3077 else
3079 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3080 newdest = regno_reg_rtx[REGNO (i2dest)];
3084 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3085 an ASHIFT. This can occur if it was inside a PLUS and hence
3086 appeared to be a memory address. This is a kludge. */
3087 if (split_code == MULT
3088 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3089 && INTVAL (XEXP (*split, 1)) > 0
3090 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3092 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3093 XEXP (*split, 0), GEN_INT (i)));
3094 /* Update split_code because we may not have a multiply
3095 anymore. */
3096 split_code = GET_CODE (*split);
3099 #ifdef INSN_SCHEDULING
3100 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3101 be written as a ZERO_EXTEND. */
3102 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3104 #ifdef LOAD_EXTEND_OP
3105 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3106 what it really is. */
3107 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3108 == SIGN_EXTEND)
3109 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3110 SUBREG_REG (*split)));
3111 else
3112 #endif
3113 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3114 SUBREG_REG (*split)));
3116 #endif
3118 /* Attempt to split binary operators using arithmetic identities. */
3119 if (BINARY_P (SET_SRC (newpat))
3120 && split_mode == GET_MODE (SET_SRC (newpat))
3121 && ! side_effects_p (SET_SRC (newpat)))
3123 rtx setsrc = SET_SRC (newpat);
3124 enum machine_mode mode = GET_MODE (setsrc);
3125 enum rtx_code code = GET_CODE (setsrc);
3126 rtx src_op0 = XEXP (setsrc, 0);
3127 rtx src_op1 = XEXP (setsrc, 1);
3129 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3130 if (rtx_equal_p (src_op0, src_op1))
3132 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3133 SUBST (XEXP (setsrc, 0), newdest);
3134 SUBST (XEXP (setsrc, 1), newdest);
3135 subst_done = true;
3137 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3138 else if ((code == PLUS || code == MULT)
3139 && GET_CODE (src_op0) == code
3140 && GET_CODE (XEXP (src_op0, 0)) == code
3141 && (INTEGRAL_MODE_P (mode)
3142 || (FLOAT_MODE_P (mode)
3143 && flag_unsafe_math_optimizations)))
3145 rtx p = XEXP (XEXP (src_op0, 0), 0);
3146 rtx q = XEXP (XEXP (src_op0, 0), 1);
3147 rtx r = XEXP (src_op0, 1);
3148 rtx s = src_op1;
3150 /* Split both "((X op Y) op X) op Y" and
3151 "((X op Y) op Y) op X" as "T op T" where T is
3152 "X op Y". */
3153 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3154 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3156 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3157 XEXP (src_op0, 0));
3158 SUBST (XEXP (setsrc, 0), newdest);
3159 SUBST (XEXP (setsrc, 1), newdest);
3160 subst_done = true;
3162 /* Split "((X op X) op Y) op Y)" as "T op T" where
3163 T is "X op Y". */
3164 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3166 rtx tmp = simplify_gen_binary (code, mode, p, r);
3167 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3168 SUBST (XEXP (setsrc, 0), newdest);
3169 SUBST (XEXP (setsrc, 1), newdest);
3170 subst_done = true;
3175 if (!subst_done)
3177 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3178 SUBST (*split, newdest);
3181 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3183 /* recog_for_combine might have added CLOBBERs to newi2pat.
3184 Make sure NEWPAT does not depend on the clobbered regs. */
3185 if (GET_CODE (newi2pat) == PARALLEL)
3186 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3187 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3189 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3190 if (reg_overlap_mentioned_p (reg, newpat))
3192 undo_all ();
3193 return 0;
3197 /* If the split point was a MULT and we didn't have one before,
3198 don't use one now. */
3199 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3200 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3204 /* Check for a case where we loaded from memory in a narrow mode and
3205 then sign extended it, but we need both registers. In that case,
3206 we have a PARALLEL with both loads from the same memory location.
3207 We can split this into a load from memory followed by a register-register
3208 copy. This saves at least one insn, more if register allocation can
3209 eliminate the copy.
3211 We cannot do this if the destination of the first assignment is a
3212 condition code register or cc0. We eliminate this case by making sure
3213 the SET_DEST and SET_SRC have the same mode.
3215 We cannot do this if the destination of the second assignment is
3216 a register that we have already assumed is zero-extended. Similarly
3217 for a SUBREG of such a register. */
3219 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3220 && GET_CODE (newpat) == PARALLEL
3221 && XVECLEN (newpat, 0) == 2
3222 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3223 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3224 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3225 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3226 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3227 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3228 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3229 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3230 DF_INSN_LUID (i2))
3231 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3232 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3233 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3234 (REG_P (temp)
3235 && VEC_index (reg_stat_type, reg_stat,
3236 REGNO (temp))->nonzero_bits != 0
3237 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3238 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3239 && (VEC_index (reg_stat_type, reg_stat,
3240 REGNO (temp))->nonzero_bits
3241 != GET_MODE_MASK (word_mode))))
3242 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3243 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3244 (REG_P (temp)
3245 && VEC_index (reg_stat_type, reg_stat,
3246 REGNO (temp))->nonzero_bits != 0
3247 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3248 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3249 && (VEC_index (reg_stat_type, reg_stat,
3250 REGNO (temp))->nonzero_bits
3251 != GET_MODE_MASK (word_mode)))))
3252 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3253 SET_SRC (XVECEXP (newpat, 0, 1)))
3254 && ! find_reg_note (i3, REG_UNUSED,
3255 SET_DEST (XVECEXP (newpat, 0, 0))))
3257 rtx ni2dest;
3259 newi2pat = XVECEXP (newpat, 0, 0);
3260 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3261 newpat = XVECEXP (newpat, 0, 1);
3262 SUBST (SET_SRC (newpat),
3263 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3264 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3266 if (i2_code_number >= 0)
3267 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3269 if (insn_code_number >= 0)
3270 swap_i2i3 = 1;
3273 /* Similarly, check for a case where we have a PARALLEL of two independent
3274 SETs but we started with three insns. In this case, we can do the sets
3275 as two separate insns. This case occurs when some SET allows two
3276 other insns to combine, but the destination of that SET is still live. */
3278 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3279 && GET_CODE (newpat) == PARALLEL
3280 && XVECLEN (newpat, 0) == 2
3281 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3282 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3283 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3284 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3285 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3286 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3287 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3288 DF_INSN_LUID (i2))
3289 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3290 XVECEXP (newpat, 0, 0))
3291 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3292 XVECEXP (newpat, 0, 1))
3293 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3294 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3295 #ifdef HAVE_cc0
3296 /* We cannot split the parallel into two sets if both sets
3297 reference cc0. */
3298 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3299 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3300 #endif
3303 /* Normally, it doesn't matter which of the two is done first,
3304 but it does if one references cc0. In that case, it has to
3305 be first. */
3306 #ifdef HAVE_cc0
3307 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3309 newi2pat = XVECEXP (newpat, 0, 0);
3310 newpat = XVECEXP (newpat, 0, 1);
3312 else
3313 #endif
3315 newi2pat = XVECEXP (newpat, 0, 1);
3316 newpat = XVECEXP (newpat, 0, 0);
3319 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3321 if (i2_code_number >= 0)
3322 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3325 /* If it still isn't recognized, fail and change things back the way they
3326 were. */
3327 if ((insn_code_number < 0
3328 /* Is the result a reasonable ASM_OPERANDS? */
3329 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3331 undo_all ();
3332 return 0;
3335 /* If we had to change another insn, make sure it is valid also. */
3336 if (undobuf.other_insn)
3338 CLEAR_HARD_REG_SET (newpat_used_regs);
3340 other_pat = PATTERN (undobuf.other_insn);
3341 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3342 &new_other_notes);
3344 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3346 undo_all ();
3347 return 0;
3351 #ifdef HAVE_cc0
3352 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3353 they are adjacent to each other or not. */
3355 rtx p = prev_nonnote_insn (i3);
3356 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3357 && sets_cc0_p (newi2pat))
3359 undo_all ();
3360 return 0;
3363 #endif
3365 /* Only allow this combination if insn_rtx_costs reports that the
3366 replacement instructions are cheaper than the originals. */
3367 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3369 undo_all ();
3370 return 0;
3373 /* If we will be able to accept this, we have made a
3374 change to the destination of I3. This requires us to
3375 do a few adjustments. */
3377 if (changed_i3_dest)
3379 PATTERN (i3) = newpat;
3380 adjust_for_new_dest (i3);
3383 /* We now know that we can do this combination. Merge the insns and
3384 update the status of registers and LOG_LINKS. */
3386 if (undobuf.other_insn)
3388 rtx note, next;
3390 PATTERN (undobuf.other_insn) = other_pat;
3392 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3393 are still valid. Then add any non-duplicate notes added by
3394 recog_for_combine. */
3395 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3397 next = XEXP (note, 1);
3399 if (REG_NOTE_KIND (note) == REG_UNUSED
3400 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3401 remove_note (undobuf.other_insn, note);
3404 distribute_notes (new_other_notes, undobuf.other_insn,
3405 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3408 if (swap_i2i3)
3410 rtx insn;
3411 rtx link;
3412 rtx ni2dest;
3414 /* I3 now uses what used to be its destination and which is now
3415 I2's destination. This requires us to do a few adjustments. */
3416 PATTERN (i3) = newpat;
3417 adjust_for_new_dest (i3);
3419 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3420 so we still will.
3422 However, some later insn might be using I2's dest and have
3423 a LOG_LINK pointing at I3. We must remove this link.
3424 The simplest way to remove the link is to point it at I1,
3425 which we know will be a NOTE. */
3427 /* newi2pat is usually a SET here; however, recog_for_combine might
3428 have added some clobbers. */
3429 if (GET_CODE (newi2pat) == PARALLEL)
3430 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3431 else
3432 ni2dest = SET_DEST (newi2pat);
3434 for (insn = NEXT_INSN (i3);
3435 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3436 || insn != BB_HEAD (this_basic_block->next_bb));
3437 insn = NEXT_INSN (insn))
3439 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3441 for (link = LOG_LINKS (insn); link;
3442 link = XEXP (link, 1))
3443 if (XEXP (link, 0) == i3)
3444 XEXP (link, 0) = i1;
3446 break;
3452 rtx i3notes, i2notes, i1notes = 0;
3453 rtx i3links, i2links, i1links = 0;
3454 rtx midnotes = 0;
3455 unsigned int regno;
3456 /* Compute which registers we expect to eliminate. newi2pat may be setting
3457 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3458 same as i3dest, in which case newi2pat may be setting i1dest. */
3459 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3460 || i2dest_in_i2src || i2dest_in_i1src
3461 || !i2dest_killed
3462 ? 0 : i2dest);
3463 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3464 || (newi2pat && reg_set_p (i1dest, newi2pat))
3465 || !i1dest_killed
3466 ? 0 : i1dest);
3468 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3469 clear them. */
3470 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3471 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3472 if (i1)
3473 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3475 /* Ensure that we do not have something that should not be shared but
3476 occurs multiple times in the new insns. Check this by first
3477 resetting all the `used' flags and then copying anything is shared. */
3479 reset_used_flags (i3notes);
3480 reset_used_flags (i2notes);
3481 reset_used_flags (i1notes);
3482 reset_used_flags (newpat);
3483 reset_used_flags (newi2pat);
3484 if (undobuf.other_insn)
3485 reset_used_flags (PATTERN (undobuf.other_insn));
3487 i3notes = copy_rtx_if_shared (i3notes);
3488 i2notes = copy_rtx_if_shared (i2notes);
3489 i1notes = copy_rtx_if_shared (i1notes);
3490 newpat = copy_rtx_if_shared (newpat);
3491 newi2pat = copy_rtx_if_shared (newi2pat);
3492 if (undobuf.other_insn)
3493 reset_used_flags (PATTERN (undobuf.other_insn));
3495 INSN_CODE (i3) = insn_code_number;
3496 PATTERN (i3) = newpat;
3498 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3500 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3502 reset_used_flags (call_usage);
3503 call_usage = copy_rtx (call_usage);
3505 if (substed_i2)
3506 replace_rtx (call_usage, i2dest, i2src);
3508 if (substed_i1)
3509 replace_rtx (call_usage, i1dest, i1src);
3511 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3514 if (undobuf.other_insn)
3515 INSN_CODE (undobuf.other_insn) = other_code_number;
3517 /* We had one special case above where I2 had more than one set and
3518 we replaced a destination of one of those sets with the destination
3519 of I3. In that case, we have to update LOG_LINKS of insns later
3520 in this basic block. Note that this (expensive) case is rare.
3522 Also, in this case, we must pretend that all REG_NOTEs for I2
3523 actually came from I3, so that REG_UNUSED notes from I2 will be
3524 properly handled. */
3526 if (i3_subst_into_i2)
3528 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3529 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3530 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3531 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3532 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3533 && ! find_reg_note (i2, REG_UNUSED,
3534 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3535 for (temp = NEXT_INSN (i2);
3536 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3537 || BB_HEAD (this_basic_block) != temp);
3538 temp = NEXT_INSN (temp))
3539 if (temp != i3 && INSN_P (temp))
3540 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3541 if (XEXP (link, 0) == i2)
3542 XEXP (link, 0) = i3;
3544 if (i3notes)
3546 rtx link = i3notes;
3547 while (XEXP (link, 1))
3548 link = XEXP (link, 1);
3549 XEXP (link, 1) = i2notes;
3551 else
3552 i3notes = i2notes;
3553 i2notes = 0;
3556 LOG_LINKS (i3) = 0;
3557 REG_NOTES (i3) = 0;
3558 LOG_LINKS (i2) = 0;
3559 REG_NOTES (i2) = 0;
3561 if (newi2pat)
3563 INSN_CODE (i2) = i2_code_number;
3564 PATTERN (i2) = newi2pat;
3566 else
3567 SET_INSN_DELETED (i2);
3569 if (i1)
3571 LOG_LINKS (i1) = 0;
3572 REG_NOTES (i1) = 0;
3573 SET_INSN_DELETED (i1);
3576 /* Get death notes for everything that is now used in either I3 or
3577 I2 and used to die in a previous insn. If we built two new
3578 patterns, move from I1 to I2 then I2 to I3 so that we get the
3579 proper movement on registers that I2 modifies. */
3581 if (newi2pat)
3583 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3584 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3586 else
3587 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3588 i3, &midnotes);
3590 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3591 if (i3notes)
3592 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3593 elim_i2, elim_i1);
3594 if (i2notes)
3595 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3596 elim_i2, elim_i1);
3597 if (i1notes)
3598 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3599 elim_i2, elim_i1);
3600 if (midnotes)
3601 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3602 elim_i2, elim_i1);
3604 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3605 know these are REG_UNUSED and want them to go to the desired insn,
3606 so we always pass it as i3. */
3608 if (newi2pat && new_i2_notes)
3609 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3611 if (new_i3_notes)
3612 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3614 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3615 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3616 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3617 in that case, it might delete I2. Similarly for I2 and I1.
3618 Show an additional death due to the REG_DEAD note we make here. If
3619 we discard it in distribute_notes, we will decrement it again. */
3621 if (i3dest_killed)
3623 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3624 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3625 NULL_RTX),
3626 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3627 else
3628 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3629 NULL_RTX),
3630 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3631 elim_i2, elim_i1);
3634 if (i2dest_in_i2src)
3636 if (newi2pat && reg_set_p (i2dest, newi2pat))
3637 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3638 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3639 else
3640 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3641 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3642 NULL_RTX, NULL_RTX);
3645 if (i1dest_in_i1src)
3647 if (newi2pat && reg_set_p (i1dest, newi2pat))
3648 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3649 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3650 else
3651 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3652 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3653 NULL_RTX, NULL_RTX);
3656 distribute_links (i3links);
3657 distribute_links (i2links);
3658 distribute_links (i1links);
3660 if (REG_P (i2dest))
3662 rtx link;
3663 rtx i2_insn = 0, i2_val = 0, set;
3665 /* The insn that used to set this register doesn't exist, and
3666 this life of the register may not exist either. See if one of
3667 I3's links points to an insn that sets I2DEST. If it does,
3668 that is now the last known value for I2DEST. If we don't update
3669 this and I2 set the register to a value that depended on its old
3670 contents, we will get confused. If this insn is used, thing
3671 will be set correctly in combine_instructions. */
3673 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3674 if ((set = single_set (XEXP (link, 0))) != 0
3675 && rtx_equal_p (i2dest, SET_DEST (set)))
3676 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3678 record_value_for_reg (i2dest, i2_insn, i2_val);
3680 /* If the reg formerly set in I2 died only once and that was in I3,
3681 zero its use count so it won't make `reload' do any work. */
3682 if (! added_sets_2
3683 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3684 && ! i2dest_in_i2src)
3686 regno = REGNO (i2dest);
3687 INC_REG_N_SETS (regno, -1);
3691 if (i1 && REG_P (i1dest))
3693 rtx link;
3694 rtx i1_insn = 0, i1_val = 0, set;
3696 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3697 if ((set = single_set (XEXP (link, 0))) != 0
3698 && rtx_equal_p (i1dest, SET_DEST (set)))
3699 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3701 record_value_for_reg (i1dest, i1_insn, i1_val);
3703 regno = REGNO (i1dest);
3704 if (! added_sets_1 && ! i1dest_in_i1src)
3705 INC_REG_N_SETS (regno, -1);
3708 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3709 been made to this insn. The order of
3710 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3711 can affect nonzero_bits of newpat */
3712 if (newi2pat)
3713 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3714 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3716 /* Set new_direct_jump_p if a new return or simple jump instruction
3717 has been created.
3719 If I3 is now an unconditional jump, ensure that it has a
3720 BARRIER following it since it may have initially been a
3721 conditional jump. It may also be the last nonnote insn. */
3723 if (returnjump_p (i3) || any_uncondjump_p (i3))
3725 *new_direct_jump_p = 1;
3726 mark_jump_label (PATTERN (i3), i3, 0);
3728 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3729 || !BARRIER_P (temp))
3730 emit_barrier_after (i3);
3733 if (undobuf.other_insn != NULL_RTX
3734 && (returnjump_p (undobuf.other_insn)
3735 || any_uncondjump_p (undobuf.other_insn)))
3737 *new_direct_jump_p = 1;
3739 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3740 || !BARRIER_P (temp))
3741 emit_barrier_after (undobuf.other_insn);
3744 /* An NOOP jump does not need barrier, but it does need cleaning up
3745 of CFG. */
3746 if (GET_CODE (newpat) == SET
3747 && SET_SRC (newpat) == pc_rtx
3748 && SET_DEST (newpat) == pc_rtx)
3749 *new_direct_jump_p = 1;
3752 if (undobuf.other_insn != NULL_RTX)
3754 if (dump_file)
3756 fprintf (dump_file, "modifying other_insn ");
3757 dump_insn_slim (dump_file, undobuf.other_insn);
3759 df_insn_rescan (undobuf.other_insn);
3762 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3764 if (dump_file)
3766 fprintf (dump_file, "modifying insn i1 ");
3767 dump_insn_slim (dump_file, i1);
3769 df_insn_rescan (i1);
3772 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3774 if (dump_file)
3776 fprintf (dump_file, "modifying insn i2 ");
3777 dump_insn_slim (dump_file, i2);
3779 df_insn_rescan (i2);
3782 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3784 if (dump_file)
3786 fprintf (dump_file, "modifying insn i3 ");
3787 dump_insn_slim (dump_file, i3);
3789 df_insn_rescan (i3);
3792 combine_successes++;
3793 undo_commit ();
3795 if (added_links_insn
3796 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3797 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3798 return added_links_insn;
3799 else
3800 return newi2pat ? i2 : i3;
3803 /* Undo all the modifications recorded in undobuf. */
3805 static void
3806 undo_all (void)
3808 struct undo *undo, *next;
3810 for (undo = undobuf.undos; undo; undo = next)
3812 next = undo->next;
3813 switch (undo->kind)
3815 case UNDO_RTX:
3816 *undo->where.r = undo->old_contents.r;
3817 break;
3818 case UNDO_INT:
3819 *undo->where.i = undo->old_contents.i;
3820 break;
3821 case UNDO_MODE:
3822 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3823 break;
3824 default:
3825 gcc_unreachable ();
3828 undo->next = undobuf.frees;
3829 undobuf.frees = undo;
3832 undobuf.undos = 0;
3835 /* We've committed to accepting the changes we made. Move all
3836 of the undos to the free list. */
3838 static void
3839 undo_commit (void)
3841 struct undo *undo, *next;
3843 for (undo = undobuf.undos; undo; undo = next)
3845 next = undo->next;
3846 undo->next = undobuf.frees;
3847 undobuf.frees = undo;
3849 undobuf.undos = 0;
3852 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3853 where we have an arithmetic expression and return that point. LOC will
3854 be inside INSN.
3856 try_combine will call this function to see if an insn can be split into
3857 two insns. */
3859 static rtx *
3860 find_split_point (rtx *loc, rtx insn)
3862 rtx x = *loc;
3863 enum rtx_code code = GET_CODE (x);
3864 rtx *split;
3865 unsigned HOST_WIDE_INT len = 0;
3866 HOST_WIDE_INT pos = 0;
3867 int unsignedp = 0;
3868 rtx inner = NULL_RTX;
3870 /* First special-case some codes. */
3871 switch (code)
3873 case SUBREG:
3874 #ifdef INSN_SCHEDULING
3875 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3876 point. */
3877 if (MEM_P (SUBREG_REG (x)))
3878 return loc;
3879 #endif
3880 return find_split_point (&SUBREG_REG (x), insn);
3882 case MEM:
3883 #ifdef HAVE_lo_sum
3884 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3885 using LO_SUM and HIGH. */
3886 if (GET_CODE (XEXP (x, 0)) == CONST
3887 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3889 SUBST (XEXP (x, 0),
3890 gen_rtx_LO_SUM (Pmode,
3891 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3892 XEXP (x, 0)));
3893 return &XEXP (XEXP (x, 0), 0);
3895 #endif
3897 /* If we have a PLUS whose second operand is a constant and the
3898 address is not valid, perhaps will can split it up using
3899 the machine-specific way to split large constants. We use
3900 the first pseudo-reg (one of the virtual regs) as a placeholder;
3901 it will not remain in the result. */
3902 if (GET_CODE (XEXP (x, 0)) == PLUS
3903 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3904 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3906 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3907 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3908 XEXP (x, 0)),
3909 subst_insn);
3911 /* This should have produced two insns, each of which sets our
3912 placeholder. If the source of the second is a valid address,
3913 we can make put both sources together and make a split point
3914 in the middle. */
3916 if (seq
3917 && NEXT_INSN (seq) != NULL_RTX
3918 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3919 && NONJUMP_INSN_P (seq)
3920 && GET_CODE (PATTERN (seq)) == SET
3921 && SET_DEST (PATTERN (seq)) == reg
3922 && ! reg_mentioned_p (reg,
3923 SET_SRC (PATTERN (seq)))
3924 && NONJUMP_INSN_P (NEXT_INSN (seq))
3925 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3926 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3927 && memory_address_p (GET_MODE (x),
3928 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3930 rtx src1 = SET_SRC (PATTERN (seq));
3931 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3933 /* Replace the placeholder in SRC2 with SRC1. If we can
3934 find where in SRC2 it was placed, that can become our
3935 split point and we can replace this address with SRC2.
3936 Just try two obvious places. */
3938 src2 = replace_rtx (src2, reg, src1);
3939 split = 0;
3940 if (XEXP (src2, 0) == src1)
3941 split = &XEXP (src2, 0);
3942 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3943 && XEXP (XEXP (src2, 0), 0) == src1)
3944 split = &XEXP (XEXP (src2, 0), 0);
3946 if (split)
3948 SUBST (XEXP (x, 0), src2);
3949 return split;
3953 /* If that didn't work, perhaps the first operand is complex and
3954 needs to be computed separately, so make a split point there.
3955 This will occur on machines that just support REG + CONST
3956 and have a constant moved through some previous computation. */
3958 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3961 return &XEXP (XEXP (x, 0), 0);
3964 /* If we have a PLUS whose first operand is complex, try computing it
3965 separately by making a split there. */
3966 if (GET_CODE (XEXP (x, 0)) == PLUS
3967 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3968 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3969 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3970 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3971 return &XEXP (XEXP (x, 0), 0);
3972 break;
3974 case SET:
3975 #ifdef HAVE_cc0
3976 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3977 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3978 we need to put the operand into a register. So split at that
3979 point. */
3981 if (SET_DEST (x) == cc0_rtx
3982 && GET_CODE (SET_SRC (x)) != COMPARE
3983 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3984 && !OBJECT_P (SET_SRC (x))
3985 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3986 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3987 return &SET_SRC (x);
3988 #endif
3990 /* See if we can split SET_SRC as it stands. */
3991 split = find_split_point (&SET_SRC (x), insn);
3992 if (split && split != &SET_SRC (x))
3993 return split;
3995 /* See if we can split SET_DEST as it stands. */
3996 split = find_split_point (&SET_DEST (x), insn);
3997 if (split && split != &SET_DEST (x))
3998 return split;
4000 /* See if this is a bitfield assignment with everything constant. If
4001 so, this is an IOR of an AND, so split it into that. */
4002 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4003 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4004 <= HOST_BITS_PER_WIDE_INT)
4005 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4006 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4007 && GET_CODE (SET_SRC (x)) == CONST_INT
4008 && ((INTVAL (XEXP (SET_DEST (x), 1))
4009 + INTVAL (XEXP (SET_DEST (x), 2)))
4010 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4011 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4013 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4014 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4015 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4016 rtx dest = XEXP (SET_DEST (x), 0);
4017 enum machine_mode mode = GET_MODE (dest);
4018 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4019 rtx or_mask;
4021 if (BITS_BIG_ENDIAN)
4022 pos = GET_MODE_BITSIZE (mode) - len - pos;
4024 or_mask = gen_int_mode (src << pos, mode);
4025 if (src == mask)
4026 SUBST (SET_SRC (x),
4027 simplify_gen_binary (IOR, mode, dest, or_mask));
4028 else
4030 rtx negmask = gen_int_mode (~(mask << pos), mode);
4031 SUBST (SET_SRC (x),
4032 simplify_gen_binary (IOR, mode,
4033 simplify_gen_binary (AND, mode,
4034 dest, negmask),
4035 or_mask));
4038 SUBST (SET_DEST (x), dest);
4040 split = find_split_point (&SET_SRC (x), insn);
4041 if (split && split != &SET_SRC (x))
4042 return split;
4045 /* Otherwise, see if this is an operation that we can split into two.
4046 If so, try to split that. */
4047 code = GET_CODE (SET_SRC (x));
4049 switch (code)
4051 case AND:
4052 /* If we are AND'ing with a large constant that is only a single
4053 bit and the result is only being used in a context where we
4054 need to know if it is zero or nonzero, replace it with a bit
4055 extraction. This will avoid the large constant, which might
4056 have taken more than one insn to make. If the constant were
4057 not a valid argument to the AND but took only one insn to make,
4058 this is no worse, but if it took more than one insn, it will
4059 be better. */
4061 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4062 && REG_P (XEXP (SET_SRC (x), 0))
4063 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4064 && REG_P (SET_DEST (x))
4065 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4066 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4067 && XEXP (*split, 0) == SET_DEST (x)
4068 && XEXP (*split, 1) == const0_rtx)
4070 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4071 XEXP (SET_SRC (x), 0),
4072 pos, NULL_RTX, 1, 1, 0, 0);
4073 if (extraction != 0)
4075 SUBST (SET_SRC (x), extraction);
4076 return find_split_point (loc, insn);
4079 break;
4081 case NE:
4082 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4083 is known to be on, this can be converted into a NEG of a shift. */
4084 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4085 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4086 && 1 <= (pos = exact_log2
4087 (nonzero_bits (XEXP (SET_SRC (x), 0),
4088 GET_MODE (XEXP (SET_SRC (x), 0))))))
4090 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4092 SUBST (SET_SRC (x),
4093 gen_rtx_NEG (mode,
4094 gen_rtx_LSHIFTRT (mode,
4095 XEXP (SET_SRC (x), 0),
4096 GEN_INT (pos))));
4098 split = find_split_point (&SET_SRC (x), insn);
4099 if (split && split != &SET_SRC (x))
4100 return split;
4102 break;
4104 case SIGN_EXTEND:
4105 inner = XEXP (SET_SRC (x), 0);
4107 /* We can't optimize if either mode is a partial integer
4108 mode as we don't know how many bits are significant
4109 in those modes. */
4110 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4111 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4112 break;
4114 pos = 0;
4115 len = GET_MODE_BITSIZE (GET_MODE (inner));
4116 unsignedp = 0;
4117 break;
4119 case SIGN_EXTRACT:
4120 case ZERO_EXTRACT:
4121 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4122 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4124 inner = XEXP (SET_SRC (x), 0);
4125 len = INTVAL (XEXP (SET_SRC (x), 1));
4126 pos = INTVAL (XEXP (SET_SRC (x), 2));
4128 if (BITS_BIG_ENDIAN)
4129 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4130 unsignedp = (code == ZERO_EXTRACT);
4132 break;
4134 default:
4135 break;
4138 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4140 enum machine_mode mode = GET_MODE (SET_SRC (x));
4142 /* For unsigned, we have a choice of a shift followed by an
4143 AND or two shifts. Use two shifts for field sizes where the
4144 constant might be too large. We assume here that we can
4145 always at least get 8-bit constants in an AND insn, which is
4146 true for every current RISC. */
4148 if (unsignedp && len <= 8)
4150 SUBST (SET_SRC (x),
4151 gen_rtx_AND (mode,
4152 gen_rtx_LSHIFTRT
4153 (mode, gen_lowpart (mode, inner),
4154 GEN_INT (pos)),
4155 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4157 split = find_split_point (&SET_SRC (x), insn);
4158 if (split && split != &SET_SRC (x))
4159 return split;
4161 else
4163 SUBST (SET_SRC (x),
4164 gen_rtx_fmt_ee
4165 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4166 gen_rtx_ASHIFT (mode,
4167 gen_lowpart (mode, inner),
4168 GEN_INT (GET_MODE_BITSIZE (mode)
4169 - len - pos)),
4170 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4172 split = find_split_point (&SET_SRC (x), insn);
4173 if (split && split != &SET_SRC (x))
4174 return split;
4178 /* See if this is a simple operation with a constant as the second
4179 operand. It might be that this constant is out of range and hence
4180 could be used as a split point. */
4181 if (BINARY_P (SET_SRC (x))
4182 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4183 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4184 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4185 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4186 return &XEXP (SET_SRC (x), 1);
4188 /* Finally, see if this is a simple operation with its first operand
4189 not in a register. The operation might require this operand in a
4190 register, so return it as a split point. We can always do this
4191 because if the first operand were another operation, we would have
4192 already found it as a split point. */
4193 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4194 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4195 return &XEXP (SET_SRC (x), 0);
4197 return 0;
4199 case AND:
4200 case IOR:
4201 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4202 it is better to write this as (not (ior A B)) so we can split it.
4203 Similarly for IOR. */
4204 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4206 SUBST (*loc,
4207 gen_rtx_NOT (GET_MODE (x),
4208 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4209 GET_MODE (x),
4210 XEXP (XEXP (x, 0), 0),
4211 XEXP (XEXP (x, 1), 0))));
4212 return find_split_point (loc, insn);
4215 /* Many RISC machines have a large set of logical insns. If the
4216 second operand is a NOT, put it first so we will try to split the
4217 other operand first. */
4218 if (GET_CODE (XEXP (x, 1)) == NOT)
4220 rtx tem = XEXP (x, 0);
4221 SUBST (XEXP (x, 0), XEXP (x, 1));
4222 SUBST (XEXP (x, 1), tem);
4224 break;
4226 default:
4227 break;
4230 /* Otherwise, select our actions depending on our rtx class. */
4231 switch (GET_RTX_CLASS (code))
4233 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4234 case RTX_TERNARY:
4235 split = find_split_point (&XEXP (x, 2), insn);
4236 if (split)
4237 return split;
4238 /* ... fall through ... */
4239 case RTX_BIN_ARITH:
4240 case RTX_COMM_ARITH:
4241 case RTX_COMPARE:
4242 case RTX_COMM_COMPARE:
4243 split = find_split_point (&XEXP (x, 1), insn);
4244 if (split)
4245 return split;
4246 /* ... fall through ... */
4247 case RTX_UNARY:
4248 /* Some machines have (and (shift ...) ...) insns. If X is not
4249 an AND, but XEXP (X, 0) is, use it as our split point. */
4250 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4251 return &XEXP (x, 0);
4253 split = find_split_point (&XEXP (x, 0), insn);
4254 if (split)
4255 return split;
4256 return loc;
4258 default:
4259 /* Otherwise, we don't have a split point. */
4260 return 0;
4264 /* Throughout X, replace FROM with TO, and return the result.
4265 The result is TO if X is FROM;
4266 otherwise the result is X, but its contents may have been modified.
4267 If they were modified, a record was made in undobuf so that
4268 undo_all will (among other things) return X to its original state.
4270 If the number of changes necessary is too much to record to undo,
4271 the excess changes are not made, so the result is invalid.
4272 The changes already made can still be undone.
4273 undobuf.num_undo is incremented for such changes, so by testing that
4274 the caller can tell whether the result is valid.
4276 `n_occurrences' is incremented each time FROM is replaced.
4278 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4280 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4281 by copying if `n_occurrences' is nonzero. */
4283 static rtx
4284 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4286 enum rtx_code code = GET_CODE (x);
4287 enum machine_mode op0_mode = VOIDmode;
4288 const char *fmt;
4289 int len, i;
4290 rtx new_rtx;
4292 /* Two expressions are equal if they are identical copies of a shared
4293 RTX or if they are both registers with the same register number
4294 and mode. */
4296 #define COMBINE_RTX_EQUAL_P(X,Y) \
4297 ((X) == (Y) \
4298 || (REG_P (X) && REG_P (Y) \
4299 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4301 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4303 n_occurrences++;
4304 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4307 /* If X and FROM are the same register but different modes, they
4308 will not have been seen as equal above. However, the log links code
4309 will make a LOG_LINKS entry for that case. If we do nothing, we
4310 will try to rerecognize our original insn and, when it succeeds,
4311 we will delete the feeding insn, which is incorrect.
4313 So force this insn not to match in this (rare) case. */
4314 if (! in_dest && code == REG && REG_P (from)
4315 && reg_overlap_mentioned_p (x, from))
4316 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4318 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4319 of which may contain things that can be combined. */
4320 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4321 return x;
4323 /* It is possible to have a subexpression appear twice in the insn.
