1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
39 #include "langhooks.h"
41 static rtx
break_out_memory_refs (rtx
);
42 static void emit_stack_probe (rtx
);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 trunc_int_for_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
50 int width
= GET_MODE_BITSIZE (mode
);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode
))
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 return c
& 1 ? STORE_FLAG_VALUE
: 0;
60 /* Sign-extend for the requested mode. */
62 if (width
< HOST_BITS_PER_WIDE_INT
)
64 HOST_WIDE_INT sign
= 1;
74 /* Return an rtx for the sum of X and the integer C. */
77 plus_constant (rtx x
, HOST_WIDE_INT c
)
81 enum machine_mode mode
;
97 return GEN_INT (INTVAL (x
) + c
);
101 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
102 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
103 unsigned HOST_WIDE_INT l2
= c
;
104 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv
;
108 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
110 return immed_double_const (lv
, hv
, VOIDmode
);
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
121 = force_const_mem (GET_MODE (x
),
122 plus_constant (get_pool_constant (XEXP (x
, 0)),
124 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
154 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
156 c
+= INTVAL (XEXP (x
, 1));
158 if (GET_MODE (x
) != VOIDmode
)
159 c
= trunc_int_for_mode (c
, GET_MODE (x
));
164 else if (CONSTANT_P (XEXP (x
, 1)))
166 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
169 else if (find_constant_term_loc (&y
))
171 /* We need to be careful since X may be shared and we can't
172 modify it in place. */
173 rtx copy
= copy_rtx (x
);
174 rtx
*const_loc
= find_constant_term_loc (©
);
176 *const_loc
= plus_constant (*const_loc
, c
);
187 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
189 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
191 else if (all_constant
)
192 return gen_rtx_CONST (mode
, x
);
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
203 eliminate_constant_term (rtx x
, rtx
*constptr
)
208 if (GET_CODE (x
) != PLUS
)
211 /* First handle constants appearing at this level explicitly. */
212 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
213 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
215 && GET_CODE (tem
) == CONST_INT
)
218 return eliminate_constant_term (XEXP (x
, 0), constptr
);
222 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
223 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
224 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
225 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
227 && GET_CODE (tem
) == CONST_INT
)
230 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
236 /* Return an rtx for the size in bytes of the value of EXP. */
243 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
244 size
= TREE_OPERAND (exp
, 1);
246 size
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks
.expr_size (exp
), exp
);
248 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), 0);
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
255 int_expr_size (tree exp
)
259 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
260 size
= TREE_OPERAND (exp
, 1);
262 size
= lang_hooks
.expr_size (exp
);
264 if (size
== 0 || !host_integerp (size
, 0))
267 return tree_low_cst (size
, 0);
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
287 break_out_memory_refs (rtx x
)
290 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
291 && GET_MODE (x
) != VOIDmode
))
292 x
= force_reg (GET_MODE (x
), x
);
293 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
294 || GET_CODE (x
) == MULT
)
296 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
297 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
299 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
300 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
313 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED
,
316 #ifndef POINTERS_EXTEND_UNSIGNED
318 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
319 enum machine_mode from_mode
;
323 /* If X already has the right mode, just return it. */
324 if (GET_MODE (x
) == to_mode
)
327 from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
329 /* Here we handle some special cases. If none of them apply, fall through
330 to the default case. */
331 switch (GET_CODE (x
))
335 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
337 else if (POINTERS_EXTEND_UNSIGNED
< 0)
339 else if (POINTERS_EXTEND_UNSIGNED
> 0)
343 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
349 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
350 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
351 return SUBREG_REG (x
);
355 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
356 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
361 temp
= shallow_copy_rtx (x
);
362 PUT_MODE (temp
, to_mode
);
367 return gen_rtx_CONST (to_mode
,
368 convert_memory_address (to_mode
, XEXP (x
, 0)));
373 /* For addition we can safely permute the conversion and addition
374 operation if one operand is a constant and converting the constant
375 does not change it. We can always safely permute them if we are
376 making the address narrower. */
377 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
378 || (GET_CODE (x
) == PLUS
379 && GET_CODE (XEXP (x
, 1)) == CONST_INT
380 && XEXP (x
, 1) == convert_memory_address (to_mode
, XEXP (x
, 1))))
381 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
382 convert_memory_address (to_mode
, XEXP (x
, 0)),
390 return convert_modes (to_mode
, from_mode
,
391 x
, POINTERS_EXTEND_UNSIGNED
);
392 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
395 /* Given a memory address or facsimile X, construct a new address,
396 currently equivalent, that is stable: future stores won't change it.
