PR rtl-optimization/52543
[official-gcc.git] / gcc / combine.c
blobe3c8209a1530b6d2954fb17afa7d9a11f37a02ab
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107 #include "obstack.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as struct insn_link pointers. */
315 struct insn_link {
316 rtx insn;
317 struct insn_link *next;
320 static struct insn_link **uid_log_links;
322 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
325 #define FOR_EACH_LOG_LINK(L, INSN) \
326 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
328 /* Links for LOG_LINKS are allocated from this obstack. */
330 static struct obstack insn_link_obstack;
332 /* Allocate a link. */
334 static inline struct insn_link *
335 alloc_insn_link (rtx insn, struct insn_link *next)
337 struct insn_link *l
338 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
339 sizeof (struct insn_link));
340 l->insn = insn;
341 l->next = next;
342 return l;
345 /* Incremented for each basic block. */
347 static int label_tick;
349 /* Reset to label_tick for each extended basic block in scanning order. */
351 static int label_tick_ebb_start;
353 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
354 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
356 static enum machine_mode nonzero_bits_mode;
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359 be safely used. It is zero while computing them and after combine has
360 completed. This former test prevents propagating values based on
361 previously set values, which can be incorrect if a variable is modified
362 in a loop. */
364 static int nonzero_sign_valid;
367 /* Record one modification to rtl structure
368 to be undone by storing old_contents into *where. */
370 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
372 struct undo
374 struct undo *next;
375 enum undo_kind kind;
376 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
377 union { rtx *r; int *i; struct insn_link **l; } where;
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381 num_undo says how many are currently recorded.
383 other_insn is nonzero if we have modified some other insn in the process
384 of working on subst_insn. It must be verified too. */
386 struct undobuf
388 struct undo *undos;
389 struct undo *frees;
390 rtx other_insn;
393 static struct undobuf undobuf;
395 /* Number of times the pseudo being substituted for
396 was found and replaced. */
398 static int n_occurrences;
400 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
405 enum machine_mode,
406 unsigned int, unsigned int *);
407 static void do_SUBST (rtx *, rtx);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx);
411 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
412 static int cant_combine_insn_p (rtx);
413 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
414 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
415 static int contains_muldiv (rtx);
416 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx *find_split_point (rtx *, rtx, bool);
420 static rtx subst (rtx, rtx, rtx, int, int, int);
421 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
422 static rtx simplify_if_then_else (rtx);
423 static rtx simplify_set (rtx);
424 static rtx simplify_logical (rtx);
425 static rtx expand_compound_operation (rtx);
426 static const_rtx expand_field_assignment (const_rtx);
427 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
428 rtx, unsigned HOST_WIDE_INT, int, int, int);
429 static rtx extract_left_shift (rtx, int);
430 static rtx make_compound_operation (rtx, enum rtx_code);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
432 unsigned HOST_WIDE_INT *);
433 static rtx canon_reg_for_combine (rtx, rtx);
434 static rtx force_to_mode (rtx, enum machine_mode,
435 unsigned HOST_WIDE_INT, int);
436 static rtx if_then_else_cond (rtx, rtx *, rtx *);
437 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
438 static int rtx_equal_for_field_assignment_p (rtx, rtx);
439 static rtx make_field_assignment (rtx);
440 static rtx apply_distributive_law (rtx);
441 static rtx distribute_and_simplify_rtx (rtx, int);
442 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
443 unsigned HOST_WIDE_INT);
444 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
445 unsigned HOST_WIDE_INT);
446 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
447 HOST_WIDE_INT, enum machine_mode, int *);
448 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
449 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
450 int);
451 static int recog_for_combine (rtx *, rtx, rtx *);
452 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
453 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
454 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
455 static void update_table_tick (rtx);
456 static void record_value_for_reg (rtx, rtx, rtx);
457 static void check_promoted_subreg (rtx, rtx);
458 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
459 static void record_dead_and_set_regs (rtx);
460 static int get_last_value_validate (rtx *, rtx, int, int);
461 static rtx get_last_value (const_rtx);
462 static int use_crosses_set_p (const_rtx, int);
463 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
464 static int reg_dead_at_p (rtx, rtx);
465 static void move_deaths (rtx, rtx, int, rtx, rtx *);
466 static int reg_bitfield_target_p (rtx, rtx);
467 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
468 static void distribute_links (struct insn_link *);
469 static void mark_used_regs_combine (rtx);
470 static void record_promoted_value (rtx, rtx);
471 static int unmentioned_reg_p_1 (rtx *, void *);
472 static bool unmentioned_reg_p (rtx, rtx);
473 static int record_truncated_value (rtx *, void *);
474 static void record_truncated_values (rtx *, void *);
475 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
476 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
479 /* It is not safe to use ordinary gen_lowpart in combine.
480 See comments in gen_lowpart_for_combine. */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
484 /* Our implementation of gen_lowpart never emits a new pseudo. */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
497 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
500 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
501 PATTERN can not be split. Otherwise, it returns an insn sequence.
502 This is a wrapper around split_insns which ensures that the
503 reg_stat vector is made larger if the splitter creates a new
504 register. */
506 static rtx
507 combine_split_insns (rtx pattern, rtx insn)
509 rtx ret;
510 unsigned int nregs;
512 ret = split_insns (pattern, insn);
513 nregs = max_reg_num ();
514 if (nregs > VEC_length (reg_stat_type, reg_stat))
515 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
516 return ret;
519 /* This is used by find_single_use to locate an rtx in LOC that
520 contains exactly one use of DEST, which is typically either a REG
521 or CC0. It returns a pointer to the innermost rtx expression
522 containing DEST. Appearances of DEST that are being used to
523 totally replace it are not counted. */
525 static rtx *
526 find_single_use_1 (rtx dest, rtx *loc)
528 rtx x = *loc;
529 enum rtx_code code = GET_CODE (x);
530 rtx *result = NULL;
531 rtx *this_result;
532 int i;
533 const char *fmt;
535 switch (code)
537 case CONST_INT:
538 case CONST:
539 case LABEL_REF:
540 case SYMBOL_REF:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case CLOBBER:
544 return 0;
546 case SET:
547 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 of a REG that occupies all of the REG, the insn uses DEST if
549 it is mentioned in the destination or the source. Otherwise, we
550 need just check the source. */
551 if (GET_CODE (SET_DEST (x)) != CC0
552 && GET_CODE (SET_DEST (x)) != PC
553 && !REG_P (SET_DEST (x))
554 && ! (GET_CODE (SET_DEST (x)) == SUBREG
555 && REG_P (SUBREG_REG (SET_DEST (x)))
556 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
557 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
558 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
560 break;
562 return find_single_use_1 (dest, &SET_SRC (x));
564 case MEM:
565 case SUBREG:
566 return find_single_use_1 (dest, &XEXP (x, 0));
568 default:
569 break;
572 /* If it wasn't one of the common cases above, check each expression and
573 vector of this code. Look for a unique usage of DEST. */
575 fmt = GET_RTX_FORMAT (code);
576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
578 if (fmt[i] == 'e')
580 if (dest == XEXP (x, i)
581 || (REG_P (dest) && REG_P (XEXP (x, i))
582 && REGNO (dest) == REGNO (XEXP (x, i))))
583 this_result = loc;
584 else
585 this_result = find_single_use_1 (dest, &XEXP (x, i));
587 if (result == NULL)
588 result = this_result;
589 else if (this_result)
590 /* Duplicate usage. */
591 return NULL;
593 else if (fmt[i] == 'E')
595 int j;
597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
599 if (XVECEXP (x, i, j) == dest
600 || (REG_P (dest)
601 && REG_P (XVECEXP (x, i, j))
602 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 return NULL;
615 return result;
619 /* See if DEST, produced in INSN, is used only a single time in the
620 sequel. If so, return a pointer to the innermost rtx expression in which
621 it is used.
623 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
625 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
626 care about REG_DEAD notes or LOG_LINKS.