4324 Suppose that FROM is a register that appears within TO.
4325 Then, after that subexpression has been scanned once by `subst',
4326 the second time it is scanned, TO may be found. If we were
4327 to scan TO here, we would find FROM within it and create a
4328 self-referent rtl structure which is completely wrong. */
4329 if (COMBINE_RTX_EQUAL_P (x, to))
4330 return to;
4332 /* Parallel asm_operands need special attention because all of the
4333 inputs are shared across the arms. Furthermore, unsharing the
4334 rtl results in recognition failures. Failure to handle this case
4335 specially can result in circular rtl.
4337 Solve this by doing a normal pass across the first entry of the
4338 parallel, and only processing the SET_DESTs of the subsequent
4339 entries. Ug. */
4341 if (code == PARALLEL
4342 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4343 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4345 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4347 /* If this substitution failed, this whole thing fails. */
4348 if (GET_CODE (new_rtx) == CLOBBER
4349 && XEXP (new_rtx, 0) == const0_rtx)
4350 return new_rtx;
4352 SUBST (XVECEXP (x, 0, 0), new_rtx);
4354 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4356 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4358 if (!REG_P (dest)
4359 && GET_CODE (dest) != CC0
4360 && GET_CODE (dest) != PC)
4362 new_rtx = subst (dest, from, to, 0, unique_copy);
4364 /* If this substitution failed, this whole thing fails. */
4365 if (GET_CODE (new_rtx) == CLOBBER
4366 && XEXP (new_rtx, 0) == const0_rtx)
4367 return new_rtx;
4369 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4373 else
4375 len = GET_RTX_LENGTH (code);
4376 fmt = GET_RTX_FORMAT (code);
4378 /* We don't need to process a SET_DEST that is a register, CC0,
4379 or PC, so set up to skip this common case. All other cases
4380 where we want to suppress replacing something inside a
4381 SET_SRC are handled via the IN_DEST operand. */
4382 if (code == SET
4383 && (REG_P (SET_DEST (x))
4384 || GET_CODE (SET_DEST (x)) == CC0
4385 || GET_CODE (SET_DEST (x)) == PC))
4386 fmt = "ie";
4388 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4389 constant. */
4390 if (fmt[0] == 'e')
4391 op0_mode = GET_MODE (XEXP (x, 0));
4393 for (i = 0; i < len; i++)
4395 if (fmt[i] == 'E')
4397 int j;
4398 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4400 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4402 new_rtx = (unique_copy && n_occurrences
4403 ? copy_rtx (to) : to);
4404 n_occurrences++;
4406 else
4408 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4409 unique_copy);
4411 /* If this substitution failed, this whole thing
4412 fails. */
4413 if (GET_CODE (new_rtx) == CLOBBER
4414 && XEXP (new_rtx, 0) == const0_rtx)
4415 return new_rtx;
4418 SUBST (XVECEXP (x, i, j), new_rtx);
4421 else if (fmt[i] == 'e')
4423 /* If this is a register being set, ignore it. */
4424 new_rtx = XEXP (x, i);
4425 if (in_dest
4426 && i == 0
4427 && (((code == SUBREG || code == ZERO_EXTRACT)
4428 && REG_P (new_rtx))
4429 || code == STRICT_LOW_PART))
4432 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4434 /* In general, don't install a subreg involving two
4435 modes not tieable. It can worsen register
4436 allocation, and can even make invalid reload
4437 insns, since the reg inside may need to be copied
4438 from in the outside mode, and that may be invalid
4439 if it is an fp reg copied in integer mode.
4441 We allow two exceptions to this: It is valid if
4442 it is inside another SUBREG and the mode of that
4443 SUBREG and the mode of the inside of TO is
4444 tieable and it is valid if X is a SET that copies
4445 FROM to CC0. */
4447 if (GET_CODE (to) == SUBREG
4448 && ! MODES_TIEABLE_P (GET_MODE (to),
4449 GET_MODE (SUBREG_REG (to)))
4450 && ! (code == SUBREG
4451 && MODES_TIEABLE_P (GET_MODE (x),
4452 GET_MODE (SUBREG_REG (to))))
4453 #ifdef HAVE_cc0
4454 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4455 #endif
4457 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4459 #ifdef CANNOT_CHANGE_MODE_CLASS
4460 if (code == SUBREG
4461 && REG_P (to)
4462 && REGNO (to) < FIRST_PSEUDO_REGISTER
4463 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4464 GET_MODE (to),
4465 GET_MODE (x)))
4466 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4467 #endif
4469 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4470 n_occurrences++;
4472 else
4473 /* If we are in a SET_DEST, suppress most cases unless we
4474 have gone inside a MEM, in which case we want to
4475 simplify the address. We assume here that things that
4476 are actually part of the destination have their inner
4477 parts in the first expression. This is true for SUBREG,
4478 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4479 things aside from REG and MEM that should appear in a
4480 SET_DEST. */
4481 new_rtx = subst (XEXP (x, i), from, to,
4482 (((in_dest
4483 && (code == SUBREG || code == STRICT_LOW_PART
4484 || code == ZERO_EXTRACT))
4485 || code == SET)
4486 && i == 0), unique_copy);
4488 /* If we found that we will have to reject this combination,
4489 indicate that by returning the CLOBBER ourselves, rather than
4490 an expression containing it. This will speed things up as
4491 well as prevent accidents where two CLOBBERs are considered
4492 to be equal, thus producing an incorrect simplification. */
4494 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4495 return new_rtx;
4497 if (GET_CODE (x) == SUBREG
4498 && (GET_CODE (new_rtx) == CONST_INT
4499 || GET_CODE (new_rtx) == CONST_DOUBLE))
4501 enum machine_mode mode = GET_MODE (x);
4503 x = simplify_subreg (GET_MODE (x), new_rtx,
4504 GET_MODE (SUBREG_REG (x)),
4505 SUBREG_BYTE (x));
4506 if (! x)
4507 x = gen_rtx_CLOBBER (mode, const0_rtx);
4509 else if (GET_CODE (new_rtx) == CONST_INT
4510 && GET_CODE (x) == ZERO_EXTEND)
4512 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4513 new_rtx, GET_MODE (XEXP (x, 0)));
4514 gcc_assert (x);
4516 else
4517 SUBST (XEXP (x, i), new_rtx);
4522 /* Check if we are loading something from the constant pool via float
4523 extension; in this case we would undo compress_float_constant
4524 optimization and degenerate constant load to an immediate value. */
4525 if (GET_CODE (x) == FLOAT_EXTEND
4526 && MEM_P (XEXP (x, 0))
4527 && MEM_READONLY_P (XEXP (x, 0)))
4529 rtx tmp = avoid_constant_pool_reference (x);
4530 if (x != tmp)
4531 return x;
4534 /* Try to simplify X. If the simplification changed the code, it is likely
4535 that further simplification will help, so loop, but limit the number
4536 of repetitions that will be performed. */
4538 for (i = 0; i < 4; i++)
4540 /* If X is sufficiently simple, don't bother trying to do anything
4541 with it. */
4542 if (code != CONST_INT && code != REG && code != CLOBBER)
4543 x = combine_simplify_rtx (x, op0_mode, in_dest);
4545 if (GET_CODE (x) == code)
4546 break;
4548 code = GET_CODE (x);
4550 /* We no longer know the original mode of operand 0 since we
4551 have changed the form of X) */
4552 op0_mode = VOIDmode;
4555 return x;
4558 /* Simplify X, a piece of RTL. We just operate on the expression at the
4559 outer level; call `subst' to simplify recursively. Return the new
4560 expression.
4562 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4563 if we are inside a SET_DEST. */
4565 static rtx
4566 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4568 enum rtx_code code = GET_CODE (x);
4569 enum machine_mode mode = GET_MODE (x);
4570 rtx temp;
4571 int i;
4573 /* If this is a commutative operation, put a constant last and a complex
4574 expression first. We don't need to do this for comparisons here. */
4575 if (COMMUTATIVE_ARITH_P (x)
4576 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4578 temp = XEXP (x, 0);
4579 SUBST (XEXP (x, 0), XEXP (x, 1));
4580 SUBST (XEXP (x, 1), temp);
4583 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4584 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4585 things. Check for cases where both arms are testing the same
4586 condition.
4588 Don't do anything if all operands are very simple. */
4590 if ((BINARY_P (x)
4591 && ((!OBJECT_P (XEXP (x, 0))
4592 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4593 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4594 || (!OBJECT_P (XEXP (x, 1))
4595 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4596 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4597 || (UNARY_P (x)
4598 && (!OBJECT_P (XEXP (x, 0))
4599 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4600 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4602 rtx cond, true_rtx, false_rtx;
4604 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4605 if (cond != 0
4606 /* If everything is a comparison, what we have is highly unlikely
4607 to be simpler, so don't use it. */
4608 && ! (COMPARISON_P (x)
4609 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4611 rtx cop1 = const0_rtx;
4612 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4614 if (cond_code == NE && COMPARISON_P (cond))
4615 return x;
4617 /* Simplify the alternative arms; this may collapse the true and
4618 false arms to store-flag values. Be careful to use copy_rtx
4619 here since true_rtx or false_rtx might share RTL with x as a
4620 result of the if_then_else_cond call above. */
4621 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4622 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4624 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4625 is unlikely to be simpler. */
4626 if (general_operand (true_rtx, VOIDmode)
4627 && general_operand (false_rtx, VOIDmode))
4629 enum rtx_code reversed;
4631 /* Restarting if we generate a store-flag expression will cause
4632 us to loop. Just drop through in this case. */
4634 /* If the result values are STORE_FLAG_VALUE and zero, we can
4635 just make the comparison operation. */
4636 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4637 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4638 cond, cop1);
4639 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4640 && ((reversed = reversed_comparison_code_parts
4641 (cond_code, cond, cop1, NULL))
4642 != UNKNOWN))
4643 x = simplify_gen_relational (reversed, mode, VOIDmode,
4644 cond, cop1);
4646 /* Likewise, we can make the negate of a comparison operation
4647 if the result values are - STORE_FLAG_VALUE and zero. */
4648 else if (GET_CODE (true_rtx) == CONST_INT
4649 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4650 && false_rtx == const0_rtx)
4651 x = simplify_gen_unary (NEG, mode,
4652 simplify_gen_relational (cond_code,
4653 mode, VOIDmode,
4654 cond, cop1),
4655 mode);
4656 else if (GET_CODE (false_rtx) == CONST_INT
4657 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4658 && true_rtx == const0_rtx
4659 && ((reversed = reversed_comparison_code_parts
4660 (cond_code, cond, cop1, NULL))
4661 != UNKNOWN))
4662 x = simplify_gen_unary (NEG, mode,
4663 simplify_gen_relational (reversed,
4664 mode, VOIDmode,
4665 cond, cop1),
4666 mode);
4667 else
4668 return gen_rtx_IF_THEN_ELSE (mode,
4669 simplify_gen_relational (cond_code,
4670 mode,
4671 VOIDmode,
4672 cond,
4673 cop1),
4674 true_rtx, false_rtx);
4676 code = GET_CODE (x);
4677 op0_mode = VOIDmode;
4682 /* Try to fold this expression in case we have constants that weren't
4683 present before. */
4684 temp = 0;
4685 switch (GET_RTX_CLASS (code))
4687 case RTX_UNARY:
4688 if (op0_mode == VOIDmode)
4689 op0_mode = GET_MODE (XEXP (x, 0));
4690 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4691 break;
4692 case RTX_COMPARE:
4693 case RTX_COMM_COMPARE:
4695 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4696 if (cmp_mode == VOIDmode)
4698 cmp_mode = GET_MODE (XEXP (x, 1));
4699 if (cmp_mode == VOIDmode)
4700 cmp_mode = op0_mode;
4702 temp = simplify_relational_operation (code, mode, cmp_mode,
4703 XEXP (x, 0), XEXP (x, 1));
4705 break;
4706 case RTX_COMM_ARITH:
4707 case RTX_BIN_ARITH:
4708 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4709 break;
4710 case RTX_BITFIELD_OPS:
4711 case RTX_TERNARY:
4712 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4713 XEXP (x, 1), XEXP (x, 2));
4714 break;
4715 default:
4716 break;
4719 if (temp)
4721 x = temp;
4722 code = GET_CODE (temp);
4723 op0_mode = VOIDmode;
4724 mode = GET_MODE (temp);
4727 /* First see if we can apply the inverse distributive law. */
4728 if (code == PLUS || code == MINUS
4729 || code == AND || code == IOR || code == XOR)
4731 x = apply_distributive_law (x);
4732 code = GET_CODE (x);
4733 op0_mode = VOIDmode;
4736 /* If CODE is an associative operation not otherwise handled, see if we
4737 can associate some operands. This can win if they are constants or
4738 if they are logically related (i.e. (a & b) & a). */
4739 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4740 || code == AND || code == IOR || code == XOR
4741 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4742 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4743 || (flag_associative_math && FLOAT_MODE_P (mode))))
4745 if (GET_CODE (XEXP (x, 0)) == code)
4747 rtx other = XEXP (XEXP (x, 0), 0);
4748 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4749 rtx inner_op1 = XEXP (x, 1);
4750 rtx inner;
4752 /* Make sure we pass the constant operand if any as the second
4753 one if this is a commutative operation. */
4754 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4756 rtx tem = inner_op0;
4757 inner_op0 = inner_op1;
4758 inner_op1 = tem;
4760 inner = simplify_binary_operation (code == MINUS ? PLUS
4761 : code == DIV ? MULT
4762 : code,
4763 mode, inner_op0, inner_op1);
4765 /* For commutative operations, try the other pair if that one
4766 didn't simplify. */
4767 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4769 other = XEXP (XEXP (x, 0), 1);
4770 inner = simplify_binary_operation (code, mode,
4771 XEXP (XEXP (x, 0), 0),
4772 XEXP (x, 1));
4775 if (inner)
4776 return simplify_gen_binary (code, mode, other, inner);
4780 /* A little bit of algebraic simplification here. */
4781 switch (code)
4783 case MEM:
4784 /* Ensure that our address has any ASHIFTs converted to MULT in case
4785 address-recognizing predicates are called later. */
4786 temp = make_compound_operation (XEXP (x, 0), MEM);
4787 SUBST (XEXP (x, 0), temp);
4788 break;
4790 case SUBREG:
4791 if (op0_mode == VOIDmode)
4792 op0_mode = GET_MODE (SUBREG_REG (x));
4794 /* See if this can be moved to simplify_subreg. */
4795 if (CONSTANT_P (SUBREG_REG (x))
4796 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4797 /* Don't call gen_lowpart if the inner mode
4798 is VOIDmode and we cannot simplify it, as SUBREG without
4799 inner mode is invalid. */
4800 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4801 || gen_lowpart_common (mode, SUBREG_REG (x))))
4802 return gen_lowpart (mode, SUBREG_REG (x));
4804 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4805 break;
4807 rtx temp;
4808 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4809 SUBREG_BYTE (x));
4810 if (temp)
4811 return temp;
4814 /* Don't change the mode of the MEM if that would change the meaning
4815 of the address. */
4816 if (MEM_P (SUBREG_REG (x))
4817 && (MEM_VOLATILE_P (SUBREG_REG (x))
4818 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4819 return gen_rtx_CLOBBER (mode, const0_rtx);
4821 /* Note that we cannot do any narrowing for non-constants since
4822 we might have been counting on using the fact that some bits were
4823 zero. We now do this in the SET. */
4825 break;
4827 case NEG:
4828 temp = expand_compound_operation (XEXP (x, 0));
4830 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4831 replaced by (lshiftrt X C). This will convert
4832 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4834 if (GET_CODE (temp) == ASHIFTRT
4835 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4836 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4837 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4838 INTVAL (XEXP (temp, 1)));
4840 /* If X has only a single bit that might be nonzero, say, bit I, convert
4841 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4842 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4843 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4844 or a SUBREG of one since we'd be making the expression more
4845 complex if it was just a register. */
4847 if (!REG_P (temp)
4848 && ! (GET_CODE (temp) == SUBREG
4849 && REG_P (SUBREG_REG (temp)))
4850 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4852 rtx temp1 = simplify_shift_const
4853 (NULL_RTX, ASHIFTRT, mode,
4854 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4855 GET_MODE_BITSIZE (mode) - 1 - i),
4856 GET_MODE_BITSIZE (mode) - 1 - i);
4858 /* If all we did was surround TEMP with the two shifts, we
4859 haven't improved anything, so don't use it. Otherwise,
4860 we are better off with TEMP1. */
4861 if (GET_CODE (temp1) != ASHIFTRT
4862 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4863 || XEXP (XEXP (temp1, 0), 0) != temp)
4864 return temp1;
4866 break;
4868 case TRUNCATE:
4869 /* We can't handle truncation to a partial integer mode here
4870 because we don't know the real bitsize of the partial
4871 integer mode. */
4872 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4873 break;
4875 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4876 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4877 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4878 SUBST (XEXP (x, 0),
4879 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4880 GET_MODE_MASK (mode), 0));
4882 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4883 whose value is a comparison can be replaced with a subreg if
4884 STORE_FLAG_VALUE permits. */
4885 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4886 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4887 && (temp = get_last_value (XEXP (x, 0)))
4888 && COMPARISON_P (temp))
4889 return gen_lowpart (mode, XEXP (x, 0));
4890 break;
4892 #ifdef HAVE_cc0
4893 case COMPARE:
4894 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4895 using cc0, in which case we want to leave it as a COMPARE
4896 so we can distinguish it from a register-register-copy. */
4897 if (XEXP (x, 1) == const0_rtx)
4898 return XEXP (x, 0);
4900 /* x - 0 is the same as x unless x's mode has signed zeros and
4901 allows rounding towards -infinity. Under those conditions,
4902 0 - 0 is -0. */
4903 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4904 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4905 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4906 return XEXP (x, 0);
4907 break;
4908 #endif
4910 case CONST:
4911 /* (const (const X)) can become (const X). Do it this way rather than
4912 returning the inner CONST since CONST can be shared with a
4913 REG_EQUAL note. */
4914 if (GET_CODE (XEXP (x, 0)) == CONST)
4915 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4916 break;
4918 #ifdef HAVE_lo_sum
4919 case LO_SUM:
4920 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4921 can add in an offset. find_split_point will split this address up
4922 again if it doesn't match. */
4923 if (GET_CODE (XEXP (x, 0)) == HIGH
4924 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4925 return XEXP (x, 1);
4926 break;
4927 #endif
4929 case PLUS:
4930 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4931 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4932 bit-field and can be replaced by either a sign_extend or a
4933 sign_extract. The `and' may be a zero_extend and the two
4934 <c>, -<c> constants may be reversed. */
4935 if (GET_CODE (XEXP (x, 0)) == XOR
4936 && GET_CODE (XEXP (x, 1)) == CONST_INT
4937 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4938 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4939 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4940 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4941 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4942 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4943 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4944 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4945 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4946 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4947 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4948 == (unsigned int) i + 1))))
4949 return simplify_shift_const
4950 (NULL_RTX, ASHIFTRT, mode,
4951 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4952 XEXP (XEXP (XEXP (x, 0), 0), 0),
4953 GET_MODE_BITSIZE (mode) - (i + 1)),
4954 GET_MODE_BITSIZE (mode) - (i + 1));
4956 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4957 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4958 the bitsize of the mode - 1. This allows simplification of
4959 "a = (b & 8) == 0;" */
4960 if (XEXP (x, 1) == constm1_rtx
4961 && !REG_P (XEXP (x, 0))
4962 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4963 && REG_P (SUBREG_REG (XEXP (x, 0))))
4964 && nonzero_bits (XEXP (x, 0), mode) == 1)
4965 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4966 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4967 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4968 GET_MODE_BITSIZE (mode) - 1),
4969 GET_MODE_BITSIZE (mode) - 1);
4971 /* If we are adding two things that have no bits in common, convert
4972 the addition into an IOR. This will often be further simplified,
4973 for example in cases like ((a & 1) + (a & 2)), which can
4974 become a & 3. */
4976 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4977 && (nonzero_bits (XEXP (x, 0), mode)
4978 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4980 /* Try to simplify the expression further. */
4981 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4982 temp = combine_simplify_rtx (tor, mode, in_dest);
4984 /* If we could, great. If not, do not go ahead with the IOR
4985 replacement, since PLUS appears in many special purpose
4986 address arithmetic instructions. */
4987 if (GET_CODE (temp) != CLOBBER && temp != tor)
4988 return temp;
4990 break;
4992 case MINUS:
4993 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4994 (and <foo> (const_int pow2-1)) */
4995 if (GET_CODE (XEXP (x, 1)) == AND
4996 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4997 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4998 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4999 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5000 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5001 break;
5003 case MULT:
5004 /* If we have (mult (plus A B) C), apply the distributive law and then
5005 the inverse distributive law to see if things simplify. This
5006 occurs mostly in addresses, often when unrolling loops. */
5008 if (GET_CODE (XEXP (x, 0)) == PLUS)
5010 rtx result = distribute_and_simplify_rtx (x, 0);
5011 if (result)
5012 return result;
5015 /* Try simplify a*(b/c) as (a*b)/c. */
5016 if (FLOAT_MODE_P (mode) && flag_associative_math
5017 && GET_CODE (XEXP (x, 0)) == DIV)
5019 rtx tem = simplify_binary_operation (MULT, mode,
5020 XEXP (XEXP (x, 0), 0),
5021 XEXP (x, 1));
5022 if (tem)
5023 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5025 break;
5027 case UDIV:
5028 /* If this is a divide by a power of two, treat it as a shift if
5029 its first operand is a shift. */
5030 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5031 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5032 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5033 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5034 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5035 || GET_CODE (XEXP (x, 0)) == ROTATE
5036 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5037 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5038 break;
5040 case EQ: case NE:
5041 case GT: case GTU: case GE: case GEU:
5042 case LT: case LTU: case LE: case LEU:
5043 case UNEQ: case LTGT:
5044 case UNGT: case UNGE:
5045 case UNLT: case UNLE:
5046 case UNORDERED: case ORDERED:
5047 /* If the first operand is a condition code, we can't do anything
5048 with it. */
5049 if (GET_CODE (XEXP (x, 0)) == COMPARE
5050 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5051 && ! CC0_P (XEXP (x, 0))))
5053 rtx op0 = XEXP (x, 0);
5054 rtx op1 = XEXP (x, 1);
5055 enum rtx_code new_code;
5057 if (GET_CODE (op0) == COMPARE)
5058 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5060 /* Simplify our comparison, if possible. */
5061 new_code = simplify_comparison (code, &op0, &op1);
5063 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5064 if only the low-order bit is possibly nonzero in X (such as when
5065 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5066 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5067 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5068 (plus X 1).
5070 Remove any ZERO_EXTRACT we made when thinking this was a
5071 comparison. It may now be simpler to use, e.g., an AND. If a
5072 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5073 the call to make_compound_operation in the SET case. */
5075 if (STORE_FLAG_VALUE == 1
5076 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5077 && op1 == const0_rtx
5078 && mode == GET_MODE (op0)
5079 && nonzero_bits (op0, mode) == 1)
5080 return gen_lowpart (mode,
5081 expand_compound_operation (op0));
5083 else if (STORE_FLAG_VALUE == 1
5084 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5085 && op1 == const0_rtx
5086 && mode == GET_MODE (op0)
5087 && (num_sign_bit_copies (op0, mode)
5088 == GET_MODE_BITSIZE (mode)))
5090 op0 = expand_compound_operation (op0);
5091 return simplify_gen_unary (NEG, mode,
5092 gen_lowpart (mode, op0),
5093 mode);
5096 else if (STORE_FLAG_VALUE == 1
5097 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5098 && op1 == const0_rtx
5099 && mode == GET_MODE (op0)
5100 && nonzero_bits (op0, mode) == 1)
5102 op0 = expand_compound_operation (op0);
5103 return simplify_gen_binary (XOR, mode,
5104 gen_lowpart (mode, op0),
5105 const1_rtx);
5108 else if (STORE_FLAG_VALUE == 1
5109 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5110 && op1 == const0_rtx
5111 && mode == GET_MODE (op0)
5112 && (num_sign_bit_copies (op0, mode)
5113 == GET_MODE_BITSIZE (mode)))
5115 op0 = expand_compound_operation (op0);
5116 return plus_constant (gen_lowpart (mode, op0), 1);
5119 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5120 those above. */
5121 if (STORE_FLAG_VALUE == -1
5122 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5123 && op1 == const0_rtx
5124 && (num_sign_bit_copies (op0, mode)
5125 == GET_MODE_BITSIZE (mode)))
5126 return gen_lowpart (mode,
5127 expand_compound_operation (op0));
5129 else if (STORE_FLAG_VALUE == -1
5130 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5131 && op1 == const0_rtx
5132 && mode == GET_MODE (op0)
5133 && nonzero_bits (op0, mode) == 1)
5135 op0 = expand_compound_operation (op0);
5136 return simplify_gen_unary (NEG, mode,
5137 gen_lowpart (mode, op0),
5138 mode);
5141 else if (STORE_FLAG_VALUE == -1
5142 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5143 && op1 == const0_rtx
5144 && mode == GET_MODE (op0)
5145 && (num_sign_bit_copies (op0, mode)
5146 == GET_MODE_BITSIZE (mode)))
5148 op0 = expand_compound_operation (op0);
5149 return simplify_gen_unary (NOT, mode,
5150 gen_lowpart (mode, op0),
5151 mode);
5154 /* If X is 0/1, (eq X 0) is X-1. */
5155 else if (STORE_FLAG_VALUE == -1
5156 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5157 && op1 == const0_rtx
5158 && mode == GET_MODE (op0)
5159 && nonzero_bits (op0, mode) == 1)
5161 op0 = expand_compound_operation (op0);
5162 return plus_constant (gen_lowpart (mode, op0), -1);
5165 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5166 one bit that might be nonzero, we can convert (ne x 0) to
5167 (ashift x c) where C puts the bit in the sign bit. Remove any
5168 AND with STORE_FLAG_VALUE when we are done, since we are only
5169 going to test the sign bit. */
5170 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5171 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5172 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5173 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5174 && op1 == const0_rtx
5175 && mode == GET_MODE (op0)
5176 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5178 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5179 expand_compound_operation (op0),
5180 GET_MODE_BITSIZE (mode) - 1 - i);
5181 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5182 return XEXP (x, 0);
5183 else
5184 return x;
5187 /* If the code changed, return a whole new comparison. */
5188 if (new_code != code)
5189 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5191 /* Otherwise, keep this operation, but maybe change its operands.
