PR rtl-optimization/52543
[official-gcc.git] / gcc / tree-cfg.c
blobeb7b62a72c504999d208dba4f94062daf61eef6a
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
164 void
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
177 static void
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
188 make_blocks (seq);
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
235 static unsigned int
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
247 return 0;
250 struct gimple_opt_pass pass_build_cfg =
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
270 /* Return true if T is a computed goto. */
272 static bool
273 computed_goto_p (gimple t)
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
285 static void
286 factor_computed_gotos (void)
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
298 FOR_EACH_BB (bb)
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
303 if (gsi_end_p (gsi))
304 continue;
306 last = gsi_stmt (gsi);
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
316 gimple assignment;
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
358 static void
359 make_blocks (gimple_seq seq)
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
367 while (!gsi_end_p (i))
369 gimple prev_stmt;
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 start_new_block = true;
419 gsi_next (&i);
420 first_stmt_of_seq = false;
425 /* Create and return a new empty basic block after bb AFTER. */
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
430 basic_block bb;
432 gcc_assert (!e);
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
457 n_basic_blocks++;
458 last_basic_block++;
460 return bb;
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
470 void
471 fold_cond_expr_cond (void)
473 basic_block bb;
475 FOR_EACH_BB (bb)
477 gimple stmt = last_stmt (bb);
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
493 else
494 zerop = onep = false;
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
507 /* Join all the blocks in the flowgraph. */
509 static void
510 make_edges (void)
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
522 gimple last = last_stmt (bb);
523 bool fallthru;
525 if (last)
527 enum gimple_code code = gimple_code (last);
528 switch (code)
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb = single_succ (cur_region->entry);
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
663 break;
665 default:
666 gcc_unreachable ();
668 break;
670 case GIMPLE_TRANSACTION:
672 tree abort_label = gimple_transaction_label (last);
673 if (abort_label)
674 make_edge (bb, label_to_block (abort_label), 0);
675 fallthru = true;
677 break;
679 default:
680 gcc_assert (!stmt_ends_bb_p (last));
681 fallthru = true;
684 else
685 fallthru = true;
687 if (fallthru)
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
690 if (last)
691 assign_discriminator (gimple_location (last), bb->next_bb);
695 if (root_omp_region)
696 free_omp_regions ();
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
705 static unsigned int
706 locus_map_hash (const void *item)
708 return ((const struct locus_discrim_map *) item)->locus;
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
714 static int
715 locus_map_eq (const void *va, const void *vb)
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
725 profiling. */
727 static int
728 next_discriminator_for_locus (location_t locus)
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
733 item.locus = locus;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
738 gcc_assert (slot);
739 if (*slot == HTAB_EMPTY_ENTRY)
741 *slot = XNEW (struct locus_discrim_map);
742 gcc_assert (*slot);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
752 static bool
753 same_line_p (location_t locus1, location_t locus2)
755 expanded_location from, to;
757 if (locus1 == locus2)
758 return true;
760 from = expand_location (locus1);
761 to = expand_location (locus2);
763 if (from.line != to.line)
764 return false;
765 if (from.file == to.file)
766 return true;
767 return (from.file != NULL
768 && to.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
775 static void
776 assign_discriminator (location_t locus, basic_block bb)
778 gimple first_in_to_bb, last_in_to_bb;
780 if (locus == 0 || bb->discriminator != 0)
781 return;
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
792 static void
793 make_cond_expr_edges (basic_block bb)
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
799 edge e;
800 location_t entry_locus;
802 gcc_assert (entry);
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
805 entry_locus = gimple_location (entry);
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
821 if (e)
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
825 if (e->goto_locus)
826 e->goto_block = gimple_block (else_stmt);
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
840 element. */
842 static bool
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
846 tree t, next;
848 for (t = (tree) *value; t; t = next)
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
854 *value = NULL;
855 return true;
858 /* Start recording information mapping edges to case labels. */
860 void
861 start_recording_case_labels (void)
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
868 /* Return nonzero if we are recording information for case labels. */
870 static bool
871 recording_case_labels_p (void)
873 return (edge_to_cases != NULL);
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
878 void
879 end_recording_case_labels (void)
881 bitmap_iterator bi;
882 unsigned i;
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
888 basic_block bb = BASIC_BLOCK (i);
889 if (bb)
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
896 BITMAP_FREE (touched_switch_bbs);
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
902 Otherwise return NULL. */
904 static tree
905 get_cases_for_edge (edge e, gimple t)
907 void **slot;
908 size_t i, n;
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
913 return NULL;
915 slot = pointer_map_contains (edge_to_cases, e);
916 if (slot)
917 return (tree) *slot;
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 a new chain. */
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
935 *slot = elt;
938 return (tree) *pointer_map_contains (edge_to_cases, e);
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
943 static void
944 make_gimple_switch_edges (basic_block bb)
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
948 size_t i, n;
950 entry_locus = gimple_location (entry);
952 n = gimple_switch_num_labels (entry);
954 for (i = 0; i < n; ++i)
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
964 /* Return the basic block holding label DEST. */
966 basic_block
967 label_to_block_fn (struct function *ifun, tree dest)
969 int uid = LABEL_DECL_UID (dest);
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
977 gimple stmt;
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
985 return NULL;
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
992 void
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1001 gimple label_stmt = gsi_stmt (gsi);
1002 tree target;
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1005 break;
1007 target = gimple_label_label (label_stmt);
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1015 break;
1020 /* Create edges for a goto statement at block BB. */
1022 static void
1023 make_goto_expr_edges (basic_block bb)
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1036 if (e->goto_locus)
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1039 return;
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1046 /* Create edges for an asm statement with labels at block BB. */
1048 static void
1049 make_gimple_asm_edges (basic_block bb)
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1055 for (i = 0; i < n; ++i)
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1064 /*---------------------------------------------------------------------------
1065 Flowgraph analysis
1066 ---------------------------------------------------------------------------*/
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1079 /* The label. */
1080 tree label;
1082 /* True if the label is referenced from somewhere. */
1083 bool used;
1084 } *label_for_bb;
1086 /* Given LABEL return the first label in the same basic block. */
1088 static tree
1089 main_block_label (tree label)
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1094 /* label_to_block possibly inserted undefined label into the chain. */
1095 if (!main_label)
1097 label_for_bb[bb->index].label = label;
1098 main_label = label;
1101 label_for_bb[bb->index].used = true;
1102 return main_label;
1105 /* Clean up redundant labels within the exception tree. */
1107 static void
1108 cleanup_dead_labels_eh (void)
1110 eh_landing_pad lp;
1111 eh_region r;
1112 tree lab;
1113 int i;
1115 if (cfun->eh == NULL)
1116 return;
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1129 FOR_ALL_EH_REGION (r)
1130 switch (r->type)
1132 case ERT_CLEANUP:
1133 case ERT_MUST_NOT_THROW:
1134 break;
1136 case ERT_TRY:
1138 eh_catch c;
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1141 lab = c->label;
1142 if (lab)
1143 c->label = main_block_label (lab);
1146 break;
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1150 if (lab)
1151 r->u.allowed.label = main_block_label (lab);
1152 break;
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1162 void
1163 cleanup_dead_labels (void)
1165 basic_block bb;
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1170 FOR_EACH_BB (bb)
1172 gimple_stmt_iterator i;
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1176 tree label;
1177 gimple stmt = gsi_stmt (i);
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1180 break;
1182 label = gimple_label_label (stmt);
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1188 label_for_bb[bb->index].label = label;
1189 continue;
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1198 label_for_bb[bb->index].label = label;
1199 break;
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1206 FOR_EACH_BB (bb)
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1211 if (!stmt)
1212 continue;
1214 switch (gimple_code (stmt))
1216 case GIMPLE_COND:
1217 label = gimple_cond_true_label (stmt);
1218 if (label)
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1225 label = gimple_cond_false_label (stmt);
1226 if (label)
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1232 break;
1234 case GIMPLE_SWITCH:
1236 size_t i, n = gimple_switch_num_labels (stmt);
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1247 break;
1250 case GIMPLE_ASM:
1252 int i, n = gimple_asm_nlabels (stmt);
1254 for (i = 0; i < n; ++i)
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1260 break;
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1265 case GIMPLE_GOTO:
1266 if (!computed_goto_p (stmt))
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1273 break;
1275 case GIMPLE_TRANSACTION:
1277 tree label = gimple_transaction_label (stmt);
1278 if (label)
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1285 break;
1287 default:
1288 break;
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1298 FOR_EACH_BB (bb)
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1303 if (!label_for_this_bb)
1304 continue;
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1312 tree label;
1313 gimple stmt = gsi_stmt (i);
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1316 break;
1318 label = gimple_label_label (stmt);
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1324 gsi_next (&i);
1325 else
1326 gsi_remove (&i, true);
1330 free (label_for_bb);
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1337 static void
1338 group_case_labels_stmt (gimple stmt)
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1344 bool has_default;
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1348 away */
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1354 has_default = true;
1356 else
1357 has_default = false;
1359 /* Look for possible opportunities to merge cases. */
1360 if (has_default)
1361 i = 1;
1362 else
1363 i = 0;
1364 while (i < old_size)
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1372 /* Discard cases that have the same destination as the
1373 default case. */
1374 if (base_label == default_label)
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 i++;
1378 new_size--;
1379 continue;
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1385 i++;
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1395 double_int_one);
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1401 bhp1))
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1407 new_size--;
1408 i++;
1410 else
1411 break;
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1419 while (! gimple_switch_label (stmt, j))
1420 j++;
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1431 same label. */
1433 void
1434 group_case_labels (void)
1436 basic_block bb;
1438 FOR_EACH_BB (bb)
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1446 /* Checks whether we can merge block B into block A. */
1448 static bool
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1451 gimple stmt;
1452 gimple_stmt_iterator gsi;
1453 gimple_seq phis;
1455 if (!single_succ_p (a))
1456 return false;
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1459 return false;
1461 if (single_succ (a) != b)
1462 return false;
1464 if (!single_pred_p (b))
1465 return false;
1467 if (b == EXIT_BLOCK_PTR)
1468 return false;
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1474 return false;
1476 /* Do not allow a block with only a non-local label to be merged. */
1477 if (stmt
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1480 return false;
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1485 tree lab;
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1488 break;
1489 lab = gimple_label_label (stmt);
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1493 return false;
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1498 return false;
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1506 return false;
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 if (!optimize
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1522 return false;
1525 return true;
1528 /* Return true if the var whose chain of uses starts at PTR has no
1529 nondebug uses. */
1530 bool
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1533 const ssa_use_operand_t *ptr;
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1537 return false;
1539 return true;
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1545 bool
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1549 ssa_use_operand_t *ptr, *single_use = 0;
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1554 if (single_use)
1556 single_use = NULL;
1557 break;
1559 single_use = ptr;
1562 if (use_p)
1563 *use_p = single_use;
1565 if (stmt)
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1568 return !!single_use;
1571 /* Replaces all uses of NAME by VAL. */
1573 void
1574 replace_uses_by (tree name, tree val)
1576 imm_use_iterator imm_iter;
1577 use_operand_p use;
1578 gimple stmt;
1579 edge e;
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1585 replace_exp (use, val);
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_checking_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 gimple orig_stmt = stmt;
1605 size_t i;
1607 /* Mark the block if we changed the last stmt in it. */
1608 if (cfgcleanup_altered_bbs
1609 && stmt_ends_bb_p (stmt))
1610 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1612 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1613 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1614 only change sth from non-invariant to invariant, and only
1615 when propagating constants. */
1616 if (is_gimple_min_invariant (val))
1617 for (i = 0; i < gimple_num_ops (stmt); i++)
1619 tree op = gimple_op (stmt, i);
1620 /* Operands may be empty here. For example, the labels
1621 of a GIMPLE_COND are nulled out following the creation
1622 of the corresponding CFG edges. */
1623 if (op && TREE_CODE (op) == ADDR_EXPR)
1624 recompute_tree_invariant_for_addr_expr (op);
1627 if (fold_stmt (&gsi))
1628 stmt = gsi_stmt (gsi);
1630 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1631 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1633 update_stmt (stmt);
1637 gcc_checking_assert (has_zero_uses (name));
1639 /* Also update the trees stored in loop structures. */
1640 if (current_loops)
1642 struct loop *loop;
1643 loop_iterator li;
1645 FOR_EACH_LOOP (li, loop, 0)
1647 substitute_in_loop_info (loop, name, val);
1652 /* Merge block B into block A. */
1654 static void
1655 gimple_merge_blocks (basic_block a, basic_block b)
1657 gimple_stmt_iterator last, gsi, psi;
1658 gimple_seq phis = phi_nodes (b);
1660 if (dump_file)
1661 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1663 /* Remove all single-valued PHI nodes from block B of the form
1664 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1665 gsi = gsi_last_bb (a);
1666 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1668 gimple phi = gsi_stmt (psi);
1669 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1670 gimple copy;
1671 bool may_replace_uses = !is_gimple_reg (def)
1672 || may_propagate_copy (def, use);
1674 /* In case we maintain loop closed ssa form, do not propagate arguments
1675 of loop exit phi nodes. */
1676 if (current_loops
1677 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1678 && is_gimple_reg (def)
1679 && TREE_CODE (use) == SSA_NAME
1680 && a->loop_father != b->loop_father)
1681 may_replace_uses = false;
1683 if (!may_replace_uses)
1685 gcc_assert (is_gimple_reg (def));
1687 /* Note that just emitting the copies is fine -- there is no problem
1688 with ordering of phi nodes. This is because A is the single
1689 predecessor of B, therefore results of the phi nodes cannot
1690 appear as arguments of the phi nodes. */
1691 copy = gimple_build_assign (def, use);
1692 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1693 remove_phi_node (&psi, false);
1695 else
1697 /* If we deal with a PHI for virtual operands, we can simply
1698 propagate these without fussing with folding or updating
1699 the stmt. */
1700 if (!is_gimple_reg (def))
1702 imm_use_iterator iter;
1703 use_operand_p use_p;
1704 gimple stmt;
1706 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1707 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1708 SET_USE (use_p, use);
1710 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1713 else
1714 replace_uses_by (def, use);
1716 remove_phi_node (&psi, true);
1720 /* Ensure that B follows A. */
1721 move_block_after (b, a);
1723 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1724 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1726 /* Remove labels from B and set gimple_bb to A for other statements. */
1727 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1729 gimple stmt = gsi_stmt (gsi);
1730 if (gimple_code (stmt) == GIMPLE_LABEL)
1732 tree label = gimple_label_label (stmt);
1733 int lp_nr;
1735 gsi_remove (&gsi, false);
1737 /* Now that we can thread computed gotos, we might have
1738 a situation where we have a forced label in block B
1739 However, the label at the start of block B might still be
1740 used in other ways (think about the runtime checking for
1741 Fortran assigned gotos). So we can not just delete the
1742 label. Instead we move the label to the start of block A. */
1743 if (FORCED_LABEL (label))
1745 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1746 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1748 /* Other user labels keep around in a form of a debug stmt. */
1749 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1751 gimple dbg = gimple_build_debug_bind (label,
1752 integer_zero_node,
1753 stmt);
1754 gimple_debug_bind_reset_value (dbg);
1755 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1758 lp_nr = EH_LANDING_PAD_NR (label);
1759 if (lp_nr)
1761 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1762 lp->post_landing_pad = NULL;
1765 else
1767 gimple_set_bb (stmt, a);
1768 gsi_next (&gsi);
1772 /* Merge the sequences. */
1773 last = gsi_last_bb (a);
1774 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1775 set_bb_seq (b, NULL);
1777 if (cfgcleanup_altered_bbs)
1778 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1782 /* Return the one of two successors of BB that is not reachable by a
1783 complex edge, if there is one. Else, return BB. We use
1784 this in optimizations that use post-dominators for their heuristics,
1785 to catch the cases in C++ where function calls are involved. */
1787 basic_block
1788 single_noncomplex_succ (basic_block bb)
1790 edge e0, e1;
1791 if (EDGE_COUNT (bb->succs) != 2)
1792 return bb;
1794 e0 = EDGE_SUCC (bb, 0);
1795 e1 = EDGE_SUCC (bb, 1);
1796 if (e0->flags & EDGE_COMPLEX)
1797 return e1->dest;
1798 if (e1->flags & EDGE_COMPLEX)
1799 return e0->dest;
1801 return bb;
1804 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1806 void
1807 notice_special_calls (gimple call)
1809 int flags = gimple_call_flags (call);
1811 if (flags & ECF_MAY_BE_ALLOCA)
1812 cfun->calls_alloca = true;
1813 if (flags & ECF_RETURNS_TWICE)
1814 cfun->calls_setjmp = true;
1818 /* Clear flags set by notice_special_calls. Used by dead code removal
1819 to update the flags. */
1821 void
1822 clear_special_calls (void)
1824 cfun->calls_alloca = false;
1825 cfun->calls_setjmp = false;
1828 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1830 static void
1831 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1833 /* Since this block is no longer reachable, we can just delete all
1834 of its PHI nodes. */
1835 remove_phi_nodes (bb);
1837 /* Remove edges to BB's successors. */
1838 while (EDGE_COUNT (bb->succs) > 0)
1839 remove_edge (EDGE_SUCC (bb, 0));
1843 /* Remove statements of basic block BB. */
1845 static void
1846 remove_bb (basic_block bb)
1848 gimple_stmt_iterator i;
1850 if (dump_file)
1852 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1853 if (dump_flags & TDF_DETAILS)
1855 dump_bb (bb, dump_file, 0);
1856 fprintf (dump_file, "\n");
1860 if (current_loops)
1862 struct loop *loop = bb->loop_father;
1864 /* If a loop gets removed, clean up the information associated
1865 with it. */
1866 if (loop->latch == bb
1867 || loop->header == bb)
1868 free_numbers_of_iterations_estimates_loop (loop);
1871 /* Remove all the instructions in the block. */
1872 if (bb_seq (bb) != NULL)
1874 /* Walk backwards so as to get a chance to substitute all
1875 released DEFs into debug stmts. See
1876 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1877 details. */
1878 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1880 gimple stmt = gsi_stmt (i);
1881 if (gimple_code (stmt) == GIMPLE_LABEL
1882 && (FORCED_LABEL (gimple_label_label (stmt))
1883 || DECL_NONLOCAL (gimple_label_label (stmt))))
1885 basic_block new_bb;
1886 gimple_stmt_iterator new_gsi;
1888 /* A non-reachable non-local label may still be referenced.
1889 But it no longer needs to carry the extra semantics of
1890 non-locality. */
1891 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1893 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1894 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1897 new_bb = bb->prev_bb;
1898 new_gsi = gsi_start_bb (new_bb);
1899 gsi_remove (&i, false);
1900 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1902 else
1904 /* Release SSA definitions if we are in SSA. Note that we
1905 may be called when not in SSA. For example,
1906 final_cleanup calls this function via
1907 cleanup_tree_cfg. */
1908 if (gimple_in_ssa_p (cfun))
1909 release_defs (stmt);
1911 gsi_remove (&i, true);
1914 if (gsi_end_p (i))
1915 i = gsi_last_bb (bb);
1916 else
1917 gsi_prev (&i);
1921 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1922 bb->il.gimple = NULL;
1926 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1927 predicate VAL, return the edge that will be taken out of the block.
1928 If VAL does not match a unique edge, NULL is returned. */
1930 edge
1931 find_taken_edge (basic_block bb, tree val)
1933 gimple stmt;
1935 stmt = last_stmt (bb);
1937 gcc_assert (stmt);
1938 gcc_assert (is_ctrl_stmt (stmt));
1940 if (val == NULL)
1941 return NULL;
1943 if (!is_gimple_min_invariant (val))
1944 return NULL;
1946 if (gimple_code (stmt) == GIMPLE_COND)
1947 return find_taken_edge_cond_expr (bb, val);
1949 if (gimple_code (stmt) == GIMPLE_SWITCH)
1950 return find_taken_edge_switch_expr (bb, val);
1952 if (computed_goto_p (stmt))
1954 /* Only optimize if the argument is a label, if the argument is
1955 not a label then we can not construct a proper CFG.