628 Otherwise, we find the single use by finding an insn that has a
629 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
630 only referenced once in that insn, we know that it must be the first
631 and last insn referencing DEST. */
633 static rtx *
634 find_single_use (rtx dest, rtx insn, rtx *ploc)
636 basic_block bb;
637 rtx next;
638 rtx *result;
639 struct insn_link *link;
641 #ifdef HAVE_cc0
642 if (dest == cc0_rtx)
644 next = NEXT_INSN (insn);
645 if (next == 0
646 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
647 return 0;
649 result = find_single_use_1 (dest, &PATTERN (next));
650 if (result && ploc)
651 *ploc = next;
652 return result;
654 #endif
656 if (!REG_P (dest))
657 return 0;
659 bb = BLOCK_FOR_INSN (insn);
660 for (next = NEXT_INSN (insn);
661 next && BLOCK_FOR_INSN (next) == bb;
662 next = NEXT_INSN (next))
663 if (INSN_P (next) && dead_or_set_p (next, dest))
665 FOR_EACH_LOG_LINK (link, next)
666 if (link->insn == insn)
667 break;
669 if (link)
671 result = find_single_use_1 (dest, &PATTERN (next));
672 if (ploc)
673 *ploc = next;
674 return result;
678 return 0;
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682 insn. The substitution can be undone by undo_all. If INTO is already
683 set to NEWVAL, do not record this change. Because computing NEWVAL might
684 also call SUBST, we have to compute it before we put anything into
685 the undo table. */
687 static void
688 do_SUBST (rtx *into, rtx newval)
690 struct undo *buf;
691 rtx oldval = *into;
693 if (oldval == newval)
694 return;
696 /* We'd like to catch as many invalid transformations here as
697 possible. Unfortunately, there are way too many mode changes
698 that are perfectly valid, so we'd waste too much effort for
699 little gain doing the checks here. Focus on catching invalid
700 transformations involving integer constants. */
701 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
702 && CONST_INT_P (newval))
704 /* Sanity check that we're replacing oldval with a CONST_INT
705 that is a valid sign-extension for the original mode. */
706 gcc_assert (INTVAL (newval)
707 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
709 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 CONST_INT is not valid, because after the replacement, the
711 original mode would be gone. Unfortunately, we can't tell
712 when do_SUBST is called to replace the operand thereof, so we
713 perform this test on oldval instead, checking whether an
714 invalid replacement took place before we got here. */
715 gcc_assert (!(GET_CODE (oldval) == SUBREG
716 && CONST_INT_P (SUBREG_REG (oldval))));
717 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
718 && CONST_INT_P (XEXP (oldval, 0))));
721 if (undobuf.frees)
722 buf = undobuf.frees, undobuf.frees = buf->next;
723 else
724 buf = XNEW (struct undo);
726 buf->kind = UNDO_RTX;
727 buf->where.r = into;
728 buf->old_contents.r = oldval;
729 *into = newval;
731 buf->next = undobuf.undos, undobuf.undos = buf;
734 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
736 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
737 for the value of a HOST_WIDE_INT value (including CONST_INT) is
738 not safe. */
740 static void
741 do_SUBST_INT (int *into, int newval)
743 struct undo *buf;
744 int oldval = *into;
746 if (oldval == newval)
747 return;
749 if (undobuf.frees)
750 buf = undobuf.frees, undobuf.frees = buf->next;
751 else
752 buf = XNEW (struct undo);
754 buf->kind = UNDO_INT;
755 buf->where.i = into;
756 buf->old_contents.i = oldval;
757 *into = newval;
759 buf->next = undobuf.undos, undobuf.undos = buf;
762 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
764 /* Similar to SUBST, but just substitute the mode. This is used when
765 changing the mode of a pseudo-register, so that any other
766 references to the entry in the regno_reg_rtx array will change as
767 well. */
769 static void
770 do_SUBST_MODE (rtx *into, enum machine_mode newval)
772 struct undo *buf;
773 enum machine_mode oldval = GET_MODE (*into);
775 if (oldval == newval)
776 return;
778 if (undobuf.frees)
779 buf = undobuf.frees, undobuf.frees = buf->next;
780 else
781 buf = XNEW (struct undo);
783 buf->kind = UNDO_MODE;
784 buf->where.r = into;
785 buf->old_contents.m = oldval;
786 adjust_reg_mode (*into, newval);
788 buf->next = undobuf.undos, undobuf.undos = buf;
791 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
793 #ifndef HAVE_cc0
794 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
796 static void
797 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
799 struct undo *buf;
800 struct insn_link * oldval = *into;
802 if (oldval == newval)
803 return;
805 if (undobuf.frees)
806 buf = undobuf.frees, undobuf.frees = buf->next;
807 else
808 buf = XNEW (struct undo);
810 buf->kind = UNDO_LINKS;
811 buf->where.l = into;
812 buf->old_contents.l = oldval;
813 *into = newval;
815 buf->next = undobuf.undos, undobuf.undos = buf;
818 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
819 #endif
821 /* Subroutine of try_combine. Determine whether the replacement patterns
822 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
823 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
824 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
825 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
826 of all the instructions can be estimated and the replacements are more
827 expensive than the original sequence. */
829 static bool
830 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
831 rtx newi2pat, rtx newotherpat)
833 int i0_cost, i1_cost, i2_cost, i3_cost;
834 int new_i2_cost, new_i3_cost;
835 int old_cost, new_cost;
837 /* Lookup the original insn_rtx_costs. */
838 i2_cost = INSN_COST (i2);
839 i3_cost = INSN_COST (i3);
841 if (i1)
843 i1_cost = INSN_COST (i1);
844 if (i0)
846 i0_cost = INSN_COST (i0);
847 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
848 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
850 else
852 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
853 ? i1_cost + i2_cost + i3_cost : 0);
854 i0_cost = 0;
857 else
859 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
860 i1_cost = i0_cost = 0;
863 /* Calculate the replacement insn_rtx_costs. */
864 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
865 if (newi2pat)
867 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
868 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
869 ? new_i2_cost + new_i3_cost : 0;
871 else
873 new_cost = new_i3_cost;
874 new_i2_cost = 0;
877 if (undobuf.other_insn)
879 int old_other_cost, new_other_cost;
881 old_other_cost = INSN_COST (undobuf.other_insn);
882 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
883 if (old_other_cost > 0 && new_other_cost > 0)
885 old_cost += old_other_cost;
886 new_cost += new_other_cost;
888 else
889 old_cost = 0;
892 /* Disallow this combination if both new_cost and old_cost are greater than
893 zero, and new_cost is greater than old cost. */
894 if (old_cost > 0 && new_cost > old_cost)
896 if (dump_file)
898 if (i0)
900 fprintf (dump_file,
901 "rejecting combination of insns %d, %d, %d and %d\n",
902 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
903 INSN_UID (i3));
904 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
905 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
907 else if (i1)
909 fprintf (dump_file,
910 "rejecting combination of insns %d, %d and %d\n",
911 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
912 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
913 i1_cost, i2_cost, i3_cost, old_cost);
915 else
917 fprintf (dump_file,
918 "rejecting combination of insns %d and %d\n",
919 INSN_UID (i2), INSN_UID (i3));
920 fprintf (dump_file, "original costs %d + %d = %d\n",
921 i2_cost, i3_cost, old_cost);
924 if (newi2pat)
926 fprintf (dump_file, "replacement costs %d + %d = %d\n",
927 new_i2_cost, new_i3_cost, new_cost);
929 else
930 fprintf (dump_file, "replacement cost %d\n", new_cost);
933 return false;
936 /* Update the uid_insn_cost array with the replacement costs. */
937 INSN_COST (i2) = new_i2_cost;
938 INSN_COST (i3) = new_i3_cost;
939 if (i1)
941 INSN_COST (i1) = 0;
942 if (i0)
943 INSN_COST (i0) = 0;
946 return true;
950 /* Delete any insns that copy a register to itself. */
952 static void
953 delete_noop_moves (void)
955 rtx insn, next;
956 basic_block bb;
958 FOR_EACH_BB (bb)
960 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
962 next = NEXT_INSN (insn);
963 if (INSN_P (insn) && noop_move_p (insn))
965 if (dump_file)
966 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
968 delete_insn_and_edges (insn);
975 /* Fill in log links field for all insns. */
977 static void
978 create_log_links (void)
980 basic_block bb;
981 rtx *next_use, insn;
982 df_ref *def_vec, *use_vec;
984 next_use = XCNEWVEC (rtx, max_reg_num ());
986 /* Pass through each block from the end, recording the uses of each
987 register and establishing log links when def is encountered.
988 Note that we do not clear next_use array in order to save time,
989 so we have to test whether the use is in the same basic block as def.
991 There are a few cases below when we do not consider the definition or
992 usage -- these are taken from original flow.c did. Don't ask me why it is
993 done this way; I don't know and if it works, I don't want to know. */
995 FOR_EACH_BB (bb)
997 FOR_BB_INSNS_REVERSE (bb, insn)
999 if (!NONDEBUG_INSN_P (insn))
1000 continue;
1002 /* Log links are created only once. */
1003 gcc_assert (!LOG_LINKS (insn));
1005 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1007 df_ref def = *def_vec;
1008 int regno = DF_REF_REGNO (def);
1009 rtx use_insn;
1011 if (!next_use[regno])
1012 continue;
1014 /* Do not consider if it is pre/post modification in MEM. */
1015 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1016 continue;
1018 /* Do not make the log link for frame pointer. */
1019 if ((regno == FRAME_POINTER_REGNUM
1020 && (! reload_completed || frame_pointer_needed))
1021 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1022 || (regno == HARD_FRAME_POINTER_REGNUM
1023 && (! reload_completed || frame_pointer_needed))
1024 #endif
1025 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1027 #endif
1029 continue;
1031 use_insn = next_use[regno];
1032 if (BLOCK_FOR_INSN (use_insn) == bb)
1034 /* flow.c claimed:
1036 We don't build a LOG_LINK for hard registers contained
1037 in ASM_OPERANDs. If these registers get replaced,
1038 we might wind up changing the semantics of the insn,
1039 even if reload can make what appear to be valid
1040 assignments later. */
1041 if (regno >= FIRST_PSEUDO_REGISTER
1042 || asm_noperands (PATTERN (use_insn)) < 0)
1044 /* Don't add duplicate links between instructions. */
1045 struct insn_link *links;
1046 FOR_EACH_LOG_LINK (links, use_insn)
1047 if (insn == links->insn)
1048 break;
1050 if (!links)
1051 LOG_LINKS (use_insn)
1052 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1055 next_use[regno] = NULL_RTX;
1058 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1060 df_ref use = *use_vec;
1061 int regno = DF_REF_REGNO (use);
1063 /* Do not consider the usage of the stack pointer
1064 by function call. */
1065 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1066 continue;
1068 next_use[regno] = insn;
1073 free (next_use);
1076 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1077 true if we found a LOG_LINK that proves that A feeds B. This only works
1078 if there are no instructions between A and B which could have a link
1079 depending on A, since in that case we would not record a link for B.
