* config/mips/mips.h (ISA_HAS_INT_CONDMOVE): Delete.
[official-gcc.git] / gcc / explow.c
blob47cb8671e27490883de3f465480a167ab8935d76
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
60 /* Sign-extend for the requested mode. */
62 if (width < HOST_BITS_PER_WIDE_INT)
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
71 return c;
74 /* Return an rtx for the sum of X and the integer C. */
76 rtx
77 plus_constant (rtx x, HOST_WIDE_INT c)
79 RTX_CODE code;
80 rtx y;
81 enum machine_mode mode;
82 rtx tem;
83 int all_constant = 0;
85 if (c == 0)
86 return x;
88 restart:
90 code = GET_CODE (x);
91 mode = GET_MODE (x);
92 y = x;
94 switch (code)
96 case CONST_INT:
97 return GEN_INT (INTVAL (x) + c);
99 case CONST_DOUBLE:
101 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103 unsigned HOST_WIDE_INT l2 = c;
104 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv;
106 HOST_WIDE_INT hv;
108 add_double (l1, h1, l2, h2, &lv, &hv);
110 return immed_double_const (lv, hv, VOIDmode);
113 case MEM:
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 = force_const_mem (GET_MODE (x),
122 plus_constant (get_pool_constant (XEXP (x, 0)),
123 c));
124 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125 return tem;
127 break;
129 case CONST:
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 x = XEXP (x, 0);
133 all_constant = 1;
134 goto restart;
136 case SYMBOL_REF:
137 case LABEL_REF:
138 all_constant = 1;
139 break;
141 case PLUS:
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
154 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
156 c += INTVAL (XEXP (x, 1));
158 if (GET_MODE (x) != VOIDmode)
159 c = trunc_int_for_mode (c, GET_MODE (x));
161 x = XEXP (x, 0);
162 goto restart;
164 else if (CONSTANT_P (XEXP (x, 1)))
166 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
167 c = 0;
169 else if (find_constant_term_loc (&y))
171 /* We need to be careful since X may be shared and we can't
172 modify it in place. */
173 rtx copy = copy_rtx (x);
174 rtx *const_loc = find_constant_term_loc (&copy);
176 *const_loc = plus_constant (*const_loc, c);
177 x = copy;
178 c = 0;
180 break;
182 default:
183 break;
186 if (c != 0)
187 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
189 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190 return x;
191 else if (all_constant)
192 return gen_rtx_CONST (mode, x);
193 else
194 return x;
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
203 eliminate_constant_term (rtx x, rtx *constptr)
205 rtx x0, x1;
206 rtx tem;
208 if (GET_CODE (x) != PLUS)
209 return x;
211 /* First handle constants appearing at this level explicitly. */
212 if (GET_CODE (XEXP (x, 1)) == CONST_INT
213 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214 XEXP (x, 1)))
215 && GET_CODE (tem) == CONST_INT)
217 *constptr = tem;
218 return eliminate_constant_term (XEXP (x, 0), constptr);
221 tem = const0_rtx;
222 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226 *constptr, tem))
227 && GET_CODE (tem) == CONST_INT)
229 *constptr = tem;
230 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 return x;
236 /* Return an rtx for the size in bytes of the value of EXP. */
239 expr_size (tree exp)
241 tree size;
243 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
244 size = TREE_OPERAND (exp, 1);
245 else
246 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
257 tree size;
259 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
260 size = TREE_OPERAND (exp, 1);
261 else
262 size = lang_hooks.expr_size (exp);
264 if (size == 0 || !host_integerp (size, 0))
265 return -1;
267 return tree_low_cst (size, 0);
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
286 static rtx
287 break_out_memory_refs (rtx x)
289 if (MEM_P (x)
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
303 return x;
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
310 used. */
313 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314 rtx x)
316 #ifndef POINTERS_EXTEND_UNSIGNED
317 return x;
318 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
319 enum machine_mode from_mode;
320 rtx temp;
321 enum rtx_code code;
323 /* If X already has the right mode, just return it. */
324 if (GET_MODE (x) == to_mode)
325 return x;
327 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
329 /* Here we handle some special cases. If none of them apply, fall through
330 to the default case. */
331 switch (GET_CODE (x))
333 case CONST_INT:
334 case CONST_DOUBLE:
335 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
336 code = TRUNCATE;
337 else if (POINTERS_EXTEND_UNSIGNED < 0)
338 break;
339 else if (POINTERS_EXTEND_UNSIGNED > 0)
340 code = ZERO_EXTEND;
341 else
342 code = SIGN_EXTEND;
343 temp = simplify_unary_operation (code, to_mode, x, from_mode);
344 if (temp)
345 return temp;
346 break;
348 case SUBREG:
349 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
350 && GET_MODE (SUBREG_REG (x)) == to_mode)
351 return SUBREG_REG (x);
352 break;
354 case LABEL_REF:
355 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
356 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
357 return temp;
358 break;
360 case SYMBOL_REF:
361 temp = shallow_copy_rtx (x);
362 PUT_MODE (temp, to_mode);
363 return temp;
364 break;
366 case CONST:
367 return gen_rtx_CONST (to_mode,
368 convert_memory_address (to_mode, XEXP (x, 0)));
369 break;
371 case PLUS:
372 case MULT:
373 /* For addition we can safely permute the conversion and addition
374 operation if one operand is a constant and converting the constant
375 does not change it. We can always safely permute them if we are
376 making the address narrower. */
377 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
378 || (GET_CODE (x) == PLUS
379 && GET_CODE (XEXP (x, 1)) == CONST_INT
380 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
381 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
382 convert_memory_address (to_mode, XEXP (x, 0)),
383 XEXP (x, 1));
384 break;
386 default:
387 break;
390 return convert_modes (to_mode, from_mode,
391 x, POINTERS_EXTEND_UNSIGNED);
392 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
395 /* Given a memory address or facsimile X, construct a new address,
396 currently equivalent, that is stable: future stores won't change it.