1957 It may be the case that we only need to allow the LABEL_REF to
1958 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1959 appear inside a LABEL_EXPR just to be safe. */
1960 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1961 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1962 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1963 return NULL;
1966 gcc_unreachable ();
1969 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1970 statement, determine which of the outgoing edges will be taken out of the
1971 block. Return NULL if either edge may be taken. */
1973 static edge
1974 find_taken_edge_computed_goto (basic_block bb, tree val)
1976 basic_block dest;
1977 edge e = NULL;
1979 dest = label_to_block (val);
1980 if (dest)
1982 e = find_edge (bb, dest);
1983 gcc_assert (e != NULL);
1986 return e;
1989 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1990 statement, determine which of the two edges will be taken out of the
1991 block. Return NULL if either edge may be taken. */
1993 static edge
1994 find_taken_edge_cond_expr (basic_block bb, tree val)
1996 edge true_edge, false_edge;
1998 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2000 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2001 return (integer_zerop (val) ? false_edge : true_edge);
2004 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2005 statement, determine which edge will be taken out of the block. Return
2006 NULL if any edge may be taken. */
2008 static edge
2009 find_taken_edge_switch_expr (basic_block bb, tree val)
2011 basic_block dest_bb;
2012 edge e;
2013 gimple switch_stmt;
2014 tree taken_case;
2016 switch_stmt = last_stmt (bb);
2017 taken_case = find_case_label_for_value (switch_stmt, val);
2018 dest_bb = label_to_block (CASE_LABEL (taken_case));
2020 e = find_edge (bb, dest_bb);
2021 gcc_assert (e);
2022 return e;
2026 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2027 We can make optimal use here of the fact that the case labels are
2028 sorted: We can do a binary search for a case matching VAL. */
2030 static tree
2031 find_case_label_for_value (gimple switch_stmt, tree val)
2033 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2034 tree default_case = gimple_switch_default_label (switch_stmt);
2036 for (low = 0, high = n; high - low > 1; )
2038 size_t i = (high + low) / 2;
2039 tree t = gimple_switch_label (switch_stmt, i);
2040 int cmp;
2042 /* Cache the result of comparing CASE_LOW and val. */
2043 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2045 if (cmp > 0)
2046 high = i;
2047 else
2048 low = i;
2050 if (CASE_HIGH (t) == NULL)
2052 /* A singe-valued case label. */
2053 if (cmp == 0)
2054 return t;
2056 else
2058 /* A case range. We can only handle integer ranges. */
2059 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2060 return t;
2064 return default_case;
2068 /* Dump a basic block on stderr. */
2070 void
2071 gimple_debug_bb (basic_block bb)
2073 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2077 /* Dump basic block with index N on stderr. */
2079 basic_block
2080 gimple_debug_bb_n (int n)
2082 gimple_debug_bb (BASIC_BLOCK (n));
2083 return BASIC_BLOCK (n);
2087 /* Dump the CFG on stderr.
2089 FLAGS are the same used by the tree dumping functions
2090 (see TDF_* in tree-pass.h). */
2092 void
2093 gimple_debug_cfg (int flags)
2095 gimple_dump_cfg (stderr, flags);
2099 /* Dump the program showing basic block boundaries on the given FILE.
2101 FLAGS are the same used by the tree dumping functions (see TDF_* in
2102 tree.h). */
2104 void
2105 gimple_dump_cfg (FILE *file, int flags)
2107 if (flags & TDF_DETAILS)
2109 dump_function_header (file, current_function_decl, flags);
2110 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2111 n_basic_blocks, n_edges, last_basic_block);
2113 brief_dump_cfg (file);
2114 fprintf (file, "\n");
2117 if (flags & TDF_STATS)
2118 dump_cfg_stats (file);
2120 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2124 /* Dump CFG statistics on FILE. */
2126 void
2127 dump_cfg_stats (FILE *file)
2129 static long max_num_merged_labels = 0;
2130 unsigned long size, total = 0;
2131 long num_edges;
2132 basic_block bb;
2133 const char * const fmt_str = "%-30s%-13s%12s\n";
2134 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2135 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2136 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2137 const char *funcname
2138 = lang_hooks.decl_printable_name (current_function_decl, 2);
2141 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2143 fprintf (file, "---------------------------------------------------------\n");
2144 fprintf (file, fmt_str, "", " Number of ", "Memory");
2145 fprintf (file, fmt_str, "", " instances ", "used ");
2146 fprintf (file, "---------------------------------------------------------\n");
2148 size = n_basic_blocks * sizeof (struct basic_block_def);
2149 total += size;
2150 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2151 SCALE (size), LABEL (size));
2153 num_edges = 0;
2154 FOR_EACH_BB (bb)
2155 num_edges += EDGE_COUNT (bb->succs);
2156 size = num_edges * sizeof (struct edge_def);
2157 total += size;
2158 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2160 fprintf (file, "---------------------------------------------------------\n");
2161 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2162 LABEL (total));
2163 fprintf (file, "---------------------------------------------------------\n");
2164 fprintf (file, "\n");
2166 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2167 max_num_merged_labels = cfg_stats.num_merged_labels;
2169 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2170 cfg_stats.num_merged_labels, max_num_merged_labels);
2172 fprintf (file, "\n");
2176 /* Dump CFG statistics on stderr. Keep extern so that it's always
2177 linked in the final executable. */
2179 DEBUG_FUNCTION void
2180 debug_cfg_stats (void)
2182 dump_cfg_stats (stderr);
2186 /* Dump the flowgraph to a .vcg FILE. */
2188 static void
2189 gimple_cfg2vcg (FILE *file)
2191 edge e;
2192 edge_iterator ei;
2193 basic_block bb;
2194 const char *funcname
2195 = lang_hooks.decl_printable_name (current_function_decl, 2);
2197 /* Write the file header. */
2198 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2199 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2200 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2202 /* Write blocks and edges. */
2203 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2205 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2206 e->dest->index);
2208 if (e->flags & EDGE_FAKE)
2209 fprintf (file, " linestyle: dotted priority: 10");
2210 else
2211 fprintf (file, " linestyle: solid priority: 100");
2213 fprintf (file, " }\n");
2215 fputc ('\n', file);
2217 FOR_EACH_BB (bb)
2219 enum gimple_code head_code, end_code;
2220 const char *head_name, *end_name;
2221 int head_line = 0;
2222 int end_line = 0;
2223 gimple first = first_stmt (bb);
2224 gimple last = last_stmt (bb);
2226 if (first)
2228 head_code = gimple_code (first);
2229 head_name = gimple_code_name[head_code];
2230 head_line = get_lineno (first);
2232 else
2233 head_name = "no-statement";
2235 if (last)
2237 end_code = gimple_code (last);
2238 end_name = gimple_code_name[end_code];
2239 end_line = get_lineno (last);
2241 else
2242 end_name = "no-statement";
2244 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2245 bb->index, bb->index, head_name, head_line, end_name,
2246 end_line);
2248 FOR_EACH_EDGE (e, ei, bb->succs)
2250 if (e->dest == EXIT_BLOCK_PTR)
2251 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2252 else
2253 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2255 if (e->flags & EDGE_FAKE)
2256 fprintf (file, " priority: 10 linestyle: dotted");
2257 else
2258 fprintf (file, " priority: 100 linestyle: solid");
2260 fprintf (file, " }\n");
2263 if (bb->next_bb != EXIT_BLOCK_PTR)
2264 fputc ('\n', file);
2267 fputs ("}\n\n", file);
2272 /*---------------------------------------------------------------------------
2273 Miscellaneous helpers
2274 ---------------------------------------------------------------------------*/
2276 /* Return true if T represents a stmt that always transfers control. */
2278 bool
2279 is_ctrl_stmt (gimple t)
2281 switch (gimple_code (t))
2283 case GIMPLE_COND:
2284 case GIMPLE_SWITCH:
2285 case GIMPLE_GOTO:
2286 case GIMPLE_RETURN:
2287 case GIMPLE_RESX:
2288 return true;
2289 default:
2290 return false;
2295 /* Return true if T is a statement that may alter the flow of control
2296 (e.g., a call to a non-returning function). */
2298 bool
2299 is_ctrl_altering_stmt (gimple t)
2301 gcc_assert (t);
2303 switch (gimple_code (t))
2305 case GIMPLE_CALL:
2307 int flags = gimple_call_flags (t);
2309 /* A non-pure/const call alters flow control if the current
2310 function has nonlocal labels. */
2311 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2312 && cfun->has_nonlocal_label)
2313 return true;
2315 /* A call also alters control flow if it does not return. */
2316 if (flags & ECF_NORETURN)
2317 return true;
2319 /* TM ending statements have backedges out of the transaction.
2320 Return true so we split the basic block containing them.
2321 Note that the TM_BUILTIN test is merely an optimization. */
2322 if ((flags & ECF_TM_BUILTIN)
2323 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2324 return true;
2326 /* BUILT_IN_RETURN call is same as return statement. */
2327 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2328 return true;
2330 break;
2332 case GIMPLE_EH_DISPATCH:
2333 /* EH_DISPATCH branches to the individual catch handlers at
2334 this level of a try or allowed-exceptions region. It can
2335 fallthru to the next statement as well. */
2336 return true;
2338 case GIMPLE_ASM:
2339 if (gimple_asm_nlabels (t) > 0)
2340 return true;
2341 break;
2343 CASE_GIMPLE_OMP:
2344 /* OpenMP directives alter control flow. */
2345 return true;
2347 case GIMPLE_TRANSACTION:
2348 /* A transaction start alters control flow. */
2349 return true;
2351 default:
2352 break;
2355 /* If a statement can throw, it alters control flow. */
2356 return stmt_can_throw_internal (t);
2360 /* Return true if T is a simple local goto. */
2362 bool
2363 simple_goto_p (gimple t)
2365 return (gimple_code (t) == GIMPLE_GOTO
2366 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2370 /* Return true if T can make an abnormal transfer of control flow.
2371 Transfers of control flow associated with EH are excluded. */
2373 bool
2374 stmt_can_make_abnormal_goto (gimple t)
2376 if (computed_goto_p (t))
2377 return true;
2378 if (is_gimple_call (t))
2379 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2380 && !(gimple_call_flags (t) & ECF_LEAF));
2381 return false;
2385 /* Return true if STMT should start a new basic block. PREV_STMT is
2386 the statement preceding STMT. It is used when STMT is a label or a
2387 case label. Labels should only start a new basic block if their
2388 previous statement wasn't a label. Otherwise, sequence of labels
2389 would generate unnecessary basic blocks that only contain a single
2390 label. */
2392 static inline bool
2393 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2395 if (stmt == NULL)
2396 return false;
2398 /* Labels start a new basic block only if the preceding statement
2399 wasn't a label of the same type. This prevents the creation of
2400 consecutive blocks that have nothing but a single label. */
2401 if (gimple_code (stmt) == GIMPLE_LABEL)
2403 /* Nonlocal and computed GOTO targets always start a new block. */
2404 if (DECL_NONLOCAL (gimple_label_label (stmt))
2405 || FORCED_LABEL (gimple_label_label (stmt)))
2406 return true;
2408 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2410 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2411 return true;
2413 cfg_stats.num_merged_labels++;
2414 return false;
2416 else
2417 return true;
2420 return false;
2424 /* Return true if T should end a basic block. */
2426 bool
2427 stmt_ends_bb_p (gimple t)
2429 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2432 /* Remove block annotations and other data structures. */
2434 void
2435 delete_tree_cfg_annotations (void)
2437 label_to_block_map = NULL;
2441 /* Return the first statement in basic block BB. */
2443 gimple
2444 first_stmt (basic_block bb)
2446 gimple_stmt_iterator i = gsi_start_bb (bb);
2447 gimple stmt = NULL;
2449 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2451 gsi_next (&i);
2452 stmt = NULL;
2454 return stmt;
2457 /* Return the first non-label statement in basic block BB. */
2459 static gimple
2460 first_non_label_stmt (basic_block bb)
2462 gimple_stmt_iterator i = gsi_start_bb (bb);
2463 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2464 gsi_next (&i);
2465 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2468 /* Return the last statement in basic block BB. */
2470 gimple
2471 last_stmt (basic_block bb)
2473 gimple_stmt_iterator i = gsi_last_bb (bb);
2474 gimple stmt = NULL;
2476 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2478 gsi_prev (&i);
2479 stmt = NULL;
2481 return stmt;
2484 /* Return the last statement of an otherwise empty block. Return NULL
2485 if the block is totally empty, or if it contains more than one
2486 statement. */
2488 gimple
2489 last_and_only_stmt (basic_block bb)
2491 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2492 gimple last, prev;
2494 if (gsi_end_p (i))
2495 return NULL;
2497 last = gsi_stmt (i);
2498 gsi_prev_nondebug (&i);
2499 if (gsi_end_p (i))
2500 return last;
2502 /* Empty statements should no longer appear in the instruction stream.
2503 Everything that might have appeared before should be deleted by
2504 remove_useless_stmts, and the optimizers should just gsi_remove
2505 instead of smashing with build_empty_stmt.
2507 Thus the only thing that should appear here in a block containing
2508 one executable statement is a label. */
2509 prev = gsi_stmt (i);
2510 if (gimple_code (prev) == GIMPLE_LABEL)
2511 return last;
2512 else
2513 return NULL;
2516 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2518 static void
2519 reinstall_phi_args (edge new_edge, edge old_edge)
2521 edge_var_map_vector v;
2522 edge_var_map *vm;
2523 int i;
2524 gimple_stmt_iterator phis;
2526 v = redirect_edge_var_map_vector (old_edge);
2527 if (!v)
2528 return;
2530 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2531 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2532 i++, gsi_next (&phis))
2534 gimple phi = gsi_stmt (phis);
2535 tree result = redirect_edge_var_map_result (vm);
2536 tree arg = redirect_edge_var_map_def (vm);
2538 gcc_assert (result == gimple_phi_result (phi));
2540 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2543 redirect_edge_var_map_clear (old_edge);
2546 /* Returns the basic block after which the new basic block created
2547 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2548 near its "logical" location. This is of most help to humans looking
2549 at debugging dumps. */
2551 static basic_block
2552 split_edge_bb_loc (edge edge_in)
2554 basic_block dest = edge_in->dest;
2555 basic_block dest_prev = dest->prev_bb;
2557 if (dest_prev)
2559 edge e = find_edge (dest_prev, dest);
2560 if (e && !(e->flags & EDGE_COMPLEX))
2561 return edge_in->src;
2563 return dest_prev;
2566 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2567 Abort on abnormal edges. */
2569 static basic_block
2570 gimple_split_edge (edge edge_in)
2572 basic_block new_bb, after_bb, dest;
2573 edge new_edge, e;
2575 /* Abnormal edges cannot be split. */
2576 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2578 dest = edge_in->dest;
2580 after_bb = split_edge_bb_loc (edge_in);
2582 new_bb = create_empty_bb (after_bb);
2583 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2584 new_bb->count = edge_in->count;
2585 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2586 new_edge->probability = REG_BR_PROB_BASE;
2587 new_edge->count = edge_in->count;
2589 e = redirect_edge_and_branch (edge_in, new_bb);
2590 gcc_assert (e == edge_in);
2591 reinstall_phi_args (new_edge, e);
2593 return new_bb;
2597 /* Verify properties of the address expression T with base object BASE. */
2599 static tree
2600 verify_address (tree t, tree base)
2602 bool old_constant;
2603 bool old_side_effects;
2604 bool new_constant;
2605 bool new_side_effects;
2607 old_constant = TREE_CONSTANT (t);
2608 old_side_effects = TREE_SIDE_EFFECTS (t);
2610 recompute_tree_invariant_for_addr_expr (t);
2611 new_side_effects = TREE_SIDE_EFFECTS (t);
2612 new_constant = TREE_CONSTANT (t);
2614 if (old_constant != new_constant)
2616 error ("constant not recomputed when ADDR_EXPR changed");
2617 return t;
2619 if (old_side_effects != new_side_effects)
2621 error ("side effects not recomputed when ADDR_EXPR changed");
2622 return t;
2625 if (!(TREE_CODE (base) == VAR_DECL
2626 || TREE_CODE (base) == PARM_DECL
2627 || TREE_CODE (base) == RESULT_DECL))
2628 return NULL_TREE;
2630 if (DECL_GIMPLE_REG_P (base))
2632 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2633 return base;
2636 return NULL_TREE;
2639 /* Callback for walk_tree, check that all elements with address taken are
2640 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2641 inside a PHI node. */
2643 static tree
2644 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2646 tree t = *tp, x;
2648 if (TYPE_P (t))
2649 *walk_subtrees = 0;
2651 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2652 #define CHECK_OP(N, MSG) \
2653 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2654 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2656 switch (TREE_CODE (t))
2658 case SSA_NAME:
2659 if (SSA_NAME_IN_FREE_LIST (t))
2661 error ("SSA name in freelist but still referenced");
2662 return *tp;
2664 break;
2666 case INDIRECT_REF:
2667 error ("INDIRECT_REF in gimple IL");
2668 return t;
2670 case MEM_REF:
2671 x = TREE_OPERAND (t, 0);
2672 if (!POINTER_TYPE_P (TREE_TYPE (x))
2673 || !is_gimple_mem_ref_addr (x))
2675 error ("invalid first operand of MEM_REF");
2676 return x;
2678 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2679 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2681 error ("invalid offset operand of MEM_REF");
2682 return TREE_OPERAND (t, 1);
2684 if (TREE_CODE (x) == ADDR_EXPR
2685 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2686 return x;
2687 *walk_subtrees = 0;
2688 break;
2690 case ASSERT_EXPR:
2691 x = fold (ASSERT_EXPR_COND (t));
2692 if (x == boolean_false_node)
2694 error ("ASSERT_EXPR with an always-false condition");
2695 return *tp;
2697 break;
2699 case MODIFY_EXPR:
2700 error ("MODIFY_EXPR not expected while having tuples");
2701 return *tp;
2703 case ADDR_EXPR:
2705 tree tem;
2707 gcc_assert (is_gimple_address (t));
2709 /* Skip any references (they will be checked when we recurse down the
2710 tree) and ensure that any variable used as a prefix is marked
2711 addressable. */
2712 for (x = TREE_OPERAND (t, 0);
2713 handled_component_p (x);
2714 x = TREE_OPERAND (x, 0))
2717 if ((tem = verify_address (t, x)))
2718 return tem;
2720 if (!(TREE_CODE (x) == VAR_DECL
2721 || TREE_CODE (x) == PARM_DECL
2722 || TREE_CODE (x) == RESULT_DECL))
2723 return NULL;
2725 if (!TREE_ADDRESSABLE (x))
2727 error ("address taken, but ADDRESSABLE bit not set");
2728 return x;
2731 break;
2734 case COND_EXPR:
2735 x = COND_EXPR_COND (t);
2736 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2738 error ("non-integral used in condition");
2739 return x;
2741 if (!is_gimple_condexpr (x))
2743 error ("invalid conditional operand");
2744 return x;
2746 break;
2748 case NON_LVALUE_EXPR:
2749 case TRUTH_NOT_EXPR:
2750 gcc_unreachable ();
2752 CASE_CONVERT:
2753 case FIX_TRUNC_EXPR:
2754 case FLOAT_EXPR:
2755 case NEGATE_EXPR:
2756 case ABS_EXPR:
2757 case BIT_NOT_EXPR:
2758 CHECK_OP (0, "invalid operand to unary operator");
2759 break;
2761 case REALPART_EXPR:
2762 case IMAGPART_EXPR:
2763 case COMPONENT_REF:
2764 case ARRAY_REF:
2765 case ARRAY_RANGE_REF:
2766 case BIT_FIELD_REF:
2767 case VIEW_CONVERT_EXPR:
2768 /* We have a nest of references. Verify that each of the operands
2769 that determine where to reference is either a constant or a variable,
2770 verify that the base is valid, and then show we've already checked
2771 the subtrees. */
2772 while (handled_component_p (t))
2774 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2775 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2776 else if (TREE_CODE (t) == ARRAY_REF
2777 || TREE_CODE (t) == ARRAY_RANGE_REF)
2779 CHECK_OP (1, "invalid array index");
2780 if (TREE_OPERAND (t, 2))
2781 CHECK_OP (2, "invalid array lower bound");
2782 if (TREE_OPERAND (t, 3))
2783 CHECK_OP (3, "invalid array stride");
2785 else if (TREE_CODE (t) == BIT_FIELD_REF)
2787 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2788 || !host_integerp (TREE_OPERAND (t, 2), 1))
2790 error ("invalid position or size operand to BIT_FIELD_REF");
2791 return t;
2793 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2794 && (TYPE_PRECISION (TREE_TYPE (t))
2795 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2797 error ("integral result type precision does not match "
2798 "field size of BIT_FIELD_REF");
2799 return t;
2801 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2802 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2803 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2804 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2805 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2807 error ("mode precision of non-integral result does not "
2808 "match field size of BIT_FIELD_REF");
2809 return t;
2813 t = TREE_OPERAND (t, 0);
2816 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2818 error ("invalid reference prefix");
2819 return t;
2821 *walk_subtrees = 0;
2822 break;
2823 case PLUS_EXPR:
2824 case MINUS_EXPR:
2825 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2826 POINTER_PLUS_EXPR. */
2827 if (POINTER_TYPE_P (TREE_TYPE (t)))
2829 error ("invalid operand to plus/minus, type is a pointer");
2830 return t;
2832 CHECK_OP (0, "invalid operand to binary operator");
2833 CHECK_OP (1, "invalid operand to binary operator");
2834 break;
2836 case POINTER_PLUS_EXPR:
2837 /* Check to make sure the first operand is a pointer or reference type. */
2838 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2840 error ("invalid operand to pointer plus, first operand is not a pointer");
2841 return t;
2843 /* Check to make sure the second operand is a ptrofftype. */
2844 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2846 error ("invalid operand to pointer plus, second operand is not an "
2847 "integer type of appropriate width");
2848 return t;
2850 /* FALLTHROUGH */
2851 case LT_EXPR:
2852 case LE_EXPR:
2853 case GT_EXPR:
2854 case GE_EXPR:
2855 case EQ_EXPR:
2856 case NE_EXPR:
2857 case UNORDERED_EXPR:
2858 case ORDERED_EXPR:
2859 case UNLT_EXPR:
2860 case UNLE_EXPR:
2861 case UNGT_EXPR:
2862 case UNGE_EXPR:
2863 case UNEQ_EXPR:
2864 case LTGT_EXPR:
2865 case MULT_EXPR:
2866 case TRUNC_DIV_EXPR:
2867 case CEIL_DIV_EXPR:
2868 case FLOOR_DIV_EXPR:
2869 case ROUND_DIV_EXPR:
2870 case TRUNC_MOD_EXPR:
2871 case CEIL_MOD_EXPR:
2872 case FLOOR_MOD_EXPR:
2873 case ROUND_MOD_EXPR:
2874 case RDIV_EXPR:
2875 case EXACT_DIV_EXPR:
2876 case MIN_EXPR:
2877 case MAX_EXPR:
2878 case LSHIFT_EXPR:
2879 case RSHIFT_EXPR:
2880 case LROTATE_EXPR:
2881 case RROTATE_EXPR:
2882 case BIT_IOR_EXPR:
2883 case BIT_XOR_EXPR:
