* config/mips/mips.h (ISA_HAS_INT_CONDMOVE): Delete.
[official-gcc.git] / gcc / final.c
bloba59f3a2074c8b26446163eaeb4cf31fb81ff1222
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Highest line number in current block. */
127 static int high_block_linenum;
129 /* Likewise for function. */
130 static int high_function_linenum;
132 /* Filename of last NOTE. */
133 static const char *last_filename;
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare = 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter = 0;
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
159 CC_STATUS cc_status;
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status;
165 #endif
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth;
194 /* Nonzero if have enabled APP processing of our assembler output. */
196 static int app_on;
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
201 rtx final_sequence;
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
239 /* Initialize data in final at the beginning of a compilation. */
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
244 app_on = 0;
245 final_sequence = 0;
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
271 void
272 app_enable (void)
274 if (! app_on)
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
284 void
285 app_disable (void)
287 if (app_on)
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
298 #ifdef DELAY_SLOTS
300 dbr_sequence_length (void)
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
307 #endif
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths;
317 varray_type insn_addresses_;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
340 struct label_alignment
342 short alignment;
343 short max_skip;
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
350 /* Indicate that branch shortening hasn't yet been done. */
352 void
353 init_insn_lengths (void)
355 if (uid_shuid)
357 free (uid_shuid);
358 uid_shuid = 0;
360 if (insn_lengths)
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
371 free (uid_align);
372 uid_align = 0;
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
408 else
409 length = insn_default_length (insn);
410 break;
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
426 default:
427 break;
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno, max_labelno;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label)
546 return LABEL_TO_ALIGNMENT (label);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 int align_addr, new_align;
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
602 return fuzz;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch)
620 rtx dest, seq;
621 int seq_uid;
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
645 else
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
652 #endif /* HAVE_ATTR_length */
654 void
655 compute_alignments (void)
657 int log, max_skip, max_log;
658 basic_block bb;
660 if (label_align)
662 free (label_align);
663 label_align = 0;
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
675 FOR_EACH_BB (bb)
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
681 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
687 for (e = bb->pred; e; e = e->pred_next)
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
765 #endif
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
775 if (max_labelno != max_label_num ())
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
781 max_labelno = max_label_num ();
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
804 max_log = 0;
805 max_skip = 0;
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
809 int log;
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
820 else if (LABEL_P (insn))
822 rtx next;
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
861 else if (BARRIER_P (insn))
863 rtx label;
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
875 break;
879 #ifdef HAVE_ATTR_length
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
888 varying_length = xcalloc (max_uid, sizeof (char));
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
945 min = shuid;
946 min_lab = lab;
948 if (shuid > max)
950 max = shuid;
951 max_lab = lab;
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
976 uid = INSN_UID (insn);
978 insn_lengths[uid] = 0;
980 if (LABEL_P (insn))
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1069 while (something_changed)
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1083 uid = INSN_UID (insn);
1085 if (LABEL_P (insn))
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1170 else
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1184 if (! flags.base_after_vec && flags.max_after_vec)
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1192 else
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1214 continue;
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1218 if (! (varying_length[uid]))
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1223 int i;
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1233 insn_current_address += insn_lengths[inner_uid];
1236 else
1237 insn_current_address += insn_lengths[uid];
1239 continue;
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1244 int i;
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1263 if (inner_length != insn_lengths[inner_uid])
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1272 else
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1285 if (new_length != insn_lengths[uid])
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1296 free (varying_length);
1298 #endif /* HAVE_ATTR_length */
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1306 static int
1307 asm_insn_count (rtx body)
1309 const char *template;
1310 int count = 1;
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1321 return count;
1323 #endif
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1339 block_depth = 0;
1341 this_is_asm_operands = 0;
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1346 high_block_linenum = high_function_linenum = last_linenum;
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1350 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1419 if (! NO_PROFILE_COUNTERS)
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1428 function_section (current_function_decl);
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1444 #endif
1445 #endif
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1458 #endif
1459 #endif
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1471 void
1472 final_end_function (void)
1474 app_disable ();
1476 (*debug_hooks->end_function) (high_function_linenum);
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1510 last_ignored_compare = 0;
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1534 last = insn;
1537 #endif
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1551 LABEL_REFS (lab) = insn;
1554 #endif
1557 init_recog ();
1559 CC_STATUS_INIT;
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (NOTE_P (insn))
1570 insn_current_address = -1;
1571 else
1572 abort ();
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1582 const char *
1583 get_insn_template (int code, rtx insn)
1585 switch (insn_data[code].output_format)
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1596 default:
1597 abort ();
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1609 const char *name = LABEL_NAME (insn);
1611 switch (LABEL_KIND (insn))
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1639 rtx temp;
1640 int bb_note_count = 0;
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (NOTE_P (temp)
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1654 if (INSN_P (temp))
1655 return false;
1658 return false;
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1684 insn_counter++;
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1691 switch (GET_CODE (insn))
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1697 switch (NOTE_LINE_NUMBER (insn))
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_LOOP_CONT:
1703 case NOTE_INSN_LOOP_VTOP:
1704 case NOTE_INSN_FUNCTION_END:
1705 case NOTE_INSN_REPEATED_LINE_NUMBER:
1706 case NOTE_INSN_EXPECTED_VALUE:
1707 break;
1709 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1711 /* The presence of this note indicates that this basic block
1712 belongs in the "cold" section of the .o file. If we are
1713 not already writing to the cold section we need to change
1714 to it. */
1716 unlikely_text_section ();
1717 break;
1719 case NOTE_INSN_BASIC_BLOCK:
1721 /* If we are performing the optimization that partitions
1722 basic blocks into hot & cold sections of the .o file,
1723 then at the start of each new basic block, before
1724 beginning to write code for the basic block, we need to
1725 check to see whether the basic block belongs in the hot
1726 or cold section of the .o file, and change the section we
1727 are writing to appropriately. */
1729 if (flag_reorder_blocks_and_partition
1730 && !scan_ahead_for_unlikely_executed_note (insn))
1731 function_section (current_function_decl);
1733 #ifdef TARGET_UNWIND_INFO
1734 targetm.asm_out.unwind_emit (asm_out_file, insn);
1735 #endif
1737 if (flag_debug_asm)
1738 fprintf (asm_out_file, "\t%s basic block %d\n",
1739 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1741 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1743 *seen |= SEEN_EMITTED;
1744 last_filename = NULL;
1746 else
1747 *seen |= SEEN_BB;
1749 break;
1751 case NOTE_INSN_EH_REGION_BEG:
1752 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1753 NOTE_EH_HANDLER (insn));
1754 break;
1756 case NOTE_INSN_EH_REGION_END:
1757 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1758 NOTE_EH_HANDLER (insn));
1759 break;
1761 case NOTE_INSN_PROLOGUE_END:
1762 targetm.asm_out.function_end_prologue (file);
1763 profile_after_prologue (file);
1765 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1767 *seen |= SEEN_EMITTED;
1768 last_filename = NULL;
1770 else
1771 *seen |= SEEN_NOTE;
1773 break;
1775 case NOTE_INSN_EPILOGUE_BEG:
1776 targetm.asm_out.function_begin_epilogue (file);
