PR bootstrap/66085
[official-gcc.git] / gcc / ira-emit.c
blob88375875beb9fbed14fc2e4d24b78ecc5c44aeed
1 /* Integrated Register Allocator. Changing code and generating moves.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* When we have more one region, we need to change the original RTL
22 code after coloring. Let us consider two allocnos representing the
23 same pseudo-register outside and inside a region respectively.
24 They can get different hard-registers. The reload pass works on
25 pseudo registers basis and there is no way to say the reload that
26 pseudo could be in different registers and it is even more
27 difficult to say in what places of the code the pseudo should have
28 particular hard-registers. So in this case IRA has to create and
29 use a new pseudo-register inside the region and adds code to move
30 allocno values on the region's borders. This is done by the code
31 in this file.
33 The code makes top-down traversal of the regions and generate new
34 pseudos and the move code on the region borders. In some
35 complicated cases IRA can create a new pseudo used temporarily to
36 move allocno values when a swap of values stored in two
37 hard-registers is needed (e.g. two allocnos representing different
38 pseudos outside region got respectively hard registers 1 and 2 and
39 the corresponding allocnos inside the region got respectively hard
40 registers 2 and 1). At this stage, the new pseudo is marked as
41 spilled.
43 IRA still creates the pseudo-register and the moves on the region
44 borders even when the both corresponding allocnos were assigned to
45 the same hard-register. It is done because, if the reload pass for
46 some reason spills a pseudo-register representing the original
47 pseudo outside or inside the region, the effect will be smaller
48 because another pseudo will still be in the hard-register. In most
49 cases, this is better then spilling the original pseudo in its
50 whole live-range. If reload does not change the allocation for the
51 two pseudo-registers, the trivial move will be removed by
52 post-reload optimizations.
54 IRA does not generate a new pseudo and moves for the allocno values
55 if the both allocnos representing an original pseudo inside and
56 outside region assigned to the same hard register when the register
57 pressure in the region for the corresponding pressure class is less
58 than number of available hard registers for given pressure class.
60 IRA also does some optimizations to remove redundant moves which is
61 transformed into stores by the reload pass on CFG edges
62 representing exits from the region.
64 IRA tries to reduce duplication of code generated on CFG edges
65 which are enters and exits to/from regions by moving some code to
66 the edge sources or destinations when it is possible. */
68 #include "config.h"
69 #include "system.h"
70 #include "coretypes.h"
71 #include "tm.h"
72 #include "regs.h"
73 #include "rtl.h"
74 #include "tm_p.h"
75 #include "target.h"
76 #include "flags.h"
77 #include "obstack.h"
78 #include "bitmap.h"
79 #include "hard-reg-set.h"
80 #include "predict.h"
81 #include "vec.h"
82 #include "hashtab.h"
83 #include "hash-set.h"
84 #include "machmode.h"
85 #include "input.h"
86 #include "function.h"
87 #include "dominance.h"
88 #include "cfg.h"
89 #include "cfgrtl.h"
90 #include "cfgbuild.h"
91 #include "basic-block.h"
92 #include "symtab.h"
93 #include "statistics.h"
94 #include "double-int.h"
95 #include "real.h"
96 #include "fixed-value.h"
97 #include "alias.h"
98 #include "wide-int.h"
99 #include "inchash.h"
100 #include "tree.h"
101 #include "insn-config.h"
102 #include "expmed.h"
103 #include "dojump.h"
104 #include "explow.h"
105 #include "calls.h"
106 #include "emit-rtl.h"
107 #include "varasm.h"
108 #include "stmt.h"
109 #include "expr.h"
110 #include "recog.h"
111 #include "params.h"
112 #include "reload.h"
113 #include "df.h"
114 #include "ira-int.h"
117 /* Data used to emit live range split insns and to flattening IR. */
118 ira_emit_data_t ira_allocno_emit_data;
120 /* Definitions for vectors of pointers. */
121 typedef void *void_p;
123 /* Pointers to data allocated for allocnos being created during
124 emitting. Usually there are quite few such allocnos because they
125 are created only for resolving loop in register shuffling. */
126 static vec<void_p> new_allocno_emit_data_vec;
128 /* Allocate and initiate the emit data. */
129 void
130 ira_initiate_emit_data (void)
132 ira_allocno_t a;
133 ira_allocno_iterator ai;
135 ira_allocno_emit_data
136 = (ira_emit_data_t) ira_allocate (ira_allocnos_num
137 * sizeof (struct ira_emit_data));
138 memset (ira_allocno_emit_data, 0,
139 ira_allocnos_num * sizeof (struct ira_emit_data));
140 FOR_EACH_ALLOCNO (a, ai)
141 ALLOCNO_ADD_DATA (a) = ira_allocno_emit_data + ALLOCNO_NUM (a);
142 new_allocno_emit_data_vec.create (50);
146 /* Free the emit data. */
147 void
148 ira_finish_emit_data (void)
150 void_p p;
151 ira_allocno_t a;
152 ira_allocno_iterator ai;
154 ira_free (ira_allocno_emit_data);
155 FOR_EACH_ALLOCNO (a, ai)
156 ALLOCNO_ADD_DATA (a) = NULL;
157 for (;new_allocno_emit_data_vec.length () != 0;)
159 p = new_allocno_emit_data_vec.pop ();
160 ira_free (p);
162 new_allocno_emit_data_vec.release ();
165 /* Create and return a new allocno with given REGNO and
166 LOOP_TREE_NODE. Allocate emit data for it. */
167 static ira_allocno_t
168 create_new_allocno (int regno, ira_loop_tree_node_t loop_tree_node)
170 ira_allocno_t a;
172 a = ira_create_allocno (regno, false, loop_tree_node);
173 ALLOCNO_ADD_DATA (a) = ira_allocate (sizeof (struct ira_emit_data));
174 memset (ALLOCNO_ADD_DATA (a), 0, sizeof (struct ira_emit_data));
175 new_allocno_emit_data_vec.safe_push (ALLOCNO_ADD_DATA (a));
176 return a;
181 /* See comments below. */
182 typedef struct move *move_t;
184 /* The structure represents an allocno move. Both allocnos have the
185 same original regno but different allocation. */
186 struct move
188 /* The allocnos involved in the move. */
189 ira_allocno_t from, to;
190 /* The next move in the move sequence. */
191 move_t next;
192 /* Used for finding dependencies. */
193 bool visited_p;
194 /* The size of the following array. */
195 int deps_num;
196 /* Moves on which given move depends on. Dependency can be cyclic.
