* config/mips/mips.h (ISA_HAS_DMUL3, ISA_HAS_BADDU, ISA_HAS_BBIT,
[official-gcc.git] / gcc / tree-complex.c
blobbbf4c494218e466927cbc1a03b1e026d2033d7a0
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "real.h"
27 #include "flags.h"
28 #include "tree-flow.h"
29 #include "gimple.h"
30 #include "tree-iterator.h"
31 #include "tree-pass.h"
32 #include "tree-ssa-propagate.h"
33 #include "diagnostic.h"
36 /* For each complex ssa name, a lattice value. We're interested in finding
37 out whether a complex number is degenerate in some way, having only real
38 or only complex parts. */
40 typedef enum
42 UNINITIALIZED = 0,
43 ONLY_REAL = 1,
44 ONLY_IMAG = 2,
45 VARYING = 3
46 } complex_lattice_t;
48 #define PAIR(a, b) ((a) << 2 | (b))
50 DEF_VEC_I(complex_lattice_t);
51 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
53 static VEC(complex_lattice_t, heap) *complex_lattice_values;
55 /* For each complex variable, a pair of variables for the components exists in
56 the hashtable. */
57 static htab_t complex_variable_components;
59 /* For each complex SSA_NAME, a pair of ssa names for the components. */
60 static VEC(tree, heap) *complex_ssa_name_components;
62 /* Lookup UID in the complex_variable_components hashtable and return the
63 associated tree. */
64 static tree
65 cvc_lookup (unsigned int uid)
67 struct int_tree_map *h, in;
68 in.uid = uid;
69 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
70 return h ? h->to : NULL;
73 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
75 static void
76 cvc_insert (unsigned int uid, tree to)
78 struct int_tree_map *h;
79 void **loc;
81 h = XNEW (struct int_tree_map);
82 h->uid = uid;
83 h->to = to;
84 loc = htab_find_slot_with_hash (complex_variable_components, h,
85 uid, INSERT);
86 *(struct int_tree_map **) loc = h;
89 /* Return true if T is not a zero constant. In the case of real values,
90 we're only interested in +0.0. */
92 static int
93 some_nonzerop (tree t)
95 int zerop = false;
97 if (TREE_CODE (t) == REAL_CST)
98 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
99 else if (TREE_CODE (t) == FIXED_CST)
100 zerop = fixed_zerop (t);
101 else if (TREE_CODE (t) == INTEGER_CST)
102 zerop = integer_zerop (t);
104 return !zerop;
108 /* Compute a lattice value from the components of a complex type REAL
109 and IMAG. */
111 static complex_lattice_t
112 find_lattice_value_parts (tree real, tree imag)
114 int r, i;
115 complex_lattice_t ret;
117 r = some_nonzerop (real);
118 i = some_nonzerop (imag);
119 ret = r * ONLY_REAL + i * ONLY_IMAG;
121 /* ??? On occasion we could do better than mapping 0+0i to real, but we
122 certainly don't want to leave it UNINITIALIZED, which eventually gets
123 mapped to VARYING. */
124 if (ret == UNINITIALIZED)
125 ret = ONLY_REAL;
127 return ret;
131 /* Compute a lattice value from gimple_val T. */
133 static complex_lattice_t
134 find_lattice_value (tree t)
136 tree real, imag;
138 switch (TREE_CODE (t))
140 case SSA_NAME:
141 return VEC_index (complex_lattice_t, complex_lattice_values,
142 SSA_NAME_VERSION (t));
144 case COMPLEX_CST:
145 real = TREE_REALPART (t);
146 imag = TREE_IMAGPART (t);
147 break;
149 default:
150 gcc_unreachable ();
153 return find_lattice_value_parts (real, imag);
156 /* Determine if LHS is something for which we're interested in seeing
157 simulation results. */
159 static bool
160 is_complex_reg (tree lhs)
162 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
165 /* Mark the incoming parameters to the function as VARYING. */
167 static void
168 init_parameter_lattice_values (void)
170 tree parm, ssa_name;
172 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
173 if (is_complex_reg (parm)
174 && var_ann (parm) != NULL
175 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
176 VEC_replace (complex_lattice_t, complex_lattice_values,
177 SSA_NAME_VERSION (ssa_name), VARYING);
180 /* Initialize simulation state for each statement. Return false if we
181 found no statements we want to simulate, and thus there's nothing
182 for the entire pass to do. */
184 static bool
185 init_dont_simulate_again (void)
187 basic_block bb;
188 gimple_stmt_iterator gsi;
189 gimple phi;
190 bool saw_a_complex_op = false;
192 FOR_EACH_BB (bb)
194 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
196 phi = gsi_stmt (gsi);
197 prop_set_simulate_again (phi,
198 is_complex_reg (gimple_phi_result (phi)));
201 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
203 gimple stmt;
204 tree op0, op1;
205 bool sim_again_p;
207 stmt = gsi_stmt (gsi);
208 op0 = op1 = NULL_TREE;
210 /* Most control-altering statements must be initially
211 simulated, else we won't cover the entire cfg. */
212 sim_again_p = stmt_ends_bb_p (stmt);
214 switch (gimple_code (stmt))
216 case GIMPLE_CALL:
217 if (gimple_call_lhs (stmt))
218 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
219 break;
221 case GIMPLE_ASSIGN:
222 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
223 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