5192 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5193 SUBST (XEXP (x, 0), op0);
5194 SUBST (XEXP (x, 1), op1);
5196 break;
5198 case IF_THEN_ELSE:
5199 return simplify_if_then_else (x);
5201 case ZERO_EXTRACT:
5202 case SIGN_EXTRACT:
5203 case ZERO_EXTEND:
5204 case SIGN_EXTEND:
5205 /* If we are processing SET_DEST, we are done. */
5206 if (in_dest)
5207 return x;
5209 return expand_compound_operation (x);
5211 case SET:
5212 return simplify_set (x);
5214 case AND:
5215 case IOR:
5216 return simplify_logical (x);
5218 case ASHIFT:
5219 case LSHIFTRT:
5220 case ASHIFTRT:
5221 case ROTATE:
5222 case ROTATERT:
5223 /* If this is a shift by a constant amount, simplify it. */
5224 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5225 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5226 INTVAL (XEXP (x, 1)));
5228 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5229 SUBST (XEXP (x, 1),
5230 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5231 ((HOST_WIDE_INT) 1
5232 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5233 - 1,
5234 0));
5235 break;
5237 default:
5238 break;
5241 return x;
5244 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5246 static rtx
5247 simplify_if_then_else (rtx x)
5249 enum machine_mode mode = GET_MODE (x);
5250 rtx cond = XEXP (x, 0);
5251 rtx true_rtx = XEXP (x, 1);
5252 rtx false_rtx = XEXP (x, 2);
5253 enum rtx_code true_code = GET_CODE (cond);
5254 int comparison_p = COMPARISON_P (cond);
5255 rtx temp;
5256 int i;
5257 enum rtx_code false_code;
5258 rtx reversed;
5260 /* Simplify storing of the truth value. */
5261 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5262 return simplify_gen_relational (true_code, mode, VOIDmode,
5263 XEXP (cond, 0), XEXP (cond, 1));
5265 /* Also when the truth value has to be reversed. */
5266 if (comparison_p
5267 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5268 && (reversed = reversed_comparison (cond, mode)))
5269 return reversed;
5271 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5272 in it is being compared against certain values. Get the true and false
5273 comparisons and see if that says anything about the value of each arm. */
5275 if (comparison_p
5276 && ((false_code = reversed_comparison_code (cond, NULL))
5277 != UNKNOWN)
5278 && REG_P (XEXP (cond, 0)))
5280 HOST_WIDE_INT nzb;
5281 rtx from = XEXP (cond, 0);
5282 rtx true_val = XEXP (cond, 1);
5283 rtx false_val = true_val;
5284 int swapped = 0;
5286 /* If FALSE_CODE is EQ, swap the codes and arms. */
5288 if (false_code == EQ)
5290 swapped = 1, true_code = EQ, false_code = NE;
5291 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5294 /* If we are comparing against zero and the expression being tested has
5295 only a single bit that might be nonzero, that is its value when it is
5296 not equal to zero. Similarly if it is known to be -1 or 0. */
5298 if (true_code == EQ && true_val == const0_rtx
5299 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5301 false_code = EQ;
5302 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5304 else if (true_code == EQ && true_val == const0_rtx
5305 && (num_sign_bit_copies (from, GET_MODE (from))
5306 == GET_MODE_BITSIZE (GET_MODE (from))))
5308 false_code = EQ;
5309 false_val = constm1_rtx;
5312 /* Now simplify an arm if we know the value of the register in the
5313 branch and it is used in the arm. Be careful due to the potential
5314 of locally-shared RTL. */
5316 if (reg_mentioned_p (from, true_rtx))
5317 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5318 from, true_val),
5319 pc_rtx, pc_rtx, 0, 0);
5320 if (reg_mentioned_p (from, false_rtx))
5321 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5322 from, false_val),
5323 pc_rtx, pc_rtx, 0, 0);
5325 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5326 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5328 true_rtx = XEXP (x, 1);
5329 false_rtx = XEXP (x, 2);
5330 true_code = GET_CODE (cond);
5333 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5334 reversed, do so to avoid needing two sets of patterns for
5335 subtract-and-branch insns. Similarly if we have a constant in the true
5336 arm, the false arm is the same as the first operand of the comparison, or
5337 the false arm is more complicated than the true arm. */
5339 if (comparison_p
5340 && reversed_comparison_code (cond, NULL) != UNKNOWN
5341 && (true_rtx == pc_rtx
5342 || (CONSTANT_P (true_rtx)
5343 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5344 || true_rtx == const0_rtx
5345 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5346 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5347 && !OBJECT_P (false_rtx))
5348 || reg_mentioned_p (true_rtx, false_rtx)
5349 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5351 true_code = reversed_comparison_code (cond, NULL);
5352 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5353 SUBST (XEXP (x, 1), false_rtx);
5354 SUBST (XEXP (x, 2), true_rtx);
5356 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5357 cond = XEXP (x, 0);
5359 /* It is possible that the conditional has been simplified out. */
5360 true_code = GET_CODE (cond);
5361 comparison_p = COMPARISON_P (cond);
5364 /* If the two arms are identical, we don't need the comparison. */
5366 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5367 return true_rtx;
5369 /* Convert a == b ? b : a to "a". */
5370 if (true_code == EQ && ! side_effects_p (cond)
5371 && !HONOR_NANS (mode)
5372 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5373 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5374 return false_rtx;
5375 else if (true_code == NE && ! side_effects_p (cond)
5376 && !HONOR_NANS (mode)
5377 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5378 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5379 return true_rtx;
5381 /* Look for cases where we have (abs x) or (neg (abs X)). */
5383 if (GET_MODE_CLASS (mode) == MODE_INT
5384 && comparison_p
5385 && XEXP (cond, 1) == const0_rtx
5386 && GET_CODE (false_rtx) == NEG
5387 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5388 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5389 && ! side_effects_p (true_rtx))
5390 switch (true_code)
5392 case GT:
5393 case GE:
5394 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5395 case LT:
5396 case LE:
5397 return
5398 simplify_gen_unary (NEG, mode,
5399 simplify_gen_unary (ABS, mode, true_rtx, mode),
5400 mode);
5401 default:
5402 break;
5405 /* Look for MIN or MAX. */
5407 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5408 && comparison_p
5409 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5410 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5411 && ! side_effects_p (cond))
5412 switch (true_code)
5414 case GE:
5415 case GT:
5416 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5417 case LE:
5418 case LT:
5419 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5420 case GEU:
5421 case GTU:
5422 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5423 case LEU:
5424 case LTU:
5425 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5426 default:
5427 break;
5430 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5431 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5432 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5433 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5434 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5435 neither 1 or -1, but it isn't worth checking for. */
5437 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5438 && comparison_p
5439 && GET_MODE_CLASS (mode) == MODE_INT
5440 && ! side_effects_p (x))
5442 rtx t = make_compound_operation (true_rtx, SET);
5443 rtx f = make_compound_operation (false_rtx, SET);
5444 rtx cond_op0 = XEXP (cond, 0);
5445 rtx cond_op1 = XEXP (cond, 1);
5446 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5447 enum machine_mode m = mode;
5448 rtx z = 0, c1 = NULL_RTX;
5450 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5451 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5452 || GET_CODE (t) == ASHIFT
5453 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5454 && rtx_equal_p (XEXP (t, 0), f))
5455 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5457 /* If an identity-zero op is commutative, check whether there
5458 would be a match if we swapped the operands. */
5459 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5460 || GET_CODE (t) == XOR)
5461 && rtx_equal_p (XEXP (t, 1), f))
5462 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5463 else if (GET_CODE (t) == SIGN_EXTEND
5464 && (GET_CODE (XEXP (t, 0)) == PLUS
5465 || GET_CODE (XEXP (t, 0)) == MINUS
5466 || GET_CODE (XEXP (t, 0)) == IOR
5467 || GET_CODE (XEXP (t, 0)) == XOR
5468 || GET_CODE (XEXP (t, 0)) == ASHIFT
5469 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5470 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5471 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5472 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5473 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5474 && (num_sign_bit_copies (f, GET_MODE (f))
5475 > (unsigned int)
5476 (GET_MODE_BITSIZE (mode)
5477 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5479 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5480 extend_op = SIGN_EXTEND;
5481 m = GET_MODE (XEXP (t, 0));
5483 else if (GET_CODE (t) == SIGN_EXTEND
5484 && (GET_CODE (XEXP (t, 0)) == PLUS
5485 || GET_CODE (XEXP (t, 0)) == IOR
5486 || GET_CODE (XEXP (t, 0)) == XOR)
5487 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5488 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5489 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5490 && (num_sign_bit_copies (f, GET_MODE (f))
5491 > (unsigned int)
5492 (GET_MODE_BITSIZE (mode)
5493 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5495 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5496 extend_op = SIGN_EXTEND;
5497 m = GET_MODE (XEXP (t, 0));
5499 else if (GET_CODE (t) == ZERO_EXTEND
5500 && (GET_CODE (XEXP (t, 0)) == PLUS
5501 || GET_CODE (XEXP (t, 0)) == MINUS
5502 || GET_CODE (XEXP (t, 0)) == IOR
5503 || GET_CODE (XEXP (t, 0)) == XOR
5504 || GET_CODE (XEXP (t, 0)) == ASHIFT
5505 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5506 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5507 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5508 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5509 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5510 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5511 && ((nonzero_bits (f, GET_MODE (f))
5512 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5513 == 0))
5515 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5516 extend_op = ZERO_EXTEND;
5517 m = GET_MODE (XEXP (t, 0));
5519 else if (GET_CODE (t) == ZERO_EXTEND
5520 && (GET_CODE (XEXP (t, 0)) == PLUS
5521 || GET_CODE (XEXP (t, 0)) == IOR
5522 || GET_CODE (XEXP (t, 0)) == XOR)
5523 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5524 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5525 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5526 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5527 && ((nonzero_bits (f, GET_MODE (f))
5528 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5529 == 0))
5531 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5532 extend_op = ZERO_EXTEND;
5533 m = GET_MODE (XEXP (t, 0));
5536 if (z)
5538 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5539 cond_op0, cond_op1),
5540 pc_rtx, pc_rtx, 0, 0);
5541 temp = simplify_gen_binary (MULT, m, temp,
5542 simplify_gen_binary (MULT, m, c1,
5543 const_true_rtx));
5544 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5545 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5547 if (extend_op != UNKNOWN)
5548 temp = simplify_gen_unary (extend_op, mode, temp, m);
5550 return temp;
5554 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5555 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5556 negation of a single bit, we can convert this operation to a shift. We
5557 can actually do this more generally, but it doesn't seem worth it. */
5559 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5560 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5561 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5562 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5563 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5564 == GET_MODE_BITSIZE (mode))
5565 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5566 return
5567 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5568 gen_lowpart (mode, XEXP (cond, 0)), i);
5570 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5571 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5572 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5573 && GET_MODE (XEXP (cond, 0)) == mode
5574 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5575 == nonzero_bits (XEXP (cond, 0), mode)
5576 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5577 return XEXP (cond, 0);
5579 return x;
5582 /* Simplify X, a SET expression. Return the new expression. */
5584 static rtx
5585 simplify_set (rtx x)
5587 rtx src = SET_SRC (x);
5588 rtx dest = SET_DEST (x);
5589 enum machine_mode mode
5590 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5591 rtx other_insn;
5592 rtx *cc_use;
5594 /* (set (pc) (return)) gets written as (return). */
5595 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5596 return src;
5598 /* Now that we know for sure which bits of SRC we are using, see if we can
5599 simplify the expression for the object knowing that we only need the
5600 low-order bits. */
5602 if (GET_MODE_CLASS (mode) == MODE_INT
5603 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5605 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5606 SUBST (SET_SRC (x), src);
5609 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5610 the comparison result and try to simplify it unless we already have used
5611 undobuf.other_insn. */
5612 if ((GET_MODE_CLASS (mode) == MODE_CC
5613 || GET_CODE (src) == COMPARE
5614 || CC0_P (dest))
5615 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5616 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5617 && COMPARISON_P (*cc_use)
5618 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5620 enum rtx_code old_code = GET_CODE (*cc_use);
5621 enum rtx_code new_code;
5622 rtx op0, op1, tmp;
5623 int other_changed = 0;
5624 enum machine_mode compare_mode = GET_MODE (dest);
5626 if (GET_CODE (src) == COMPARE)
5627 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5628 else
5629 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5631 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5632 op0, op1);
5633 if (!tmp)
5634 new_code = old_code;
5635 else if (!CONSTANT_P (tmp))
5637 new_code = GET_CODE (tmp);
5638 op0 = XEXP (tmp, 0);
5639 op1 = XEXP (tmp, 1);
5641 else
5643 rtx pat = PATTERN (other_insn);
5644 undobuf.other_insn = other_insn;
5645 SUBST (*cc_use, tmp);
5647 /* Attempt to simplify CC user. */
5648 if (GET_CODE (pat) == SET)
5650 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5651 if (new_rtx != NULL_RTX)
5652 SUBST (SET_SRC (pat), new_rtx);
5655 /* Convert X into a no-op move. */
5656 SUBST (SET_DEST (x), pc_rtx);
5657 SUBST (SET_SRC (x), pc_rtx);
5658 return x;
5661 /* Simplify our comparison, if possible. */
5662 new_code = simplify_comparison (new_code, &op0, &op1);
5664 #ifdef SELECT_CC_MODE
5665 /* If this machine has CC modes other than CCmode, check to see if we
5666 need to use a different CC mode here. */
5667 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5668 compare_mode = GET_MODE (op0);
5669 else
5670 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5672 #ifndef HAVE_cc0
5673 /* If the mode changed, we have to change SET_DEST, the mode in the
5674 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5675 a hard register, just build new versions with the proper mode. If it
5676 is a pseudo, we lose unless it is only time we set the pseudo, in
5677 which case we can safely change its mode. */
5678 if (compare_mode != GET_MODE (dest))
5680 if (can_change_dest_mode (dest, 0, compare_mode))
5682 unsigned int regno = REGNO (dest);
5683 rtx new_dest;
5685 if (regno < FIRST_PSEUDO_REGISTER)
5686 new_dest = gen_rtx_REG (compare_mode, regno);
5687 else
5689 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5690 new_dest = regno_reg_rtx[regno];
5693 SUBST (SET_DEST (x), new_dest);
5694 SUBST (XEXP (*cc_use, 0), new_dest);
5695 other_changed = 1;
5697 dest = new_dest;
5700 #endif /* cc0 */
5701 #endif /* SELECT_CC_MODE */
5703 /* If the code changed, we have to build a new comparison in
5704 undobuf.other_insn. */
5705 if (new_code != old_code)
5707 int other_changed_previously = other_changed;
5708 unsigned HOST_WIDE_INT mask;
5709 rtx old_cc_use = *cc_use;
5711 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5712 dest, const0_rtx));
5713 other_changed = 1;
5715 /* If the only change we made was to change an EQ into an NE or
5716 vice versa, OP0 has only one bit that might be nonzero, and OP1
5717 is zero, check if changing the user of the condition code will
5718 produce a valid insn. If it won't, we can keep the original code
5719 in that insn by surrounding our operation with an XOR. */
5721 if (((old_code == NE && new_code == EQ)
5722 || (old_code == EQ && new_code == NE))
5723 && ! other_changed_previously && op1 == const0_rtx
5724 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5725 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5727 rtx pat = PATTERN (other_insn), note = 0;
5729 if ((recog_for_combine (&pat, other_insn, &note) < 0
5730 && ! check_asm_operands (pat)))
5732 *cc_use = old_cc_use;
5733 other_changed = 0;
5735 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5736 op0, GEN_INT (mask));
5741 if (other_changed)
5742 undobuf.other_insn = other_insn;
5744 #ifdef HAVE_cc0
5745 /* If we are now comparing against zero, change our source if
5746 needed. If we do not use cc0, we always have a COMPARE. */
5747 if (op1 == const0_rtx && dest == cc0_rtx)
5749 SUBST (SET_SRC (x), op0);
5750 src = op0;
5752 else
5753 #endif
5755 /* Otherwise, if we didn't previously have a COMPARE in the
5756 correct mode, we need one. */
5757 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5759 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5760 src = SET_SRC (x);
5762 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5764 SUBST (SET_SRC (x), op0);
5765 src = SET_SRC (x);
5767 /* Otherwise, update the COMPARE if needed. */
5768 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5770 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5771 src = SET_SRC (x);
5774 else
5776 /* Get SET_SRC in a form where we have placed back any
5777 compound expressions. Then do the checks below. */
5778 src = make_compound_operation (src, SET);
5779 SUBST (SET_SRC (x), src);
5782 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5783 and X being a REG or (subreg (reg)), we may be able to convert this to
5784 (set (subreg:m2 x) (op)).
5786 We can always do this if M1 is narrower than M2 because that means that
5787 we only care about the low bits of the result.
5789 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5790 perform a narrower operation than requested since the high-order bits will
5791 be undefined. On machine where it is defined, this transformation is safe
5792 as long as M1 and M2 have the same number of words. */
5794 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5795 && !OBJECT_P (SUBREG_REG (src))
5796 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5797 / UNITS_PER_WORD)
5798 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5799 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5800 #ifndef WORD_REGISTER_OPERATIONS
5801 && (GET_MODE_SIZE (GET_MODE (src))
5802 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5803 #endif
5804 #ifdef CANNOT_CHANGE_MODE_CLASS
5805 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5806 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5807 GET_MODE (SUBREG_REG (src)),
5808 GET_MODE (src)))
5809 #endif
5810 && (REG_P (dest)
5811 || (GET_CODE (dest) == SUBREG
5812 && REG_P (SUBREG_REG (dest)))))
5814 SUBST (SET_DEST (x),
5815 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5816 dest));
5817 SUBST (SET_SRC (x), SUBREG_REG (src));
5819 src = SET_SRC (x), dest = SET_DEST (x);
5822 #ifdef HAVE_cc0
5823 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5824 in SRC. */
5825 if (dest == cc0_rtx
5826 && GET_CODE (src) == SUBREG
5827 && subreg_lowpart_p (src)
5828 && (GET_MODE_BITSIZE (GET_MODE (src))
5829 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5831 rtx inner = SUBREG_REG (src);
5832 enum machine_mode inner_mode = GET_MODE (inner);
5834 /* Here we make sure that we don't have a sign bit on. */
5835 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5836 && (nonzero_bits (inner, inner_mode)
5837 < ((unsigned HOST_WIDE_INT) 1
5838 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5840 SUBST (SET_SRC (x), inner);
5841 src = SET_SRC (x);
5844 #endif
5846 #ifdef LOAD_EXTEND_OP
5847 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5848 would require a paradoxical subreg. Replace the subreg with a
5849 zero_extend to avoid the reload that would otherwise be required. */
5851 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5852 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5853 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5854 && SUBREG_BYTE (src) == 0
5855 && (GET_MODE_SIZE (GET_MODE (src))
5856 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5857 && MEM_P (SUBREG_REG (src)))
5859 SUBST (SET_SRC (x),
5860 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5861 GET_MODE (src), SUBREG_REG (src)));
5863 src = SET_SRC (x);
5865 #endif
5867 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5868 are comparing an item known to be 0 or -1 against 0, use a logical
5869 operation instead. Check for one of the arms being an IOR of the other
5870 arm with some value. We compute three terms to be IOR'ed together. In
5871 practice, at most two will be nonzero. Then we do the IOR's. */
5873 if (GET_CODE (dest) != PC
5874 && GET_CODE (src) == IF_THEN_ELSE
5875 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5876 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5877 && XEXP (XEXP (src, 0), 1) == const0_rtx
5878 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5879 #ifdef HAVE_conditional_move
5880 && ! can_conditionally_move_p (GET_MODE (src))
5881 #endif
5882 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5883 GET_MODE (XEXP (XEXP (src, 0), 0)))
5884 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5885 && ! side_effects_p (src))
5887 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5888 ? XEXP (src, 1) : XEXP (src, 2));
5889 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5890 ? XEXP (src, 2) : XEXP (src, 1));
5891 rtx term1 = const0_rtx, term2, term3;
5893 if (GET_CODE (true_rtx) == IOR
5894 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5895 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5896 else if (GET_CODE (true_rtx) == IOR
5897 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5898 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5899 else if (GET_CODE (false_rtx) == IOR
5900 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5901 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5902 else if (GET_CODE (false_rtx) == IOR
5903 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5904 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5906 term2 = simplify_gen_binary (AND, GET_MODE (src),
5907 XEXP (XEXP (src, 0), 0), true_rtx);
5908 term3 = simplify_gen_binary (AND, GET_MODE (src),
5909 simplify_gen_unary (NOT, GET_MODE (src),
5910 XEXP (XEXP (src, 0), 0),
5911 GET_MODE (src)),
5912 false_rtx);
5914 SUBST (SET_SRC (x),
5915 simplify_gen_binary (IOR, GET_MODE (src),
5916 simplify_gen_binary (IOR, GET_MODE (src),
5917 term1, term2),
5918 term3));
5920 src = SET_SRC (x);
5923 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5924 whole thing fail. */
5925 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5926 return src;
5927 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5928 return dest;
5929 else
5930 /* Convert this into a field assignment operation, if possible. */
5931 return make_field_assignment (x);
5934 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5935 result. */
5937 static rtx
5938 simplify_logical (rtx x)
5940 enum machine_mode mode = GET_MODE (x);
5941 rtx op0 = XEXP (x, 0);
5942 rtx op1 = XEXP (x, 1);
5944 switch (GET_CODE (x))
5946 case AND:
5947 /* We can call simplify_and_const_int only if we don't lose
5948 any (sign) bits when converting INTVAL (op1) to
5949 "unsigned HOST_WIDE_INT". */
5950 if (GET_CODE (op1) == CONST_INT
5951 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5952 || INTVAL (op1) > 0))
5954 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5955 if (GET_CODE (x) != AND)
5956 return x;
5958 op0 = XEXP (x, 0);
5959 op1 = XEXP (x, 1);
5962 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5963 apply the distributive law and then the inverse distributive
5964 law to see if things simplify. */
5965 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5967 rtx result = distribute_and_simplify_rtx (x, 0);
5968 if (result)
5969 return result;
5971 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5973 rtx result = distribute_and_simplify_rtx (x, 1);
5974 if (result)
5975 return result;
5977 break;
5979 case IOR:
5980 /* If we have (ior (and A B) C), apply the distributive law and then
5981 the inverse distributive law to see if things simplify. */
5983 if (GET_CODE (op0) == AND)
5985 rtx result = distribute_and_simplify_rtx (x, 0);
5986 if (result)
5987 return result;
5990 if (GET_CODE (op1) == AND)
5992 rtx result = distribute_and_simplify_rtx (x, 1);
5993 if (result)
5994 return result;
5996 break;
5998 default:
5999 gcc_unreachable ();
6002 return x;
6005 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6006 operations" because they can be replaced with two more basic operations.
6007 ZERO_EXTEND is also considered "compound" because it can be replaced with
6008 an AND operation, which is simpler, though only one operation.
6010 The function expand_compound_operation is called with an rtx expression
6011 and will convert it to the appropriate shifts and AND operations,
6012 simplifying at each stage.
6014 The function make_compound_operation is called to convert an expression
6015 consisting of shifts and ANDs into the equivalent compound expression.
6016 It is the inverse of this function, loosely speaking. */
6018 static rtx
6019 expand_compound_operation (rtx x)
6021 unsigned HOST_WIDE_INT pos = 0, len;
6022 int unsignedp = 0;
6023 unsigned int modewidth;
6024 rtx tem;
6026 switch (GET_CODE (x))
6028 case ZERO_EXTEND:
6029 unsignedp = 1;
6030 case SIGN_EXTEND:
6031 /* We can't necessarily use a const_int for a multiword mode;
6032 it depends on implicitly extending the value.
6033 Since we don't know the right way to extend it,
6034 we can't tell whether the implicit way is right.
6036 Even for a mode that is no wider than a const_int,
6037 we can't win, because we need to sign extend one of its bits through
6038 the rest of it, and we don't know which bit. */
6039 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6040 return x;
6042 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6043 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6044 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6045 reloaded. If not for that, MEM's would very rarely be safe.
6047 Reject MODEs bigger than a word, because we might not be able
6048 to reference a two-register group starting with an arbitrary register
6049 (and currently gen_lowpart might crash for a SUBREG). */
6051 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6052 return x;
6054 /* Reject MODEs that aren't scalar integers because turning vector
6055 or complex modes into shifts causes problems. */
6057 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6058 return x;
6060 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6061 /* If the inner object has VOIDmode (the only way this can happen
6062 is if it is an ASM_OPERANDS), we can't do anything since we don't
6063 know how much masking to do. */
6064 if (len == 0)
6065 return x;
6067 break;
6069 case ZERO_EXTRACT:
6070 unsignedp = 1;
6072 /* ... fall through ... */
6074 case SIGN_EXTRACT:
6075 /* If the operand is a CLOBBER, just return it. */
6076 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6077 return XEXP (x, 0);
6079 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6080 || GET_CODE (XEXP (x, 2)) != CONST_INT
6081 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6082 return x;
6084 /* Reject MODEs that aren't scalar integers because turning vector
6085 or complex modes into shifts causes problems. */
6087 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6088 return x;
6090 len = INTVAL (XEXP (x, 1));
6091 pos = INTVAL (XEXP (x, 2));
6093 /* This should stay within the object being extracted, fail otherwise. */
6094 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6095 return x;
6097 if (BITS_BIG_ENDIAN)
6098 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6100 break;
6102 default:
6103 return x;
6105 /* Convert sign extension to zero extension, if we know that the high
6106 bit is not set, as this is easier to optimize. It will be converted
6107 back to cheaper alternative in make_extraction. */
6108 if (GET_CODE (x) == SIGN_EXTEND
6109 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6110 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6111 & ~(((unsigned HOST_WIDE_INT)
6112 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6113 >> 1))
6114 == 0)))
6116 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6117 rtx temp2 = expand_compound_operation (temp);
6119 /* Make sure this is a profitable operation. */
6120 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6121 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6122 return temp2;
6123 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6124 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6125 return temp;
6126 else
6127 return x;
6130 /* We can optimize some special cases of ZERO_EXTEND. */
6131 if (GET_CODE (x) == ZERO_EXTEND)
6133 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6134 know that the last value didn't have any inappropriate bits
6135 set. */
6136 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6137 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6138 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6139 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6140 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6141 return XEXP (XEXP (x, 0), 0);
6143 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6144 if (GET_CODE (XEXP (x, 0)) == SUBREG
6145 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6146 && subreg_lowpart_p (XEXP (x, 0))
6147 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6148 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6149 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6150 return SUBREG_REG (XEXP (x, 0));
6152 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6153 is a comparison and STORE_FLAG_VALUE permits. This is like
6154 the first case, but it works even when GET_MODE (x) is larger
6155 than HOST_WIDE_INT. */
6156 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6157 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6158 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6159 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6160 <= HOST_BITS_PER_WIDE_INT)
6161 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6162 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6163 return XEXP (XEXP (x, 0), 0);
6165 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6166 if (GET_CODE (XEXP (x, 0)) == SUBREG
6167 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6168 && subreg_lowpart_p (XEXP (x, 0))
6169 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6170 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6171 <= HOST_BITS_PER_WIDE_INT)
6172 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6173 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6174 return SUBREG_REG (XEXP (x, 0));
6178 /* If we reach here, we want to return a pair of shifts. The inner
6179 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6180 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6181 logical depending on the value of UNSIGNEDP.
6183 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6184 converted into an AND of a shift.
6186 We must check for the case where the left shift would have a negative
6187 count. This can happen in a case like (x >> 31) & 255 on machines
6188 that can't shift by a constant. On those machines, we would first
6189 combine the shift with the AND to produce a variable-position
6190 extraction. Then the constant of 31 would be substituted in to produce
6191 a such a position. */
6193 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6194 if (modewidth + len >= pos)
6196 enum machine_mode mode = GET_MODE (x);
6197 tem = gen_lowpart (mode, XEXP (x, 0));
6198 if (!tem || GET_CODE (tem) == CLOBBER)
6199 return x;
6200 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6201 tem, modewidth - pos - len);
6202 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6203 mode, tem, modewidth - len);
6205 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6206 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6207 simplify_shift_const (NULL_RTX, LSHIFTRT,
6208 GET_MODE (x),
6209 XEXP (x, 0), pos),
6210 ((HOST_WIDE_INT) 1 << len) - 1);
6211 else
6212 /* Any other cases we can't handle. */
6213 return x;
6215 /* If we couldn't do this for some reason, return the original
6216 expression. */
6217 if (GET_CODE (tem) == CLOBBER)
6218 return x;
6220 return tem;
6223 /* X is a SET which contains an assignment of one object into
6224 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6225 or certain SUBREGS). If possible, convert it into a series of
6226 logical operations.
6228 We half-heartedly support variable positions, but do not at all
6229 support variable lengths. */
6231 static const_rtx
6232 expand_field_assignment (const_rtx x)
6234 rtx inner;
6235 rtx pos; /* Always counts from low bit. */
6236 int len;
6237 rtx mask, cleared, masked;
6238 enum machine_mode compute_mode;
6240 /* Loop until we find something we can't simplify. */
6241 while (1)
6243 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6244 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6246 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6247 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6248 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6250 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6251 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6253 inner = XEXP (SET_DEST (x), 0);
6254 len = INTVAL (XEXP (SET_DEST (x), 1));
6255 pos = XEXP (SET_DEST (x), 2);
6257 /* A constant position should stay within the width of INNER. */
6258 if (GET_CODE (pos) == CONST_INT
6259 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6260 break;
6262 if (BITS_BIG_ENDIAN)
6264 if (GET_CODE (pos) == CONST_INT)
6265 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6266 - INTVAL (pos));
6267 else if (GET_CODE (pos) == MINUS
6268 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6269 && (INTVAL (XEXP (pos, 1))
6270 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6271 /* If position is ADJUST - X, new position is X. */
6272 pos = XEXP (pos, 0);
6273 else
6274 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6275 GEN_INT (GET_MODE_BITSIZE (
6276 GET_MODE (inner))
6277 - len),
6278 pos);
6282 /* A SUBREG between two modes that occupy the same numbers of words
6283 can be done by moving the SUBREG to the source. */
6284 else if (GET_CODE (SET_DEST (x)) == SUBREG
6285 /* We need SUBREGs to compute nonzero_bits properly. */
6286 && nonzero_sign_valid
6287 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6288 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6289 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6290 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6292 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6293 gen_lowpart
6294 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6295 SET_SRC (x)));
6296 continue;
6298 else
6299 break;
6301 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6302 inner = SUBREG_REG (inner);
6304 compute_mode = GET_MODE (inner);
6306 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6307 if (! SCALAR_INT_MODE_P (compute_mode))
6309 enum machine_mode imode;
6311 /* Don't do anything for vector or complex integral types. */
6312 if (! FLOAT_MODE_P (compute_mode))
6313 break;
6315 /* Try to find an integral mode to pun with. */
6316 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6317 if (imode == BLKmode)
6318 break;
6320 compute_mode = imode;
6321 inner = gen_lowpart (imode, inner);
6324 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6325 if (len >= HOST_BITS_PER_WIDE_INT)
6326 break;
6328 /* Now compute the equivalent expression. Make a copy of INNER
6329 for the SET_DEST in case it is a MEM into which we will substitute;
6330 we don't want shared RTL in that case. */
6331 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6332 cleared = simplify_gen_binary (AND, compute_mode,
6333 simplify_gen_unary (NOT, compute_mode,
6334 simplify_gen_binary (ASHIFT,
6335 compute_mode,
6336 mask, pos),
6337 compute_mode),
6338 inner);
6339 masked = simplify_gen_binary (ASHIFT, compute_mode,
6340 simplify_gen_binary (
6341 AND, compute_mode,
6342 gen_lowpart (compute_mode, SET_SRC (x)),
6343 mask),
6344 pos);
6346 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6347 simplify_gen_binary (IOR, compute_mode,
6348 cleared, masked));
6351 return x;
6354 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6355 it is an RTX that represents a variable starting position; otherwise,
6356 POS is the (constant) starting bit position (counted from the LSB).
6358 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6359 signed reference.
6361 IN_DEST is nonzero if this is a reference in the destination of a
6362 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6363 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6364 be used.
6366 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6367 ZERO_EXTRACT should be built even for bits starting at bit 0.
6369 MODE is the desired mode of the result (if IN_DEST == 0).
6371 The result is an RTX for the extraction or NULL_RTX if the target
6372 can't handle it. */
6374 static rtx
6375 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6376 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6377 int in_dest, int in_compare)
6379 /* This mode describes the size of the storage area
6380 to fetch the overall value from. Within that, we
6381 ignore the POS lowest bits, etc. */
6382 enum machine_mode is_mode = GET_MODE (inner);
6383 enum machine_mode inner_mode;
6384 enum machine_mode wanted_inner_mode;
6385 enum machine_mode wanted_inner_reg_mode = word_mode;
6386 enum machine_mode pos_mode = word_mode;
6387 enum machine_mode extraction_mode = word_mode;
6388 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6389 rtx new_rtx = 0;
6390 rtx orig_pos_rtx = pos_rtx;
6391 HOST_WIDE_INT orig_pos;
6393 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6395 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6396 consider just the QI as the memory to extract from.
6397 The subreg adds or removes high bits; its mode is
6398 irrelevant to the meaning of this extraction,
6399 since POS and LEN count from the lsb. */
6400 if (MEM_P (SUBREG_REG (inner)))
6401 is_mode = GET_MODE (SUBREG_REG (inner));
6402 inner = SUBREG_REG (inner);
6404 else if (GET_CODE (inner) == ASHIFT
6405 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6406 && pos_rtx == 0 && pos == 0
6407 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6409 /* We're extracting the least significant bits of an rtx
6410 (ashift X (const_int C)), where LEN > C. Extract the
6411 least significant (LEN - C) bits of X, giving an rtx
6412 whose mode is MODE, then shift it left C times. */
6413 new_rtx = make_extraction (mode, XEXP (inner, 0),
6414 0, 0, len - INTVAL (XEXP (inner, 1)),
6415 unsignedp, in_dest, in_compare);
6416 if (new_rtx != 0)
6417 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6420 inner_mode = GET_MODE (inner);
6422 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6423 pos = INTVAL (pos_rtx), pos_rtx = 0;
6425 /* See if this can be done without an extraction. We never can if the
6426 width of the field is not the same as that of some integer mode. For
6427 registers, we can only avoid the extraction if the position is at the
6428 low-order bit and this is either not in the destination or we have the
6429 appropriate STRICT_LOW_PART operation available.
6431 For MEM, we can avoid an extract if the field starts on an appropriate
6432 boundary and we can change the mode of the memory reference. */
6434 if (tmode != BLKmode
6435 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6436 && !MEM_P (inner)
6437 && (inner_mode == tmode
6438 || !REG_P (inner)
6439 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6440 GET_MODE_BITSIZE (inner_mode))
6441 || reg_truncated_to_mode (tmode, inner))
6442 && (! in_dest
6443 || (REG_P (inner)
6444 && have_insn_for (STRICT_LOW_PART, tmode))))
6445 || (MEM_P (inner) && pos_rtx == 0
6446 && (pos
6447 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6448 : BITS_PER_UNIT)) == 0
6449 /* We can't do this if we are widening INNER_MODE (it
6450 may not be aligned, for one thing). */
6451 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6452 && (inner_mode == tmode
6453 || (! mode_dependent_address_p (XEXP (inner, 0))
6454 && ! MEM_VOLATILE_P (inner))))))
6456 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6457 field. If the original and current mode are the same, we need not
6458 adjust the offset. Otherwise, we do if bytes big endian.
6460 If INNER is not a MEM, get a piece consisting of just the field
6461 of interest (in this case POS % BITS_PER_WORD must be 0). */
6463 if (MEM_P (inner))
6465 HOST_WIDE_INT offset;
6467 /* POS counts from lsb, but make OFFSET count in memory order. */
6468 if (BYTES_BIG_ENDIAN)
6469 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6470 else
6471 offset = pos / BITS_PER_UNIT;
6473 new_rtx = adjust_address_nv (inner, tmode, offset);
6475 else if (REG_P (inner))
6477 if (tmode != inner_mode)
6479 /* We can't call gen_lowpart in a DEST since we
6480 always want a SUBREG (see below) and it would sometimes
6481 return a new hard register. */
6482 if (pos || in_dest)
6484 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6486 if (WORDS_BIG_ENDIAN
6487 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6488 final_word = ((GET_MODE_SIZE (inner_mode)
6489 - GET_MODE_SIZE (tmode))
6490 / UNITS_PER_WORD) - final_word;
6492 final_word *= UNITS_PER_WORD;
6493 if (BYTES_BIG_ENDIAN &&
6494 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6495 final_word += (GET_MODE_SIZE (inner_mode)
6496 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6498 /* Avoid creating invalid subregs, for example when
6499 simplifying (x>>32)&255. */
6500 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6501 return NULL_RTX;
6503 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6505 else
6506 new_rtx = gen_lowpart (tmode, inner);
6508 else
6509 new_rtx = inner;
6511 else
6512 new_rtx = force_to_mode (inner, tmode,
6513 len >= HOST_BITS_PER_WIDE_INT
6514 ? ~(unsigned HOST_WIDE_INT) 0
6515 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6518 /* If this extraction is going into the destination of a SET,
6519 make a STRICT_LOW_PART unless we made a MEM. */
6521 if (in_dest)
6522 return (MEM_P (new_rtx) ? new_rtx
6523 : (GET_CODE (new_rtx) != SUBREG
6524 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6525 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6527 if (mode == tmode)
6528 return new_rtx;
6530 if (GET_CODE (new_rtx) == CONST_INT)
6531 return gen_int_mode (INTVAL (new_rtx), mode);
6533 /* If we know that no extraneous bits are set, and that the high
6534 bit is not set, convert the extraction to the cheaper of
6535 sign and zero extension, that are equivalent in these cases. */
6536 if (flag_expensive_optimizations
6537 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6538 && ((nonzero_bits (new_rtx, tmode)
6539 & ~(((unsigned HOST_WIDE_INT)
6540 GET_MODE_MASK (tmode))
6541 >> 1))
6542 == 0)))
6544 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6545 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6547 /* Prefer ZERO_EXTENSION, since it gives more information to
6548 backends. */
6549 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6550 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6551 return temp;
6552 return temp1;
6555 /* Otherwise, sign- or zero-extend unless we already are in the
6556 proper mode. */
6558 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6559 mode, new_rtx));
6562 /* Unless this is a COMPARE or we have a funny memory reference,
6563 don't do anything with zero-extending field extracts starting at
6564 the low-order bit since they are simple AND operations. */
6565 if (pos_rtx == 0 && pos == 0 && ! in_dest
6566 && ! in_compare && unsignedp)
6567 return 0;
6569 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6570 if the position is not a constant and the length is not 1. In all
6571 other cases, we would only be going outside our object in cases when
6572 an original shift would have been undefined. */
6573 if (MEM_P (inner)
6574 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6575 || (pos_rtx != 0 && len != 1)))
6576 return 0;
6578 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6579 and the mode for the result. */
6580 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6582 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6583 pos_mode = mode_for_extraction (EP_insv, 2);
6584 extraction_mode = mode_for_extraction (EP_insv, 3);
6587 if (! in_dest && unsignedp
6588 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6590 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6591 pos_mode = mode_for_extraction (EP_extzv, 3);
6592 extraction_mode = mode_for_extraction (EP_extzv, 0);
6595 if (! in_dest && ! unsignedp
6596 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6598 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6599 pos_mode = mode_for_extraction (EP_extv, 3);
6600 extraction_mode = mode_for_extraction (EP_extv, 0);
6603 /* Never narrow an object, since that might not be safe. */
6605 if (mode != VOIDmode
6606 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6607 extraction_mode = mode;
6609 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6610 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6611 pos_mode = GET_MODE (pos_rtx);
6613 /* If this is not from memory, the desired mode is the preferred mode
6614 for an extraction pattern's first input operand, or word_mode if there
6615 is none. */
6616 if (!MEM_P (inner))
6617 wanted_inner_mode = wanted_inner_reg_mode;
6618 else
6620 /* Be careful not to go beyond the extracted object and maintain the
6621 natural alignment of the memory. */
6622 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6623 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6624 > GET_MODE_BITSIZE (wanted_inner_mode))
6626 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6627 gcc_assert (wanted_inner_mode != VOIDmode);
6630 /* If we have to change the mode of memory and cannot, the desired mode
6631 is EXTRACTION_MODE. */
6632 if (inner_mode != wanted_inner_mode
6633 && (mode_dependent_address_p (XEXP (inner, 0))
6634 || MEM_VOLATILE_P (inner)
6635 || pos_rtx))
6636 wanted_inner_mode = extraction_mode;
6639 orig_pos = pos;
6641 if (BITS_BIG_ENDIAN)
6643 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6644 BITS_BIG_ENDIAN style. If position is constant, compute new
6645 position. Otherwise, build subtraction.
6646 Note that POS is relative to the mode of the original argument.
6647 If it's a MEM we need to recompute POS relative to that.
6648 However, if we're extracting from (or inserting into) a register,
6649 we want to recompute POS relative to wanted_inner_mode. */
6650 int width = (MEM_P (inner)
6651 ? GET_MODE_BITSIZE (is_mode)
6652 : GET_MODE_BITSIZE (wanted_inner_mode));
6654 if (pos_rtx == 0)
6655 pos = width - len - pos;
6656 else
6657 pos_rtx
6658 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6659 /* POS may be less than 0 now, but we check for that below.
6660 Note that it can only be less than 0 if !MEM_P (inner). */
6663 /* If INNER has a wider mode, and this is a constant extraction, try to
6664 make it smaller and adjust the byte to point to the byte containing
6665 the value. */
6666 if (wanted_inner_mode != VOIDmode
6667 && inner_mode != wanted_inner_mode
6668 && ! pos_rtx
6669 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6670 && MEM_P (inner)
6671 && ! mode_dependent_address_p (XEXP (inner, 0))
6672 && ! MEM_VOLATILE_P (inner))
6674 int offset = 0;
6676 /* The computations below will be correct if the machine is big
6677 endian in both bits and bytes or little endian in bits and bytes.