398 X must be composed of constants, register and memory references
399 combined with addition, subtraction and multiplication:
400 in other words, just what you can get from expand_expr if sum_ok is 1.
402 Works by making copies of all regs and memory locations used
403 by X and combining them the same way X does.
404 You could also stabilize the reference to this address
405 by copying the address to a register with copy_to_reg;
406 but then you wouldn't get indexed addressing in the reference. */
409 copy_all_regs (rtx x)
411 if (REG_P (x))
413 if (REGNO (x) != FRAME_POINTER_REGNUM
414 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
415 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
416 #endif
418 x = copy_to_reg (x);
420 else if (MEM_P (x))
421 x = copy_to_reg (x);
422 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
423 || GET_CODE (x) == MULT)
425 rtx op0 = copy_all_regs (XEXP (x, 0));
426 rtx op1 = copy_all_regs (XEXP (x, 1));
427 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
428 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
430 return x;
433 /* Return something equivalent to X but valid as a memory address
434 for something of mode MODE. When X is not itself valid, this
435 works by copying X or subexpressions of it into registers. */
438 memory_address (enum machine_mode mode, rtx x)
440 rtx oldx = x;
442 x = convert_memory_address (Pmode, x);
444 /* By passing constant addresses through registers
445 we get a chance to cse them. */
446 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
447 x = force_reg (Pmode, x);
449 /* We get better cse by rejecting indirect addressing at this stage.
450 Let the combiner create indirect addresses where appropriate.
451 For now, generate the code so that the subexpressions useful to share
452 are visible. But not if cse won't be done! */
453 else
455 if (! cse_not_expected && !REG_P (x))
456 x = break_out_memory_refs (x);
458 /* At this point, any valid address is accepted. */
459 if (memory_address_p (mode, x))
460 goto win;
462 /* If it was valid before but breaking out memory refs invalidated it,
463 use it the old way. */
464 if (memory_address_p (mode, oldx))
465 goto win2;
467 /* Perform machine-dependent transformations on X
468 in certain cases. This is not necessary since the code
469 below can handle all possible cases, but machine-dependent
470 transformations can make better code. */
471 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
473 /* PLUS and MULT can appear in special ways
474 as the result of attempts to make an address usable for indexing.
475 Usually they are dealt with by calling force_operand, below.
476 But a sum containing constant terms is special
477 if removing them makes the sum a valid address:
478 then we generate that address in a register
479 and index off of it. We do this because it often makes
480 shorter code, and because the addresses thus generated
481 in registers often become common subexpressions. */
482 if (GET_CODE (x) == PLUS)
484 rtx constant_term = const0_rtx;
485 rtx y = eliminate_constant_term (x, &constant_term);
486 if (constant_term == const0_rtx
487 || ! memory_address_p (mode, y))
488 x = force_operand (x, NULL_RTX);
489 else
491 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
492 if (! memory_address_p (mode, y))
493 x = force_operand (x, NULL_RTX);
494 else
495 x = y;
499 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
500 x = force_operand (x, NULL_RTX);
502 /* If we have a register that's an invalid address,
503 it must be a hard reg of the wrong class. Copy it to a pseudo. */
504 else if (REG_P (x))
505 x = copy_to_reg (x);
507 /* Last resort: copy the value to a register, since
508 the register is a valid address. */
509 else
510 x = force_reg (Pmode, x);
512 goto done;
514 win2:
515 x = oldx;
516 win:
517 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
518 /* Don't copy an addr via a reg if it is one of our stack slots. */
519 && ! (GET_CODE (x) == PLUS
520 && (XEXP (x, 0) == virtual_stack_vars_rtx
521 || XEXP (x, 0) == virtual_incoming_args_rtx)))
523 if (general_operand (x, Pmode))
524 x = force_reg (Pmode, x);
525 else
526 x = force_operand (x, NULL_RTX);
530 done:
532 /* If we didn't change the address, we are done. Otherwise, mark
533 a reg as a pointer if we have REG or REG + CONST_INT. */
534 if (oldx == x)
535 return x;
536 else if (REG_P (x))
537 mark_reg_pointer (x, BITS_PER_UNIT);
538 else if (GET_CODE (x) == PLUS
539 && REG_P (XEXP (x, 0))
540 && GET_CODE (XEXP (x, 1)) == CONST_INT)
541 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
543 /* OLDX may have been the address on a temporary. Update the address
544 to indicate that X is now used. */
545 update_temp_slot_address (oldx, x);
547 return x;
550 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
553 memory_address_noforce (enum machine_mode mode, rtx x)
555 int ambient_force_addr = flag_force_addr;
556 rtx val;
558 flag_force_addr = 0;
559 val = memory_address (mode, x);
560 flag_force_addr = ambient_force_addr;
561 return val;
564 /* Convert a mem ref into one with a valid memory address.