224 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
225 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
226 else
227 op0 = gimple_assign_rhs1 (stmt);
228 if (gimple_num_ops (stmt) > 2)
229 op1 = gimple_assign_rhs2 (stmt);
230 break;
232 case GIMPLE_COND:
233 op0 = gimple_cond_lhs (stmt);
234 op1 = gimple_cond_rhs (stmt);
235 break;
237 default:
238 break;
241 if (op0 || op1)
242 switch (gimple_expr_code (stmt))
244 case EQ_EXPR:
245 case NE_EXPR:
246 case PLUS_EXPR:
247 case MINUS_EXPR:
248 case MULT_EXPR:
249 case TRUNC_DIV_EXPR:
250 case CEIL_DIV_EXPR:
251 case FLOOR_DIV_EXPR:
252 case ROUND_DIV_EXPR:
253 case RDIV_EXPR:
254 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
255 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
256 saw_a_complex_op = true;
257 break;
259 case NEGATE_EXPR:
260 case CONJ_EXPR:
261 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
262 saw_a_complex_op = true;
263 break;
265 case REALPART_EXPR:
266 case IMAGPART_EXPR:
267 /* The total store transformation performed during
268 gimplification creates such uninitialized loads
269 and we need to lower the statement to be able
270 to fix things up. */
271 if (TREE_CODE (op0) == SSA_NAME
272 && ssa_undefined_value_p (op0))
273 saw_a_complex_op = true;
274 break;
276 default:
277 break;
280 prop_set_simulate_again (stmt, sim_again_p);
284 return saw_a_complex_op;
288 /* Evaluate statement STMT against the complex lattice defined above. */
290 static enum ssa_prop_result
291 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
292 tree *result_p)
294 complex_lattice_t new_l, old_l, op1_l, op2_l;
295 unsigned int ver;
296 tree lhs;
298 lhs = gimple_get_lhs (stmt);
299 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
300 if (!lhs)
301 return SSA_PROP_VARYING;
303 /* These conditions should be satisfied due to the initial filter
304 set up in init_dont_simulate_again. */
305 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
306 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
308 *result_p = lhs;
309 ver = SSA_NAME_VERSION (lhs);
310 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
312 switch (gimple_expr_code (stmt))
314 case SSA_NAME:
315 case COMPLEX_CST:
316 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
317 break;
319 case COMPLEX_EXPR:
320 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
321 gimple_assign_rhs2 (stmt));
322 break;
324 case PLUS_EXPR:
325 case MINUS_EXPR:
326 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
327 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
329 /* We've set up the lattice values such that IOR neatly
330 models addition. */
331 new_l = op1_l | op2_l;
332 break;
334 case MULT_EXPR:
335 case RDIV_EXPR:
336 case TRUNC_DIV_EXPR:
337 case CEIL_DIV_EXPR:
338 case FLOOR_DIV_EXPR:
339 case ROUND_DIV_EXPR:
340 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
341 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
343 /* Obviously, if either varies, so does the result. */
344 if (op1_l == VARYING || op2_l == VARYING)
345 new_l = VARYING;
346 /* Don't prematurely promote variables if we've not yet seen
347 their inputs. */
348 else if (op1_l == UNINITIALIZED)
349 new_l = op2_l;
350 else if (op2_l == UNINITIALIZED)
351 new_l = op1_l;
352 else
354 /* At this point both numbers have only one component. If the
355 numbers are of opposite kind, the result is imaginary,
356 otherwise the result is real. The add/subtract translates
357 the real/imag from/to 0/1; the ^ performs the comparison. */
358 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
360 /* Don't allow the lattice value to flip-flop indefinitely. */
361 new_l |= old_l;
363 break;
365 case NEGATE_EXPR:
366 case CONJ_EXPR:
367 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
368 break;
370 default:
371 new_l = VARYING;
372 break;
375 /* If nothing changed this round, let the propagator know. */
376 if (new_l == old_l)
377 return SSA_PROP_NOT_INTERESTING;
379 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
380 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
383 /* Evaluate a PHI node against the complex lattice defined above. */
385 static enum ssa_prop_result
386 complex_visit_phi (gimple phi)
388 complex_lattice_t new_l, old_l;
389 unsigned int ver;
390 tree lhs;
391 int i;
393 lhs = gimple_phi_result (phi);
395 /* This condition should be satisfied due to the initial filter
396 set up in init_dont_simulate_again. */
397 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
399 /* We've set up the lattice values such that IOR neatly models PHI meet. */
400 new_l = UNINITIALIZED;
401 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
402 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
404 ver = SSA_NAME_VERSION (lhs);
405 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
407 if (new_l == old_l)
408 return SSA_PROP_NOT_INTERESTING;
410 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
411 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
