* config/mips/mips.h (ISA_HAS_INT_CONDMOVE): Delete.
[official-gcc.git] / gcc / dominance.c
blobd46d8f56ecdd4cff044f6ee75833541b241fdf74
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "basic-block.h"
43 #include "errors.h"
44 #include "et-forest.h"
46 /* Whether the dominators and the postdominators are available. */
47 enum dom_state dom_computed[2];
49 /* We name our nodes with integers, beginning with 1. Zero is reserved for
50 'undefined' or 'end of list'. The name of each node is given by the dfs
51 number of the corresponding basic block. Please note, that we include the
52 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
53 support multiple entry points. As it has no real basic block index we use
54 'last_basic_block' for that. Its dfs number is of course 1. */
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
64 struct dom_info
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
98 /* If x is the DFS-index of a node which corresponds with a basic block,
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
104 /* This is the next free DFS number when creating the DFS tree. */
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119 static void compress (struct dom_info *, TBB);
120 static TBB eval (struct dom_info *, TBB);
121 static void link_roots (struct dom_info *, TBB, TBB);
122 static void calc_idoms (struct dom_info *, enum cdi_direction);
123 void debug_dominance_info (enum cdi_direction);
125 /* Keeps track of the*/
126 static unsigned n_bbs_in_dom_tree[2];
128 /* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130 #define init_ar(var, type, num, content) \
131 do \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
135 (var) = xcalloc ((num), sizeof (type)); \
136 else \
138 (var) = xmalloc ((num) * sizeof (type)); \
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
143 while (0)
145 /* Allocate all needed memory in a pessimistic fashion (so we round up).
146 This initializes the contents of DI, which already must be allocated. */
148 static void
149 init_dom_info (struct dom_info *di, enum cdi_direction dir)
151 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
152 EXIT_BLOCK. */
153 unsigned int num = n_basic_blocks + 1 + 1;
154 init_ar (di->dfs_parent, TBB, num, 0);
155 init_ar (di->path_min, TBB, num, i);
156 init_ar (di->key, TBB, num, i);
157 init_ar (di->dom, TBB, num, 0);
159 init_ar (di->bucket, TBB, num, 0);
160 init_ar (di->next_bucket, TBB, num, 0);
162 init_ar (di->set_chain, TBB, num, 0);
163 init_ar (di->set_size, unsigned int, num, 1);
164 init_ar (di->set_child, TBB, num, 0);
166 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
167 init_ar (di->dfs_to_bb, basic_block, num, 0);
169 di->dfsnum = 1;
170 di->nodes = 0;
172 di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
175 #undef init_ar
177 /* Free all allocated memory in DI, but not DI itself. */
179 static void
180 free_dom_info (struct dom_info *di)
182 free (di->dfs_parent);
183 free (di->path_min);
184 free (di->key);
185 free (di->dom);
186 free (di->bucket);
187 free (di->next_bucket);
188 free (di->set_chain);
189 free (di->set_size);
190 free (di->set_child);
191 free (di->dfs_order);
192 free (di->dfs_to_bb);
193 BITMAP_XFREE (di->fake_exit_edge);
196 /* The nonrecursive variant of creating a DFS tree. DI is our working
197 structure, BB the starting basic block for this tree and REVERSE
198 is true, if predecessors should be visited instead of successors of a
199 node. After this is done all nodes reachable from BB were visited, have
200 assigned their dfs number and are linked together to form a tree. */
202 static void
203 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
204 enum cdi_direction reverse)
206 /* We call this _only_ if bb is not already visited. */
207 edge e;
208 TBB child_i, my_i = 0;
209 edge *stack;
210 int sp;
211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212 problem). */
213 basic_block en_block;
214 /* Ending block. */
215 basic_block ex_block;
217 stack = xmalloc ((n_basic_blocks + 3) * sizeof (edge));
218 sp = 0;
220 /* Initialize our border blocks, and the first edge. */
221 if (reverse)
223 e = bb->pred;
224 en_block = EXIT_BLOCK_PTR;
225 ex_block = ENTRY_BLOCK_PTR;
227 else
229 e = bb->succ;
230 en_block = ENTRY_BLOCK_PTR;
231 ex_block = EXIT_BLOCK_PTR;
234 /* When the stack is empty we break out of this loop. */
235 while (1)
237 basic_block bn;