1777 break;
1779 case NOTE_INSN_FUNCTION_BEG:
1780 app_disable ();
1781 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1783 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1785 *seen |= SEEN_EMITTED;
1786 last_filename = NULL;
1788 else
1789 *seen |= SEEN_NOTE;
1791 break;
1793 case NOTE_INSN_BLOCK_BEG:
1794 if (debug_info_level == DINFO_LEVEL_NORMAL
1795 || debug_info_level == DINFO_LEVEL_VERBOSE
1796 || write_symbols == DWARF_DEBUG
1797 || write_symbols == DWARF2_DEBUG
1798 || write_symbols == VMS_AND_DWARF2_DEBUG
1799 || write_symbols == VMS_DEBUG)
1801 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1803 app_disable ();
1804 ++block_depth;
1805 high_block_linenum = last_linenum;
1807 /* Output debugging info about the symbol-block beginning. */
1808 (*debug_hooks->begin_block) (last_linenum, n);
1810 /* Mark this block as output. */
1811 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1813 break;
1815 case NOTE_INSN_BLOCK_END:
1816 if (debug_info_level == DINFO_LEVEL_NORMAL
1817 || debug_info_level == DINFO_LEVEL_VERBOSE
1818 || write_symbols == DWARF_DEBUG
1819 || write_symbols == DWARF2_DEBUG
1820 || write_symbols == VMS_AND_DWARF2_DEBUG
1821 || write_symbols == VMS_DEBUG)
1823 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1825 app_disable ();
1827 /* End of a symbol-block. */
1828 --block_depth;
1829 if (block_depth < 0)
1830 abort ();
1832 (*debug_hooks->end_block) (high_block_linenum, n);
1834 break;
1836 case NOTE_INSN_DELETED_LABEL:
1837 /* Emit the label. We may have deleted the CODE_LABEL because
1838 the label could be proved to be unreachable, though still
1839 referenced (in the form of having its address taken. */
1840 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1841 break;
1843 case NOTE_INSN_VAR_LOCATION:
1844 (*debug_hooks->var_location) (insn);
1845 break;
1847 case 0:
1848 break;
1850 default:
1851 if (NOTE_LINE_NUMBER (insn) <= 0)
1852 abort ();
1853 break;
1855 break;
1857 case BARRIER:
1858 #if defined (DWARF2_UNWIND_INFO)
1859 if (dwarf2out_do_frame ())
1860 dwarf2out_frame_debug (insn);
1861 #endif
1862 break;
1864 case CODE_LABEL:
1865 /* The target port might emit labels in the output function for
1866 some insn, e.g. sh.c output_branchy_insn. */
1867 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1869 int align = LABEL_TO_ALIGNMENT (insn);
1870 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1871 int max_skip = LABEL_TO_MAX_SKIP (insn);
1872 #endif
1874 if (align && NEXT_INSN (insn))
1876 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1877 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1878 #else
1879 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1880 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1881 #else
1882 ASM_OUTPUT_ALIGN (file, align);
1883 #endif
1884 #endif
1887 #ifdef HAVE_cc0
1888 CC_STATUS_INIT;
1889 /* If this label is reached from only one place, set the condition
1890 codes from the instruction just before the branch. */
1892 /* Disabled because some insns set cc_status in the C output code
1893 and NOTICE_UPDATE_CC alone can set incorrect status. */
1894 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1896 rtx jump = LABEL_REFS (insn);
1897 rtx barrier = prev_nonnote_insn (insn);
1898 rtx prev;
1899 /* If the LABEL_REFS field of this label has been set to point
1900 at a branch, the predecessor of the branch is a regular
1901 insn, and that branch is the only way to reach this label,
1902 set the condition codes based on the branch and its
1903 predecessor. */
1904 if (barrier && BARRIER_P (barrier)
1905 && jump && JUMP_P (jump)
1906 && (prev = prev_nonnote_insn (jump))
1907 && NONJUMP_INSN_P (prev))
1909 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1910 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1913 #endif
1914 if (prescan > 0)
1915 break;
1917 if (LABEL_NAME (insn))
1918 (*debug_hooks->label) (insn);
1920 /* If we are doing the optimization that partitions hot & cold
1921 basic blocks into separate sections of the .o file, we need
1922 to ensure the jump table ends up in the correct section... */
1924 if (flag_reorder_blocks_and_partition
1925 && targetm.have_named_sections)
1927 rtx tmp_table, tmp_label;
1928 if (LABEL_P (insn)
1929 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1931 /* Do nothing; Do NOT change the current section. */
1933 else if (scan_ahead_for_unlikely_executed_note (insn))
1934 unlikely_text_section ();
1935 else if (in_unlikely_text_section ())
1936 function_section (current_function_decl);
1939 if (app_on)
1941 fputs (ASM_APP_OFF, file);
1942 app_on = 0;
1944 if (NEXT_INSN (insn) != 0
1945 && JUMP_P (NEXT_INSN (insn)))
1947 rtx nextbody = PATTERN (NEXT_INSN (insn));
1949 /* If this label is followed by a jump-table,
1950 make sure we put the label in the read-only section. Also
1951 possibly write the label and jump table together. */
1953 if (GET_CODE (nextbody) == ADDR_VEC
1954 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1956 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1957 /* In this case, the case vector is being moved by the
1958 target, so don't output the label at all. Leave that
1959 to the back end macros. */
1960 #else
1961 if (! JUMP_TABLES_IN_TEXT_SECTION)
1963 int log_align;
1965 targetm.asm_out.function_rodata_section (current_function_decl);
1967 #ifdef ADDR_VEC_ALIGN
1968 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1969 #else
1970 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1971 #endif
1972 ASM_OUTPUT_ALIGN (file, log_align);
1974 else
1975 function_section (current_function_decl);
1977 #ifdef ASM_OUTPUT_CASE_LABEL
1978 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1979 NEXT_INSN (insn));
1980 #else
1981 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1982 #endif
1983 #endif
1984 break;
1987 if (LABEL_ALT_ENTRY_P (insn))
1988 output_alternate_entry_point (file, insn);
1989 else
1990 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1991 break;
1993 default:
1995 rtx body = PATTERN (insn);
1996 int insn_code_number;
1997 const char *template;
1999 /* An INSN, JUMP_INSN or CALL_INSN.
2000 First check for special kinds that recog doesn't recognize. */
2002 if (GET_CODE (body) == USE /* These are just declarations. */
2003 || GET_CODE (body) == CLOBBER)
2004 break;
2006 #ifdef HAVE_cc0
2008 /* If there is a REG_CC_SETTER note on this insn, it means that
2009 the setting of the condition code was done in the delay slot
2010 of the insn that branched here. So recover the cc status
2011 from the insn that set it. */
2013 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2014 if (note)
2016 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2017 cc_prev_status = cc_status;
2020 #endif
2022 /* Detect insns that are really jump-tables
2023 and output them as such. */
2025 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2027 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2028 int vlen, idx;
2029 #endif
2031 if (prescan > 0)
2032 break;
2034 if (app_on)
2036 fputs (ASM_APP_OFF, file);
2037 app_on = 0;
2040 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2041 if (GET_CODE (body) == ADDR_VEC)
2043 #ifdef ASM_OUTPUT_ADDR_VEC
2044 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2045 #else
2046 abort ();
2047 #endif
2049 else
2051 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2052 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2053 #else
2054 abort ();
2055 #endif
2057 #else
2058 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2059 for (idx = 0; idx < vlen; idx++)
2061 if (GET_CODE (body) == ADDR_VEC)
2063 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2064 ASM_OUTPUT_ADDR_VEC_ELT
2065 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2066 #else
2067 abort ();
2068 #endif
2070 else
2072 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2073 ASM_OUTPUT_ADDR_DIFF_ELT
2074 (file,
2075 body,
2076 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2077 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2078 #else
2079 abort ();
2080 #endif
2083 #ifdef ASM_OUTPUT_CASE_END
2084 ASM_OUTPUT_CASE_END (file,
2085 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2086 insn);
2087 #endif
2088 #endif
2090 function_section (current_function_decl);
2092 break;
2094 /* Output this line note if it is the first or the last line
2095 note in a row. */
2096 if (notice_source_line (insn))
2098 (*debug_hooks->source_line) (last_linenum, last_filename);
2101 if (GET_CODE (body) == ASM_INPUT)
2103 const char *string = XSTR (body, 0);
2105 /* There's no telling what that did to the condition codes. */
2106 CC_STATUS_INIT;
2107 if (prescan > 0)
2108 break;
2110 if (string[0])
2112 if (! app_on)
2114 fputs (ASM_APP_ON, file);
2115 app_on = 1;
2117 fprintf (asm_out_file, "\t%s\n", string);
2119 break;
2122 /* Detect `asm' construct with operands. */
2123 if (asm_noperands (body) >= 0)
2125 unsigned int noperands = asm_noperands (body);
2126 rtx *ops = alloca (noperands * sizeof (rtx));
2127 const char *string;
2129 /* There's no telling what that did to the condition codes. */
2130 CC_STATUS_INIT;
2131 if (prescan > 0)
2132 break;
2134 /* Get out the operand values. */
2135 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2136 /* Inhibit aborts on what would otherwise be compiler bugs. */
2137 insn_noperands = noperands;
2138 this_is_asm_operands = insn;
2140 #ifdef FINAL_PRESCAN_INSN
2141 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2142 #endif
2144 /* Output the insn using them. */
2145 if (string[0])
2147 if (! app_on)
2149 fputs (ASM_APP_ON, file);
2150 app_on = 1;
2152 output_asm_insn (string, ops);
2155 this_is_asm_operands = 0;
2156 break;
2159 if (prescan <= 0 && app_on)
2161 fputs (ASM_APP_OFF, file);
2162 app_on = 0;
2165 if (GET_CODE (body) == SEQUENCE)
2167 /* A delayed-branch sequence */
2168 int i;
2169 rtx next;
2171 if (prescan > 0)
2172 break;
2173 final_sequence = body;
2175 /* Record the delay slots' frame information before the branch.