414 /* Create one backing variable for a complex component of ORIG. */
416 static tree
417 create_one_component_var (tree type, tree orig, const char *prefix,
418 const char *suffix, enum tree_code code)
420 tree r = create_tmp_var (type, prefix);
421 add_referenced_var (r);
423 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
424 DECL_ARTIFICIAL (r) = 1;
426 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
428 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
429 tree inner_type;
431 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
433 inner_type = TREE_TYPE (TREE_TYPE (orig));
434 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
435 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
436 DECL_IGNORED_P (r) = 0;
437 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
439 else
441 DECL_IGNORED_P (r) = 1;
442 TREE_NO_WARNING (r) = 1;
445 return r;
448 /* Retrieve a value for a complex component of VAR. */
450 static tree
451 get_component_var (tree var, bool imag_p)
453 size_t decl_index = DECL_UID (var) * 2 + imag_p;
454 tree ret = cvc_lookup (decl_index);
456 if (ret == NULL)
458 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
459 imag_p ? "CI" : "CR",
460 imag_p ? "$imag" : "$real",
461 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
462 cvc_insert (decl_index, ret);
465 return ret;
468 /* Retrieve a value for a complex component of SSA_NAME. */
470 static tree
471 get_component_ssa_name (tree ssa_name, bool imag_p)
473 complex_lattice_t lattice = find_lattice_value (ssa_name);
474 size_t ssa_name_index;
475 tree ret;
477 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
479 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
480 if (SCALAR_FLOAT_TYPE_P (inner_type))
481 return build_real (inner_type, dconst0);
482 else
483 return build_int_cst (inner_type, 0);
486 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
487 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
488 if (ret == NULL)
490 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
491 ret = make_ssa_name (ret, NULL);
493 /* Copy some properties from the original. In particular, whether it
494 is used in an abnormal phi, and whether it's uninitialized. */
495 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
496 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
497 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
498 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
500 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
501 set_default_def (SSA_NAME_VAR (ret), ret);
504 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
507 return ret;
510 /* Set a value for a complex component of SSA_NAME, return a
511 gimple_seq of stuff that needs doing. */
513 static gimple_seq
514 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
516 complex_lattice_t lattice = find_lattice_value (ssa_name);
517 size_t ssa_name_index;
518 tree comp;
519 gimple last;
520 gimple_seq list;
522 /* We know the value must be zero, else there's a bug in our lattice
523 analysis. But the value may well be a variable known to contain
524 zero. We should be safe ignoring it. */
525 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
526 return NULL;
528 /* If we've already assigned an SSA_NAME to this component, then this
529 means that our walk of the basic blocks found a use before the set.
530 This is fine. Now we should create an initialization for the value
531 we created earlier. */
532 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
533 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
534 if (comp)
537 /* If we've nothing assigned, and the value we're given is already stable,
538 then install that as the value for this SSA_NAME. This preemptively
539 copy-propagates the value, which avoids unnecessary memory allocation. */
540 else if (is_gimple_min_invariant (value))
542 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
543 return NULL;
545 else if (TREE_CODE (value) == SSA_NAME
546 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
548 /* Replace an anonymous base value with the variable from cvc_lookup.
549 This should result in better debug info. */
550 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
551 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
553 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
554 replace_ssa_name_symbol (value, comp);
557 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
558 return NULL;
561 /* Finally, we need to stabilize the result by installing the value into
562 a new ssa name. */
563 else
564 comp = get_component_ssa_name (ssa_name, imag_p);
566 /* Do all the work to assign VALUE to COMP. */
567 list = NULL;
568 value = force_gimple_operand (value, &list, false, NULL);
569 last = gimple_build_assign (comp, value);
570 gimple_seq_add_stmt (&list, last);
571 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
573 return list;
576 /* Extract the real or imaginary part of a complex variable or constant.