6678 If it is mixed, we must adjust. */
6680 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6681 adjust OFFSET to compensate. */
6682 if (BYTES_BIG_ENDIAN
6683 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6684 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6686 /* We can now move to the desired byte. */
6687 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6688 * GET_MODE_SIZE (wanted_inner_mode);
6689 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6691 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6692 && is_mode != wanted_inner_mode)
6693 offset = (GET_MODE_SIZE (is_mode)
6694 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6696 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6699 /* If INNER is not memory, we can always get it into the proper mode. If we
6700 are changing its mode, POS must be a constant and smaller than the size
6701 of the new mode. */
6702 else if (!MEM_P (inner))
6704 if (GET_MODE (inner) != wanted_inner_mode
6705 && (pos_rtx != 0
6706 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6707 return 0;
6709 if (orig_pos < 0)
6710 return 0;
6712 inner = force_to_mode (inner, wanted_inner_mode,
6713 pos_rtx
6714 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6715 ? ~(unsigned HOST_WIDE_INT) 0
6716 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6717 << orig_pos),
6721 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6722 have to zero extend. Otherwise, we can just use a SUBREG. */
6723 if (pos_rtx != 0
6724 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6726 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6728 /* If we know that no extraneous bits are set, and that the high
6729 bit is not set, convert extraction to cheaper one - either
6730 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6731 cases. */
6732 if (flag_expensive_optimizations
6733 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6734 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6735 & ~(((unsigned HOST_WIDE_INT)
6736 GET_MODE_MASK (GET_MODE (pos_rtx)))
6737 >> 1))
6738 == 0)))
6740 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6742 /* Prefer ZERO_EXTENSION, since it gives more information to
6743 backends. */
6744 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6745 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6746 temp = temp1;
6748 pos_rtx = temp;
6750 else if (pos_rtx != 0
6751 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6752 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6754 /* Make POS_RTX unless we already have it and it is correct. If we don't
6755 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6756 be a CONST_INT. */
6757 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6758 pos_rtx = orig_pos_rtx;
6760 else if (pos_rtx == 0)
6761 pos_rtx = GEN_INT (pos);
6763 /* Make the required operation. See if we can use existing rtx. */
6764 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6765 extraction_mode, inner, GEN_INT (len), pos_rtx);
6766 if (! in_dest)
6767 new_rtx = gen_lowpart (mode, new_rtx);
6769 return new_rtx;
6772 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6773 with any other operations in X. Return X without that shift if so. */
6775 static rtx
6776 extract_left_shift (rtx x, int count)
6778 enum rtx_code code = GET_CODE (x);
6779 enum machine_mode mode = GET_MODE (x);
6780 rtx tem;
6782 switch (code)
6784 case ASHIFT:
6785 /* This is the shift itself. If it is wide enough, we will return
6786 either the value being shifted if the shift count is equal to
6787 COUNT or a shift for the difference. */
6788 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6789 && INTVAL (XEXP (x, 1)) >= count)
6790 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6791 INTVAL (XEXP (x, 1)) - count);
6792 break;
6794 case NEG: case NOT:
6795 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6796 return simplify_gen_unary (code, mode, tem, mode);
6798 break;
6800 case PLUS: case IOR: case XOR: case AND:
6801 /* If we can safely shift this constant and we find the inner shift,
6802 make a new operation. */
6803 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6804 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6805 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6806 return simplify_gen_binary (code, mode, tem,
6807 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6809 break;
6811 default:
6812 break;
6815 return 0;
6818 /* Look at the expression rooted at X. Look for expressions
6819 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6820 Form these expressions.
6822 Return the new rtx, usually just X.
6824 Also, for machines like the VAX that don't have logical shift insns,
6825 try to convert logical to arithmetic shift operations in cases where
6826 they are equivalent. This undoes the canonicalizations to logical
6827 shifts done elsewhere.
6829 We try, as much as possible, to re-use rtl expressions to save memory.
6831 IN_CODE says what kind of expression we are processing. Normally, it is
6832 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6833 being kludges), it is MEM. When processing the arguments of a comparison
6834 or a COMPARE against zero, it is COMPARE. */
6836 static rtx
6837 make_compound_operation (rtx x, enum rtx_code in_code)
6839 enum rtx_code code = GET_CODE (x);
6840 enum machine_mode mode = GET_MODE (x);
6841 int mode_width = GET_MODE_BITSIZE (mode);
6842 rtx rhs, lhs;
6843 enum rtx_code next_code;
6844 int i, j;
6845 rtx new_rtx = 0;
6846 rtx tem;
6847 const char *fmt;
6849 /* Select the code to be used in recursive calls. Once we are inside an
6850 address, we stay there. If we have a comparison, set to COMPARE,
6851 but once inside, go back to our default of SET. */
6853 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6854 : ((code == COMPARE || COMPARISON_P (x))
6855 && XEXP (x, 1) == const0_rtx) ? COMPARE
6856 : in_code == COMPARE ? SET : in_code);
6858 /* Process depending on the code of this operation. If NEW is set
6859 nonzero, it will be returned. */
6861 switch (code)
6863 case ASHIFT:
6864 /* Convert shifts by constants into multiplications if inside
6865 an address. */
6866 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6867 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6868 && INTVAL (XEXP (x, 1)) >= 0)
6870 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6871 new_rtx = gen_rtx_MULT (mode, new_rtx,
6872 GEN_INT ((HOST_WIDE_INT) 1
6873 << INTVAL (XEXP (x, 1))));
6875 break;
6877 case AND:
6878 /* If the second operand is not a constant, we can't do anything
6879 with it. */
6880 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6881 break;
6883 /* If the constant is a power of two minus one and the first operand
6884 is a logical right shift, make an extraction. */
6885 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6886 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6888 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6889 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6890 0, in_code == COMPARE);
6893 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6894 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6895 && subreg_lowpart_p (XEXP (x, 0))
6896 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6897 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6899 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6900 next_code);
6901 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6902 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6903 0, in_code == COMPARE);
6905 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6906 else if ((GET_CODE (XEXP (x, 0)) == XOR
6907 || GET_CODE (XEXP (x, 0)) == IOR)
6908 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6909 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6910 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6912 /* Apply the distributive law, and then try to make extractions. */
6913 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6914 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6915 XEXP (x, 1)),
6916 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6917 XEXP (x, 1)));
6918 new_rtx = make_compound_operation (new_rtx, in_code);
6921 /* If we are have (and (rotate X C) M) and C is larger than the number
6922 of bits in M, this is an extraction. */
6924 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6925 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6926 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6927 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6929 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6930 new_rtx = make_extraction (mode, new_rtx,
6931 (GET_MODE_BITSIZE (mode)
6932 - INTVAL (XEXP (XEXP (x, 0), 1))),
6933 NULL_RTX, i, 1, 0, in_code == COMPARE);
6936 /* On machines without logical shifts, if the operand of the AND is
6937 a logical shift and our mask turns off all the propagated sign
6938 bits, we can replace the logical shift with an arithmetic shift. */
6939 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6940 && !have_insn_for (LSHIFTRT, mode)
6941 && have_insn_for (ASHIFTRT, mode)
6942 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6943 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6944 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6945 && mode_width <= HOST_BITS_PER_WIDE_INT)
6947 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6949 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6950 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6951 SUBST (XEXP (x, 0),
6952 gen_rtx_ASHIFTRT (mode,
6953 make_compound_operation
6954 (XEXP (XEXP (x, 0), 0), next_code),
6955 XEXP (XEXP (x, 0), 1)));
6958 /* If the constant is one less than a power of two, this might be
6959 representable by an extraction even if no shift is present.
6960 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6961 we are in a COMPARE. */
6962 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6963 new_rtx = make_extraction (mode,
6964 make_compound_operation (XEXP (x, 0),
6965 next_code),
6966 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6968 /* If we are in a comparison and this is an AND with a power of two,
6969 convert this into the appropriate bit extract. */
6970 else if (in_code == COMPARE
6971 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6972 new_rtx = make_extraction (mode,
6973 make_compound_operation (XEXP (x, 0),
6974 next_code),
6975 i, NULL_RTX, 1, 1, 0, 1);
6977 break;
6979 case LSHIFTRT:
6980 /* If the sign bit is known to be zero, replace this with an
6981 arithmetic shift. */
6982 if (have_insn_for (ASHIFTRT, mode)
6983 && ! have_insn_for (LSHIFTRT, mode)
6984 && mode_width <= HOST_BITS_PER_WIDE_INT
6985 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6987 new_rtx = gen_rtx_ASHIFTRT (mode,
6988 make_compound_operation (XEXP (x, 0),
6989 next_code),
6990 XEXP (x, 1));
6991 break;
6994 /* ... fall through ... */
6996 case ASHIFTRT:
6997 lhs = XEXP (x, 0);
6998 rhs = XEXP (x, 1);
7000 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7001 this is a SIGN_EXTRACT. */
7002 if (GET_CODE (rhs) == CONST_INT
7003 && GET_CODE (lhs) == ASHIFT
7004 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7005 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7006 && INTVAL (rhs) < mode_width)
7008 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7009 new_rtx = make_extraction (mode, new_rtx,
7010 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7011 NULL_RTX, mode_width - INTVAL (rhs),
7012 code == LSHIFTRT, 0, in_code == COMPARE);
7013 break;
7016 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7017 If so, try to merge the shifts into a SIGN_EXTEND. We could
7018 also do this for some cases of SIGN_EXTRACT, but it doesn't
7019 seem worth the effort; the case checked for occurs on Alpha. */
7021 if (!OBJECT_P (lhs)
7022 && ! (GET_CODE (lhs) == SUBREG
7023 && (OBJECT_P (SUBREG_REG (lhs))))
7024 && GET_CODE (rhs) == CONST_INT
7025 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7026 && INTVAL (rhs) < mode_width
7027 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7028 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7029 0, NULL_RTX, mode_width - INTVAL (rhs),
7030 code == LSHIFTRT, 0, in_code == COMPARE);
7032 break;
7034 case SUBREG:
7035 /* Call ourselves recursively on the inner expression. If we are
7036 narrowing the object and it has a different RTL code from
7037 what it originally did, do this SUBREG as a force_to_mode. */
7039 tem = make_compound_operation (SUBREG_REG (x), in_code);
7042 rtx simplified;
7043 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7044 SUBREG_BYTE (x));
7046 if (simplified)
7047 tem = simplified;
7049 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7050 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7051 && subreg_lowpart_p (x))
7053 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7056 /* If we have something other than a SUBREG, we might have
7057 done an expansion, so rerun ourselves. */
7058 if (GET_CODE (newer) != SUBREG)
7059 newer = make_compound_operation (newer, in_code);
7061 return newer;
7064 if (simplified)
7065 return tem;
7067 break;
7069 default:
7070 break;
7073 if (new_rtx)
7075 x = gen_lowpart (mode, new_rtx);
7076 code = GET_CODE (x);
7079 /* Now recursively process each operand of this operation. */
7080 fmt = GET_RTX_FORMAT (code);
7081 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7082 if (fmt[i] == 'e')
7084 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7085 SUBST (XEXP (x, i), new_rtx);
7087 else if (fmt[i] == 'E')
7088 for (j = 0; j < XVECLEN (x, i); j++)
7090 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7091 SUBST (XVECEXP (x, i, j), new_rtx);
7094 /* If this is a commutative operation, the changes to the operands
7095 may have made it noncanonical. */
7096 if (COMMUTATIVE_ARITH_P (x)
7097 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7099 tem = XEXP (x, 0);
7100 SUBST (XEXP (x, 0), XEXP (x, 1));
7101 SUBST (XEXP (x, 1), tem);
7104 return x;
7107 /* Given M see if it is a value that would select a field of bits
7108 within an item, but not the entire word. Return -1 if not.
7109 Otherwise, return the starting position of the field, where 0 is the
7110 low-order bit.
7112 *PLEN is set to the length of the field. */
7114 static int
7115 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7117 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7118 int pos = exact_log2 (m & -m);
7119 int len = 0;
7121 if (pos >= 0)
7122 /* Now shift off the low-order zero bits and see if we have a
7123 power of two minus 1. */
7124 len = exact_log2 ((m >> pos) + 1);
7126 if (len <= 0)
7127 pos = -1;
7129 *plen = len;
7130 return pos;
7133 /* If X refers to a register that equals REG in value, replace these
7134 references with REG. */
7135 static rtx
7136 canon_reg_for_combine (rtx x, rtx reg)
7138 rtx op0, op1, op2;
7139 const char *fmt;
7140 int i;
7141 bool copied;
7143 enum rtx_code code = GET_CODE (x);
7144 switch (GET_RTX_CLASS (code))
7146 case RTX_UNARY:
7147 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7148 if (op0 != XEXP (x, 0))
7149 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7150 GET_MODE (reg));
7151 break;
7153 case RTX_BIN_ARITH:
7154 case RTX_COMM_ARITH:
7155 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7156 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7157 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7158 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7159 break;
7161 case RTX_COMPARE:
7162 case RTX_COMM_COMPARE:
7163 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7164 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7165 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7166 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7167 GET_MODE (op0), op0, op1);
7168 break;
7170 case RTX_TERNARY:
7171 case RTX_BITFIELD_OPS:
7172 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7173 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7174 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7175 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7176 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7177 GET_MODE (op0), op0, op1, op2);
7179 case RTX_OBJ:
7180 if (REG_P (x))
7182 if (rtx_equal_p (get_last_value (reg), x)
7183 || rtx_equal_p (reg, get_last_value (x)))
7184 return reg;
7185 else
7186 break;
7189 /* fall through */
7191 default:
7192 fmt = GET_RTX_FORMAT (code);
7193 copied = false;
7194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7195 if (fmt[i] == 'e')
7197 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7198 if (op != XEXP (x, i))
7200 if (!copied)
7202 copied = true;
7203 x = copy_rtx (x);
7205 XEXP (x, i) = op;
7208 else if (fmt[i] == 'E')
7210 int j;
7211 for (j = 0; j < XVECLEN (x, i); j++)
7213 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7214 if (op != XVECEXP (x, i, j))
7216 if (!copied)
7218 copied = true;
7219 x = copy_rtx (x);
7221 XVECEXP (x, i, j) = op;
7226 break;
7229 return x;
7232 /* Return X converted to MODE. If the value is already truncated to
7233 MODE we can just return a subreg even though in the general case we
7234 would need an explicit truncation. */
7236 static rtx
7237 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7239 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7240 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7241 GET_MODE_BITSIZE (GET_MODE (x)))
7242 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7243 return gen_lowpart (mode, x);
7244 else
7245 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7248 /* See if X can be simplified knowing that we will only refer to it in
7249 MODE and will only refer to those bits that are nonzero in MASK.
7250 If other bits are being computed or if masking operations are done
7251 that select a superset of the bits in MASK, they can sometimes be
7252 ignored.
7254 Return a possibly simplified expression, but always convert X to
7255 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7257 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7258 are all off in X. This is used when X will be complemented, by either
7259 NOT, NEG, or XOR. */
7261 static rtx
7262 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7263 int just_select)
7265 enum rtx_code code = GET_CODE (x);
7266 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7267 enum machine_mode op_mode;
7268 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7269 rtx op0, op1, temp;
7271 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7272 code below will do the wrong thing since the mode of such an
7273 expression is VOIDmode.
7275 Also do nothing if X is a CLOBBER; this can happen if X was
7276 the return value from a call to gen_lowpart. */
7277 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7278 return x;
7280 /* We want to perform the operation is its present mode unless we know
7281 that the operation is valid in MODE, in which case we do the operation
7282 in MODE. */
7283 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7284 && have_insn_for (code, mode))
7285 ? mode : GET_MODE (x));
7287 /* It is not valid to do a right-shift in a narrower mode
7288 than the one it came in with. */
7289 if ((code == LSHIFTRT || code == ASHIFTRT)
7290 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7291 op_mode = GET_MODE (x);
7293 /* Truncate MASK to fit OP_MODE. */
7294 if (op_mode)
7295 mask &= GET_MODE_MASK (op_mode);
7297 /* When we have an arithmetic operation, or a shift whose count we
7298 do not know, we need to assume that all bits up to the highest-order
7299 bit in MASK will be needed. This is how we form such a mask. */
7300 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7301 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7302 else
7303 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7304 - 1);
7306 /* Determine what bits of X are guaranteed to be (non)zero. */
7307 nonzero = nonzero_bits (x, mode);
7309 /* If none of the bits in X are needed, return a zero. */
7310 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7311 x = const0_rtx;
7313 /* If X is a CONST_INT, return a new one. Do this here since the
7314 test below will fail. */
7315 if (GET_CODE (x) == CONST_INT)
7317 if (SCALAR_INT_MODE_P (mode))
7318 return gen_int_mode (INTVAL (x) & mask, mode);
7319 else
7321 x = GEN_INT (INTVAL (x) & mask);
7322 return gen_lowpart_common (mode, x);
7326 /* If X is narrower than MODE and we want all the bits in X's mode, just
7327 get X in the proper mode. */
7328 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7329 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7330 return gen_lowpart (mode, x);
7332 /* The arithmetic simplifications here do the wrong thing on vector modes. */
7333 if (VECTOR_MODE_P (mode) || VECTOR_MODE_P (GET_MODE (x)))
7334 return gen_lowpart (mode, x);
7336 switch (code)
7338 case CLOBBER:
7339 /* If X is a (clobber (const_int)), return it since we know we are
7340 generating something that won't match. */
7341 return x;
7343 case SIGN_EXTEND:
7344 case ZERO_EXTEND:
7345 case ZERO_EXTRACT:
7346 case SIGN_EXTRACT:
7347 x = expand_compound_operation (x);
7348 if (GET_CODE (x) != code)
7349 return force_to_mode (x, mode, mask, next_select);
7350 break;
7352 case SUBREG:
7353 if (subreg_lowpart_p (x)
7354 /* We can ignore the effect of this SUBREG if it narrows the mode or
7355 if the constant masks to zero all the bits the mode doesn't
7356 have. */
7357 && ((GET_MODE_SIZE (GET_MODE (x))
7358 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7359 || (0 == (mask
7360 & GET_MODE_MASK (GET_MODE (x))
7361 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7362 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7363 break;
7365 case AND:
7366 /* If this is an AND with a constant, convert it into an AND
7367 whose constant is the AND of that constant with MASK. If it
7368 remains an AND of MASK, delete it since it is redundant. */
7370 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7372 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7373 mask & INTVAL (XEXP (x, 1)));
7375 /* If X is still an AND, see if it is an AND with a mask that
7376 is just some low-order bits. If so, and it is MASK, we don't
7377 need it. */
7379 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7380 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7381 == mask))
7382 x = XEXP (x, 0);
7384 /* If it remains an AND, try making another AND with the bits
7385 in the mode mask that aren't in MASK turned on. If the
7386 constant in the AND is wide enough, this might make a
7387 cheaper constant. */
7389 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7390 && GET_MODE_MASK (GET_MODE (x)) != mask
7391 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7393 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7394 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7395 int width = GET_MODE_BITSIZE (GET_MODE (x));
7396 rtx y;
7398 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7399 number, sign extend it. */
7400 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7401 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7402 cval |= (HOST_WIDE_INT) -1 << width;
7404 y = simplify_gen_binary (AND, GET_MODE (x),
7405 XEXP (x, 0), GEN_INT (cval));
7406 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7407 < rtx_cost (x, SET, optimize_this_for_speed_p))
7408 x = y;
7411 break;
7414 goto binop;
7416 case PLUS:
7417 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7418 low-order bits (as in an alignment operation) and FOO is already
7419 aligned to that boundary, mask C1 to that boundary as well.
7420 This may eliminate that PLUS and, later, the AND. */
7423 unsigned int width = GET_MODE_BITSIZE (mode);
7424 unsigned HOST_WIDE_INT smask = mask;
7426 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7427 number, sign extend it. */
7429 if (width < HOST_BITS_PER_WIDE_INT
7430 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7431 smask |= (HOST_WIDE_INT) -1 << width;
7433 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7434 && exact_log2 (- smask) >= 0
7435 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7436 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7437 return force_to_mode (plus_constant (XEXP (x, 0),
7438 (INTVAL (XEXP (x, 1)) & smask)),
7439 mode, smask, next_select);
7442 /* ... fall through ... */
7444 case MULT:
7445 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7446 most significant bit in MASK since carries from those bits will
7447 affect the bits we are interested in. */
7448 mask = fuller_mask;
7449 goto binop;
7451 case MINUS:
7452 /* If X is (minus C Y) where C's least set bit is larger than any bit
7453 in the mask, then we may replace with (neg Y). */
7454 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7455 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7456 & -INTVAL (XEXP (x, 0))))
7457 > mask))
7459 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7460 GET_MODE (x));
7461 return force_to_mode (x, mode, mask, next_select);
7464 /* Similarly, if C contains every bit in the fuller_mask, then we may
7465 replace with (not Y). */
7466 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7467 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7468 == INTVAL (XEXP (x, 0))))
7470 x = simplify_gen_unary (NOT, GET_MODE (x),
7471 XEXP (x, 1), GET_MODE (x));
7472 return force_to_mode (x, mode, mask, next_select);
7475 mask = fuller_mask;
7476 goto binop;
7478 case IOR:
7479 case XOR:
7480 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7481 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7482 operation which may be a bitfield extraction. Ensure that the
7483 constant we form is not wider than the mode of X. */
7485 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7487 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7488 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7489 && GET_CODE (XEXP (x, 1)) == CONST_INT
7490 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7491 + floor_log2 (INTVAL (XEXP (x, 1))))
7492 < GET_MODE_BITSIZE (GET_MODE (x)))
7493 && (INTVAL (XEXP (x, 1))
7494 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7496 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7497 << INTVAL (XEXP (XEXP (x, 0), 1)));
7498 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7499 XEXP (XEXP (x, 0), 0), temp);
7500 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7501 XEXP (XEXP (x, 0), 1));
7502 return force_to_mode (x, mode, mask, next_select);
7505 binop:
7506 /* For most binary operations, just propagate into the operation and
7507 change the mode if we have an operation of that mode. */
7509 op0 = gen_lowpart_or_truncate (op_mode,
7510 force_to_mode (XEXP (x, 0), mode, mask,
7511 next_select));
7512 op1 = gen_lowpart_or_truncate (op_mode,
7513 force_to_mode (XEXP (x, 1), mode, mask,
7514 next_select));
7516 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7517 x = simplify_gen_binary (code, op_mode, op0, op1);
7518 break;
7520 case ASHIFT:
7521 /* For left shifts, do the same, but just for the first operand.
7522 However, we cannot do anything with shifts where we cannot
7523 guarantee that the counts are smaller than the size of the mode
7524 because such a count will have a different meaning in a
7525 wider mode. */
7527 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7528 && INTVAL (XEXP (x, 1)) >= 0
7529 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7530 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7531 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7532 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7533 break;
7535 /* If the shift count is a constant and we can do arithmetic in
7536 the mode of the shift, refine which bits we need. Otherwise, use the
7537 conservative form of the mask. */
7538 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7539 && INTVAL (XEXP (x, 1)) >= 0
7540 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7541 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7542 mask >>= INTVAL (XEXP (x, 1));
7543 else
7544 mask = fuller_mask;
7546 op0 = gen_lowpart_or_truncate (op_mode,
7547 force_to_mode (XEXP (x, 0), op_mode,
7548 mask, next_select));
7550 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7551 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7552 break;
7554 case LSHIFTRT:
7555 /* Here we can only do something if the shift count is a constant,
7556 this shift constant is valid for the host, and we can do arithmetic
7557 in OP_MODE. */
7559 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7560 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7561 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7563 rtx inner = XEXP (x, 0);
7564 unsigned HOST_WIDE_INT inner_mask;
7566 /* Select the mask of the bits we need for the shift operand. */
7567 inner_mask = mask << INTVAL (XEXP (x, 1));
7569 /* We can only change the mode of the shift if we can do arithmetic
7570 in the mode of the shift and INNER_MASK is no wider than the
7571 width of X's mode. */
7572 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7573 op_mode = GET_MODE (x);
7575 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7577 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7578 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7581 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7582 shift and AND produces only copies of the sign bit (C2 is one less
7583 than a power of two), we can do this with just a shift. */
7585 if (GET_CODE (x) == LSHIFTRT
7586 && GET_CODE (XEXP (x, 1)) == CONST_INT
7587 /* The shift puts one of the sign bit copies in the least significant
7588 bit. */
7589 && ((INTVAL (XEXP (x, 1))
7590 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7591 >= GET_MODE_BITSIZE (GET_MODE (x)))
7592 && exact_log2 (mask + 1) >= 0
7593 /* Number of bits left after the shift must be more than the mask
7594 needs. */
7595 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7596 <= GET_MODE_BITSIZE (GET_MODE (x)))
7597 /* Must be more sign bit copies than the mask needs. */
7598 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7599 >= exact_log2 (mask + 1)))
7600 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7601 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7602 - exact_log2 (mask + 1)));
7604 goto shiftrt;
7606 case ASHIFTRT:
7607 /* If we are just looking for the sign bit, we don't need this shift at
7608 all, even if it has a variable count. */
7609 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7610 && (mask == ((unsigned HOST_WIDE_INT) 1
7611 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7612 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7614 /* If this is a shift by a constant, get a mask that contains those bits
7615 that are not copies of the sign bit. We then have two cases: If
7616 MASK only includes those bits, this can be a logical shift, which may
7617 allow simplifications. If MASK is a single-bit field not within
7618 those bits, we are requesting a copy of the sign bit and hence can
7619 shift the sign bit to the appropriate location. */
7621 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7622 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7624 int i;
7626 /* If the considered data is wider than HOST_WIDE_INT, we can't
7627 represent a mask for all its bits in a single scalar.
7628 But we only care about the lower bits, so calculate these. */
7630 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7632 nonzero = ~(HOST_WIDE_INT) 0;
7634 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7635 is the number of bits a full-width mask would have set.
7636 We need only shift if these are fewer than nonzero can
7637 hold. If not, we must keep all bits set in nonzero. */
7639 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7640 < HOST_BITS_PER_WIDE_INT)
7641 nonzero >>= INTVAL (XEXP (x, 1))
7642 + HOST_BITS_PER_WIDE_INT
7643 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7645 else
7647 nonzero = GET_MODE_MASK (GET_MODE (x));
7648 nonzero >>= INTVAL (XEXP (x, 1));
7651 if ((mask & ~nonzero) == 0)
7653 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7654 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7655 if (GET_CODE (x) != ASHIFTRT)
7656 return force_to_mode (x, mode, mask, next_select);
7659 else if ((i = exact_log2 (mask)) >= 0)
7661 x = simplify_shift_const
7662 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7663 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7665 if (GET_CODE (x) != ASHIFTRT)
7666 return force_to_mode (x, mode, mask, next_select);
7670 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7671 even if the shift count isn't a constant. */
7672 if (mask == 1)
7673 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7674 XEXP (x, 0), XEXP (x, 1));
7676 shiftrt:
7678 /* If this is a zero- or sign-extension operation that just affects bits
7679 we don't care about, remove it. Be sure the call above returned
7680 something that is still a shift. */
7682 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7683 && GET_CODE (XEXP (x, 1)) == CONST_INT
7684 && INTVAL (XEXP (x, 1)) >= 0
7685 && (INTVAL (XEXP (x, 1))
7686 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7687 && GET_CODE (XEXP (x, 0)) == ASHIFT
7688 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7689 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7690 next_select);
7692 break;
7694 case ROTATE:
7695 case ROTATERT:
7696 /* If the shift count is constant and we can do computations
7697 in the mode of X, compute where the bits we care about are.
7698 Otherwise, we can't do anything. Don't change the mode of
7699 the shift or propagate MODE into the shift, though. */
7700 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7701 && INTVAL (XEXP (x, 1)) >= 0)
7703 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7704 GET_MODE (x), GEN_INT (mask),
7705 XEXP (x, 1));
7706 if (temp && GET_CODE (temp) == CONST_INT)
7707 SUBST (XEXP (x, 0),
7708 force_to_mode (XEXP (x, 0), GET_MODE (x),
7709 INTVAL (temp), next_select));
7711 break;
7713 case NEG:
7714 /* If we just want the low-order bit, the NEG isn't needed since it
7715 won't change the low-order bit. */
7716 if (mask == 1)
7717 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7719 /* We need any bits less significant than the most significant bit in
7720 MASK since carries from those bits will affect the bits we are
7721 interested in. */
7722 mask = fuller_mask;
7723 goto unop;
7725 case NOT:
7726 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7727 same as the XOR case above. Ensure that the constant we form is not
7728 wider than the mode of X. */
7730 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7731 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7732 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7733 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7734 < GET_MODE_BITSIZE (GET_MODE (x)))
7735 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7737 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7738 GET_MODE (x));
7739 temp = simplify_gen_binary (XOR, GET_MODE (x),
7740 XEXP (XEXP (x, 0), 0), temp);
7741 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7742 temp, XEXP (XEXP (x, 0), 1));
7744 return force_to_mode (x, mode, mask, next_select);
7747 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7748 use the full mask inside the NOT. */
7749 mask = fuller_mask;
7751 unop:
7752 op0 = gen_lowpart_or_truncate (op_mode,
7753 force_to_mode (XEXP (x, 0), mode, mask,
7754 next_select));
7755 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7756 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7757 break;
7759 case NE:
7760 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7761 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7762 which is equal to STORE_FLAG_VALUE. */
7763 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7764 && GET_MODE (XEXP (x, 0)) == mode
7765 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7766 && (nonzero_bits (XEXP (x, 0), mode)
7767 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7768 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7770 break;
7772 case IF_THEN_ELSE:
7773 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7774 written in a narrower mode. We play it safe and do not do so. */
7776 SUBST (XEXP (x, 1),
7777 gen_lowpart_or_truncate (GET_MODE (x),
7778 force_to_mode (XEXP (x, 1), mode,
7779 mask, next_select)));
7780 SUBST (XEXP (x, 2),
7781 gen_lowpart_or_truncate (GET_MODE (x),
7782 force_to_mode (XEXP (x, 2), mode,
7783 mask, next_select)));
7784 break;
7786 default:
7787 break;
7790 /* Ensure we return a value of the proper mode. */
7791 return gen_lowpart_or_truncate (mode, x);
7794 /* Return nonzero if X is an expression that has one of two values depending on
7795 whether some other value is zero or nonzero. In that case, we return the
7796 value that is being tested, *PTRUE is set to the value if the rtx being
7797 returned has a nonzero value, and *PFALSE is set to the other alternative.
7799 If we return zero, we set *PTRUE and *PFALSE to X. */
7801 static rtx
7802 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7804 enum machine_mode mode = GET_MODE (x);
7805 enum rtx_code code = GET_CODE (x);
7806 rtx cond0, cond1, true0, true1, false0, false1;
7807 unsigned HOST_WIDE_INT nz;
7809 /* If we are comparing a value against zero, we are done. */
7810 if ((code == NE || code == EQ)
7811 && XEXP (x, 1) == const0_rtx)
7813 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7814 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7815 return XEXP (x, 0);
7818 /* If this is a unary operation whose operand has one of two values, apply
7819 our opcode to compute those values. */
7820 else if (UNARY_P (x)
7821 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7823 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7824 *pfalse = simplify_gen_unary (code, mode, false0,
7825 GET_MODE (XEXP (x, 0)));
7826 return cond0;
7829 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7830 make can't possibly match and would suppress other optimizations. */
7831 else if (code == COMPARE)
7834 /* If this is a binary operation, see if either side has only one of two
7835 values. If either one does or if both do and they are conditional on
7836 the same value, compute the new true and false values. */
7837 else if (BINARY_P (x))
7839 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7840 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7842 if ((cond0 != 0 || cond1 != 0)
7843 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7845 /* If if_then_else_cond returned zero, then true/false are the
7846 same rtl. We must copy one of them to prevent invalid rtl
7847 sharing. */
7848 if (cond0 == 0)
7849 true0 = copy_rtx (true0);
7850 else if (cond1 == 0)
7851 true1 = copy_rtx (true1);
7853 if (COMPARISON_P (x))
7855 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7856 true0, true1);
7857 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7858 false0, false1);
7860 else
7862 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7863 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7866 return cond0 ? cond0 : cond1;
7869 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7870 operands is zero when the other is nonzero, and vice-versa,
7871 and STORE_FLAG_VALUE is 1 or -1. */
7873 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7874 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7875 || code == UMAX)
7876 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7878 rtx op0 = XEXP (XEXP (x, 0), 1);
7879 rtx op1 = XEXP (XEXP (x, 1), 1);
7881 cond0 = XEXP (XEXP (x, 0), 0);
7882 cond1 = XEXP (XEXP (x, 1), 0);
7884 if (COMPARISON_P (cond0)
7885 && COMPARISON_P (cond1)
7886 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7887 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7888 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7889 || ((swap_condition (GET_CODE (cond0))
7890 == reversed_comparison_code (cond1, NULL))
7891 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7892 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7893 && ! side_effects_p (x))
7895 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7896 *pfalse = simplify_gen_binary (MULT, mode,
7897 (code == MINUS
7898 ? simplify_gen_unary (NEG, mode,
7899 op1, mode)
7900 : op1),
7901 const_true_rtx);
7902 return cond0;
7906 /* Similarly for MULT, AND and UMIN, except that for these the result
7907 is always zero. */
7908 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7909 && (code == MULT || code == AND || code == UMIN)
7910 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7912 cond0 = XEXP (XEXP (x, 0), 0);
7913 cond1 = XEXP (XEXP (x, 1), 0);
7915 if (COMPARISON_P (cond0)
7916 && COMPARISON_P (cond1)
7917 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7918 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7919 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7920 || ((swap_condition (GET_CODE (cond0))
7921 == reversed_comparison_code (cond1, NULL))
7922 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7923 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7924 && ! side_effects_p (x))
7926 *ptrue = *pfalse = const0_rtx;
7927 return cond0;
7932 else if (code == IF_THEN_ELSE)
7934 /* If we have IF_THEN_ELSE already, extract the condition and
7935 canonicalize it if it is NE or EQ. */
7936 cond0 = XEXP (x, 0);
7937 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7938 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7939 return XEXP (cond0, 0);
7940 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7942 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7943 return XEXP (cond0, 0);
7945 else
7946 return cond0;
7949 /* If X is a SUBREG, we can narrow both the true and false values
7950 if the inner expression, if there is a condition. */
7951 else if (code == SUBREG
7952 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7953 &true0, &false0)))
7955 true0 = simplify_gen_subreg (mode, true0,
7956 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7957 false0 = simplify_gen_subreg (mode, false0,
7958 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7959 if (true0 && false0)
7961 *ptrue = true0;
7962 *pfalse = false0;
7963 return cond0;
7967 /* If X is a constant, this isn't special and will cause confusions
7968 if we treat it as such. Likewise if it is equivalent to a constant. */
7969 else if (CONSTANT_P (x)
7970 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7973 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7974 will be least confusing to the rest of the compiler. */
7975 else if (mode == BImode)
7977 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7978 return x;
7981 /* If X is known to be either 0 or -1, those are the true and
7982 false values when testing X. */
7983 else if (x == constm1_rtx || x == const0_rtx
7984 || (mode != VOIDmode
7985 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7987 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7988 return x;
7991 /* Likewise for 0 or a single bit. */
7992 else if (SCALAR_INT_MODE_P (mode)
7993 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7994 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7996 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7997 return x;
8000 /* Otherwise fail; show no condition with true and false values the same. */
8001 *ptrue = *pfalse = x;
8002 return 0;
8005 /* Return the value of expression X given the fact that condition COND
8006 is known to be true when applied to REG as its first operand and VAL
8007 as its second. X is known to not be shared and so can be modified in
8008 place.