2176 This is needed for delayed calls: see execute_cfa_program(). */
2177 #if defined (DWARF2_UNWIND_INFO)
2178 if (dwarf2out_do_frame ())
2179 for (i = 1; i < XVECLEN (body, 0); i++)
2180 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2181 #endif
2183 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2184 force the restoration of a comparison that was previously
2185 thought unnecessary. If that happens, cancel this sequence
2186 and cause that insn to be restored. */
2188 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2189 if (next != XVECEXP (body, 0, 1))
2191 final_sequence = 0;
2192 return next;
2195 for (i = 1; i < XVECLEN (body, 0); i++)
2197 rtx insn = XVECEXP (body, 0, i);
2198 rtx next = NEXT_INSN (insn);
2199 /* We loop in case any instruction in a delay slot gets
2200 split. */
2202 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2203 while (insn != next);
2205 #ifdef DBR_OUTPUT_SEQEND
2206 DBR_OUTPUT_SEQEND (file);
2207 #endif
2208 final_sequence = 0;
2210 /* If the insn requiring the delay slot was a CALL_INSN, the
2211 insns in the delay slot are actually executed before the
2212 called function. Hence we don't preserve any CC-setting
2213 actions in these insns and the CC must be marked as being
2214 clobbered by the function. */
2215 if (CALL_P (XVECEXP (body, 0, 0)))
2217 CC_STATUS_INIT;
2219 break;
2222 /* We have a real machine instruction as rtl. */
2224 body = PATTERN (insn);
2226 #ifdef HAVE_cc0
2227 set = single_set (insn);
2229 /* Check for redundant test and compare instructions
2230 (when the condition codes are already set up as desired).
2231 This is done only when optimizing; if not optimizing,
2232 it should be possible for the user to alter a variable
2233 with the debugger in between statements
2234 and the next statement should reexamine the variable
2235 to compute the condition codes. */
2237 if (optimize)
2239 if (set
2240 && GET_CODE (SET_DEST (set)) == CC0
2241 && insn != last_ignored_compare)
2243 if (GET_CODE (SET_SRC (set)) == SUBREG)
2244 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2245 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2247 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2248 XEXP (SET_SRC (set), 0)
2249 = alter_subreg (&XEXP (SET_SRC (set), 0));
2250 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2251 XEXP (SET_SRC (set), 1)
2252 = alter_subreg (&XEXP (SET_SRC (set), 1));
2254 if ((cc_status.value1 != 0
2255 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2256 || (cc_status.value2 != 0
2257 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2259 /* Don't delete insn if it has an addressing side-effect. */
2260 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2261 /* or if anything in it is volatile. */
2262 && ! volatile_refs_p (PATTERN (insn)))
2264 /* We don't really delete the insn; just ignore it. */
2265 last_ignored_compare = insn;
2266 break;
2271 #endif
2273 #ifndef STACK_REGS
2274 /* Don't bother outputting obvious no-ops, even without -O.
2275 This optimization is fast and doesn't interfere with debugging.
2276 Don't do this if the insn is in a delay slot, since this
2277 will cause an improper number of delay insns to be written. */
2278 if (final_sequence == 0
2279 && prescan >= 0
2280 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2281 && REG_P (SET_SRC (body))
2282 && REG_P (SET_DEST (body))
2283 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2284 break;
2285 #endif
2287 #ifdef HAVE_cc0
2288 /* If this is a conditional branch, maybe modify it
2289 if the cc's are in a nonstandard state
2290 so that it accomplishes the same thing that it would
2291 do straightforwardly if the cc's were set up normally. */
2293 if (cc_status.flags != 0
2294 && JUMP_P (insn)
2295 && GET_CODE (body) == SET
2296 && SET_DEST (body) == pc_rtx
2297 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2298 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2299 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2300 /* This is done during prescan; it is not done again
2301 in final scan when prescan has been done. */
2302 && prescan >= 0)
2304 /* This function may alter the contents of its argument
2305 and clear some of the cc_status.flags bits.
2306 It may also return 1 meaning condition now always true
2307 or -1 meaning condition now always false
2308 or 2 meaning condition nontrivial but altered. */
2309 int result = alter_cond (XEXP (SET_SRC (body), 0));
2310 /* If condition now has fixed value, replace the IF_THEN_ELSE
2311 with its then-operand or its else-operand. */
2312 if (result == 1)
2313 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2314 if (result == -1)
2315 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2317 /* The jump is now either unconditional or a no-op.
2318 If it has become a no-op, don't try to output it.
2319 (It would not be recognized.) */
2320 if (SET_SRC (body) == pc_rtx)
2322 delete_insn (insn);
2323 break;
2325 else if (GET_CODE (SET_SRC (body)) == RETURN)
2326 /* Replace (set (pc) (return)) with (return). */
2327 PATTERN (insn) = body = SET_SRC (body);
2329 /* Rerecognize the instruction if it has changed. */
2330 if (result != 0)
2331 INSN_CODE (insn) = -1;
2334 /* Make same adjustments to instructions that examine the
2335 condition codes without jumping and instructions that
2336 handle conditional moves (if this machine has either one). */
2338 if (cc_status.flags != 0
2339 && set != 0)
2341 rtx cond_rtx, then_rtx, else_rtx;
2343 if (!JUMP_P (insn)
2344 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2346 cond_rtx = XEXP (SET_SRC (set), 0);
2347 then_rtx = XEXP (SET_SRC (set), 1);
2348 else_rtx = XEXP (SET_SRC (set), 2);
2350 else
2352 cond_rtx = SET_SRC (set);
2353 then_rtx = const_true_rtx;
2354 else_rtx = const0_rtx;
2357 switch (GET_CODE (cond_rtx))
2359 case GTU:
2360 case GT:
2361 case LTU:
2362 case LT:
2363 case GEU:
2364 case GE:
2365 case LEU:
2366 case LE:
2367 case EQ:
2368 case NE:
2370 int result;
2371 if (XEXP (cond_rtx, 0) != cc0_rtx)
2372 break;
2373 result = alter_cond (cond_rtx);
2374 if (result == 1)
2375 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2376 else if (result == -1)
2377 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2378 else if (result == 2)
2379 INSN_CODE (insn) = -1;
2380 if (SET_DEST (set) == SET_SRC (set))
2381 delete_insn (insn);
2383 break;
2385 default:
2386 break;
2390 #endif
2392 #ifdef HAVE_peephole
2393 /* Do machine-specific peephole optimizations if desired. */
2395 if (optimize && !flag_no_peephole && !nopeepholes)
2397 rtx next = peephole (insn);
2398 /* When peepholing, if there were notes within the peephole,
2399 emit them before the peephole. */
2400 if (next != 0 && next != NEXT_INSN (insn))
2402 rtx note, prev = PREV_INSN (insn);
2404 for (note = NEXT_INSN (insn); note != next;
2405 note = NEXT_INSN (note))
2406 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2408 /* In case this is prescan, put the notes
2409 in proper position for later rescan. */
2410 note = NEXT_INSN (insn);
2411 PREV_INSN (note) = prev;
2412 NEXT_INSN (prev) = note;
2413 NEXT_INSN (PREV_INSN (next)) = insn;
2414 PREV_INSN (insn) = PREV_INSN (next);
2415 NEXT_INSN (insn) = next;
2416 PREV_INSN (next) = insn;
2419 /* PEEPHOLE might have changed this. */
2420 body = PATTERN (insn);
2422 #endif
2424 /* Try to recognize the instruction.