565 Pass through anything else unchanged. */
568 validize_mem (rtx ref)
570 if (!MEM_P (ref))
571 return ref;
572 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
573 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
574 return ref;
576 /* Don't alter REF itself, since that is probably a stack slot. */
577 return replace_equiv_address (ref, XEXP (ref, 0));
580 /* Return a modified copy of X with its memory address copied
581 into a temporary register to protect it from side effects.
582 If X is not a MEM, it is returned unchanged (and not copied).
583 Perhaps even if it is a MEM, if there is no need to change it. */
586 stabilize (rtx x)
588 if (!MEM_P (x)
589 || ! rtx_unstable_p (XEXP (x, 0)))
590 return x;
592 return
593 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
599 copy_to_reg (rtx x)
601 rtx temp = gen_reg_rtx (GET_MODE (x));
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
608 if (x != temp)
609 emit_move_insn (temp, x);
611 return temp;
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
618 copy_addr_to_reg (rtx x)
620 return copy_to_mode_reg (Pmode, x);
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
629 rtx temp = gen_reg_rtx (mode);
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
636 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
637 abort ();
638 if (x != temp)
639 emit_move_insn (temp, x);
640 return temp;
643 /* Load X into a register if it is not already one.
644 Use mode MODE for the register.
645 X should be valid for mode MODE, but it may be a constant which
646 is valid for all integer modes; that's why caller must specify MODE.
648 The caller must not alter the value in the register we return,
649 since we mark it as a "constant" register. */
652 force_reg (enum machine_mode mode, rtx x)
654 rtx temp, insn, set;
656 if (REG_P (x))
657 return x;
659 if (general_operand (x, mode))
661 temp = gen_reg_rtx (mode);
662 insn = emit_move_insn (temp, x);
664 else
666 temp = force_operand (x, NULL_RTX);
667 if (REG_P (temp))
668 insn = get_last_insn ();
669 else
671 rtx temp2 = gen_reg_rtx (mode);
672 insn = emit_move_insn (temp2, temp);
673 temp = temp2;
677 /* Let optimizers know that TEMP's value never changes
678 and that X can be substituted for it. Don't get confused
679 if INSN set something else (such as a SUBREG of TEMP). */
680 if (CONSTANT_P (x)
681 && (set = single_set (insn)) != 0
682 && SET_DEST (set) == temp
683 && ! rtx_equal_p (x, SET_SRC (set)))
684 set_unique_reg_note (insn, REG_EQUAL, x);
686 /* Let optimizers know that TEMP is a pointer, and if so, the
687 known alignment of that pointer. */
689 unsigned align = 0;
690 if (GET_CODE (x) == SYMBOL_REF)
692 align = BITS_PER_UNIT;
693 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
694 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
696 else if (GET_CODE (x) == LABEL_REF)
697 align = BITS_PER_UNIT;
698 else if (GET_CODE (x) == CONST
699 && GET_CODE (XEXP (x, 0)) == PLUS
700 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
701 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
703 rtx s = XEXP (XEXP (x, 0), 0);
704 rtx c = XEXP (XEXP (x, 0), 1);
705 unsigned sa, ca;
707 sa = BITS_PER_UNIT;
708 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
709 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
711 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
713 align = MIN (sa, ca);
716 if (align)
717 mark_reg_pointer (temp, align);
720 return temp;
723 /* If X is a memory ref, copy its contents to a new temp reg and return
724 that reg. Otherwise, return X. */
727 force_not_mem (rtx x)
729 rtx temp;
731 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
732 return x;
734 temp = gen_reg_rtx (GET_MODE (x));
736 if (MEM_POINTER (x))
737 REG_POINTER (temp) = 1;
739 emit_move_insn (temp, x);
740 return temp;
743 /* Copy X to TARGET (if it's nonzero and a reg)
744 or to a new temp reg and return that reg.