398 X must be composed of constants, register and memory references
399 combined with addition, subtraction and multiplication:
400 in other words, just what you can get from expand_expr if sum_ok is 1.
402 Works by making copies of all regs and memory locations used
403 by X and combining them the same way X does.
404 You could also stabilize the reference to this address
405 by copying the address to a register with copy_to_reg;
406 but then you wouldn't get indexed addressing in the reference. */
409 copy_all_regs (rtx x
)
413 if (REGNO (x
) != FRAME_POINTER_REGNUM
414 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
415 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
422 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
423 || GET_CODE (x
) == MULT
)
425 rtx op0
= copy_all_regs (XEXP (x
, 0));
426 rtx op1
= copy_all_regs (XEXP (x
, 1));
427 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
428 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
433 /* Return something equivalent to X but valid as a memory address
434 for something of mode MODE. When X is not itself valid, this
435 works by copying X or subexpressions of it into registers. */
438 memory_address (enum machine_mode mode
, rtx x
)
442 x
= convert_memory_address (Pmode
, x
);
444 /* By passing constant addresses through registers
445 we get a chance to cse them. */
446 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
447 x
= force_reg (Pmode
, x
);
449 /* We get better cse by rejecting indirect addressing at this stage.
450 Let the combiner create indirect addresses where appropriate.
451 For now, generate the code so that the subexpressions useful to share
452 are visible. But not if cse won't be done! */
455 if (! cse_not_expected
&& !REG_P (x
))
456 x
= break_out_memory_refs (x
);
458 /* At this point, any valid address is accepted. */
459 if (memory_address_p (mode
, x
))
462 /* If it was valid before but breaking out memory refs invalidated it,
463 use it the old way. */
464 if (memory_address_p (mode
, oldx
))
467 /* Perform machine-dependent transformations on X
468 in certain cases. This is not necessary since the code
469 below can handle all possible cases, but machine-dependent
470 transformations can make better code. */
471 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
473 /* PLUS and MULT can appear in special ways
474 as the result of attempts to make an address usable for indexing.
475 Usually they are dealt with by calling force_operand, below.
476 But a sum containing constant terms is special
477 if removing them makes the sum a valid address:
478 then we generate that address in a register
479 and index off of it. We do this because it often makes
480 shorter code, and because the addresses thus generated
481 in registers often become common subexpressions. */
482 if (GET_CODE (x
) == PLUS
)
484 rtx constant_term
= const0_rtx
;
485 rtx y
= eliminate_constant_term (x
, &constant_term
);
486 if (constant_term
== const0_rtx
487 || ! memory_address_p (mode
, y
))
488 x
= force_operand (x
, NULL_RTX
);
491 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
492 if (! memory_address_p (mode
, y
))
493 x
= force_operand (x
, NULL_RTX
);
499 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
500 x
= force_operand (x
, NULL_RTX
);
502 /* If we have a register that's an invalid address,
503 it must be a hard reg of the wrong class. Copy it to a pseudo. */
507 /* Last resort: copy the value to a register, since
508 the register is a valid address. */
510 x
= force_reg (Pmode
, x
);
517 if (flag_force_addr
&& ! cse_not_expected
&& !REG_P (x
)
518 /* Don't copy an addr via a reg if it is one of our stack slots. */
519 && ! (GET_CODE (x
) == PLUS
520 && (XEXP (x
, 0) == virtual_stack_vars_rtx
521 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
523 if (general_operand (x
, Pmode
))
524 x
= force_reg (Pmode
, x
);
526 x
= force_operand (x
, NULL_RTX
);
532 /* If we didn't change the address, we are done. Otherwise, mark
533 a reg as a pointer if we have REG or REG + CONST_INT. */
537 mark_reg_pointer (x
, BITS_PER_UNIT
);
538 else if (GET_CODE (x
) == PLUS
539 && REG_P (XEXP (x
, 0))
540 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
541 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
543 /* OLDX may have been the address on a temporary. Update the address
544 to indicate that X is now used. */
545 update_temp_slot_address (oldx
, x
);
550 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
553 memory_address_noforce (enum machine_mode mode
, rtx x
)
555 int ambient_force_addr
= flag_force_addr
;
559 val
= memory_address (mode
, x
);
560 flag_force_addr
= ambient_force_addr
;
564 /* Convert a mem ref into one with a valid memory address.