1080 We also check the implicit dependency created by a cc0 setter/user
1081 pair. */
1083 static bool
1084 insn_a_feeds_b (rtx a, rtx b)
1086 struct insn_link *links;
1087 FOR_EACH_LOG_LINK (links, b)
1088 if (links->insn == a)
1089 return true;
1090 #ifdef HAVE_cc0
1091 if (sets_cc0_p (a))
1092 return true;
1093 #endif
1094 return false;
1097 /* Main entry point for combiner. F is the first insn of the function.
1098 NREGS is the first unused pseudo-reg number.
1100 Return nonzero if the combiner has turned an indirect jump
1101 instruction into a direct jump. */
1102 static int
1103 combine_instructions (rtx f, unsigned int nregs)
1105 rtx insn, next;
1106 #ifdef HAVE_cc0
1107 rtx prev;
1108 #endif
1109 struct insn_link *links, *nextlinks;
1110 rtx first;
1111 basic_block last_bb;
1113 int new_direct_jump_p = 0;
1115 for (first = f; first && !INSN_P (first); )
1116 first = NEXT_INSN (first);
1117 if (!first)
1118 return 0;
1120 combine_attempts = 0;
1121 combine_merges = 0;
1122 combine_extras = 0;
1123 combine_successes = 0;
1125 rtl_hooks = combine_rtl_hooks;
1127 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1129 init_recog_no_volatile ();
1131 /* Allocate array for insn info. */
1132 max_uid_known = get_max_uid ();
1133 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1134 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1135 gcc_obstack_init (&insn_link_obstack);
1137 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1139 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1140 problems when, for example, we have j <<= 1 in a loop. */
1142 nonzero_sign_valid = 0;
1143 label_tick = label_tick_ebb_start = 1;
1145 /* Scan all SETs and see if we can deduce anything about what
1146 bits are known to be zero for some registers and how many copies
1147 of the sign bit are known to exist for those registers.
1149 Also set any known values so that we can use it while searching
1150 for what bits are known to be set. */
1152 setup_incoming_promotions (first);
1153 /* Allow the entry block and the first block to fall into the same EBB.
1154 Conceptually the incoming promotions are assigned to the entry block. */
1155 last_bb = ENTRY_BLOCK_PTR;
1157 create_log_links ();
1158 FOR_EACH_BB (this_basic_block)
1160 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1161 last_call_luid = 0;
1162 mem_last_set = -1;
1164 label_tick++;
1165 if (!single_pred_p (this_basic_block)
1166 || single_pred (this_basic_block) != last_bb)
1167 label_tick_ebb_start = label_tick;
1168 last_bb = this_basic_block;
1170 FOR_BB_INSNS (this_basic_block, insn)
1171 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1173 #ifdef AUTO_INC_DEC
1174 rtx links;
1175 #endif
1177 subst_low_luid = DF_INSN_LUID (insn);
1178 subst_insn = insn;
1180 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1181 insn);
1182 record_dead_and_set_regs (insn);
1184 #ifdef AUTO_INC_DEC
1185 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1186 if (REG_NOTE_KIND (links) == REG_INC)
1187 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1188 insn);
1189 #endif
1191 /* Record the current insn_rtx_cost of this instruction. */
1192 if (NONJUMP_INSN_P (insn))
1193 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1194 optimize_this_for_speed_p);
1195 if (dump_file)
1196 fprintf(dump_file, "insn_cost %d: %d\n",
1197 INSN_UID (insn), INSN_COST (insn));
1201 nonzero_sign_valid = 1;
1203 /* Now scan all the insns in forward order. */
1204 label_tick = label_tick_ebb_start = 1;
1205 init_reg_last ();
1206 setup_incoming_promotions (first);
1207 last_bb = ENTRY_BLOCK_PTR;
1209 FOR_EACH_BB (this_basic_block)
1211 rtx last_combined_insn = NULL_RTX;
1212 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1213 last_call_luid = 0;
1214 mem_last_set = -1;
1216 label_tick++;
1217 if (!single_pred_p (this_basic_block)
1218 || single_pred (this_basic_block) != last_bb)
1219 label_tick_ebb_start = label_tick;
1220 last_bb = this_basic_block;
1222 rtl_profile_for_bb (this_basic_block);
1223 for (insn = BB_HEAD (this_basic_block);
1224 insn != NEXT_INSN (BB_END (this_basic_block));
1225 insn = next ? next : NEXT_INSN (insn))
1227 next = 0;
1228 if (NONDEBUG_INSN_P (insn))
1230 while (last_combined_insn
1231 && INSN_DELETED_P (last_combined_insn))
1232 last_combined_insn = PREV_INSN (last_combined_insn);
1233 if (last_combined_insn == NULL_RTX
1234 || BARRIER_P (last_combined_insn)
1235 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1236 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1237 last_combined_insn = insn;
1239 /* See if we know about function return values before this
1240 insn based upon SUBREG flags. */
1241 check_promoted_subreg (insn, PATTERN (insn));
1243 /* See if we can find hardregs and subreg of pseudos in
1244 narrower modes. This could help turning TRUNCATEs
1245 into SUBREGs. */
1246 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1248 /* Try this insn with each insn it links back to. */
1250 FOR_EACH_LOG_LINK (links, insn)
1251 if ((next = try_combine (insn, links->insn, NULL_RTX,
1252 NULL_RTX, &new_direct_jump_p,
1253 last_combined_insn)) != 0)
1254 goto retry;
1256 /* Try each sequence of three linked insns ending with this one. */
1258 FOR_EACH_LOG_LINK (links, insn)
1260 rtx link = links->insn;
1262 /* If the linked insn has been replaced by a note, then there
1263 is no point in pursuing this chain any further. */
1264 if (NOTE_P (link))
1265 continue;
1267 FOR_EACH_LOG_LINK (nextlinks, link)
1268 if ((next = try_combine (insn, link, nextlinks->insn,
1269 NULL_RTX, &new_direct_jump_p,
1270 last_combined_insn)) != 0)
1271 goto retry;
1274 #ifdef HAVE_cc0
1275 /* Try to combine a jump insn that uses CC0
1276 with a preceding insn that sets CC0, and maybe with its
1277 logical predecessor as well.
1278 This is how we make decrement-and-branch insns.
1279 We need this special code because data flow connections
1280 via CC0 do not get entered in LOG_LINKS. */
1282 if (JUMP_P (insn)
1283 && (prev = prev_nonnote_insn (insn)) != 0
1284 && NONJUMP_INSN_P (prev)
1285 && sets_cc0_p (PATTERN (prev)))
1287 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1288 &new_direct_jump_p,
1289 last_combined_insn)) != 0)
1290 goto retry;
1292 FOR_EACH_LOG_LINK (nextlinks, prev)
1293 if ((next = try_combine (insn, prev, nextlinks->insn,
1294 NULL_RTX, &new_direct_jump_p,
1295 last_combined_insn)) != 0)
1296 goto retry;
1299 /* Do the same for an insn that explicitly references CC0. */
1300 if (NONJUMP_INSN_P (insn)
1301 && (prev = prev_nonnote_insn (insn)) != 0
1302 && NONJUMP_INSN_P (prev)
1303 && sets_cc0_p (PATTERN (prev))
1304 && GET_CODE (PATTERN (insn)) == SET
1305 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1307 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1308 &new_direct_jump_p,
1309 last_combined_insn)) != 0)
1310 goto retry;
1312 FOR_EACH_LOG_LINK (nextlinks, prev)
1313 if ((next = try_combine (insn, prev, nextlinks->insn,
1314 NULL_RTX, &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1319 /* Finally, see if any of the insns that this insn links to
1320 explicitly references CC0. If so, try this insn, that insn,
1321 and its predecessor if it sets CC0. */
1322 FOR_EACH_LOG_LINK (links, insn)
1323 if (NONJUMP_INSN_P (links->insn)
1324 && GET_CODE (PATTERN (links->insn)) == SET
1325 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1326 && (prev = prev_nonnote_insn (links->insn)) != 0
1327 && NONJUMP_INSN_P (prev)
1328 && sets_cc0_p (PATTERN (prev))
1329 && (next = try_combine (insn, links->insn,
1330 prev, NULL_RTX, &new_direct_jump_p,
1331 last_combined_insn)) != 0)
1332 goto retry;
1333 #endif
1335 /* Try combining an insn with two different insns whose results it
1336 uses. */
1337 FOR_EACH_LOG_LINK (links, insn)
1338 for (nextlinks = links->next; nextlinks;
1339 nextlinks = nextlinks->next)
1340 if ((next = try_combine (insn, links->insn,
1341 nextlinks->insn, NULL_RTX,
1342 &new_direct_jump_p,
1343 last_combined_insn)) != 0)
1344 goto retry;
1346 /* Try four-instruction combinations. */
1347 FOR_EACH_LOG_LINK (links, insn)
1349 struct insn_link *next1;
1350 rtx link = links->insn;
1352 /* If the linked insn has been replaced by a note, then there
1353 is no point in pursuing this chain any further. */
1354 if (NOTE_P (link))
1355 continue;
1357 FOR_EACH_LOG_LINK (next1, link)
1359 rtx link1 = next1->insn;
1360 if (NOTE_P (link1))
1361 continue;
1362 /* I0 -> I1 -> I2 -> I3. */
1363 FOR_EACH_LOG_LINK (nextlinks, link1)
1364 if ((next = try_combine (insn, link, link1,
1365 nextlinks->insn,
1366 &new_direct_jump_p,
1367 last_combined_insn)) != 0)
1368 goto retry;
1369 /* I0, I1 -> I2, I2 -> I3. */
1370 for (nextlinks = next1->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, link, link1,
1373 nextlinks->insn,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376 goto retry;
1379 for (next1 = links->next; next1; next1 = next1->next)
1381 rtx link1 = next1->insn;
1382 if (NOTE_P (link1))
1383 continue;
1384 /* I0 -> I2; I1, I2 -> I3. */
1385 FOR_EACH_LOG_LINK (nextlinks, link)
1386 if ((next = try_combine (insn, link, link1,
1387 nextlinks->insn,
1388 &new_direct_jump_p,
1389 last_combined_insn)) != 0)
1390 goto retry;
1391 /* I0 -> I1; I1, I2 -> I3. */
1392 FOR_EACH_LOG_LINK (nextlinks, link1)
1393 if ((next = try_combine (insn, link, link1,
1394 nextlinks->insn,
1395 &new_direct_jump_p,
1396 last_combined_insn)) != 0)
1397 goto retry;
1401 /* Try this insn with each REG_EQUAL note it links back to. */
1402 FOR_EACH_LOG_LINK (links, insn)
1404 rtx set, note;
1405 rtx temp = links->insn;
1406 if ((set = single_set (temp)) != 0
1407 && (note = find_reg_equal_equiv_note (temp)) != 0
1408 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1409 /* Avoid using a register that may already been marked