239 /* This loop traverses edges e in depth first manner, and fills the
240 stack. */
241 while (e)
243 edge e_next;
245 /* Deduce from E the current and the next block (BB and BN), and the
246 next edge. */
247 if (reverse)
249 bn = e->src;
251 /* If the next node BN is either already visited or a border
252 block the current edge is useless, and simply overwritten
253 with the next edge out of the current node. */
254 if (bn == ex_block || di->dfs_order[bn->index])
256 e = e->pred_next;
257 continue;
259 bb = e->dest;
260 e_next = bn->pred;
262 else
264 bn = e->dest;
265 if (bn == ex_block || di->dfs_order[bn->index])
267 e = e->succ_next;
268 continue;
270 bb = e->src;
271 e_next = bn->succ;
274 if (bn == en_block)
275 abort ();
277 /* Fill the DFS tree info calculatable _before_ recursing. */
278 if (bb != en_block)
279 my_i = di->dfs_order[bb->index];
280 else
281 my_i = di->dfs_order[last_basic_block];
282 child_i = di->dfs_order[bn->index] = di->dfsnum++;
283 di->dfs_to_bb[child_i] = bn;
284 di->dfs_parent[child_i] = my_i;
286 /* Save the current point in the CFG on the stack, and recurse. */
287 stack[sp++] = e;
288 e = e_next;
291 if (!sp)
292 break;
293 e = stack[--sp];
295 /* OK. The edge-list was exhausted, meaning normally we would
296 end the recursion. After returning from the recursive call,
297 there were (may be) other statements which were run after a
298 child node was completely considered by DFS. Here is the
299 point to do it in the non-recursive variant.
300 E.g. The block just completed is in e->dest for forward DFS,
301 the block not yet completed (the parent of the one above)
302 in e->src. This could be used e.g. for computing the number of
303 descendants or the tree depth. */
304 if (reverse)
305 e = e->pred_next;
306 else
307 e = e->succ_next;
309 free (stack);
312 /* The main entry for calculating the DFS tree or forest. DI is our working
313 structure and REVERSE is true, if we are interested in the reverse flow
314 graph. In that case the result is not necessarily a tree but a forest,
315 because there may be nodes from which the EXIT_BLOCK is unreachable. */
317 static void
318 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
320 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
321 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
322 di->dfs_order[last_basic_block] = di->dfsnum;
323 di->dfs_to_bb[di->dfsnum] = begin;
324 di->dfsnum++;
326 calc_dfs_tree_nonrec (di, begin, reverse);
328 if (reverse)
330 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
331 They are reverse-unreachable. In the dom-case we disallow such
332 nodes, but in post-dom we have to deal with them.
334 There are two situations in which this occurs. First, noreturn
335 functions. Second, infinite loops. In the first case we need to
336 pretend that there is an edge to the exit block. In the second
337 case, we wind up with a forest. We need to process all noreturn
338 blocks before we know if we've got any infinite loops. */
340 basic_block b;
341 bool saw_unconnected = false;
343 FOR_EACH_BB_REVERSE (b)
345 if (b->succ)
347 if (di->dfs_order[b->index] == 0)
348 saw_unconnected = true;
349 continue;
351 bitmap_set_bit (di->fake_exit_edge, b->index);
352 di->dfs_order[b->index] = di->dfsnum;
353 di->dfs_to_bb[di->dfsnum] = b;
354 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
355 di->dfsnum++;
356 calc_dfs_tree_nonrec (di, b, reverse);
359 if (saw_unconnected)
361 FOR_EACH_BB_REVERSE (b)
363 if (di->dfs_order[b->index])
364 continue;
365 bitmap_set_bit (di->fake_exit_edge, b->index);
366 di->dfs_order[b->index] = di->dfsnum;
367 di->dfs_to_bb[di->dfsnum] = b;
368 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
369 di->dfsnum++;
370 calc_dfs_tree_nonrec (di, b, reverse);
375 di->nodes = di->dfsnum - 1;
377 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
378 if (di->nodes != (unsigned int) n_basic_blocks + 1)
379 abort ();
382 /* Compress the path from V to the root of its set and update path_min at the
383 same time. After compress(di, V) set_chain[V] is the root of the set V is
384 in and path_min[V] is the node with the smallest key[] value on the path
385 from V to that root. */
387 static void
388 compress (struct dom_info *di, TBB v)
390 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
391 greater than 5 even for huge graphs (I've not seen call depth > 4).