565 Pass through anything else unchanged. */
568 validize_mem (rtx ref
)
572 if (! (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (ref
, 0)))
573 && memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
576 /* Don't alter REF itself, since that is probably a stack slot. */
577 return replace_equiv_address (ref
, XEXP (ref
, 0));
580 /* Return a modified copy of X with its memory address copied
581 into a temporary register to protect it from side effects.
582 If X is not a MEM, it is returned unchanged (and not copied).
583 Perhaps even if it is a MEM, if there is no need to change it. */
589 || ! rtx_unstable_p (XEXP (x
, 0)))
593 replace_equiv_address (x
, force_reg (Pmode
, copy_all_regs (XEXP (x
, 0))));
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
601 rtx temp
= gen_reg_rtx (GET_MODE (x
));
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x
, VOIDmode
))
606 x
= force_operand (x
, temp
);
609 emit_move_insn (temp
, x
);
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
618 copy_addr_to_reg (rtx x
)
620 return copy_to_mode_reg (Pmode
, x
);
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
627 copy_to_mode_reg (enum machine_mode mode
, rtx x
)
629 rtx temp
= gen_reg_rtx (mode
);
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x
, VOIDmode
))
634 x
= force_operand (x
, temp
);
636 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
639 emit_move_insn (temp
, x
);
643 /* Load X into a register if it is not already one.
644 Use mode MODE for the register.
645 X should be valid for mode MODE, but it may be a constant which
646 is valid for all integer modes; that's why caller must specify MODE.
648 The caller must not alter the value in the register we return,
649 since we mark it as a "constant" register. */
652 force_reg (enum machine_mode mode
, rtx x
)
659 if (general_operand (x
, mode
))
661 temp
= gen_reg_rtx (mode
);
662 insn
= emit_move_insn (temp
, x
);
666 temp
= force_operand (x
, NULL_RTX
);
668 insn
= get_last_insn ();
671 rtx temp2
= gen_reg_rtx (mode
);
672 insn
= emit_move_insn (temp2
, temp
);
677 /* Let optimizers know that TEMP's value never changes
678 and that X can be substituted for it. Don't get confused
679 if INSN set something else (such as a SUBREG of TEMP). */
681 && (set
= single_set (insn
)) != 0
682 && SET_DEST (set
) == temp
683 && ! rtx_equal_p (x
, SET_SRC (set
)))
684 set_unique_reg_note (insn
, REG_EQUAL
, x
);
686 /* Let optimizers know that TEMP is a pointer, and if so, the
687 known alignment of that pointer. */
690 if (GET_CODE (x
) == SYMBOL_REF
)
692 align
= BITS_PER_UNIT
;
693 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
694 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
696 else if (GET_CODE (x
) == LABEL_REF
)
697 align
= BITS_PER_UNIT
;
698 else if (GET_CODE (x
) == CONST
699 && GET_CODE (XEXP (x
, 0)) == PLUS
700 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
701 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
703 rtx s
= XEXP (XEXP (x
, 0), 0);
704 rtx c
= XEXP (XEXP (x
, 0), 1);
708 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
709 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
711 ca
= exact_log2 (INTVAL (c
) & -INTVAL (c
)) * BITS_PER_UNIT
;
713 align
= MIN (sa
, ca
);
717 mark_reg_pointer (temp
, align
);
723 /* If X is a memory ref, copy its contents to a new temp reg and return
724 that reg. Otherwise, return X. */
727 force_not_mem (rtx x
)
731 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
734 temp
= gen_reg_rtx (GET_MODE (x
));
737 REG_POINTER (temp
) = 1;
739 emit_move_insn (temp
, x
);
743 /* Copy X to TARGET (if it's nonzero and a reg)
744 or to a new temp reg and return that reg.