197 It means we need a temporary to generates the moves. Sequence
198 A1->A2, B1->B2 where A1 and B2 are assigned to reg R1 and A2 and
199 B1 are assigned to reg R2 is an example of the cyclic
200 dependencies. */
201 move_t *deps;
202 /* First insn generated for the move. */
203 rtx_insn *insn;
206 /* Array of moves (indexed by BB index) which should be put at the
207 start/end of the corresponding basic blocks. */
208 static move_t *at_bb_start, *at_bb_end;
210 /* Max regno before renaming some pseudo-registers. For example, the
211 same pseudo-register can be renamed in a loop if its allocation is
212 different outside the loop. */
213 static int max_regno_before_changing;
215 /* Return new move of allocnos TO and FROM. */
216 static move_t
217 create_move (ira_allocno_t to, ira_allocno_t from)
219 move_t move;
221 move = (move_t) ira_allocate (sizeof (struct move));
222 move->deps = NULL;
223 move->deps_num = 0;
224 move->to = to;
225 move->from = from;
226 move->next = NULL;
227 move->insn = NULL;
228 move->visited_p = false;
229 return move;
232 /* Free memory for MOVE and its dependencies. */
233 static void
234 free_move (move_t move)
236 if (move->deps != NULL)
237 ira_free (move->deps);
238 ira_free (move);
241 /* Free memory for list of the moves given by its HEAD. */
242 static void
243 free_move_list (move_t head)
245 move_t next;
247 for (; head != NULL; head = next)
249 next = head->next;
250 free_move (head);
254 /* Return TRUE if the move list LIST1 and LIST2 are equal (two
255 moves are equal if they involve the same allocnos). */
256 static bool
257 eq_move_lists_p (move_t list1, move_t list2)
259 for (; list1 != NULL && list2 != NULL;
260 list1 = list1->next, list2 = list2->next)
261 if (list1->from != list2->from || list1->to != list2->to)
262 return false;
263 return list1 == list2;
266 /* Print move list LIST into file F. */
267 static void
268 print_move_list (FILE *f, move_t list)
270 for (; list != NULL; list = list->next)
271 fprintf (f, " a%dr%d->a%dr%d",
272 ALLOCNO_NUM (list->from), ALLOCNO_REGNO (list->from),
273 ALLOCNO_NUM (list->to), ALLOCNO_REGNO (list->to));
274 fprintf (f, "\n");
277 extern void ira_debug_move_list (move_t list);
279 /* Print move list LIST into stderr. */
280 void
281 ira_debug_move_list (move_t list)
283 print_move_list (stderr, list);
286 /* This recursive function changes pseudo-registers in *LOC if it is
287 necessary. The function returns TRUE if a change was done. */
288 static bool
289 change_regs (rtx *loc)
291 int i, regno, result = false;
292 const char *fmt;
293 enum rtx_code code;
294 rtx reg;
296 if (*loc == NULL_RTX)
297 return false;
298 code = GET_CODE (*loc);
299 if (code == REG)
301 regno = REGNO (*loc);
302 if (regno < FIRST_PSEUDO_REGISTER)
303 return false;
304 if (regno >= max_regno_before_changing)
305 /* It is a shared register which was changed already. */
306 return false;
307 if (ira_curr_regno_allocno_map[regno] == NULL)
308 return false;
309 reg = allocno_emit_reg (ira_curr_regno_allocno_map[regno]);
310 if (reg == *loc)
311 return false;
312 *loc = reg;
313 return true;
316 fmt = GET_RTX_FORMAT (code);
317 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
319 if (fmt[i] == 'e')
320 result = change_regs (&XEXP (*loc, i)) || result;
321 else if (fmt[i] == 'E')
323 int j;
325 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
326 result = change_regs (&XVECEXP (*loc, i, j)) || result;
329 return result;
332 static bool
333 change_regs_in_insn (rtx_insn **insn_ptr)
335 rtx rtx = *insn_ptr;
336 bool result = change_regs (&rtx);
337 *insn_ptr = as_a <rtx_insn *> (rtx);
338 return result;
341 /* Attach MOVE to the edge E. The move is attached to the head of the
342 list if HEAD_P is TRUE. */
343 static void
344 add_to_edge_list (edge e, move_t move, bool head_p)
346 move_t last;
348 if (head_p || e->aux == NULL)
350 move->next = (move_t) e->aux;
351 e->aux = move;
353 else
355 for (last = (move_t) e->aux; last->next != NULL; last = last->next)
357 last->next = move;
358 move->next = NULL;
362 /* Create and return new pseudo-register with the same attributes as
363 ORIGINAL_REG. */
365 ira_create_new_reg (rtx original_reg)
367 rtx new_reg;
369 new_reg = gen_reg_rtx (GET_MODE (original_reg));
370 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original_reg);
371 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original_reg);
372 REG_POINTER (new_reg) = REG_POINTER (original_reg);
373 REG_ATTRS (new_reg) = REG_ATTRS (original_reg);
374 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
375 fprintf (ira_dump_file, " Creating newreg=%i from oldreg=%i\n",
376 REGNO (new_reg), REGNO (original_reg));
377 ira_expand_reg_equiv ();
378 return new_reg;
381 /* Return TRUE if loop given by SUBNODE inside the loop given by
382 NODE. */
383 static bool
384 subloop_tree_node_p (ira_loop_tree_node_t subnode, ira_loop_tree_node_t node)
386 for (; subnode != NULL; subnode = subnode->parent)
387 if (subnode == node)
388 return true;
389 return false;
392 /* Set up member `reg' to REG for allocnos which has the same regno as