1410 dead by an earlier instruction. */
1411 && ! unmentioned_reg_p (note, SET_SRC (set))
1412 && (GET_MODE (note) == VOIDmode
1413 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1414 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1416 /* Temporarily replace the set's source with the
1417 contents of the REG_EQUAL note. The insn will
1418 be deleted or recognized by try_combine. */
1419 rtx orig = SET_SRC (set);
1420 SET_SRC (set) = note;
1421 i2mod = temp;
1422 i2mod_old_rhs = copy_rtx (orig);
1423 i2mod_new_rhs = copy_rtx (note);
1424 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1425 &new_direct_jump_p,
1426 last_combined_insn);
1427 i2mod = NULL_RTX;
1428 if (next)
1429 goto retry;
1430 SET_SRC (set) = orig;
1434 if (!NOTE_P (insn))
1435 record_dead_and_set_regs (insn);
1437 retry:
1443 default_rtl_profile ();
1444 clear_bb_flags ();
1445 new_direct_jump_p |= purge_all_dead_edges ();
1446 delete_noop_moves ();
1448 /* Clean up. */
1449 obstack_free (&insn_link_obstack, NULL);
1450 free (uid_log_links);
1451 free (uid_insn_cost);
1452 VEC_free (reg_stat_type, heap, reg_stat);
1455 struct undo *undo, *next;
1456 for (undo = undobuf.frees; undo; undo = next)
1458 next = undo->next;
1459 free (undo);
1461 undobuf.frees = 0;
1464 total_attempts += combine_attempts;
1465 total_merges += combine_merges;
1466 total_extras += combine_extras;
1467 total_successes += combine_successes;
1469 nonzero_sign_valid = 0;
1470 rtl_hooks = general_rtl_hooks;
1472 /* Make recognizer allow volatile MEMs again. */
1473 init_recog ();
1475 return new_direct_jump_p;
1478 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1480 static void
1481 init_reg_last (void)
1483 unsigned int i;
1484 reg_stat_type *p;
1486 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1487 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1490 /* Set up any promoted values for incoming argument registers. */
1492 static void
1493 setup_incoming_promotions (rtx first)
1495 tree arg;
1496 bool strictly_local = false;
1498 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1499 arg = DECL_CHAIN (arg))
1501 rtx x, reg = DECL_INCOMING_RTL (arg);
1502 int uns1, uns3;
1503 enum machine_mode mode1, mode2, mode3, mode4;
1505 /* Only continue if the incoming argument is in a register. */
1506 if (!REG_P (reg))
1507 continue;
1509 /* Determine, if possible, whether all call sites of the current
1510 function lie within the current compilation unit. (This does
1511 take into account the exporting of a function via taking its
1512 address, and so forth.) */
1513 strictly_local = cgraph_local_info (current_function_decl)->local;
1515 /* The mode and signedness of the argument before any promotions happen
1516 (equal to the mode of the pseudo holding it at that stage). */
1517 mode1 = TYPE_MODE (TREE_TYPE (arg));
1518 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1520 /* The mode and signedness of the argument after any source language and
1521 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1522 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1523 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1525 /* The mode and signedness of the argument as it is actually passed,
1526 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1527 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1528 TREE_TYPE (cfun->decl), 0);
1530 /* The mode of the register in which the argument is being passed. */
1531 mode4 = GET_MODE (reg);
1533 /* Eliminate sign extensions in the callee when:
1534 (a) A mode promotion has occurred; */
1535 if (mode1 == mode3)
1536 continue;
1537 /* (b) The mode of the register is the same as the mode of
1538 the argument as it is passed; */
1539 if (mode3 != mode4)
1540 continue;
1541 /* (c) There's no language level extension; */
1542 if (mode1 == mode2)
1544 /* (c.1) All callers are from the current compilation unit. If that's
1545 the case we don't have to rely on an ABI, we only have to know
1546 what we're generating right now, and we know that we will do the
1547 mode1 to mode2 promotion with the given sign. */
1548 else if (!strictly_local)
1549 continue;
1550 /* (c.2) The combination of the two promotions is useful. This is
1551 true when the signs match, or if the first promotion is unsigned.
1552 In the later case, (sign_extend (zero_extend x)) is the same as
1553 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1554 else if (uns1)
1555 uns3 = true;
1556 else if (uns3)
1557 continue;
1559 /* Record that the value was promoted from mode1 to mode3,
1560 so that any sign extension at the head of the current
1561 function may be eliminated. */
1562 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1563 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1564 record_value_for_reg (reg, first, x);
1568 /* Called via note_stores. If X is a pseudo that is narrower than
1569 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1571 If we are setting only a portion of X and we can't figure out what
1572 portion, assume all bits will be used since we don't know what will
1573 be happening.
1575 Similarly, set how many bits of X are known to be copies of the sign bit
1576 at all locations in the function. This is the smallest number implied
1577 by any set of X. */
1579 static void
1580 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1582 rtx insn = (rtx) data;
1583 unsigned int num;
1585 if (REG_P (x)
1586 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1587 /* If this register is undefined at the start of the file, we can't
1588 say what its contents were. */
1589 && ! REGNO_REG_SET_P
1590 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1591 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1593 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1595 if (set == 0 || GET_CODE (set) == CLOBBER)
1597 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1598 rsp->sign_bit_copies = 1;
1599 return;
1602 /* If this register is being initialized using itself, and the
1603 register is uninitialized in this basic block, and there are
1604 no LOG_LINKS which set the register, then part of the
1605 register is uninitialized. In that case we can't assume
1606 anything about the number of nonzero bits.
1608 ??? We could do better if we checked this in
1609 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1610 could avoid making assumptions about the insn which initially
1611 sets the register, while still using the information in other
1612 insns. We would have to be careful to check every insn
1613 involved in the combination. */
1615 if (insn
1616 && reg_referenced_p (x, PATTERN (insn))
1617 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1618 REGNO (x)))
1620 struct insn_link *link;
1622 FOR_EACH_LOG_LINK (link, insn)
1623 if (dead_or_set_p (link->insn, x))
1624 break;
1625 if (!link)
1627 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1628 rsp->sign_bit_copies = 1;
1629 return;
1633 /* If this is a complex assignment, see if we can convert it into a
1634 simple assignment. */
1635 set = expand_field_assignment (set);
1637 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1638 set what we know about X. */
1640 if (SET_DEST (set) == x
1641 || (paradoxical_subreg_p (SET_DEST (set))
1642 && SUBREG_REG (SET_DEST (set)) == x))
1644 rtx src = SET_SRC (set);
1646 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1647 /* If X is narrower than a word and SRC is a non-negative
1648 constant that would appear negative in the mode of X,
1649 sign-extend it for use in reg_stat[].nonzero_bits because some
1650 machines (maybe most) will actually do the sign-extension
1651 and this is the conservative approach.
1653 ??? For 2.5, try to tighten up the MD files in this regard
1654 instead of this kludge. */
1656 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1657 && CONST_INT_P (src)
1658 && INTVAL (src) > 0
1659 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1660 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1661 #endif
1663 /* Don't call nonzero_bits if it cannot change anything. */
1664 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1665 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1666 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1667 if (rsp->sign_bit_copies == 0
1668 || rsp->sign_bit_copies > num)
1669 rsp->sign_bit_copies = num;
1671 else
1673 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1674 rsp->sign_bit_copies = 1;
1679 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1680 optionally insns that were previously combined into I3 or that will be
1681 combined into the merger of INSN and I3. The order is PRED, PRED2,
1682 INSN, SUCC, SUCC2, I3.
1684 Return 0 if the combination is not allowed for any reason.
1686 If the combination is allowed, *PDEST will be set to the single
1687 destination of INSN and *PSRC to the single source, and this function
1688 will return 1. */
1690 static int
1691 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1692 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1693 rtx *pdest, rtx *psrc)
1695 int i;
1696 const_rtx set = 0;
1697 rtx src, dest;
1698 rtx p;
1699 #ifdef AUTO_INC_DEC
1700 rtx link;
1701 #endif
1702 bool all_adjacent = true;
1703 int (*is_volatile_p) (const_rtx);
1705 if (succ)
1707 if (succ2)
1709 if (next_active_insn (succ2) != i3)
1710 all_adjacent = false;
1711 if (next_active_insn (succ) != succ2)
1712 all_adjacent = false;
1714 else if (next_active_insn (succ) != i3)
1715 all_adjacent = false;
1716 if (next_active_insn (insn) != succ)
1717 all_adjacent = false;
1719 else if (next_active_insn (insn) != i3)
1720 all_adjacent = false;
1722 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1723 or a PARALLEL consisting of such a SET and CLOBBERs.