745 MODE is the mode to use for X in case it is a constant. */
748 copy_to_suggested_reg (rtx x
, rtx target
, enum machine_mode mode
)
752 if (target
&& REG_P (target
))
755 temp
= gen_reg_rtx (mode
);
757 emit_move_insn (temp
, x
);
761 /* Return the mode to use to store a scalar of TYPE and MODE.
762 PUNSIGNEDP points to the signedness of the type and may be adjusted
763 to show what signedness to use on extension operations.
765 FOR_CALL is nonzero if this call is promoting args for a call. */
767 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
768 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
772 promote_mode (tree type
, enum machine_mode mode
, int *punsignedp
,
773 int for_call ATTRIBUTE_UNUSED
)
775 enum tree_code code
= TREE_CODE (type
);
776 int unsignedp
= *punsignedp
;
785 #ifdef PROMOTE_FUNCTION_MODE
786 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
787 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
792 PROMOTE_FUNCTION_MODE (mode
, unsignedp
, type
);
797 PROMOTE_MODE (mode
, unsignedp
, type
);
803 #ifdef POINTERS_EXTEND_UNSIGNED
807 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
815 *punsignedp
= unsignedp
;
819 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
820 This pops when ADJUST is positive. ADJUST need not be constant. */
823 adjust_stack (rtx adjust
)
827 if (adjust
== const0_rtx
)
830 /* We expect all variable sized adjustments to be multiple of
831 PREFERRED_STACK_BOUNDARY. */
832 if (GET_CODE (adjust
) == CONST_INT
)
833 stack_pointer_delta
-= INTVAL (adjust
);
835 temp
= expand_binop (Pmode
,
836 #ifdef STACK_GROWS_DOWNWARD
841 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
844 if (temp
!= stack_pointer_rtx
)
845 emit_move_insn (stack_pointer_rtx
, temp
);
848 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
849 This pushes when ADJUST is positive. ADJUST need not be constant. */
852 anti_adjust_stack (rtx adjust
)
856 if (adjust
== const0_rtx
)
859 /* We expect all variable sized adjustments to be multiple of
860 PREFERRED_STACK_BOUNDARY. */
861 if (GET_CODE (adjust
) == CONST_INT
)
862 stack_pointer_delta
+= INTVAL (adjust
);
864 temp
= expand_binop (Pmode
,
865 #ifdef STACK_GROWS_DOWNWARD
870 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
873 if (temp
!= stack_pointer_rtx
)
874 emit_move_insn (stack_pointer_rtx
, temp
);
877 /* Round the size of a block to be pushed up to the boundary required
878 by this machine. SIZE is the desired size, which need not be constant. */
881 round_push (rtx size
)
883 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
888 if (GET_CODE (size
) == CONST_INT
)
890 HOST_WIDE_INT
new = (INTVAL (size
) + align
- 1) / align
* align
;
892 if (INTVAL (size
) != new)
893 size
= GEN_INT (new);
897 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
898 but we know it can't. So add ourselves and then do
900 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
901 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
902 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
904 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
910 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
911 to a previously-created save area. If no save area has been allocated,
912 this function will allocate one. If a save area is specified, it
913 must be of the proper mode.
915 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
916 are emitted at the current position. */
919 emit_stack_save (enum save_level save_level
, rtx
*psave
, rtx after
)
922 /* The default is that we use a move insn and save in a Pmode object. */
923 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
924 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
926 /* See if this machine has anything special to do for this kind of save. */
929 #ifdef HAVE_save_stack_block
931 if (HAVE_save_stack_block
)
932 fcn
= gen_save_stack_block
;
935 #ifdef HAVE_save_stack_function
937 if (HAVE_save_stack_function
)
938 fcn
= gen_save_stack_function
;
941 #ifdef HAVE_save_stack_nonlocal
943 if (HAVE_save_stack_nonlocal
)
944 fcn
= gen_save_stack_nonlocal
;
951 /* If there is no save area and we have to allocate one, do so. Otherwise
952 verify the save area is the proper mode. */
956 if (mode
!= VOIDmode
)
958 if (save_level
== SAVE_NONLOCAL
)
959 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
961 *psave
= sa
= gen_reg_rtx (mode
);
970 /* We must validize inside the sequence, to ensure that any instructions
971 created by the validize call also get moved to the right place. */
973 sa
= validize_mem (sa
);
974 emit_insn (fcn (sa
, stack_pointer_rtx
));
977 emit_insn_after (seq
, after
);
982 sa
= validize_mem (sa
);
983 emit_insn (fcn (sa
, stack_pointer_rtx
));
987 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
988 area made by emit_stack_save. If it is zero, we have nothing to do.