393 ALLOCNO and which are inside the loop corresponding to ALLOCNO. */
394 static void
395 set_allocno_reg (ira_allocno_t allocno, rtx reg)
397 int regno;
398 ira_allocno_t a;
399 ira_loop_tree_node_t node;
401 node = ALLOCNO_LOOP_TREE_NODE (allocno);
402 for (a = ira_regno_allocno_map[ALLOCNO_REGNO (allocno)];
403 a != NULL;
404 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
405 if (subloop_tree_node_p (ALLOCNO_LOOP_TREE_NODE (a), node))
406 ALLOCNO_EMIT_DATA (a)->reg = reg;
407 for (a = ALLOCNO_CAP (allocno); a != NULL; a = ALLOCNO_CAP (a))
408 ALLOCNO_EMIT_DATA (a)->reg = reg;
409 regno = ALLOCNO_REGNO (allocno);
410 for (a = allocno;;)
412 if (a == NULL || (a = ALLOCNO_CAP (a)) == NULL)
414 node = node->parent;
415 if (node == NULL)
416 break;
417 a = node->regno_allocno_map[regno];
419 if (a == NULL)
420 continue;
421 if (ALLOCNO_EMIT_DATA (a)->child_renamed_p)
422 break;
423 ALLOCNO_EMIT_DATA (a)->child_renamed_p = true;
427 /* Return true if there is an entry to given loop not from its parent
428 (or grandparent) block. For example, it is possible for two
429 adjacent loops inside another loop. */
430 static bool
431 entered_from_non_parent_p (ira_loop_tree_node_t loop_node)
433 ira_loop_tree_node_t bb_node, src_loop_node, parent;
434 edge e;
435 edge_iterator ei;
437 for (bb_node = loop_node->children;
438 bb_node != NULL;
439 bb_node = bb_node->next)
440 if (bb_node->bb != NULL)
442 FOR_EACH_EDGE (e, ei, bb_node->bb->preds)
443 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
444 && (src_loop_node = IRA_BB_NODE (e->src)->parent) != loop_node)
446 for (parent = src_loop_node->parent;
447 parent != NULL;
448 parent = parent->parent)
449 if (parent == loop_node)
450 break;
451 if (parent != NULL)
452 /* That is an exit from a nested loop -- skip it. */
453 continue;
454 for (parent = loop_node->parent;
455 parent != NULL;
456 parent = parent->parent)
457 if (src_loop_node == parent)
458 break;
459 if (parent == NULL)
460 return true;
463 return false;
466 /* Set up ENTERED_FROM_NON_PARENT_P for each loop region. */
467 static void
468 setup_entered_from_non_parent_p (void)
470 unsigned int i;
471 loop_p loop;
473 ira_assert (current_loops != NULL);
474 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
475 if (ira_loop_nodes[i].regno_allocno_map != NULL)
476 ira_loop_nodes[i].entered_from_non_parent_p
477 = entered_from_non_parent_p (&ira_loop_nodes[i]);
480 /* Return TRUE if move of SRC_ALLOCNO (assigned to hard register) to
481 DEST_ALLOCNO (assigned to memory) can be removed because it does
482 not change value of the destination. One possible reason for this
483 is the situation when SRC_ALLOCNO is not modified in the
484 corresponding loop. */
485 static bool
486 store_can_be_removed_p (ira_allocno_t src_allocno, ira_allocno_t dest_allocno)
488 int regno, orig_regno;
489 ira_allocno_t a;
490 ira_loop_tree_node_t node;
492 ira_assert (ALLOCNO_CAP_MEMBER (src_allocno) == NULL
493 && ALLOCNO_CAP_MEMBER (dest_allocno) == NULL);
494 orig_regno = ALLOCNO_REGNO (src_allocno);
495 regno = REGNO (allocno_emit_reg (dest_allocno));
496 for (node = ALLOCNO_LOOP_TREE_NODE (src_allocno);
497 node != NULL;
498 node = node->parent)
500 a = node->regno_allocno_map[orig_regno];
501 ira_assert (a != NULL);
502 if (REGNO (allocno_emit_reg (a)) == (unsigned) regno)
503 /* We achieved the destination and everything is ok. */
504 return true;
505 else if (bitmap_bit_p (node->modified_regnos, orig_regno))
506 return false;
507 else if (node->entered_from_non_parent_p)
508 /* If there is a path from a destination loop block to the
509 source loop header containing basic blocks of non-parents
510 (grandparents) of the source loop, we should have checked
511 modifications of the pseudo on this path too to decide
512 about possibility to remove the store. It could be done by
513 solving a data-flow problem. Unfortunately such global
514 solution would complicate IR flattening. Therefore we just
515 prohibit removal of the store in such complicated case. */
516 return false;
518 /* It is actually a loop entry -- do not remove the store. */
519 return false;
522 /* Generate and attach moves to the edge E. This looks at the final
523 regnos of allocnos living on the edge with the same original regno
524 to figure out when moves should be generated. */
525 static void
526 generate_edge_moves (edge e)
528 ira_loop_tree_node_t src_loop_node, dest_loop_node;
529 unsigned int regno;
530 bitmap_iterator bi;
531 ira_allocno_t src_allocno, dest_allocno, *src_map, *dest_map;
532 move_t move;
533 bitmap regs_live_in_dest, regs_live_out_src;
535 src_loop_node = IRA_BB_NODE (e->src)->parent;
536 dest_loop_node = IRA_BB_NODE (e->dest)->parent;
537 e->aux = NULL;
538 if (src_loop_node == dest_loop_node)
539 return;
540 src_map = src_loop_node->regno_allocno_map;
541 dest_map = dest_loop_node->regno_allocno_map;
542 regs_live_in_dest = df_get_live_in (e->dest);
543 regs_live_out_src = df_get_live_out (e->src);
544 EXECUTE_IF_SET_IN_REG_SET (regs_live_in_dest,