2884 case BIT_AND_EXPR:
2885 CHECK_OP (0, "invalid operand to binary operator");
2886 CHECK_OP (1, "invalid operand to binary operator");
2887 break;
2889 case CONSTRUCTOR:
2890 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2891 *walk_subtrees = 0;
2892 break;
2894 case CASE_LABEL_EXPR:
2895 if (CASE_CHAIN (t))
2897 error ("invalid CASE_CHAIN");
2898 return t;
2900 break;
2902 default:
2903 break;
2905 return NULL;
2907 #undef CHECK_OP
2911 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2912 Returns true if there is an error, otherwise false. */
2914 static bool
2915 verify_types_in_gimple_min_lval (tree expr)
2917 tree op;
2919 if (is_gimple_id (expr))
2920 return false;
2922 if (TREE_CODE (expr) != TARGET_MEM_REF
2923 && TREE_CODE (expr) != MEM_REF)
2925 error ("invalid expression for min lvalue");
2926 return true;
2929 /* TARGET_MEM_REFs are strange beasts. */
2930 if (TREE_CODE (expr) == TARGET_MEM_REF)
2931 return false;
2933 op = TREE_OPERAND (expr, 0);
2934 if (!is_gimple_val (op))
2936 error ("invalid operand in indirect reference");
2937 debug_generic_stmt (op);
2938 return true;
2940 /* Memory references now generally can involve a value conversion. */
2942 return false;
2945 /* Verify if EXPR is a valid GIMPLE reference expression. If
2946 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2947 if there is an error, otherwise false. */
2949 static bool
2950 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2952 while (handled_component_p (expr))
2954 tree op = TREE_OPERAND (expr, 0);
2956 if (TREE_CODE (expr) == ARRAY_REF
2957 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2959 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2960 || (TREE_OPERAND (expr, 2)
2961 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2962 || (TREE_OPERAND (expr, 3)
2963 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2965 error ("invalid operands to array reference");
2966 debug_generic_stmt (expr);
2967 return true;
2971 /* Verify if the reference array element types are compatible. */
2972 if (TREE_CODE (expr) == ARRAY_REF
2973 && !useless_type_conversion_p (TREE_TYPE (expr),
2974 TREE_TYPE (TREE_TYPE (op))))
2976 error ("type mismatch in array reference");
2977 debug_generic_stmt (TREE_TYPE (expr));
2978 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2979 return true;
2981 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2982 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2983 TREE_TYPE (TREE_TYPE (op))))
2985 error ("type mismatch in array range reference");
2986 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2987 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2988 return true;
2991 if ((TREE_CODE (expr) == REALPART_EXPR
2992 || TREE_CODE (expr) == IMAGPART_EXPR)
2993 && !useless_type_conversion_p (TREE_TYPE (expr),
2994 TREE_TYPE (TREE_TYPE (op))))
2996 error ("type mismatch in real/imagpart reference");
2997 debug_generic_stmt (TREE_TYPE (expr));
2998 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2999 return true;
3002 if (TREE_CODE (expr) == COMPONENT_REF
3003 && !useless_type_conversion_p (TREE_TYPE (expr),
3004 TREE_TYPE (TREE_OPERAND (expr, 1))))
3006 error ("type mismatch in component reference");
3007 debug_generic_stmt (TREE_TYPE (expr));
3008 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3009 return true;
3012 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3014 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3015 that their operand is not an SSA name or an invariant when
3016 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3017 bug). Otherwise there is nothing to verify, gross mismatches at
3018 most invoke undefined behavior. */
3019 if (require_lvalue
3020 && (TREE_CODE (op) == SSA_NAME
3021 || is_gimple_min_invariant (op)))
3023 error ("conversion of an SSA_NAME on the left hand side");
3024 debug_generic_stmt (expr);
3025 return true;
3027 else if (TREE_CODE (op) == SSA_NAME
3028 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3030 error ("conversion of register to a different size");
3031 debug_generic_stmt (expr);
3032 return true;
3034 else if (!handled_component_p (op))
3035 return false;
3038 expr = op;
3041 if (TREE_CODE (expr) == MEM_REF)
3043 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3045 error ("invalid address operand in MEM_REF");
3046 debug_generic_stmt (expr);
3047 return true;
3049 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3050 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3052 error ("invalid offset operand in MEM_REF");
3053 debug_generic_stmt (expr);
3054 return true;
3057 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3059 if (!TMR_BASE (expr)
3060 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3062 error ("invalid address operand in TARGET_MEM_REF");
3063 return true;
3065 if (!TMR_OFFSET (expr)
3066 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3067 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3069 error ("invalid offset operand in TARGET_MEM_REF");
3070 debug_generic_stmt (expr);
3071 return true;
3075 return ((require_lvalue || !is_gimple_min_invariant (expr))
3076 && verify_types_in_gimple_min_lval (expr));
3079 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3080 list of pointer-to types that is trivially convertible to DEST. */
3082 static bool
3083 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3085 tree src;
3087 if (!TYPE_POINTER_TO (src_obj))
3088 return true;
3090 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3091 if (useless_type_conversion_p (dest, src))
3092 return true;
3094 return false;
3097 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3098 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3100 static bool
3101 valid_fixed_convert_types_p (tree type1, tree type2)
3103 return (FIXED_POINT_TYPE_P (type1)
3104 && (INTEGRAL_TYPE_P (type2)
3105 || SCALAR_FLOAT_TYPE_P (type2)
3106 || FIXED_POINT_TYPE_P (type2)));
3109 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3110 is a problem, otherwise false. */
3112 static bool
3113 verify_gimple_call (gimple stmt)
3115 tree fn = gimple_call_fn (stmt);
3116 tree fntype, fndecl;
3117 unsigned i;
3119 if (gimple_call_internal_p (stmt))
3121 if (fn)
3123 error ("gimple call has two targets");
3124 debug_generic_stmt (fn);
3125 return true;
3128 else
3130 if (!fn)
3132 error ("gimple call has no target");
3133 return true;
3137 if (fn && !is_gimple_call_addr (fn))
3139 error ("invalid function in gimple call");
3140 debug_generic_stmt (fn);
3141 return true;
3144 if (fn
3145 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3146 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3147 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3149 error ("non-function in gimple call");
3150 return true;
3153 fndecl = gimple_call_fndecl (stmt);
3154 if (fndecl
3155 && TREE_CODE (fndecl) == FUNCTION_DECL
3156 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3157 && !DECL_PURE_P (fndecl)
3158 && !TREE_READONLY (fndecl))
3160 error ("invalid pure const state for function");
3161 return true;
3164 if (gimple_call_lhs (stmt)
3165 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3166 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3168 error ("invalid LHS in gimple call");
3169 return true;
3172 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3174 error ("LHS in noreturn call");
3175 return true;
3178 fntype = gimple_call_fntype (stmt);
3179 if (fntype
3180 && gimple_call_lhs (stmt)
3181 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3182 TREE_TYPE (fntype))
3183 /* ??? At least C++ misses conversions at assignments from
3184 void * call results.
3185 ??? Java is completely off. Especially with functions
3186 returning java.lang.Object.
3187 For now simply allow arbitrary pointer type conversions. */
3188 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3189 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3191 error ("invalid conversion in gimple call");
3192 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3193 debug_generic_stmt (TREE_TYPE (fntype));
3194 return true;
3197 if (gimple_call_chain (stmt)
3198 && !is_gimple_val (gimple_call_chain (stmt)))
3200 error ("invalid static chain in gimple call");
3201 debug_generic_stmt (gimple_call_chain (stmt));
3202 return true;
3205 /* If there is a static chain argument, this should not be an indirect
3206 call, and the decl should have DECL_STATIC_CHAIN set. */
3207 if (gimple_call_chain (stmt))
3209 if (!gimple_call_fndecl (stmt))
3211 error ("static chain in indirect gimple call");
3212 return true;
3214 fn = TREE_OPERAND (fn, 0);
3216 if (!DECL_STATIC_CHAIN (fn))
3218 error ("static chain with function that doesn%'t use one");
3219 return true;
3223 /* ??? The C frontend passes unpromoted arguments in case it
3224 didn't see a function declaration before the call. So for now
3225 leave the call arguments mostly unverified. Once we gimplify
3226 unit-at-a-time we have a chance to fix this. */
3228 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3230 tree arg = gimple_call_arg (stmt, i);
3231 if ((is_gimple_reg_type (TREE_TYPE (arg))
3232 && !is_gimple_val (arg))
3233 || (!is_gimple_reg_type (TREE_TYPE (arg))
3234 && !is_gimple_lvalue (arg)))
3236 error ("invalid argument to gimple call");
3237 debug_generic_expr (arg);
3238 return true;
3242 return false;
3245 /* Verifies the gimple comparison with the result type TYPE and
3246 the operands OP0 and OP1. */
3248 static bool
3249 verify_gimple_comparison (tree type, tree op0, tree op1)
3251 tree op0_type = TREE_TYPE (op0);
3252 tree op1_type = TREE_TYPE (op1);
3254 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3256 error ("invalid operands in gimple comparison");
3257 return true;
3260 /* For comparisons we do not have the operations type as the
3261 effective type the comparison is carried out in. Instead
3262 we require that either the first operand is trivially
3263 convertible into the second, or the other way around.
3264 Because we special-case pointers to void we allow
3265 comparisons of pointers with the same mode as well. */
3266 if (!useless_type_conversion_p (op0_type, op1_type)
3267 && !useless_type_conversion_p (op1_type, op0_type)
3268 && (!POINTER_TYPE_P (op0_type)
3269 || !POINTER_TYPE_P (op1_type)
3270 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3272 error ("mismatching comparison operand types");
3273 debug_generic_expr (op0_type);
3274 debug_generic_expr (op1_type);
3275 return true;
3278 /* The resulting type of a comparison may be an effective boolean type. */
3279 if (INTEGRAL_TYPE_P (type)
3280 && (TREE_CODE (type) == BOOLEAN_TYPE
3281 || TYPE_PRECISION (type) == 1))
3283 /* Or an integer vector type with the same size and element count
3284 as the comparison operand types. */
3285 else if (TREE_CODE (type) == VECTOR_TYPE
3286 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3288 if (TREE_CODE (op0_type) != VECTOR_TYPE
3289 || TREE_CODE (op1_type) != VECTOR_TYPE)
3291 error ("non-vector operands in vector comparison");
3292 debug_generic_expr (op0_type);
3293 debug_generic_expr (op1_type);
3294 return true;
3297 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3298 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3299 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3301 error ("invalid vector comparison resulting type");
3302 debug_generic_expr (type);
3303 return true;
3306 else
3308 error ("bogus comparison result type");
3309 debug_generic_expr (type);
3310 return true;
3313 return false;
3316 /* Verify a gimple assignment statement STMT with an unary rhs.
3317 Returns true if anything is wrong. */
3319 static bool
3320 verify_gimple_assign_unary (gimple stmt)
3322 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3323 tree lhs = gimple_assign_lhs (stmt);
3324 tree lhs_type = TREE_TYPE (lhs);
3325 tree rhs1 = gimple_assign_rhs1 (stmt);
3326 tree rhs1_type = TREE_TYPE (rhs1);
3328 if (!is_gimple_reg (lhs))
3330 error ("non-register as LHS of unary operation");
3331 return true;
3334 if (!is_gimple_val (rhs1))
3336 error ("invalid operand in unary operation");
3337 return true;
3340 /* First handle conversions. */
3341 switch (rhs_code)
3343 CASE_CONVERT:
3345 /* Allow conversions from pointer type to integral type only if
3346 there is no sign or zero extension involved.
3347 For targets were the precision of ptrofftype doesn't match that
3348 of pointers we need to allow arbitrary conversions to ptrofftype. */
3349 if ((POINTER_TYPE_P (lhs_type)
3350 && INTEGRAL_TYPE_P (rhs1_type))
3351 || (POINTER_TYPE_P (rhs1_type)
3352 && INTEGRAL_TYPE_P (lhs_type)
3353 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3354 || ptrofftype_p (sizetype))))
3355 return false;
3357 /* Allow conversion from integer to offset type and vice versa. */
3358 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3359 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3360 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3361 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3362 return false;
3364 /* Otherwise assert we are converting between types of the
3365 same kind. */
3366 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3368 error ("invalid types in nop conversion");
3369 debug_generic_expr (lhs_type);
3370 debug_generic_expr (rhs1_type);
3371 return true;
3374 return false;
3377 case ADDR_SPACE_CONVERT_EXPR:
3379 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3380 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3381 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3383 error ("invalid types in address space conversion");
3384 debug_generic_expr (lhs_type);
3385 debug_generic_expr (rhs1_type);
3386 return true;
3389 return false;
3392 case FIXED_CONVERT_EXPR:
3394 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3395 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3397 error ("invalid types in fixed-point conversion");
3398 debug_generic_expr (lhs_type);
3399 debug_generic_expr (rhs1_type);
3400 return true;
3403 return false;
3406 case FLOAT_EXPR:
3408 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3409 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3410 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3412 error ("invalid types in conversion to floating point");
3413 debug_generic_expr (lhs_type);
3414 debug_generic_expr (rhs1_type);
3415 return true;
3418 return false;
3421 case FIX_TRUNC_EXPR:
3423 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3424 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3425 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3427 error ("invalid types in conversion to integer");
3428 debug_generic_expr (lhs_type);
3429 debug_generic_expr (rhs1_type);
3430 return true;
3433 return false;
3436 case VEC_UNPACK_HI_EXPR:
3437 case VEC_UNPACK_LO_EXPR:
3438 case REDUC_MAX_EXPR:
3439 case REDUC_MIN_EXPR:
3440 case REDUC_PLUS_EXPR:
3441 case VEC_UNPACK_FLOAT_HI_EXPR:
3442 case VEC_UNPACK_FLOAT_LO_EXPR:
3443 /* FIXME. */
3444 return false;
3446 case NEGATE_EXPR:
3447 case ABS_EXPR:
3448 case BIT_NOT_EXPR:
3449 case PAREN_EXPR:
3450 case NON_LVALUE_EXPR:
3451 case CONJ_EXPR:
3452 break;
3454 default:
3455 gcc_unreachable ();
3458 /* For the remaining codes assert there is no conversion involved. */
3459 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3461 error ("non-trivial conversion in unary operation");
3462 debug_generic_expr (lhs_type);
3463 debug_generic_expr (rhs1_type);
3464 return true;
3467 return false;
3470 /* Verify a gimple assignment statement STMT with a binary rhs.
3471 Returns true if anything is wrong. */
3473 static bool
3474 verify_gimple_assign_binary (gimple stmt)
3476 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3477 tree lhs = gimple_assign_lhs (stmt);
3478 tree lhs_type = TREE_TYPE (lhs);
3479 tree rhs1 = gimple_assign_rhs1 (stmt);
3480 tree rhs1_type = TREE_TYPE (rhs1);
3481 tree rhs2 = gimple_assign_rhs2 (stmt);
3482 tree rhs2_type = TREE_TYPE (rhs2);
3484 if (!is_gimple_reg (lhs))
3486 error ("non-register as LHS of binary operation");
3487 return true;
3490 if (!is_gimple_val (rhs1)
3491 || !is_gimple_val (rhs2))
3493 error ("invalid operands in binary operation");
3494 return true;
3497 /* First handle operations that involve different types. */
3498 switch (rhs_code)
3500 case COMPLEX_EXPR:
3502 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3503 || !(INTEGRAL_TYPE_P (rhs1_type)
3504 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3505 || !(INTEGRAL_TYPE_P (rhs2_type)
3506 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3508 error ("type mismatch in complex expression");
3509 debug_generic_expr (lhs_type);
3510 debug_generic_expr (rhs1_type);
3511 debug_generic_expr (rhs2_type);
3512 return true;
3515 return false;
3518 case LSHIFT_EXPR:
3519 case RSHIFT_EXPR:
3520 case LROTATE_EXPR:
3521 case RROTATE_EXPR:
3523 /* Shifts and rotates are ok on integral types, fixed point
3524 types and integer vector types. */
3525 if ((!INTEGRAL_TYPE_P (rhs1_type)
3526 && !FIXED_POINT_TYPE_P (rhs1_type)
3527 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3528 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3529 || (!INTEGRAL_TYPE_P (rhs2_type)
3530 /* Vector shifts of vectors are also ok. */
3531 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3532 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3533 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3534 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3535 || !useless_type_conversion_p (lhs_type, rhs1_type))
3537 error ("type mismatch in shift expression");
3538 debug_generic_expr (lhs_type);
3539 debug_generic_expr (rhs1_type);
3540 debug_generic_expr (rhs2_type);
3541 return true;
3544 return false;
3547 case VEC_LSHIFT_EXPR:
3548 case VEC_RSHIFT_EXPR:
3550 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3551 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3552 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3553 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3554 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3555 || (!INTEGRAL_TYPE_P (rhs2_type)
3556 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3557 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3558 || !useless_type_conversion_p (lhs_type, rhs1_type))
3560 error ("type mismatch in vector shift expression");
3561 debug_generic_expr (lhs_type);
3562 debug_generic_expr (rhs1_type);
3563 debug_generic_expr (rhs2_type);
3564 return true;
3566 /* For shifting a vector of non-integral components we
3567 only allow shifting by a constant multiple of the element size. */
3568 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3569 && (TREE_CODE (rhs2) != INTEGER_CST
3570 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3571 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3573 error ("non-element sized vector shift of floating point vector");
3574 return true;
3577 return false;
3580 case WIDEN_LSHIFT_EXPR:
3582 if (!INTEGRAL_TYPE_P (lhs_type)
3583 || !INTEGRAL_TYPE_P (rhs1_type)
3584 || TREE_CODE (rhs2) != INTEGER_CST
3585 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3587 error ("type mismatch in widening vector shift expression");
3588 debug_generic_expr (lhs_type);
3589 debug_generic_expr (rhs1_type);
3590 debug_generic_expr (rhs2_type);
3591 return true;
3594 return false;
3597 case VEC_WIDEN_LSHIFT_HI_EXPR:
3598 case VEC_WIDEN_LSHIFT_LO_EXPR:
3600 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3601 || TREE_CODE (lhs_type) != VECTOR_TYPE
3602 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3603 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3604 || TREE_CODE (rhs2) != INTEGER_CST
3605 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3606 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3608 error ("type mismatch in widening vector shift expression");
3609 debug_generic_expr (lhs_type);
3610 debug_generic_expr (rhs1_type);
3611 debug_generic_expr (rhs2_type);
3612 return true;
3615 return false;
3618 case PLUS_EXPR:
3619 case MINUS_EXPR:
3621 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3622 ??? This just makes the checker happy and may not be what is
3623 intended. */
3624 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3625 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3627 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3628 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3630 error ("invalid non-vector operands to vector valued plus");
3631 return true;
3633 lhs_type = TREE_TYPE (lhs_type);
3634 rhs1_type = TREE_TYPE (rhs1_type);
3635 rhs2_type = TREE_TYPE (rhs2_type);
3636 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3637 the pointer to 2nd place. */
3638 if (POINTER_TYPE_P (rhs2_type))
3640 tree tem = rhs1_type;
3641 rhs1_type = rhs2_type;
3642 rhs2_type = tem;
3644 goto do_pointer_plus_expr_check;
3646 if (POINTER_TYPE_P (lhs_type)
3647 || POINTER_TYPE_P (rhs1_type)
3648 || POINTER_TYPE_P (rhs2_type))
3650 error ("invalid (pointer) operands to plus/minus");
3651 return true;
3654 /* Continue with generic binary expression handling. */
3655 break;
3658 case POINTER_PLUS_EXPR:
3660 do_pointer_plus_expr_check:
3661 if (!POINTER_TYPE_P (rhs1_type)
3662 || !useless_type_conversion_p (lhs_type, rhs1_type)
3663 || !ptrofftype_p (rhs2_type))
3665 error ("type mismatch in pointer plus expression");
3666 debug_generic_stmt (lhs_type);
3667 debug_generic_stmt (rhs1_type);
3668 debug_generic_stmt (rhs2_type);
3669 return true;
3672 return false;
3675 case TRUTH_ANDIF_EXPR:
3676 case TRUTH_ORIF_EXPR:
3677 case TRUTH_AND_EXPR:
3678 case TRUTH_OR_EXPR:
3679 case TRUTH_XOR_EXPR:
3681 gcc_unreachable ();
3683 case LT_EXPR:
3684 case LE_EXPR:
3685 case GT_EXPR:
3686 case GE_EXPR:
3687 case EQ_EXPR:
3688 case NE_EXPR:
3689 case UNORDERED_EXPR:
3690 case ORDERED_EXPR:
3691 case UNLT_EXPR:
3692 case UNLE_EXPR:
3693 case UNGT_EXPR:
3694 case UNGE_EXPR:
3695 case UNEQ_EXPR:
3696 case LTGT_EXPR:
3697 /* Comparisons are also binary, but the result type is not
3698 connected to the operand types. */
3699 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3701 case WIDEN_MULT_EXPR:
3702 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3703 return true;
3704 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3705 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3707 case WIDEN_SUM_EXPR:
3708 case VEC_WIDEN_MULT_HI_EXPR:
3709 case VEC_WIDEN_MULT_LO_EXPR:
3710 case VEC_PACK_TRUNC_EXPR:
3711 case VEC_PACK_SAT_EXPR:
3712 case VEC_PACK_FIX_TRUNC_EXPR:
3713 /* FIXME. */
3714 return false;
3716 case MULT_EXPR:
3717 case TRUNC_DIV_EXPR:
3718 case CEIL_DIV_EXPR:
3719 case FLOOR_DIV_EXPR:
3720 case ROUND_DIV_EXPR:
3721 case TRUNC_MOD_EXPR:
3722 case CEIL_MOD_EXPR:
3723 case FLOOR_MOD_EXPR:
3724 case ROUND_MOD_EXPR:
3725 case RDIV_EXPR:
3726 case EXACT_DIV_EXPR:
3727 case MIN_EXPR:
3728 case MAX_EXPR:
3729 case BIT_IOR_EXPR:
3730 case BIT_XOR_EXPR:
3731 case BIT_AND_EXPR:
3732 /* Continue with generic binary expression handling. */
3733 break;
3735 default:
3736 gcc_unreachable ();
3739 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3740 || !useless_type_conversion_p (lhs_type, rhs2_type))
3742 error ("type mismatch in binary expression");
3743 debug_generic_stmt (lhs_type);
3744 debug_generic_stmt (rhs1_type);
3745 debug_generic_stmt (rhs2_type);
3746 return true;
3749 return false;
3752 /* Verify a gimple assignment statement STMT with a ternary rhs.