990 Put any emitted insns after insn AFTER, if nonzero, otherwise at
994 emit_stack_restore (enum save_level save_level
, rtx sa
, rtx after
)
996 /* The default is that we use a move insn. */
997 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
999 /* See if this machine has anything special to do for this kind of save. */
1002 #ifdef HAVE_restore_stack_block
1004 if (HAVE_restore_stack_block
)
1005 fcn
= gen_restore_stack_block
;
1008 #ifdef HAVE_restore_stack_function
1010 if (HAVE_restore_stack_function
)
1011 fcn
= gen_restore_stack_function
;
1014 #ifdef HAVE_restore_stack_nonlocal
1016 if (HAVE_restore_stack_nonlocal
)
1017 fcn
= gen_restore_stack_nonlocal
;
1026 sa
= validize_mem (sa
);
1027 /* These clobbers prevent the scheduler from moving
1028 references to variable arrays below the code
1029 that deletes (pops) the arrays. */
1030 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1031 gen_rtx_MEM (BLKmode
,
1032 gen_rtx_SCRATCH (VOIDmode
))));
1033 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1034 gen_rtx_MEM (BLKmode
, stack_pointer_rtx
)));
1042 emit_insn (fcn (stack_pointer_rtx
, sa
));
1045 emit_insn_after (seq
, after
);
1048 emit_insn (fcn (stack_pointer_rtx
, sa
));
1051 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1052 function. This function should be called whenever we allocate or
1053 deallocate dynamic stack space. */
1056 update_nonlocal_goto_save_area (void)
1061 /* The nonlocal_goto_save_area object is an array of N pointers. The
1062 first one is used for the frame pointer save; the rest are sized by
1063 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1064 of the stack save area slots. */
1065 t_save
= build4 (ARRAY_REF
, ptr_type_node
, cfun
->nonlocal_goto_save_area
,
1066 integer_one_node
, NULL_TREE
, NULL_TREE
);
1067 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1069 emit_stack_save (SAVE_NONLOCAL
, &r_save
, NULL_RTX
);
1072 #ifdef SETJMP_VIA_SAVE_AREA
1073 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1074 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1075 platforms, the dynamic stack space used can corrupt the original
1076 frame, thus causing a crash if a longjmp unwinds to it. */
1079 optimize_save_area_alloca (void)
1083 for (insn
= get_insns (); insn
; insn
= NEXT_INSN(insn
))
1087 if (!NONJUMP_INSN_P (insn
))
1090 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1092 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1095 if (!current_function_calls_setjmp
)
1097 rtx pat
= PATTERN (insn
);
1099 /* If we do not see the note in a pattern matching
1100 these precise characteristics, we did something
1101 entirely wrong in allocate_dynamic_stack_space.
1103 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1104 was defined on a machine where stacks grow towards higher
1107 Right now only supported port with stack that grow upward
1108 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1109 if (GET_CODE (pat
) != SET
1110 || SET_DEST (pat
) != stack_pointer_rtx
1111 || GET_CODE (SET_SRC (pat
)) != MINUS
1112 || XEXP (SET_SRC (pat
), 0) != stack_pointer_rtx
)
1115 /* This will now be transformed into a (set REG REG)
1116 so we can just blow away all the other notes. */
1117 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1118 REG_NOTES (insn
) = NULL_RTX
;
1122 /* setjmp was called, we must remove the REG_SAVE_AREA
1123 note so that later passes do not get confused by its
1125 if (note
== REG_NOTES (insn
))
1127 REG_NOTES (insn
) = XEXP (note
, 1);
1133 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1134 if (XEXP (srch
, 1) == note
)
1137 if (srch
== NULL_RTX
)
1140 XEXP (srch
, 1) = XEXP (note
, 1);
1143 /* Once we've seen the note of interest, we need not look at
1144 the rest of them. */
1149 #endif /* SETJMP_VIA_SAVE_AREA */
1151 /* Return an rtx representing the address of an area of memory dynamically
1152 pushed on the stack. This region of memory is always aligned to
1153 a multiple of BIGGEST_ALIGNMENT.