8010 We only handle the simplest cases, and specifically those cases that
8011 arise with IF_THEN_ELSE expressions. */
8013 static rtx
8014 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8016 enum rtx_code code = GET_CODE (x);
8017 rtx temp;
8018 const char *fmt;
8019 int i, j;
8021 if (side_effects_p (x))
8022 return x;
8024 /* If either operand of the condition is a floating point value,
8025 then we have to avoid collapsing an EQ comparison. */
8026 if (cond == EQ
8027 && rtx_equal_p (x, reg)
8028 && ! FLOAT_MODE_P (GET_MODE (x))
8029 && ! FLOAT_MODE_P (GET_MODE (val)))
8030 return val;
8032 if (cond == UNEQ && rtx_equal_p (x, reg))
8033 return val;
8035 /* If X is (abs REG) and we know something about REG's relationship
8036 with zero, we may be able to simplify this. */
8038 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8039 switch (cond)
8041 case GE: case GT: case EQ:
8042 return XEXP (x, 0);
8043 case LT: case LE:
8044 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8045 XEXP (x, 0),
8046 GET_MODE (XEXP (x, 0)));
8047 default:
8048 break;
8051 /* The only other cases we handle are MIN, MAX, and comparisons if the
8052 operands are the same as REG and VAL. */
8054 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8056 if (rtx_equal_p (XEXP (x, 0), val))
8057 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8059 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8061 if (COMPARISON_P (x))
8063 if (comparison_dominates_p (cond, code))
8064 return const_true_rtx;
8066 code = reversed_comparison_code (x, NULL);
8067 if (code != UNKNOWN
8068 && comparison_dominates_p (cond, code))
8069 return const0_rtx;
8070 else
8071 return x;
8073 else if (code == SMAX || code == SMIN
8074 || code == UMIN || code == UMAX)
8076 int unsignedp = (code == UMIN || code == UMAX);
8078 /* Do not reverse the condition when it is NE or EQ.
8079 This is because we cannot conclude anything about
8080 the value of 'SMAX (x, y)' when x is not equal to y,
8081 but we can when x equals y. */
8082 if ((code == SMAX || code == UMAX)
8083 && ! (cond == EQ || cond == NE))
8084 cond = reverse_condition (cond);
8086 switch (cond)
8088 case GE: case GT:
8089 return unsignedp ? x : XEXP (x, 1);
8090 case LE: case LT:
8091 return unsignedp ? x : XEXP (x, 0);
8092 case GEU: case GTU:
8093 return unsignedp ? XEXP (x, 1) : x;
8094 case LEU: case LTU:
8095 return unsignedp ? XEXP (x, 0) : x;
8096 default:
8097 break;
8102 else if (code == SUBREG)
8104 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8105 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8107 if (SUBREG_REG (x) != r)
8109 /* We must simplify subreg here, before we lose track of the
8110 original inner_mode. */
8111 new_rtx = simplify_subreg (GET_MODE (x), r,
8112 inner_mode, SUBREG_BYTE (x));
8113 if (new_rtx)
8114 return new_rtx;
8115 else
8116 SUBST (SUBREG_REG (x), r);
8119 return x;
8121 /* We don't have to handle SIGN_EXTEND here, because even in the
8122 case of replacing something with a modeless CONST_INT, a
8123 CONST_INT is already (supposed to be) a valid sign extension for
8124 its narrower mode, which implies it's already properly
8125 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8126 story is different. */
8127 else if (code == ZERO_EXTEND)
8129 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8130 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8132 if (XEXP (x, 0) != r)
8134 /* We must simplify the zero_extend here, before we lose
8135 track of the original inner_mode. */
8136 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8137 r, inner_mode);
8138 if (new_rtx)
8139 return new_rtx;
8140 else
8141 SUBST (XEXP (x, 0), r);
8144 return x;
8147 fmt = GET_RTX_FORMAT (code);
8148 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8150 if (fmt[i] == 'e')
8151 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8152 else if (fmt[i] == 'E')
8153 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8154 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8155 cond, reg, val));
8158 return x;
8161 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8162 assignment as a field assignment. */
8164 static int
8165 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8167 if (x == y || rtx_equal_p (x, y))
8168 return 1;
8170 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8171 return 0;
8173 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8174 Note that all SUBREGs of MEM are paradoxical; otherwise they
8175 would have been rewritten. */
8176 if (MEM_P (x) && GET_CODE (y) == SUBREG
8177 && MEM_P (SUBREG_REG (y))
8178 && rtx_equal_p (SUBREG_REG (y),
8179 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8180 return 1;
8182 if (MEM_P (y) && GET_CODE (x) == SUBREG
8183 && MEM_P (SUBREG_REG (x))
8184 && rtx_equal_p (SUBREG_REG (x),
8185 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8186 return 1;
8188 /* We used to see if get_last_value of X and Y were the same but that's
8189 not correct. In one direction, we'll cause the assignment to have
8190 the wrong destination and in the case, we'll import a register into this
8191 insn that might have already have been dead. So fail if none of the
8192 above cases are true. */
8193 return 0;
8196 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8197 Return that assignment if so.
8199 We only handle the most common cases. */
8201 static rtx
8202 make_field_assignment (rtx x)
8204 rtx dest = SET_DEST (x);
8205 rtx src = SET_SRC (x);
8206 rtx assign;
8207 rtx rhs, lhs;
8208 HOST_WIDE_INT c1;
8209 HOST_WIDE_INT pos;
8210 unsigned HOST_WIDE_INT len;
8211 rtx other;
8212 enum machine_mode mode;
8214 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8215 a clear of a one-bit field. We will have changed it to
8216 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8217 for a SUBREG. */
8219 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8220 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8221 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8222 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8224 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8225 1, 1, 1, 0);
8226 if (assign != 0)
8227 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8228 return x;
8231 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8232 && subreg_lowpart_p (XEXP (src, 0))
8233 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8234 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8235 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8236 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8237 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8238 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8240 assign = make_extraction (VOIDmode, dest, 0,
8241 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8242 1, 1, 1, 0);
8243 if (assign != 0)
8244 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8245 return x;
8248 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8249 one-bit field. */
8250 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8251 && XEXP (XEXP (src, 0), 0) == const1_rtx
8252 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8254 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8255 1, 1, 1, 0);
8256 if (assign != 0)
8257 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8258 return x;
8261 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8262 SRC is an AND with all bits of that field set, then we can discard
8263 the AND. */
8264 if (GET_CODE (dest) == ZERO_EXTRACT
8265 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8266 && GET_CODE (src) == AND
8267 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8269 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8270 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8271 unsigned HOST_WIDE_INT ze_mask;
8273 if (width >= HOST_BITS_PER_WIDE_INT)
8274 ze_mask = -1;
8275 else
8276 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8278 /* Complete overlap. We can remove the source AND. */
8279 if ((and_mask & ze_mask) == ze_mask)
8280 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8282 /* Partial overlap. We can reduce the source AND. */
8283 if ((and_mask & ze_mask) != and_mask)
8285 mode = GET_MODE (src);
8286 src = gen_rtx_AND (mode, XEXP (src, 0),
8287 gen_int_mode (and_mask & ze_mask, mode));
8288 return gen_rtx_SET (VOIDmode, dest, src);
8292 /* The other case we handle is assignments into a constant-position
8293 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8294 a mask that has all one bits except for a group of zero bits and
8295 OTHER is known to have zeros where C1 has ones, this is such an
8296 assignment. Compute the position and length from C1. Shift OTHER
8297 to the appropriate position, force it to the required mode, and
8298 make the extraction. Check for the AND in both operands. */
8300 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8301 return x;
8303 rhs = expand_compound_operation (XEXP (src, 0));
8304 lhs = expand_compound_operation (XEXP (src, 1));
8306 if (GET_CODE (rhs) == AND
8307 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8308 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8309 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8310 else if (GET_CODE (lhs) == AND
8311 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8312 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8313 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8314 else
8315 return x;
8317 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8318 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8319 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8320 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8321 return x;
8323 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8324 if (assign == 0)
8325 return x;
8327 /* The mode to use for the source is the mode of the assignment, or of
8328 what is inside a possible STRICT_LOW_PART. */
8329 mode = (GET_CODE (assign) == STRICT_LOW_PART
8330 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8332 /* Shift OTHER right POS places and make it the source, restricting it
8333 to the proper length and mode. */
8335 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8336 GET_MODE (src),
8337 other, pos),
8338 dest);
8339 src = force_to_mode (src, mode,
8340 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8341 ? ~(unsigned HOST_WIDE_INT) 0
8342 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8345 /* If SRC is masked by an AND that does not make a difference in
8346 the value being stored, strip it. */
8347 if (GET_CODE (assign) == ZERO_EXTRACT
8348 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8349 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8350 && GET_CODE (src) == AND
8351 && GET_CODE (XEXP (src, 1)) == CONST_INT
8352 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8353 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8354 src = XEXP (src, 0);
8356 return gen_rtx_SET (VOIDmode, assign, src);
8359 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8360 if so. */
8362 static rtx
8363 apply_distributive_law (rtx x)
8365 enum rtx_code code = GET_CODE (x);
8366 enum rtx_code inner_code;
8367 rtx lhs, rhs, other;
8368 rtx tem;
8370 /* Distributivity is not true for floating point as it can change the
8371 value. So we don't do it unless -funsafe-math-optimizations. */
8372 if (FLOAT_MODE_P (GET_MODE (x))
8373 && ! flag_unsafe_math_optimizations)
8374 return x;
8376 /* The outer operation can only be one of the following: */
8377 if (code != IOR && code != AND && code != XOR
8378 && code != PLUS && code != MINUS)
8379 return x;
8381 lhs = XEXP (x, 0);
8382 rhs = XEXP (x, 1);
8384 /* If either operand is a primitive we can't do anything, so get out
8385 fast. */
8386 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8387 return x;
8389 lhs = expand_compound_operation (lhs);
8390 rhs = expand_compound_operation (rhs);
8391 inner_code = GET_CODE (lhs);
8392 if (inner_code != GET_CODE (rhs))
8393 return x;
8395 /* See if the inner and outer operations distribute. */
8396 switch (inner_code)
8398 case LSHIFTRT:
8399 case ASHIFTRT:
8400 case AND:
8401 case IOR:
8402 /* These all distribute except over PLUS. */
8403 if (code == PLUS || code == MINUS)
8404 return x;
8405 break;
8407 case MULT:
8408 if (code != PLUS && code != MINUS)
8409 return x;
8410 break;
8412 case ASHIFT:
8413 /* This is also a multiply, so it distributes over everything. */
8414 break;
8416 case SUBREG:
8417 /* Non-paradoxical SUBREGs distributes over all operations,
8418 provided the inner modes and byte offsets are the same, this
8419 is an extraction of a low-order part, we don't convert an fp
8420 operation to int or vice versa, this is not a vector mode,
8421 and we would not be converting a single-word operation into a
8422 multi-word operation. The latter test is not required, but
8423 it prevents generating unneeded multi-word operations. Some
8424 of the previous tests are redundant given the latter test,
8425 but are retained because they are required for correctness.
8427 We produce the result slightly differently in this case. */
8429 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8430 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8431 || ! subreg_lowpart_p (lhs)
8432 || (GET_MODE_CLASS (GET_MODE (lhs))
8433 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8434 || (GET_MODE_SIZE (GET_MODE (lhs))
8435 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8436 || VECTOR_MODE_P (GET_MODE (lhs))
8437 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8438 /* Result might need to be truncated. Don't change mode if
8439 explicit truncation is needed. */
8440 || !TRULY_NOOP_TRUNCATION
8441 (GET_MODE_BITSIZE (GET_MODE (x)),
8442 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8443 return x;
8445 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8446 SUBREG_REG (lhs), SUBREG_REG (rhs));
8447 return gen_lowpart (GET_MODE (x), tem);
8449 default:
8450 return x;
8453 /* Set LHS and RHS to the inner operands (A and B in the example
8454 above) and set OTHER to the common operand (C in the example).
8455 There is only one way to do this unless the inner operation is
8456 commutative. */
8457 if (COMMUTATIVE_ARITH_P (lhs)
8458 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8459 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8460 else if (COMMUTATIVE_ARITH_P (lhs)
8461 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8462 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8463 else if (COMMUTATIVE_ARITH_P (lhs)
8464 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8465 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8466 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8467 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8468 else
8469 return x;
8471 /* Form the new inner operation, seeing if it simplifies first. */
8472 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8474 /* There is one exception to the general way of distributing:
8475 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8476 if (code == XOR && inner_code == IOR)
8478 inner_code = AND;
8479 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8482 /* We may be able to continuing distributing the result, so call
8483 ourselves recursively on the inner operation before forming the
8484 outer operation, which we return. */
8485 return simplify_gen_binary (inner_code, GET_MODE (x),
8486 apply_distributive_law (tem), other);
8489 /* See if X is of the form (* (+ A B) C), and if so convert to
8490 (+ (* A C) (* B C)) and try to simplify.
8492 Most of the time, this results in no change. However, if some of
8493 the operands are the same or inverses of each other, simplifications
8494 will result.
8496 For example, (and (ior A B) (not B)) can occur as the result of
8497 expanding a bit field assignment. When we apply the distributive
8498 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8499 which then simplifies to (and (A (not B))).
8501 Note that no checks happen on the validity of applying the inverse
8502 distributive law. This is pointless since we can do it in the
8503 few places where this routine is called.
8505 N is the index of the term that is decomposed (the arithmetic operation,
8506 i.e. (+ A B) in the first example above). !N is the index of the term that
8507 is distributed, i.e. of C in the first example above. */
8508 static rtx
8509 distribute_and_simplify_rtx (rtx x, int n)
8511 enum machine_mode mode;
8512 enum rtx_code outer_code, inner_code;
8513 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8515 decomposed = XEXP (x, n);
8516 if (!ARITHMETIC_P (decomposed))
8517 return NULL_RTX;
8519 mode = GET_MODE (x);
8520 outer_code = GET_CODE (x);
8521 distributed = XEXP (x, !n);
8523 inner_code = GET_CODE (decomposed);
8524 inner_op0 = XEXP (decomposed, 0);
8525 inner_op1 = XEXP (decomposed, 1);
8527 /* Special case (and (xor B C) (not A)), which is equivalent to
8528 (xor (ior A B) (ior A C)) */
8529 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8531 distributed = XEXP (distributed, 0);
8532 outer_code = IOR;
8535 if (n == 0)
8537 /* Distribute the second term. */
8538 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8539 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8541 else
8543 /* Distribute the first term. */
8544 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8545 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8548 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8549 new_op0, new_op1));
8550 if (GET_CODE (tmp) != outer_code
8551 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8552 < rtx_cost (x, SET, optimize_this_for_speed_p))
8553 return tmp;
8555 return NULL_RTX;
8558 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8559 in MODE. Return an equivalent form, if different from (and VAROP
8560 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8562 static rtx
8563 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8564 unsigned HOST_WIDE_INT constop)
8566 unsigned HOST_WIDE_INT nonzero;
8567 unsigned HOST_WIDE_INT orig_constop;
8568 rtx orig_varop;
8569 int i;
8571 orig_varop = varop;
8572 orig_constop = constop;
8573 if (GET_CODE (varop) == CLOBBER)
8574 return NULL_RTX;
8576 /* Simplify VAROP knowing that we will be only looking at some of the
8577 bits in it.
8579 Note by passing in CONSTOP, we guarantee that the bits not set in
8580 CONSTOP are not significant and will never be examined. We must
8581 ensure that is the case by explicitly masking out those bits
8582 before returning. */
8583 varop = force_to_mode (varop, mode, constop, 0);
8585 /* If VAROP is a CLOBBER, we will fail so return it. */
8586 if (GET_CODE (varop) == CLOBBER)
8587 return varop;
8589 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8590 to VAROP and return the new constant. */
8591 if (GET_CODE (varop) == CONST_INT)
8592 return gen_int_mode (INTVAL (varop) & constop, mode);
8594 /* See what bits may be nonzero in VAROP. Unlike the general case of
8595 a call to nonzero_bits, here we don't care about bits outside
8596 MODE. */
8598 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8600 /* Turn off all bits in the constant that are known to already be zero.
8601 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8602 which is tested below. */
8604 constop &= nonzero;
8606 /* If we don't have any bits left, return zero. */
8607 if (constop == 0)
8608 return const0_rtx;
8610 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8611 a power of two, we can replace this with an ASHIFT. */
8612 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8613 && (i = exact_log2 (constop)) >= 0)
8614 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8616 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8617 or XOR, then try to apply the distributive law. This may eliminate
8618 operations if either branch can be simplified because of the AND.
8619 It may also make some cases more complex, but those cases probably
8620 won't match a pattern either with or without this. */
8622 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8623 return
8624 gen_lowpart
8625 (mode,
8626 apply_distributive_law
8627 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8628 simplify_and_const_int (NULL_RTX,
8629 GET_MODE (varop),
8630 XEXP (varop, 0),
8631 constop),
8632 simplify_and_const_int (NULL_RTX,
8633 GET_MODE (varop),
8634 XEXP (varop, 1),
8635 constop))));
8637 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8638 the AND and see if one of the operands simplifies to zero. If so, we
8639 may eliminate it. */
8641 if (GET_CODE (varop) == PLUS
8642 && exact_log2 (constop + 1) >= 0)
8644 rtx o0, o1;
8646 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8647 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8648 if (o0 == const0_rtx)
8649 return o1;
8650 if (o1 == const0_rtx)
8651 return o0;
8654 /* Make a SUBREG if necessary. If we can't make it, fail. */
8655 varop = gen_lowpart (mode, varop);
8656 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8657 return NULL_RTX;
8659 /* If we are only masking insignificant bits, return VAROP. */
8660 if (constop == nonzero)
8661 return varop;
8663 if (varop == orig_varop && constop == orig_constop)
8664 return NULL_RTX;
8666 /* Otherwise, return an AND. */
8667 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8671 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8672 in MODE.
8674 Return an equivalent form, if different from X. Otherwise, return X. If
8675 X is zero, we are to always construct the equivalent form. */
8677 static rtx
8678 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8679 unsigned HOST_WIDE_INT constop)
8681 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8682 if (tem)
8683 return tem;
8685 if (!x)
8686 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8687 gen_int_mode (constop, mode));
8688 if (GET_MODE (x) != mode)
8689 x = gen_lowpart (mode, x);
8690 return x;
8693 /* Given a REG, X, compute which bits in X can be nonzero.
8694 We don't care about bits outside of those defined in MODE.
8696 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8697 a shift, AND, or zero_extract, we can do better. */
8699 static rtx
8700 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8701 const_rtx known_x ATTRIBUTE_UNUSED,
8702 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8703 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8704 unsigned HOST_WIDE_INT *nonzero)
8706 rtx tem;
8707 reg_stat_type *rsp;
8709 /* If X is a register whose nonzero bits value is current, use it.
8710 Otherwise, if X is a register whose value we can find, use that
8711 value. Otherwise, use the previously-computed global nonzero bits
8712 for this register. */
8714 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8715 if (rsp->last_set_value != 0
8716 && (rsp->last_set_mode == mode
8717 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8718 && GET_MODE_CLASS (mode) == MODE_INT))
8719 && ((rsp->last_set_label >= label_tick_ebb_start
8720 && rsp->last_set_label < label_tick)
8721 || (rsp->last_set_label == label_tick
8722 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8723 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8724 && REG_N_SETS (REGNO (x)) == 1
8725 && !REGNO_REG_SET_P
8726 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8728 *nonzero &= rsp->last_set_nonzero_bits;
8729 return NULL;
8732 tem = get_last_value (x);
8734 if (tem)
8736 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8737 /* If X is narrower than MODE and TEM is a non-negative
8738 constant that would appear negative in the mode of X,
8739 sign-extend it for use in reg_nonzero_bits because some
8740 machines (maybe most) will actually do the sign-extension
8741 and this is the conservative approach.
8743 ??? For 2.5, try to tighten up the MD files in this regard
8744 instead of this kludge. */
8746 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8747 && GET_CODE (tem) == CONST_INT
8748 && INTVAL (tem) > 0
8749 && 0 != (INTVAL (tem)
8750 & ((HOST_WIDE_INT) 1
8751 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8752 tem = GEN_INT (INTVAL (tem)
8753 | ((HOST_WIDE_INT) (-1)
8754 << GET_MODE_BITSIZE (GET_MODE (x))));
8755 #endif
8756 return tem;
8758 else if (nonzero_sign_valid && rsp->nonzero_bits)
8760 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8762 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8763 /* We don't know anything about the upper bits. */
8764 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8765 *nonzero &= mask;
8768 return NULL;
8771 /* Return the number of bits at the high-order end of X that are known to
8772 be equal to the sign bit. X will be used in mode MODE; if MODE is
8773 VOIDmode, X will be used in its own mode. The returned value will always
8774 be between 1 and the number of bits in MODE. */
8776 static rtx
8777 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8778 const_rtx known_x ATTRIBUTE_UNUSED,
8779 enum machine_mode known_mode
8780 ATTRIBUTE_UNUSED,
8781 unsigned int known_ret ATTRIBUTE_UNUSED,
8782 unsigned int *result)
8784 rtx tem;
8785 reg_stat_type *rsp;
8787 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8788 if (rsp->last_set_value != 0
8789 && rsp->last_set_mode == mode
8790 && ((rsp->last_set_label >= label_tick_ebb_start
8791 && rsp->last_set_label < label_tick)
8792 || (rsp->last_set_label == label_tick
8793 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8794 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8795 && REG_N_SETS (REGNO (x)) == 1
8796 && !REGNO_REG_SET_P
8797 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8799 *result = rsp->last_set_sign_bit_copies;
8800 return NULL;
8803 tem = get_last_value (x);
8804 if (tem != 0)
8805 return tem;
8807 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8808 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8809 *result = rsp->sign_bit_copies;
8811 return NULL;
8814 /* Return the number of "extended" bits there are in X, when interpreted
8815 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8816 unsigned quantities, this is the number of high-order zero bits.
8817 For signed quantities, this is the number of copies of the sign bit
8818 minus 1. In both case, this function returns the number of "spare"
8819 bits. For example, if two quantities for which this function returns
8820 at least 1 are added, the addition is known not to overflow.
8822 This function will always return 0 unless called during combine, which
8823 implies that it must be called from a define_split. */
8825 unsigned int
8826 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8828 if (nonzero_sign_valid == 0)
8829 return 0;
8831 return (unsignedp
8832 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8833 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8834 - floor_log2 (nonzero_bits (x, mode)))
8835 : 0)
8836 : num_sign_bit_copies (x, mode) - 1);
8839 /* This function is called from `simplify_shift_const' to merge two
8840 outer operations. Specifically, we have already found that we need
8841 to perform operation *POP0 with constant *PCONST0 at the outermost
8842 position. We would now like to also perform OP1 with constant CONST1
8843 (with *POP0 being done last).
8845 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8846 the resulting operation. *PCOMP_P is set to 1 if we would need to
8847 complement the innermost operand, otherwise it is unchanged.
8849 MODE is the mode in which the operation will be done. No bits outside
8850 the width of this mode matter. It is assumed that the width of this mode
8851 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8853 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8854 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8855 result is simply *PCONST0.
8857 If the resulting operation cannot be expressed as one operation, we
8858 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8860 static int
8861 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8863 enum rtx_code op0 = *pop0;
8864 HOST_WIDE_INT const0 = *pconst0;
8866 const0 &= GET_MODE_MASK (mode);
8867 const1 &= GET_MODE_MASK (mode);
8869 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8870 if (op0 == AND)
8871 const1 &= const0;
8873 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8874 if OP0 is SET. */
8876 if (op1 == UNKNOWN || op0 == SET)
8877 return 1;
8879 else if (op0 == UNKNOWN)
8880 op0 = op1, const0 = const1;
8882 else if (op0 == op1)
8884 switch (op0)
8886 case AND:
8887 const0 &= const1;
8888 break;
8889 case IOR:
8890 const0 |= const1;
8891 break;
8892 case XOR:
8893 const0 ^= const1;
8894 break;
8895 case PLUS:
8896 const0 += const1;
8897 break;
8898 case NEG:
8899 op0 = UNKNOWN;
8900 break;
8901 default:
8902 break;
8906 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8907 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8908 return 0;
8910 /* If the two constants aren't the same, we can't do anything. The
8911 remaining six cases can all be done. */
8912 else if (const0 != const1)
8913 return 0;
8915 else
8916 switch (op0)
8918 case IOR:
8919 if (op1 == AND)
8920 /* (a & b) | b == b */
8921 op0 = SET;
8922 else /* op1 == XOR */
8923 /* (a ^ b) | b == a | b */
8925 break;
8927 case XOR:
8928 if (op1 == AND)
8929 /* (a & b) ^ b == (~a) & b */
8930 op0 = AND, *pcomp_p = 1;
8931 else /* op1 == IOR */
8932 /* (a | b) ^ b == a & ~b */
8933 op0 = AND, const0 = ~const0;
8934 break;
8936 case AND:
8937 if (op1 == IOR)
8938 /* (a | b) & b == b */
8939 op0 = SET;
8940 else /* op1 == XOR */
8941 /* (a ^ b) & b) == (~a) & b */
8942 *pcomp_p = 1;
8943 break;
8944 default:
8945 break;
8948 /* Check for NO-OP cases. */
8949 const0 &= GET_MODE_MASK (mode);
8950 if (const0 == 0
8951 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8952 op0 = UNKNOWN;
8953 else if (const0 == 0 && op0 == AND)
8954 op0 = SET;
8955 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8956 && op0 == AND)
8957 op0 = UNKNOWN;
8959 /* ??? Slightly redundant with the above mask, but not entirely.
8960 Moving this above means we'd have to sign-extend the mode mask
8961 for the final test. */
8962 const0 = trunc_int_for_mode (const0, mode);
8964 *pop0 = op0;
8965 *pconst0 = const0;
8967 return 1;
8970 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8971 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8972 simplify it. Otherwise, return a simplified value.
8974 The shift is normally computed in the widest mode we find in VAROP, as
8975 long as it isn't a different number of words than RESULT_MODE. Exceptions
8976 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8978 static rtx
8979 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8980 rtx varop, int orig_count)
8982 enum rtx_code orig_code = code;
8983 rtx orig_varop = varop;
8984 int count;
8985 enum machine_mode mode = result_mode;
8986 enum machine_mode shift_mode, tmode;
8987 unsigned int mode_words
8988 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8989 /* We form (outer_op (code varop count) (outer_const)). */
8990 enum rtx_code outer_op = UNKNOWN;
8991 HOST_WIDE_INT outer_const = 0;
8992 int complement_p = 0;
8993 rtx new_rtx, x;
8995 /* Make sure and truncate the "natural" shift on the way in. We don't
8996 want to do this inside the loop as it makes it more difficult to
8997 combine shifts. */
8998 if (SHIFT_COUNT_TRUNCATED)
8999 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9001 /* If we were given an invalid count, don't do anything except exactly
9002 what was requested. */
9004 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9005 return NULL_RTX;
9007 count = orig_count;
9009 /* Unless one of the branches of the `if' in this loop does a `continue',
9010 we will `break' the loop after the `if'. */
9012 while (count != 0)
9014 /* If we have an operand of (clobber (const_int 0)), fail. */
9015 if (GET_CODE (varop) == CLOBBER)
9016 return NULL_RTX;
9018 /* Convert ROTATERT to ROTATE. */
9019 if (code == ROTATERT)
9021 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9022 code = ROTATE;
9023 if (VECTOR_MODE_P (result_mode))
9024 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9025 else
9026 count = bitsize - count;
9029 /* We need to determine what mode we will do the shift in. If the
9030 shift is a right shift or a ROTATE, we must always do it in the mode
9031 it was originally done in. Otherwise, we can do it in MODE, the
9032 widest mode encountered. */
9033 shift_mode
9034 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9035 ? result_mode : mode);
9037 /* Handle cases where the count is greater than the size of the mode
9038 minus 1. For ASHIFT, use the size minus one as the count (this can
9039 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9040 take the count modulo the size. For other shifts, the result is
9041 zero.
9043 Since these shifts are being produced by the compiler by combining
9044 multiple operations, each of which are defined, we know what the
9045 result is supposed to be. */
9047 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9049 if (code == ASHIFTRT)
9050 count = GET_MODE_BITSIZE (shift_mode) - 1;
9051 else if (code == ROTATE || code == ROTATERT)
9052 count %= GET_MODE_BITSIZE (shift_mode);
9053 else
9055 /* We can't simply return zero because there may be an
9056 outer op. */
9057 varop = const0_rtx;
9058 count = 0;
9059 break;
9063 /* If we discovered we had to complement VAROP, leave. Making a NOT
9064 here would cause an infinite loop. */
9065 if (complement_p)
9066 break;
9068 /* An arithmetic right shift of a quantity known to be -1 or 0
9069 is a no-op. */
9070 if (code == ASHIFTRT
9071 && (num_sign_bit_copies (varop, shift_mode)
9072 == GET_MODE_BITSIZE (shift_mode)))
9074 count = 0;
9075 break;
9078 /* If we are doing an arithmetic right shift and discarding all but
9079 the sign bit copies, this is equivalent to doing a shift by the
9080 bitsize minus one. Convert it into that shift because it will often
9081 allow other simplifications. */
9083 if (code == ASHIFTRT
9084 && (count + num_sign_bit_copies (varop, shift_mode)
9085 >= GET_MODE_BITSIZE (shift_mode)))
9086 count = GET_MODE_BITSIZE (shift_mode) - 1;
9088 /* We simplify the tests below and elsewhere by converting
9089 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9090 `make_compound_operation' will convert it to an ASHIFTRT for
9091 those machines (such as VAX) that don't have an LSHIFTRT. */
9092 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9093 && code == ASHIFTRT
9094 && ((nonzero_bits (varop, shift_mode)
9095 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9096 == 0))
9097 code = LSHIFTRT;
9099 if (((code == LSHIFTRT
9100 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9101 && !(nonzero_bits (varop, shift_mode) >> count))
9102 || (code == ASHIFT
9103 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9104 && !((nonzero_bits (varop, shift_mode) << count)
9105 & GET_MODE_MASK (shift_mode))))
9106 && !side_effects_p (varop))
9107 varop = const0_rtx;
9109 switch (GET_CODE (varop))
9111 case SIGN_EXTEND:
9112 case ZERO_EXTEND:
9113 case SIGN_EXTRACT:
9114 case ZERO_EXTRACT:
9115 new_rtx = expand_compound_operation (varop);
9116 if (new_rtx != varop)
9118 varop = new_rtx;
9119 continue;
9121 break;
9123 case MEM:
9124 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9125 minus the width of a smaller mode, we can do this with a
9126 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9127 if ((code == ASHIFTRT || code == LSHIFTRT)
9128 && ! mode_dependent_address_p (XEXP (varop, 0))
9129 && ! MEM_VOLATILE_P (varop)
9130 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9131 MODE_INT, 1)) != BLKmode)
9133 new_rtx = adjust_address_nv (varop, tmode,
9134 BYTES_BIG_ENDIAN ? 0
9135 : count / BITS_PER_UNIT);
9137 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9138 : ZERO_EXTEND, mode, new_rtx);
9139 count = 0;
9140 continue;
9142 break;
9144 case SUBREG:
9145 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9146 the same number of words as what we've seen so far. Then store
9147 the widest mode in MODE. */
9148 if (subreg_lowpart_p (varop)
9149 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9150 > GET_MODE_SIZE (GET_MODE (varop)))
9151 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9152 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9153 == mode_words)
9155 varop = SUBREG_REG (varop);
9156 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9157 mode = GET_MODE (varop);
9158 continue;
9160 break;
9162 case MULT:
9163 /* Some machines use MULT instead of ASHIFT because MULT
9164 is cheaper. But it is still better on those machines to
9165 merge two shifts into one. */
9166 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9167 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9169 varop
9170 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9171 XEXP (varop, 0),
9172 GEN_INT (exact_log2 (
9173 INTVAL (XEXP (varop, 1)))));
9174 continue;
9176 break;
9178 case UDIV:
9179 /* Similar, for when divides are cheaper. */
9180 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9181 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9183 varop
9184 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9185 XEXP (varop, 0),
9186 GEN_INT (exact_log2 (
9187 INTVAL (XEXP (varop, 1)))));
9188 continue;
9190 break;
9192 case ASHIFTRT:
9193 /* If we are extracting just the sign bit of an arithmetic
9194 right shift, that shift is not needed. However, the sign
9195 bit of a wider mode may be different from what would be
9196 interpreted as the sign bit in a narrower mode, so, if
9197 the result is narrower, don't discard the shift. */
9198 if (code == LSHIFTRT
9199 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9200 && (GET_MODE_BITSIZE (result_mode)
9201 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9203 varop = XEXP (varop, 0);
9204 continue;
9207 /* ... fall through ... */
9209 case LSHIFTRT:
9210 case ASHIFT:
9211 case ROTATE:
9212 /* Here we have two nested shifts. The result is usually the
9213 AND of a new shift with a mask. We compute the result below. */
9214 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9215 && INTVAL (XEXP (varop, 1)) >= 0
9216 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9217 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9218 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9219 && !VECTOR_MODE_P (result_mode))
9221 enum rtx_code first_code = GET_CODE (varop);
9222 unsigned int first_count = INTVAL (XEXP (varop, 1));
9223 unsigned HOST_WIDE_INT mask;
9224 rtx mask_rtx;
9226 /* We have one common special case. We can't do any merging if
9227 the inner code is an ASHIFTRT of a smaller mode. However, if
9228 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9229 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9230 we can convert it to
9231 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9232 This simplifies certain SIGN_EXTEND operations. */
9233 if (code == ASHIFT && first_code == ASHIFTRT
9234 && count == (GET_MODE_BITSIZE (result_mode)
9235 - GET_MODE_BITSIZE (GET_MODE (varop))))
9237 /* C3 has the low-order C1 bits zero. */
9239 mask = (GET_MODE_MASK (mode)
9240 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9242 varop = simplify_and_const_int (NULL_RTX, result_mode,
9243 XEXP (varop, 0), mask);
9244 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9245 varop, count);
9246 count = first_count;
9247 code = ASHIFTRT;
9248 continue;
9251 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9252 than C1 high-order bits equal to the sign bit, we can convert
9253 this to either an ASHIFT or an ASHIFTRT depending on the
9254 two counts.