545 FIRST_PSEUDO_REGISTER, regno, bi)
546 if (bitmap_bit_p (regs_live_out_src, regno))
548 src_allocno = src_map[regno];
549 dest_allocno = dest_map[regno];
550 if (REGNO (allocno_emit_reg (src_allocno))
551 == REGNO (allocno_emit_reg (dest_allocno)))
552 continue;
553 /* Remove unnecessary stores at the region exit. We should do
554 this for readonly memory for sure and this is guaranteed by
555 that we never generate moves on region borders (see
556 checking in function change_loop). */
557 if (ALLOCNO_HARD_REGNO (dest_allocno) < 0
558 && ALLOCNO_HARD_REGNO (src_allocno) >= 0
559 && store_can_be_removed_p (src_allocno, dest_allocno))
561 ALLOCNO_EMIT_DATA (src_allocno)->mem_optimized_dest = dest_allocno;
562 ALLOCNO_EMIT_DATA (dest_allocno)->mem_optimized_dest_p = true;
563 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
564 fprintf (ira_dump_file, " Remove r%d:a%d->a%d(mem)\n",
565 regno, ALLOCNO_NUM (src_allocno),
566 ALLOCNO_NUM (dest_allocno));
567 continue;
569 move = create_move (dest_allocno, src_allocno);
570 add_to_edge_list (e, move, true);
574 /* Bitmap of allocnos local for the current loop. */
575 static bitmap local_allocno_bitmap;
577 /* This bitmap is used to find that we need to generate and to use a
578 new pseudo-register when processing allocnos with the same original
579 regno. */
580 static bitmap used_regno_bitmap;
582 /* This bitmap contains regnos of allocnos which were renamed locally
583 because the allocnos correspond to disjoint live ranges in loops
584 with a common parent. */
585 static bitmap renamed_regno_bitmap;
587 /* Change (if necessary) pseudo-registers inside loop given by loop
588 tree node NODE. */
589 static void
590 change_loop (ira_loop_tree_node_t node)
592 bitmap_iterator bi;
593 unsigned int i;
594 int regno;
595 bool used_p;
596 ira_allocno_t allocno, parent_allocno, *map;
597 rtx_insn *insn;
598 rtx original_reg;
599 enum reg_class aclass, pclass;
600 ira_loop_tree_node_t parent;
602 if (node != ira_loop_tree_root)
604 ira_assert (current_loops != NULL);
606 if (node->bb != NULL)
608 FOR_BB_INSNS (node->bb, insn)
609 if (INSN_P (insn) && change_regs_in_insn (&insn))
611 df_insn_rescan (insn);
612 df_notes_rescan (insn);
614 return;
617 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
618 fprintf (ira_dump_file,
619 " Changing RTL for loop %d (header bb%d)\n",
620 node->loop_num, node->loop->header->index);
622 parent = ira_curr_loop_tree_node->parent;
623 map = parent->regno_allocno_map;
624 EXECUTE_IF_SET_IN_REG_SET (ira_curr_loop_tree_node->border_allocnos,
625 0, i, bi)
627 allocno = ira_allocnos[i];
628 regno = ALLOCNO_REGNO (allocno);
629 aclass = ALLOCNO_CLASS (allocno);
630 pclass = ira_pressure_class_translate[aclass];
631 parent_allocno = map[regno];
632 ira_assert (regno < ira_reg_equiv_len);
633 /* We generate the same hard register move because the
634 reload pass can put an allocno into memory in this case
635 we will have live range splitting. If it does not happen
636 such the same hard register moves will be removed. The
637 worst case when the both allocnos are put into memory by
638 the reload is very rare. */
639 if (parent_allocno != NULL
640 && (ALLOCNO_HARD_REGNO (allocno)
641 == ALLOCNO_HARD_REGNO (parent_allocno))
642 && (ALLOCNO_HARD_REGNO (allocno) < 0
643 || (parent->reg_pressure[pclass] + 1
644 <= ira_class_hard_regs_num[pclass])
645 || TEST_HARD_REG_BIT (ira_prohibited_mode_move_regs
646 [ALLOCNO_MODE (allocno)],
647 ALLOCNO_HARD_REGNO (allocno))
648 /* don't create copies because reload can spill an
649 allocno set by copy although the allocno will not
650 get memory slot. */
651 || ira_equiv_no_lvalue_p (regno)
652 || (pic_offset_table_rtx != NULL
653 && (ALLOCNO_REGNO (allocno)
654 == (int) REGNO (pic_offset_table_rtx)))))
655 continue;
656 original_reg = allocno_emit_reg (allocno);
657 if (parent_allocno == NULL
658 || (REGNO (allocno_emit_reg (parent_allocno))
659 == REGNO (original_reg)))
661 if (internal_flag_ira_verbose > 3 && ira_dump_file)
662 fprintf (ira_dump_file, " %i vs parent %i:",
663 ALLOCNO_HARD_REGNO (allocno),
664 ALLOCNO_HARD_REGNO (parent_allocno));
665 set_allocno_reg (allocno, ira_create_new_reg (original_reg));
669 /* Rename locals: Local allocnos with same regno in different loops
670 might get the different hard register. So we need to change
671 ALLOCNO_REG. */
672 bitmap_and_compl (local_allocno_bitmap,
673 ira_curr_loop_tree_node->all_allocnos,
674 ira_curr_loop_tree_node->border_allocnos);
675 EXECUTE_IF_SET_IN_REG_SET (local_allocno_bitmap, 0, i, bi)
677 allocno = ira_allocnos[i];
678 regno = ALLOCNO_REGNO (allocno);
679 if (ALLOCNO_CAP_MEMBER (allocno) != NULL)
680 continue;
681 used_p = !bitmap_set_bit (used_regno_bitmap, regno);
682 ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
683 if (! used_p)
684 continue;
685 bitmap_set_bit (renamed_regno_bitmap, regno);
686 set_allocno_reg (allocno, ira_create_new_reg (allocno_emit_reg (allocno)));
690 /* Process to set up flag somewhere_renamed_p. */
691 static void
692 set_allocno_somewhere_renamed_p (void)
694 unsigned int regno;