577 Make sure that it's a proper gimple_val and gimplify it if not.
578 Emit any new code before gsi. */
580 static tree
581 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
582 bool gimple_p)
584 switch (TREE_CODE (t))
586 case COMPLEX_CST:
587 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
589 case COMPLEX_EXPR:
590 gcc_unreachable ();
592 case VAR_DECL:
593 case RESULT_DECL:
594 case PARM_DECL:
595 case INDIRECT_REF:
596 case COMPONENT_REF:
597 case ARRAY_REF:
599 tree inner_type = TREE_TYPE (TREE_TYPE (t));
601 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
602 inner_type, unshare_expr (t));
604 if (gimple_p)
605 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
606 GSI_SAME_STMT);
608 return t;
611 case SSA_NAME:
612 return get_component_ssa_name (t, imagpart_p);
614 default:
615 gcc_unreachable ();
619 /* Update the complex components of the ssa name on the lhs of STMT. */
621 static void
622 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
623 tree i)
625 tree lhs;
626 gimple_seq list;
628 lhs = gimple_get_lhs (stmt);
630 list = set_component_ssa_name (lhs, false, r);
631 if (list)
632 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
634 list = set_component_ssa_name (lhs, true, i);
635 if (list)
636 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
639 static void
640 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
642 gimple_seq list;
644 list = set_component_ssa_name (lhs, false, r);
645 if (list)
646 gsi_insert_seq_on_edge (e, list);
648 list = set_component_ssa_name (lhs, true, i);
649 if (list)
650 gsi_insert_seq_on_edge (e, list);
654 /* Update an assignment to a complex variable in place. */
656 static void
657 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
659 gimple_stmt_iterator orig_si = *gsi;
661 if (gimple_in_ssa_p (cfun))
662 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
664 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
665 update_stmt (gsi_stmt (orig_si));
669 /* Generate code at the entry point of the function to initialize the
670 component variables for a complex parameter. */
672 static void
673 update_parameter_components (void)
675 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
676 tree parm;
678 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
680 tree type = TREE_TYPE (parm);
681 tree ssa_name, r, i;
683 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
684 continue;
686 type = TREE_TYPE (type);
687 ssa_name = gimple_default_def (cfun, parm);
688 if (!ssa_name)
689 continue;
691 r = build1 (REALPART_EXPR, type, ssa_name);
692 i = build1 (IMAGPART_EXPR, type, ssa_name);
693 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
697 /* Generate code to set the component variables of a complex variable
698 to match the PHI statements in block BB. */
700 static void
701 update_phi_components (basic_block bb)
703 gimple_stmt_iterator gsi;
705 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
707 gimple phi = gsi_stmt (gsi);
709 if (is_complex_reg (gimple_phi_result (phi)))
711 tree lr, li;
712 gimple pr = NULL, pi = NULL;
713 unsigned int i, n;
715 lr = get_component_ssa_name (gimple_phi_result (phi), false);
716 if (TREE_CODE (lr) == SSA_NAME)
718 pr = create_phi_node (lr, bb);
719 SSA_NAME_DEF_STMT (lr) = pr;
722 li = get_component_ssa_name (gimple_phi_result (phi), true);
723 if (TREE_CODE (li) == SSA_NAME)
725 pi = create_phi_node (li, bb);
726 SSA_NAME_DEF_STMT (li) = pi;
729 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
731 tree comp, arg = gimple_phi_arg_def (phi, i);
732 if (pr)
734 comp = extract_component (NULL, arg, false, false);
735 SET_PHI_ARG_DEF (pr, i, comp);
737 if (pi)
739 comp = extract_component (NULL, arg, true, false);
740 SET_PHI_ARG_DEF (pi, i, comp);
747 /* Mark each virtual op in STMT for ssa update. */
749 static void
750 update_all_vops (gimple stmt)
752 ssa_op_iter iter;
753 tree sym;
755 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
757 if (TREE_CODE (sym) == SSA_NAME)
758 sym = SSA_NAME_VAR (sym);
759 mark_sym_for_renaming (sym);
764 /* Expand a complex move to scalars. */
766 static void
767 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
769 tree inner_type = TREE_TYPE (type);
770 tree r, i, lhs, rhs;
771 gimple stmt = gsi_stmt (*gsi);
773 if (is_gimple_assign (stmt))
775 lhs = gimple_assign_lhs (stmt);
776 if (gimple_num_ops (stmt) == 2)
777 rhs = gimple_assign_rhs1 (stmt);
778 else
779 rhs = NULL_TREE;
781 else if (is_gimple_call (stmt))
783 lhs = gimple_call_lhs (stmt);
784 rhs = NULL_TREE;
786 else
787 gcc_unreachable ();
789 if (TREE_CODE (lhs) == SSA_NAME)
791 if (is_ctrl_altering_stmt (stmt))
793 edge_iterator ei;
794 edge e;
796 /* The value is not assigned on the exception edges, so we need not
797 concern ourselves there. We do need to update on the fallthru
798 edge. Find it. */
799 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
800 if (e->flags & EDGE_FALLTHRU)
801 goto found_fallthru;
802 gcc_unreachable ();
803 found_fallthru:
805 r = build1 (REALPART_EXPR, inner_type, lhs);
806 i = build1 (IMAGPART_EXPR, inner_type, lhs);
807 update_complex_components_on_edge (e, lhs, r, i);
809 else if (is_gimple_call (stmt)
810 || gimple_has_side_effects (stmt)
811 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
813 r = build1 (REALPART_EXPR, inner_type, lhs);
814 i = build1 (IMAGPART_EXPR, inner_type, lhs);
815 update_complex_components (gsi, stmt, r, i);
817 else
819 update_all_vops (stmt);
820 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
822 r = extract_component (gsi, rhs, 0, true);
823 i = extract_component (gsi, rhs, 1, true);
825 else
827 r = gimple_assign_rhs1 (stmt);
828 i = gimple_assign_rhs2 (stmt);
830 update_complex_assignment (gsi, r, i);
833 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
835 tree x;
836 gimple t;