1725 If INSN has CLOBBER parallel parts, ignore them for our processing.
1726 By definition, these happen during the execution of the insn. When it
1727 is merged with another insn, all bets are off. If they are, in fact,
1728 needed and aren't also supplied in I3, they may be added by
1729 recog_for_combine. Otherwise, it won't match.
1731 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1732 note.
1734 Get the source and destination of INSN. If more than one, can't
1735 combine. */
1737 if (GET_CODE (PATTERN (insn)) == SET)
1738 set = PATTERN (insn);
1739 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1740 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1742 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1744 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1746 switch (GET_CODE (elt))
1748 /* This is important to combine floating point insns
1749 for the SH4 port. */
1750 case USE:
1751 /* Combining an isolated USE doesn't make sense.
1752 We depend here on combinable_i3pat to reject them. */
1753 /* The code below this loop only verifies that the inputs of
1754 the SET in INSN do not change. We call reg_set_between_p
1755 to verify that the REG in the USE does not change between
1756 I3 and INSN.
1757 If the USE in INSN was for a pseudo register, the matching
1758 insn pattern will likely match any register; combining this
1759 with any other USE would only be safe if we knew that the
1760 used registers have identical values, or if there was
1761 something to tell them apart, e.g. different modes. For
1762 now, we forgo such complicated tests and simply disallow
1763 combining of USES of pseudo registers with any other USE. */
1764 if (REG_P (XEXP (elt, 0))
1765 && GET_CODE (PATTERN (i3)) == PARALLEL)
1767 rtx i3pat = PATTERN (i3);
1768 int i = XVECLEN (i3pat, 0) - 1;
1769 unsigned int regno = REGNO (XEXP (elt, 0));
1773 rtx i3elt = XVECEXP (i3pat, 0, i);
1775 if (GET_CODE (i3elt) == USE
1776 && REG_P (XEXP (i3elt, 0))
1777 && (REGNO (XEXP (i3elt, 0)) == regno
1778 ? reg_set_between_p (XEXP (elt, 0),
1779 PREV_INSN (insn), i3)
1780 : regno >= FIRST_PSEUDO_REGISTER))
1781 return 0;
1783 while (--i >= 0);
1785 break;
1787 /* We can ignore CLOBBERs. */
1788 case CLOBBER:
1789 break;
1791 case SET:
1792 /* Ignore SETs whose result isn't used but not those that
1793 have side-effects. */
1794 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1795 && insn_nothrow_p (insn)
1796 && !side_effects_p (elt))
1797 break;
1799 /* If we have already found a SET, this is a second one and
1800 so we cannot combine with this insn. */
1801 if (set)
1802 return 0;
1804 set = elt;
1805 break;
1807 default:
1808 /* Anything else means we can't combine. */
1809 return 0;
1813 if (set == 0
1814 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1815 so don't do anything with it. */
1816 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1817 return 0;
1819 else
1820 return 0;
1822 if (set == 0)
1823 return 0;
1825 /* The simplification in expand_field_assignment may call back to
1826 get_last_value, so set safe guard here. */
1827 subst_low_luid = DF_INSN_LUID (insn);
1829 set = expand_field_assignment (set);
1830 src = SET_SRC (set), dest = SET_DEST (set);
1832 /* Don't eliminate a store in the stack pointer. */
1833 if (dest == stack_pointer_rtx
1834 /* Don't combine with an insn that sets a register to itself if it has
1835 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1836 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1837 /* Can't merge an ASM_OPERANDS. */
1838 || GET_CODE (src) == ASM_OPERANDS
1839 /* Can't merge a function call. */
1840 || GET_CODE (src) == CALL
1841 /* Don't eliminate a function call argument. */
1842 || (CALL_P (i3)
1843 && (find_reg_fusage (i3, USE, dest)
1844 || (REG_P (dest)
1845 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1846 && global_regs[REGNO (dest)])))
1847 /* Don't substitute into an incremented register. */
1848 || FIND_REG_INC_NOTE (i3, dest)
1849 || (succ && FIND_REG_INC_NOTE (succ, dest))
1850 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1851 /* Don't substitute into a non-local goto, this confuses CFG. */
1852 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1853 /* Make sure that DEST is not used after SUCC but before I3. */
1854 || (!all_adjacent
1855 && ((succ2
1856 && (reg_used_between_p (dest, succ2, i3)
1857 || reg_used_between_p (dest, succ, succ2)))
1858 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1859 /* Make sure that the value that is to be substituted for the register
1860 does not use any registers whose values alter in between. However,
1861 If the insns are adjacent, a use can't cross a set even though we
1862 think it might (this can happen for a sequence of insns each setting
1863 the same destination; last_set of that register might point to
1864 a NOTE). If INSN has a REG_EQUIV note, the register is always
1865 equivalent to the memory so the substitution is valid even if there
1866 are intervening stores. Also, don't move a volatile asm or
1867 UNSPEC_VOLATILE across any other insns. */
1868 || (! all_adjacent
1869 && (((!MEM_P (src)
1870 || ! find_reg_note (insn, REG_EQUIV, src))
1871 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1872 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1873 || GET_CODE (src) == UNSPEC_VOLATILE))
1874 /* Don't combine across a CALL_INSN, because that would possibly
1875 change whether the life span of some REGs crosses calls or not,
1876 and it is a pain to update that information.
1877 Exception: if source is a constant, moving it later can't hurt.
1878 Accept that as a special case. */
1879 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1880 return 0;
1882 /* DEST must either be a REG or CC0. */
1883 if (REG_P (dest))
1885 /* If register alignment is being enforced for multi-word items in all
1886 cases except for parameters, it is possible to have a register copy
1887 insn referencing a hard register that is not allowed to contain the
1888 mode being copied and which would not be valid as an operand of most
1889 insns. Eliminate this problem by not combining with such an insn.
1891 Also, on some machines we don't want to extend the life of a hard
1892 register. */
1894 if (REG_P (src)
1895 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1896 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1897 /* Don't extend the life of a hard register unless it is
1898 user variable (if we have few registers) or it can't
1899 fit into the desired register (meaning something special
1900 is going on).
1901 Also avoid substituting a return register into I3, because
1902 reload can't handle a conflict with constraints of other
1903 inputs. */
1904 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1905 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1906 return 0;
1908 else if (GET_CODE (dest) != CC0)
1909 return 0;
1912 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1913 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1914 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1916 /* Don't substitute for a register intended as a clobberable
1917 operand. */
1918 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1919 if (rtx_equal_p (reg, dest))
1920 return 0;
1922 /* If the clobber represents an earlyclobber operand, we must not
1923 substitute an expression containing the clobbered register.
1924 As we do not analyze the constraint strings here, we have to
1925 make the conservative assumption. However, if the register is
1926 a fixed hard reg, the clobber cannot represent any operand;
1927 we leave it up to the machine description to either accept or
1928 reject use-and-clobber patterns. */
1929 if (!REG_P (reg)
1930 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1931 || !fixed_regs[REGNO (reg)])
1932 if (reg_overlap_mentioned_p (reg, src))
1933 return 0;
1936 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1937 or not), reject, unless nothing volatile comes between it and I3 */
1939 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1941 /* Make sure neither succ nor succ2 contains a volatile reference. */
1942 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1943 return 0;
1944 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1945 return 0;
1946 /* We'll check insns between INSN and I3 below. */
1949 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1950 to be an explicit register variable, and was chosen for a reason. */
1952 if (GET_CODE (src) == ASM_OPERANDS
1953 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1954 return 0;
1956 /* If INSN contains volatile references (specifically volatile MEMs),
1957 we cannot combine across any other volatile references.
1958 Even if INSN doesn't contain volatile references, any intervening
1959 volatile insn might affect machine state. */
1961 is_volatile_p = volatile_refs_p (PATTERN (insn))
1962 ? volatile_refs_p
1963 : volatile_insn_p;
1965 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1966 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1967 return 0;
1969 /* If INSN contains an autoincrement or autodecrement, make sure that
1970 register is not used between there and I3, and not already used in
1971 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1972 Also insist that I3 not be a jump; if it were one
1973 and the incremented register were spilled, we would lose. */
1975 #ifdef AUTO_INC_DEC
1976 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1977 if (REG_NOTE_KIND (link) == REG_INC
1978 && (JUMP_P (i3)
1979 || reg_used_between_p (XEXP (link, 0), insn, i3)
1980 || (pred != NULL_RTX
1981 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1982 || (pred2 != NULL_RTX
1983 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1984 || (succ != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1986 || (succ2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1988 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1989 return 0;
1990 #endif
1992 #ifdef HAVE_cc0
1993 /* Don't combine an insn that follows a CC0-setting insn.
1994 An insn that uses CC0 must not be separated from the one that sets it.
1995 We do, however, allow I2 to follow a CC0-setting insn if that insn
1996 is passed as I1; in that case it will be deleted also.
1997 We also allow combining in this case if all the insns are adjacent
1998 because that would leave the two CC0 insns adjacent as well.
1999 It would be more logical to test whether CC0 occurs inside I1 or I2,
2000 but that would be much slower, and this ought to be equivalent. */
2002 p = prev_nonnote_insn (insn);
2003 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2004 && ! all_adjacent)
2005 return 0;
2006 #endif
2008 /* If we get here, we have passed all the tests and the combination is
2009 to be allowed. */
2011 *pdest = dest;
2012 *psrc = src;
2014 return 1;
2017 /* LOC is the location within I3 that contains its pattern or the component
2018 of a PARALLEL of the pattern. We validate that it is valid for combining.