745 MODE is the mode to use for X in case it is a constant. */
748 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
750 rtx temp;
752 if (target && REG_P (target))
753 temp = target;
754 else
755 temp = gen_reg_rtx (mode);
757 emit_move_insn (temp, x);
758 return temp;
761 /* Return the mode to use to store a scalar of TYPE and MODE.
762 PUNSIGNEDP points to the signedness of the type and may be adjusted
763 to show what signedness to use on extension operations.
765 FOR_CALL is nonzero if this call is promoting args for a call. */
767 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
768 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
769 #endif
771 enum machine_mode
772 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
773 int for_call ATTRIBUTE_UNUSED)
775 enum tree_code code = TREE_CODE (type);
776 int unsignedp = *punsignedp;
778 #ifndef PROMOTE_MODE
779 if (! for_call)
780 return mode;
781 #endif
783 switch (code)
785 #ifdef PROMOTE_FUNCTION_MODE
786 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
787 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
788 #ifdef PROMOTE_MODE
789 if (for_call)
791 #endif
792 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
793 #ifdef PROMOTE_MODE
795 else
797 PROMOTE_MODE (mode, unsignedp, type);
799 #endif
800 break;
801 #endif
803 #ifdef POINTERS_EXTEND_UNSIGNED
804 case REFERENCE_TYPE:
805 case POINTER_TYPE:
806 mode = Pmode;
807 unsignedp = POINTERS_EXTEND_UNSIGNED;
808 break;
809 #endif
811 default:
812 break;
815 *punsignedp = unsignedp;
816 return mode;
819 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
820 This pops when ADJUST is positive. ADJUST need not be constant. */
822 void
823 adjust_stack (rtx adjust)
825 rtx temp;
827 if (adjust == const0_rtx)
828 return;
830 /* We expect all variable sized adjustments to be multiple of
831 PREFERRED_STACK_BOUNDARY. */
832 if (GET_CODE (adjust) == CONST_INT)
833 stack_pointer_delta -= INTVAL (adjust);
835 temp = expand_binop (Pmode,
836 #ifdef STACK_GROWS_DOWNWARD
837 add_optab,
838 #else
839 sub_optab,
840 #endif
841 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
842 OPTAB_LIB_WIDEN);
844 if (temp != stack_pointer_rtx)
845 emit_move_insn (stack_pointer_rtx, temp);
848 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
849 This pushes when ADJUST is positive. ADJUST need not be constant. */
851 void
852 anti_adjust_stack (rtx adjust)
854 rtx temp;
856 if (adjust == const0_rtx)
857 return;
859 /* We expect all variable sized adjustments to be multiple of
860 PREFERRED_STACK_BOUNDARY. */
861 if (GET_CODE (adjust) == CONST_INT)
862 stack_pointer_delta += INTVAL (adjust);
864 temp = expand_binop (Pmode,
865 #ifdef STACK_GROWS_DOWNWARD
866 sub_optab,
867 #else
868 add_optab,
869 #endif
870 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
871 OPTAB_LIB_WIDEN);
873 if (temp != stack_pointer_rtx)
874 emit_move_insn (stack_pointer_rtx, temp);
877 /* Round the size of a block to be pushed up to the boundary required
878 by this machine. SIZE is the desired size, which need not be constant. */
881 round_push (rtx size)
883 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
885 if (align == 1)
886 return size;
888 if (GET_CODE (size) == CONST_INT)
890 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
892 if (INTVAL (size) != new)
893 size = GEN_INT (new);
895 else
897 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
898 but we know it can't. So add ourselves and then do
899 TRUNC_DIV_EXPR. */
900 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
901 NULL_RTX, 1, OPTAB_LIB_WIDEN);
902 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
903 NULL_RTX, 1);
904 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
907 return size;
910 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
911 to a previously-created save area. If no save area has been allocated,
912 this function will allocate one. If a save area is specified, it
913 must be of the proper mode.
915 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
916 are emitted at the current position. */
918 void
919 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
921 rtx sa = *psave;
922 /* The default is that we use a move insn and save in a Pmode object. */
923 rtx (*fcn) (rtx, rtx) = gen_move_insn;
924 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
926 /* See if this machine has anything special to do for this kind of save. */
927 switch (save_level)
929 #ifdef HAVE_save_stack_block
930 case SAVE_BLOCK:
931 if (HAVE_save_stack_block)
932 fcn = gen_save_stack_block;
933 break;
934 #endif
935 #ifdef HAVE_save_stack_function
936 case SAVE_FUNCTION:
937 if (HAVE_save_stack_function)
938 fcn = gen_save_stack_function;
939 break;
940 #endif
941 #ifdef HAVE_save_stack_nonlocal
942 case SAVE_NONLOCAL:
943 if (HAVE_save_stack_nonlocal)
944 fcn = gen_save_stack_nonlocal;
945 break;
946 #endif
947 default:
948 break;
951 /* If there is no save area and we have to allocate one, do so. Otherwise
952 verify the save area is the proper mode. */
954 if (sa == 0)
956 if (mode != VOIDmode)
958 if (save_level == SAVE_NONLOCAL)
959 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
960 else
961 *psave = sa = gen_reg_rtx (mode);
965 if (after)
967 rtx seq;
969 start_sequence ();
970 /* We must validize inside the sequence, to ensure that any instructions
971 created by the validize call also get moved to the right place. */
972 if (sa != 0)
973 sa = validize_mem (sa);
974 emit_insn (fcn (sa, stack_pointer_rtx));
975 seq = get_insns ();
976 end_sequence ();
977 emit_insn_after (seq, after);
979 else
981 if (sa != 0)
982 sa = validize_mem (sa);
983 emit_insn (fcn (sa, stack_pointer_rtx));
987 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
988 area made by emit_stack_save. If it is zero, we have nothing to do.