392 Also performance wise compress() ranges _far_ behind eval(). */
393 TBB parent = di->set_chain[v];
394 if (di->set_chain[parent])
396 compress (di, parent);
397 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
398 di->path_min[v] = di->path_min[parent];
399 di->set_chain[v] = di->set_chain[parent];
403 /* Compress the path from V to the set root of V if needed (when the root has
404 changed since the last call). Returns the node with the smallest key[]
405 value on the path from V to the root. */
407 static inline TBB
408 eval (struct dom_info *di, TBB v)
410 /* The representant of the set V is in, also called root (as the set
411 representation is a tree). */
412 TBB rep = di->set_chain[v];
414 /* V itself is the root. */
415 if (!rep)
416 return di->path_min[v];
418 /* Compress only if necessary. */
419 if (di->set_chain[rep])
421 compress (di, v);
422 rep = di->set_chain[v];
425 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
426 return di->path_min[v];
427 else
428 return di->path_min[rep];
431 /* This essentially merges the two sets of V and W, giving a single set with
432 the new root V. The internal representation of these disjoint sets is a
433 balanced tree. Currently link(V,W) is only used with V being the parent
434 of W. */
436 static void
437 link_roots (struct dom_info *di, TBB v, TBB w)
439 TBB s = w;
441 /* Rebalance the tree. */
442 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
444 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
445 >= 2 * di->set_size[di->set_child[s]])
447 di->set_chain[di->set_child[s]] = s;
448 di->set_child[s] = di->set_child[di->set_child[s]];
450 else
452 di->set_size[di->set_child[s]] = di->set_size[s];
453 s = di->set_chain[s] = di->set_child[s];
457 di->path_min[s] = di->path_min[w];
458 di->set_size[v] += di->set_size[w];
459 if (di->set_size[v] < 2 * di->set_size[w])
461 TBB tmp = s;
462 s = di->set_child[v];
463 di->set_child[v] = tmp;
466 /* Merge all subtrees. */
467 while (s)
469 di->set_chain[s] = v;
470 s = di->set_child[s];
474 /* This calculates the immediate dominators (or post-dominators if REVERSE is
475 true). DI is our working structure and should hold the DFS forest.
476 On return the immediate dominator to node V is in di->dom[V]. */
478 static void
479 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
481 TBB v, w, k, par;
482 basic_block en_block;
483 if (reverse)
484 en_block = EXIT_BLOCK_PTR;
485 else
486 en_block = ENTRY_BLOCK_PTR;
488 /* Go backwards in DFS order, to first look at the leafs. */
489 v = di->nodes;
490 while (v > 1)
492 basic_block bb = di->dfs_to_bb[v];
493 edge e, e_next;
495 par = di->dfs_parent[v];
496 k = v;
497 if (reverse)
499 e = bb->succ;
501 /* If this block has a fake edge to exit, process that first. */
502 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
504 e_next = e;
505 goto do_fake_exit_edge;
508 else
509 e = bb->pred;
511 /* Search all direct predecessors for the smallest node with a path
512 to them. That way we have the smallest node with also a path to
513 us only over nodes behind us. In effect we search for our
514 semidominator. */
515 for (; e ; e = e_next)
517 TBB k1;
518 basic_block b;
520 if (reverse)
522 b = e->dest;
523 e_next = e->succ_next;
525 else
527 b = e->src;
528 e_next = e->pred_next;
530 if (b == en_block)
532 do_fake_exit_edge:
533 k1 = di->dfs_order[last_basic_block];
535 else
536 k1 = di->dfs_order[b->index];
538 /* Call eval() only if really needed. If k1 is above V in DFS tree,
539 then we know, that eval(k1) == k1 and key[k1] == k1. */
540 if (k1 > v)
541 k1 = di->key[eval (di, k1)];
542 if (k1 < k)
543 k = k1;
546 di->key[v] = k;
547 link_roots (di, par, v);
548 di->next_bucket[v] = di->bucket[k];
549 di->bucket[k] = v;
551 /* Transform semidominators into dominators. */
552 for (w = di->bucket[par]; w; w = di->next_bucket[w])
554 k = eval (di, w);
555 if (di->key[k] < di->key[w])
556 di->dom[w] = k;
557 else
558 di->dom[w] = par;
560 /* We don't need to cleanup next_bucket[]. */
561 di->bucket[par] = 0;
562 v--;
565 /* Explicitly define the dominators. */
566 di->dom[1] = 0;
567 for (v = 2; v <= di->nodes; v++)
568 if (di->dom[v] != di->key[v])
569 di->dom[v] = di->dom[di->dom[v]];