838 r = extract_component (gsi, rhs, 0, false);
839 i = extract_component (gsi, rhs, 1, false);
841 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
842 t = gimple_build_assign (x, r);
843 gsi_insert_before (gsi, t, GSI_SAME_STMT);
845 if (stmt == gsi_stmt (*gsi))
847 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
848 gimple_assign_set_lhs (stmt, x);
849 gimple_assign_set_rhs1 (stmt, i);
851 else
853 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
854 t = gimple_build_assign (x, i);
855 gsi_insert_before (gsi, t, GSI_SAME_STMT);
857 stmt = gsi_stmt (*gsi);
858 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
859 gimple_return_set_retval (stmt, lhs);
862 update_all_vops (stmt);
863 update_stmt (stmt);
867 /* Expand complex addition to scalars:
868 a + b = (ar + br) + i(ai + bi)
869 a - b = (ar - br) + i(ai + bi)
872 static void
873 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
874 tree ar, tree ai, tree br, tree bi,
875 enum tree_code code,
876 complex_lattice_t al, complex_lattice_t bl)
878 tree rr, ri;
880 switch (PAIR (al, bl))
882 case PAIR (ONLY_REAL, ONLY_REAL):
883 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
884 ri = ai;
885 break;
887 case PAIR (ONLY_REAL, ONLY_IMAG):
888 rr = ar;
889 if (code == MINUS_EXPR)
890 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
891 else
892 ri = bi;
893 break;
895 case PAIR (ONLY_IMAG, ONLY_REAL):
896 if (code == MINUS_EXPR)
897 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
898 else
899 rr = br;
900 ri = ai;
901 break;
903 case PAIR (ONLY_IMAG, ONLY_IMAG):
904 rr = ar;
905 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
906 break;
908 case PAIR (VARYING, ONLY_REAL):
909 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
910 ri = ai;
911 break;
913 case PAIR (VARYING, ONLY_IMAG):
914 rr = ar;
915 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
916 break;
918 case PAIR (ONLY_REAL, VARYING):
919 if (code == MINUS_EXPR)
920 goto general;
921 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
922 ri = bi;
923 break;
925 case PAIR (ONLY_IMAG, VARYING):
926 if (code == MINUS_EXPR)
927 goto general;
928 rr = br;
929 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
930 break;
932 case PAIR (VARYING, VARYING):
933 general:
934 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
935 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
936 break;
938 default:
939 gcc_unreachable ();
942 update_complex_assignment (gsi, rr, ri);
945 /* Expand a complex multiplication or division to a libcall to the c99
946 compliant routines. */
948 static void
949 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
950 tree br, tree bi, enum tree_code code)
952 enum machine_mode mode;
953 enum built_in_function bcode;
954 tree fn, type, lhs;
955 gimple stmt;
957 stmt = gsi_stmt (*gsi);
958 lhs = gimple_assign_lhs (stmt);
959 type = TREE_TYPE (lhs);
961 mode = TYPE_MODE (type);
962 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
964 if (code == MULT_EXPR)
965 bcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
966 else if (code == RDIV_EXPR)
967 bcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
968 else
969 gcc_unreachable ();
970 fn = built_in_decls[bcode];
972 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
973 gimple_call_set_lhs (stmt, lhs);
974 update_stmt (stmt);
975 gsi_replace (gsi, stmt, true);
977 if (gimple_in_ssa_p (cfun))
979 type = TREE_TYPE (type);
980 update_complex_components (gsi, stmt,
981 build1 (REALPART_EXPR, type, lhs),
982 build1 (IMAGPART_EXPR, type, lhs));
983 SSA_NAME_DEF_STMT (lhs) = stmt;
987 /* Expand complex multiplication to scalars:
988 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
991 static void
992 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
993 tree ar, tree ai, tree br, tree bi,
994 complex_lattice_t al, complex_lattice_t bl)
996 tree rr, ri;
998 if (al < bl)
1000 complex_lattice_t tl;
1001 rr = ar, ar = br, br = rr;
1002 ri = ai, ai = bi, bi = ri;
1003 tl = al, al = bl, bl = tl;
1006 switch (PAIR (al, bl))
1008 case PAIR (ONLY_REAL, ONLY_REAL):
1009 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1010 ri = ai;
1011 break;
1013 case PAIR (ONLY_IMAG, ONLY_REAL):
1014 rr = ar;
1015 if (TREE_CODE (ai) == REAL_CST
1016 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1017 ri = br;
1018 else
1019 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1020 break;
1022 case PAIR (ONLY_IMAG, ONLY_IMAG):
1023 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1024 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1025 ri = ar;
1026 break;
1028 case PAIR (VARYING, ONLY_REAL):
1029 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1030 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1031 break;
1033 case PAIR (VARYING, ONLY_IMAG):
1034 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1035 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1036 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1037 break;
1039 case PAIR (VARYING, VARYING):
1040 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1042 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1043 return;
1045 else
1047 tree t1, t2, t3, t4;
1049 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1050 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1051 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1053 /* Avoid expanding redundant multiplication for the common
1054 case of squaring a complex number. */
1055 if (ar == br && ai == bi)
1056 t4 = t3;
1057 else
1058 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1060 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1061 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1063 break;
1065 default:
1066 gcc_unreachable ();
1069 update_complex_assignment (gsi, rr, ri);
1072 /* Expand complex division to scalars, straightforward algorithm.