990 Put any emitted insns after insn AFTER, if nonzero, otherwise at
991 current position. */
993 void
994 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
996 /* The default is that we use a move insn. */
997 rtx (*fcn) (rtx, rtx) = gen_move_insn;
999 /* See if this machine has anything special to do for this kind of save. */
1000 switch (save_level)
1002 #ifdef HAVE_restore_stack_block
1003 case SAVE_BLOCK:
1004 if (HAVE_restore_stack_block)
1005 fcn = gen_restore_stack_block;
1006 break;
1007 #endif
1008 #ifdef HAVE_restore_stack_function
1009 case SAVE_FUNCTION:
1010 if (HAVE_restore_stack_function)
1011 fcn = gen_restore_stack_function;
1012 break;
1013 #endif
1014 #ifdef HAVE_restore_stack_nonlocal
1015 case SAVE_NONLOCAL:
1016 if (HAVE_restore_stack_nonlocal)
1017 fcn = gen_restore_stack_nonlocal;
1018 break;
1019 #endif
1020 default:
1021 break;
1024 if (sa != 0)
1026 sa = validize_mem (sa);
1027 /* These clobbers prevent the scheduler from moving
1028 references to variable arrays below the code
1029 that deletes (pops) the arrays. */
1030 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1031 gen_rtx_MEM (BLKmode,
1032 gen_rtx_SCRATCH (VOIDmode))));
1033 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1034 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1037 if (after)
1039 rtx seq;
1041 start_sequence ();
1042 emit_insn (fcn (stack_pointer_rtx, sa));
1043 seq = get_insns ();
1044 end_sequence ();
1045 emit_insn_after (seq, after);
1047 else
1048 emit_insn (fcn (stack_pointer_rtx, sa));
1051 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1052 function. This function should be called whenever we allocate or
1053 deallocate dynamic stack space. */
1055 void
1056 update_nonlocal_goto_save_area (void)
1058 tree t_save;
1059 rtx r_save;
1061 /* The nonlocal_goto_save_area object is an array of N pointers. The
1062 first one is used for the frame pointer save; the rest are sized by
1063 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1064 of the stack save area slots. */
1065 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1066 integer_one_node, NULL_TREE, NULL_TREE);
1067 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1069 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1072 #ifdef SETJMP_VIA_SAVE_AREA
1073 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1074 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1075 platforms, the dynamic stack space used can corrupt the original
1076 frame, thus causing a crash if a longjmp unwinds to it. */
1078 void
1079 optimize_save_area_alloca (void)
1081 rtx insn;
1083 for (insn = get_insns (); insn; insn = NEXT_INSN(insn))
1085 rtx note;
1087 if (!NONJUMP_INSN_P (insn))
1088 continue;
1090 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1092 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1093 continue;
1095 if (!current_function_calls_setjmp)
1097 rtx pat = PATTERN (insn);
1099 /* If we do not see the note in a pattern matching
1100 these precise characteristics, we did something
1101 entirely wrong in allocate_dynamic_stack_space.
1103 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1104 was defined on a machine where stacks grow towards higher
1105 addresses.
1107 Right now only supported port with stack that grow upward
1108 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1109 if (GET_CODE (pat) != SET
1110 || SET_DEST (pat) != stack_pointer_rtx
1111 || GET_CODE (SET_SRC (pat)) != MINUS
1112 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1113 abort ();
1115 /* This will now be transformed into a (set REG REG)
1116 so we can just blow away all the other notes. */
1117 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1118 REG_NOTES (insn) = NULL_RTX;
1120 else
1122 /* setjmp was called, we must remove the REG_SAVE_AREA
1123 note so that later passes do not get confused by its
1124 presence. */
1125 if (note == REG_NOTES (insn))
1127 REG_NOTES (insn) = XEXP (note, 1);
1129 else
1131 rtx srch;
1133 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1134 if (XEXP (srch, 1) == note)
1135 break;
1137 if (srch == NULL_RTX)
1138 abort ();
1140 XEXP (srch, 1) = XEXP (note, 1);
1143 /* Once we've seen the note of interest, we need not look at
1144 the rest of them. */
1145 break;
1149 #endif /* SETJMP_VIA_SAVE_AREA */
1151 /* Return an rtx representing the address of an area of memory dynamically
1152 pushed on the stack. This region of memory is always aligned to
1153 a multiple of BIGGEST_ALIGNMENT.