2425 If successful, verify that the operands satisfy the
2426 constraints for the instruction. Crash if they don't,
2427 since `reload' should have changed them so that they do. */
2429 insn_code_number = recog_memoized (insn);
2430 cleanup_subreg_operands (insn);
2432 /* Dump the insn in the assembly for debugging. */
2433 if (flag_dump_rtl_in_asm)
2435 print_rtx_head = ASM_COMMENT_START;
2436 print_rtl_single (asm_out_file, insn);
2437 print_rtx_head = "";
2440 if (! constrain_operands_cached (1))
2441 fatal_insn_not_found (insn);
2443 /* Some target machines need to prescan each insn before
2444 it is output. */
2446 #ifdef FINAL_PRESCAN_INSN
2447 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2448 #endif
2450 #ifdef HAVE_conditional_execution
2451 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2452 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2453 else
2454 current_insn_predicate = NULL_RTX;
2455 #endif
2457 #ifdef HAVE_cc0
2458 cc_prev_status = cc_status;
2460 /* Update `cc_status' for this instruction.
2461 The instruction's output routine may change it further.
2462 If the output routine for a jump insn needs to depend
2463 on the cc status, it should look at cc_prev_status. */
2465 NOTICE_UPDATE_CC (body, insn);
2466 #endif
2468 current_output_insn = debug_insn = insn;
2470 #if defined (DWARF2_UNWIND_INFO)
2471 if (CALL_P (insn) && dwarf2out_do_frame ())
2472 dwarf2out_frame_debug (insn);
2473 #endif
2475 /* Find the proper template for this insn. */
2476 template = get_insn_template (insn_code_number, insn);
2478 /* If the C code returns 0, it means that it is a jump insn
2479 which follows a deleted test insn, and that test insn
2480 needs to be reinserted. */
2481 if (template == 0)
2483 rtx prev;
2485 if (prev_nonnote_insn (insn) != last_ignored_compare)
2486 abort ();
2488 /* We have already processed the notes between the setter and
2489 the user. Make sure we don't process them again, this is
2490 particularly important if one of the notes is a block
2491 scope note or an EH note. */
2492 for (prev = insn;
2493 prev != last_ignored_compare;
2494 prev = PREV_INSN (prev))
2496 if (NOTE_P (prev))
2497 delete_insn (prev); /* Use delete_note. */
2500 return prev;
2503 /* If the template is the string "#", it means that this insn must
2504 be split. */
2505 if (template[0] == '#' && template[1] == '\0')
2507 rtx new = try_split (body, insn, 0);
2509 /* If we didn't split the insn, go away. */
2510 if (new == insn && PATTERN (new) == body)
2511 fatal_insn ("could not split insn", insn);
2513 #ifdef HAVE_ATTR_length
2514 /* This instruction should have been split in shorten_branches,
2515 to ensure that we would have valid length info for the
2516 splitees. */
2517 abort ();
2518 #endif
2520 return new;
2523 if (prescan > 0)
2524 break;
2526 #ifdef TARGET_UNWIND_INFO
2527 /* ??? This will put the directives in the wrong place if
2528 get_insn_template outputs assembly directly. However calling it
2529 before get_insn_template breaks if the insns is split. */
2530 targetm.asm_out.unwind_emit (asm_out_file, insn);
2531 #endif
2533 /* Output assembler code from the template. */
2534 output_asm_insn (template, recog_data.operand);
2536 /* If necessary, report the effect that the instruction has on
2537 the unwind info. We've already done this for delay slots
2538 and call instructions. */
2539 #if defined (DWARF2_UNWIND_INFO)
2540 if (NONJUMP_INSN_P (insn)
2541 #if !defined (HAVE_prologue)
2542 && !ACCUMULATE_OUTGOING_ARGS
2543 #endif
2544 && final_sequence == 0
2545 && dwarf2out_do_frame ())
2546 dwarf2out_frame_debug (insn);
2547 #endif
2549 current_output_insn = debug_insn = 0;
2552 return NEXT_INSN (insn);
2555 /* Output debugging info to the assembler file FILE
2556 based on the NOTE-insn INSN, assumed to be a line number. */
2558 static bool
2559 notice_source_line (rtx insn)
2561 const char *filename = insn_file (insn);
2562 int linenum = insn_line (insn);
2564 if (filename && (filename != last_filename || last_linenum != linenum))
2566 last_filename = filename;
2567 last_linenum = linenum;
2568 high_block_linenum = MAX (last_linenum, high_block_linenum);
2569 high_function_linenum = MAX (last_linenum, high_function_linenum);
2570 return true;
2572 return false;
2575 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2576 directly to the desired hard register. */
2578 void
2579 cleanup_subreg_operands (rtx insn)
2581 int i;
2582 extract_insn_cached (insn);
2583 for (i = 0; i < recog_data.n_operands; i++)
2585 /* The following test cannot use recog_data.operand when testing
2586 for a SUBREG: the underlying object might have been changed
2587 already if we are inside a match_operator expression that
2588 matches the else clause. Instead we test the underlying
2589 expression directly. */
2590 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2591 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2592 else if (GET_CODE (recog_data.operand[i]) == PLUS
2593 || GET_CODE (recog_data.operand[i]) == MULT
2594 || MEM_P (recog_data.operand[i]))
2595 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2598 for (i = 0; i < recog_data.n_dups; i++)
2600 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2601 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2602 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2603 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2604 || MEM_P (*recog_data.dup_loc[i]))
2605 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2609 /* If X is a SUBREG, replace it with a REG or a MEM,
2610 based on the thing it is a subreg of. */
2613 alter_subreg (rtx *xp)
2615 rtx x = *xp;
2616 rtx y = SUBREG_REG (x);
2618 /* simplify_subreg does not remove subreg from volatile references.
2619 We are required to. */
2620 if (MEM_P (y))
2621 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2622 else
2624 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2625 SUBREG_BYTE (x));
2627 if (new != 0)
2628 *xp = new;
2629 /* Simplify_subreg can't handle some REG cases, but we have to. */
2630 else if (REG_P (y))
2632 unsigned int regno = subreg_hard_regno (x, 1);
2633 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2635 else
2636 abort ();
2639 return *xp;
2642 /* Do alter_subreg on all the SUBREGs contained in X. */
2644 static rtx
2645 walk_alter_subreg (rtx *xp)
2647 rtx x = *xp;
2648 switch (GET_CODE (x))
2650 case PLUS:
2651 case MULT:
2652 case AND:
2653 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2654 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2655 break;
2657 case MEM:
2658 case ZERO_EXTEND:
2659 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2660 break;
2662 case SUBREG:
2663 return alter_subreg (xp);
2665 default:
2666 break;
2669 return *xp;
2672 #ifdef HAVE_cc0
2674 /* Given BODY, the body of a jump instruction, alter the jump condition
2675 as required by the bits that are set in cc_status.flags.
2676 Not all of the bits there can be handled at this level in all cases.
2678 The value is normally 0.
2679 1 means that the condition has become always true.
2680 -1 means that the condition has become always false.