3753 Returns true if anything is wrong. */
3755 static bool
3756 verify_gimple_assign_ternary (gimple stmt)
3758 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3759 tree lhs = gimple_assign_lhs (stmt);
3760 tree lhs_type = TREE_TYPE (lhs);
3761 tree rhs1 = gimple_assign_rhs1 (stmt);
3762 tree rhs1_type = TREE_TYPE (rhs1);
3763 tree rhs2 = gimple_assign_rhs2 (stmt);
3764 tree rhs2_type = TREE_TYPE (rhs2);
3765 tree rhs3 = gimple_assign_rhs3 (stmt);
3766 tree rhs3_type = TREE_TYPE (rhs3);
3768 if (!is_gimple_reg (lhs))
3770 error ("non-register as LHS of ternary operation");
3771 return true;
3774 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3775 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3776 || !is_gimple_val (rhs2)
3777 || !is_gimple_val (rhs3))
3779 error ("invalid operands in ternary operation");
3780 return true;
3783 /* First handle operations that involve different types. */
3784 switch (rhs_code)
3786 case WIDEN_MULT_PLUS_EXPR:
3787 case WIDEN_MULT_MINUS_EXPR:
3788 if ((!INTEGRAL_TYPE_P (rhs1_type)
3789 && !FIXED_POINT_TYPE_P (rhs1_type))
3790 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3791 || !useless_type_conversion_p (lhs_type, rhs3_type)
3792 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3793 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3795 error ("type mismatch in widening multiply-accumulate expression");
3796 debug_generic_expr (lhs_type);
3797 debug_generic_expr (rhs1_type);
3798 debug_generic_expr (rhs2_type);
3799 debug_generic_expr (rhs3_type);
3800 return true;
3802 break;
3804 case FMA_EXPR:
3805 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3806 || !useless_type_conversion_p (lhs_type, rhs2_type)
3807 || !useless_type_conversion_p (lhs_type, rhs3_type))
3809 error ("type mismatch in fused multiply-add expression");
3810 debug_generic_expr (lhs_type);
3811 debug_generic_expr (rhs1_type);
3812 debug_generic_expr (rhs2_type);
3813 debug_generic_expr (rhs3_type);
3814 return true;
3816 break;
3818 case COND_EXPR:
3819 case VEC_COND_EXPR:
3820 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3821 || !useless_type_conversion_p (lhs_type, rhs3_type))
3823 error ("type mismatch in conditional expression");
3824 debug_generic_expr (lhs_type);
3825 debug_generic_expr (rhs2_type);
3826 debug_generic_expr (rhs3_type);
3827 return true;
3829 break;
3831 case VEC_PERM_EXPR:
3832 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3833 || !useless_type_conversion_p (lhs_type, rhs2_type))
3835 error ("type mismatch in vector permute expression");
3836 debug_generic_expr (lhs_type);
3837 debug_generic_expr (rhs1_type);
3838 debug_generic_expr (rhs2_type);
3839 debug_generic_expr (rhs3_type);
3840 return true;
3843 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3844 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3845 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3847 error ("vector types expected in vector permute expression");
3848 debug_generic_expr (lhs_type);
3849 debug_generic_expr (rhs1_type);
3850 debug_generic_expr (rhs2_type);
3851 debug_generic_expr (rhs3_type);
3852 return true;
3855 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3856 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3857 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3858 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3859 != TYPE_VECTOR_SUBPARTS (lhs_type))
3861 error ("vectors with different element number found "
3862 "in vector permute expression");
3863 debug_generic_expr (lhs_type);
3864 debug_generic_expr (rhs1_type);
3865 debug_generic_expr (rhs2_type);
3866 debug_generic_expr (rhs3_type);
3867 return true;
3870 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3871 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3872 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3874 error ("invalid mask type in vector permute expression");
3875 debug_generic_expr (lhs_type);
3876 debug_generic_expr (rhs1_type);
3877 debug_generic_expr (rhs2_type);
3878 debug_generic_expr (rhs3_type);
3879 return true;
3882 return false;
3884 case DOT_PROD_EXPR:
3885 case REALIGN_LOAD_EXPR:
3886 /* FIXME. */
3887 return false;
3889 default:
3890 gcc_unreachable ();
3892 return false;
3895 /* Verify a gimple assignment statement STMT with a single rhs.
3896 Returns true if anything is wrong. */
3898 static bool
3899 verify_gimple_assign_single (gimple stmt)
3901 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3902 tree lhs = gimple_assign_lhs (stmt);
3903 tree lhs_type = TREE_TYPE (lhs);
3904 tree rhs1 = gimple_assign_rhs1 (stmt);
3905 tree rhs1_type = TREE_TYPE (rhs1);
3906 bool res = false;
3908 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3910 error ("non-trivial conversion at assignment");
3911 debug_generic_expr (lhs_type);
3912 debug_generic_expr (rhs1_type);
3913 return true;
3916 if (handled_component_p (lhs))
3917 res |= verify_types_in_gimple_reference (lhs, true);
3919 /* Special codes we cannot handle via their class. */
3920 switch (rhs_code)
3922 case ADDR_EXPR:
3924 tree op = TREE_OPERAND (rhs1, 0);
3925 if (!is_gimple_addressable (op))
3927 error ("invalid operand in unary expression");
3928 return true;
3931 /* Technically there is no longer a need for matching types, but
3932 gimple hygiene asks for this check. In LTO we can end up
3933 combining incompatible units and thus end up with addresses
3934 of globals that change their type to a common one. */
3935 if (!in_lto_p
3936 && !types_compatible_p (TREE_TYPE (op),
3937 TREE_TYPE (TREE_TYPE (rhs1)))
3938 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3939 TREE_TYPE (op)))
3941 error ("type mismatch in address expression");
3942 debug_generic_stmt (TREE_TYPE (rhs1));
3943 debug_generic_stmt (TREE_TYPE (op));
3944 return true;
3947 return verify_types_in_gimple_reference (op, true);
3950 /* tcc_reference */
3951 case INDIRECT_REF:
3952 error ("INDIRECT_REF in gimple IL");
3953 return true;
3955 case COMPONENT_REF:
3956 case BIT_FIELD_REF:
3957 case ARRAY_REF:
3958 case ARRAY_RANGE_REF:
3959 case VIEW_CONVERT_EXPR:
3960 case REALPART_EXPR:
3961 case IMAGPART_EXPR:
3962 case TARGET_MEM_REF:
3963 case MEM_REF:
3964 if (!is_gimple_reg (lhs)
3965 && is_gimple_reg_type (TREE_TYPE (lhs)))
3967 error ("invalid rhs for gimple memory store");
3968 debug_generic_stmt (lhs);
3969 debug_generic_stmt (rhs1);
3970 return true;
3972 return res || verify_types_in_gimple_reference (rhs1, false);
3974 /* tcc_constant */
3975 case SSA_NAME:
3976 case INTEGER_CST:
3977 case REAL_CST:
3978 case FIXED_CST:
3979 case COMPLEX_CST:
3980 case VECTOR_CST:
3981 case STRING_CST:
3982 return res;
3984 /* tcc_declaration */
3985 case CONST_DECL:
3986 return res;
3987 case VAR_DECL:
3988 case PARM_DECL:
3989 if (!is_gimple_reg (lhs)
3990 && !is_gimple_reg (rhs1)
3991 && is_gimple_reg_type (TREE_TYPE (lhs)))
3993 error ("invalid rhs for gimple memory store");
3994 debug_generic_stmt (lhs);
3995 debug_generic_stmt (rhs1);
3996 return true;
3998 return res;
4000 case CONSTRUCTOR:
4001 case OBJ_TYPE_REF:
4002 case ASSERT_EXPR:
4003 case WITH_SIZE_EXPR:
4004 /* FIXME. */
4005 return res;
4007 default:;
4010 return res;
4013 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4014 is a problem, otherwise false. */
4016 static bool
4017 verify_gimple_assign (gimple stmt)
4019 switch (gimple_assign_rhs_class (stmt))
4021 case GIMPLE_SINGLE_RHS:
4022 return verify_gimple_assign_single (stmt);
4024 case GIMPLE_UNARY_RHS:
4025 return verify_gimple_assign_unary (stmt);
4027 case GIMPLE_BINARY_RHS:
4028 return verify_gimple_assign_binary (stmt);
4030 case GIMPLE_TERNARY_RHS:
4031 return verify_gimple_assign_ternary (stmt);
4033 default:
4034 gcc_unreachable ();
4038 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4039 is a problem, otherwise false. */
4041 static bool
4042 verify_gimple_return (gimple stmt)
4044 tree op = gimple_return_retval (stmt);
4045 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4047 /* We cannot test for present return values as we do not fix up missing
4048 return values from the original source. */
4049 if (op == NULL)
4050 return false;
4052 if (!is_gimple_val (op)
4053 && TREE_CODE (op) != RESULT_DECL)
4055 error ("invalid operand in return statement");
4056 debug_generic_stmt (op);
4057 return true;
4060 if ((TREE_CODE (op) == RESULT_DECL
4061 && DECL_BY_REFERENCE (op))
4062 || (TREE_CODE (op) == SSA_NAME
4063 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4064 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4065 op = TREE_TYPE (op);
4067 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4069 error ("invalid conversion in return statement");
4070 debug_generic_stmt (restype);
4071 debug_generic_stmt (TREE_TYPE (op));
4072 return true;
4075 return false;
4079 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4080 is a problem, otherwise false. */
4082 static bool
4083 verify_gimple_goto (gimple stmt)
4085 tree dest = gimple_goto_dest (stmt);
4087 /* ??? We have two canonical forms of direct goto destinations, a
4088 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4089 if (TREE_CODE (dest) != LABEL_DECL
4090 && (!is_gimple_val (dest)
4091 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4093 error ("goto destination is neither a label nor a pointer");
4094 return true;
4097 return false;
4100 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4101 is a problem, otherwise false. */
4103 static bool
4104 verify_gimple_switch (gimple stmt)
4106 if (!is_gimple_val (gimple_switch_index (stmt)))
4108 error ("invalid operand to switch statement");
4109 debug_generic_stmt (gimple_switch_index (stmt));
4110 return true;
4113 return false;
4116 /* Verify a gimple debug statement STMT.
4117 Returns true if anything is wrong. */
4119 static bool
4120 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4122 /* There isn't much that could be wrong in a gimple debug stmt. A
4123 gimple debug bind stmt, for example, maps a tree, that's usually
4124 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4125 component or member of an aggregate type, to another tree, that
4126 can be an arbitrary expression. These stmts expand into debug
4127 insns, and are converted to debug notes by var-tracking.c. */
4128 return false;
4131 /* Verify a gimple label statement STMT.
4132 Returns true if anything is wrong. */
4134 static bool
4135 verify_gimple_label (gimple stmt)
4137 tree decl = gimple_label_label (stmt);
4138 int uid;
4139 bool err = false;
4141 if (TREE_CODE (decl) != LABEL_DECL)
4142 return true;
4144 uid = LABEL_DECL_UID (decl);
4145 if (cfun->cfg
4146 && (uid == -1
4147 || VEC_index (basic_block,
4148 label_to_block_map, uid) != gimple_bb (stmt)))
4150 error ("incorrect entry in label_to_block_map");
4151 err |= true;
4154 uid = EH_LANDING_PAD_NR (decl);
4155 if (uid)
4157 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4158 if (decl != lp->post_landing_pad)
4160 error ("incorrect setting of landing pad number");
4161 err |= true;
4165 return err;
4168 /* Verify the GIMPLE statement STMT. Returns true if there is an
4169 error, otherwise false. */
4171 static bool
4172 verify_gimple_stmt (gimple stmt)
4174 switch (gimple_code (stmt))
4176 case GIMPLE_ASSIGN:
4177 return verify_gimple_assign (stmt);
4179 case GIMPLE_LABEL:
4180 return verify_gimple_label (stmt);
4182 case GIMPLE_CALL:
4183 return verify_gimple_call (stmt);
4185 case GIMPLE_COND:
4186 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4188 error ("invalid comparison code in gimple cond");
4189 return true;
4191 if (!(!gimple_cond_true_label (stmt)
4192 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4193 || !(!gimple_cond_false_label (stmt)
4194 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4196 error ("invalid labels in gimple cond");
4197 return true;
4200 return verify_gimple_comparison (boolean_type_node,
4201 gimple_cond_lhs (stmt),
4202 gimple_cond_rhs (stmt));
4204 case GIMPLE_GOTO:
4205 return verify_gimple_goto (stmt);
4207 case GIMPLE_SWITCH:
4208 return verify_gimple_switch (stmt);
4210 case GIMPLE_RETURN:
4211 return verify_gimple_return (stmt);
4213 case GIMPLE_ASM:
4214 return false;
4216 case GIMPLE_TRANSACTION:
4217 return verify_gimple_transaction (stmt);
4219 /* Tuples that do not have tree operands. */
4220 case GIMPLE_NOP:
4221 case GIMPLE_PREDICT:
4222 case GIMPLE_RESX:
4223 case GIMPLE_EH_DISPATCH:
4224 case GIMPLE_EH_MUST_NOT_THROW:
4225 return false;
4227 CASE_GIMPLE_OMP:
4228 /* OpenMP directives are validated by the FE and never operated
4229 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4230 non-gimple expressions when the main index variable has had
4231 its address taken. This does not affect the loop itself
4232 because the header of an GIMPLE_OMP_FOR is merely used to determine
4233 how to setup the parallel iteration. */
4234 return false;
4236 case GIMPLE_DEBUG:
4237 return verify_gimple_debug (stmt);
4239 default:
4240 gcc_unreachable ();
4244 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4245 and false otherwise. */
4247 static bool
4248 verify_gimple_phi (gimple phi)
4250 bool err = false;
4251 unsigned i;
4252 tree phi_result = gimple_phi_result (phi);
4253 bool virtual_p;
4255 if (!phi_result)
4257 error ("invalid PHI result");
4258 return true;
4261 virtual_p = !is_gimple_reg (phi_result);
4262 if (TREE_CODE (phi_result) != SSA_NAME
4263 || (virtual_p
4264 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4266 error ("invalid PHI result");
4267 err = true;
4270 for (i = 0; i < gimple_phi_num_args (phi); i++)
4272 tree t = gimple_phi_arg_def (phi, i);
4274 if (!t)
4276 error ("missing PHI def");
4277 err |= true;
4278 continue;
4280 /* Addressable variables do have SSA_NAMEs but they
4281 are not considered gimple values. */
4282 else if ((TREE_CODE (t) == SSA_NAME
4283 && virtual_p != !is_gimple_reg (t))
4284 || (virtual_p
4285 && (TREE_CODE (t) != SSA_NAME
4286 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4287 || (!virtual_p
4288 && !is_gimple_val (t)))
4290 error ("invalid PHI argument");
4291 debug_generic_expr (t);
4292 err |= true;
4294 #ifdef ENABLE_TYPES_CHECKING
4295 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4297 error ("incompatible types in PHI argument %u", i);
4298 debug_generic_stmt (TREE_TYPE (phi_result));
4299 debug_generic_stmt (TREE_TYPE (t));
4300 err |= true;
4302 #endif
4305 return err;
4308 /* Verify the GIMPLE statements inside the sequence STMTS. */
4310 static bool
4311 verify_gimple_in_seq_2 (gimple_seq stmts)
4313 gimple_stmt_iterator ittr;
4314 bool err = false;
4316 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4318 gimple stmt = gsi_stmt (ittr);
4320 switch (gimple_code (stmt))
4322 case GIMPLE_BIND:
4323 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4324 break;
4326 case GIMPLE_TRY:
4327 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4328 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4329 break;
4331 case GIMPLE_EH_FILTER:
4332 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4333 break;
4335 case GIMPLE_EH_ELSE:
4336 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4337 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4338 break;
4340 case GIMPLE_CATCH:
4341 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4342 break;
4344 case GIMPLE_TRANSACTION:
4345 err |= verify_gimple_transaction (stmt);
4346 break;
4348 default:
4350 bool err2 = verify_gimple_stmt (stmt);
4351 if (err2)
4352 debug_gimple_stmt (stmt);
4353 err |= err2;
4358 return err;
4361 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4362 is a problem, otherwise false. */
4364 static bool
4365 verify_gimple_transaction (gimple stmt)
4367 tree lab = gimple_transaction_label (stmt);
4368 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4369 return true;
4370 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4374 /* Verify the GIMPLE statements inside the statement list STMTS. */
4376 DEBUG_FUNCTION void
4377 verify_gimple_in_seq (gimple_seq stmts)
4379 timevar_push (TV_TREE_STMT_VERIFY);
4380 if (verify_gimple_in_seq_2 (stmts))
4381 internal_error ("verify_gimple failed");
4382 timevar_pop (TV_TREE_STMT_VERIFY);
4385 /* Return true when the T can be shared. */
4387 bool
4388 tree_node_can_be_shared (tree t)
4390 if (IS_TYPE_OR_DECL_P (t)
4391 || is_gimple_min_invariant (t)
4392 || TREE_CODE (t) == SSA_NAME
4393 || t == error_mark_node
4394 || TREE_CODE (t) == IDENTIFIER_NODE)
4395 return true;
4397 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4398 return true;
4400 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4401 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4402 || TREE_CODE (t) == COMPONENT_REF
4403 || TREE_CODE (t) == REALPART_EXPR
4404 || TREE_CODE (t) == IMAGPART_EXPR)
4405 t = TREE_OPERAND (t, 0);
4407 if (DECL_P (t))
4408 return true;
4410 return false;
4413 /* Called via walk_gimple_stmt. Verify tree sharing. */
4415 static tree
4416 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4418 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4419 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4421 if (tree_node_can_be_shared (*tp))
4423 *walk_subtrees = false;
4424 return NULL;
4427 if (pointer_set_insert (visited, *tp))
4428 return *tp;
4430 return NULL;
4433 static bool eh_error_found;
4434 static int
4435 verify_eh_throw_stmt_node (void **slot, void *data)
4437 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4438 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4440 if (!pointer_set_contains (visited, node->stmt))
4442 error ("dead STMT in EH table");
4443 debug_gimple_stmt (node->stmt);
4444 eh_error_found = true;
4446 return 1;
4449 /* Verify the GIMPLE statements in the CFG of FN. */
4451 DEBUG_FUNCTION void
4452 verify_gimple_in_cfg (struct function *fn)
4454 basic_block bb;