1155 Any required stack pointer alignment is preserved.
1157 SIZE is an rtx representing the size of the area.
1158 TARGET is a place in which the address can be placed.
1160 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1163 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1165 #ifdef SETJMP_VIA_SAVE_AREA
1166 rtx setjmpless_size = NULL_RTX;
1167 #endif
1169 /* If we're asking for zero bytes, it doesn't matter what we point
1170 to since we can't dereference it. But return a reasonable
1171 address anyway. */
1172 if (size == const0_rtx)
1173 return virtual_stack_dynamic_rtx;
1175 /* Otherwise, show we're calling alloca or equivalent. */
1176 current_function_calls_alloca = 1;
1178 /* Ensure the size is in the proper mode. */
1179 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1180 size = convert_to_mode (Pmode, size, 1);
1182 /* We can't attempt to minimize alignment necessary, because we don't
1183 know the final value of preferred_stack_boundary yet while executing
1184 this code. */
1185 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1187 /* We will need to ensure that the address we return is aligned to
1188 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1189 always know its final value at this point in the compilation (it
1190 might depend on the size of the outgoing parameter lists, for
1191 example), so we must align the value to be returned in that case.
1192 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1193 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1194 We must also do an alignment operation on the returned value if
1195 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1197 If we have to align, we must leave space in SIZE for the hole
1198 that might result from the alignment operation. */
1200 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1201 #define MUST_ALIGN 1
1202 #else
1203 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1204 #endif
1206 if (MUST_ALIGN)
1207 size
1208 = force_operand (plus_constant (size,
1209 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1210 NULL_RTX);
1212 #ifdef SETJMP_VIA_SAVE_AREA
1213 /* If setjmp restores regs from a save area in the stack frame,
1214 avoid clobbering the reg save area. Note that the offset of
1215 virtual_incoming_args_rtx includes the preallocated stack args space.
1216 It would be no problem to clobber that, but it's on the wrong side
1217 of the old save area. */
1219 rtx dynamic_offset
1220 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1221 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1223 if (!current_function_calls_setjmp)
1225 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1227 /* See optimize_save_area_alloca to understand what is being
1228 set up here. */
1230 /* ??? Code below assumes that the save area needs maximal
1231 alignment. This constraint may be too strong. */
1232 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1233 abort ();
1235 if (GET_CODE (size) == CONST_INT)
1237 HOST_WIDE_INT new = INTVAL (size) / align * align;
1239 if (INTVAL (size) != new)
1240 setjmpless_size = GEN_INT (new);
1241 else
1242 setjmpless_size = size;
1244 else
1246 /* Since we know overflow is not possible, we avoid using
1247 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1248 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1249 GEN_INT (align), NULL_RTX, 1);
1250 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1251 GEN_INT (align), NULL_RTX, 1);
1253 /* Our optimization works based upon being able to perform a simple
1254 transformation of this RTL into a (set REG REG) so make sure things
1255 did in fact end up in a REG. */
1256 if (!register_operand (setjmpless_size, Pmode))
1257 setjmpless_size = force_reg (Pmode, setjmpless_size);
1260 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1261 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1263 #endif /* SETJMP_VIA_SAVE_AREA */
1265 /* Round the size to a multiple of the required stack alignment.
1266 Since the stack if presumed to be rounded before this allocation,
1267 this will maintain the required alignment.