2681 2 means that COND has been altered. */
2683 static int
2684 alter_cond (rtx cond)
2686 int value = 0;
2688 if (cc_status.flags & CC_REVERSED)
2690 value = 2;
2691 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2694 if (cc_status.flags & CC_INVERTED)
2696 value = 2;
2697 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2700 if (cc_status.flags & CC_NOT_POSITIVE)
2701 switch (GET_CODE (cond))
2703 case LE:
2704 case LEU:
2705 case GEU:
2706 /* Jump becomes unconditional. */
2707 return 1;
2709 case GT:
2710 case GTU:
2711 case LTU:
2712 /* Jump becomes no-op. */
2713 return -1;
2715 case GE:
2716 PUT_CODE (cond, EQ);
2717 value = 2;
2718 break;
2720 case LT:
2721 PUT_CODE (cond, NE);
2722 value = 2;
2723 break;
2725 default:
2726 break;
2729 if (cc_status.flags & CC_NOT_NEGATIVE)
2730 switch (GET_CODE (cond))
2732 case GE:
2733 case GEU:
2734 /* Jump becomes unconditional. */
2735 return 1;
2737 case LT:
2738 case LTU:
2739 /* Jump becomes no-op. */
2740 return -1;
2742 case LE:
2743 case LEU:
2744 PUT_CODE (cond, EQ);
2745 value = 2;
2746 break;
2748 case GT:
2749 case GTU:
2750 PUT_CODE (cond, NE);
2751 value = 2;
2752 break;
2754 default:
2755 break;
2758 if (cc_status.flags & CC_NO_OVERFLOW)
2759 switch (GET_CODE (cond))
2761 case GEU:
2762 /* Jump becomes unconditional. */
2763 return 1;
2765 case LEU:
2766 PUT_CODE (cond, EQ);
2767 value = 2;
2768 break;
2770 case GTU:
2771 PUT_CODE (cond, NE);
2772 value = 2;
2773 break;
2775 case LTU:
2776 /* Jump becomes no-op. */
2777 return -1;
2779 default:
2780 break;
2783 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2784 switch (GET_CODE (cond))
2786 default:
2787 abort ();
2789 case NE:
2790 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2791 value = 2;
2792 break;
2794 case EQ:
2795 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2796 value = 2;
2797 break;
2800 if (cc_status.flags & CC_NOT_SIGNED)
2801 /* The flags are valid if signed condition operators are converted
2802 to unsigned. */
2803 switch (GET_CODE (cond))
2805 case LE:
2806 PUT_CODE (cond, LEU);
2807 value = 2;
2808 break;
2810 case LT:
2811 PUT_CODE (cond, LTU);
2812 value = 2;
2813 break;
2815 case GT:
2816 PUT_CODE (cond, GTU);
2817 value = 2;
2818 break;
2820 case GE:
2821 PUT_CODE (cond, GEU);
2822 value = 2;
2823 break;
2825 default:
2826 break;
2829 return value;
2831 #endif
2833 /* Report inconsistency between the assembler template and the operands.
2834 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2836 void
2837 output_operand_lossage (const char *msgid, ...)
2839 char *fmt_string;
2840 char *new_message;
2841 const char *pfx_str;
2842 va_list ap;
2844 va_start (ap, msgid);
2846 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2847 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2848 vasprintf (&new_message, fmt_string, ap);
2850 if (this_is_asm_operands)
2851 error_for_asm (this_is_asm_operands, "%s", new_message);
2852 else
2853 internal_error ("%s", new_message);
2855 free (fmt_string);
2856 free (new_message);
2857 va_end (ap);
2860 /* Output of assembler code from a template, and its subroutines. */
2862 /* Annotate the assembly with a comment describing the pattern and
2863 alternative used. */
2865 static void
2866 output_asm_name (void)
2868 if (debug_insn)
2870 int num = INSN_CODE (debug_insn);
2871 fprintf (asm_out_file, "\t%s %d\t%s",
2872 ASM_COMMENT_START, INSN_UID (debug_insn),
2873 insn_data[num].name);
2874 if (insn_data[num].n_alternatives > 1)
2875 fprintf (asm_out_file, "/%d", which_alternative + 1);
2876 #ifdef HAVE_ATTR_length
2877 fprintf (asm_out_file, "\t[length = %d]",
2878 get_attr_length (debug_insn));
2879 #endif
2880 /* Clear this so only the first assembler insn
2881 of any rtl insn will get the special comment for -dp. */
2882 debug_insn = 0;
2886 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2887 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2888 corresponds to the address of the object and 0 if to the object. */
2890 static tree
2891 get_mem_expr_from_op (rtx op, int *paddressp)
2893 tree expr;
2894 int inner_addressp;
2896 *paddressp = 0;
2898 if (REG_P (op))
2899 return REG_EXPR (op);
2900 else if (!MEM_P (op))
2901 return 0;
2903 if (MEM_EXPR (op) != 0)
2904 return MEM_EXPR (op);
2906 /* Otherwise we have an address, so indicate it and look at the address. */
2907 *paddressp = 1;
2908 op = XEXP (op, 0);
2910 /* First check if we have a decl for the address, then look at the right side
2911 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2912 But don't allow the address to itself be indirect. */
2913 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2914 return expr;
2915 else if (GET_CODE (op) == PLUS
2916 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2917 return expr;
2919 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2920 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2921 op = XEXP (op, 0);
2923 expr = get_mem_expr_from_op (op, &inner_addressp);
2924 return inner_addressp ? 0 : expr;
2927 /* Output operand names for assembler instructions. OPERANDS is the
2928 operand vector, OPORDER is the order to write the operands, and NOPS
2929 is the number of operands to write. */
2931 static void
2932 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2934 int wrote = 0;
2935 int i;
2937 for (i = 0; i < nops; i++)
2939 int addressp;
2940 rtx op = operands[oporder[i]];
2941 tree expr = get_mem_expr_from_op (op, &addressp);
2943 fprintf (asm_out_file, "%c%s",
2944 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2945 wrote = 1;
2946 if (expr)
2948 fprintf (asm_out_file, "%s",
2949 addressp ? "*" : "");
2950 print_mem_expr (asm_out_file, expr);
2951 wrote = 1;
2953 else if (REG_P (op) && ORIGINAL_REGNO (op)
2954 && ORIGINAL_REGNO (op) != REGNO (op))
2955 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2959 /* Output text from TEMPLATE to the assembler output file,
2960 obeying %-directions to substitute operands taken from
2961 the vector OPERANDS.
2963 %N (for N a digit) means print operand N in usual manner.
2964 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2965 and print the label name with no punctuation.
2966 %cN means require operand N to be a constant
2967 and print the constant expression with no punctuation.
2968 %aN means expect operand N to be a memory address
2969 (not a memory reference!) and print a reference
2970 to that address.
2971 %nN means expect operand N to be a constant
2972 and print a constant expression for minus the value
2973 of the operand, with no other punctuation. */
2975 void
2976 output_asm_insn (const char *template, rtx *operands)
2978 const char *p;
2979 int c;
2980 #ifdef ASSEMBLER_DIALECT
2981 int dialect = 0;
2982 #endif
2983 int oporder[MAX_RECOG_OPERANDS];
2984 char opoutput[MAX_RECOG_OPERANDS];
2985 int ops = 0;
2987 /* An insn may return a null string template
2988 in a case where no assembler code is needed. */
2989 if (*template == 0)
2990 return;
2992 memset (opoutput, 0, sizeof opoutput);
2993 p = template;
2994 putc ('\t', asm_out_file);
2996 #ifdef ASM_OUTPUT_OPCODE
2997 ASM_OUTPUT_OPCODE (asm_out_file, p);
2998 #endif
3000 while ((c = *p++))
3001 switch (c)
3003 case '\n':
3004 if (flag_verbose_asm)
3005 output_asm_operand_names (operands, oporder, ops);
3006 if (flag_print_asm_name)
3007 output_asm_name ();
3009 ops = 0;
3010 memset (opoutput, 0, sizeof opoutput);
3012 putc (c, asm_out_file);
3013 #ifdef ASM_OUTPUT_OPCODE
3014 while ((c = *p) == '\t')
3016 putc (c, asm_out_file);
3017 p++;
3019 ASM_OUTPUT_OPCODE (asm_out_file, p);
3020 #endif
3021 break;
3023 #ifdef ASSEMBLER_DIALECT
3024 case '{':
3026 int i;
3028 if (dialect)
3029 output_operand_lossage ("nested assembly dialect alternatives");
3030 else
3031 dialect = 1;
3033 /* If we want the first dialect, do nothing. Otherwise, skip
3034 DIALECT_NUMBER of strings ending with '|'. */
3035 for (i = 0; i < dialect_number; i++)
3037 while (*p && *p != '}' && *p++ != '|')
3039 if (*p == '}')
3040 break;
3041 if (*p == '|')
3042 p++;
3045 if (*p == '\0')
3046 output_operand_lossage ("unterminated assembly dialect alternative");
3048 break;
3050 case '|':
3051 if (dialect)
3053 /* Skip to close brace. */
3056 if (*p == '\0')
3058 output_operand_lossage ("unterminated assembly dialect alternative");
3059 break;
3062 while (*p++ != '}');
3063 dialect = 0;
3065 else
3066 putc (c, asm_out_file);
3067 break;
3069 case '}':
3070 if (! dialect)
3071 putc (c, asm_out_file);
3072 dialect = 0;
3073 break;
3074 #endif
3076 case '%':
3077 /* %% outputs a single %. */
3078 if (*p == '%')
3080 p++;
3081 putc (c, asm_out_file);
3083 /* %= outputs a number which is unique to each insn in the entire
3084 compilation. This is useful for making local labels that are
3085 referred to more than once in a given insn. */
3086 else if (*p == '=')
3088 p++;
3089 fprintf (asm_out_file, "%d", insn_counter);
3091 /* % followed by a letter and some digits
3092 outputs an operand in a special way depending on the letter.