695 ira_allocno_t allocno;
696 ira_allocno_iterator ai;
698 FOR_EACH_ALLOCNO (allocno, ai)
700 regno = ALLOCNO_REGNO (allocno);
701 if (bitmap_bit_p (renamed_regno_bitmap, regno)
702 && REGNO (allocno_emit_reg (allocno)) == regno)
703 ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
707 /* Return TRUE if move lists on all edges given in vector VEC are
708 equal. */
709 static bool
710 eq_edge_move_lists_p (vec<edge, va_gc> *vec)
712 move_t list;
713 int i;
715 list = (move_t) EDGE_I (vec, 0)->aux;
716 for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
717 if (! eq_move_lists_p (list, (move_t) EDGE_I (vec, i)->aux))
718 return false;
719 return true;
722 /* Look at all entry edges (if START_P) or exit edges of basic block
723 BB and put move lists at the BB start or end if it is possible. In
724 other words, this decreases code duplication of allocno moves. */
725 static void
726 unify_moves (basic_block bb, bool start_p)
728 int i;
729 edge e;
730 move_t list;
731 vec<edge, va_gc> *vec;
733 vec = (start_p ? bb->preds : bb->succs);
734 if (EDGE_COUNT (vec) == 0 || ! eq_edge_move_lists_p (vec))
735 return;
736 e = EDGE_I (vec, 0);
737 list = (move_t) e->aux;
738 if (! start_p && control_flow_insn_p (BB_END (bb)))
739 return;
740 e->aux = NULL;
741 for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
743 e = EDGE_I (vec, i);
744 free_move_list ((move_t) e->aux);
745 e->aux = NULL;
747 if (start_p)
748 at_bb_start[bb->index] = list;
749 else
750 at_bb_end[bb->index] = list;
753 /* Last move (in move sequence being processed) setting up the
754 corresponding hard register. */
755 static move_t hard_regno_last_set[FIRST_PSEUDO_REGISTER];
757 /* If the element value is equal to CURR_TICK then the corresponding
758 element in `hard_regno_last_set' is defined and correct. */
759 static int hard_regno_last_set_check[FIRST_PSEUDO_REGISTER];
761 /* Last move (in move sequence being processed) setting up the
762 corresponding allocno. */
763 static move_t *allocno_last_set;
765 /* If the element value is equal to CURR_TICK then the corresponding
766 element in . `allocno_last_set' is defined and correct. */
767 static int *allocno_last_set_check;
769 /* Definition of vector of moves. */
771 /* This vec contains moves sorted topologically (depth-first) on their
772 dependency graph. */
773 static vec<move_t> move_vec;
775 /* The variable value is used to check correctness of values of
776 elements of arrays `hard_regno_last_set' and
777 `allocno_last_set_check'. */
778 static int curr_tick;
780 /* This recursive function traverses dependencies of MOVE and produces
781 topological sorting (in depth-first order). */
782 static void
783 traverse_moves (move_t move)
785 int i;
787 if (move->visited_p)
788 return;
789 move->visited_p = true;
790 for (i = move->deps_num - 1; i >= 0; i--)
791 traverse_moves (move->deps[i]);
792 move_vec.safe_push (move);
795 /* Remove unnecessary moves in the LIST, makes topological sorting,
796 and removes cycles on hard reg dependencies by introducing new
797 allocnos assigned to memory and additional moves. It returns the
798 result move list. */
799 static move_t
800 modify_move_list (move_t list)
802 int i, n, nregs, hard_regno;
803 ira_allocno_t to, from;
804 move_t move, new_move, set_move, first, last;
806 if (list == NULL)
807 return NULL;
808 /* Create move deps. */
809 curr_tick++;
810 for (move = list; move != NULL; move = move->next)
812 to = move->to;
813 if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
814 continue;
815 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
816 for (i = 0; i < nregs; i++)
818 hard_regno_last_set[hard_regno + i] = move;
819 hard_regno_last_set_check[hard_regno + i] = curr_tick;
822 for (move = list; move != NULL; move = move->next)
824 from = move->from;
825 to = move->to;
826 if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
828 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
829 for (n = i = 0; i < nregs; i++)
830 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
831 && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
832 != ALLOCNO_REGNO (from)))
833 n++;
834 move->deps = (move_t *) ira_allocate (n * sizeof (move_t));
835 for (n = i = 0; i < nregs; i++)
836 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
837 && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
838 != ALLOCNO_REGNO (from)))
839 move->deps[n++] = hard_regno_last_set[hard_regno + i];
840 move->deps_num = n;
843 /* Topological sorting: */
844 move_vec.truncate (0);
845 for (move = list; move != NULL; move = move->next)
846 traverse_moves (move);
847 last = NULL;
848 for (i = (int) move_vec.length () - 1; i >= 0; i--)
850 move = move_vec[i];
851 move->next = NULL;
852 if (last != NULL)
853 last->next = move;
854 last = move;
856 first = move_vec.last ();
857 /* Removing cycles: */
858 curr_tick++;
859 move_vec.truncate (0);
860 for (move = first; move != NULL; move = move->next)
862 from = move->from;
863 to = move->to;
864 if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