1073 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1074 t = br*br + bi*bi
1077 static void
1078 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1079 tree ar, tree ai, tree br, tree bi,
1080 enum tree_code code)
1082 tree rr, ri, div, t1, t2, t3;
1084 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1085 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1086 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1088 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1089 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1090 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1091 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1093 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1094 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1095 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1096 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1098 update_complex_assignment (gsi, rr, ri);
1101 /* Expand complex division to scalars, modified algorithm to minimize
1102 overflow with wide input ranges. */
1104 static void
1105 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1106 tree ar, tree ai, tree br, tree bi,
1107 enum tree_code code)
1109 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1110 basic_block bb_cond, bb_true, bb_false, bb_join;
1111 gimple stmt;
1113 /* Examine |br| < |bi|, and branch. */
1114 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1115 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1116 compare = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1117 STRIP_NOPS (compare);
1119 bb_cond = bb_true = bb_false = bb_join = NULL;
1120 rr = ri = tr = ti = NULL;
1121 if (!TREE_CONSTANT (compare))
1123 edge e;
1124 gimple stmt;
1125 tree cond, tmp;
1127 tmp = create_tmp_var (boolean_type_node, NULL);
1128 stmt = gimple_build_assign (tmp, compare);
1129 if (gimple_in_ssa_p (cfun))
1131 tmp = make_ssa_name (tmp, stmt);
1132 gimple_assign_set_lhs (stmt, tmp);
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1137 cond = fold_build2 (EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1138 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1139 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1141 /* Split the original block, and create the TRUE and FALSE blocks. */
1142 e = split_block (gsi_bb (*gsi), stmt);
1143 bb_cond = e->src;
1144 bb_join = e->dest;
1145 bb_true = create_empty_bb (bb_cond);
1146 bb_false = create_empty_bb (bb_true);
1148 /* Wire the blocks together. */
1149 e->flags = EDGE_TRUE_VALUE;
1150 redirect_edge_succ (e, bb_true);
1151 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1152 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1153 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1155 /* Update dominance info. Note that bb_join's data was
1156 updated by split_block. */
1157 if (dom_info_available_p (CDI_DOMINATORS))
1159 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1160 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1163 rr = make_rename_temp (inner_type, NULL);
1164 ri = make_rename_temp (inner_type, NULL);
1167 /* In the TRUE branch, we compute
1168 ratio = br/bi;
1169 div = (br * ratio) + bi;
1170 tr = (ar * ratio) + ai;
1171 ti = (ai * ratio) - ar;
1172 tr = tr / div;
1173 ti = ti / div; */
1174 if (bb_true || integer_nonzerop (compare))
1176 if (bb_true)
1178 *gsi = gsi_last_bb (bb_true);
1179 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1182 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1184 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1185 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1187 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1188 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1190 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1191 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1193 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1194 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1196 if (bb_true)
1198 stmt = gimple_build_assign (rr, tr);
1199 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1200 stmt = gimple_build_assign (ri, ti);
1201 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1202 gsi_remove (gsi, true);
1206 /* In the FALSE branch, we compute
1207 ratio = d/c;
1208 divisor = (d * ratio) + c;
1209 tr = (b * ratio) + a;
1210 ti = b - (a * ratio);
1211 tr = tr / div;
1212 ti = ti / div; */
1213 if (bb_false || integer_zerop (compare))
1215 if (bb_false)
1217 *gsi = gsi_last_bb (bb_false);
1218 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1221 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1223 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1224 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1226 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1227 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1229 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1230 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1232 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1233 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1235 if (bb_false)
1237 stmt = gimple_build_assign (rr, tr);
1238 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1239 stmt = gimple_build_assign (ri, ti);
1240 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1241 gsi_remove (gsi, true);