4455 bool err = false;
4456 struct pointer_set_t *visited, *visited_stmts;
4458 timevar_push (TV_TREE_STMT_VERIFY);
4459 visited = pointer_set_create ();
4460 visited_stmts = pointer_set_create ();
4462 FOR_EACH_BB_FN (bb, fn)
4464 gimple_stmt_iterator gsi;
4466 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4468 gimple phi = gsi_stmt (gsi);
4469 bool err2 = false;
4470 unsigned i;
4472 pointer_set_insert (visited_stmts, phi);
4474 if (gimple_bb (phi) != bb)
4476 error ("gimple_bb (phi) is set to a wrong basic block");
4477 err2 = true;
4480 err2 |= verify_gimple_phi (phi);
4482 for (i = 0; i < gimple_phi_num_args (phi); i++)
4484 tree arg = gimple_phi_arg_def (phi, i);
4485 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4486 if (addr)
4488 error ("incorrect sharing of tree nodes");
4489 debug_generic_expr (addr);
4490 err2 |= true;
4494 if (err2)
4495 debug_gimple_stmt (phi);
4496 err |= err2;
4499 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4501 gimple stmt = gsi_stmt (gsi);
4502 bool err2 = false;
4503 struct walk_stmt_info wi;
4504 tree addr;
4505 int lp_nr;
4507 pointer_set_insert (visited_stmts, stmt);
4509 if (gimple_bb (stmt) != bb)
4511 error ("gimple_bb (stmt) is set to a wrong basic block");
4512 err2 = true;
4515 err2 |= verify_gimple_stmt (stmt);
4517 memset (&wi, 0, sizeof (wi));
4518 wi.info = (void *) visited;
4519 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4520 if (addr)
4522 error ("incorrect sharing of tree nodes");
4523 debug_generic_expr (addr);
4524 err2 |= true;
4527 /* ??? Instead of not checking these stmts at all the walker
4528 should know its context via wi. */
4529 if (!is_gimple_debug (stmt)
4530 && !is_gimple_omp (stmt))
4532 memset (&wi, 0, sizeof (wi));
4533 addr = walk_gimple_op (stmt, verify_expr, &wi);
4534 if (addr)
4536 debug_generic_expr (addr);
4537 inform (gimple_location (stmt), "in statement");
4538 err2 |= true;
4542 /* If the statement is marked as part of an EH region, then it is
4543 expected that the statement could throw. Verify that when we
4544 have optimizations that simplify statements such that we prove
4545 that they cannot throw, that we update other data structures
4546 to match. */
4547 lp_nr = lookup_stmt_eh_lp (stmt);
4548 if (lp_nr != 0)
4550 if (!stmt_could_throw_p (stmt))
4552 error ("statement marked for throw, but doesn%'t");
4553 err2 |= true;
4555 else if (lp_nr > 0
4556 && !gsi_one_before_end_p (gsi)
4557 && stmt_can_throw_internal (stmt))
4559 error ("statement marked for throw in middle of block");
4560 err2 |= true;
4564 if (err2)
4565 debug_gimple_stmt (stmt);
4566 err |= err2;
4570 eh_error_found = false;
4571 if (get_eh_throw_stmt_table (cfun))
4572 htab_traverse (get_eh_throw_stmt_table (cfun),
4573 verify_eh_throw_stmt_node,
4574 visited_stmts);
4576 if (err || eh_error_found)
4577 internal_error ("verify_gimple failed");
4579 pointer_set_destroy (visited);
4580 pointer_set_destroy (visited_stmts);
4581 verify_histograms ();
4582 timevar_pop (TV_TREE_STMT_VERIFY);
4586 /* Verifies that the flow information is OK. */
4588 static int
4589 gimple_verify_flow_info (void)
4591 int err = 0;
4592 basic_block bb;
4593 gimple_stmt_iterator gsi;
4594 gimple stmt;
4595 edge e;
4596 edge_iterator ei;
4598 if (ENTRY_BLOCK_PTR->il.gimple)
4600 error ("ENTRY_BLOCK has IL associated with it");
4601 err = 1;
4604 if (EXIT_BLOCK_PTR->il.gimple)
4606 error ("EXIT_BLOCK has IL associated with it");
4607 err = 1;
4610 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4611 if (e->flags & EDGE_FALLTHRU)
4613 error ("fallthru to exit from bb %d", e->src->index);
4614 err = 1;
4617 FOR_EACH_BB (bb)
4619 bool found_ctrl_stmt = false;
4621 stmt = NULL;
4623 /* Skip labels on the start of basic block. */
4624 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4626 tree label;
4627 gimple prev_stmt = stmt;
4629 stmt = gsi_stmt (gsi);
4631 if (gimple_code (stmt) != GIMPLE_LABEL)
4632 break;
4634 label = gimple_label_label (stmt);
4635 if (prev_stmt && DECL_NONLOCAL (label))
4637 error ("nonlocal label ");
4638 print_generic_expr (stderr, label, 0);
4639 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4640 bb->index);
4641 err = 1;
4644 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4646 error ("EH landing pad label ");
4647 print_generic_expr (stderr, label, 0);
4648 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4649 bb->index);
4650 err = 1;
4653 if (label_to_block (label) != bb)
4655 error ("label ");
4656 print_generic_expr (stderr, label, 0);
4657 fprintf (stderr, " to block does not match in bb %d",
4658 bb->index);
4659 err = 1;
4662 if (decl_function_context (label) != current_function_decl)
4664 error ("label ");
4665 print_generic_expr (stderr, label, 0);
4666 fprintf (stderr, " has incorrect context in bb %d",
4667 bb->index);
4668 err = 1;
4672 /* Verify that body of basic block BB is free of control flow. */
4673 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4675 gimple stmt = gsi_stmt (gsi);
4677 if (found_ctrl_stmt)
4679 error ("control flow in the middle of basic block %d",
4680 bb->index);
4681 err = 1;
4684 if (stmt_ends_bb_p (stmt))
4685 found_ctrl_stmt = true;
4687 if (gimple_code (stmt) == GIMPLE_LABEL)
4689 error ("label ");
4690 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4691 fprintf (stderr, " in the middle of basic block %d", bb->index);
4692 err = 1;
4696 gsi = gsi_last_bb (bb);
4697 if (gsi_end_p (gsi))
4698 continue;
4700 stmt = gsi_stmt (gsi);
4702 if (gimple_code (stmt) == GIMPLE_LABEL)
4703 continue;
4705 err |= verify_eh_edges (stmt);
4707 if (is_ctrl_stmt (stmt))
4709 FOR_EACH_EDGE (e, ei, bb->succs)
4710 if (e->flags & EDGE_FALLTHRU)
4712 error ("fallthru edge after a control statement in bb %d",
4713 bb->index);
4714 err = 1;
4718 if (gimple_code (stmt) != GIMPLE_COND)
4720 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4721 after anything else but if statement. */
4722 FOR_EACH_EDGE (e, ei, bb->succs)
4723 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4725 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4726 bb->index);
4727 err = 1;
4731 switch (gimple_code (stmt))
4733 case GIMPLE_COND:
4735 edge true_edge;
4736 edge false_edge;
4738 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4740 if (!true_edge
4741 || !false_edge
4742 || !(true_edge->flags & EDGE_TRUE_VALUE)
4743 || !(false_edge->flags & EDGE_FALSE_VALUE)
4744 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4745 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4746 || EDGE_COUNT (bb->succs) >= 3)
4748 error ("wrong outgoing edge flags at end of bb %d",
4749 bb->index);
4750 err = 1;
4753 break;
4755 case GIMPLE_GOTO:
4756 if (simple_goto_p (stmt))
4758 error ("explicit goto at end of bb %d", bb->index);
4759 err = 1;
4761 else
4763 /* FIXME. We should double check that the labels in the
4764 destination blocks have their address taken. */
4765 FOR_EACH_EDGE (e, ei, bb->succs)
4766 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4767 | EDGE_FALSE_VALUE))
4768 || !(e->flags & EDGE_ABNORMAL))
4770 error ("wrong outgoing edge flags at end of bb %d",
4771 bb->index);
4772 err = 1;
4775 break;
4777 case GIMPLE_CALL:
4778 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4779 break;
4780 /* ... fallthru ... */
4781 case GIMPLE_RETURN:
4782 if (!single_succ_p (bb)
4783 || (single_succ_edge (bb)->flags
4784 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4785 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4787 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4788 err = 1;
4790 if (single_succ (bb) != EXIT_BLOCK_PTR)
4792 error ("return edge does not point to exit in bb %d",
4793 bb->index);
4794 err = 1;
4796 break;
4798 case GIMPLE_SWITCH:
4800 tree prev;
4801 edge e;
4802 size_t i, n;
4804 n = gimple_switch_num_labels (stmt);
4806 /* Mark all the destination basic blocks. */
4807 for (i = 0; i < n; ++i)
4809 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4810 basic_block label_bb = label_to_block (lab);
4811 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4812 label_bb->aux = (void *)1;
4815 /* Verify that the case labels are sorted. */
4816 prev = gimple_switch_label (stmt, 0);
4817 for (i = 1; i < n; ++i)
4819 tree c = gimple_switch_label (stmt, i);
4820 if (!CASE_LOW (c))
4822 error ("found default case not at the start of "
4823 "case vector");
4824 err = 1;
4825 continue;
4827 if (CASE_LOW (prev)
4828 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4830 error ("case labels not sorted: ");
4831 print_generic_expr (stderr, prev, 0);
4832 fprintf (stderr," is greater than ");
4833 print_generic_expr (stderr, c, 0);
4834 fprintf (stderr," but comes before it.\n");
4835 err = 1;
4837 prev = c;
4839 /* VRP will remove the default case if it can prove it will
4840 never be executed. So do not verify there always exists
4841 a default case here. */
4843 FOR_EACH_EDGE (e, ei, bb->succs)
4845 if (!e->dest->aux)
4847 error ("extra outgoing edge %d->%d",
4848 bb->index, e->dest->index);
4849 err = 1;
4852 e->dest->aux = (void *)2;
4853 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4854 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4856 error ("wrong outgoing edge flags at end of bb %d",
4857 bb->index);
4858 err = 1;
4862 /* Check that we have all of them. */
4863 for (i = 0; i < n; ++i)
4865 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4866 basic_block label_bb = label_to_block (lab);
4868 if (label_bb->aux != (void *)2)
4870 error ("missing edge %i->%i", bb->index, label_bb->index);
4871 err = 1;
4875 FOR_EACH_EDGE (e, ei, bb->succs)
4876 e->dest->aux = (void *)0;
4878 break;
4880 case GIMPLE_EH_DISPATCH:
4881 err |= verify_eh_dispatch_edge (stmt);
4882 break;
4884 default:
4885 break;
4889 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4890 verify_dominators (CDI_DOMINATORS);
4892 return err;
4896 /* Updates phi nodes after creating a forwarder block joined
4897 by edge FALLTHRU. */
4899 static void
4900 gimple_make_forwarder_block (edge fallthru)
4902 edge e;
4903 edge_iterator ei;
4904 basic_block dummy, bb;
4905 tree var;
4906 gimple_stmt_iterator gsi;
4908 dummy = fallthru->src;
4909 bb = fallthru->dest;
4911 if (single_pred_p (bb))
4912 return;
4914 /* If we redirected a branch we must create new PHI nodes at the
4915 start of BB. */
4916 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4918 gimple phi, new_phi;
4920 phi = gsi_stmt (gsi);
4921 var = gimple_phi_result (phi);
4922 new_phi = create_phi_node (var, bb);
4923 SSA_NAME_DEF_STMT (var) = new_phi;
4924 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4925 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4926 UNKNOWN_LOCATION);
4929 /* Add the arguments we have stored on edges. */
4930 FOR_EACH_EDGE (e, ei, bb->preds)
4932 if (e == fallthru)
4933 continue;
4935 flush_pending_stmts (e);
4940 /* Return a non-special label in the head of basic block BLOCK.
4941 Create one if it doesn't exist. */
4943 tree
4944 gimple_block_label (basic_block bb)
4946 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4947 bool first = true;
4948 tree label;
4949 gimple stmt;
4951 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4953 stmt = gsi_stmt (i);
4954 if (gimple_code (stmt) != GIMPLE_LABEL)
4955 break;
4956 label = gimple_label_label (stmt);
4957 if (!DECL_NONLOCAL (label))
4959 if (!first)
4960 gsi_move_before (&i, &s);
4961 return label;
4965 label = create_artificial_label (UNKNOWN_LOCATION);
4966 stmt = gimple_build_label (label);
4967 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4968 return label;
4972 /* Attempt to perform edge redirection by replacing a possibly complex
4973 jump instruction by a goto or by removing the jump completely.
4974 This can apply only if all edges now point to the same block. The
4975 parameters and return values are equivalent to
4976 redirect_edge_and_branch. */
4978 static edge
4979 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4981 basic_block src = e->src;
4982 gimple_stmt_iterator i;
4983 gimple stmt;
4985 /* We can replace or remove a complex jump only when we have exactly
4986 two edges. */
4987 if (EDGE_COUNT (src->succs) != 2
4988 /* Verify that all targets will be TARGET. Specifically, the
4989 edge that is not E must also go to TARGET. */
4990 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4991 return NULL;
4993 i = gsi_last_bb (src);
4994 if (gsi_end_p (i))
4995 return NULL;
4997 stmt = gsi_stmt (i);
4999 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5001 gsi_remove (&i, true);
5002 e = ssa_redirect_edge (e, target);
5003 e->flags = EDGE_FALLTHRU;
5004 return e;
5007 return NULL;
5011 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5012 edge representing the redirected branch. */
5014 static edge
5015 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5017 basic_block bb = e->src;
5018 gimple_stmt_iterator gsi;
5019 edge ret;
5020 gimple stmt;
5022 if (e->flags & EDGE_ABNORMAL)
5023 return NULL;
5025 if (e->dest == dest)
5026 return NULL;
5028 if (e->flags & EDGE_EH)
5029 return redirect_eh_edge (e, dest);
5031 if (e->src != ENTRY_BLOCK_PTR)
5033 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5034 if (ret)
5035 return ret;
5038 gsi = gsi_last_bb (bb);
5039 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5041 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5043 case GIMPLE_COND:
5044 /* For COND_EXPR, we only need to redirect the edge. */
5045 break;
5047 case GIMPLE_GOTO:
5048 /* No non-abnormal edges should lead from a non-simple goto, and
5049 simple ones should be represented implicitly. */
5050 gcc_unreachable ();
5052 case GIMPLE_SWITCH:
5054 tree label = gimple_block_label (dest);
5055 tree cases = get_cases_for_edge (e, stmt);
5057 /* If we have a list of cases associated with E, then use it
5058 as it's a lot faster than walking the entire case vector. */
5059 if (cases)
5061 edge e2 = find_edge (e->src, dest);
5062 tree last, first;
5064 first = cases;
5065 while (cases)
5067 last = cases;
5068 CASE_LABEL (cases) = label;
5069 cases = CASE_CHAIN (cases);
5072 /* If there was already an edge in the CFG, then we need
5073 to move all the cases associated with E to E2. */
5074 if (e2)
5076 tree cases2 = get_cases_for_edge (e2, stmt);
5078 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5079 CASE_CHAIN (cases2) = first;
5081 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5083 else
5085 size_t i, n = gimple_switch_num_labels (stmt);
5087 for (i = 0; i < n; i++)
5089 tree elt = gimple_switch_label (stmt, i);
5090 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5091 CASE_LABEL (elt) = label;
5095 break;
5097 case GIMPLE_ASM:
5099 int i, n = gimple_asm_nlabels (stmt);
5100 tree label = NULL;
5102 for (i = 0; i < n; ++i)
5104 tree cons = gimple_asm_label_op (stmt, i);
5105 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5107 if (!label)
5108 label = gimple_block_label (dest);
5109 TREE_VALUE (cons) = label;
5113 /* If we didn't find any label matching the former edge in the
5114 asm labels, we must be redirecting the fallthrough
5115 edge. */
5116 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5118 break;
5120 case GIMPLE_RETURN:
5121 gsi_remove (&gsi, true);
5122 e->flags |= EDGE_FALLTHRU;
5123 break;
5125 case GIMPLE_OMP_RETURN:
5126 case GIMPLE_OMP_CONTINUE:
5127 case GIMPLE_OMP_SECTIONS_SWITCH:
5128 case GIMPLE_OMP_FOR:
5129 /* The edges from OMP constructs can be simply redirected. */
5130 break;
5132 case GIMPLE_EH_DISPATCH:
5133 if (!(e->flags & EDGE_FALLTHRU))
5134 redirect_eh_dispatch_edge (stmt, e, dest);
5135 break;
5137 case GIMPLE_TRANSACTION:
5138 /* The ABORT edge has a stored label associated with it, otherwise
5139 the edges are simply redirectable. */
5140 if (e->flags == 0)
5141 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5142 break;
5144 default:
5145 /* Otherwise it must be a fallthru edge, and we don't need to
5146 do anything besides redirecting it. */
5147 gcc_assert (e->flags & EDGE_FALLTHRU);
5148 break;
5151 /* Update/insert PHI nodes as necessary. */
5153 /* Now update the edges in the CFG. */
5154 e = ssa_redirect_edge (e, dest);
5156 return e;
5159 /* Returns true if it is possible to remove edge E by redirecting
5160 it to the destination of the other edge from E->src. */
5162 static bool
5163 gimple_can_remove_branch_p (const_edge e)
5165 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5166 return false;
5168 return true;
5171 /* Simple wrapper, as we can always redirect fallthru edges. */
5173 static basic_block
5174 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5176 e = gimple_redirect_edge_and_branch (e, dest);
5177 gcc_assert (e);
5179 return NULL;
5183 /* Splits basic block BB after statement STMT (but at least after the
5184 labels). If STMT is NULL, BB is split just after the labels. */
5186 static basic_block
5187 gimple_split_block (basic_block bb, void *stmt)
5189 gimple_stmt_iterator gsi;
5190 gimple_stmt_iterator gsi_tgt;
5191 gimple act;
5192 gimple_seq list;
5193 basic_block new_bb;
5194 edge e;
5195 edge_iterator ei;
5197 new_bb = create_empty_bb (bb);
5199 /* Redirect the outgoing edges. */
5200 new_bb->succs = bb->succs;
5201 bb->succs = NULL;
5202 FOR_EACH_EDGE (e, ei, new_bb->succs)
5203 e->src = new_bb;
5205 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5206 stmt = NULL;
5208 /* Move everything from GSI to the new basic block. */
5209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5211 act = gsi_stmt (gsi);
5212 if (gimple_code (act) == GIMPLE_LABEL)
5213 continue;
5215 if (!stmt)
5216 break;
5218 if (stmt == act)
5220 gsi_next (&gsi);
5221 break;
5225 if (gsi_end_p (gsi))
5226 return new_bb;
5228 /* Split the statement list - avoid re-creating new containers as this
5229 brings ugly quadratic memory consumption in the inliner.