1269 If the stack grows downward, we could save an insn by subtracting
1270 SIZE from the stack pointer and then aligning the stack pointer.
1271 The problem with this is that the stack pointer may be unaligned
1272 between the execution of the subtraction and alignment insns and
1273 some machines do not allow this. Even on those that do, some
1274 signal handlers malfunction if a signal should occur between those
1275 insns. Since this is an extremely rare event, we have no reliable
1276 way of knowing which systems have this problem. So we avoid even
1277 momentarily mis-aligning the stack. */
1279 /* If we added a variable amount to SIZE,
1280 we can no longer assume it is aligned. */
1281 #if !defined (SETJMP_VIA_SAVE_AREA)
1282 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1283 #endif
1284 size = round_push (size);
1286 do_pending_stack_adjust ();
1288 /* We ought to be called always on the toplevel and stack ought to be aligned
1289 properly. */
1290 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1291 abort ();
1293 /* If needed, check that we have the required amount of stack. Take into
1294 account what has already been checked. */
1295 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1296 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1298 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1299 if (target == 0 || !REG_P (target)
1300 || REGNO (target) < FIRST_PSEUDO_REGISTER
1301 || GET_MODE (target) != Pmode)
1302 target = gen_reg_rtx (Pmode);
1304 mark_reg_pointer (target, known_align);
1306 /* Perform the required allocation from the stack. Some systems do
1307 this differently than simply incrementing/decrementing from the
1308 stack pointer, such as acquiring the space by calling malloc(). */
1309 #ifdef HAVE_allocate_stack
1310 if (HAVE_allocate_stack)
1312 enum machine_mode mode = STACK_SIZE_MODE;
1313 insn_operand_predicate_fn pred;
1315 /* We don't have to check against the predicate for operand 0 since
1316 TARGET is known to be a pseudo of the proper mode, which must
1317 be valid for the operand. For operand 1, convert to the
1318 proper mode and validate. */
1319 if (mode == VOIDmode)
1320 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1322 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1323 if (pred && ! ((*pred) (size, mode)))
1324 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1326 emit_insn (gen_allocate_stack (target, size));
1328 else
1329 #endif
1331 #ifndef STACK_GROWS_DOWNWARD
1332 emit_move_insn (target, virtual_stack_dynamic_rtx);
1333 #endif
1335 /* Check stack bounds if necessary. */
1336 if (current_function_limit_stack)
1338 rtx available;
1339 rtx space_available = gen_label_rtx ();
1340 #ifdef STACK_GROWS_DOWNWARD
1341 available = expand_binop (Pmode, sub_optab,
1342 stack_pointer_rtx, stack_limit_rtx,
1343 NULL_RTX, 1, OPTAB_WIDEN);
1344 #else
1345 available = expand_binop (Pmode, sub_optab,
1346 stack_limit_rtx, stack_pointer_rtx,
1347 NULL_RTX, 1, OPTAB_WIDEN);
1348 #endif
1349 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1350 space_available);
1351 #ifdef HAVE_trap
1352 if (HAVE_trap)
1353 emit_insn (gen_trap ());
1354 else
1355 #endif
1356 error ("stack limits not supported on this target");
1357 emit_barrier ();
1358 emit_label (space_available);
1361 anti_adjust_stack (size);
1362 #ifdef SETJMP_VIA_SAVE_AREA
1363 if (setjmpless_size != NULL_RTX)
1365 rtx note_target = get_last_insn ();
1367 REG_NOTES (note_target)
1368 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1369 REG_NOTES (note_target));
1371 #endif /* SETJMP_VIA_SAVE_AREA */
1373 #ifdef STACK_GROWS_DOWNWARD
1374 emit_move_insn (target, virtual_stack_dynamic_rtx);
1375 #endif
1378 if (MUST_ALIGN)
1380 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1381 but we know it can't. So add ourselves and then do
1382 TRUNC_DIV_EXPR. */
1383 target = expand_binop (Pmode, add_optab, target,
1384 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1385 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1386 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1387 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1388 NULL_RTX, 1);
1389 target = expand_mult (Pmode, target,
1390 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1391 NULL_RTX, 1);
1394 /* Record the new stack level for nonlocal gotos. */
1395 if (cfun->nonlocal_goto_save_area != 0)
1396 update_nonlocal_goto_save_area ();
1398 return target;
1401 /* A front end may want to override GCC's stack checking by providing a
1402 run-time routine to call to check the stack, so provide a mechanism for
1403 calling that routine. */
1405 static GTY(()) rtx stack_check_libfunc;
1407 void
1408 set_stack_check_libfunc (rtx libfunc)
1410 stack_check_libfunc = libfunc;
1413 /* Emit one stack probe at ADDRESS, an address within the stack. */
1415 static void
1416 emit_stack_probe (rtx address)
1418 rtx memref = gen_rtx_MEM (word_mode, address);
1420 MEM_VOLATILE_P (memref) = 1;
1422 if (STACK_CHECK_PROBE_LOAD)
1423 emit_move_insn (gen_reg_rtx (word_mode), memref);
1424 else
1425 emit_move_insn (memref, const0_rtx);
1428 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1429 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1430 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1431 subtract from the stack. If SIZE is constant, this is done
1432 with a fixed number of probes. Otherwise, we must make a loop. */
1434 #ifdef STACK_GROWS_DOWNWARD
1435 #define STACK_GROW_OP MINUS
1436 #else
1437 #define STACK_GROW_OP PLUS
1438 #endif
1440 void
1441 probe_stack_range (HOST_WIDE_INT first, rtx size)
1443 /* First ensure SIZE is Pmode. */