2020 One problem is if I3 modifies its output, as opposed to replacing it
2021 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2022 doing so would produce an insn that is not equivalent to the original insns.
2024 Consider:
2026 (set (reg:DI 101) (reg:DI 100))
2027 (set (subreg:SI (reg:DI 101) 0) <foo>)
2029 This is NOT equivalent to:
2031 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2032 (set (reg:DI 101) (reg:DI 100))])
2034 Not only does this modify 100 (in which case it might still be valid
2035 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2037 We can also run into a problem if I2 sets a register that I1
2038 uses and I1 gets directly substituted into I3 (not via I2). In that
2039 case, we would be getting the wrong value of I2DEST into I3, so we
2040 must reject the combination. This case occurs when I2 and I1 both
2041 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2042 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2043 of a SET must prevent combination from occurring. The same situation
2044 can occur for I0, in which case I0_NOT_IN_SRC is set.
2046 Before doing the above check, we first try to expand a field assignment
2047 into a set of logical operations.
2049 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2050 we place a register that is both set and used within I3. If more than one
2051 such register is detected, we fail.
2053 Return 1 if the combination is valid, zero otherwise. */
2055 static int
2056 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2057 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2059 rtx x = *loc;
2061 if (GET_CODE (x) == SET)
2063 rtx set = x ;
2064 rtx dest = SET_DEST (set);
2065 rtx src = SET_SRC (set);
2066 rtx inner_dest = dest;
2067 rtx subdest;
2069 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2070 || GET_CODE (inner_dest) == SUBREG
2071 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2072 inner_dest = XEXP (inner_dest, 0);
2074 /* Check for the case where I3 modifies its output, as discussed
2075 above. We don't want to prevent pseudos from being combined
2076 into the address of a MEM, so only prevent the combination if
2077 i1 or i2 set the same MEM. */
2078 if ((inner_dest != dest &&
2079 (!MEM_P (inner_dest)
2080 || rtx_equal_p (i2dest, inner_dest)
2081 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2082 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2083 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2084 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2085 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2087 /* This is the same test done in can_combine_p except we can't test
2088 all_adjacent; we don't have to, since this instruction will stay
2089 in place, thus we are not considering increasing the lifetime of
2090 INNER_DEST.
2092 Also, if this insn sets a function argument, combining it with
2093 something that might need a spill could clobber a previous
2094 function argument; the all_adjacent test in can_combine_p also
2095 checks this; here, we do a more specific test for this case. */
2097 || (REG_P (inner_dest)
2098 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2099 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2100 GET_MODE (inner_dest))))
2101 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2102 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2103 return 0;
2105 /* If DEST is used in I3, it is being killed in this insn, so
2106 record that for later. We have to consider paradoxical
2107 subregs here, since they kill the whole register, but we
2108 ignore partial subregs, STRICT_LOW_PART, etc.
2109 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2110 STACK_POINTER_REGNUM, since these are always considered to be
2111 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2112 subdest = dest;
2113 if (GET_CODE (subdest) == SUBREG
2114 && (GET_MODE_SIZE (GET_MODE (subdest))
2115 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2116 subdest = SUBREG_REG (subdest);
2117 if (pi3dest_killed
2118 && REG_P (subdest)
2119 && reg_referenced_p (subdest, PATTERN (i3))
2120 && REGNO (subdest) != FRAME_POINTER_REGNUM
2121 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2122 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2123 #endif
2124 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2125 && (REGNO (subdest) != ARG_POINTER_REGNUM
2126 || ! fixed_regs [REGNO (subdest)])
2127 #endif
2128 && REGNO (subdest) != STACK_POINTER_REGNUM)
2130 if (*pi3dest_killed)
2131 return 0;
2133 *pi3dest_killed = subdest;
2137 else if (GET_CODE (x) == PARALLEL)
2139 int i;
2141 for (i = 0; i < XVECLEN (x, 0); i++)
2142 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2143 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2144 return 0;
2147 return 1;
2150 /* Return 1 if X is an arithmetic expression that contains a multiplication
2151 and division. We don't count multiplications by powers of two here. */
2153 static int
2154 contains_muldiv (rtx x)
2156 switch (GET_CODE (x))
2158 case MOD: case DIV: case UMOD: case UDIV:
2159 return 1;
2161 case MULT:
2162 return ! (CONST_INT_P (XEXP (x, 1))
2163 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2164 default:
2165 if (BINARY_P (x))
2166 return contains_muldiv (XEXP (x, 0))
2167 || contains_muldiv (XEXP (x, 1));
2169 if (UNARY_P (x))
2170 return contains_muldiv (XEXP (x, 0));
2172 return 0;
2176 /* Determine whether INSN can be used in a combination. Return nonzero if
2177 not. This is used in try_combine to detect early some cases where we
2178 can't perform combinations. */
2180 static int
2181 cant_combine_insn_p (rtx insn)
2183 rtx set;
2184 rtx src, dest;
2186 /* If this isn't really an insn, we can't do anything.
2187 This can occur when flow deletes an insn that it has merged into an
2188 auto-increment address. */
2189 if (! INSN_P (insn))
2190 return 1;
2192 /* Never combine loads and stores involving hard regs that are likely
2193 to be spilled. The register allocator can usually handle such
2194 reg-reg moves by tying. If we allow the combiner to make
2195 substitutions of likely-spilled regs, reload might die.
2196 As an exception, we allow combinations involving fixed regs; these are
2197 not available to the register allocator so there's no risk involved. */
2199 set = single_set (insn);
2200 if (! set)
2201 return 0;
2202 src = SET_SRC (set);
2203 dest = SET_DEST (set);
2204 if (GET_CODE (src) == SUBREG)
2205 src = SUBREG_REG (src);
2206 if (GET_CODE (dest) == SUBREG)
2207 dest = SUBREG_REG (dest);
2208 if (REG_P (src) && REG_P (dest)
2209 && ((HARD_REGISTER_P (src)
2210 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2211 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2212 || (HARD_REGISTER_P (dest)
2213 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2214 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2215 return 1;
2217 return 0;
2220 struct likely_spilled_retval_info
2222 unsigned regno, nregs;
2223 unsigned mask;
2226 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2227 hard registers that are known to be written to / clobbered in full. */
2228 static void
2229 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2231 struct likely_spilled_retval_info *const info =
2232 (struct likely_spilled_retval_info *) data;
2233 unsigned regno, nregs;
2234 unsigned new_mask;
2236 if (!REG_P (XEXP (set, 0)))
2237 return;
2238 regno = REGNO (x);
2239 if (regno >= info->regno + info->nregs)
2240 return;
2241 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2242 if (regno + nregs <= info->regno)
2243 return;
2244 new_mask = (2U << (nregs - 1)) - 1;
2245 if (regno < info->regno)
2246 new_mask >>= info->regno - regno;
2247 else
2248 new_mask <<= regno - info->regno;
2249 info->mask &= ~new_mask;
2252 /* Return nonzero iff part of the return value is live during INSN, and
2253 it is likely spilled. This can happen when more than one insn is needed
2254 to copy the return value, e.g. when we consider to combine into the
2255 second copy insn for a complex value. */
2257 static int
2258 likely_spilled_retval_p (rtx insn)
2260 rtx use = BB_END (this_basic_block);
2261 rtx reg, p;
2262 unsigned regno, nregs;
2263 /* We assume here that no machine mode needs more than
2264 32 hard registers when the value overlaps with a register
2265 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2266 unsigned mask;
2267 struct likely_spilled_retval_info info;
2269 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2270 return 0;
2271 reg = XEXP (PATTERN (use), 0);
2272 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2273 return 0;
2274 regno = REGNO (reg);
2275 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2276 if (nregs == 1)
2277 return 0;
2278 mask = (2U << (nregs - 1)) - 1;
2280 /* Disregard parts of the return value that are set later. */
2281 info.regno = regno;
2282 info.nregs = nregs;
2283 info.mask = mask;
2284 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2285 if (INSN_P (p))
2286 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2287 mask = info.mask;
2289 /* Check if any of the (probably) live return value registers is
2290 likely spilled. */
2291 nregs --;
2294 if ((mask & 1 << nregs)
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2296 return 1;
2297 } while (nregs--);
2298 return 0;
2301 /* Adjust INSN after we made a change to its destination.
2303 Changing the destination can invalidate notes that say something about
2304 the results of the insn and a LOG_LINK pointing to the insn. */
2306 static void
2307 adjust_for_new_dest (rtx insn)
2309 /* For notes, be conservative and simply remove them. */
2310 remove_reg_equal_equiv_notes (insn);
2312 /* The new insn will have a destination that was previously the destination
2313 of an insn just above it. Call distribute_links to make a LOG_LINK from
2314 the next use of that destination. */
2315 distribute_links (alloc_insn_link (insn, NULL));
2317 df_insn_rescan (insn);
2320 /* Return TRUE if combine can reuse reg X in mode MODE.