5230 (We are still quadratic since we need to update stmt BB pointers,
5231 sadly.) */
5232 list = gsi_split_seq_before (&gsi);
5233 set_bb_seq (new_bb, list);
5234 for (gsi_tgt = gsi_start (list);
5235 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5236 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5238 return new_bb;
5242 /* Moves basic block BB after block AFTER. */
5244 static bool
5245 gimple_move_block_after (basic_block bb, basic_block after)
5247 if (bb->prev_bb == after)
5248 return true;
5250 unlink_block (bb);
5251 link_block (bb, after);
5253 return true;
5257 /* Return true if basic_block can be duplicated. */
5259 static bool
5260 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5262 return true;
5265 /* Create a duplicate of the basic block BB. NOTE: This does not
5266 preserve SSA form. */
5268 static basic_block
5269 gimple_duplicate_bb (basic_block bb)
5271 basic_block new_bb;
5272 gimple_stmt_iterator gsi, gsi_tgt;
5273 gimple_seq phis = phi_nodes (bb);
5274 gimple phi, stmt, copy;
5276 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5278 /* Copy the PHI nodes. We ignore PHI node arguments here because
5279 the incoming edges have not been setup yet. */
5280 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5282 phi = gsi_stmt (gsi);
5283 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5284 create_new_def_for (gimple_phi_result (copy), copy,
5285 gimple_phi_result_ptr (copy));
5288 gsi_tgt = gsi_start_bb (new_bb);
5289 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5291 def_operand_p def_p;
5292 ssa_op_iter op_iter;
5293 tree lhs;
5295 stmt = gsi_stmt (gsi);
5296 if (gimple_code (stmt) == GIMPLE_LABEL)
5297 continue;
5299 /* Don't duplicate label debug stmts. */
5300 if (gimple_debug_bind_p (stmt)
5301 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5302 == LABEL_DECL)
5303 continue;
5305 /* Create a new copy of STMT and duplicate STMT's virtual
5306 operands. */
5307 copy = gimple_copy (stmt);
5308 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5310 maybe_duplicate_eh_stmt (copy, stmt);
5311 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5313 /* When copying around a stmt writing into a local non-user
5314 aggregate, make sure it won't share stack slot with other
5315 vars. */
5316 lhs = gimple_get_lhs (stmt);
5317 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5319 tree base = get_base_address (lhs);
5320 if (base
5321 && (TREE_CODE (base) == VAR_DECL
5322 || TREE_CODE (base) == RESULT_DECL)
5323 && DECL_IGNORED_P (base)
5324 && !TREE_STATIC (base)
5325 && !DECL_EXTERNAL (base)
5326 && (TREE_CODE (base) != VAR_DECL
5327 || !DECL_HAS_VALUE_EXPR_P (base)))
5328 DECL_NONSHAREABLE (base) = 1;
5331 /* Create new names for all the definitions created by COPY and
5332 add replacement mappings for each new name. */
5333 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5334 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5337 return new_bb;
5340 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5342 static void
5343 add_phi_args_after_copy_edge (edge e_copy)
5345 basic_block bb, bb_copy = e_copy->src, dest;
5346 edge e;
5347 edge_iterator ei;
5348 gimple phi, phi_copy;
5349 tree def;
5350 gimple_stmt_iterator psi, psi_copy;
5352 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5353 return;
5355 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5357 if (e_copy->dest->flags & BB_DUPLICATED)
5358 dest = get_bb_original (e_copy->dest);
5359 else
5360 dest = e_copy->dest;
5362 e = find_edge (bb, dest);
5363 if (!e)
5365 /* During loop unrolling the target of the latch edge is copied.
5366 In this case we are not looking for edge to dest, but to
5367 duplicated block whose original was dest. */
5368 FOR_EACH_EDGE (e, ei, bb->succs)
5370 if ((e->dest->flags & BB_DUPLICATED)
5371 && get_bb_original (e->dest) == dest)
5372 break;
5375 gcc_assert (e != NULL);
5378 for (psi = gsi_start_phis (e->dest),
5379 psi_copy = gsi_start_phis (e_copy->dest);
5380 !gsi_end_p (psi);
5381 gsi_next (&psi), gsi_next (&psi_copy))
5383 phi = gsi_stmt (psi);
5384 phi_copy = gsi_stmt (psi_copy);
5385 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5386 add_phi_arg (phi_copy, def, e_copy,
5387 gimple_phi_arg_location_from_edge (phi, e));
5392 /* Basic block BB_COPY was created by code duplication. Add phi node
5393 arguments for edges going out of BB_COPY. The blocks that were
5394 duplicated have BB_DUPLICATED set. */
5396 void
5397 add_phi_args_after_copy_bb (basic_block bb_copy)
5399 edge e_copy;
5400 edge_iterator ei;
5402 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5404 add_phi_args_after_copy_edge (e_copy);
5408 /* Blocks in REGION_COPY array of length N_REGION were created by
5409 duplication of basic blocks. Add phi node arguments for edges
5410 going from these blocks. If E_COPY is not NULL, also add
5411 phi node arguments for its destination.*/
5413 void
5414 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5415 edge e_copy)
5417 unsigned i;
5419 for (i = 0; i < n_region; i++)
5420 region_copy[i]->flags |= BB_DUPLICATED;
5422 for (i = 0; i < n_region; i++)
5423 add_phi_args_after_copy_bb (region_copy[i]);
5424 if (e_copy)
5425 add_phi_args_after_copy_edge (e_copy);
5427 for (i = 0; i < n_region; i++)
5428 region_copy[i]->flags &= ~BB_DUPLICATED;
5431 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5432 important exit edge EXIT. By important we mean that no SSA name defined
5433 inside region is live over the other exit edges of the region. All entry
5434 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5435 to the duplicate of the region. SSA form, dominance and loop information
5436 is updated. The new basic blocks are stored to REGION_COPY in the same
5437 order as they had in REGION, provided that REGION_COPY is not NULL.
5438 The function returns false if it is unable to copy the region,
5439 true otherwise. */
5441 bool
5442 gimple_duplicate_sese_region (edge entry, edge exit,
5443 basic_block *region, unsigned n_region,
5444 basic_block *region_copy)
5446 unsigned i;
5447 bool free_region_copy = false, copying_header = false;
5448 struct loop *loop = entry->dest->loop_father;
5449 edge exit_copy;
5450 VEC (basic_block, heap) *doms;
5451 edge redirected;
5452 int total_freq = 0, entry_freq = 0;
5453 gcov_type total_count = 0, entry_count = 0;
5455 if (!can_copy_bbs_p (region, n_region))
5456 return false;
5458 /* Some sanity checking. Note that we do not check for all possible
5459 missuses of the functions. I.e. if you ask to copy something weird,
5460 it will work, but the state of structures probably will not be
5461 correct. */
5462 for (i = 0; i < n_region; i++)
5464 /* We do not handle subloops, i.e. all the blocks must belong to the
5465 same loop. */
5466 if (region[i]->loop_father != loop)
5467 return false;
5469 if (region[i] != entry->dest
5470 && region[i] == loop->header)
5471 return false;
5474 set_loop_copy (loop, loop);
5476 /* In case the function is used for loop header copying (which is the primary
5477 use), ensure that EXIT and its copy will be new latch and entry edges. */
5478 if (loop->header == entry->dest)
5480 copying_header = true;
5481 set_loop_copy (loop, loop_outer (loop));
5483 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5484 return false;
5486 for (i = 0; i < n_region; i++)
5487 if (region[i] != exit->src
5488 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5489 return false;
5492 if (!region_copy)
5494 region_copy = XNEWVEC (basic_block, n_region);
5495 free_region_copy = true;
5498 gcc_assert (!need_ssa_update_p (cfun));
5500 /* Record blocks outside the region that are dominated by something
5501 inside. */
5502 doms = NULL;
5503 initialize_original_copy_tables ();
5505 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5507 if (entry->dest->count)
5509 total_count = entry->dest->count;
5510 entry_count = entry->count;
5511 /* Fix up corner cases, to avoid division by zero or creation of negative
5512 frequencies. */
5513 if (entry_count > total_count)
5514 entry_count = total_count;
5516 else
5518 total_freq = entry->dest->frequency;
5519 entry_freq = EDGE_FREQUENCY (entry);
5520 /* Fix up corner cases, to avoid division by zero or creation of negative
5521 frequencies. */
5522 if (total_freq == 0)
5523 total_freq = 1;
5524 else if (entry_freq > total_freq)
5525 entry_freq = total_freq;
5528 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5529 split_edge_bb_loc (entry));
5530 if (total_count)
5532 scale_bbs_frequencies_gcov_type (region, n_region,
5533 total_count - entry_count,
5534 total_count);
5535 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5536 total_count);
5538 else
5540 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5541 total_freq);
5542 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5545 if (copying_header)
5547 loop->header = exit->dest;
5548 loop->latch = exit->src;
5551 /* Redirect the entry and add the phi node arguments. */
5552 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5553 gcc_assert (redirected != NULL);
5554 flush_pending_stmts (entry);
5556 /* Concerning updating of dominators: We must recount dominators
5557 for entry block and its copy. Anything that is outside of the
5558 region, but was dominated by something inside needs recounting as
5559 well. */
5560 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5561 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5562 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5563 VEC_free (basic_block, heap, doms);
5565 /* Add the other PHI node arguments. */
5566 add_phi_args_after_copy (region_copy, n_region, NULL);
5568 /* Update the SSA web. */
5569 update_ssa (TODO_update_ssa);
5571 if (free_region_copy)
5572 free (region_copy);
5574 free_original_copy_tables ();
5575 return true;
5578 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5579 are stored to REGION_COPY in the same order in that they appear
5580 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5581 the region, EXIT an exit from it. The condition guarding EXIT
5582 is moved to ENTRY. Returns true if duplication succeeds, false
5583 otherwise.
5585 For example,
5587 some_code;
5588 if (cond)
5590 else
5593 is transformed to
5595 if (cond)
5597 some_code;
5600 else
5602 some_code;
5607 bool
5608 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5609 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5610 basic_block *region_copy ATTRIBUTE_UNUSED)
5612 unsigned i;
5613 bool free_region_copy = false;
5614 struct loop *loop = exit->dest->loop_father;
5615 struct loop *orig_loop = entry->dest->loop_father;
5616 basic_block switch_bb, entry_bb, nentry_bb;
5617 VEC (basic_block, heap) *doms;
5618 int total_freq = 0, exit_freq = 0;
5619 gcov_type total_count = 0, exit_count = 0;
5620 edge exits[2], nexits[2], e;
5621 gimple_stmt_iterator gsi;
5622 gimple cond_stmt;
5623 edge sorig, snew;
5624 basic_block exit_bb;
5625 gimple_stmt_iterator psi;
5626 gimple phi;
5627 tree def;
5629 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5630 exits[0] = exit;
5631 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5633 if (!can_copy_bbs_p (region, n_region))
5634 return false;
5636 initialize_original_copy_tables ();
5637 set_loop_copy (orig_loop, loop);
5638 duplicate_subloops (orig_loop, loop);
5640 if (!region_copy)
5642 region_copy = XNEWVEC (basic_block, n_region);
5643 free_region_copy = true;
5646 gcc_assert (!need_ssa_update_p (cfun));
5648 /* Record blocks outside the region that are dominated by something
5649 inside. */
5650 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5652 if (exit->src->count)
5654 total_count = exit->src->count;
5655 exit_count = exit->count;
5656 /* Fix up corner cases, to avoid division by zero or creation of negative
5657 frequencies. */
5658 if (exit_count > total_count)
5659 exit_count = total_count;
5661 else
5663 total_freq = exit->src->frequency;
5664 exit_freq = EDGE_FREQUENCY (exit);
5665 /* Fix up corner cases, to avoid division by zero or creation of negative
5666 frequencies. */
5667 if (total_freq == 0)
5668 total_freq = 1;
5669 if (exit_freq > total_freq)
5670 exit_freq = total_freq;
5673 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5674 split_edge_bb_loc (exit));
5675 if (total_count)
5677 scale_bbs_frequencies_gcov_type (region, n_region,
5678 total_count - exit_count,
5679 total_count);
5680 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5681 total_count);
5683 else
5685 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5686 total_freq);
5687 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5690 /* Create the switch block, and put the exit condition to it. */
5691 entry_bb = entry->dest;
5692 nentry_bb = get_bb_copy (entry_bb);
5693 if (!last_stmt (entry->src)
5694 || !stmt_ends_bb_p (last_stmt (entry->src)))
5695 switch_bb = entry->src;
5696 else
5697 switch_bb = split_edge (entry);
5698 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5700 gsi = gsi_last_bb (switch_bb);
5701 cond_stmt = last_stmt (exit->src);
5702 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5703 cond_stmt = gimple_copy (cond_stmt);
5705 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5707 sorig = single_succ_edge (switch_bb);
5708 sorig->flags = exits[1]->flags;
5709 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5711 /* Register the new edge from SWITCH_BB in loop exit lists. */
5712 rescan_loop_exit (snew, true, false);
5714 /* Add the PHI node arguments. */
5715 add_phi_args_after_copy (region_copy, n_region, snew);
5717 /* Get rid of now superfluous conditions and associated edges (and phi node
5718 arguments). */
5719 exit_bb = exit->dest;
5721 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5722 PENDING_STMT (e) = NULL;
5724 /* The latch of ORIG_LOOP was copied, and so was the backedge
5725 to the original header. We redirect this backedge to EXIT_BB. */
5726 for (i = 0; i < n_region; i++)
5727 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5729 gcc_assert (single_succ_edge (region_copy[i]));
5730 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5731 PENDING_STMT (e) = NULL;
5732 for (psi = gsi_start_phis (exit_bb);
5733 !gsi_end_p (psi);
5734 gsi_next (&psi))
5736 phi = gsi_stmt (psi);
5737 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5738 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5741 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5742 PENDING_STMT (e) = NULL;
5744 /* Anything that is outside of the region, but was dominated by something
5745 inside needs to update dominance info. */
5746 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5747 VEC_free (basic_block, heap, doms);
5748 /* Update the SSA web. */
5749 update_ssa (TODO_update_ssa);
5751 if (free_region_copy)
5752 free (region_copy);
5754 free_original_copy_tables ();
5755 return true;
5758 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5759 adding blocks when the dominator traversal reaches EXIT. This
5760 function silently assumes that ENTRY strictly dominates EXIT. */
5762 void
5763 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5764 VEC(basic_block,heap) **bbs_p)
5766 basic_block son;
5768 for (son = first_dom_son (CDI_DOMINATORS, entry);
5769 son;
5770 son = next_dom_son (CDI_DOMINATORS, son))
5772 VEC_safe_push (basic_block, heap, *bbs_p, son);
5773 if (son != exit)
5774 gather_blocks_in_sese_region (son, exit, bbs_p);
5778 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5779 The duplicates are recorded in VARS_MAP. */
5781 static void
5782 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5783 tree to_context)
5785 tree t = *tp, new_t;
5786 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5787 void **loc;
5789 if (DECL_CONTEXT (t) == to_context)
5790 return;
5792 loc = pointer_map_contains (vars_map, t);
5794 if (!loc)
5796 loc = pointer_map_insert (vars_map, t);
5798 if (SSA_VAR_P (t))
5800 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5801 add_local_decl (f, new_t);
5803 else
5805 gcc_assert (TREE_CODE (t) == CONST_DECL);
5806 new_t = copy_node (t);
5808 DECL_CONTEXT (new_t) = to_context;
5810 *loc = new_t;
5812 else
5813 new_t = (tree) *loc;
5815 *tp = new_t;
5819 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5820 VARS_MAP maps old ssa names and var_decls to the new ones. */
5822 static tree
5823 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5824 tree to_context)
5826 void **loc;
5827 tree new_name, decl = SSA_NAME_VAR (name);
5829 gcc_assert (is_gimple_reg (name));
5831 loc = pointer_map_contains (vars_map, name);
5833 if (!loc)
5835 replace_by_duplicate_decl (&decl, vars_map, to_context);
5837 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5838 if (gimple_in_ssa_p (cfun))
5839 add_referenced_var (decl);
5841 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5842 if (SSA_NAME_IS_DEFAULT_DEF (name))
5843 set_default_def (decl, new_name);
5844 pop_cfun ();
5846 loc = pointer_map_insert (vars_map, name);
5847 *loc = new_name;
5849 else
5850 new_name = (tree) *loc;
5852 return new_name;
5855 struct move_stmt_d
5857 tree orig_block;
5858 tree new_block;
5859 tree from_context;
5860 tree to_context;
5861 struct pointer_map_t *vars_map;
5862 htab_t new_label_map;
5863 struct pointer_map_t *eh_map;
5864 bool remap_decls_p;
5867 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5868 contained in *TP if it has been ORIG_BLOCK previously and change the
5869 DECL_CONTEXT of every local variable referenced in *TP. */
5871 static tree
5872 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5874 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5875 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5876 tree t = *tp;
5878 if (EXPR_P (t))
5879 /* We should never have TREE_BLOCK set on non-statements. */
5880 gcc_assert (!TREE_BLOCK (t));
5882 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5884 if (TREE_CODE (t) == SSA_NAME)
5885 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5886 else if (TREE_CODE (t) == LABEL_DECL)
5888 if (p->new_label_map)
5890 struct tree_map in, *out;
5891 in.base.from = t;
5892 out = (struct tree_map *)
5893 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5894 if (out)
5895 *tp = t = out->to;
5898 DECL_CONTEXT (t) = p->to_context;
5900 else if (p->remap_decls_p)
5902 /* Replace T with its duplicate. T should no longer appear in the
5903 parent function, so this looks wasteful; however, it may appear
5904 in referenced_vars, and more importantly, as virtual operands of
5905 statements, and in alias lists of other variables. It would be
5906 quite difficult to expunge it from all those places. ??? It might
5907 suffice to do this for addressable variables. */
5908 if ((TREE_CODE (t) == VAR_DECL
5909 && !is_global_var (t))
5910 || TREE_CODE (t) == CONST_DECL)
5911 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5913 if (SSA_VAR_P (t)
5914 && gimple_in_ssa_p (cfun))
5916 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5917 add_referenced_var (*tp);
5918 pop_cfun ();
5921 *walk_subtrees = 0;
5923 else if (TYPE_P (t))
5924 *walk_subtrees = 0;
5926 return NULL_TREE;
5929 /* Helper for move_stmt_r. Given an EH region number for the source
5930 function, map that to the duplicate EH regio number in the dest. */
5932 static int
5933 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5935 eh_region old_r, new_r;
5936 void **slot;
5938 old_r = get_eh_region_from_number (old_nr);
5939 slot = pointer_map_contains (p->eh_map, old_r);
5940 new_r = (eh_region) *slot;
5942 return new_r->index;
5945 /* Similar, but operate on INTEGER_CSTs. */
5947 static tree
5948 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5950 int old_nr, new_nr;
5952 old_nr = tree_low_cst (old_t_nr, 0);
5953 new_nr = move_stmt_eh_region_nr (old_nr, p);
5955 return build_int_cst (integer_type_node, new_nr);
5958 /* Like move_stmt_op, but for gimple statements.
5960 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5961 contained in the current statement in *GSI_P and change the
5962 DECL_CONTEXT of every local variable referenced in the current
5963 statement. */
5965 static tree
5966 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5967 struct walk_stmt_info *wi)
5969 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5970 gimple stmt = gsi_stmt (*gsi_p);
5971 tree block = gimple_block (stmt);
5973 if (p->orig_block == NULL_TREE
5974 || block == p->orig_block
5975 || block == NULL_TREE)
5976 gimple_set_block (stmt, p->new_block);
5977 #ifdef ENABLE_CHECKING
5978 else if (block != p->new_block)
5980 while (block && block != p->orig_block)
5981 block = BLOCK_SUPERCONTEXT (block);
5982 gcc_assert (block);
5984 #endif
5986 switch (gimple_code (stmt))
5988 case GIMPLE_CALL:
5989 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5991 tree r, fndecl = gimple_call_fndecl (stmt);
5992 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5993 switch (DECL_FUNCTION_CODE (fndecl))
5995 case BUILT_IN_EH_COPY_VALUES:
5996 r = gimple_call_arg (stmt, 1);
5997 r = move_stmt_eh_region_tree_nr (r, p);
5998 gimple_call_set_arg (stmt, 1, r);
5999 /* FALLTHRU */
6001 case BUILT_IN_EH_POINTER:
6002 case BUILT_IN_EH_FILTER:
6003 r = gimple_call_arg (stmt, 0);
6004 r = move_stmt_eh_region_tree_nr (r, p);
6005 gimple_call_set_arg (stmt, 0, r);
6006 break;
6008 default:
6009 break;
6012 break;
6014 case GIMPLE_RESX:
6016 int r = gimple_resx_region (stmt);
6017 r = move_stmt_eh_region_nr (r, p);
6018 gimple_resx_set_region (stmt, r);
6020 break;
6022 case GIMPLE_EH_DISPATCH:
6024 int r = gimple_eh_dispatch_region (stmt);
6025 r = move_stmt_eh_region_nr (r, p);
6026 gimple_eh_dispatch_set_region (stmt, r);
6028 break;
6030 case GIMPLE_OMP_RETURN:
6031 case GIMPLE_OMP_CONTINUE:
6032 break;
6033 default:
6034 if (is_gimple_omp (stmt))
6036 /* Do not remap variables inside OMP directives. Variables
6037 referenced in clauses and directive header belong to the
6038 parent function and should not be moved into the child
6039 function. */
6040 bool save_remap_decls_p = p->remap_decls_p;
6041 p->remap_decls_p = false;
6042 *handled_ops_p = true;
6044 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6045 move_stmt_op, wi);
6047 p->remap_decls_p = save_remap_decls_p;
6049 break;
6052 return NULL_TREE;
6055 /* Move basic block BB from function CFUN to function DEST_FN. The
6056 block is moved out of the original linked list and placed after
6057 block AFTER in the new list. Also, the block is removed from the
6058 original array of blocks and placed in DEST_FN's array of blocks.
6059 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6060 updated to reflect the moved edges.