866 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
867 for (i = 0; i < nregs; i++)
868 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
869 && ALLOCNO_HARD_REGNO
870 (hard_regno_last_set[hard_regno + i]->to) >= 0)
872 int n, j;
873 ira_allocno_t new_allocno;
875 set_move = hard_regno_last_set[hard_regno + i];
876 /* It does not matter what loop_tree_node (of TO or
877 FROM) to use for the new allocno because of
878 subsequent IRA internal representation
879 flattening. */
880 new_allocno
881 = create_new_allocno (ALLOCNO_REGNO (set_move->to),
882 ALLOCNO_LOOP_TREE_NODE (set_move->to));
883 ALLOCNO_MODE (new_allocno) = ALLOCNO_MODE (set_move->to);
884 ira_set_allocno_class (new_allocno,
885 ALLOCNO_CLASS (set_move->to));
886 ira_create_allocno_objects (new_allocno);
887 ALLOCNO_ASSIGNED_P (new_allocno) = true;
888 ALLOCNO_HARD_REGNO (new_allocno) = -1;
889 ALLOCNO_EMIT_DATA (new_allocno)->reg
890 = ira_create_new_reg (allocno_emit_reg (set_move->to));
892 /* Make it possibly conflicting with all earlier
893 created allocnos. Cases where temporary allocnos
894 created to remove the cycles are quite rare. */
895 n = ALLOCNO_NUM_OBJECTS (new_allocno);
896 gcc_assert (n == ALLOCNO_NUM_OBJECTS (set_move->to));
897 for (j = 0; j < n; j++)
899 ira_object_t new_obj = ALLOCNO_OBJECT (new_allocno, j);
901 OBJECT_MIN (new_obj) = 0;
902 OBJECT_MAX (new_obj) = ira_objects_num - 1;
905 new_move = create_move (set_move->to, new_allocno);
906 set_move->to = new_allocno;
907 move_vec.safe_push (new_move);
908 ira_move_loops_num++;
909 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
910 fprintf (ira_dump_file,
911 " Creating temporary allocno a%dr%d\n",
912 ALLOCNO_NUM (new_allocno),
913 REGNO (allocno_emit_reg (new_allocno)));
916 if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
917 continue;
918 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
919 for (i = 0; i < nregs; i++)
921 hard_regno_last_set[hard_regno + i] = move;
922 hard_regno_last_set_check[hard_regno + i] = curr_tick;
925 for (i = (int) move_vec.length () - 1; i >= 0; i--)
927 move = move_vec[i];
928 move->next = NULL;
929 last->next = move;
930 last = move;
932 return first;
935 /* Generate RTX move insns from the move list LIST. This updates
936 allocation cost using move execution frequency FREQ. */
937 static rtx_insn *
938 emit_move_list (move_t list, int freq)
940 rtx to, from, dest;
941 int to_regno, from_regno, cost, regno;
942 rtx_insn *result, *insn;
943 rtx set;
944 machine_mode mode;
945 enum reg_class aclass;
947 grow_reg_equivs ();
948 start_sequence ();
949 for (; list != NULL; list = list->next)
951 start_sequence ();
952 to = allocno_emit_reg (list->to);
953 to_regno = REGNO (to);
954 from = allocno_emit_reg (list->from);
955 from_regno = REGNO (from);
956 emit_move_insn (to, from);
957 list->insn = get_insns ();
958 end_sequence ();
959 for (insn = list->insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
961 /* The reload needs to have set up insn codes. If the
962 reload sets up insn codes by itself, it may fail because
963 insns will have hard registers instead of pseudos and
964 there may be no machine insn with given hard
965 registers. */
966 recog_memoized (insn);
967 /* Add insn to equiv init insn list if it is necessary.
968 Otherwise reload will not remove this insn if it decides
969 to use the equivalence. */
970 if ((set = single_set (insn)) != NULL_RTX)
972 dest = SET_DEST (set);
973 if (GET_CODE (dest) == SUBREG)
974 dest = SUBREG_REG (dest);
975 ira_assert (REG_P (dest));
976 regno = REGNO (dest);
977 if (regno >= ira_reg_equiv_len
978 || (ira_reg_equiv[regno].invariant == NULL_RTX
979 && ira_reg_equiv[regno].constant == NULL_RTX))
980 continue; /* regno has no equivalence. */
981 ira_assert ((int) reg_equivs->length () > regno);
982 reg_equiv_init (regno)
983 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
986 if (ira_use_lra_p)
987 ira_update_equiv_info_by_shuffle_insn (to_regno, from_regno, list->insn);
988 emit_insn (list->insn);
989 mode = ALLOCNO_MODE (list->to);
990 aclass = ALLOCNO_CLASS (list->to);
991 cost = 0;
992 if (ALLOCNO_HARD_REGNO (list->to) < 0)
994 if (ALLOCNO_HARD_REGNO (list->from) >= 0)
996 cost = ira_memory_move_cost[mode][aclass][0] * freq;
997 ira_store_cost += cost;
1000 else if (ALLOCNO_HARD_REGNO (list->from) < 0)
1002 if (ALLOCNO_HARD_REGNO (list->to) >= 0)
1004 cost = ira_memory_move_cost[mode][aclass][0] * freq;
1005 ira_load_cost += cost;
1008 else
1010 ira_init_register_move_cost_if_necessary (mode);
1011 cost = ira_register_move_cost[mode][aclass][aclass] * freq;
1012 ira_shuffle_cost += cost;
1014 ira_overall_cost += cost;
1016 result = get_insns ();
1017 end_sequence ();
1018 return result;
1021 /* Generate RTX move insns from move lists attached to basic blocks
1022 and edges. */
1023 static void
1024 emit_moves (void)
1026 basic_block bb;
1027 edge_iterator ei;
1028 edge e;
1029 rtx_insn *insns, *tmp;
1031 FOR_EACH_BB_FN (bb, cfun)
1033 if (at_bb_start[bb->index] != NULL)
1035 at_bb_start[bb->index] = modify_move_list (at_bb_start[bb->index]);