1155 Any required stack pointer alignment is preserved.
1157 SIZE is an rtx representing the size of the area.
1158 TARGET is a place in which the address can be placed.
1160 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1163 allocate_dynamic_stack_space (rtx size
, rtx target
, int known_align
)
1165 #ifdef SETJMP_VIA_SAVE_AREA
1166 rtx setjmpless_size
= NULL_RTX
;
1169 /* If we're asking for zero bytes, it doesn't matter what we point
1170 to since we can't dereference it. But return a reasonable
1172 if (size
== const0_rtx
)
1173 return virtual_stack_dynamic_rtx
;
1175 /* Otherwise, show we're calling alloca or equivalent. */
1176 current_function_calls_alloca
= 1;
1178 /* Ensure the size is in the proper mode. */
1179 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1180 size
= convert_to_mode (Pmode
, size
, 1);
1182 /* We can't attempt to minimize alignment necessary, because we don't
1183 know the final value of preferred_stack_boundary yet while executing
1185 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1187 /* We will need to ensure that the address we return is aligned to
1188 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1189 always know its final value at this point in the compilation (it
1190 might depend on the size of the outgoing parameter lists, for
1191 example), so we must align the value to be returned in that case.
1192 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1193 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1194 We must also do an alignment operation on the returned value if
1195 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1197 If we have to align, we must leave space in SIZE for the hole
1198 that might result from the alignment operation. */
1200 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1201 #define MUST_ALIGN 1
1203 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1208 = force_operand (plus_constant (size
,
1209 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1212 #ifdef SETJMP_VIA_SAVE_AREA
1213 /* If setjmp restores regs from a save area in the stack frame,
1214 avoid clobbering the reg save area. Note that the offset of
1215 virtual_incoming_args_rtx includes the preallocated stack args space.
1216 It would be no problem to clobber that, but it's on the wrong side
1217 of the old save area. */
1220 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1221 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1223 if (!current_function_calls_setjmp
)
1225 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1227 /* See optimize_save_area_alloca to understand what is being
1230 /* ??? Code below assumes that the save area needs maximal
1231 alignment. This constraint may be too strong. */
1232 if (PREFERRED_STACK_BOUNDARY
!= BIGGEST_ALIGNMENT
)
1235 if (GET_CODE (size
) == CONST_INT
)
1237 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1239 if (INTVAL (size
) != new)
1240 setjmpless_size
= GEN_INT (new);
1242 setjmpless_size
= size
;
1246 /* Since we know overflow is not possible, we avoid using
1247 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1248 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1249 GEN_INT (align
), NULL_RTX
, 1);
1250 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1251 GEN_INT (align
), NULL_RTX
, 1);
1253 /* Our optimization works based upon being able to perform a simple
1254 transformation of this RTL into a (set REG REG) so make sure things
1255 did in fact end up in a REG. */
1256 if (!register_operand (setjmpless_size
, Pmode
))
1257 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1260 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1261 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1263 #endif /* SETJMP_VIA_SAVE_AREA */
1265 /* Round the size to a multiple of the required stack alignment.
1266 Since the stack if presumed to be rounded before this allocation,
1267 this will maintain the required alignment.