6062 The local variables are remapped to new instances, VARS_MAP is used
6063 to record the mapping. */
6065 static void
6066 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6067 basic_block after, bool update_edge_count_p,
6068 struct move_stmt_d *d)
6070 struct control_flow_graph *cfg;
6071 edge_iterator ei;
6072 edge e;
6073 gimple_stmt_iterator si;
6074 unsigned old_len, new_len;
6076 /* Remove BB from dominance structures. */
6077 delete_from_dominance_info (CDI_DOMINATORS, bb);
6078 if (current_loops)
6079 remove_bb_from_loops (bb);
6081 /* Link BB to the new linked list. */
6082 move_block_after (bb, after);
6084 /* Update the edge count in the corresponding flowgraphs. */
6085 if (update_edge_count_p)
6086 FOR_EACH_EDGE (e, ei, bb->succs)
6088 cfun->cfg->x_n_edges--;
6089 dest_cfun->cfg->x_n_edges++;
6092 /* Remove BB from the original basic block array. */
6093 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6094 cfun->cfg->x_n_basic_blocks--;
6096 /* Grow DEST_CFUN's basic block array if needed. */
6097 cfg = dest_cfun->cfg;
6098 cfg->x_n_basic_blocks++;
6099 if (bb->index >= cfg->x_last_basic_block)
6100 cfg->x_last_basic_block = bb->index + 1;
6102 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6103 if ((unsigned) cfg->x_last_basic_block >= old_len)
6105 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6106 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6107 new_len);
6110 VEC_replace (basic_block, cfg->x_basic_block_info,
6111 bb->index, bb);
6113 /* Remap the variables in phi nodes. */
6114 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6116 gimple phi = gsi_stmt (si);
6117 use_operand_p use;
6118 tree op = PHI_RESULT (phi);
6119 ssa_op_iter oi;
6121 if (!is_gimple_reg (op))
6123 /* Remove the phi nodes for virtual operands (alias analysis will be
6124 run for the new function, anyway). */
6125 remove_phi_node (&si, true);
6126 continue;
6129 SET_PHI_RESULT (phi,
6130 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6131 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6133 op = USE_FROM_PTR (use);
6134 if (TREE_CODE (op) == SSA_NAME)
6135 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6138 gsi_next (&si);
6141 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6143 gimple stmt = gsi_stmt (si);
6144 struct walk_stmt_info wi;
6146 memset (&wi, 0, sizeof (wi));
6147 wi.info = d;
6148 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6150 if (gimple_code (stmt) == GIMPLE_LABEL)
6152 tree label = gimple_label_label (stmt);
6153 int uid = LABEL_DECL_UID (label);
6155 gcc_assert (uid > -1);
6157 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6158 if (old_len <= (unsigned) uid)
6160 new_len = 3 * uid / 2 + 1;
6161 VEC_safe_grow_cleared (basic_block, gc,
6162 cfg->x_label_to_block_map, new_len);
6165 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6166 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6168 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6170 if (uid >= dest_cfun->cfg->last_label_uid)
6171 dest_cfun->cfg->last_label_uid = uid + 1;
6174 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6175 remove_stmt_from_eh_lp_fn (cfun, stmt);
6177 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6178 gimple_remove_stmt_histograms (cfun, stmt);
6180 /* We cannot leave any operands allocated from the operand caches of
6181 the current function. */
6182 free_stmt_operands (stmt);
6183 push_cfun (dest_cfun);
6184 update_stmt (stmt);
6185 pop_cfun ();
6188 FOR_EACH_EDGE (e, ei, bb->succs)
6189 if (e->goto_locus)
6191 tree block = e->goto_block;
6192 if (d->orig_block == NULL_TREE
6193 || block == d->orig_block)
6194 e->goto_block = d->new_block;
6195 #ifdef ENABLE_CHECKING
6196 else if (block != d->new_block)
6198 while (block && block != d->orig_block)
6199 block = BLOCK_SUPERCONTEXT (block);
6200 gcc_assert (block);
6202 #endif
6206 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6207 the outermost EH region. Use REGION as the incoming base EH region. */
6209 static eh_region
6210 find_outermost_region_in_block (struct function *src_cfun,
6211 basic_block bb, eh_region region)
6213 gimple_stmt_iterator si;
6215 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6217 gimple stmt = gsi_stmt (si);
6218 eh_region stmt_region;
6219 int lp_nr;
6221 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6222 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6223 if (stmt_region)
6225 if (region == NULL)
6226 region = stmt_region;
6227 else if (stmt_region != region)
6229 region = eh_region_outermost (src_cfun, stmt_region, region);
6230 gcc_assert (region != NULL);
6235 return region;
6238 static tree
6239 new_label_mapper (tree decl, void *data)
6241 htab_t hash = (htab_t) data;
6242 struct tree_map *m;
6243 void **slot;
6245 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6247 m = XNEW (struct tree_map);
6248 m->hash = DECL_UID (decl);
6249 m->base.from = decl;
6250 m->to = create_artificial_label (UNKNOWN_LOCATION);
6251 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6252 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6253 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6255 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6256 gcc_assert (*slot == NULL);
6258 *slot = m;
6260 return m->to;
6263 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6264 subblocks. */
6266 static void
6267 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6268 tree to_context)
6270 tree *tp, t;
6272 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6274 t = *tp;
6275 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6276 continue;
6277 replace_by_duplicate_decl (&t, vars_map, to_context);
6278 if (t != *tp)
6280 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6282 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6283 DECL_HAS_VALUE_EXPR_P (t) = 1;
6285 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6286 *tp = t;
6290 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6291 replace_block_vars_by_duplicates (block, vars_map, to_context);
6294 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6295 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6296 single basic block in the original CFG and the new basic block is
6297 returned. DEST_CFUN must not have a CFG yet.
6299 Note that the region need not be a pure SESE region. Blocks inside
6300 the region may contain calls to abort/exit. The only restriction
6301 is that ENTRY_BB should be the only entry point and it must
6302 dominate EXIT_BB.
6304 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6305 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6306 to the new function.
6308 All local variables referenced in the region are assumed to be in
6309 the corresponding BLOCK_VARS and unexpanded variable lists
6310 associated with DEST_CFUN. */
6312 basic_block
6313 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6314 basic_block exit_bb, tree orig_block)
6316 VEC(basic_block,heap) *bbs, *dom_bbs;
6317 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6318 basic_block after, bb, *entry_pred, *exit_succ, abb;
6319 struct function *saved_cfun = cfun;
6320 int *entry_flag, *exit_flag;
6321 unsigned *entry_prob, *exit_prob;
6322 unsigned i, num_entry_edges, num_exit_edges;
6323 edge e;
6324 edge_iterator ei;
6325 htab_t new_label_map;
6326 struct pointer_map_t *vars_map, *eh_map;
6327 struct loop *loop = entry_bb->loop_father;
6328 struct move_stmt_d d;
6330 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6331 region. */
6332 gcc_assert (entry_bb != exit_bb
6333 && (!exit_bb
6334 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6336 /* Collect all the blocks in the region. Manually add ENTRY_BB
6337 because it won't be added by dfs_enumerate_from. */
6338 bbs = NULL;
6339 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6340 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6342 /* The blocks that used to be dominated by something in BBS will now be
6343 dominated by the new block. */
6344 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6345 VEC_address (basic_block, bbs),
6346 VEC_length (basic_block, bbs));
6348 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6349 the predecessor edges to ENTRY_BB and the successor edges to
6350 EXIT_BB so that we can re-attach them to the new basic block that
6351 will replace the region. */
6352 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6353 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6354 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6355 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6356 i = 0;
6357 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6359 entry_prob[i] = e->probability;
6360 entry_flag[i] = e->flags;
6361 entry_pred[i++] = e->src;
6362 remove_edge (e);
6365 if (exit_bb)
6367 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6368 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6369 sizeof (basic_block));
6370 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6371 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6372 i = 0;
6373 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6375 exit_prob[i] = e->probability;
6376 exit_flag[i] = e->flags;
6377 exit_succ[i++] = e->dest;
6378 remove_edge (e);
6381 else
6383 num_exit_edges = 0;
6384 exit_succ = NULL;
6385 exit_flag = NULL;
6386 exit_prob = NULL;
6389 /* Switch context to the child function to initialize DEST_FN's CFG. */
6390 gcc_assert (dest_cfun->cfg == NULL);
6391 push_cfun (dest_cfun);
6393 init_empty_tree_cfg ();
6395 /* Initialize EH information for the new function. */
6396 eh_map = NULL;
6397 new_label_map = NULL;
6398 if (saved_cfun->eh)
6400 eh_region region = NULL;
6402 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6403 region = find_outermost_region_in_block (saved_cfun, bb, region);
6405 init_eh_for_function ();
6406 if (region != NULL)
6408 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6409 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6410 new_label_mapper, new_label_map);
6414 pop_cfun ();
6416 /* Move blocks from BBS into DEST_CFUN. */
6417 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6418 after = dest_cfun->cfg->x_entry_block_ptr;
6419 vars_map = pointer_map_create ();
6421 memset (&d, 0, sizeof (d));
6422 d.orig_block = orig_block;
6423 d.new_block = DECL_INITIAL (dest_cfun->decl);
6424 d.from_context = cfun->decl;
6425 d.to_context = dest_cfun->decl;
6426 d.vars_map = vars_map;
6427 d.new_label_map = new_label_map;
6428 d.eh_map = eh_map;
6429 d.remap_decls_p = true;
6431 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6433 /* No need to update edge counts on the last block. It has
6434 already been updated earlier when we detached the region from
6435 the original CFG. */
6436 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6437 after = bb;
6440 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6441 if (orig_block)
6443 tree block;
6444 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6445 == NULL_TREE);
6446 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6447 = BLOCK_SUBBLOCKS (orig_block);
6448 for (block = BLOCK_SUBBLOCKS (orig_block);
6449 block; block = BLOCK_CHAIN (block))
6450 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6451 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6454 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6455 vars_map, dest_cfun->decl);
6457 if (new_label_map)
6458 htab_delete (new_label_map);
6459 if (eh_map)
6460 pointer_map_destroy (eh_map);
6461 pointer_map_destroy (vars_map);
6463 /* Rewire the entry and exit blocks. The successor to the entry
6464 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6465 the child function. Similarly, the predecessor of DEST_FN's
6466 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6467 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6468 various CFG manipulation function get to the right CFG.
6470 FIXME, this is silly. The CFG ought to become a parameter to
6471 these helpers. */
6472 push_cfun (dest_cfun);
6473 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6474 if (exit_bb)
6475 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6476 pop_cfun ();
6478 /* Back in the original function, the SESE region has disappeared,
6479 create a new basic block in its place. */
6480 bb = create_empty_bb (entry_pred[0]);
6481 if (current_loops)
6482 add_bb_to_loop (bb, loop);
6483 for (i = 0; i < num_entry_edges; i++)
6485 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6486 e->probability = entry_prob[i];
6489 for (i = 0; i < num_exit_edges; i++)
6491 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6492 e->probability = exit_prob[i];
6495 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6496 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6497 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6498 VEC_free (basic_block, heap, dom_bbs);
6500 if (exit_bb)
6502 free (exit_prob);
6503 free (exit_flag);
6504 free (exit_succ);
6506 free (entry_prob);
6507 free (entry_flag);
6508 free (entry_pred);
6509 VEC_free (basic_block, heap, bbs);
6511 return bb;
6515 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6518 void
6519 dump_function_to_file (tree fn, FILE *file, int flags)
6521 tree arg, var;
6522 struct function *dsf;
6523 bool ignore_topmost_bind = false, any_var = false;
6524 basic_block bb;
6525 tree chain;
6526 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6528 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6529 tmclone ? "[tm-clone] " : "");
6531 arg = DECL_ARGUMENTS (fn);
6532 while (arg)
6534 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6535 fprintf (file, " ");
6536 print_generic_expr (file, arg, dump_flags);
6537 if (flags & TDF_VERBOSE)
6538 print_node (file, "", arg, 4);
6539 if (DECL_CHAIN (arg))
6540 fprintf (file, ", ");
6541 arg = DECL_CHAIN (arg);
6543 fprintf (file, ")\n");
6545 if (flags & TDF_VERBOSE)
6546 print_node (file, "", fn, 2);
6548 dsf = DECL_STRUCT_FUNCTION (fn);
6549 if (dsf && (flags & TDF_EH))
6550 dump_eh_tree (file, dsf);
6552 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6554 dump_node (fn, TDF_SLIM | flags, file);
6555 return;
6558 /* Switch CFUN to point to FN. */
6559 push_cfun (DECL_STRUCT_FUNCTION (fn));
6561 /* When GIMPLE is lowered, the variables are no longer available in
6562 BIND_EXPRs, so display them separately. */
6563 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6565 unsigned ix;
6566 ignore_topmost_bind = true;
6568 fprintf (file, "{\n");
6569 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6571 print_generic_decl (file, var, flags);
6572 if (flags & TDF_VERBOSE)
6573 print_node (file, "", var, 4);
6574 fprintf (file, "\n");
6576 any_var = true;
6580 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6582 /* If the CFG has been built, emit a CFG-based dump. */
6583 check_bb_profile (ENTRY_BLOCK_PTR, file);
6584 if (!ignore_topmost_bind)
6585 fprintf (file, "{\n");
6587 if (any_var && n_basic_blocks)
6588 fprintf (file, "\n");
6590 FOR_EACH_BB (bb)
6591 gimple_dump_bb (bb, file, 2, flags);
6593 fprintf (file, "}\n");
6594 check_bb_profile (EXIT_BLOCK_PTR, file);
6596 else if (DECL_SAVED_TREE (fn) == NULL)
6598 /* The function is now in GIMPLE form but the CFG has not been
6599 built yet. Emit the single sequence of GIMPLE statements
6600 that make up its body. */
6601 gimple_seq body = gimple_body (fn);
6603 if (gimple_seq_first_stmt (body)
6604 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6605 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6606 print_gimple_seq (file, body, 0, flags);
6607 else
6609 if (!ignore_topmost_bind)
6610 fprintf (file, "{\n");
6612 if (any_var)
6613 fprintf (file, "\n");
6615 print_gimple_seq (file, body, 2, flags);
6616 fprintf (file, "}\n");
6619 else
6621 int indent;
6623 /* Make a tree based dump. */
6624 chain = DECL_SAVED_TREE (fn);
6626 if (chain && TREE_CODE (chain) == BIND_EXPR)
6628 if (ignore_topmost_bind)
6630 chain = BIND_EXPR_BODY (chain);
6631 indent = 2;
6633 else
6634 indent = 0;
6636 else
6638 if (!ignore_topmost_bind)
6639 fprintf (file, "{\n");
6640 indent = 2;
6643 if (any_var)
6644 fprintf (file, "\n");
6646 print_generic_stmt_indented (file, chain, flags, indent);
6647 if (ignore_topmost_bind)
6648 fprintf (file, "}\n");
6651 if (flags & TDF_ENUMERATE_LOCALS)
6652 dump_enumerated_decls (file, flags);
6653 fprintf (file, "\n\n");
6655 /* Restore CFUN. */
6656 pop_cfun ();
6660 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6662 DEBUG_FUNCTION void
6663 debug_function (tree fn, int flags)
6665 dump_function_to_file (fn, stderr, flags);
6669 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6671 static void
6672 print_pred_bbs (FILE *file, basic_block bb)
6674 edge e;
6675 edge_iterator ei;
6677 FOR_EACH_EDGE (e, ei, bb->preds)
6678 fprintf (file, "bb_%d ", e->src->index);
6682 /* Print on FILE the indexes for the successors of basic_block BB. */
6684 static void
6685 print_succ_bbs (FILE *file, basic_block bb)
6687 edge e;
6688 edge_iterator ei;
6690 FOR_EACH_EDGE (e, ei, bb->succs)
6691 fprintf (file, "bb_%d ", e->dest->index);
6694 /* Print to FILE the basic block BB following the VERBOSITY level. */
6696 void
6697 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6699 char *s_indent = (char *) alloca ((size_t) indent + 1);
6700 memset ((void *) s_indent, ' ', (size_t) indent);
6701 s_indent[indent] = '\0';
6703 /* Print basic_block's header. */
6704 if (verbosity >= 2)
6706 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6707 print_pred_bbs (file, bb);
6708 fprintf (file, "}, succs = {");
6709 print_succ_bbs (file, bb);
6710 fprintf (file, "})\n");
6713 /* Print basic_block's body. */
6714 if (verbosity >= 3)
6716 fprintf (file, "%s {\n", s_indent);
6717 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6718 fprintf (file, "%s }\n", s_indent);
6722 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6724 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6725 VERBOSITY level this outputs the contents of the loop, or just its
6726 structure. */
6728 static void
6729 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6731 char *s_indent;
6732 basic_block bb;
6734 if (loop == NULL)
6735 return;
6737 s_indent = (char *) alloca ((size_t) indent + 1);
6738 memset ((void *) s_indent, ' ', (size_t) indent);
6739 s_indent[indent] = '\0';
6741 /* Print loop's header. */
6742 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6743 loop->num, loop->header->index, loop->latch->index);
6744 fprintf (file, ", niter = ");
6745 print_generic_expr (file, loop->nb_iterations, 0);
6747 if (loop->any_upper_bound)
6749 fprintf (file, ", upper_bound = ");
6750 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6753 if (loop->any_estimate)
6755 fprintf (file, ", estimate = ");
6756 dump_double_int (file, loop->nb_iterations_estimate, true);
6758 fprintf (file, ")\n");
6760 /* Print loop's body. */
6761 if (verbosity >= 1)
6763 fprintf (file, "%s{\n", s_indent);
6764 FOR_EACH_BB (bb)
6765 if (bb->loop_father == loop)
6766 print_loops_bb (file, bb, indent, verbosity);
6768 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6769 fprintf (file, "%s}\n", s_indent);
6773 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6774 spaces. Following VERBOSITY level this outputs the contents of the
6775 loop, or just its structure. */
6777 static void
6778 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6780 if (loop == NULL)
6781 return;
6783 print_loop (file, loop, indent, verbosity);
6784 print_loop_and_siblings (file, loop->next, indent, verbosity);
6787 /* Follow a CFG edge from the entry point of the program, and on entry
6788 of a loop, pretty print the loop structure on FILE. */
6790 void
6791 print_loops (FILE *file, int verbosity)
6793 basic_block bb;
6795 bb = ENTRY_BLOCK_PTR;
6796 if (bb && bb->loop_father)
6797 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6801 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6803 DEBUG_FUNCTION void
6804 debug_loops (int verbosity)
6806 print_loops (stderr, verbosity);
6809 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6811 DEBUG_FUNCTION void
6812 debug_loop (struct loop *loop, int verbosity)
6814 print_loop (stderr, loop, 0, verbosity);
6817 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6818 level. */
6820 DEBUG_FUNCTION void
6821 debug_loop_num (unsigned num, int verbosity)
6823 debug_loop (get_loop (num), verbosity);
6826 /* Return true if BB ends with a call, possibly followed by some
6827 instructions that must stay with the call. Return false,
6828 otherwise. */
6830 static bool
6831 gimple_block_ends_with_call_p (basic_block bb)
6833 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6834 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6838 /* Return true if BB ends with a conditional branch. Return false,
6839 otherwise. */
6841 static bool
6842 gimple_block_ends_with_condjump_p (const_basic_block bb)
6844 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6845 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6849 /* Return true if we need to add fake edge to exit at statement T.
6850 Helper function for gimple_flow_call_edges_add. */
6852 static bool
6853 need_fake_edge_p (gimple t)
6855 tree fndecl = NULL_TREE;
6856 int call_flags = 0;
6858 /* NORETURN and LONGJMP calls already have an edge to exit.
6859 CONST and PURE calls do not need one.
6860 We don't currently check for CONST and PURE here, although
6861 it would be a good idea, because those attributes are
6862 figured out from the RTL in mark_constant_function, and
6863 the counter incrementation code from -fprofile-arcs
6864 leads to different results from -fbranch-probabilities. */
6865 if (is_gimple_call (t))
6867 fndecl = gimple_call_fndecl (t);
6868 call_flags = gimple_call_flags (t);
6871 if (is_gimple_call (t)
6872 && fndecl
6873 && DECL_BUILT_IN (fndecl)
6874 && (call_flags & ECF_NOTHROW)
6875 && !(call_flags & ECF_RETURNS_TWICE)
6876 /* fork() doesn't really return twice, but the effect of
6877 wrapping it in __gcov_fork() which calls __gcov_flush()
6878 and clears the counters before forking has the same
6879 effect as returning twice. Force a fake edge. */
6880 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6881 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6882 return false;
6884 if (is_gimple_call (t))
6886 edge_iterator ei;
6887 edge e;
6888 basic_block bb;
6890 if (!(call_flags & ECF_NORETURN))
6891 return true;
6893 bb = gimple_bb (t);
6894 FOR_EACH_EDGE (e, ei, bb->succs)
6895 if ((e->flags & EDGE_FAKE) == 0)
6896 return true;
6899 if (gimple_code (t) == GIMPLE_ASM
6900 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6901 return true;
6903 return false;
6907 /* Add fake edges to the function exit for any non constant and non
6908 noreturn calls (or noreturn calls with EH/abnormal edges),
6909 volatile inline assembly in the bitmap of blocks specified by BLOCKS
6910 or to the whole CFG if BLOCKS is zero. Return the number of blocks
6911 that were split.