2321 ADDED_SETS is nonzero if the original set is still required. */
2322 static bool
2323 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2325 unsigned int regno;
2327 if (!REG_P(x))
2328 return false;
2330 regno = REGNO (x);
2331 /* Allow hard registers if the new mode is legal, and occupies no more
2332 registers than the old mode. */
2333 if (regno < FIRST_PSEUDO_REGISTER)
2334 return (HARD_REGNO_MODE_OK (regno, mode)
2335 && (hard_regno_nregs[regno][GET_MODE (x)]
2336 >= hard_regno_nregs[regno][mode]));
2338 /* Or a pseudo that is only used once. */
2339 return (REG_N_SETS (regno) == 1 && !added_sets
2340 && !REG_USERVAR_P (x));
2344 /* Check whether X, the destination of a set, refers to part of
2345 the register specified by REG. */
2347 static bool
2348 reg_subword_p (rtx x, rtx reg)
2350 /* Check that reg is an integer mode register. */
2351 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2352 return false;
2354 if (GET_CODE (x) == STRICT_LOW_PART
2355 || GET_CODE (x) == ZERO_EXTRACT)
2356 x = XEXP (x, 0);
2358 return GET_CODE (x) == SUBREG
2359 && SUBREG_REG (x) == reg
2360 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2363 #ifdef AUTO_INC_DEC
2364 /* Replace auto-increment addressing modes with explicit operations to access
2365 the same addresses without modifying the corresponding registers. */
2367 static rtx
2368 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2370 rtx x = src;
2371 const RTX_CODE code = GET_CODE (x);
2372 int i;
2373 const char *fmt;
2375 switch (code)
2377 case REG:
2378 case CONST_INT:
2379 case CONST_DOUBLE:
2380 case CONST_FIXED:
2381 case CONST_VECTOR:
2382 case SYMBOL_REF:
2383 case CODE_LABEL:
2384 case PC:
2385 case CC0:
2386 case SCRATCH:
2387 /* SCRATCH must be shared because they represent distinct values. */
2388 return x;
2389 case CLOBBER:
2390 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2391 return x;
2392 break;
2394 case CONST:
2395 if (shared_const_p (x))
2396 return x;
2397 break;
2399 case MEM:
2400 mem_mode = GET_MODE (x);
2401 break;
2403 case PRE_INC:
2404 case PRE_DEC:
2405 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2406 return gen_rtx_PLUS (GET_MODE (x),
2407 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2408 GEN_INT (code == PRE_INC
2409 ? GET_MODE_SIZE (mem_mode)
2410 : -GET_MODE_SIZE (mem_mode)));
2412 case POST_INC:
2413 case POST_DEC:
2414 case PRE_MODIFY:
2415 case POST_MODIFY:
2416 return cleanup_auto_inc_dec (code == PRE_MODIFY
2417 ? XEXP (x, 1) : XEXP (x, 0),
2418 mem_mode);
2420 default:
2421 break;
2424 /* Copy the various flags, fields, and other information. We assume
2425 that all fields need copying, and then clear the fields that should
2426 not be copied. That is the sensible default behavior, and forces
2427 us to explicitly document why we are *not* copying a flag. */
2428 x = shallow_copy_rtx (x);
2430 /* We do not copy the USED flag, which is used as a mark bit during
2431 walks over the RTL. */
2432 RTX_FLAG (x, used) = 0;
2434 /* We do not copy FRAME_RELATED for INSNs. */
2435 if (INSN_P (x))
2436 RTX_FLAG (x, frame_related) = 0;
2438 fmt = GET_RTX_FORMAT (code);
2439 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2440 if (fmt[i] == 'e')
2441 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2442 else if (fmt[i] == 'E' || fmt[i] == 'V')
2444 int j;
2445 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2446 for (j = 0; j < XVECLEN (x, i); j++)
2447 XVECEXP (x, i, j)
2448 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2451 return x;
2453 #endif
2455 /* Auxiliary data structure for propagate_for_debug_stmt. */
2457 struct rtx_subst_pair
2459 rtx to;
2460 bool adjusted;
2463 /* DATA points to an rtx_subst_pair. Return the value that should be
2464 substituted. */
2466 static rtx
2467 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2469 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2471 if (!rtx_equal_p (from, old_rtx))
2472 return NULL_RTX;
2473 if (!pair->adjusted)
2475 pair->adjusted = true;
2476 #ifdef AUTO_INC_DEC
2477 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2478 #else
2479 pair->to = copy_rtx (pair->to);
2480 #endif
2481 pair->to = make_compound_operation (pair->to, SET);
2482 return pair->to;
2484 return copy_rtx (pair->to);
2487 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2488 and LAST, not including INSN, but including LAST. Also stop at the end
2489 of THIS_BASIC_BLOCK. */
2491 static void
2492 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2494 rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2496 struct rtx_subst_pair p;
2497 p.to = src;
2498 p.adjusted = false;
2500 next = NEXT_INSN (insn);
2501 last = NEXT_INSN (last);
2502 while (next != last && next != end)
2504 insn = next;
2505 next = NEXT_INSN (insn);
2506 if (DEBUG_INSN_P (insn))
2508 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2509 dest, propagate_for_debug_subst, &p);
2510 if (loc == INSN_VAR_LOCATION_LOC (insn))
2511 continue;
2512 INSN_VAR_LOCATION_LOC (insn) = loc;
2513 df_insn_rescan (insn);
2518 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2519 Note that the INSN should be deleted *after* removing dead edges, so
2520 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2521 but not for a (set (pc) (label_ref FOO)). */
2523 static void
2524 update_cfg_for_uncondjump (rtx insn)
2526 basic_block bb = BLOCK_FOR_INSN (insn);
2527 gcc_assert (BB_END (bb) == insn);
2529 purge_dead_edges (bb);
2531 delete_insn (insn);
2532 if (EDGE_COUNT (bb->succs) == 1)
2534 rtx insn;
2536 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2538 /* Remove barriers from the footer if there are any. */
2539 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2540 if (BARRIER_P (insn))
2542 if (PREV_INSN (insn))
2543 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2544 else
2545 bb->il.rtl->footer = NEXT_INSN (insn);
2546 if (NEXT_INSN (insn))
2547 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2549 else if (LABEL_P (insn))
2550 break;
2554 /* Try to combine the insns I0, I1 and I2 into I3.
2555 Here I0, I1 and I2 appear earlier than I3.
2556 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2559 If we are combining more than two insns and the resulting insn is not
2560 recognized, try splitting it into two insns. If that happens, I2 and I3
2561 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2562 Otherwise, I0, I1 and I2 are pseudo-deleted.
2564 Return 0 if the combination does not work. Then nothing is changed.
2565 If we did the combination, return the insn at which combine should
2566 resume scanning.
2568 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2569 new direct jump instruction.
2571 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2572 been I3 passed to an earlier try_combine within the same basic
2573 block. */
2575 static rtx
2576 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2577 rtx last_combined_insn)
2579 /* New patterns for I3 and I2, respectively. */
2580 rtx newpat, newi2pat = 0;
2581 rtvec newpat_vec_with_clobbers = 0;
2582 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2583 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2584 dead. */
2585 int added_sets_0, added_sets_1, added_sets_2;
2586 /* Total number of SETs to put into I3. */
2587 int total_sets;
2588 /* Nonzero if I2's or I1's body now appears in I3. */
2589 int i2_is_used = 0, i1_is_used = 0;
2590 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2591 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2592 /* Contains I3 if the destination of I3 is used in its source, which means
2593 that the old life of I3 is being killed. If that usage is placed into
2594 I2 and not in I3, a REG_DEAD note must be made. */
2595 rtx i3dest_killed = 0;
2596 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2597 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2598 /* Copy of SET_SRC of I1 and I0, if needed. */
2599 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2600 /* Set if I2DEST was reused as a scratch register. */
2601 bool i2scratch = false;
2602 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2603 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2604 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2605 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2606 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2607 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2608 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2609 /* Notes that must be added to REG_NOTES in I3 and I2. */
2610 rtx new_i3_notes, new_i2_notes;
2611 /* Notes that we substituted I3 into I2 instead of the normal case. */
2612 int i3_subst_into_i2 = 0;
2613 /* Notes that I1, I2 or I3 is a MULT operation. */
2614 int have_mult = 0;
2615 int swap_i2i3 = 0;
2616 int changed_i3_dest = 0;
2618 int maxreg;
2619 rtx temp;
2620 struct insn_link *link;
2621 rtx other_pat = 0;
2622 rtx new_other_notes;
2623 int i;
2625 /* Only try four-insn combinations when there's high likelihood of
2626 success. Look for simple insns, such as loads of constants or
2627 binary operations involving a constant. */
2628 if (i0)
2630 int i;
2631 int ngood = 0;
2632 int nshift = 0;
2634 if (!flag_expensive_optimizations)
2635 return 0;
2637 for (i = 0; i < 4; i++)
2639 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2640 rtx set = single_set (insn);
2641 rtx src;
2642 if (!set)
2643 continue;
2644 src = SET_SRC (set);
2645 if (CONSTANT_P (src))
2647 ngood += 2;
2648 break;
2650 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2651 ngood++;
2652 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2653 || GET_CODE (src) == LSHIFTRT)
2654 nshift++;
2656 if (ngood < 2 && nshift < 2)
2657 return 0;
2660 /* Exit early if one of the insns involved can't be used for
2661 combinations. */
2662 if (cant_combine_insn_p (i3)
2663 || cant_combine_insn_p (i2)
2664 || (i1 && cant_combine_insn_p (i1))
2665 || (i0 && cant_combine_insn_p (i0))
2666 || likely_spilled_retval_p (i3))
2667 return 0;
2669 combine_attempts++;
2670 undobuf.other_insn = 0;
2672 /* Reset the hard register usage information. */
2673 CLEAR_HARD_REG_SET (newpat_used_regs);
2675 if (dump_file && (dump_flags & TDF_DETAILS))
2677 if (i0)
2678 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2679 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2680 else if (i1)
2681 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2682 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2683 else
2684 fprintf (dump_file, "\nTrying %d -> %d:\n",
2685 INSN_UID (i2), INSN_UID (i3));
2688 /* If multiple insns feed into one of I2 or I3, they can be in any
2689 order. To simplify the code below, reorder them in sequence. */
2690 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2691 temp = i2, i2 = i0, i0 = temp;
2692 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2693 temp = i1, i1 = i0, i0 = temp;
2694 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2695 temp = i1, i1 = i2, i2 = temp;
2697 added_links_insn = 0;
2699 /* First check for one important special case that the code below will
2700 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2701 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2702 we may be able to replace that destination with the destination of I3.