1269 If the stack grows downward, we could save an insn by subtracting
1270 SIZE from the stack pointer and then aligning the stack pointer.
1271 The problem with this is that the stack pointer may be unaligned
1272 between the execution of the subtraction and alignment insns and
1273 some machines do not allow this. Even on those that do, some
1274 signal handlers malfunction if a signal should occur between those
1275 insns. Since this is an extremely rare event, we have no reliable
1276 way of knowing which systems have this problem. So we avoid even
1277 momentarily mis-aligning the stack. */
1279 /* If we added a variable amount to SIZE,
1280 we can no longer assume it is aligned. */
1281 #if !defined (SETJMP_VIA_SAVE_AREA)
1282 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1284 size
= round_push (size
);
1286 do_pending_stack_adjust ();
1288 /* We ought to be called always on the toplevel and stack ought to be aligned
1290 if (stack_pointer_delta
% (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
))
1293 /* If needed, check that we have the required amount of stack. Take into
1294 account what has already been checked. */
1295 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1296 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1298 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1299 if (target
== 0 || !REG_P (target
)
1300 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1301 || GET_MODE (target
) != Pmode
)
1302 target
= gen_reg_rtx (Pmode
);
1304 mark_reg_pointer (target
, known_align
);
1306 /* Perform the required allocation from the stack. Some systems do
1307 this differently than simply incrementing/decrementing from the
1308 stack pointer, such as acquiring the space by calling malloc(). */
1309 #ifdef HAVE_allocate_stack
1310 if (HAVE_allocate_stack
)
1312 enum machine_mode mode
= STACK_SIZE_MODE
;
1313 insn_operand_predicate_fn pred
;
1315 /* We don't have to check against the predicate for operand 0 since
1316 TARGET is known to be a pseudo of the proper mode, which must
1317 be valid for the operand. For operand 1, convert to the
1318 proper mode and validate. */
1319 if (mode
== VOIDmode
)
1320 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1322 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1323 if (pred
&& ! ((*pred
) (size
, mode
)))
1324 size
= copy_to_mode_reg (mode
, convert_to_mode (mode
, size
, 1));
1326 emit_insn (gen_allocate_stack (target
, size
));
1331 #ifndef STACK_GROWS_DOWNWARD
1332 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1335 /* Check stack bounds if necessary. */
1336 if (current_function_limit_stack
)
1339 rtx space_available
= gen_label_rtx ();
1340 #ifdef STACK_GROWS_DOWNWARD
1341 available
= expand_binop (Pmode
, sub_optab
,
1342 stack_pointer_rtx
, stack_limit_rtx
,
1343 NULL_RTX
, 1, OPTAB_WIDEN
);
1345 available
= expand_binop (Pmode
, sub_optab
,
1346 stack_limit_rtx
, stack_pointer_rtx
,
1347 NULL_RTX
, 1, OPTAB_WIDEN
);
1349 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1353 emit_insn (gen_trap ());
1356 error ("stack limits not supported on this target");
1358 emit_label (space_available
);
1361 anti_adjust_stack (size
);
1362 #ifdef SETJMP_VIA_SAVE_AREA
1363 if (setjmpless_size
!= NULL_RTX
)
1365 rtx note_target
= get_last_insn ();
1367 REG_NOTES (note_target
)
1368 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1369 REG_NOTES (note_target
));
1371 #endif /* SETJMP_VIA_SAVE_AREA */
1373 #ifdef STACK_GROWS_DOWNWARD
1374 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1380 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1381 but we know it can't. So add ourselves and then do
1383 target
= expand_binop (Pmode
, add_optab
, target
,
1384 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1385 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1386 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1387 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1389 target
= expand_mult (Pmode
, target
,
1390 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1394 /* Record the new stack level for nonlocal gotos. */
1395 if (cfun
->nonlocal_goto_save_area
!= 0)
1396 update_nonlocal_goto_save_area ();
1401 /* A front end may want to override GCC's stack checking by providing a
1402 run-time routine to call to check the stack, so provide a mechanism for
1403 calling that routine. */
1405 static GTY(()) rtx stack_check_libfunc
;
1408 set_stack_check_libfunc (rtx libfunc
)
1410 stack_check_libfunc
= libfunc
;
1413 /* Emit one stack probe at ADDRESS, an address within the stack. */
1416 emit_stack_probe (rtx address
)
1418 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1420 MEM_VOLATILE_P (memref
) = 1;
1422 if (STACK_CHECK_PROBE_LOAD
)
1423 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1425 emit_move_insn (memref
, const0_rtx
);
1428 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1429 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1430 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1431 subtract from the stack. If SIZE is constant, this is done