6913 The goal is to expose cases in which entering a basic block does
6914 not imply that all subsequent instructions must be executed. */
6916 static int
6917 gimple_flow_call_edges_add (sbitmap blocks)
6919 int i;
6920 int blocks_split = 0;
6921 int last_bb = last_basic_block;
6922 bool check_last_block = false;
6924 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6925 return 0;
6927 if (! blocks)
6928 check_last_block = true;
6929 else
6930 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6932 /* In the last basic block, before epilogue generation, there will be
6933 a fallthru edge to EXIT. Special care is required if the last insn
6934 of the last basic block is a call because make_edge folds duplicate
6935 edges, which would result in the fallthru edge also being marked
6936 fake, which would result in the fallthru edge being removed by
6937 remove_fake_edges, which would result in an invalid CFG.
6939 Moreover, we can't elide the outgoing fake edge, since the block
6940 profiler needs to take this into account in order to solve the minimal
6941 spanning tree in the case that the call doesn't return.
6943 Handle this by adding a dummy instruction in a new last basic block. */
6944 if (check_last_block)
6946 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6947 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6948 gimple t = NULL;
6950 if (!gsi_end_p (gsi))
6951 t = gsi_stmt (gsi);
6953 if (t && need_fake_edge_p (t))
6955 edge e;
6957 e = find_edge (bb, EXIT_BLOCK_PTR);
6958 if (e)
6960 gsi_insert_on_edge (e, gimple_build_nop ());
6961 gsi_commit_edge_inserts ();
6966 /* Now add fake edges to the function exit for any non constant
6967 calls since there is no way that we can determine if they will
6968 return or not... */
6969 for (i = 0; i < last_bb; i++)
6971 basic_block bb = BASIC_BLOCK (i);
6972 gimple_stmt_iterator gsi;
6973 gimple stmt, last_stmt;
6975 if (!bb)
6976 continue;
6978 if (blocks && !TEST_BIT (blocks, i))
6979 continue;
6981 gsi = gsi_last_nondebug_bb (bb);
6982 if (!gsi_end_p (gsi))
6984 last_stmt = gsi_stmt (gsi);
6987 stmt = gsi_stmt (gsi);
6988 if (need_fake_edge_p (stmt))
6990 edge e;
6992 /* The handling above of the final block before the
6993 epilogue should be enough to verify that there is
6994 no edge to the exit block in CFG already.
6995 Calling make_edge in such case would cause us to
6996 mark that edge as fake and remove it later. */
6997 #ifdef ENABLE_CHECKING
6998 if (stmt == last_stmt)
7000 e = find_edge (bb, EXIT_BLOCK_PTR);
7001 gcc_assert (e == NULL);
7003 #endif
7005 /* Note that the following may create a new basic block
7006 and renumber the existing basic blocks. */
7007 if (stmt != last_stmt)
7009 e = split_block (bb, stmt);
7010 if (e)
7011 blocks_split++;
7013 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7015 gsi_prev (&gsi);
7017 while (!gsi_end_p (gsi));
7021 if (blocks_split)
7022 verify_flow_info ();
7024 return blocks_split;
7027 /* Removes edge E and all the blocks dominated by it, and updates dominance
7028 information. The IL in E->src needs to be updated separately.
7029 If dominance info is not available, only the edge E is removed.*/
7031 void
7032 remove_edge_and_dominated_blocks (edge e)
7034 VEC (basic_block, heap) *bbs_to_remove = NULL;
7035 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7036 bitmap df, df_idom;
7037 edge f;
7038 edge_iterator ei;
7039 bool none_removed = false;
7040 unsigned i;
7041 basic_block bb, dbb;
7042 bitmap_iterator bi;
7044 if (!dom_info_available_p (CDI_DOMINATORS))
7046 remove_edge (e);
7047 return;
7050 /* No updating is needed for edges to exit. */
7051 if (e->dest == EXIT_BLOCK_PTR)
7053 if (cfgcleanup_altered_bbs)
7054 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7055 remove_edge (e);
7056 return;
7059 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7060 that is not dominated by E->dest, then this set is empty. Otherwise,
7061 all the basic blocks dominated by E->dest are removed.
7063 Also, to DF_IDOM we store the immediate dominators of the blocks in
7064 the dominance frontier of E (i.e., of the successors of the
7065 removed blocks, if there are any, and of E->dest otherwise). */
7066 FOR_EACH_EDGE (f, ei, e->dest->preds)
7068 if (f == e)
7069 continue;
7071 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7073 none_removed = true;
7074 break;
7078 df = BITMAP_ALLOC (NULL);
7079 df_idom = BITMAP_ALLOC (NULL);
7081 if (none_removed)
7082 bitmap_set_bit (df_idom,
7083 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7084 else
7086 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7087 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7089 FOR_EACH_EDGE (f, ei, bb->succs)
7091 if (f->dest != EXIT_BLOCK_PTR)
7092 bitmap_set_bit (df, f->dest->index);
7095 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7096 bitmap_clear_bit (df, bb->index);
7098 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7100 bb = BASIC_BLOCK (i);
7101 bitmap_set_bit (df_idom,
7102 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7106 if (cfgcleanup_altered_bbs)
7108 /* Record the set of the altered basic blocks. */
7109 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7110 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7113 /* Remove E and the cancelled blocks. */
7114 if (none_removed)
7115 remove_edge (e);
7116 else
7118 /* Walk backwards so as to get a chance to substitute all
7119 released DEFs into debug stmts. See
7120 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7121 details. */
7122 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7123 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7126 /* Update the dominance information. The immediate dominator may change only
7127 for blocks whose immediate dominator belongs to DF_IDOM:
7129 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7130 removal. Let Z the arbitrary block such that idom(Z) = Y and
7131 Z dominates X after the removal. Before removal, there exists a path P
7132 from Y to X that avoids Z. Let F be the last edge on P that is
7133 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7134 dominates W, and because of P, Z does not dominate W), and W belongs to
7135 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7136 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7138 bb = BASIC_BLOCK (i);
7139 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7140 dbb;
7141 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7142 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7145 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7147 BITMAP_FREE (df);
7148 BITMAP_FREE (df_idom);
7149 VEC_free (basic_block, heap, bbs_to_remove);
7150 VEC_free (basic_block, heap, bbs_to_fix_dom);
7153 /* Purge dead EH edges from basic block BB. */
7155 bool
7156 gimple_purge_dead_eh_edges (basic_block bb)
7158 bool changed = false;
7159 edge e;
7160 edge_iterator ei;
7161 gimple stmt = last_stmt (bb);
7163 if (stmt && stmt_can_throw_internal (stmt))
7164 return false;
7166 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7168 if (e->flags & EDGE_EH)
7170 remove_edge_and_dominated_blocks (e);
7171 changed = true;
7173 else
7174 ei_next (&ei);
7177 return changed;
7180 /* Purge dead EH edges from basic block listed in BLOCKS. */
7182 bool
7183 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7185 bool changed = false;
7186 unsigned i;
7187 bitmap_iterator bi;
7189 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7191 basic_block bb = BASIC_BLOCK (i);
7193 /* Earlier gimple_purge_dead_eh_edges could have removed
7194 this basic block already. */
7195 gcc_assert (bb || changed);
7196 if (bb != NULL)
7197 changed |= gimple_purge_dead_eh_edges (bb);
7200 return changed;
7203 /* Purge dead abnormal call edges from basic block BB. */
7205 bool
7206 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7208 bool changed = false;
7209 edge e;
7210 edge_iterator ei;
7211 gimple stmt = last_stmt (bb);
7213 if (!cfun->has_nonlocal_label)
7214 return false;
7216 if (stmt && stmt_can_make_abnormal_goto (stmt))
7217 return false;
7219 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7221 if (e->flags & EDGE_ABNORMAL)
7223 remove_edge_and_dominated_blocks (e);
7224 changed = true;
7226 else
7227 ei_next (&ei);
7230 return changed;
7233 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7235 bool
7236 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7238 bool changed = false;
7239 unsigned i;
7240 bitmap_iterator bi;
7242 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7244 basic_block bb = BASIC_BLOCK (i);
7246 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7247 this basic block already. */
7248 gcc_assert (bb || changed);
7249 if (bb != NULL)
7250 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7253 return changed;
7256 /* This function is called whenever a new edge is created or
7257 redirected. */
7259 static void
7260 gimple_execute_on_growing_pred (edge e)
7262 basic_block bb = e->dest;
7264 if (!gimple_seq_empty_p (phi_nodes (bb)))
7265 reserve_phi_args_for_new_edge (bb);
7268 /* This function is called immediately before edge E is removed from
7269 the edge vector E->dest->preds. */
7271 static void
7272 gimple_execute_on_shrinking_pred (edge e)
7274 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7275 remove_phi_args (e);
7278 /*---------------------------------------------------------------------------
7279 Helper functions for Loop versioning
7280 ---------------------------------------------------------------------------*/
7282 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7283 of 'first'. Both of them are dominated by 'new_head' basic block. When
7284 'new_head' was created by 'second's incoming edge it received phi arguments
7285 on the edge by split_edge(). Later, additional edge 'e' was created to
7286 connect 'new_head' and 'first'. Now this routine adds phi args on this
7287 additional edge 'e' that new_head to second edge received as part of edge
7288 splitting. */
7290 static void
7291 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7292 basic_block new_head, edge e)
7294 gimple phi1, phi2;
7295 gimple_stmt_iterator psi1, psi2;
7296 tree def;
7297 edge e2 = find_edge (new_head, second);
7299 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7300 edge, we should always have an edge from NEW_HEAD to SECOND. */
7301 gcc_assert (e2 != NULL);
7303 /* Browse all 'second' basic block phi nodes and add phi args to
7304 edge 'e' for 'first' head. PHI args are always in correct order. */
7306 for (psi2 = gsi_start_phis (second),
7307 psi1 = gsi_start_phis (first);
7308 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7309 gsi_next (&psi2), gsi_next (&psi1))
7311 phi1 = gsi_stmt (psi1);
7312 phi2 = gsi_stmt (psi2);
7313 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7314 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7319 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7320 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7321 the destination of the ELSE part. */
7323 static void
7324 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7325 basic_block second_head ATTRIBUTE_UNUSED,
7326 basic_block cond_bb, void *cond_e)
7328 gimple_stmt_iterator gsi;
7329 gimple new_cond_expr;
7330 tree cond_expr = (tree) cond_e;
7331 edge e0;
7333 /* Build new conditional expr */
7334 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7335 NULL_TREE, NULL_TREE);
7337 /* Add new cond in cond_bb. */
7338 gsi = gsi_last_bb (cond_bb);
7339 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7341 /* Adjust edges appropriately to connect new head with first head
7342 as well as second head. */
7343 e0 = single_succ_edge (cond_bb);
7344 e0->flags &= ~EDGE_FALLTHRU;
7345 e0->flags |= EDGE_FALSE_VALUE;
7348 struct cfg_hooks gimple_cfg_hooks = {
7349 "gimple",
7350 gimple_verify_flow_info,
7351 gimple_dump_bb, /* dump_bb */
7352 create_bb, /* create_basic_block */
7353 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7354 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7355 gimple_can_remove_branch_p, /* can_remove_branch_p */
7356 remove_bb, /* delete_basic_block */
7357 gimple_split_block, /* split_block */
7358 gimple_move_block_after, /* move_block_after */
7359 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7360 gimple_merge_blocks, /* merge_blocks */
7361 gimple_predict_edge, /* predict_edge */
7362 gimple_predicted_by_p, /* predicted_by_p */
7363 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7364 gimple_duplicate_bb, /* duplicate_block */
7365 gimple_split_edge, /* split_edge */
7366 gimple_make_forwarder_block, /* make_forward_block */
7367 NULL, /* tidy_fallthru_edge */
7368 NULL, /* force_nonfallthru */
7369 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7370 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7371 gimple_flow_call_edges_add, /* flow_call_edges_add */
7372 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7373 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7374 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7375 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7376 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7377 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7378 flush_pending_stmts /* flush_pending_stmts */
7382 /* Split all critical edges. */
7384 static unsigned int
7385 split_critical_edges (void)
7387 basic_block bb;
7388 edge e;
7389 edge_iterator ei;
7391 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7392 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7393 mappings around the calls to split_edge. */
7394 start_recording_case_labels ();
7395 FOR_ALL_BB (bb)
7397 FOR_EACH_EDGE (e, ei, bb->succs)
7399 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7400 split_edge (e);
7401 /* PRE inserts statements to edges and expects that
7402 since split_critical_edges was done beforehand, committing edge
7403 insertions will not split more edges. In addition to critical
7404 edges we must split edges that have multiple successors and
7405 end by control flow statements, such as RESX.
7406 Go ahead and split them too. This matches the logic in
7407 gimple_find_edge_insert_loc. */
7408 else if ((!single_pred_p (e->dest)
7409 || !gimple_seq_empty_p (phi_nodes (e->dest))
7410 || e->dest == EXIT_BLOCK_PTR)
7411 && e->src != ENTRY_BLOCK_PTR
7412 && !(e->flags & EDGE_ABNORMAL))
7414 gimple_stmt_iterator gsi;
7416 gsi = gsi_last_bb (e->src);
7417 if (!gsi_end_p (gsi)
7418 && stmt_ends_bb_p (gsi_stmt (gsi))
7419 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7420 && !gimple_call_builtin_p (gsi_stmt (gsi),
7421 BUILT_IN_RETURN)))
7422 split_edge (e);
7426 end_recording_case_labels ();
7427 return 0;
7430 struct gimple_opt_pass pass_split_crit_edges =
7433 GIMPLE_PASS,
7434 "crited", /* name */
7435 NULL, /* gate */
7436 split_critical_edges, /* execute */
7437 NULL, /* sub */
7438 NULL, /* next */
7439 0, /* static_pass_number */
7440 TV_TREE_SPLIT_EDGES, /* tv_id */
7441 PROP_cfg, /* properties required */
7442 PROP_no_crit_edges, /* properties_provided */
7443 0, /* properties_destroyed */
7444 0, /* todo_flags_start */
7445 TODO_verify_flow /* todo_flags_finish */
7450 /* Build a ternary operation and gimplify it. Emit code before GSI.
7451 Return the gimple_val holding the result. */
7453 tree
7454 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7455 tree type, tree a, tree b, tree c)
7457 tree ret;
7458 location_t loc = gimple_location (gsi_stmt (*gsi));
7460 ret = fold_build3_loc (loc, code, type, a, b, c);
7461 STRIP_NOPS (ret);
7463 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7464 GSI_SAME_STMT);
7467 /* Build a binary operation and gimplify it. Emit code before GSI.
7468 Return the gimple_val holding the result. */
7470 tree
7471 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7472 tree type, tree a, tree b)
7474 tree ret;
7476 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7477 STRIP_NOPS (ret);
7479 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7480 GSI_SAME_STMT);
7483 /* Build a unary operation and gimplify it. Emit code before GSI.
7484 Return the gimple_val holding the result. */
7486 tree
7487 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7488 tree a)
7490 tree ret;
7492 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7493 STRIP_NOPS (ret);
7495 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7496 GSI_SAME_STMT);
7501 /* Emit return warnings. */
7503 static unsigned int
7504 execute_warn_function_return (void)
7506 source_location location;
7507 gimple last;
7508 edge e;
7509 edge_iterator ei;
7511 /* If we have a path to EXIT, then we do return. */
7512 if (TREE_THIS_VOLATILE (cfun->decl)
7513 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7515 location = UNKNOWN_LOCATION;
7516 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7518 last = last_stmt (e->src);
7519 if ((gimple_code (last) == GIMPLE_RETURN
7520 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7521 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7522 break;
7524 if (location == UNKNOWN_LOCATION)
7525 location = cfun->function_end_locus;
7526 warning_at (location, 0, "%<noreturn%> function does return");
7529 /* If we see "return;" in some basic block, then we do reach the end
7530 without returning a value. */
7531 else if (warn_return_type
7532 && !TREE_NO_WARNING (cfun->decl)
7533 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7534 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7536 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7538 gimple last = last_stmt (e->src);
7539 if (gimple_code (last) == GIMPLE_RETURN
7540 && gimple_return_retval (last) == NULL
7541 && !gimple_no_warning_p (last))
7543 location = gimple_location (last);
7544 if (location == UNKNOWN_LOCATION)
7545 location = cfun->function_end_locus;
7546 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7547 TREE_NO_WARNING (cfun->decl) = 1;
7548 break;
7552 return 0;
7556 /* Given a basic block B which ends with a conditional and has
7557 precisely two successors, determine which of the edges is taken if
7558 the conditional is true and which is taken if the conditional is
7559 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7561 void
7562 extract_true_false_edges_from_block (basic_block b,
7563 edge *true_edge,
7564 edge *false_edge)
7566 edge e = EDGE_SUCC (b, 0);
7568 if (e->flags & EDGE_TRUE_VALUE)
7570 *true_edge = e;
7571 *false_edge = EDGE_SUCC (b, 1);
7573 else
7575 *false_edge = e;
7576 *true_edge = EDGE_SUCC (b, 1);
7580 struct gimple_opt_pass pass_warn_function_return =
7583 GIMPLE_PASS,
7584 "*warn_function_return", /* name */
7585 NULL, /* gate */
7586 execute_warn_function_return, /* execute */
7587 NULL, /* sub */
7588 NULL, /* next */
7589 0, /* static_pass_number */
7590 TV_NONE, /* tv_id */
7591 PROP_cfg, /* properties_required */
7592 0, /* properties_provided */
7593 0, /* properties_destroyed */
7594 0, /* todo_flags_start */
7595 0 /* todo_flags_finish */
7599 /* Emit noreturn warnings. */
7601 static unsigned int
7602 execute_warn_function_noreturn (void)
7604 if (!TREE_THIS_VOLATILE (current_function_decl)
7605 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7606 warn_function_noreturn (current_function_decl);
7607 return 0;
7610 static bool
7611 gate_warn_function_noreturn (void)
7613 return warn_suggest_attribute_noreturn;
7616 struct gimple_opt_pass pass_warn_function_noreturn =
7619 GIMPLE_PASS,
7620 "*warn_function_noreturn", /* name */
7621 gate_warn_function_noreturn, /* gate */
7622 execute_warn_function_noreturn, /* execute */
7623 NULL, /* sub */
7624 NULL, /* next */
7625 0, /* static_pass_number */
7626 TV_NONE, /* tv_id */
7627 PROP_cfg, /* properties_required */
7628 0, /* properties_provided */
7629 0, /* properties_destroyed */
7630 0, /* todo_flags_start */
7631 0 /* todo_flags_finish */
7636 /* Walk a gimplified function and warn for functions whose return value is
7637 ignored and attribute((warn_unused_result)) is set. This is done before
7638 inlining, so we don't have to worry about that. */
7640 static void
7641 do_warn_unused_result (gimple_seq seq)
7643 tree fdecl, ftype;
7644 gimple_stmt_iterator i;
7646 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7648 gimple g = gsi_stmt (i);
7650 switch (gimple_code (g))
7652 case GIMPLE_BIND:
7653 do_warn_unused_result (gimple_bind_body (g));
7654 break;
7655 case GIMPLE_TRY:
7656 do_warn_unused_result (gimple_try_eval (g));
7657 do_warn_unused_result (gimple_try_cleanup (g));
7658 break;
7659 case GIMPLE_CATCH:
7660 do_warn_unused_result (gimple_catch_handler (g));
7661 break;
7662 case GIMPLE_EH_FILTER:
7663 do_warn_unused_result (gimple_eh_filter_failure (g));
7664 break;
7666 case GIMPLE_CALL:
7667 if (gimple_call_lhs (g))
7668 break;
7669 if (gimple_call_internal_p (g))
7670 break;
7672 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7673 LHS. All calls whose value is ignored should be
7674 represented like this. Look for the attribute. */
7675 fdecl = gimple_call_fndecl (g);
7676 ftype = gimple_call_fntype (g);
7678 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7680 location_t loc = gimple_location (g);
7682 if (fdecl)
7683 warning_at (loc, OPT_Wunused_result,
7684 "ignoring return value of %qD, "
7685 "declared with attribute warn_unused_result",
7686 fdecl);
7687 else
7688 warning_at (loc, OPT_Wunused_result,
7689 "ignoring return value of function "
7690 "declared with attribute warn_unused_result");
7692 break;
7694 default:
7695 /* Not a container, not a call, or a call whose value is used. */
7696 break;
7701 static unsigned int
7702 run_warn_unused_result (void)
7704 do_warn_unused_result (gimple_body (current_function_decl));
7705 return 0;
7708 static bool
7709 gate_warn_unused_result (void)
7711 return flag_warn_unused_result;
7714 struct gimple_opt_pass pass_warn_unused_result =
7717 GIMPLE_PASS,
7718 "*warn_unused_result", /* name */
7719 gate_warn_unused_result, /* gate */
7720 run_warn_unused_result, /* execute */
7721 NULL, /* sub */
7722 NULL, /* next */
7723 0, /* static_pass_number */
7724 TV_NONE, /* tv_id */
7725 PROP_gimple_any, /* properties_required */
7726 0, /* properties_provided */
7727 0, /* properties_destroyed */
7728 0, /* todo_flags_start */
7729 0, /* todo_flags_finish */