9256 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9258 if (code == ASHIFTRT && first_code == ASHIFT
9259 && GET_MODE (varop) == shift_mode
9260 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9261 > first_count))
9263 varop = XEXP (varop, 0);
9264 count -= first_count;
9265 if (count < 0)
9267 count = -count;
9268 code = ASHIFT;
9271 continue;
9274 /* There are some cases we can't do. If CODE is ASHIFTRT,
9275 we can only do this if FIRST_CODE is also ASHIFTRT.
9277 We can't do the case when CODE is ROTATE and FIRST_CODE is
9278 ASHIFTRT.
9280 If the mode of this shift is not the mode of the outer shift,
9281 we can't do this if either shift is a right shift or ROTATE.
9283 Finally, we can't do any of these if the mode is too wide
9284 unless the codes are the same.
9286 Handle the case where the shift codes are the same
9287 first. */
9289 if (code == first_code)
9291 if (GET_MODE (varop) != result_mode
9292 && (code == ASHIFTRT || code == LSHIFTRT
9293 || code == ROTATE))
9294 break;
9296 count += first_count;
9297 varop = XEXP (varop, 0);
9298 continue;
9301 if (code == ASHIFTRT
9302 || (code == ROTATE && first_code == ASHIFTRT)
9303 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9304 || (GET_MODE (varop) != result_mode
9305 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9306 || first_code == ROTATE
9307 || code == ROTATE)))
9308 break;
9310 /* To compute the mask to apply after the shift, shift the
9311 nonzero bits of the inner shift the same way the
9312 outer shift will. */
9314 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9316 mask_rtx
9317 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9318 GEN_INT (count));
9320 /* Give up if we can't compute an outer operation to use. */
9321 if (mask_rtx == 0
9322 || GET_CODE (mask_rtx) != CONST_INT
9323 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9324 INTVAL (mask_rtx),
9325 result_mode, &complement_p))
9326 break;
9328 /* If the shifts are in the same direction, we add the
9329 counts. Otherwise, we subtract them. */
9330 if ((code == ASHIFTRT || code == LSHIFTRT)
9331 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9332 count += first_count;
9333 else
9334 count -= first_count;
9336 /* If COUNT is positive, the new shift is usually CODE,
9337 except for the two exceptions below, in which case it is
9338 FIRST_CODE. If the count is negative, FIRST_CODE should
9339 always be used */
9340 if (count > 0
9341 && ((first_code == ROTATE && code == ASHIFT)
9342 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9343 code = first_code;
9344 else if (count < 0)
9345 code = first_code, count = -count;
9347 varop = XEXP (varop, 0);
9348 continue;
9351 /* If we have (A << B << C) for any shift, we can convert this to
9352 (A << C << B). This wins if A is a constant. Only try this if
9353 B is not a constant. */
9355 else if (GET_CODE (varop) == code
9356 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9357 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9359 rtx new_rtx = simplify_const_binary_operation (code, mode,
9360 XEXP (varop, 0),
9361 GEN_INT (count));
9362 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9363 count = 0;
9364 continue;
9366 break;
9368 case NOT:
9369 if (VECTOR_MODE_P (mode))
9370 break;
9372 /* Make this fit the case below. */
9373 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9374 GEN_INT (GET_MODE_MASK (mode)));
9375 continue;
9377 case IOR:
9378 case AND:
9379 case XOR:
9380 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9381 with C the size of VAROP - 1 and the shift is logical if
9382 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9383 we have an (le X 0) operation. If we have an arithmetic shift
9384 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9385 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9387 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9388 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9389 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9390 && (code == LSHIFTRT || code == ASHIFTRT)
9391 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9392 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9394 count = 0;
9395 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9396 const0_rtx);
9398 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9399 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9401 continue;
9404 /* If we have (shift (logical)), move the logical to the outside
9405 to allow it to possibly combine with another logical and the
9406 shift to combine with another shift. This also canonicalizes to
9407 what a ZERO_EXTRACT looks like. Also, some machines have
9408 (and (shift)) insns. */
9410 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9411 /* We can't do this if we have (ashiftrt (xor)) and the
9412 constant has its sign bit set in shift_mode. */
9413 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9414 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9415 shift_mode))
9416 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9417 XEXP (varop, 1),
9418 GEN_INT (count))) != 0
9419 && GET_CODE (new_rtx) == CONST_INT
9420 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9421 INTVAL (new_rtx), result_mode, &complement_p))
9423 varop = XEXP (varop, 0);
9424 continue;
9427 /* If we can't do that, try to simplify the shift in each arm of the
9428 logical expression, make a new logical expression, and apply
9429 the inverse distributive law. This also can't be done
9430 for some (ashiftrt (xor)). */
9431 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9432 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9433 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9434 shift_mode)))
9436 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9437 XEXP (varop, 0), count);
9438 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9439 XEXP (varop, 1), count);
9441 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9442 lhs, rhs);
9443 varop = apply_distributive_law (varop);
9445 count = 0;
9446 continue;
9448 break;
9450 case EQ:
9451 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9452 says that the sign bit can be tested, FOO has mode MODE, C is
9453 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9454 that may be nonzero. */
9455 if (code == LSHIFTRT
9456 && XEXP (varop, 1) == const0_rtx
9457 && GET_MODE (XEXP (varop, 0)) == result_mode
9458 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9459 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9460 && STORE_FLAG_VALUE == -1
9461 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9462 && merge_outer_ops (&outer_op, &outer_const, XOR,
9463 (HOST_WIDE_INT) 1, result_mode,
9464 &complement_p))
9466 varop = XEXP (varop, 0);
9467 count = 0;
9468 continue;
9470 break;
9472 case NEG:
9473 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9474 than the number of bits in the mode is equivalent to A. */
9475 if (code == LSHIFTRT
9476 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9477 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9479 varop = XEXP (varop, 0);
9480 count = 0;
9481 continue;
9484 /* NEG commutes with ASHIFT since it is multiplication. Move the
9485 NEG outside to allow shifts to combine. */
9486 if (code == ASHIFT
9487 && merge_outer_ops (&outer_op, &outer_const, NEG,
9488 (HOST_WIDE_INT) 0, result_mode,
9489 &complement_p))
9491 varop = XEXP (varop, 0);
9492 continue;
9494 break;
9496 case PLUS:
9497 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9498 is one less than the number of bits in the mode is
9499 equivalent to (xor A 1). */
9500 if (code == LSHIFTRT
9501 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9502 && XEXP (varop, 1) == constm1_rtx
9503 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9504 && merge_outer_ops (&outer_op, &outer_const, XOR,
9505 (HOST_WIDE_INT) 1, result_mode,
9506 &complement_p))
9508 count = 0;
9509 varop = XEXP (varop, 0);
9510 continue;
9513 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9514 that might be nonzero in BAR are those being shifted out and those
9515 bits are known zero in FOO, we can replace the PLUS with FOO.
9516 Similarly in the other operand order. This code occurs when
9517 we are computing the size of a variable-size array. */
9519 if ((code == ASHIFTRT || code == LSHIFTRT)
9520 && count < HOST_BITS_PER_WIDE_INT
9521 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9522 && (nonzero_bits (XEXP (varop, 1), result_mode)
9523 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9525 varop = XEXP (varop, 0);
9526 continue;
9528 else if ((code == ASHIFTRT || code == LSHIFTRT)
9529 && count < HOST_BITS_PER_WIDE_INT
9530 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9531 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9532 >> count)
9533 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9534 & nonzero_bits (XEXP (varop, 1),
9535 result_mode)))
9537 varop = XEXP (varop, 1);
9538 continue;
9541 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9542 if (code == ASHIFT
9543 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9544 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9545 XEXP (varop, 1),
9546 GEN_INT (count))) != 0
9547 && GET_CODE (new_rtx) == CONST_INT
9548 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9549 INTVAL (new_rtx), result_mode, &complement_p))
9551 varop = XEXP (varop, 0);
9552 continue;
9555 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9556 signbit', and attempt to change the PLUS to an XOR and move it to
9557 the outer operation as is done above in the AND/IOR/XOR case
9558 leg for shift(logical). See details in logical handling above
9559 for reasoning in doing so. */
9560 if (code == LSHIFTRT
9561 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9562 && mode_signbit_p (result_mode, XEXP (varop, 1))
9563 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9564 XEXP (varop, 1),
9565 GEN_INT (count))) != 0
9566 && GET_CODE (new_rtx) == CONST_INT
9567 && merge_outer_ops (&outer_op, &outer_const, XOR,
9568 INTVAL (new_rtx), result_mode, &complement_p))
9570 varop = XEXP (varop, 0);
9571 continue;
9574 break;
9576 case MINUS:
9577 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9578 with C the size of VAROP - 1 and the shift is logical if
9579 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9580 we have a (gt X 0) operation. If the shift is arithmetic with
9581 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9582 we have a (neg (gt X 0)) operation. */
9584 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9585 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9586 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9587 && (code == LSHIFTRT || code == ASHIFTRT)
9588 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9589 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9590 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9592 count = 0;
9593 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9594 const0_rtx);
9596 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9597 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9599 continue;
9601 break;
9603 case TRUNCATE:
9604 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9605 if the truncate does not affect the value. */
9606 if (code == LSHIFTRT
9607 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9608 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9609 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9610 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9611 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9613 rtx varop_inner = XEXP (varop, 0);
9615 varop_inner
9616 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9617 XEXP (varop_inner, 0),
9618 GEN_INT
9619 (count + INTVAL (XEXP (varop_inner, 1))));
9620 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9621 count = 0;
9622 continue;
9624 break;
9626 default:
9627 break;
9630 break;
9633 /* We need to determine what mode to do the shift in. If the shift is
9634 a right shift or ROTATE, we must always do it in the mode it was
9635 originally done in. Otherwise, we can do it in MODE, the widest mode
9636 encountered. The code we care about is that of the shift that will
9637 actually be done, not the shift that was originally requested. */
9638 shift_mode
9639 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9640 ? result_mode : mode);
9642 /* We have now finished analyzing the shift. The result should be
9643 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9644 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9645 to the result of the shift. OUTER_CONST is the relevant constant,
9646 but we must turn off all bits turned off in the shift. */
9648 if (outer_op == UNKNOWN
9649 && orig_code == code && orig_count == count
9650 && varop == orig_varop
9651 && shift_mode == GET_MODE (varop))
9652 return NULL_RTX;
9654 /* Make a SUBREG if necessary. If we can't make it, fail. */
9655 varop = gen_lowpart (shift_mode, varop);
9656 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9657 return NULL_RTX;
9659 /* If we have an outer operation and we just made a shift, it is
9660 possible that we could have simplified the shift were it not
9661 for the outer operation. So try to do the simplification
9662 recursively. */
9664 if (outer_op != UNKNOWN)
9665 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9666 else
9667 x = NULL_RTX;
9669 if (x == NULL_RTX)
9670 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9672 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9673 turn off all the bits that the shift would have turned off. */
9674 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9675 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9676 GET_MODE_MASK (result_mode) >> orig_count);
9678 /* Do the remainder of the processing in RESULT_MODE. */
9679 x = gen_lowpart_or_truncate (result_mode, x);
9681 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9682 operation. */
9683 if (complement_p)
9684 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9686 if (outer_op != UNKNOWN)
9688 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9689 outer_const = trunc_int_for_mode (outer_const, result_mode);
9691 if (outer_op == AND)
9692 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9693 else if (outer_op == SET)
9695 /* This means that we have determined that the result is
9696 equivalent to a constant. This should be rare. */
9697 if (!side_effects_p (x))
9698 x = GEN_INT (outer_const);
9700 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9701 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9702 else
9703 x = simplify_gen_binary (outer_op, result_mode, x,
9704 GEN_INT (outer_const));
9707 return x;
9710 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9711 The result of the shift is RESULT_MODE. If we cannot simplify it,
9712 return X or, if it is NULL, synthesize the expression with
9713 simplify_gen_binary. Otherwise, return a simplified value.
9715 The shift is normally computed in the widest mode we find in VAROP, as
9716 long as it isn't a different number of words than RESULT_MODE. Exceptions
9717 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9719 static rtx
9720 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9721 rtx varop, int count)
9723 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9724 if (tem)
9725 return tem;
9727 if (!x)
9728 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9729 if (GET_MODE (x) != result_mode)
9730 x = gen_lowpart (result_mode, x);
9731 return x;
9735 /* Like recog, but we receive the address of a pointer to a new pattern.
9736 We try to match the rtx that the pointer points to.
9737 If that fails, we may try to modify or replace the pattern,
9738 storing the replacement into the same pointer object.
9740 Modifications include deletion or addition of CLOBBERs.
9742 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9743 the CLOBBERs are placed.
9745 The value is the final insn code from the pattern ultimately matched,
9746 or -1. */
9748 static int
9749 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9751 rtx pat = *pnewpat;
9752 int insn_code_number;
9753 int num_clobbers_to_add = 0;
9754 int i;
9755 rtx notes = 0;
9756 rtx old_notes, old_pat;
9758 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9759 we use to indicate that something didn't match. If we find such a
9760 thing, force rejection. */
9761 if (GET_CODE (pat) == PARALLEL)
9762 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9763 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9764 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9765 return -1;
9767 old_pat = PATTERN (insn);
9768 old_notes = REG_NOTES (insn);
9769 PATTERN (insn) = pat;
9770 REG_NOTES (insn) = 0;
9772 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9773 if (dump_file && (dump_flags & TDF_DETAILS))
9775 if (insn_code_number < 0)
9776 fputs ("Failed to match this instruction:\n", dump_file);
9777 else
9778 fputs ("Successfully matched this instruction:\n", dump_file);
9779 print_rtl_single (dump_file, pat);
9782 /* If it isn't, there is the possibility that we previously had an insn
9783 that clobbered some register as a side effect, but the combined
9784 insn doesn't need to do that. So try once more without the clobbers
9785 unless this represents an ASM insn. */
9787 if (insn_code_number < 0 && ! check_asm_operands (pat)
9788 && GET_CODE (pat) == PARALLEL)
9790 int pos;
9792 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9793 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9795 if (i != pos)
9796 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9797 pos++;
9800 SUBST_INT (XVECLEN (pat, 0), pos);
9802 if (pos == 1)
9803 pat = XVECEXP (pat, 0, 0);
9805 PATTERN (insn) = pat;
9806 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9807 if (dump_file && (dump_flags & TDF_DETAILS))
9809 if (insn_code_number < 0)
9810 fputs ("Failed to match this instruction:\n", dump_file);
9811 else
9812 fputs ("Successfully matched this instruction:\n", dump_file);
9813 print_rtl_single (dump_file, pat);
9816 PATTERN (insn) = old_pat;
9817 REG_NOTES (insn) = old_notes;
9819 /* Recognize all noop sets, these will be killed by followup pass. */
9820 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9821 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9823 /* If we had any clobbers to add, make a new pattern than contains
9824 them. Then check to make sure that all of them are dead. */
9825 if (num_clobbers_to_add)
9827 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9828 rtvec_alloc (GET_CODE (pat) == PARALLEL
9829 ? (XVECLEN (pat, 0)
9830 + num_clobbers_to_add)
9831 : num_clobbers_to_add + 1));
9833 if (GET_CODE (pat) == PARALLEL)
9834 for (i = 0; i < XVECLEN (pat, 0); i++)
9835 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9836 else
9837 XVECEXP (newpat, 0, 0) = pat;
9839 add_clobbers (newpat, insn_code_number);
9841 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9842 i < XVECLEN (newpat, 0); i++)
9844 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9845 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9846 return -1;
9847 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9849 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9850 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9851 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9854 pat = newpat;
9857 *pnewpat = pat;
9858 *pnotes = notes;
9860 return insn_code_number;
9863 /* Like gen_lowpart_general but for use by combine. In combine it
9864 is not possible to create any new pseudoregs. However, it is
9865 safe to create invalid memory addresses, because combine will
9866 try to recognize them and all they will do is make the combine
9867 attempt fail.
9869 If for some reason this cannot do its job, an rtx
9870 (clobber (const_int 0)) is returned.
9871 An insn containing that will not be recognized. */
9873 static rtx
9874 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9876 enum machine_mode imode = GET_MODE (x);
9877 unsigned int osize = GET_MODE_SIZE (omode);
9878 unsigned int isize = GET_MODE_SIZE (imode);
9879 rtx result;
9881 if (omode == imode)
9882 return x;
9884 /* Return identity if this is a CONST or symbolic reference. */
9885 if (omode == Pmode
9886 && (GET_CODE (x) == CONST
9887 || GET_CODE (x) == SYMBOL_REF
9888 || GET_CODE (x) == LABEL_REF))
9889 return x;
9891 /* We can only support MODE being wider than a word if X is a
9892 constant integer or has a mode the same size. */
9893 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9894 && ! ((imode == VOIDmode
9895 && (GET_CODE (x) == CONST_INT
9896 || GET_CODE (x) == CONST_DOUBLE))
9897 || isize == osize))
9898 goto fail;
9900 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9901 won't know what to do. So we will strip off the SUBREG here and
9902 process normally. */
9903 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9905 x = SUBREG_REG (x);
9907 /* For use in case we fall down into the address adjustments
9908 further below, we need to adjust the known mode and size of
9909 x; imode and isize, since we just adjusted x. */
9910 imode = GET_MODE (x);
9912 if (imode == omode)
9913 return x;
9915 isize = GET_MODE_SIZE (imode);
9918 result = gen_lowpart_common (omode, x);
9920 if (result)
9921 return result;
9923 if (MEM_P (x))
9925 int offset = 0;
9927 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9928 address. */
9929 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9930 goto fail;
9932 /* If we want to refer to something bigger than the original memref,
9933 generate a paradoxical subreg instead. That will force a reload
9934 of the original memref X. */
9935 if (isize < osize)
9936 return gen_rtx_SUBREG (omode, x, 0);
9938 if (WORDS_BIG_ENDIAN)
9939 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9941 /* Adjust the address so that the address-after-the-data is
9942 unchanged. */
9943 if (BYTES_BIG_ENDIAN)
9944 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9946 return adjust_address_nv (x, omode, offset);
9949 /* If X is a comparison operator, rewrite it in a new mode. This
9950 probably won't match, but may allow further simplifications. */
9951 else if (COMPARISON_P (x))
9952 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9954 /* If we couldn't simplify X any other way, just enclose it in a
9955 SUBREG. Normally, this SUBREG won't match, but some patterns may
9956 include an explicit SUBREG or we may simplify it further in combine. */
9957 else
9959 int offset = 0;
9960 rtx res;
9962 offset = subreg_lowpart_offset (omode, imode);
9963 if (imode == VOIDmode)
9965 imode = int_mode_for_mode (omode);
9966 x = gen_lowpart_common (imode, x);
9967 if (x == NULL)
9968 goto fail;
9970 res = simplify_gen_subreg (omode, x, imode, offset);
9971 if (res)
9972 return res;
9975 fail:
9976 return gen_rtx_CLOBBER (imode, const0_rtx);
9979 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9980 comparison code that will be tested.
9982 The result is a possibly different comparison code to use. *POP0 and
9983 *POP1 may be updated.
9985 It is possible that we might detect that a comparison is either always
9986 true or always false. However, we do not perform general constant
9987 folding in combine, so this knowledge isn't useful. Such tautologies
9988 should have been detected earlier. Hence we ignore all such cases. */
9990 static enum rtx_code
9991 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9993 rtx op0 = *pop0;
9994 rtx op1 = *pop1;
9995 rtx tem, tem1;
9996 int i;
9997 enum machine_mode mode, tmode;
9999 /* Try a few ways of applying the same transformation to both operands. */
10000 while (1)
10002 #ifndef WORD_REGISTER_OPERATIONS
10003 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10004 so check specially. */
10005 if (code != GTU && code != GEU && code != LTU && code != LEU
10006 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10007 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10008 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10009 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10010 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10011 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10012 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10013 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10014 && XEXP (op0, 1) == XEXP (op1, 1)
10015 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10016 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10017 && (INTVAL (XEXP (op0, 1))
10018 == (GET_MODE_BITSIZE (GET_MODE (op0))
10019 - (GET_MODE_BITSIZE
10020 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10022 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10023 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10025 #endif
10027 /* If both operands are the same constant shift, see if we can ignore the
10028 shift. We can if the shift is a rotate or if the bits shifted out of
10029 this shift are known to be zero for both inputs and if the type of
10030 comparison is compatible with the shift. */
10031 if (GET_CODE (op0) == GET_CODE (op1)
10032 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10033 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10034 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10035 && (code != GT && code != LT && code != GE && code != LE))
10036 || (GET_CODE (op0) == ASHIFTRT
10037 && (code != GTU && code != LTU
10038 && code != GEU && code != LEU)))
10039 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10040 && INTVAL (XEXP (op0, 1)) >= 0
10041 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10042 && XEXP (op0, 1) == XEXP (op1, 1))
10044 enum machine_mode mode = GET_MODE (op0);
10045 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10046 int shift_count = INTVAL (XEXP (op0, 1));
10048 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10049 mask &= (mask >> shift_count) << shift_count;
10050 else if (GET_CODE (op0) == ASHIFT)
10051 mask = (mask & (mask << shift_count)) >> shift_count;
10053 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10054 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10055 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10056 else
10057 break;
10060 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10061 SUBREGs are of the same mode, and, in both cases, the AND would
10062 be redundant if the comparison was done in the narrower mode,
10063 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10064 and the operand's possibly nonzero bits are 0xffffff01; in that case
10065 if we only care about QImode, we don't need the AND). This case
10066 occurs if the output mode of an scc insn is not SImode and
10067 STORE_FLAG_VALUE == 1 (e.g., the 386).
10069 Similarly, check for a case where the AND's are ZERO_EXTEND
10070 operations from some narrower mode even though a SUBREG is not
10071 present. */
10073 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10074 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10075 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10077 rtx inner_op0 = XEXP (op0, 0);
10078 rtx inner_op1 = XEXP (op1, 0);
10079 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10080 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10081 int changed = 0;
10083 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10084 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10085 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10086 && (GET_MODE (SUBREG_REG (inner_op0))
10087 == GET_MODE (SUBREG_REG (inner_op1)))
10088 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10089 <= HOST_BITS_PER_WIDE_INT)
10090 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10091 GET_MODE (SUBREG_REG (inner_op0)))))
10092 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10093 GET_MODE (SUBREG_REG (inner_op1))))))
10095 op0 = SUBREG_REG (inner_op0);
10096 op1 = SUBREG_REG (inner_op1);
10098 /* The resulting comparison is always unsigned since we masked
10099 off the original sign bit. */
10100 code = unsigned_condition (code);
10102 changed = 1;
10105 else if (c0 == c1)
10106 for (tmode = GET_CLASS_NARROWEST_MODE
10107 (GET_MODE_CLASS (GET_MODE (op0)));
10108 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10109 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10111 op0 = gen_lowpart (tmode, inner_op0);
10112 op1 = gen_lowpart (tmode, inner_op1);
10113 code = unsigned_condition (code);
10114 changed = 1;
10115 break;
10118 if (! changed)
10119 break;
10122 /* If both operands are NOT, we can strip off the outer operation
10123 and adjust the comparison code for swapped operands; similarly for
10124 NEG, except that this must be an equality comparison. */
10125 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10126 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10127 && (code == EQ || code == NE)))
10128 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10130 else
10131 break;
10134 /* If the first operand is a constant, swap the operands and adjust the
10135 comparison code appropriately, but don't do this if the second operand
10136 is already a constant integer. */
10137 if (swap_commutative_operands_p (op0, op1))
10139 tem = op0, op0 = op1, op1 = tem;
10140 code = swap_condition (code);
10143 /* We now enter a loop during which we will try to simplify the comparison.
10144 For the most part, we only are concerned with comparisons with zero,
10145 but some things may really be comparisons with zero but not start
10146 out looking that way. */
10148 while (GET_CODE (op1) == CONST_INT)
10150 enum machine_mode mode = GET_MODE (op0);
10151 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10152 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10153 int equality_comparison_p;
10154 int sign_bit_comparison_p;
10155 int unsigned_comparison_p;
10156 HOST_WIDE_INT const_op;
10158 /* We only want to handle integral modes. This catches VOIDmode,
10159 CCmode, and the floating-point modes. An exception is that we
10160 can handle VOIDmode if OP0 is a COMPARE or a comparison
10161 operation. */
10163 if (GET_MODE_CLASS (mode) != MODE_INT
10164 && ! (mode == VOIDmode
10165 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10166 break;
10168 /* Get the constant we are comparing against and turn off all bits
10169 not on in our mode. */
10170 const_op = INTVAL (op1);
10171 if (mode != VOIDmode)
10172 const_op = trunc_int_for_mode (const_op, mode);
10173 op1 = GEN_INT (const_op);
10175 /* If we are comparing against a constant power of two and the value
10176 being compared can only have that single bit nonzero (e.g., it was
10177 `and'ed with that bit), we can replace this with a comparison
10178 with zero. */
10179 if (const_op
10180 && (code == EQ || code == NE || code == GE || code == GEU
10181 || code == LT || code == LTU)
10182 && mode_width <= HOST_BITS_PER_WIDE_INT
10183 && exact_log2 (const_op) >= 0
10184 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10186 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10187 op1 = const0_rtx, const_op = 0;
10190 /* Similarly, if we are comparing a value known to be either -1 or
10191 0 with -1, change it to the opposite comparison against zero. */
10193 if (const_op == -1
10194 && (code == EQ || code == NE || code == GT || code == LE
10195 || code == GEU || code == LTU)
10196 && num_sign_bit_copies (op0, mode) == mode_width)
10198 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10199 op1 = const0_rtx, const_op = 0;
10202 /* Do some canonicalizations based on the comparison code. We prefer
10203 comparisons against zero and then prefer equality comparisons.
10204 If we can reduce the size of a constant, we will do that too. */
10206 switch (code)
10208 case LT:
10209 /* < C is equivalent to <= (C - 1) */
10210 if (const_op > 0)
10212 const_op -= 1;
10213 op1 = GEN_INT (const_op);
10214 code = LE;
10215 /* ... fall through to LE case below. */
10217 else
10218 break;
10220 case LE:
10221 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10222 if (const_op < 0)
10224 const_op += 1;
10225 op1 = GEN_INT (const_op);
10226 code = LT;
10229 /* If we are doing a <= 0 comparison on a value known to have
10230 a zero sign bit, we can replace this with == 0. */
10231 else if (const_op == 0
10232 && mode_width <= HOST_BITS_PER_WIDE_INT
10233 && (nonzero_bits (op0, mode)
10234 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10235 code = EQ;
10236 break;
10238 case GE:
10239 /* >= C is equivalent to > (C - 1). */
10240 if (const_op > 0)
10242 const_op -= 1;
10243 op1 = GEN_INT (const_op);
10244 code = GT;
10245 /* ... fall through to GT below. */
10247 else
10248 break;
10250 case GT:
10251 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10252 if (const_op < 0)
10254 const_op += 1;
10255 op1 = GEN_INT (const_op);
10256 code = GE;
10259 /* If we are doing a > 0 comparison on a value known to have
10260 a zero sign bit, we can replace this with != 0. */
10261 else if (const_op == 0
10262 && mode_width <= HOST_BITS_PER_WIDE_INT
10263 && (nonzero_bits (op0, mode)
10264 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10265 code = NE;
10266 break;
10268 case LTU:
10269 /* < C is equivalent to <= (C - 1). */
10270 if (const_op > 0)
10272 const_op -= 1;
10273 op1 = GEN_INT (const_op);
10274 code = LEU;
10275 /* ... fall through ... */
10278 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10279 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10280 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10282 const_op = 0, op1 = const0_rtx;
10283 code = GE;
10284 break;
10286 else
10287 break;
10289 case LEU:
10290 /* unsigned <= 0 is equivalent to == 0 */
10291 if (const_op == 0)
10292 code = EQ;
10294 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10295 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10296 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10298 const_op = 0, op1 = const0_rtx;
10299 code = GE;
10301 break;
10303 case GEU:
10304 /* >= C is equivalent to > (C - 1). */
10305 if (const_op > 1)
10307 const_op -= 1;
10308 op1 = GEN_INT (const_op);
10309 code = GTU;
10310 /* ... fall through ... */
10313 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10314 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10315 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10317 const_op = 0, op1 = const0_rtx;
10318 code = LT;
10319 break;
10321 else
10322 break;
10324 case GTU:
10325 /* unsigned > 0 is equivalent to != 0 */
10326 if (const_op == 0)
10327 code = NE;
10329 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10330 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10331 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10333 const_op = 0, op1 = const0_rtx;
10334 code = LT;
10336 break;
10338 default:
10339 break;
10342 /* Compute some predicates to simplify code below. */
10344 equality_comparison_p = (code == EQ || code == NE);
10345 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10346 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10347 || code == GEU);
10349 /* If this is a sign bit comparison and we can do arithmetic in
10350 MODE, say that we will only be needing the sign bit of OP0. */
10351 if (sign_bit_comparison_p
10352 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10353 op0 = force_to_mode (op0, mode,
10354 ((HOST_WIDE_INT) 1
10355 << (GET_MODE_BITSIZE (mode) - 1)),
10358 /* Now try cases based on the opcode of OP0. If none of the cases
10359 does a "continue", we exit this loop immediately after the
10360 switch. */
10362 switch (GET_CODE (op0))
10364 case ZERO_EXTRACT:
10365 /* If we are extracting a single bit from a variable position in
10366 a constant that has only a single bit set and are comparing it
10367 with zero, we can convert this into an equality comparison
10368 between the position and the location of the single bit. */
10369 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10370 have already reduced the shift count modulo the word size. */
10371 if (!SHIFT_COUNT_TRUNCATED
10372 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10373 && XEXP (op0, 1) == const1_rtx
10374 && equality_comparison_p && const_op == 0
10375 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10377 if (BITS_BIG_ENDIAN)
10379 enum machine_mode new_mode
10380 = mode_for_extraction (EP_extzv, 1);
10381 if (new_mode == MAX_MACHINE_MODE)
10382 i = BITS_PER_WORD - 1 - i;
10383 else
10385 mode = new_mode;
10386 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10390 op0 = XEXP (op0, 2);
10391 op1 = GEN_INT (i);
10392 const_op = i;
10394 /* Result is nonzero iff shift count is equal to I. */
10395 code = reverse_condition (code);
10396 continue;
10399 /* ... fall through ... */
10401 case SIGN_EXTRACT:
10402 tem = expand_compound_operation (op0);
10403 if (tem != op0)
10405 op0 = tem;
10406 continue;
10408 break;
10410 case NOT:
10411 /* If testing for equality, we can take the NOT of the constant. */
10412 if (equality_comparison_p
10413 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10415 op0 = XEXP (op0, 0);
10416 op1 = tem;
10417 continue;
10420 /* If just looking at the sign bit, reverse the sense of the
10421 comparison. */
10422 if (sign_bit_comparison_p)
10424 op0 = XEXP (op0, 0);
10425 code = (code == GE ? LT : GE);
10426 continue;
10428 break;
10430 case NEG:
10431 /* If testing for equality, we can take the NEG of the constant. */
10432 if (equality_comparison_p
10433 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10435 op0 = XEXP (op0, 0);
10436 op1 = tem;
10437 continue;
10440 /* The remaining cases only apply to comparisons with zero. */
10441 if (const_op != 0)
10442 break;
10444 /* When X is ABS or is known positive,
10445 (neg X) is < 0 if and only if X != 0. */
10447 if (sign_bit_comparison_p
10448 && (GET_CODE (XEXP (op0, 0)) == ABS
10449 || (mode_width <= HOST_BITS_PER_WIDE_INT
10450 && (nonzero_bits (XEXP (op0, 0), mode)
10451 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10453 op0 = XEXP (op0, 0);
10454 code = (code == LT ? NE : EQ);
10455 continue;
10458 /* If we have NEG of something whose two high-order bits are the
10459 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10460 if (num_sign_bit_copies (op0, mode) >= 2)
10462 op0 = XEXP (op0, 0);
10463 code = swap_condition (code);
10464 continue;
10466 break;
10468 case ROTATE:
10469 /* If we are testing equality and our count is a constant, we
10470 can perform the inverse operation on our RHS. */
10471 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10472 && (tem = simplify_binary_operation (ROTATERT, mode,
10473 op1, XEXP (op0, 1))) != 0)
10475 op0 = XEXP (op0, 0);
10476 op1 = tem;
10477 continue;
10480 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10481 a particular bit. Convert it to an AND of a constant of that
10482 bit. This will be converted into a ZERO_EXTRACT. */
10483 if (const_op == 0 && sign_bit_comparison_p
10484 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10485 && mode_width <= HOST_BITS_PER_WIDE_INT)
10487 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10488 ((HOST_WIDE_INT) 1
10489 << (mode_width - 1
10490 - INTVAL (XEXP (op0, 1)))));
10491 code = (code == LT ? NE : EQ);
10492 continue;
10495 /* Fall through. */
10497 case ABS:
10498 /* ABS is ignorable inside an equality comparison with zero. */
10499 if (const_op == 0 && equality_comparison_p)
10501 op0 = XEXP (op0, 0);
10502 continue;
10504 break;
10506 case SIGN_EXTEND:
10507 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10508 (compare FOO CONST) if CONST fits in FOO's mode and we
10509 are either testing inequality or have an unsigned
10510 comparison with ZERO_EXTEND or a signed comparison with
10511 SIGN_EXTEND. But don't do it if we don't have a compare
10512 insn of the given mode, since we'd have to revert it
10513 later on, and then we wouldn't know whether to sign- or
10514 zero-extend. */
10515 mode = GET_MODE (XEXP (op0, 0));
10516 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10517 && ! unsigned_comparison_p
10518 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10519 && ((unsigned HOST_WIDE_INT) const_op
10520 < (((unsigned HOST_WIDE_INT) 1
10521 << (GET_MODE_BITSIZE (mode) - 1))))
10522 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10524 op0 = XEXP (op0, 0);
10525 continue;
10527 break;
10529 case SUBREG:
10530 /* Check for the case where we are comparing A - C1 with C2, that is
10532 (subreg:MODE (plus (A) (-C1))) op (C2)
10534 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10535 comparison in the wider mode. One of the following two conditions
10536 must be true in order for this to be valid:
10538 1. The mode extension results in the same bit pattern being added
10539 on both sides and the comparison is equality or unsigned. As
10540 C2 has been truncated to fit in MODE, the pattern can only be
10541 all 0s or all 1s.