3093 Letters `acln' are implemented directly.
3094 Other letters are passed to `output_operand' so that
3095 the PRINT_OPERAND macro can define them. */
3096 else if (ISALPHA (*p))
3098 int letter = *p++;
3099 c = atoi (p);
3101 if (! ISDIGIT (*p))
3102 output_operand_lossage ("operand number missing after %%-letter");
3103 else if (this_is_asm_operands
3104 && (c < 0 || (unsigned int) c >= insn_noperands))
3105 output_operand_lossage ("operand number out of range");
3106 else if (letter == 'l')
3107 output_asm_label (operands[c]);
3108 else if (letter == 'a')
3109 output_address (operands[c]);
3110 else if (letter == 'c')
3112 if (CONSTANT_ADDRESS_P (operands[c]))
3113 output_addr_const (asm_out_file, operands[c]);
3114 else
3115 output_operand (operands[c], 'c');
3117 else if (letter == 'n')
3119 if (GET_CODE (operands[c]) == CONST_INT)
3120 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3121 - INTVAL (operands[c]));
3122 else
3124 putc ('-', asm_out_file);
3125 output_addr_const (asm_out_file, operands[c]);
3128 else
3129 output_operand (operands[c], letter);
3131 if (!opoutput[c])
3132 oporder[ops++] = c;
3133 opoutput[c] = 1;
3135 while (ISDIGIT (c = *p))
3136 p++;
3138 /* % followed by a digit outputs an operand the default way. */
3139 else if (ISDIGIT (*p))
3141 c = atoi (p);
3142 if (this_is_asm_operands
3143 && (c < 0 || (unsigned int) c >= insn_noperands))
3144 output_operand_lossage ("operand number out of range");
3145 else
3146 output_operand (operands[c], 0);
3148 if (!opoutput[c])
3149 oporder[ops++] = c;
3150 opoutput[c] = 1;
3152 while (ISDIGIT (c = *p))
3153 p++;
3155 /* % followed by punctuation: output something for that
3156 punctuation character alone, with no operand.
3157 The PRINT_OPERAND macro decides what is actually done. */
3158 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3159 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3160 output_operand (NULL_RTX, *p++);
3161 #endif
3162 else
3163 output_operand_lossage ("invalid %%-code");
3164 break;
3166 default:
3167 putc (c, asm_out_file);
3170 /* Write out the variable names for operands, if we know them. */
3171 if (flag_verbose_asm)
3172 output_asm_operand_names (operands, oporder, ops);
3173 if (flag_print_asm_name)
3174 output_asm_name ();
3176 putc ('\n', asm_out_file);
3179 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3181 void
3182 output_asm_label (rtx x)
3184 char buf[256];
3186 if (GET_CODE (x) == LABEL_REF)
3187 x = XEXP (x, 0);
3188 if (LABEL_P (x)
3189 || (NOTE_P (x)
3190 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3191 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3192 else
3193 output_operand_lossage ("`%%l' operand isn't a label");
3195 assemble_name (asm_out_file, buf);
3198 /* Print operand X using machine-dependent assembler syntax.
3199 The macro PRINT_OPERAND is defined just to control this function.
3200 CODE is a non-digit that preceded the operand-number in the % spec,
3201 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3202 between the % and the digits.
3203 When CODE is a non-letter, X is 0.
3205 The meanings of the letters are machine-dependent and controlled
3206 by PRINT_OPERAND. */
3208 static void
3209 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3211 if (x && GET_CODE (x) == SUBREG)
3212 x = alter_subreg (&x);
3214 /* If X is a pseudo-register, abort now rather than writing trash to the
3215 assembler file. */
3217 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3218 abort ();
3220 PRINT_OPERAND (asm_out_file, x, code);
3223 /* Print a memory reference operand for address X
3224 using machine-dependent assembler syntax.
3225 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3227 void
3228 output_address (rtx x)
3230 walk_alter_subreg (&x);
3231 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3234 /* Print an integer constant expression in assembler syntax.
3235 Addition and subtraction are the only arithmetic
3236 that may appear in these expressions. */
3238 void
3239 output_addr_const (FILE *file, rtx x)
3241 char buf[256];
3243 restart:
3244 switch (GET_CODE (x))
3246 case PC:
3247 putc ('.', file);
3248 break;
3250 case SYMBOL_REF:
3251 if (SYMBOL_REF_DECL (x))
3252 mark_decl_referenced (SYMBOL_REF_DECL (x));
3253 #ifdef ASM_OUTPUT_SYMBOL_REF
3254 ASM_OUTPUT_SYMBOL_REF (file, x);
3255 #else
3256 assemble_name (file, XSTR (x, 0));
3257 #endif
3258 break;
3260 case LABEL_REF:
3261 x = XEXP (x, 0);
3262 /* Fall through. */
3263 case CODE_LABEL:
3264 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3265 #ifdef ASM_OUTPUT_LABEL_REF
3266 ASM_OUTPUT_LABEL_REF (file, buf);
3267 #else
3268 assemble_name (file, buf);
3269 #endif
3270 break;
3272 case CONST_INT:
3273 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3274 break;
3276 case CONST:
3277 /* This used to output parentheses around the expression,
3278 but that does not work on the 386 (either ATT or BSD assembler). */
3279 output_addr_const (file, XEXP (x, 0));
3280 break;
3282 case CONST_DOUBLE:
3283 if (GET_MODE (x) == VOIDmode)
3285 /* We can use %d if the number is one word and positive. */
3286 if (CONST_DOUBLE_HIGH (x))
3287 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3288 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3289 else if (CONST_DOUBLE_LOW (x) < 0)
3290 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3291 else
3292 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3294 else
3295 /* We can't handle floating point constants;
3296 PRINT_OPERAND must handle them. */
3297 output_operand_lossage ("floating constant misused");
3298 break;
3300 case PLUS:
3301 /* Some assemblers need integer constants to appear last (eg masm). */
3302 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3304 output_addr_const (file, XEXP (x, 1));
3305 if (INTVAL (XEXP (x, 0)) >= 0)
3306 fprintf (file, "+");
3307 output_addr_const (file, XEXP (x, 0));
3309 else
3311 output_addr_const (file, XEXP (x, 0));
3312 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3313 || INTVAL (XEXP (x, 1)) >= 0)
3314 fprintf (file, "+");
3315 output_addr_const (file, XEXP (x, 1));
3317 break;
3319 case MINUS:
3320 /* Avoid outputting things like x-x or x+5-x,
3321 since some assemblers can't handle that. */
3322 x = simplify_subtraction (x);
3323 if (GET_CODE (x) != MINUS)
3324 goto restart;
3326 output_addr_const (file, XEXP (x, 0));
3327 fprintf (file, "-");
3328 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3329 || GET_CODE (XEXP (x, 1)) == PC
3330 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3331 output_addr_const (file, XEXP (x, 1));
3332 else
3334 fputs (targetm.asm_out.open_paren, file);
3335 output_addr_const (file, XEXP (x, 1));
3336 fputs (targetm.asm_out.close_paren, file);
3338 break;
3340 case ZERO_EXTEND:
3341 case SIGN_EXTEND:
3342 case SUBREG:
3343 output_addr_const (file, XEXP (x, 0));
3344 break;
3346 default:
3347 #ifdef OUTPUT_ADDR_CONST_EXTRA
3348 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3349 break;
3351 fail:
3352 #endif
3353 output_operand_lossage ("invalid expression as operand");
3357 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3358 %R prints the value of REGISTER_PREFIX.