1245 if (bb_join)
1246 *gsi = gsi_start_bb (bb_join);
1247 else
1248 rr = tr, ri = ti;
1250 update_complex_assignment (gsi, rr, ri);
1253 /* Expand complex division to scalars. */
1255 static void
1256 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1257 tree ar, tree ai, tree br, tree bi,
1258 enum tree_code code,
1259 complex_lattice_t al, complex_lattice_t bl)
1261 tree rr, ri;
1263 switch (PAIR (al, bl))
1265 case PAIR (ONLY_REAL, ONLY_REAL):
1266 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1267 ri = ai;
1268 break;
1270 case PAIR (ONLY_REAL, ONLY_IMAG):
1271 rr = ai;
1272 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1273 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1274 break;
1276 case PAIR (ONLY_IMAG, ONLY_REAL):
1277 rr = ar;
1278 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1279 break;
1281 case PAIR (ONLY_IMAG, ONLY_IMAG):
1282 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1283 ri = ar;
1284 break;
1286 case PAIR (VARYING, ONLY_REAL):
1287 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1288 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1289 break;
1291 case PAIR (VARYING, ONLY_IMAG):
1292 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1293 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1294 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1296 case PAIR (ONLY_REAL, VARYING):
1297 case PAIR (ONLY_IMAG, VARYING):
1298 case PAIR (VARYING, VARYING):
1299 switch (flag_complex_method)
1301 case 0:
1302 /* straightforward implementation of complex divide acceptable. */
1303 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1304 break;
1306 case 2:
1307 if (SCALAR_FLOAT_TYPE_P (inner_type))
1309 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1310 break;
1312 /* FALLTHRU */
1314 case 1:
1315 /* wide ranges of inputs must work for complex divide. */
1316 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1317 break;
1319 default:
1320 gcc_unreachable ();
1322 return;
1324 default:
1325 gcc_unreachable ();
1328 update_complex_assignment (gsi, rr, ri);
1331 /* Expand complex negation to scalars:
1332 -a = (-ar) + i(-ai)
1335 static void
1336 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1337 tree ar, tree ai)
1339 tree rr, ri;
1341 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1342 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1344 update_complex_assignment (gsi, rr, ri);
1347 /* Expand complex conjugate to scalars:
1348 ~a = (ar) + i(-ai)
1351 static void
1352 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1353 tree ar, tree ai)
1355 tree ri;
1357 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1359 update_complex_assignment (gsi, ar, ri);
1362 /* Expand complex comparison (EQ or NE only). */
1364 static void
1365 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1366 tree br, tree bi, enum tree_code code)
1368 tree cr, ci, cc, type;
1369 gimple stmt;
1371 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1372 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1373 cc = gimplify_build2 (gsi,
1374 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1375 boolean_type_node, cr, ci);
1377 stmt = gsi_stmt (*gsi);
1379 switch (gimple_code (stmt))
1381 case GIMPLE_RETURN:
1382 type = TREE_TYPE (gimple_return_retval (stmt));
1383 gimple_return_set_retval (stmt, fold_convert (type, cc));
1384 break;
1386 case GIMPLE_ASSIGN:
1387 type = TREE_TYPE (gimple_assign_lhs (stmt));
1388 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1389 stmt = gsi_stmt (*gsi);
1390 break;
1392 case GIMPLE_COND:
1393 gimple_cond_set_code (stmt, EQ_EXPR);
1394 gimple_cond_set_lhs (stmt, cc);
1395 gimple_cond_set_rhs (stmt, boolean_true_node);
1396 break;
1398 default:
1399 gcc_unreachable ();
1402 update_stmt (stmt);
1406 /* Process one statement. If we identify a complex operation, expand it. */
1408 static void
1409 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1411 gimple stmt = gsi_stmt (*gsi);
1412 tree type, inner_type, lhs;
1413 tree ac, ar, ai, bc, br, bi;
1414 complex_lattice_t al, bl;
1415 enum tree_code code;
1417 lhs = gimple_get_lhs (stmt);
1418 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1419 return;
1421 type = TREE_TYPE (gimple_op (stmt, 0));
1422 code = gimple_expr_code (stmt);
1424 /* Initial filter for operations we handle. */
1425 switch (code)
1427 case PLUS_EXPR:
1428 case MINUS_EXPR:
1429 case MULT_EXPR:
1430 case TRUNC_DIV_EXPR:
1431 case CEIL_DIV_EXPR:
1432 case FLOOR_DIV_EXPR:
1433 case ROUND_DIV_EXPR:
1434 case RDIV_EXPR:
1435 case NEGATE_EXPR:
1436 case CONJ_EXPR:
1437 if (TREE_CODE (type) != COMPLEX_TYPE)
1438 return;
1439 inner_type = TREE_TYPE (type);
1440 break;
1442 case EQ_EXPR:
1443 case NE_EXPR:
1444 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1445 subocde, so we need to access the operands using gimple_op. */
1446 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1447 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1448 return;
1449 break;
1451 default:
1453 tree rhs;
1455 /* GIMPLE_COND may also fallthru here, but we do not need to
1456 do anything with it. */
1457 if (gimple_code (stmt) == GIMPLE_COND)
1458 return;
1460 if (TREE_CODE (type) == COMPLEX_TYPE)
1461 expand_complex_move (gsi, type);