1444 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1445 size = convert_to_mode (Pmode, size, 1);
1447 /* Next see if the front end has set up a function for us to call to
1448 check the stack. */
1449 if (stack_check_libfunc != 0)
1451 rtx addr = memory_address (QImode,
1452 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1453 stack_pointer_rtx,
1454 plus_constant (size, first)));
1456 addr = convert_memory_address (ptr_mode, addr);
1457 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1458 ptr_mode);
1461 /* Next see if we have an insn to check the stack. Use it if so. */
1462 #ifdef HAVE_check_stack
1463 else if (HAVE_check_stack)
1465 insn_operand_predicate_fn pred;
1466 rtx last_addr
1467 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1468 stack_pointer_rtx,
1469 plus_constant (size, first)),
1470 NULL_RTX);
1472 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1473 if (pred && ! ((*pred) (last_addr, Pmode)))
1474 last_addr = copy_to_mode_reg (Pmode, last_addr);
1476 emit_insn (gen_check_stack (last_addr));
1478 #endif
1480 /* If we have to generate explicit probes, see if we have a constant
1481 small number of them to generate. If so, that's the easy case. */
1482 else if (GET_CODE (size) == CONST_INT
1483 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1485 HOST_WIDE_INT offset;
1487 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1488 for values of N from 1 until it exceeds LAST. If only one
1489 probe is needed, this will not generate any code. Then probe
1490 at LAST. */
1491 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1492 offset < INTVAL (size);
1493 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1494 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1495 stack_pointer_rtx,
1496 GEN_INT (offset)));
1498 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1499 stack_pointer_rtx,
1500 plus_constant (size, first)));
1503 /* In the variable case, do the same as above, but in a loop. We emit loop
1504 notes so that loop optimization can be done. */
1505 else
1507 rtx test_addr
1508 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1509 stack_pointer_rtx,
1510 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1511 NULL_RTX);
1512 rtx last_addr
1513 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1514 stack_pointer_rtx,
1515 plus_constant (size, first)),
1516 NULL_RTX);
1517 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1518 rtx loop_lab = gen_label_rtx ();
1519 rtx test_lab = gen_label_rtx ();
1520 rtx end_lab = gen_label_rtx ();
1521 rtx temp;
1523 if (!REG_P (test_addr)
1524 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1525 test_addr = force_reg (Pmode, test_addr);
1527 emit_jump (test_lab);
1529 emit_label (loop_lab);
1530 emit_stack_probe (test_addr);
1532 #ifdef STACK_GROWS_DOWNWARD
1533 #define CMP_OPCODE GTU
1534 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1535 1, OPTAB_WIDEN);
1536 #else
1537 #define CMP_OPCODE LTU
1538 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1539 1, OPTAB_WIDEN);
1540 #endif
1542 if (temp != test_addr)
1543 abort ();
1545 emit_label (test_lab);
1546 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1547 NULL_RTX, Pmode, 1, loop_lab);
1548 emit_jump (end_lab);
1549 emit_label (end_lab);
1551 emit_stack_probe (last_addr);
1555 /* Return an rtx representing the register or memory location
1556 in which a scalar value of data type VALTYPE
1557 was returned by a function call to function FUNC.
1558 FUNC is a FUNCTION_DECL node if the precise function is known,
1559 otherwise 0.
1560 OUTGOING is 1 if on a machine with register windows this function
1561 should return the register in which the function will put its result
1562 and 0 otherwise. */
1565 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1566 int outgoing ATTRIBUTE_UNUSED)
1568 rtx val;
1570 #ifdef FUNCTION_OUTGOING_VALUE
1571 if (outgoing)
1572 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1573 else
1574 #endif
1575 val = FUNCTION_VALUE (valtype, func);
1577 if (REG_P (val)
1578 && GET_MODE (val) == BLKmode)
1580 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1581 enum machine_mode tmpmode;
1583 /* int_size_in_bytes can return -1. We don't need a check here
1584 since the value of bytes will be large enough that no mode
1585 will match and we will abort later in this function. */
1587 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1588 tmpmode != VOIDmode;
1589 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1591 /* Have we found a large enough mode? */
1592 if (GET_MODE_SIZE (tmpmode) >= bytes)
1593 break;
1596 /* No suitable mode found. */
1597 if (tmpmode == VOIDmode)
1598 abort ();
1600 PUT_MODE (val, tmpmode);
1602 return val;
1605 /* Return an rtx representing the register or memory location
1606 in which a scalar value of mode MODE was returned by a library call. */
1609 hard_libcall_value (enum machine_mode mode)
1611 return LIBCALL_VALUE (mode);
1614 /* Look up the tree code for a given rtx code
1615 to provide the arithmetic operation for REAL_ARITHMETIC.
1616 The function returns an int because the caller may not know
1617 what `enum tree_code' means. */
1620 rtx_to_tree_code (enum rtx_code code)
1622 enum tree_code tcode;
1624 switch (code)
1626 case PLUS:
1627 tcode = PLUS_EXPR;
1628 break;
1629 case MINUS:
1630 tcode = MINUS_EXPR;
1631 break;
1632 case MULT:
1633 tcode = MULT_EXPR;
1634 break;
1635 case DIV:
1636 tcode = RDIV_EXPR;
1637 break;
1638 case SMIN:
1639 tcode = MIN_EXPR;
1640 break;
1641 case SMAX:
1642 tcode = MAX_EXPR;
1643 break;
1644 default:
1645 tcode = LAST_AND_UNUSED_TREE_CODE;
1646 break;
1648 return ((int) tcode);
1651 #include "gt-explow.h"