10543 2. The mode extension results in the sign bit being copied on
10544 each side.
10546 The difficulty here is that we have predicates for A but not for
10547 (A - C1) so we need to check that C1 is within proper bounds so
10548 as to perturbate A as little as possible. */
10550 if (mode_width <= HOST_BITS_PER_WIDE_INT
10551 && subreg_lowpart_p (op0)
10552 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10553 && GET_CODE (SUBREG_REG (op0)) == PLUS
10554 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10556 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10557 rtx a = XEXP (SUBREG_REG (op0), 0);
10558 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10560 if ((c1 > 0
10561 && (unsigned HOST_WIDE_INT) c1
10562 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10563 && (equality_comparison_p || unsigned_comparison_p)
10564 /* (A - C1) zero-extends if it is positive and sign-extends
10565 if it is negative, C2 both zero- and sign-extends. */
10566 && ((0 == (nonzero_bits (a, inner_mode)
10567 & ~GET_MODE_MASK (mode))
10568 && const_op >= 0)
10569 /* (A - C1) sign-extends if it is positive and 1-extends
10570 if it is negative, C2 both sign- and 1-extends. */
10571 || (num_sign_bit_copies (a, inner_mode)
10572 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10573 - mode_width)
10574 && const_op < 0)))
10575 || ((unsigned HOST_WIDE_INT) c1
10576 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10577 /* (A - C1) always sign-extends, like C2. */
10578 && num_sign_bit_copies (a, inner_mode)
10579 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10580 - (mode_width - 1))))
10582 op0 = SUBREG_REG (op0);
10583 continue;
10587 /* If the inner mode is narrower and we are extracting the low part,
10588 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10589 if (subreg_lowpart_p (op0)
10590 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10591 /* Fall through */ ;
10592 else
10593 break;
10595 /* ... fall through ... */
10597 case ZERO_EXTEND:
10598 mode = GET_MODE (XEXP (op0, 0));
10599 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10600 && (unsigned_comparison_p || equality_comparison_p)
10601 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10602 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10603 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10605 op0 = XEXP (op0, 0);
10606 continue;
10608 break;
10610 case PLUS:
10611 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10612 this for equality comparisons due to pathological cases involving
10613 overflows. */
10614 if (equality_comparison_p
10615 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10616 op1, XEXP (op0, 1))))
10618 op0 = XEXP (op0, 0);
10619 op1 = tem;
10620 continue;
10623 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10624 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10625 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10627 op0 = XEXP (XEXP (op0, 0), 0);
10628 code = (code == LT ? EQ : NE);
10629 continue;
10631 break;
10633 case MINUS:
10634 /* We used to optimize signed comparisons against zero, but that
10635 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10636 arrive here as equality comparisons, or (GEU, LTU) are
10637 optimized away. No need to special-case them. */
10639 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10640 (eq B (minus A C)), whichever simplifies. We can only do
10641 this for equality comparisons due to pathological cases involving
10642 overflows. */
10643 if (equality_comparison_p
10644 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10645 XEXP (op0, 1), op1)))
10647 op0 = XEXP (op0, 0);
10648 op1 = tem;
10649 continue;
10652 if (equality_comparison_p
10653 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10654 XEXP (op0, 0), op1)))
10656 op0 = XEXP (op0, 1);
10657 op1 = tem;
10658 continue;
10661 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10662 of bits in X minus 1, is one iff X > 0. */
10663 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10664 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10665 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10666 == mode_width - 1
10667 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10669 op0 = XEXP (op0, 1);
10670 code = (code == GE ? LE : GT);
10671 continue;
10673 break;
10675 case XOR:
10676 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10677 if C is zero or B is a constant. */
10678 if (equality_comparison_p
10679 && 0 != (tem = simplify_binary_operation (XOR, mode,
10680 XEXP (op0, 1), op1)))
10682 op0 = XEXP (op0, 0);
10683 op1 = tem;
10684 continue;
10686 break;
10688 case EQ: case NE:
10689 case UNEQ: case LTGT:
10690 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10691 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10692 case UNORDERED: case ORDERED:
10693 /* We can't do anything if OP0 is a condition code value, rather
10694 than an actual data value. */
10695 if (const_op != 0
10696 || CC0_P (XEXP (op0, 0))
10697 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10698 break;
10700 /* Get the two operands being compared. */
10701 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10702 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10703 else
10704 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10706 /* Check for the cases where we simply want the result of the
10707 earlier test or the opposite of that result. */
10708 if (code == NE || code == EQ
10709 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10710 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10711 && (STORE_FLAG_VALUE
10712 & (((HOST_WIDE_INT) 1
10713 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10714 && (code == LT || code == GE)))
10716 enum rtx_code new_code;
10717 if (code == LT || code == NE)
10718 new_code = GET_CODE (op0);
10719 else
10720 new_code = reversed_comparison_code (op0, NULL);
10722 if (new_code != UNKNOWN)
10724 code = new_code;
10725 op0 = tem;
10726 op1 = tem1;
10727 continue;
10730 break;
10732 case IOR:
10733 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10734 iff X <= 0. */
10735 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10736 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10737 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10739 op0 = XEXP (op0, 1);
10740 code = (code == GE ? GT : LE);
10741 continue;
10743 break;
10745 case AND:
10746 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10747 will be converted to a ZERO_EXTRACT later. */
10748 if (const_op == 0 && equality_comparison_p
10749 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10750 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10752 op0 = simplify_and_const_int
10753 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10754 XEXP (op0, 1),
10755 XEXP (XEXP (op0, 0), 1)),
10756 (HOST_WIDE_INT) 1);
10757 continue;
10760 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10761 zero and X is a comparison and C1 and C2 describe only bits set
10762 in STORE_FLAG_VALUE, we can compare with X. */
10763 if (const_op == 0 && equality_comparison_p
10764 && mode_width <= HOST_BITS_PER_WIDE_INT
10765 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10766 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10767 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10768 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10769 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10771 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10772 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10773 if ((~STORE_FLAG_VALUE & mask) == 0
10774 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10775 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10776 && COMPARISON_P (tem))))
10778 op0 = XEXP (XEXP (op0, 0), 0);
10779 continue;
10783 /* If we are doing an equality comparison of an AND of a bit equal
10784 to the sign bit, replace this with a LT or GE comparison of
10785 the underlying value. */
10786 if (equality_comparison_p
10787 && const_op == 0
10788 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10789 && mode_width <= HOST_BITS_PER_WIDE_INT
10790 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10791 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10793 op0 = XEXP (op0, 0);
10794 code = (code == EQ ? GE : LT);
10795 continue;
10798 /* If this AND operation is really a ZERO_EXTEND from a narrower
10799 mode, the constant fits within that mode, and this is either an
10800 equality or unsigned comparison, try to do this comparison in
10801 the narrower mode.
10803 Note that in:
10805 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10806 -> (ne:DI (reg:SI 4) (const_int 0))
10808 unless TRULY_NOOP_TRUNCATION allows it or the register is
10809 known to hold a value of the required mode the
10810 transformation is invalid. */
10811 if ((equality_comparison_p || unsigned_comparison_p)
10812 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10813 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10814 & GET_MODE_MASK (mode))
10815 + 1)) >= 0
10816 && const_op >> i == 0
10817 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10818 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10819 GET_MODE_BITSIZE (GET_MODE (op0)))
10820 || (REG_P (XEXP (op0, 0))
10821 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10823 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10824 continue;
10827 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10828 fits in both M1 and M2 and the SUBREG is either paradoxical
10829 or represents the low part, permute the SUBREG and the AND
10830 and try again. */
10831 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10833 unsigned HOST_WIDE_INT c1;
10834 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10835 /* Require an integral mode, to avoid creating something like
10836 (AND:SF ...). */
10837 if (SCALAR_INT_MODE_P (tmode)
10838 /* It is unsafe to commute the AND into the SUBREG if the
10839 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10840 not defined. As originally written the upper bits
10841 have a defined value due to the AND operation.
10842 However, if we commute the AND inside the SUBREG then
10843 they no longer have defined values and the meaning of
10844 the code has been changed. */
10845 && (0
10846 #ifdef WORD_REGISTER_OPERATIONS
10847 || (mode_width > GET_MODE_BITSIZE (tmode)
10848 && mode_width <= BITS_PER_WORD)
10849 #endif
10850 || (mode_width <= GET_MODE_BITSIZE (tmode)
10851 && subreg_lowpart_p (XEXP (op0, 0))))
10852 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10853 && mode_width <= HOST_BITS_PER_WIDE_INT
10854 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10855 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10856 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10857 && c1 != mask
10858 && c1 != GET_MODE_MASK (tmode))
10860 op0 = simplify_gen_binary (AND, tmode,
10861 SUBREG_REG (XEXP (op0, 0)),
10862 gen_int_mode (c1, tmode));
10863 op0 = gen_lowpart (mode, op0);
10864 continue;
10868 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10869 if (const_op == 0 && equality_comparison_p
10870 && XEXP (op0, 1) == const1_rtx
10871 && GET_CODE (XEXP (op0, 0)) == NOT)
10873 op0 = simplify_and_const_int
10874 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10875 code = (code == NE ? EQ : NE);
10876 continue;
10879 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10880 (eq (and (lshiftrt X) 1) 0).
10881 Also handle the case where (not X) is expressed using xor. */
10882 if (const_op == 0 && equality_comparison_p
10883 && XEXP (op0, 1) == const1_rtx
10884 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10886 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10887 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10889 if (GET_CODE (shift_op) == NOT
10890 || (GET_CODE (shift_op) == XOR
10891 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10892 && GET_CODE (shift_count) == CONST_INT
10893 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10894 && (INTVAL (XEXP (shift_op, 1))
10895 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10897 op0 = simplify_and_const_int
10898 (NULL_RTX, mode,
10899 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10900 (HOST_WIDE_INT) 1);
10901 code = (code == NE ? EQ : NE);
10902 continue;
10905 break;
10907 case ASHIFT:
10908 /* If we have (compare (ashift FOO N) (const_int C)) and
10909 the high order N bits of FOO (N+1 if an inequality comparison)
10910 are known to be zero, we can do this by comparing FOO with C
10911 shifted right N bits so long as the low-order N bits of C are
10912 zero. */
10913 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10914 && INTVAL (XEXP (op0, 1)) >= 0
10915 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10916 < HOST_BITS_PER_WIDE_INT)
10917 && ((const_op
10918 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10919 && mode_width <= HOST_BITS_PER_WIDE_INT
10920 && (nonzero_bits (XEXP (op0, 0), mode)
10921 & ~(mask >> (INTVAL (XEXP (op0, 1))
10922 + ! equality_comparison_p))) == 0)
10924 /* We must perform a logical shift, not an arithmetic one,
10925 as we want the top N bits of C to be zero. */
10926 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10928 temp >>= INTVAL (XEXP (op0, 1));
10929 op1 = gen_int_mode (temp, mode);
10930 op0 = XEXP (op0, 0);
10931 continue;
10934 /* If we are doing a sign bit comparison, it means we are testing
10935 a particular bit. Convert it to the appropriate AND. */
10936 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10937 && mode_width <= HOST_BITS_PER_WIDE_INT)
10939 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10940 ((HOST_WIDE_INT) 1
10941 << (mode_width - 1
10942 - INTVAL (XEXP (op0, 1)))));
10943 code = (code == LT ? NE : EQ);
10944 continue;
10947 /* If this an equality comparison with zero and we are shifting
10948 the low bit to the sign bit, we can convert this to an AND of the
10949 low-order bit. */
10950 if (const_op == 0 && equality_comparison_p
10951 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10952 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10953 == mode_width - 1)
10955 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10956 (HOST_WIDE_INT) 1);
10957 continue;
10959 break;
10961 case ASHIFTRT:
10962 /* If this is an equality comparison with zero, we can do this
10963 as a logical shift, which might be much simpler. */
10964 if (equality_comparison_p && const_op == 0
10965 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10967 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10968 XEXP (op0, 0),
10969 INTVAL (XEXP (op0, 1)));
10970 continue;
10973 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10974 do the comparison in a narrower mode. */
10975 if (! unsigned_comparison_p
10976 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10977 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10978 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10979 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10980 MODE_INT, 1)) != BLKmode
10981 && (((unsigned HOST_WIDE_INT) const_op
10982 + (GET_MODE_MASK (tmode) >> 1) + 1)
10983 <= GET_MODE_MASK (tmode)))
10985 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10986 continue;
10989 /* Likewise if OP0 is a PLUS of a sign extension with a
10990 constant, which is usually represented with the PLUS
10991 between the shifts. */
10992 if (! unsigned_comparison_p
10993 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10994 && GET_CODE (XEXP (op0, 0)) == PLUS
10995 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10996 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10997 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10998 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10999 MODE_INT, 1)) != BLKmode
11000 && (((unsigned HOST_WIDE_INT) const_op
11001 + (GET_MODE_MASK (tmode) >> 1) + 1)
11002 <= GET_MODE_MASK (tmode)))
11004 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11005 rtx add_const = XEXP (XEXP (op0, 0), 1);
11006 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11007 add_const, XEXP (op0, 1));
11009 op0 = simplify_gen_binary (PLUS, tmode,
11010 gen_lowpart (tmode, inner),
11011 new_const);
11012 continue;
11015 /* ... fall through ... */
11016 case LSHIFTRT:
11017 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11018 the low order N bits of FOO are known to be zero, we can do this
11019 by comparing FOO with C shifted left N bits so long as no
11020 overflow occurs. */
11021 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11022 && INTVAL (XEXP (op0, 1)) >= 0
11023 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11024 && mode_width <= HOST_BITS_PER_WIDE_INT
11025 && (nonzero_bits (XEXP (op0, 0), mode)
11026 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11027 && (((unsigned HOST_WIDE_INT) const_op
11028 + (GET_CODE (op0) != LSHIFTRT
11029 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11030 + 1)
11031 : 0))
11032 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11034 /* If the shift was logical, then we must make the condition
11035 unsigned. */
11036 if (GET_CODE (op0) == LSHIFTRT)
11037 code = unsigned_condition (code);
11039 const_op <<= INTVAL (XEXP (op0, 1));
11040 op1 = GEN_INT (const_op);
11041 op0 = XEXP (op0, 0);
11042 continue;
11045 /* If we are using this shift to extract just the sign bit, we
11046 can replace this with an LT or GE comparison. */
11047 if (const_op == 0
11048 && (equality_comparison_p || sign_bit_comparison_p)
11049 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11050 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11051 == mode_width - 1)
11053 op0 = XEXP (op0, 0);
11054 code = (code == NE || code == GT ? LT : GE);
11055 continue;
11057 break;
11059 default:
11060 break;
11063 break;
11066 /* Now make any compound operations involved in this comparison. Then,
11067 check for an outmost SUBREG on OP0 that is not doing anything or is
11068 paradoxical. The latter transformation must only be performed when
11069 it is known that the "extra" bits will be the same in op0 and op1 or
11070 that they don't matter. There are three cases to consider:
11072 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11073 care bits and we can assume they have any convenient value. So
11074 making the transformation is safe.
11076 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11077 In this case the upper bits of op0 are undefined. We should not make
11078 the simplification in that case as we do not know the contents of
11079 those bits.
11081 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11082 UNKNOWN. In that case we know those bits are zeros or ones. We must
11083 also be sure that they are the same as the upper bits of op1.
11085 We can never remove a SUBREG for a non-equality comparison because
11086 the sign bit is in a different place in the underlying object. */
11088 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11089 op1 = make_compound_operation (op1, SET);
11091 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11092 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11093 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11094 && (code == NE || code == EQ))
11096 if (GET_MODE_SIZE (GET_MODE (op0))
11097 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11099 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11100 implemented. */
11101 if (REG_P (SUBREG_REG (op0)))
11103 op0 = SUBREG_REG (op0);
11104 op1 = gen_lowpart (GET_MODE (op0), op1);
11107 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11108 <= HOST_BITS_PER_WIDE_INT)
11109 && (nonzero_bits (SUBREG_REG (op0),
11110 GET_MODE (SUBREG_REG (op0)))
11111 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11113 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11115 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11116 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11117 op0 = SUBREG_REG (op0), op1 = tem;
11121 /* We now do the opposite procedure: Some machines don't have compare
11122 insns in all modes. If OP0's mode is an integer mode smaller than a
11123 word and we can't do a compare in that mode, see if there is a larger
11124 mode for which we can do the compare. There are a number of cases in
11125 which we can use the wider mode. */
11127 mode = GET_MODE (op0);
11128 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11129 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11130 && ! have_insn_for (COMPARE, mode))
11131 for (tmode = GET_MODE_WIDER_MODE (mode);
11132 (tmode != VOIDmode
11133 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11134 tmode = GET_MODE_WIDER_MODE (tmode))
11135 if (have_insn_for (COMPARE, tmode))
11137 int zero_extended;
11139 /* If the only nonzero bits in OP0 and OP1 are those in the
11140 narrower mode and this is an equality or unsigned comparison,
11141 we can use the wider mode. Similarly for sign-extended
11142 values, in which case it is true for all comparisons. */
11143 zero_extended = ((code == EQ || code == NE
11144 || code == GEU || code == GTU
11145 || code == LEU || code == LTU)
11146 && (nonzero_bits (op0, tmode)
11147 & ~GET_MODE_MASK (mode)) == 0
11148 && ((GET_CODE (op1) == CONST_INT
11149 || (nonzero_bits (op1, tmode)
11150 & ~GET_MODE_MASK (mode)) == 0)));
11152 if (zero_extended
11153 || ((num_sign_bit_copies (op0, tmode)
11154 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11155 - GET_MODE_BITSIZE (mode)))
11156 && (num_sign_bit_copies (op1, tmode)
11157 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11158 - GET_MODE_BITSIZE (mode)))))
11160 /* If OP0 is an AND and we don't have an AND in MODE either,
11161 make a new AND in the proper mode. */
11162 if (GET_CODE (op0) == AND
11163 && !have_insn_for (AND, mode))
11164 op0 = simplify_gen_binary (AND, tmode,
11165 gen_lowpart (tmode,
11166 XEXP (op0, 0)),
11167 gen_lowpart (tmode,
11168 XEXP (op0, 1)));
11170 op0 = gen_lowpart (tmode, op0);
11171 if (zero_extended && GET_CODE (op1) == CONST_INT)
11172 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11173 op1 = gen_lowpart (tmode, op1);
11174 break;
11177 /* If this is a test for negative, we can make an explicit
11178 test of the sign bit. */
11180 if (op1 == const0_rtx && (code == LT || code == GE)
11181 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11183 op0 = simplify_gen_binary (AND, tmode,
11184 gen_lowpart (tmode, op0),
11185 GEN_INT ((HOST_WIDE_INT) 1
11186 << (GET_MODE_BITSIZE (mode)
11187 - 1)));
11188 code = (code == LT) ? NE : EQ;
11189 break;
11193 #ifdef CANONICALIZE_COMPARISON
11194 /* If this machine only supports a subset of valid comparisons, see if we
11195 can convert an unsupported one into a supported one. */
11196 CANONICALIZE_COMPARISON (code, op0, op1);
11197 #endif
11199 *pop0 = op0;
11200 *pop1 = op1;
11202 return code;
11205 /* Utility function for record_value_for_reg. Count number of
11206 rtxs in X. */
11207 static int
11208 count_rtxs (rtx x)
11210 enum rtx_code code = GET_CODE (x);
11211 const char *fmt;
11212 int i, j, ret = 1;
11214 if (GET_RTX_CLASS (code) == '2'
11215 || GET_RTX_CLASS (code) == 'c')
11217 rtx x0 = XEXP (x, 0);
11218 rtx x1 = XEXP (x, 1);
11220 if (x0 == x1)
11221 return 1 + 2 * count_rtxs (x0);
11223 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11224 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11225 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11226 return 2 + 2 * count_rtxs (x0)
11227 + count_rtxs (x == XEXP (x1, 0)
11228 ? XEXP (x1, 1) : XEXP (x1, 0));
11230 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11231 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11232 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11233 return 2 + 2 * count_rtxs (x1)
11234 + count_rtxs (x == XEXP (x0, 0)
11235 ? XEXP (x0, 1) : XEXP (x0, 0));
11238 fmt = GET_RTX_FORMAT (code);
11239 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11240 if (fmt[i] == 'e')
11241 ret += count_rtxs (XEXP (x, i));
11242 else if (fmt[i] == 'E')
11243 for (j = 0; j < XVECLEN (x, i); j++)
11244 ret += count_rtxs (XVECEXP (x, i, j));
11246 return ret;
11249 /* Utility function for following routine. Called when X is part of a value
11250 being stored into last_set_value. Sets last_set_table_tick
11251 for each register mentioned. Similar to mention_regs in cse.c */
11253 static void
11254 update_table_tick (rtx x)
11256 enum rtx_code code = GET_CODE (x);
11257 const char *fmt = GET_RTX_FORMAT (code);
11258 int i, j;
11260 if (code == REG)
11262 unsigned int regno = REGNO (x);
11263 unsigned int endregno = END_REGNO (x);
11264 unsigned int r;
11266 for (r = regno; r < endregno; r++)
11268 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11269 rsp->last_set_table_tick = label_tick;
11272 return;
11275 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11276 if (fmt[i] == 'e')
11278 /* Check for identical subexpressions. If x contains
11279 identical subexpression we only have to traverse one of
11280 them. */
11281 if (i == 0 && ARITHMETIC_P (x))
11283 /* Note that at this point x1 has already been
11284 processed. */
11285 rtx x0 = XEXP (x, 0);
11286 rtx x1 = XEXP (x, 1);
11288 /* If x0 and x1 are identical then there is no need to
11289 process x0. */
11290 if (x0 == x1)
11291 break;
11293 /* If x0 is identical to a subexpression of x1 then while
11294 processing x1, x0 has already been processed. Thus we
11295 are done with x. */
11296 if (ARITHMETIC_P (x1)
11297 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11298 break;
11300 /* If x1 is identical to a subexpression of x0 then we
11301 still have to process the rest of x0. */
11302 if (ARITHMETIC_P (x0)
11303 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11305 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11306 break;
11310 update_table_tick (XEXP (x, i));
11312 else if (fmt[i] == 'E')
11313 for (j = 0; j < XVECLEN (x, i); j++)
11314 update_table_tick (XVECEXP (x, i, j));
11317 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11318 are saying that the register is clobbered and we no longer know its
11319 value. If INSN is zero, don't update reg_stat[].last_set; this is
11320 only permitted with VALUE also zero and is used to invalidate the
11321 register. */
11323 static void
11324 record_value_for_reg (rtx reg, rtx insn, rtx value)
11326 unsigned int regno = REGNO (reg);
11327 unsigned int endregno = END_REGNO (reg);
11328 unsigned int i;
11329 reg_stat_type *rsp;
11331 /* If VALUE contains REG and we have a previous value for REG, substitute
11332 the previous value. */
11333 if (value && insn && reg_overlap_mentioned_p (reg, value))
11335 rtx tem;
11337 /* Set things up so get_last_value is allowed to see anything set up to
11338 our insn. */
11339 subst_low_luid = DF_INSN_LUID (insn);
11340 tem = get_last_value (reg);
11342 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11343 it isn't going to be useful and will take a lot of time to process,
11344 so just use the CLOBBER. */
11346 if (tem)
11348 if (ARITHMETIC_P (tem)
11349 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11350 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11351 tem = XEXP (tem, 0);
11352 else if (count_occurrences (value, reg, 1) >= 2)
11354 /* If there are two or more occurrences of REG in VALUE,
11355 prevent the value from growing too much. */
11356 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11357 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11360 value = replace_rtx (copy_rtx (value), reg, tem);
11364 /* For each register modified, show we don't know its value, that
11365 we don't know about its bitwise content, that its value has been
11366 updated, and that we don't know the location of the death of the
11367 register. */
11368 for (i = regno; i < endregno; i++)
11370 rsp = VEC_index (reg_stat_type, reg_stat, i);
11372 if (insn)
11373 rsp->last_set = insn;
11375 rsp->last_set_value = 0;
11376 rsp->last_set_mode = 0;
11377 rsp->last_set_nonzero_bits = 0;
11378 rsp->last_set_sign_bit_copies = 0;
11379 rsp->last_death = 0;
11380 rsp->truncated_to_mode = 0;
11383 /* Mark registers that are being referenced in this value. */
11384 if (value)
11385 update_table_tick (value);
11387 /* Now update the status of each register being set.
11388 If someone is using this register in this block, set this register
11389 to invalid since we will get confused between the two lives in this
11390 basic block. This makes using this register always invalid. In cse, we
11391 scan the table to invalidate all entries using this register, but this
11392 is too much work for us. */
11394 for (i = regno; i < endregno; i++)
11396 rsp = VEC_index (reg_stat_type, reg_stat, i);
11397 rsp->last_set_label = label_tick;
11398 if (!insn
11399 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11400 rsp->last_set_invalid = 1;
11401 else
11402 rsp->last_set_invalid = 0;
11405 /* The value being assigned might refer to X (like in "x++;"). In that
11406 case, we must replace it with (clobber (const_int 0)) to prevent
11407 infinite loops. */
11408 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11409 if (value && ! get_last_value_validate (&value, insn,
11410 rsp->last_set_label, 0))
11412 value = copy_rtx (value);
11413 if (! get_last_value_validate (&value, insn,
11414 rsp->last_set_label, 1))
11415 value = 0;
11418 /* For the main register being modified, update the value, the mode, the
11419 nonzero bits, and the number of sign bit copies. */
11421 rsp->last_set_value = value;
11423 if (value)
11425 enum machine_mode mode = GET_MODE (reg);
11426 subst_low_luid = DF_INSN_LUID (insn);
11427 rsp->last_set_mode = mode;
11428 if (GET_MODE_CLASS (mode) == MODE_INT
11429 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11430 mode = nonzero_bits_mode;
11431 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11432 rsp->last_set_sign_bit_copies
11433 = num_sign_bit_copies (value, GET_MODE (reg));
11437 /* Called via note_stores from record_dead_and_set_regs to handle one
11438 SET or CLOBBER in an insn. DATA is the instruction in which the
11439 set is occurring. */
11441 static void
11442 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11444 rtx record_dead_insn = (rtx) data;
11446 if (GET_CODE (dest) == SUBREG)
11447 dest = SUBREG_REG (dest);
11449 if (!record_dead_insn)
11451 if (REG_P (dest))
11452 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11453 return;
11456 if (REG_P (dest))
11458 /* If we are setting the whole register, we know its value. Otherwise
11459 show that we don't know the value. We can handle SUBREG in
11460 some cases. */
11461 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11462 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11463 else if (GET_CODE (setter) == SET
11464 && GET_CODE (SET_DEST (setter)) == SUBREG
11465 && SUBREG_REG (SET_DEST (setter)) == dest
11466 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11467 && subreg_lowpart_p (SET_DEST (setter)))
11468 record_value_for_reg (dest, record_dead_insn,
11469 gen_lowpart (GET_MODE (dest),
11470 SET_SRC (setter)));
11471 else
11472 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11474 else if (MEM_P (dest)
11475 /* Ignore pushes, they clobber nothing. */
11476 && ! push_operand (dest, GET_MODE (dest)))
11477 mem_last_set = DF_INSN_LUID (record_dead_insn);
11480 /* Update the records of when each REG was most recently set or killed
11481 for the things done by INSN. This is the last thing done in processing
11482 INSN in the combiner loop.
11484 We update reg_stat[], in particular fields last_set, last_set_value,
11485 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11486 last_death, and also the similar information mem_last_set (which insn
11487 most recently modified memory) and last_call_luid (which insn was the
11488 most recent subroutine call). */
11490 static void
11491 record_dead_and_set_regs (rtx insn)
11493 rtx link;
11494 unsigned int i;
11496 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11498 if (REG_NOTE_KIND (link) == REG_DEAD
11499 && REG_P (XEXP (link, 0)))
11501 unsigned int regno = REGNO (XEXP (link, 0));
11502 unsigned int endregno = END_REGNO (XEXP (link, 0));
11504 for (i = regno; i < endregno; i++)
11506 reg_stat_type *rsp;
11508 rsp = VEC_index (reg_stat_type, reg_stat, i);
11509 rsp->last_death = insn;
11512 else if (REG_NOTE_KIND (link) == REG_INC)
11513 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11516 if (CALL_P (insn))
11518 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11519 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11521 reg_stat_type *rsp;
11523 rsp = VEC_index (reg_stat_type, reg_stat, i);
11524 rsp->last_set_invalid = 1;
11525 rsp->last_set = insn;
11526 rsp->last_set_value = 0;
11527 rsp->last_set_mode = 0;
11528 rsp->last_set_nonzero_bits = 0;
11529 rsp->last_set_sign_bit_copies = 0;
11530 rsp->last_death = 0;
11531 rsp->truncated_to_mode = 0;
11534 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11536 /* We can't combine into a call pattern. Remember, though, that
11537 the return value register is set at this LUID. We could
11538 still replace a register with the return value from the
11539 wrong subroutine call! */
11540 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11542 else
11543 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11546 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11547 register present in the SUBREG, so for each such SUBREG go back and
11548 adjust nonzero and sign bit information of the registers that are
11549 known to have some zero/sign bits set.
11551 This is needed because when combine blows the SUBREGs away, the
11552 information on zero/sign bits is lost and further combines can be
11553 missed because of that. */
11555 static void
11556 record_promoted_value (rtx insn, rtx subreg)
11558 rtx links, set;
11559 unsigned int regno = REGNO (SUBREG_REG (subreg));
11560 enum machine_mode mode = GET_MODE (subreg);
11562 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11563 return;
11565 for (links = LOG_LINKS (insn); links;)
11567 reg_stat_type *rsp;
11569 insn = XEXP (links, 0);
11570 set = single_set (insn);
11572 if (! set || !REG_P (SET_DEST (set))
11573 || REGNO (SET_DEST (set)) != regno
11574 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11576 links = XEXP (links, 1);
11577 continue;
11580 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11581 if (rsp->last_set == insn)
11583 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11584 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11587 if (REG_P (SET_SRC (set)))
11589 regno = REGNO (SET_SRC (set));
11590 links = LOG_LINKS (insn);
11592 else
11593 break;
11597 /* Check if X, a register, is known to contain a value already
11598 truncated to MODE. In this case we can use a subreg to refer to
11599 the truncated value even though in the generic case we would need
11600 an explicit truncation. */
11602 static bool
11603 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11605 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11606 enum machine_mode truncated = rsp->truncated_to_mode;
11608 if (truncated == 0
11609 || rsp->truncation_label < label_tick_ebb_start)
11610 return false;
11611 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11612 return true;
11613 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11614 GET_MODE_BITSIZE (truncated)))
11615 return true;
11616 return false;
11619 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11620 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11621 might be able to turn a truncate into a subreg using this information.
11622 Return -1 if traversing *P is complete or 0 otherwise. */
11624 static int
11625 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11627 rtx x = *p;
11628 enum machine_mode truncated_mode;
11629 reg_stat_type *rsp;
11631 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11633 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11634 truncated_mode = GET_MODE (x);
11636 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11637 return -1;
11639 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11640 GET_MODE_BITSIZE (original_mode)))
11641 return -1;
11643 x = SUBREG_REG (x);
11645 /* ??? For hard-regs we now record everything. We might be able to
11646 optimize this using last_set_mode. */
11647 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11648 truncated_mode = GET_MODE (x);
11649 else
11650 return 0;
11652 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11653 if (rsp->truncated_to_mode == 0
11654 || rsp->truncation_label < label_tick_ebb_start
11655 || (GET_MODE_SIZE (truncated_mode)
11656 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11658 rsp->truncated_to_mode = truncated_mode;
11659 rsp->truncation_label = label_tick;
11662 return -1;
11665 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11666 the modes they are used in. This can help truning TRUNCATEs into
11667 SUBREGs. */
11669 static void
11670 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11672 for_each_rtx (x, record_truncated_value, NULL);
11675 /* Scan X for promoted SUBREGs. For each one found,
11676 note what it implies to the registers used in it. */
11678 static void
11679 check_promoted_subreg (rtx insn, rtx x)
11681 if (GET_CODE (x) == SUBREG
11682 && SUBREG_PROMOTED_VAR_P (x)
11683 && REG_P (SUBREG_REG (x)))
11684 record_promoted_value (insn, x);
11685 else
11687 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11688 int i, j;
11690 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11691 switch (format[i])
11693 case 'e':
11694 check_promoted_subreg (insn, XEXP (x, i));
11695 break;
11696 case 'V':
11697 case 'E':
11698 if (XVEC (x, i) != 0)
11699 for (j = 0; j < XVECLEN (x, i); j++)
11700 check_promoted_subreg (insn, XVECEXP (x, i, j));
11701 break;
11706 /* Utility routine for the following function. Verify that all the registers
11707 mentioned in *LOC are valid when *LOC was part of a value set when
11708 label_tick == TICK. Return 0 if some are not.