1432 with a fixed number of probes. Otherwise, we must make a loop. */
1434 #ifdef STACK_GROWS_DOWNWARD
1435 #define STACK_GROW_OP MINUS
1437 #define STACK_GROW_OP PLUS
1441 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1443 /* First ensure SIZE is Pmode. */
1444 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1445 size
= convert_to_mode (Pmode
, size
, 1);
1447 /* Next see if the front end has set up a function for us to call to
1449 if (stack_check_libfunc
!= 0)
1451 rtx addr
= memory_address (QImode
,
1452 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1454 plus_constant (size
, first
)));
1456 addr
= convert_memory_address (ptr_mode
, addr
);
1457 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1461 /* Next see if we have an insn to check the stack. Use it if so. */
1462 #ifdef HAVE_check_stack
1463 else if (HAVE_check_stack
)
1465 insn_operand_predicate_fn pred
;
1467 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1469 plus_constant (size
, first
)),
1472 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1473 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1474 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1476 emit_insn (gen_check_stack (last_addr
));
1480 /* If we have to generate explicit probes, see if we have a constant
1481 small number of them to generate. If so, that's the easy case. */
1482 else if (GET_CODE (size
) == CONST_INT
1483 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1485 HOST_WIDE_INT offset
;
1487 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1488 for values of N from 1 until it exceeds LAST. If only one
1489 probe is needed, this will not generate any code. Then probe
1491 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1492 offset
< INTVAL (size
);
1493 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1494 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1498 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1500 plus_constant (size
, first
)));
1503 /* In the variable case, do the same as above, but in a loop. We emit loop
1504 notes so that loop optimization can be done. */
1508 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1510 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1513 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1515 plus_constant (size
, first
)),
1517 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1518 rtx loop_lab
= gen_label_rtx ();
1519 rtx test_lab
= gen_label_rtx ();
1520 rtx end_lab
= gen_label_rtx ();
1523 if (!REG_P (test_addr
)
1524 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1525 test_addr
= force_reg (Pmode
, test_addr
);
1527 emit_jump (test_lab
);
1529 emit_label (loop_lab
);
1530 emit_stack_probe (test_addr
);
1532 #ifdef STACK_GROWS_DOWNWARD
1533 #define CMP_OPCODE GTU
1534 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1537 #define CMP_OPCODE LTU
1538 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1542 if (temp
!= test_addr
)
1545 emit_label (test_lab
);
1546 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1547 NULL_RTX
, Pmode
, 1, loop_lab
);
1548 emit_jump (end_lab
);
1549 emit_label (end_lab
);
1551 emit_stack_probe (last_addr
);
1555 /* Return an rtx representing the register or memory location
1556 in which a scalar value of data type VALTYPE
1557 was returned by a function call to function FUNC.
1558 FUNC is a FUNCTION_DECL node if the precise function is known,
1560 OUTGOING is 1 if on a machine with register windows this function
1561 should return the register in which the function will put its result
1565 hard_function_value (tree valtype
, tree func ATTRIBUTE_UNUSED
,
1566 int outgoing ATTRIBUTE_UNUSED
)
1570 #ifdef FUNCTION_OUTGOING_VALUE
1572 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1575 val
= FUNCTION_VALUE (valtype
, func
);
1578 && GET_MODE (val
) == BLKmode
)
1580 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1581 enum machine_mode tmpmode
;
1583 /* int_size_in_bytes can return -1. We don't need a check here
1584 since the value of bytes will be large enough that no mode
1585 will match and we will abort later in this function. */
1587 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1588 tmpmode
!= VOIDmode
;
1589 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1591 /* Have we found a large enough mode? */
1592 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1596 /* No suitable mode found. */
1597 if (tmpmode
== VOIDmode
)
1600 PUT_MODE (val
, tmpmode
);
1605 /* Return an rtx representing the register or memory location
1606 in which a scalar value of mode MODE was returned by a library call. */
1609 hard_libcall_value (enum machine_mode mode
)
1611 return LIBCALL_VALUE (mode
);
1614 /* Look up the tree code for a given rtx code
1615 to provide the arithmetic operation for REAL_ARITHMETIC.
1616 The function returns an int because the caller may not know
1617 what `enum tree_code' means. */
1620 rtx_to_tree_code (enum rtx_code code
)
1622 enum tree_code tcode
;
1645 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1648 return ((int) tcode
);
1651 #include "gt-explow.h"