1462 else if (is_gimple_assign (stmt)
1463 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1464 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1465 && TREE_CODE (lhs) == SSA_NAME)
1467 rhs = gimple_assign_rhs1 (stmt);
1468 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1469 gimple_assign_rhs_code (stmt)
1470 == IMAGPART_EXPR,
1471 false);
1472 gimple_assign_set_rhs_from_tree (gsi, rhs);
1473 stmt = gsi_stmt (*gsi);
1474 update_stmt (stmt);
1477 return;
1480 /* Extract the components of the two complex values. Make sure and
1481 handle the common case of the same value used twice specially. */
1482 if (is_gimple_assign (stmt))
1484 ac = gimple_assign_rhs1 (stmt);
1485 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1487 /* GIMPLE_CALL can not get here. */
1488 else
1490 ac = gimple_cond_lhs (stmt);
1491 bc = gimple_cond_rhs (stmt);
1494 ar = extract_component (gsi, ac, false, true);
1495 ai = extract_component (gsi, ac, true, true);
1497 if (ac == bc)
1498 br = ar, bi = ai;
1499 else if (bc)
1501 br = extract_component (gsi, bc, 0, true);
1502 bi = extract_component (gsi, bc, 1, true);
1504 else
1505 br = bi = NULL_TREE;
1507 if (gimple_in_ssa_p (cfun))
1509 al = find_lattice_value (ac);
1510 if (al == UNINITIALIZED)
1511 al = VARYING;
1513 if (TREE_CODE_CLASS (code) == tcc_unary)
1514 bl = UNINITIALIZED;
1515 else if (ac == bc)
1516 bl = al;
1517 else
1519 bl = find_lattice_value (bc);
1520 if (bl == UNINITIALIZED)
1521 bl = VARYING;
1524 else
1525 al = bl = VARYING;
1527 switch (code)
1529 case PLUS_EXPR:
1530 case MINUS_EXPR:
1531 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1532 break;
1534 case MULT_EXPR:
1535 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1536 break;
1538 case TRUNC_DIV_EXPR:
1539 case CEIL_DIV_EXPR:
1540 case FLOOR_DIV_EXPR:
1541 case ROUND_DIV_EXPR:
1542 case RDIV_EXPR:
1543 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1544 break;
1546 case NEGATE_EXPR:
1547 expand_complex_negation (gsi, inner_type, ar, ai);
1548 break;
1550 case CONJ_EXPR:
1551 expand_complex_conjugate (gsi, inner_type, ar, ai);
1552 break;
1554 case EQ_EXPR:
1555 case NE_EXPR:
1556 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1557 break;
1559 default:
1560 gcc_unreachable ();
1565 /* Entry point for complex operation lowering during optimization. */
1567 static unsigned int
1568 tree_lower_complex (void)
1570 int old_last_basic_block;
1571 gimple_stmt_iterator gsi;
1572 basic_block bb;
1574 if (!init_dont_simulate_again ())
1575 return 0;
1577 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1578 VEC_safe_grow_cleared (complex_lattice_t, heap,
1579 complex_lattice_values, num_ssa_names);
1581 init_parameter_lattice_values ();
1582 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1584 complex_variable_components = htab_create (10, int_tree_map_hash,
1585 int_tree_map_eq, free);
1587 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1588 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1589 2 * num_ssa_names);
1591 update_parameter_components ();
1593 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1594 old_last_basic_block = last_basic_block;
1595 FOR_EACH_BB (bb)
1597 if (bb->index >= old_last_basic_block)
1598 continue;
1600 update_phi_components (bb);
1601 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1602 expand_complex_operations_1 (&gsi);
1605 gsi_commit_edge_inserts ();
1607 htab_delete (complex_variable_components);
1608 VEC_free (tree, heap, complex_ssa_name_components);
1609 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1610 return 0;
1613 struct gimple_opt_pass pass_lower_complex =
1616 GIMPLE_PASS,
1617 "cplxlower", /* name */
1618 0, /* gate */
1619 tree_lower_complex, /* execute */
1620 NULL, /* sub */
1621 NULL, /* next */
1622 0, /* static_pass_number */
1623 0, /* tv_id */
1624 PROP_ssa, /* properties_required */
1625 0, /* properties_provided */
1626 0, /* properties_destroyed */
1627 0, /* todo_flags_start */
1628 TODO_dump_func
1629 | TODO_ggc_collect
1630 | TODO_update_ssa
1631 | TODO_verify_stmts /* todo_flags_finish */
1636 /* Entry point for complex operation lowering without optimization. */
1638 static unsigned int
1639 tree_lower_complex_O0 (void)
1641 int old_last_basic_block = last_basic_block;
1642 gimple_stmt_iterator gsi;
1643 basic_block bb;
1645 FOR_EACH_BB (bb)
1647 if (bb->index >= old_last_basic_block)
1648 continue;
1650 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1651 expand_complex_operations_1 (&gsi);
1653 return 0;
1656 static bool
1657 gate_no_optimization (void)
1659 /* With errors, normal optimization passes are not run. If we don't
1660 lower complex operations at all, rtl expansion will abort. */
1661 return optimize == 0 || sorrycount || errorcount;
1664 struct gimple_opt_pass pass_lower_complex_O0 =
1667 GIMPLE_PASS,
1668 "cplxlower0", /* name */
1669 gate_no_optimization, /* gate */
1670 tree_lower_complex_O0, /* execute */
1671 NULL, /* sub */
1672 NULL, /* next */
1673 0, /* static_pass_number */
1674 0, /* tv_id */
1675 PROP_cfg, /* properties_required */
1676 0, /* properties_provided */
1677 0, /* properties_destroyed */
1678 0, /* todo_flags_start */
1679 TODO_dump_func | TODO_ggc_collect
1680 | TODO_verify_stmts, /* todo_flags_finish */