572 /* Assign dfs numbers starting from NUM to NODE and its sons. */
574 static void
575 assign_dfs_numbers (struct et_node *node, int *num)
577 struct et_node *son;
579 node->dfs_num_in = (*num)++;
581 if (node->son)
583 assign_dfs_numbers (node->son, num);
584 for (son = node->son->right; son != node->son; son = son->right)
585 assign_dfs_numbers (son, num);
588 node->dfs_num_out = (*num)++;
591 /* Compute the data necessary for fast resolving of dominator queries in a
592 static dominator tree. */
594 static void
595 compute_dom_fast_query (enum cdi_direction dir)
597 int num = 0;
598 basic_block bb;
600 if (dom_computed[dir] < DOM_NO_FAST_QUERY)
601 abort ();
603 if (dom_computed[dir] == DOM_OK)
604 return;
606 FOR_ALL_BB (bb)
608 if (!bb->dom[dir]->father)
609 assign_dfs_numbers (bb->dom[dir], &num);
612 dom_computed[dir] = DOM_OK;
615 /* The main entry point into this module. DIR is set depending on whether
616 we want to compute dominators or postdominators. */
618 void
619 calculate_dominance_info (enum cdi_direction dir)
621 struct dom_info di;
622 basic_block b;
624 if (dom_computed[dir] == DOM_OK)
625 return;
627 if (dom_computed[dir] != DOM_NO_FAST_QUERY)
629 if (dom_computed[dir] != DOM_NONE)
630 free_dominance_info (dir);
632 if (n_bbs_in_dom_tree[dir])
633 abort ();
635 FOR_ALL_BB (b)
637 b->dom[dir] = et_new_tree (b);
639 n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
641 init_dom_info (&di, dir);
642 calc_dfs_tree (&di, dir);
643 calc_idoms (&di, dir);
645 FOR_EACH_BB (b)
647 TBB d = di.dom[di.dfs_order[b->index]];
649 if (di.dfs_to_bb[d])
650 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
653 free_dom_info (&di);
654 dom_computed[dir] = DOM_NO_FAST_QUERY;
657 compute_dom_fast_query (dir);
660 /* Free dominance information for direction DIR. */
661 void
662 free_dominance_info (enum cdi_direction dir)
664 basic_block bb;
666 if (!dom_computed[dir])
667 return;
669 FOR_ALL_BB (bb)
671 delete_from_dominance_info (dir, bb);
674 /* If there are any nodes left, something is wrong. */
675 if (n_bbs_in_dom_tree[dir])
676 abort ();
678 dom_computed[dir] = DOM_NONE;
681 /* Return the immediate dominator of basic block BB. */
682 basic_block
683 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
685 struct et_node *node = bb->dom[dir];
687 if (!dom_computed[dir])
688 abort ();
690 if (!node->father)
691 return NULL;
693 return node->father->data;
696 /* Set the immediate dominator of the block possibly removing
697 existing edge. NULL can be used to remove any edge. */
698 inline void
699 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
700 basic_block dominated_by)
702 struct et_node *node = bb->dom[dir];
704 if (!dom_computed[dir])
705 abort ();
707 if (node->father)
709 if (node->father->data == dominated_by)
710 return;
711 et_split (node);
714 if (dominated_by)
715 et_set_father (node, dominated_by->dom[dir]);
717 if (dom_computed[dir] == DOM_OK)
718 dom_computed[dir] = DOM_NO_FAST_QUERY;
721 /* Store all basic blocks immediately dominated by BB into BBS and return
722 their number. */
724 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
726 int n;
727 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
729 if (!dom_computed[dir])
730 abort ();
732 if (!son)
734 *bbs = NULL;
735 return 0;
738 for (ason = son->right, n = 1; ason != son; ason = ason->right)
739 n++;
741 *bbs = xmalloc (n * sizeof (basic_block));
742 (*bbs)[0] = son->data;
743 for (ason = son->right, n = 1; ason != son; ason = ason->right)
744 (*bbs)[n++] = ason->data;
746 return n;
749 /* Redirect all edges pointing to BB to TO. */
750 void
751 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
752 basic_block to)
754 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
756 if (!dom_computed[dir])
757 abort ();
759 if (!bb_node->son)
760 return;
762 while (bb_node->son)
764 son = bb_node->son;
766 et_split (son);
767 et_set_father (son, to_node);
770 if (dom_computed[dir] == DOM_OK)
771 dom_computed[dir] = DOM_NO_FAST_QUERY;
774 /* Find first basic block in the tree dominating both BB1 and BB2. */
775 basic_block
776 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
778 if (!dom_computed[dir])
779 abort ();
781 if (!bb1)