1036 insns = emit_move_list (at_bb_start[bb->index],
1037 REG_FREQ_FROM_BB (bb));
1038 tmp = BB_HEAD (bb);
1039 if (LABEL_P (tmp))
1040 tmp = NEXT_INSN (tmp);
1041 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1042 tmp = NEXT_INSN (tmp);
1043 if (tmp == BB_HEAD (bb))
1044 emit_insn_before (insns, tmp);
1045 else if (tmp != NULL_RTX)
1046 emit_insn_after (insns, PREV_INSN (tmp));
1047 else
1048 emit_insn_after (insns, get_last_insn ());
1051 if (at_bb_end[bb->index] != NULL)
1053 at_bb_end[bb->index] = modify_move_list (at_bb_end[bb->index]);
1054 insns = emit_move_list (at_bb_end[bb->index], REG_FREQ_FROM_BB (bb));
1055 ira_assert (! control_flow_insn_p (BB_END (bb)));
1056 emit_insn_after (insns, BB_END (bb));
1059 FOR_EACH_EDGE (e, ei, bb->succs)
1061 if (e->aux == NULL)
1062 continue;
1063 ira_assert ((e->flags & EDGE_ABNORMAL) == 0
1064 || ! EDGE_CRITICAL_P (e));
1065 e->aux = modify_move_list ((move_t) e->aux);
1066 insert_insn_on_edge
1067 (emit_move_list ((move_t) e->aux,
1068 REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e))),
1070 if (e->src->next_bb != e->dest)
1071 ira_additional_jumps_num++;
1076 /* Update costs of A and corresponding allocnos on upper levels on the
1077 loop tree from reading (if READ_P) or writing A on an execution
1078 path with FREQ. */
1079 static void
1080 update_costs (ira_allocno_t a, bool read_p, int freq)
1082 ira_loop_tree_node_t parent;
1084 for (;;)
1086 ALLOCNO_NREFS (a)++;
1087 ALLOCNO_FREQ (a) += freq;
1088 ALLOCNO_MEMORY_COST (a)
1089 += (ira_memory_move_cost[ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)]
1090 [read_p ? 1 : 0] * freq);
1091 if (ALLOCNO_CAP (a) != NULL)
1092 a = ALLOCNO_CAP (a);
1093 else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
1094 || (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
1095 break;
1099 /* Process moves from LIST with execution FREQ to add ranges, copies,
1100 and modify costs for allocnos involved in the moves. All regnos
1101 living through the list is in LIVE_THROUGH, and the loop tree node
1102 used to find corresponding allocnos is NODE. */
1103 static void
1104 add_range_and_copies_from_move_list (move_t list, ira_loop_tree_node_t node,
1105 bitmap live_through, int freq)
1107 int start, n;
1108 unsigned int regno;
1109 move_t move;
1110 ira_allocno_t a;
1111 ira_copy_t cp;
1112 live_range_t r;
1113 bitmap_iterator bi;
1114 HARD_REG_SET hard_regs_live;
1116 if (list == NULL)
1117 return;
1118 n = 0;
1119 EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
1120 n++;
1121 REG_SET_TO_HARD_REG_SET (hard_regs_live, live_through);
1122 /* This is a trick to guarantee that new ranges is not merged with
1123 the old ones. */
1124 ira_max_point++;
1125 start = ira_max_point;
1126 for (move = list; move != NULL; move = move->next)
1128 ira_allocno_t from = move->from;
1129 ira_allocno_t to = move->to;
1130 int nr, i;
1132 bitmap_clear_bit (live_through, ALLOCNO_REGNO (from));
1133 bitmap_clear_bit (live_through, ALLOCNO_REGNO (to));
1135 nr = ALLOCNO_NUM_OBJECTS (to);
1136 for (i = 0; i < nr; i++)
1138 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
1139 if (OBJECT_CONFLICT_ARRAY (to_obj) == NULL)
1141 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1142 fprintf (ira_dump_file, " Allocate conflicts for a%dr%d\n",
1143 ALLOCNO_NUM (to), REGNO (allocno_emit_reg (to)));
1144 ira_allocate_object_conflicts (to_obj, n);
1147 ior_hard_reg_conflicts (from, &hard_regs_live);
1148 ior_hard_reg_conflicts (to, &hard_regs_live);
1150 update_costs (from, true, freq);
1151 update_costs (to, false, freq);
1152 cp = ira_add_allocno_copy (from, to, freq, false, move->insn, NULL);
1153 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1154 fprintf (ira_dump_file, " Adding cp%d:a%dr%d-a%dr%d\n",
1155 cp->num, ALLOCNO_NUM (cp->first),
1156 REGNO (allocno_emit_reg (cp->first)),
1157 ALLOCNO_NUM (cp->second),
1158 REGNO (allocno_emit_reg (cp->second)));
1160 nr = ALLOCNO_NUM_OBJECTS (from);
1161 for (i = 0; i < nr; i++)
1163 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
1164 r = OBJECT_LIVE_RANGES (from_obj);
1165 if (r == NULL || r->finish >= 0)
1167 ira_add_live_range_to_object (from_obj, start, ira_max_point);
1168 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1169 fprintf (ira_dump_file,
1170 " Adding range [%d..%d] to allocno a%dr%d\n",
1171 start, ira_max_point, ALLOCNO_NUM (from),
1172 REGNO (allocno_emit_reg (from)));
1174 else
1176 r->finish = ira_max_point;
1177 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1178 fprintf (ira_dump_file,
1179 " Adding range [%d..%d] to allocno a%dr%d\n",
1180 r->start, ira_max_point, ALLOCNO_NUM (from),
1181 REGNO (allocno_emit_reg (from)));
1184 ira_max_point++;
1185 nr = ALLOCNO_NUM_OBJECTS (to);
1186 for (i = 0; i < nr; i++)
1188 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
1189 ira_add_live_range_to_object (to_obj, ira_max_point, -1);
1191 ira_max_point++;
1193 for (move = list; move != NULL; move = move->next)
1195 int nr, i;
1196 nr = ALLOCNO_NUM_OBJECTS (move->to);
1197 for (i = 0; i < nr; i++)