3359 %L prints the value of LOCAL_LABEL_PREFIX.
3360 %U prints the value of USER_LABEL_PREFIX.
3361 %I prints the value of IMMEDIATE_PREFIX.
3362 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3363 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3365 We handle alternate assembler dialects here, just like output_asm_insn. */
3367 void
3368 asm_fprintf (FILE *file, const char *p, ...)
3370 char buf[10];
3371 char *q, c;
3372 va_list argptr;
3374 va_start (argptr, p);
3376 buf[0] = '%';
3378 while ((c = *p++))
3379 switch (c)
3381 #ifdef ASSEMBLER_DIALECT
3382 case '{':
3384 int i;
3386 /* If we want the first dialect, do nothing. Otherwise, skip
3387 DIALECT_NUMBER of strings ending with '|'. */
3388 for (i = 0; i < dialect_number; i++)
3390 while (*p && *p++ != '|')
3393 if (*p == '|')
3394 p++;
3397 break;
3399 case '|':
3400 /* Skip to close brace. */
3401 while (*p && *p++ != '}')
3403 break;
3405 case '}':
3406 break;
3407 #endif
3409 case '%':
3410 c = *p++;
3411 q = &buf[1];
3412 while (strchr ("-+ #0", c))
3414 *q++ = c;
3415 c = *p++;
3417 while (ISDIGIT (c) || c == '.')
3419 *q++ = c;
3420 c = *p++;
3422 switch (c)
3424 case '%':
3425 putc ('%', file);
3426 break;
3428 case 'd': case 'i': case 'u':
3429 case 'x': case 'X': case 'o':
3430 case 'c':
3431 *q++ = c;
3432 *q = 0;
3433 fprintf (file, buf, va_arg (argptr, int));
3434 break;
3436 case 'w':
3437 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3438 'o' cases, but we do not check for those cases. It
3439 means that the value is a HOST_WIDE_INT, which may be
3440 either `long' or `long long'. */
3441 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3442 q += strlen (HOST_WIDE_INT_PRINT);
3443 *q++ = *p++;
3444 *q = 0;
3445 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3446 break;
3448 case 'l':
3449 *q++ = c;
3450 #ifdef HAVE_LONG_LONG
3451 if (*p == 'l')
3453 *q++ = *p++;
3454 *q++ = *p++;
3455 *q = 0;
3456 fprintf (file, buf, va_arg (argptr, long long));
3458 else
3459 #endif
3461 *q++ = *p++;
3462 *q = 0;
3463 fprintf (file, buf, va_arg (argptr, long));
3466 break;
3468 case 's':
3469 *q++ = c;
3470 *q = 0;
3471 fprintf (file, buf, va_arg (argptr, char *));
3472 break;
3474 case 'O':
3475 #ifdef ASM_OUTPUT_OPCODE
3476 ASM_OUTPUT_OPCODE (asm_out_file, p);
3477 #endif
3478 break;
3480 case 'R':
3481 #ifdef REGISTER_PREFIX
3482 fprintf (file, "%s", REGISTER_PREFIX);
3483 #endif
3484 break;
3486 case 'I':
3487 #ifdef IMMEDIATE_PREFIX
3488 fprintf (file, "%s", IMMEDIATE_PREFIX);
3489 #endif
3490 break;
3492 case 'L':
3493 #ifdef LOCAL_LABEL_PREFIX
3494 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3495 #endif
3496 break;
3498 case 'U':
3499 fputs (user_label_prefix, file);
3500 break;
3502 #ifdef ASM_FPRINTF_EXTENSIONS
3503 /* Uppercase letters are reserved for general use by asm_fprintf
3504 and so are not available to target specific code. In order to
3505 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3506 they are defined here. As they get turned into real extensions
3507 to asm_fprintf they should be removed from this list. */
3508 case 'A': case 'B': case 'C': case 'D': case 'E':
3509 case 'F': case 'G': case 'H': case 'J': case 'K':
3510 case 'M': case 'N': case 'P': case 'Q': case 'S':
3511 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3512 break;
3514 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3515 #endif
3516 default:
3517 abort ();
3519 break;
3521 default:
3522 putc (c, file);
3524 va_end (argptr);
3527 /* Split up a CONST_DOUBLE or integer constant rtx
3528 into two rtx's for single words,
3529 storing in *FIRST the word that comes first in memory in the target
3530 and in *SECOND the other. */
3532 void
3533 split_double (rtx value, rtx *first, rtx *second)
3535 if (GET_CODE (value) == CONST_INT)
3537 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3539 /* In this case the CONST_INT holds both target words.
3540 Extract the bits from it into two word-sized pieces.
3541 Sign extend each half to HOST_WIDE_INT. */
3542 unsigned HOST_WIDE_INT low, high;
3543 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3545 /* Set sign_bit to the most significant bit of a word. */
3546 sign_bit = 1;
3547 sign_bit <<= BITS_PER_WORD - 1;
3549 /* Set mask so that all bits of the word are set. We could
3550 have used 1 << BITS_PER_WORD instead of basing the
3551 calculation on sign_bit. However, on machines where
3552 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3553 compiler warning, even though the code would never be
3554 executed. */
3555 mask = sign_bit << 1;
3556 mask--;
3558 /* Set sign_extend as any remaining bits. */
3559 sign_extend = ~mask;
3561 /* Pick the lower word and sign-extend it. */
3562 low = INTVAL (value);
3563 low &= mask;
3564 if (low & sign_bit)
3565 low |= sign_extend;
3567 /* Pick the higher word, shifted to the least significant
3568 bits, and sign-extend it. */
3569 high = INTVAL (value);
3570 high >>= BITS_PER_WORD - 1;
3571 high >>= 1;
3572 high &= mask;
3573 if (high & sign_bit)
3574 high |= sign_extend;
3576 /* Store the words in the target machine order. */
3577 if (WORDS_BIG_ENDIAN)
3579 *first = GEN_INT (high);
3580 *second = GEN_INT (low);
3582 else
3584 *first = GEN_INT (low);
3585 *second = GEN_INT (high);
3588 else
3590 /* The rule for using CONST_INT for a wider mode
3591 is that we regard the value as signed.
3592 So sign-extend it. */
3593 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3594 if (WORDS_BIG_ENDIAN)
3596 *first = high;
3597 *second = value;
3599 else
3601 *first = value;
3602 *second = high;
3606 else if (GET_CODE (value) != CONST_DOUBLE)
3608 if (WORDS_BIG_ENDIAN)
3610 *first = const0_rtx;
3611 *second = value;
3613 else
3615 *first = value;
3616 *second = const0_rtx;
3619 else if (GET_MODE (value) == VOIDmode
3620 /* This is the old way we did CONST_DOUBLE integers. */
3621 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3623 /* In an integer, the words are defined as most and least significant.