11710 If REPLACE is nonzero, replace the invalid reference with
11711 (clobber (const_int 0)) and return 1. This replacement is useful because
11712 we often can get useful information about the form of a value (e.g., if
11713 it was produced by a shift that always produces -1 or 0) even though
11714 we don't know exactly what registers it was produced from. */
11716 static int
11717 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11719 rtx x = *loc;
11720 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11721 int len = GET_RTX_LENGTH (GET_CODE (x));
11722 int i, j;
11724 if (REG_P (x))
11726 unsigned int regno = REGNO (x);
11727 unsigned int endregno = END_REGNO (x);
11728 unsigned int j;
11730 for (j = regno; j < endregno; j++)
11732 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11733 if (rsp->last_set_invalid
11734 /* If this is a pseudo-register that was only set once and not
11735 live at the beginning of the function, it is always valid. */
11736 || (! (regno >= FIRST_PSEUDO_REGISTER
11737 && REG_N_SETS (regno) == 1
11738 && (!REGNO_REG_SET_P
11739 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11740 && rsp->last_set_label > tick))
11742 if (replace)
11743 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11744 return replace;
11748 return 1;
11750 /* If this is a memory reference, make sure that there were
11751 no stores after it that might have clobbered the value. We don't
11752 have alias info, so we assume any store invalidates it. */
11753 else if (MEM_P (x) && !MEM_READONLY_P (x)
11754 && DF_INSN_LUID (insn) <= mem_last_set)
11756 if (replace)
11757 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11758 return replace;
11761 for (i = 0; i < len; i++)
11763 if (fmt[i] == 'e')
11765 /* Check for identical subexpressions. If x contains
11766 identical subexpression we only have to traverse one of
11767 them. */
11768 if (i == 1 && ARITHMETIC_P (x))
11770 /* Note that at this point x0 has already been checked
11771 and found valid. */
11772 rtx x0 = XEXP (x, 0);
11773 rtx x1 = XEXP (x, 1);
11775 /* If x0 and x1 are identical then x is also valid. */
11776 if (x0 == x1)
11777 return 1;
11779 /* If x1 is identical to a subexpression of x0 then
11780 while checking x0, x1 has already been checked. Thus
11781 it is valid and so as x. */
11782 if (ARITHMETIC_P (x0)
11783 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11784 return 1;
11786 /* If x0 is identical to a subexpression of x1 then x is
11787 valid iff the rest of x1 is valid. */
11788 if (ARITHMETIC_P (x1)
11789 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11790 return
11791 get_last_value_validate (&XEXP (x1,
11792 x0 == XEXP (x1, 0) ? 1 : 0),
11793 insn, tick, replace);
11796 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11797 replace) == 0)
11798 return 0;
11800 else if (fmt[i] == 'E')
11801 for (j = 0; j < XVECLEN (x, i); j++)
11802 if (get_last_value_validate (&XVECEXP (x, i, j),
11803 insn, tick, replace) == 0)
11804 return 0;
11807 /* If we haven't found a reason for it to be invalid, it is valid. */
11808 return 1;
11811 /* Get the last value assigned to X, if known. Some registers
11812 in the value may be replaced with (clobber (const_int 0)) if their value
11813 is known longer known reliably. */
11815 static rtx
11816 get_last_value (const_rtx x)
11818 unsigned int regno;
11819 rtx value;
11820 reg_stat_type *rsp;
11822 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11823 then convert it to the desired mode. If this is a paradoxical SUBREG,
11824 we cannot predict what values the "extra" bits might have. */
11825 if (GET_CODE (x) == SUBREG
11826 && subreg_lowpart_p (x)
11827 && (GET_MODE_SIZE (GET_MODE (x))
11828 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11829 && (value = get_last_value (SUBREG_REG (x))) != 0)
11830 return gen_lowpart (GET_MODE (x), value);
11832 if (!REG_P (x))
11833 return 0;
11835 regno = REGNO (x);
11836 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11837 value = rsp->last_set_value;
11839 /* If we don't have a value, or if it isn't for this basic block and
11840 it's either a hard register, set more than once, or it's a live
11841 at the beginning of the function, return 0.
11843 Because if it's not live at the beginning of the function then the reg
11844 is always set before being used (is never used without being set).
11845 And, if it's set only once, and it's always set before use, then all
11846 uses must have the same last value, even if it's not from this basic
11847 block. */
11849 if (value == 0
11850 || (rsp->last_set_label < label_tick_ebb_start
11851 && (regno < FIRST_PSEUDO_REGISTER
11852 || REG_N_SETS (regno) != 1
11853 || REGNO_REG_SET_P
11854 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11855 return 0;
11857 /* If the value was set in a later insn than the ones we are processing,
11858 we can't use it even if the register was only set once. */
11859 if (rsp->last_set_label == label_tick
11860 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11861 return 0;
11863 /* If the value has all its registers valid, return it. */
11864 if (get_last_value_validate (&value, rsp->last_set,
11865 rsp->last_set_label, 0))
11866 return value;
11868 /* Otherwise, make a copy and replace any invalid register with
11869 (clobber (const_int 0)). If that fails for some reason, return 0. */
11871 value = copy_rtx (value);
11872 if (get_last_value_validate (&value, rsp->last_set,
11873 rsp->last_set_label, 1))
11874 return value;
11876 return 0;
11879 /* Return nonzero if expression X refers to a REG or to memory
11880 that is set in an instruction more recent than FROM_LUID. */
11882 static int
11883 use_crosses_set_p (const_rtx x, int from_luid)
11885 const char *fmt;
11886 int i;
11887 enum rtx_code code = GET_CODE (x);
11889 if (code == REG)
11891 unsigned int regno = REGNO (x);
11892 unsigned endreg = END_REGNO (x);
11894 #ifdef PUSH_ROUNDING
11895 /* Don't allow uses of the stack pointer to be moved,
11896 because we don't know whether the move crosses a push insn. */
11897 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11898 return 1;
11899 #endif
11900 for (; regno < endreg; regno++)
11902 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11903 if (rsp->last_set
11904 && rsp->last_set_label == label_tick
11905 && DF_INSN_LUID (rsp->last_set) > from_luid)
11906 return 1;
11908 return 0;
11911 if (code == MEM && mem_last_set > from_luid)
11912 return 1;
11914 fmt = GET_RTX_FORMAT (code);
11916 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11918 if (fmt[i] == 'E')
11920 int j;
11921 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11922 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11923 return 1;
11925 else if (fmt[i] == 'e'
11926 && use_crosses_set_p (XEXP (x, i), from_luid))
11927 return 1;
11929 return 0;
11932 /* Define three variables used for communication between the following
11933 routines. */
11935 static unsigned int reg_dead_regno, reg_dead_endregno;
11936 static int reg_dead_flag;
11938 /* Function called via note_stores from reg_dead_at_p.
11940 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11941 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11943 static void
11944 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11946 unsigned int regno, endregno;
11948 if (!REG_P (dest))
11949 return;
11951 regno = REGNO (dest);
11952 endregno = END_REGNO (dest);
11953 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11954 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11957 /* Return nonzero if REG is known to be dead at INSN.
11959 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11960 referencing REG, it is dead. If we hit a SET referencing REG, it is
11961 live. Otherwise, see if it is live or dead at the start of the basic
11962 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11963 must be assumed to be always live. */
11965 static int
11966 reg_dead_at_p (rtx reg, rtx insn)
11968 basic_block block;
11969 unsigned int i;
11971 /* Set variables for reg_dead_at_p_1. */
11972 reg_dead_regno = REGNO (reg);
11973 reg_dead_endregno = END_REGNO (reg);
11975 reg_dead_flag = 0;
11977 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11978 we allow the machine description to decide whether use-and-clobber
11979 patterns are OK. */
11980 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11982 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11983 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11984 return 0;
11987 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11988 beginning of function. */
11989 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11990 insn = prev_nonnote_insn (insn))
11992 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11993 if (reg_dead_flag)
11994 return reg_dead_flag == 1 ? 1 : 0;
11996 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11997 return 1;
12000 /* Get the basic block that we were in. */
12001 if (insn == 0)
12002 block = ENTRY_BLOCK_PTR->next_bb;
12003 else
12005 FOR_EACH_BB (block)
12006 if (insn == BB_HEAD (block))
12007 break;
12009 if (block == EXIT_BLOCK_PTR)
12010 return 0;
12013 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12014 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12015 return 0;
12017 return 1;
12020 /* Note hard registers in X that are used. */
12022 static void
12023 mark_used_regs_combine (rtx x)
12025 RTX_CODE code = GET_CODE (x);
12026 unsigned int regno;
12027 int i;
12029 switch (code)
12031 case LABEL_REF:
12032 case SYMBOL_REF:
12033 case CONST_INT:
12034 case CONST:
12035 case CONST_DOUBLE:
12036 case CONST_VECTOR:
12037 case PC:
12038 case ADDR_VEC:
12039 case ADDR_DIFF_VEC:
12040 case ASM_INPUT:
12041 #ifdef HAVE_cc0
12042 /* CC0 must die in the insn after it is set, so we don't need to take
12043 special note of it here. */
12044 case CC0:
12045 #endif
12046 return;
12048 case CLOBBER:
12049 /* If we are clobbering a MEM, mark any hard registers inside the
12050 address as used. */
12051 if (MEM_P (XEXP (x, 0)))
12052 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12053 return;
12055 case REG:
12056 regno = REGNO (x);
12057 /* A hard reg in a wide mode may really be multiple registers.
12058 If so, mark all of them just like the first. */
12059 if (regno < FIRST_PSEUDO_REGISTER)
12061 /* None of this applies to the stack, frame or arg pointers. */
12062 if (regno == STACK_POINTER_REGNUM
12063 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12064 || regno == HARD_FRAME_POINTER_REGNUM
12065 #endif
12066 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12067 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12068 #endif
12069 || regno == FRAME_POINTER_REGNUM)
12070 return;
12072 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12074 return;
12076 case SET:
12078 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12079 the address. */
12080 rtx testreg = SET_DEST (x);
12082 while (GET_CODE (testreg) == SUBREG
12083 || GET_CODE (testreg) == ZERO_EXTRACT
12084 || GET_CODE (testreg) == STRICT_LOW_PART)
12085 testreg = XEXP (testreg, 0);
12087 if (MEM_P (testreg))
12088 mark_used_regs_combine (XEXP (testreg, 0));
12090 mark_used_regs_combine (SET_SRC (x));
12092 return;
12094 default:
12095 break;
12098 /* Recursively scan the operands of this expression. */
12101 const char *fmt = GET_RTX_FORMAT (code);
12103 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12105 if (fmt[i] == 'e')
12106 mark_used_regs_combine (XEXP (x, i));
12107 else if (fmt[i] == 'E')
12109 int j;
12111 for (j = 0; j < XVECLEN (x, i); j++)
12112 mark_used_regs_combine (XVECEXP (x, i, j));
12118 /* Remove register number REGNO from the dead registers list of INSN.
12120 Return the note used to record the death, if there was one. */
12123 remove_death (unsigned int regno, rtx insn)
12125 rtx note = find_regno_note (insn, REG_DEAD, regno);
12127 if (note)
12128 remove_note (insn, note);
12130 return note;
12133 /* For each register (hardware or pseudo) used within expression X, if its
12134 death is in an instruction with luid between FROM_LUID (inclusive) and
12135 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12136 list headed by PNOTES.
12138 That said, don't move registers killed by maybe_kill_insn.
12140 This is done when X is being merged by combination into TO_INSN. These
12141 notes will then be distributed as needed. */
12143 static void
12144 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12145 rtx *pnotes)
12147 const char *fmt;
12148 int len, i;
12149 enum rtx_code code = GET_CODE (x);
12151 if (code == REG)
12153 unsigned int regno = REGNO (x);
12154 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12156 /* Don't move the register if it gets killed in between from and to. */
12157 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12158 && ! reg_referenced_p (x, maybe_kill_insn))
12159 return;
12161 if (where_dead
12162 && DF_INSN_LUID (where_dead) >= from_luid
12163 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12165 rtx note = remove_death (regno, where_dead);
12167 /* It is possible for the call above to return 0. This can occur
12168 when last_death points to I2 or I1 that we combined with.
12169 In that case make a new note.
12171 We must also check for the case where X is a hard register
12172 and NOTE is a death note for a range of hard registers
12173 including X. In that case, we must put REG_DEAD notes for
12174 the remaining registers in place of NOTE. */
12176 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12177 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12178 > GET_MODE_SIZE (GET_MODE (x))))
12180 unsigned int deadregno = REGNO (XEXP (note, 0));
12181 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12182 unsigned int ourend = END_HARD_REGNO (x);
12183 unsigned int i;
12185 for (i = deadregno; i < deadend; i++)
12186 if (i < regno || i >= ourend)
12187 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12190 /* If we didn't find any note, or if we found a REG_DEAD note that
12191 covers only part of the given reg, and we have a multi-reg hard
12192 register, then to be safe we must check for REG_DEAD notes
12193 for each register other than the first. They could have
12194 their own REG_DEAD notes lying around. */
12195 else if ((note == 0
12196 || (note != 0
12197 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12198 < GET_MODE_SIZE (GET_MODE (x)))))
12199 && regno < FIRST_PSEUDO_REGISTER
12200 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12202 unsigned int ourend = END_HARD_REGNO (x);
12203 unsigned int i, offset;
12204 rtx oldnotes = 0;
12206 if (note)
12207 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12208 else
12209 offset = 1;
12211 for (i = regno + offset; i < ourend; i++)
12212 move_deaths (regno_reg_rtx[i],
12213 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12216 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12218 XEXP (note, 1) = *pnotes;
12219 *pnotes = note;
12221 else
12222 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12225 return;
12228 else if (GET_CODE (x) == SET)
12230 rtx dest = SET_DEST (x);
12232 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12234 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12235 that accesses one word of a multi-word item, some
12236 piece of everything register in the expression is used by
12237 this insn, so remove any old death. */
12238 /* ??? So why do we test for equality of the sizes? */
12240 if (GET_CODE (dest) == ZERO_EXTRACT
12241 || GET_CODE (dest) == STRICT_LOW_PART
12242 || (GET_CODE (dest) == SUBREG
12243 && (((GET_MODE_SIZE (GET_MODE (dest))
12244 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12245 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12246 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12248 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12249 return;
12252 /* If this is some other SUBREG, we know it replaces the entire
12253 value, so use that as the destination. */
12254 if (GET_CODE (dest) == SUBREG)
12255 dest = SUBREG_REG (dest);
12257 /* If this is a MEM, adjust deaths of anything used in the address.
12258 For a REG (the only other possibility), the entire value is
12259 being replaced so the old value is not used in this insn. */
12261 if (MEM_P (dest))
12262 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12263 to_insn, pnotes);
12264 return;
12267 else if (GET_CODE (x) == CLOBBER)
12268 return;
12270 len = GET_RTX_LENGTH (code);
12271 fmt = GET_RTX_FORMAT (code);
12273 for (i = 0; i < len; i++)
12275 if (fmt[i] == 'E')
12277 int j;
12278 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12279 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12280 to_insn, pnotes);
12282 else if (fmt[i] == 'e')
12283 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12287 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12288 pattern of an insn. X must be a REG. */
12290 static int
12291 reg_bitfield_target_p (rtx x, rtx body)
12293 int i;
12295 if (GET_CODE (body) == SET)
12297 rtx dest = SET_DEST (body);
12298 rtx target;
12299 unsigned int regno, tregno, endregno, endtregno;
12301 if (GET_CODE (dest) == ZERO_EXTRACT)
12302 target = XEXP (dest, 0);
12303 else if (GET_CODE (dest) == STRICT_LOW_PART)
12304 target = SUBREG_REG (XEXP (dest, 0));
12305 else
12306 return 0;
12308 if (GET_CODE (target) == SUBREG)
12309 target = SUBREG_REG (target);
12311 if (!REG_P (target))
12312 return 0;
12314 tregno = REGNO (target), regno = REGNO (x);
12315 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12316 return target == x;
12318 endtregno = end_hard_regno (GET_MODE (target), tregno);
12319 endregno = end_hard_regno (GET_MODE (x), regno);
12321 return endregno > tregno && regno < endtregno;
12324 else if (GET_CODE (body) == PARALLEL)
12325 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12326 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12327 return 1;
12329 return 0;
12332 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12333 as appropriate. I3 and I2 are the insns resulting from the combination
12334 insns including FROM (I2 may be zero).
12336 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12337 not need REG_DEAD notes because they are being substituted for. This
12338 saves searching in the most common cases.
12340 Each note in the list is either ignored or placed on some insns, depending
12341 on the type of note. */
12343 static void
12344 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12345 rtx elim_i1)
12347 rtx note, next_note;
12348 rtx tem;
12350 for (note = notes; note; note = next_note)
12352 rtx place = 0, place2 = 0;
12354 next_note = XEXP (note, 1);
12355 switch (REG_NOTE_KIND (note))
12357 case REG_BR_PROB:
12358 case REG_BR_PRED:
12359 /* Doesn't matter much where we put this, as long as it's somewhere.
12360 It is preferable to keep these notes on branches, which is most
12361 likely to be i3. */
12362 place = i3;
12363 break;
12365 case REG_VALUE_PROFILE:
12366 /* Just get rid of this note, as it is unused later anyway. */
12367 break;
12369 case REG_NON_LOCAL_GOTO:
12370 if (JUMP_P (i3))
12371 place = i3;
12372 else
12374 gcc_assert (i2 && JUMP_P (i2));
12375 place = i2;
12377 break;
12379 case REG_EH_REGION:
12380 /* These notes must remain with the call or trapping instruction. */
12381 if (CALL_P (i3))
12382 place = i3;
12383 else if (i2 && CALL_P (i2))
12384 place = i2;
12385 else
12387 gcc_assert (flag_non_call_exceptions);
12388 if (may_trap_p (i3))
12389 place = i3;
12390 else if (i2 && may_trap_p (i2))
12391 place = i2;
12392 /* ??? Otherwise assume we've combined things such that we
12393 can now prove that the instructions can't trap. Drop the
12394 note in this case. */
12396 break;
12398 case REG_NORETURN:
12399 case REG_SETJMP:
12400 /* These notes must remain with the call. It should not be
12401 possible for both I2 and I3 to be a call. */
12402 if (CALL_P (i3))
12403 place = i3;
12404 else
12406 gcc_assert (i2 && CALL_P (i2));
12407 place = i2;
12409 break;
12411 case REG_UNUSED:
12412 /* Any clobbers for i3 may still exist, and so we must process
12413 REG_UNUSED notes from that insn.
12415 Any clobbers from i2 or i1 can only exist if they were added by
12416 recog_for_combine. In that case, recog_for_combine created the
12417 necessary REG_UNUSED notes. Trying to keep any original
12418 REG_UNUSED notes from these insns can cause incorrect output
12419 if it is for the same register as the original i3 dest.
12420 In that case, we will notice that the register is set in i3,
12421 and then add a REG_UNUSED note for the destination of i3, which
12422 is wrong. However, it is possible to have REG_UNUSED notes from
12423 i2 or i1 for register which were both used and clobbered, so
12424 we keep notes from i2 or i1 if they will turn into REG_DEAD
12425 notes. */
12427 /* If this register is set or clobbered in I3, put the note there
12428 unless there is one already. */
12429 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12431 if (from_insn != i3)
12432 break;
12434 if (! (REG_P (XEXP (note, 0))
12435 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12436 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12437 place = i3;
12439 /* Otherwise, if this register is used by I3, then this register
12440 now dies here, so we must put a REG_DEAD note here unless there
12441 is one already. */
12442 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12443 && ! (REG_P (XEXP (note, 0))
12444 ? find_regno_note (i3, REG_DEAD,
12445 REGNO (XEXP (note, 0)))
12446 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12448 PUT_REG_NOTE_KIND (note, REG_DEAD);
12449 place = i3;
12451 break;
12453 case REG_EQUAL:
12454 case REG_EQUIV:
12455 case REG_NOALIAS:
12456 /* These notes say something about results of an insn. We can
12457 only support them if they used to be on I3 in which case they
12458 remain on I3. Otherwise they are ignored.
12460 If the note refers to an expression that is not a constant, we
12461 must also ignore the note since we cannot tell whether the
12462 equivalence is still true. It might be possible to do
12463 slightly better than this (we only have a problem if I2DEST
12464 or I1DEST is present in the expression), but it doesn't
12465 seem worth the trouble. */
12467 if (from_insn == i3
12468 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12469 place = i3;
12470 break;
12472 case REG_INC:
12473 /* These notes say something about how a register is used. They must
12474 be present on any use of the register in I2 or I3. */
12475 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12476 place = i3;
12478 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12480 if (place)
12481 place2 = i2;
12482 else
12483 place = i2;
12485 break;
12487 case REG_LABEL_TARGET:
12488 case REG_LABEL_OPERAND:
12489 /* This can show up in several ways -- either directly in the
12490 pattern, or hidden off in the constant pool with (or without?)
12491 a REG_EQUAL note. */
12492 /* ??? Ignore the without-reg_equal-note problem for now. */
12493 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12494 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12495 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12496 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12497 place = i3;
12499 if (i2
12500 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12501 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12502 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12503 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12505 if (place)
12506 place2 = i2;
12507 else
12508 place = i2;
12511 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12512 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12513 there. */
12514 if (place && JUMP_P (place)
12515 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12516 && (JUMP_LABEL (place) == NULL
12517 || JUMP_LABEL (place) == XEXP (note, 0)))
12519 rtx label = JUMP_LABEL (place);
12521 if (!label)
12522 JUMP_LABEL (place) = XEXP (note, 0);
12523 else if (LABEL_P (label))
12524 LABEL_NUSES (label)--;
12527 if (place2 && JUMP_P (place2)
12528 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12529 && (JUMP_LABEL (place2) == NULL
12530 || JUMP_LABEL (place2) == XEXP (note, 0)))
12532 rtx label = JUMP_LABEL (place2);
12534 if (!label)
12535 JUMP_LABEL (place2) = XEXP (note, 0);
12536 else if (LABEL_P (label))
12537 LABEL_NUSES (label)--;
12538 place2 = 0;
12540 break;
12542 case REG_NONNEG:
12543 /* This note says something about the value of a register prior
12544 to the execution of an insn. It is too much trouble to see
12545 if the note is still correct in all situations. It is better
12546 to simply delete it. */
12547 break;
12549 case REG_DEAD:
12550 /* If we replaced the right hand side of FROM_INSN with a
12551 REG_EQUAL note, the original use of the dying register
12552 will not have been combined into I3 and I2. In such cases,
12553 FROM_INSN is guaranteed to be the first of the combined
12554 instructions, so we simply need to search back before
12555 FROM_INSN for the previous use or set of this register,
12556 then alter the notes there appropriately.
12558 If the register is used as an input in I3, it dies there.
12559 Similarly for I2, if it is nonzero and adjacent to I3.
12561 If the register is not used as an input in either I3 or I2
12562 and it is not one of the registers we were supposed to eliminate,
12563 there are two possibilities. We might have a non-adjacent I2
12564 or we might have somehow eliminated an additional register
12565 from a computation. For example, we might have had A & B where
12566 we discover that B will always be zero. In this case we will
12567 eliminate the reference to A.
12569 In both cases, we must search to see if we can find a previous
12570 use of A and put the death note there. */
12572 if (from_insn
12573 && from_insn == i2mod
12574 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12575 tem = from_insn;
12576 else
12578 if (from_insn
12579 && CALL_P (from_insn)
12580 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12581 place = from_insn;
12582 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12583 place = i3;
12584 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12585 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12586 place = i2;
12587 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12588 && !(i2mod
12589 && reg_overlap_mentioned_p (XEXP (note, 0),
12590 i2mod_old_rhs)))
12591 || rtx_equal_p (XEXP (note, 0), elim_i1))
12592 break;
12593 tem = i3;
12596 if (place == 0)
12598 basic_block bb = this_basic_block;
12600 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12602 if (! INSN_P (tem))
12604 if (tem == BB_HEAD (bb))
12605 break;
12606 continue;
12609 /* If the register is being set at TEM, see if that is all
12610 TEM is doing. If so, delete TEM. Otherwise, make this
12611 into a REG_UNUSED note instead. Don't delete sets to
12612 global register vars. */
12613 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12614 || !global_regs[REGNO (XEXP (note, 0))])
12615 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12617 rtx set = single_set (tem);
12618 rtx inner_dest = 0;
12619 #ifdef HAVE_cc0
12620 rtx cc0_setter = NULL_RTX;
12621 #endif
12623 if (set != 0)
12624 for (inner_dest = SET_DEST (set);
12625 (GET_CODE (inner_dest) == STRICT_LOW_PART
12626 || GET_CODE (inner_dest) == SUBREG
12627 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12628 inner_dest = XEXP (inner_dest, 0))
12631 /* Verify that it was the set, and not a clobber that
12632 modified the register.
12634 CC0 targets must be careful to maintain setter/user
12635 pairs. If we cannot delete the setter due to side
12636 effects, mark the user with an UNUSED note instead
12637 of deleting it. */
12639 if (set != 0 && ! side_effects_p (SET_SRC (set))
12640 && rtx_equal_p (XEXP (note, 0), inner_dest)
12641 #ifdef HAVE_cc0
12642 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12643 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12644 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12645 #endif
12648 /* Move the notes and links of TEM elsewhere.
12649 This might delete other dead insns recursively.
12650 First set the pattern to something that won't use
12651 any register. */
12652 rtx old_notes = REG_NOTES (tem);
12654 PATTERN (tem) = pc_rtx;
12655 REG_NOTES (tem) = NULL;
12657 distribute_notes (old_notes, tem, tem, NULL_RTX,
12658 NULL_RTX, NULL_RTX);
12659 distribute_links (LOG_LINKS (tem));
12661 SET_INSN_DELETED (tem);
12662 if (tem == i2)
12663 i2 = NULL_RTX;
12665 #ifdef HAVE_cc0
12666 /* Delete the setter too. */
12667 if (cc0_setter)
12669 PATTERN (cc0_setter) = pc_rtx;
12670 old_notes = REG_NOTES (cc0_setter);
12671 REG_NOTES (cc0_setter) = NULL;
12673 distribute_notes (old_notes, cc0_setter,
12674 cc0_setter, NULL_RTX,
12675 NULL_RTX, NULL_RTX);
12676 distribute_links (LOG_LINKS (cc0_setter));
12678 SET_INSN_DELETED (cc0_setter);
12679 if (cc0_setter == i2)
12680 i2 = NULL_RTX;
12682 #endif
12684 else
12686 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12688 /* If there isn't already a REG_UNUSED note, put one
12689 here. Do not place a REG_DEAD note, even if
12690 the register is also used here; that would not
12691 match the algorithm used in lifetime analysis
12692 and can cause the consistency check in the
12693 scheduler to fail. */
12694 if (! find_regno_note (tem, REG_UNUSED,
12695 REGNO (XEXP (note, 0))))
12696 place = tem;
12697 break;
12700 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12701 || (CALL_P (tem)
12702 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12704 place = tem;
12706 /* If we are doing a 3->2 combination, and we have a
12707 register which formerly died in i3 and was not used
12708 by i2, which now no longer dies in i3 and is used in
12709 i2 but does not die in i2, and place is between i2
12710 and i3, then we may need to move a link from place to
12711 i2. */
12712 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12713 && from_insn
12714 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12715 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12717 rtx links = LOG_LINKS (place);
12718 LOG_LINKS (place) = 0;
12719 distribute_links (links);
12721 break;
12724 if (tem == BB_HEAD (bb))
12725 break;
12730 /* If the register is set or already dead at PLACE, we needn't do
12731 anything with this note if it is still a REG_DEAD note.
12732 We check here if it is set at all, not if is it totally replaced,
12733 which is what `dead_or_set_p' checks, so also check for it being
12734 set partially. */
12736 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12738 unsigned int regno = REGNO (XEXP (note, 0));
12739 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12741 if (dead_or_set_p (place, XEXP (note, 0))
12742 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12744 /* Unless the register previously died in PLACE, clear
12745 last_death. [I no longer understand why this is
12746 being done.] */
12747 if (rsp->last_death != place)
12748 rsp->last_death = 0;
12749 place = 0;
12751 else
12752 rsp->last_death = place;
12754 /* If this is a death note for a hard reg that is occupying
12755 multiple registers, ensure that we are still using all
12756 parts of the object. If we find a piece of the object
12757 that is unused, we must arrange for an appropriate REG_DEAD
12758 note to be added for it. However, we can't just emit a USE
12759 and tag the note to it, since the register might actually
12760 be dead; so we recourse, and the recursive call then finds
12761 the previous insn that used this register. */
12763 if (place && regno < FIRST_PSEUDO_REGISTER
12764 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12766 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12767 int all_used = 1;
12768 unsigned int i;
12770 for (i = regno; i < endregno; i++)
12771 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12772 && ! find_regno_fusage (place, USE, i))
12773 || dead_or_set_regno_p (place, i))
12774 all_used = 0;
12776 if (! all_used)
12778 /* Put only REG_DEAD notes for pieces that are
12779 not already dead or set. */
12781 for (i = regno; i < endregno;
12782 i += hard_regno_nregs[i][reg_raw_mode[i]])
12784 rtx piece = regno_reg_rtx[i];
12785 basic_block bb = this_basic_block;
12787 if (! dead_or_set_p (place, piece)
12788 && ! reg_bitfield_target_p (piece,
12789 PATTERN (place)))
12791 rtx new_note
12792 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12794 distribute_notes (new_note, place, place,
12795 NULL_RTX, NULL_RTX, NULL_RTX);
12797 else if (! refers_to_regno_p (i, i + 1,
12798 PATTERN (place), 0)
12799 && ! find_regno_fusage (place, USE, i))
12800 for (tem = PREV_INSN (place); ;
12801 tem = PREV_INSN (tem))
12803 if (! INSN_P (tem))
12805 if (tem == BB_HEAD (bb))
12806 break;
12807 continue;
12809 if (dead_or_set_p (tem, piece)
12810 || reg_bitfield_target_p (piece,
12811 PATTERN (tem)))
12813 add_reg_note (tem, REG_UNUSED, piece);
12814 break;
12820 place = 0;
12824 break;
12826 default:
12827 /* Any other notes should not be present at this point in the
12828 compilation. */
12829 gcc_unreachable ();
12832 if (place)
12834 XEXP (note, 1) = REG_NOTES (place);
12835 REG_NOTES (place) = note;
12838 if (place2)
12839 REG_NOTES (place2)
12840 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12841 XEXP (note, 0), REG_NOTES (place2));
12845 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12846 I3, I2, and I1 to new locations. This is also called to add a link
12847 pointing at I3 when I3's destination is changed. */
12849 static void
12850 distribute_links (rtx links)
12852 rtx link, next_link;
12854 for (link = links; link; link = next_link)
12856 rtx place = 0;
12857 rtx insn;
12858 rtx set, reg;
12860 next_link = XEXP (link, 1);
12862 /* If the insn that this link points to is a NOTE or isn't a single
12863 set, ignore it. In the latter case, it isn't clear what we
12864 can do other than ignore the link, since we can't tell which
12865 register it was for. Such links wouldn't be used by combine
12866 anyway.
12868 It is not possible for the destination of the target of the link to
12869 have been changed by combine. The only potential of this is if we
12870 replace I3, I2, and I1 by I3 and I2. But in that case the
12871 destination of I2 also remains unchanged. */
12873 if (NOTE_P (XEXP (link, 0))
12874 || (set = single_set (XEXP (link, 0))) == 0)
12875 continue;
12877 reg = SET_DEST (set);
12878 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12879 || GET_CODE (reg) == STRICT_LOW_PART)
12880 reg = XEXP (reg, 0);
12882 /* A LOG_LINK is defined as being placed on the first insn that uses
12883 a register and points to the insn that sets the register. Start
12884 searching at the next insn after the target of the link and stop
12885 when we reach a set of the register or the end of the basic block.
12887 Note that this correctly handles the link that used to point from
12888 I3 to I2. Also note that not much searching is typically done here
12889 since most links don't point very far away. */
12891 for (insn = NEXT_INSN (XEXP (link, 0));
12892 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12893 || BB_HEAD (this_basic_block->next_bb) != insn));
12894 insn = NEXT_INSN (insn))
12895 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12897 if (reg_referenced_p (reg, PATTERN (insn)))
12898 place = insn;
12899 break;
12901 else if (CALL_P (insn)
12902 && find_reg_fusage (insn, USE, reg))
12904 place = insn;
12905 break;
12907 else if (INSN_P (insn) && reg_set_p (reg, insn))
12908 break;
12910 /* If we found a place to put the link, place it there unless there
12911 is already a link to the same insn as LINK at that point. */
12913 if (place)
12915 rtx link2;
12917 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12918 if (XEXP (link2, 0) == XEXP (link, 0))
12919 break;
12921 if (link2 == 0)
12923 XEXP (link, 1) = LOG_LINKS (place);
12924 LOG_LINKS (place) = link;
12926 /* Set added_links_insn to the earliest insn we added a
12927 link to. */
12928 if (added_links_insn == 0
12929 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12930 added_links_insn = place;
12936 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12937 Check whether the expression pointer to by LOC is a register or
12938 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12939 Otherwise return zero. */
12941 static int
12942 unmentioned_reg_p_1 (rtx *loc, void *expr)
12944 rtx x = *loc;
12946 if (x != NULL_RTX
12947 && (REG_P (x) || MEM_P (x))
12948 && ! reg_mentioned_p (x, (rtx) expr))
12949 return 1;
12950 return 0;
12953 /* Check for any register or memory mentioned in EQUIV that is not
12954 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12955 of EXPR where some registers may have been replaced by constants. */
12957 static bool
12958 unmentioned_reg_p (rtx equiv, rtx expr)
12960 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12963 void
12964 dump_combine_stats (FILE *file)
12966 fprintf
12967 (file,
12968 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12969 combine_attempts, combine_merges, combine_extras, combine_successes);
12972 void
12973 dump_combine_total_stats (FILE *file)
12975 fprintf
12976 (file,
12977 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12978 total_attempts, total_merges, total_extras, total_successes);
12981 static bool
12982 gate_handle_combine (void)
12984 return (optimize > 0);
12987 /* Try combining insns through substitution. */
12988 static unsigned int
12989 rest_of_handle_combine (void)
12991 int rebuild_jump_labels_after_combine;
12993 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
12994 df_note_add_problem ();
12995 df_analyze ();
12997 regstat_init_n_sets_and_refs ();
12999 rebuild_jump_labels_after_combine
13000 = combine_instructions (get_insns (), max_reg_num ());
13002 /* Combining insns may have turned an indirect jump into a
13003 direct jump. Rebuild the JUMP_LABEL fields of jumping
13004 instructions. */
13005 if (rebuild_jump_labels_after_combine)
13007 timevar_push (TV_JUMP);
13008 rebuild_jump_labels (get_insns ());
13009 cleanup_cfg (0);
13010 timevar_pop (TV_JUMP);
13013 regstat_free_n_sets_and_refs ();
13014 return 0;
13017 struct rtl_opt_pass pass_combine =
13020 RTL_PASS,
13021 "combine", /* name */
13022 gate_handle_combine, /* gate */
13023 rest_of_handle_combine, /* execute */
13024 NULL, /* sub */
13025 NULL, /* next */
13026 0, /* static_pass_number */
13027 TV_COMBINE, /* tv_id */
13028 0, /* properties_required */
13029 0, /* properties_provided */
13030 0, /* properties_destroyed */
13031 0, /* todo_flags_start */
13032 TODO_dump_func |
13033 TODO_df_finish | TODO_verify_rtl_sharing |
13034 TODO_ggc_collect, /* todo_flags_finish */