1199 ira_object_t to_obj = ALLOCNO_OBJECT (move->to, i);
1200 r = OBJECT_LIVE_RANGES (to_obj);
1201 if (r->finish < 0)
1203 r->finish = ira_max_point - 1;
1204 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1205 fprintf (ira_dump_file,
1206 " Adding range [%d..%d] to allocno a%dr%d\n",
1207 r->start, r->finish, ALLOCNO_NUM (move->to),
1208 REGNO (allocno_emit_reg (move->to)));
1212 EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
1214 ira_allocno_t to;
1215 int nr, i;
1217 a = node->regno_allocno_map[regno];
1218 if ((to = ALLOCNO_EMIT_DATA (a)->mem_optimized_dest) != NULL)
1219 a = to;
1220 nr = ALLOCNO_NUM_OBJECTS (a);
1221 for (i = 0; i < nr; i++)
1223 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1224 ira_add_live_range_to_object (obj, start, ira_max_point - 1);
1226 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1227 fprintf
1228 (ira_dump_file,
1229 " Adding range [%d..%d] to live through %s allocno a%dr%d\n",
1230 start, ira_max_point - 1,
1231 to != NULL ? "upper level" : "",
1232 ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
1236 /* Process all move list to add ranges, conflicts, copies, and modify
1237 costs for allocnos involved in the moves. */
1238 static void
1239 add_ranges_and_copies (void)
1241 basic_block bb;
1242 edge_iterator ei;
1243 edge e;
1244 ira_loop_tree_node_t node;
1245 bitmap live_through;
1247 live_through = ira_allocate_bitmap ();
1248 FOR_EACH_BB_FN (bb, cfun)
1250 /* It does not matter what loop_tree_node (of source or
1251 destination block) to use for searching allocnos by their
1252 regnos because of subsequent IR flattening. */
1253 node = IRA_BB_NODE (bb)->parent;
1254 bitmap_copy (live_through, df_get_live_in (bb));
1255 add_range_and_copies_from_move_list
1256 (at_bb_start[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
1257 bitmap_copy (live_through, df_get_live_out (bb));
1258 add_range_and_copies_from_move_list
1259 (at_bb_end[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
1260 FOR_EACH_EDGE (e, ei, bb->succs)
1262 bitmap_and (live_through,
1263 df_get_live_in (e->dest), df_get_live_out (bb));
1264 add_range_and_copies_from_move_list
1265 ((move_t) e->aux, node, live_through,
1266 REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e)));
1269 ira_free_bitmap (live_through);
1272 /* The entry function changes code and generates shuffling allocnos on
1273 region borders for the regional (LOOPS_P is TRUE in this case)
1274 register allocation. */
1275 void
1276 ira_emit (bool loops_p)
1278 basic_block bb;
1279 rtx_insn *insn;
1280 edge_iterator ei;
1281 edge e;
1282 ira_allocno_t a;
1283 ira_allocno_iterator ai;
1284 size_t sz;
1286 FOR_EACH_ALLOCNO (a, ai)
1287 ALLOCNO_EMIT_DATA (a)->reg = regno_reg_rtx[ALLOCNO_REGNO (a)];
1288 if (! loops_p)
1289 return;
1290 sz = sizeof (move_t) * last_basic_block_for_fn (cfun);
1291 at_bb_start = (move_t *) ira_allocate (sz);
1292 memset (at_bb_start, 0, sz);
1293 at_bb_end = (move_t *) ira_allocate (sz);
1294 memset (at_bb_end, 0, sz);
1295 local_allocno_bitmap = ira_allocate_bitmap ();
1296 used_regno_bitmap = ira_allocate_bitmap ();
1297 renamed_regno_bitmap = ira_allocate_bitmap ();
1298 max_regno_before_changing = max_reg_num ();
1299 ira_traverse_loop_tree (true, ira_loop_tree_root, change_loop, NULL);
1300 set_allocno_somewhere_renamed_p ();
1301 ira_free_bitmap (used_regno_bitmap);
1302 ira_free_bitmap (renamed_regno_bitmap);
1303 ira_free_bitmap (local_allocno_bitmap);
1304 setup_entered_from_non_parent_p ();
1305 FOR_EACH_BB_FN (bb, cfun)
1307 at_bb_start[bb->index] = NULL;
1308 at_bb_end[bb->index] = NULL;
1309 FOR_EACH_EDGE (e, ei, bb->succs)
1310 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1311 generate_edge_moves (e);
1313 allocno_last_set
1314 = (move_t *) ira_allocate (sizeof (move_t) * max_reg_num ());
1315 allocno_last_set_check
1316 = (int *) ira_allocate (sizeof (int) * max_reg_num ());
1317 memset (allocno_last_set_check, 0, sizeof (int) * max_reg_num ());
1318 memset (hard_regno_last_set_check, 0, sizeof (hard_regno_last_set_check));
1319 curr_tick = 0;
1320 FOR_EACH_BB_FN (bb, cfun)
1321 unify_moves (bb, true);
1322 FOR_EACH_BB_FN (bb, cfun)
1323 unify_moves (bb, false);
1324 move_vec.create (ira_allocnos_num);
1325 emit_moves ();
1326 add_ranges_and_copies ();
1327 /* Clean up: */
1328 FOR_EACH_BB_FN (bb, cfun)
1330 free_move_list (at_bb_start[bb->index]);
1331 free_move_list (at_bb_end[bb->index]);
1332 FOR_EACH_EDGE (e, ei, bb->succs)
1334 free_move_list ((move_t) e->aux);
1335 e->aux = NULL;
1338 move_vec.release ();
1339 ira_free (allocno_last_set_check);
1340 ira_free (allocno_last_set);
1341 commit_edge_insertions ();
1342 /* Fix insn codes. It is necessary to do it before reload because
1343 reload assumes initial insn codes defined. The insn codes can be
1344 invalidated by CFG infrastructure for example in jump
1345 redirection. */
1346 FOR_EACH_BB_FN (bb, cfun)
1347 FOR_BB_INSNS_REVERSE (bb, insn)
1348 if (INSN_P (insn))
1349 recog_memoized (insn);
1350 ira_free (at_bb_end);
1351 ira_free (at_bb_start);