3624 So order them by the target's convention. */
3625 if (WORDS_BIG_ENDIAN)
3627 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3628 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3630 else
3632 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3633 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3636 else
3638 REAL_VALUE_TYPE r;
3639 long l[2];
3640 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3642 /* Note, this converts the REAL_VALUE_TYPE to the target's
3643 format, splits up the floating point double and outputs
3644 exactly 32 bits of it into each of l[0] and l[1] --
3645 not necessarily BITS_PER_WORD bits. */
3646 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3648 /* If 32 bits is an entire word for the target, but not for the host,
3649 then sign-extend on the host so that the number will look the same
3650 way on the host that it would on the target. See for instance
3651 simplify_unary_operation. The #if is needed to avoid compiler
3652 warnings. */
3654 #if HOST_BITS_PER_LONG > 32
3655 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3657 if (l[0] & ((long) 1 << 31))
3658 l[0] |= ((long) (-1) << 32);
3659 if (l[1] & ((long) 1 << 31))
3660 l[1] |= ((long) (-1) << 32);
3662 #endif
3664 *first = GEN_INT (l[0]);
3665 *second = GEN_INT (l[1]);
3669 /* Return nonzero if this function has no function calls. */
3672 leaf_function_p (void)
3674 rtx insn;
3675 rtx link;
3677 if (current_function_profile || profile_arc_flag)
3678 return 0;
3680 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3682 if (CALL_P (insn)
3683 && ! SIBLING_CALL_P (insn))
3684 return 0;
3685 if (NONJUMP_INSN_P (insn)
3686 && GET_CODE (PATTERN (insn)) == SEQUENCE
3687 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3688 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3689 return 0;
3691 for (link = current_function_epilogue_delay_list;
3692 link;
3693 link = XEXP (link, 1))
3695 insn = XEXP (link, 0);
3697 if (CALL_P (insn)
3698 && ! SIBLING_CALL_P (insn))
3699 return 0;
3700 if (NONJUMP_INSN_P (insn)
3701 && GET_CODE (PATTERN (insn)) == SEQUENCE
3702 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3703 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3704 return 0;
3707 return 1;
3710 /* Return 1 if branch is a forward branch.
3711 Uses insn_shuid array, so it works only in the final pass. May be used by
3712 output templates to customary add branch prediction hints.
3715 final_forward_branch_p (rtx insn)
3717 int insn_id, label_id;
3718 if (!uid_shuid)
3719 abort ();
3720 insn_id = INSN_SHUID (insn);
3721 label_id = INSN_SHUID (JUMP_LABEL (insn));
3722 /* We've hit some insns that does not have id information available. */
3723 if (!insn_id || !label_id)
3724 abort ();
3725 return insn_id < label_id;
3728 /* On some machines, a function with no call insns
3729 can run faster if it doesn't create its own register window.
3730 When output, the leaf function should use only the "output"
3731 registers. Ordinarily, the function would be compiled to use
3732 the "input" registers to find its arguments; it is a candidate
3733 for leaf treatment if it uses only the "input" registers.
3734 Leaf function treatment means renumbering so the function
3735 uses the "output" registers instead. */
3737 #ifdef LEAF_REGISTERS
3739 /* Return 1 if this function uses only the registers that can be
3740 safely renumbered. */
3743 only_leaf_regs_used (void)
3745 int i;
3746 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3749 if ((regs_ever_live[i] || global_regs[i])
3750 && ! permitted_reg_in_leaf_functions[i])
3751 return 0;
3753 if (current_function_uses_pic_offset_table
3754 && pic_offset_table_rtx != 0
3755 && REG_P (pic_offset_table_rtx)
3756 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3757 return 0;
3759 return 1;
3762 /* Scan all instructions and renumber all registers into those
3763 available in leaf functions. */
3765 static void
3766 leaf_renumber_regs (rtx first)
3768 rtx insn;
3770 /* Renumber only the actual patterns.
3771 The reg-notes can contain frame pointer refs,
3772 and renumbering them could crash, and should not be needed. */
3773 for (insn = first; insn; insn = NEXT_INSN (insn))
3774 if (INSN_P (insn))
3775 leaf_renumber_regs_insn (PATTERN (insn));
3776 for (insn = current_function_epilogue_delay_list;
3777 insn;
3778 insn = XEXP (insn, 1))
3779 if (INSN_P (XEXP (insn, 0)))
3780 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3783 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3784 available in leaf functions. */
3786 void
3787 leaf_renumber_regs_insn (rtx in_rtx)
3789 int i, j;
3790 const char *format_ptr;
3792 if (in_rtx == 0)
3793 return;
3795 /* Renumber all input-registers into output-registers.
3796 renumbered_regs would be 1 for an output-register;
3797 they */
3799 if (REG_P (in_rtx))
3801 int newreg;
3803 /* Don't renumber the same reg twice. */
3804 if (in_rtx->used)
3805 return;
3807 newreg = REGNO (in_rtx);
3808 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3809 to reach here as part of a REG_NOTE. */
3810 if (newreg >= FIRST_PSEUDO_REGISTER)
3812 in_rtx->used = 1;
3813 return;
3815 newreg = LEAF_REG_REMAP (newreg);
3816 if (newreg < 0)
3817 abort ();
3818 regs_ever_live[REGNO (in_rtx)] = 0;
3819 regs_ever_live[newreg] = 1;
3820 REGNO (in_rtx) = newreg;
3821 in_rtx->used = 1;
3824 if (INSN_P (in_rtx))
3826 /* Inside a SEQUENCE, we find insns.
3827 Renumber just the patterns of these insns,
3828 just as we do for the top-level insns. */
3829 leaf_renumber_regs_insn (PATTERN (in_rtx));
3830 return;
3833 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3835 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3836 switch (*format_ptr++)
3838 case 'e':
3839 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3840 break;
3842 case 'E':
3843 if (NULL != XVEC (in_rtx, i))
3845 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3846 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3848 break;
3850 case 'S':
3851 case 's':
3852 case '0':
3853 case 'i':
3854 case 'w':
3855 case 'n':
3856 case 'u':
3857 break;
3859 default:
3860 abort ();
3863 #endif
3866 /* When -gused is used, emit debug info for only used symbols. But in
3867 addition to the standard intercepted debug_hooks there are some direct
3868 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3869 Those routines may also be called from a higher level intercepted routine. So
3870 to prevent recording data for an inner call to one of these for an intercept,
3871 we maintain an intercept nesting counter (debug_nesting). We only save the
3872 intercepted arguments if the nesting is 1. */
3873 int debug_nesting = 0;
3875 static tree *symbol_queue;
3876 int symbol_queue_index = 0;
3877 static int symbol_queue_size = 0;
3879 /* Generate the symbols for any queued up type symbols we encountered
3880 while generating the type info for some originally used symbol.
3881 This might generate additional entries in the queue. Only when
3882 the nesting depth goes to 0 is this routine called. */
3884 void
3885 debug_flush_symbol_queue (void)
3887 int i;
3889 /* Make sure that additionally queued items are not flushed
3890 prematurely. */
3892 ++debug_nesting;
3894 for (i = 0; i < symbol_queue_index; ++i)
3896 /* If we pushed queued symbols then such symbols are must be
3897 output no matter what anyone else says. Specifically,
3898 we need to make sure dbxout_symbol() thinks the symbol was
3899 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3900 which may be set for outside reasons. */
3901 int saved_tree_used = TREE_USED (symbol_queue[i]);
3902 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3903 TREE_USED (symbol_queue[i]) = 1;
3904 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3906 #ifdef DBX_DEBUGGING_INFO
3907 dbxout_symbol (symbol_queue[i], 0);
3908 #endif
3910 TREE_USED (symbol_queue[i]) = saved_tree_used;
3911 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3914 symbol_queue_index = 0;
3915 --debug_nesting;
3918 /* Queue a type symbol needed as part of the definition of a decl
3919 symbol. These symbols are generated when debug_flush_symbol_queue()
3920 is called. */
3922 void
3923 debug_queue_symbol (tree decl)
3925 if (symbol_queue_index >= symbol_queue_size)
3927 symbol_queue_size += 10;
3928 symbol_queue = xrealloc (symbol_queue,
3929 symbol_queue_size * sizeof (tree));
3932 symbol_queue[symbol_queue_index++] = decl;
3935 /* Free symbol queue. */
3936 void
3937 debug_free_queue (void)
3939 if (symbol_queue)
3941 free (symbol_queue);
3942 symbol_queue = NULL;
3943 symbol_queue_size = 0;