782 return bb2;
783 if (!bb2)
784 return bb1;
786 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
789 /* Return TRUE in case BB1 is dominated by BB2. */
790 bool
791 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
793 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
795 if (!dom_computed[dir])
796 abort ();
798 if (dom_computed[dir] == DOM_OK)
799 return (n1->dfs_num_in >= n2->dfs_num_in
800 && n1->dfs_num_out <= n2->dfs_num_out);
802 return et_below (n1, n2);
805 /* Verify invariants of dominator structure. */
806 void
807 verify_dominators (enum cdi_direction dir)
809 int err = 0;
810 basic_block bb;
812 if (!dom_computed[dir])
813 abort ();
815 FOR_EACH_BB (bb)
817 basic_block dom_bb;
819 dom_bb = recount_dominator (dir, bb);
820 if (dom_bb != get_immediate_dominator (dir, bb))
822 error ("dominator of %d should be %d, not %d",
823 bb->index, dom_bb->index, get_immediate_dominator(dir, bb)->index);
824 err = 1;
828 if (dir == CDI_DOMINATORS
829 && dom_computed[dir] >= DOM_NO_FAST_QUERY)
831 FOR_EACH_BB (bb)
833 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
835 error ("ENTRY does not dominate bb %d", bb->index);
836 err = 1;
841 if (err)
842 abort ();
845 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
846 assuming that dominators of other blocks are correct. We also use it to
847 recompute the dominators in a restricted area, by iterating it until it
848 reaches a fixed point. */
850 basic_block
851 recount_dominator (enum cdi_direction dir, basic_block bb)
853 basic_block dom_bb = NULL;
854 edge e;
856 if (!dom_computed[dir])
857 abort ();
859 if (dir == CDI_DOMINATORS)
861 for (e = bb->pred; e; e = e->pred_next)
863 /* Ignore the predecessors that either are not reachable from
864 the entry block, or whose dominator was not determined yet. */
865 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
866 continue;
868 if (!dominated_by_p (dir, e->src, bb))
869 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
872 else
874 for (e = bb->succ; e; e = e->succ_next)
876 if (!dominated_by_p (dir, e->dest, bb))
877 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
881 return dom_bb;
884 /* Iteratively recount dominators of BBS. The change is supposed to be local
885 and not to grow further. */
886 void
887 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
889 int i, changed = 1;
890 basic_block old_dom, new_dom;
892 if (!dom_computed[dir])
893 abort ();
895 for (i = 0; i < n; i++)
896 set_immediate_dominator (dir, bbs[i], NULL);
898 while (changed)
900 changed = 0;
901 for (i = 0; i < n; i++)
903 old_dom = get_immediate_dominator (dir, bbs[i]);
904 new_dom = recount_dominator (dir, bbs[i]);
905 if (old_dom != new_dom)
907 changed = 1;
908 set_immediate_dominator (dir, bbs[i], new_dom);
913 for (i = 0; i < n; i++)
914 if (!get_immediate_dominator (dir, bbs[i]))
915 abort ();
918 void
919 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
921 if (!dom_computed[dir])
922 abort ();
924 if (bb->dom[dir])
925 abort ();
927 n_bbs_in_dom_tree[dir]++;
929 bb->dom[dir] = et_new_tree (bb);
931 if (dom_computed[dir] == DOM_OK)
932 dom_computed[dir] = DOM_NO_FAST_QUERY;
935 void
936 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
938 if (!dom_computed[dir])
939 abort ();
941 et_free_tree (bb->dom[dir]);
942 bb->dom[dir] = NULL;
943 n_bbs_in_dom_tree[dir]--;
945 if (dom_computed[dir] == DOM_OK)
946 dom_computed[dir] = DOM_NO_FAST_QUERY;
949 /* Returns the first son of BB in the dominator or postdominator tree
950 as determined by DIR. */
952 basic_block
953 first_dom_son (enum cdi_direction dir, basic_block bb)
955 struct et_node *son = bb->dom[dir]->son;
957 return son ? son->data : NULL;
960 /* Returns the next dominance son after BB in the dominator or postdominator
961 tree as determined by DIR, or NULL if it was the last one. */
963 basic_block
964 next_dom_son (enum cdi_direction dir, basic_block bb)
966 struct et_node *next = bb->dom[dir]->right;
968 return next->father->son == next ? NULL : next->data;
971 void
972 debug_dominance_info (enum cdi_direction dir)
974 basic_block bb, bb2;
975 FOR_EACH_BB (bb)
976 if ((bb2 = get_immediate_dominator (dir, bb)))
977 fprintf (stderr, "%i %i\n", bb->index, bb2->index);