2703 This occurs in the common code where we compute both a quotient and
2704 remainder into a structure, in which case we want to do the computation
2705 directly into the structure to avoid register-register copies.
2707 Note that this case handles both multiple sets in I2 and also cases
2708 where I2 has a number of CLOBBERs inside the PARALLEL.
2710 We make very conservative checks below and only try to handle the
2711 most common cases of this. For example, we only handle the case
2712 where I2 and I3 are adjacent to avoid making difficult register
2713 usage tests. */
2715 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2716 && REG_P (SET_SRC (PATTERN (i3)))
2717 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2718 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2719 && GET_CODE (PATTERN (i2)) == PARALLEL
2720 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2721 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2722 below would need to check what is inside (and reg_overlap_mentioned_p
2723 doesn't support those codes anyway). Don't allow those destinations;
2724 the resulting insn isn't likely to be recognized anyway. */
2725 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2726 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2727 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2728 SET_DEST (PATTERN (i3)))
2729 && next_active_insn (i2) == i3)
2731 rtx p2 = PATTERN (i2);
2733 /* Make sure that the destination of I3,
2734 which we are going to substitute into one output of I2,
2735 is not used within another output of I2. We must avoid making this:
2736 (parallel [(set (mem (reg 69)) ...)
2737 (set (reg 69) ...)])
2738 which is not well-defined as to order of actions.
2739 (Besides, reload can't handle output reloads for this.)
2741 The problem can also happen if the dest of I3 is a memory ref,
2742 if another dest in I2 is an indirect memory ref. */
2743 for (i = 0; i < XVECLEN (p2, 0); i++)
2744 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2745 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2746 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2747 SET_DEST (XVECEXP (p2, 0, i))))
2748 break;
2750 if (i == XVECLEN (p2, 0))
2751 for (i = 0; i < XVECLEN (p2, 0); i++)
2752 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2753 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2755 combine_merges++;
2757 subst_insn = i3;
2758 subst_low_luid = DF_INSN_LUID (i2);
2760 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2761 i2src = SET_SRC (XVECEXP (p2, 0, i));
2762 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2763 i2dest_killed = dead_or_set_p (i2, i2dest);
2765 /* Replace the dest in I2 with our dest and make the resulting
2766 insn the new pattern for I3. Then skip to where we validate
2767 the pattern. Everything was set up above. */
2768 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2769 newpat = p2;
2770 i3_subst_into_i2 = 1;
2771 goto validate_replacement;
2775 /* If I2 is setting a pseudo to a constant and I3 is setting some
2776 sub-part of it to another constant, merge them by making a new
2777 constant. */
2778 if (i1 == 0
2779 && (temp = single_set (i2)) != 0
2780 && (CONST_INT_P (SET_SRC (temp))
2781 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2782 && GET_CODE (PATTERN (i3)) == SET
2783 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2784 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2785 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2787 rtx dest = SET_DEST (PATTERN (i3));
2788 int offset = -1;
2789 int width = 0;
2791 if (GET_CODE (dest) == ZERO_EXTRACT)
2793 if (CONST_INT_P (XEXP (dest, 1))
2794 && CONST_INT_P (XEXP (dest, 2)))
2796 width = INTVAL (XEXP (dest, 1));
2797 offset = INTVAL (XEXP (dest, 2));
2798 dest = XEXP (dest, 0);
2799 if (BITS_BIG_ENDIAN)
2800 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2803 else
2805 if (GET_CODE (dest) == STRICT_LOW_PART)
2806 dest = XEXP (dest, 0);
2807 width = GET_MODE_PRECISION (GET_MODE (dest));
2808 offset = 0;
2811 if (offset >= 0)
2813 /* If this is the low part, we're done. */
2814 if (subreg_lowpart_p (dest))
2816 /* Handle the case where inner is twice the size of outer. */
2817 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2818 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2819 offset += GET_MODE_PRECISION (GET_MODE (dest));
2820 /* Otherwise give up for now. */
2821 else
2822 offset = -1;
2825 if (offset >= 0
2826 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2827 <= HOST_BITS_PER_DOUBLE_INT))
2829 double_int m, o, i;
2830 rtx inner = SET_SRC (PATTERN (i3));
2831 rtx outer = SET_SRC (temp);
2833 o = rtx_to_double_int (outer);
2834 i = rtx_to_double_int (inner);
2836 m = double_int_mask (width);
2837 i = double_int_and (i, m);
2838 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2839 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2840 o = double_int_ior (double_int_and_not (o, m), i);
2842 combine_merges++;
2843 subst_insn = i3;
2844 subst_low_luid = DF_INSN_LUID (i2);
2845 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2846 i2dest = SET_DEST (temp);
2847 i2dest_killed = dead_or_set_p (i2, i2dest);
2849 /* Replace the source in I2 with the new constant and make the
2850 resulting insn the new pattern for I3. Then skip to where we
2851 validate the pattern. Everything was set up above. */
2852 SUBST (SET_SRC (temp),
2853 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2855 newpat = PATTERN (i2);
2857 /* The dest of I3 has been replaced with the dest of I2. */
2858 changed_i3_dest = 1;
2859 goto validate_replacement;
2863 #ifndef HAVE_cc0
2864 /* If we have no I1 and I2 looks like:
2865 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2866 (set Y OP)])
2867 make up a dummy I1 that is
2868 (set Y OP)
2869 and change I2 to be
2870 (set (reg:CC X) (compare:CC Y (const_int 0)))
2872 (We can ignore any trailing CLOBBERs.)
2874 This undoes a previous combination and allows us to match a branch-and-
2875 decrement insn. */
2877 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2878 && XVECLEN (PATTERN (i2), 0) >= 2
2879 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2880 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2881 == MODE_CC)
2882 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2883 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2884 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2885 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2886 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2887 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2889 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2890 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2891 break;
2893 if (i == 1)
2895 /* We make I1 with the same INSN_UID as I2. This gives it
2896 the same DF_INSN_LUID for value tracking. Our fake I1 will
2897 never appear in the insn stream so giving it the same INSN_UID
2898 as I2 will not cause a problem. */
2900 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2901 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2902 INSN_LOCATOR (i2), -1, NULL_RTX);
2904 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2905 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2906 SET_DEST (PATTERN (i1)));
2907 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2910 #endif
2912 /* Verify that I2 and I1 are valid for combining. */
2913 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2914 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2915 &i1dest, &i1src))
2916 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2917 &i0dest, &i0src)))
2919 undo_all ();
2920 return 0;
2923 /* Record whether I2DEST is used in I2SRC and similarly for the other
2924 cases. Knowing this will help in register status updating below. */
2925 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2926 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2927 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2928 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2929 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2930 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2931 i2dest_killed = dead_or_set_p (i2, i2dest);
2932 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2933 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2935 /* For the earlier insns, determine which of the subsequent ones they
2936 feed. */
2937 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2938 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2939 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2940 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2941 && reg_overlap_mentioned_p (i0dest, i2src))));
2943 /* Ensure that I3's pattern can be the destination of combines. */
2944 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2945 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2946 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2947 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2948 &i3dest_killed))
2950 undo_all ();
2951 return 0;
2954 /* See if any of the insns is a MULT operation. Unless one is, we will
2955 reject a combination that is, since it must be slower. Be conservative
2956 here. */
2957 if (GET_CODE (i2src) == MULT
2958 || (i1 != 0 && GET_CODE (i1src) == MULT)
2959 || (i0 != 0 && GET_CODE (i0src) == MULT)
2960 || (GET_CODE (PATTERN (i3)) == SET
2961 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2962 have_mult = 1;
2964 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2965 We used to do this EXCEPT in one case: I3 has a post-inc in an
2966 output operand. However, that exception can give rise to insns like
2967 mov r3,(r3)+
2968 which is a famous insn on the PDP-11 where the value of r3 used as the
2969 source was model-dependent. Avoid this sort of thing. */
2971 #if 0
2972 if (!(GET_CODE (PATTERN (i3)) == SET
2973 && REG_P (SET_SRC (PATTERN (i3)))
2974 && MEM_P (SET_DEST (PATTERN (i3)))
2975 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2976 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2977 /* It's not the exception. */
2978 #endif
2979 #ifdef AUTO_INC_DEC
2981 rtx link;
2982 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2983 if (REG_NOTE_KIND (link) == REG_INC
2984 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2985 || (i1 != 0
2986 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2988 undo_all ();
2989 return 0;
2992 #endif
2994 /* See if the SETs in I1 or I2 need to be kept around in the merged
2995 instruction: whenever the value set there is still needed past I3.
2996 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2998 For the SET in I1, we have two cases: If I1 and I2 independently
2999 feed into I3, the set in I1 needs to be kept around if I1DEST dies
3000 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3001 in I1 needs to be kept around unless I1DEST dies or is set in either
3002 I2 or I3. The same consideration applies to I0. */
3004 added_sets_2 = !dead_or_set_p (i3, i2dest);
3006 if (i1)
3007 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3008 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3009 else
3010 added_sets_1 = 0;
3012 if (i0)
3013 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3014 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3015 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
3016 else
3017 added_sets_0 = 0;
3019 /* We are about to copy insns for the case where they need to be kept
3020 around. Check that they can be copied in the merged instruction. */
3022 if (targetm.cannot_copy_insn_p
3023 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3024 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3025 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3027 undo_all ();
3028 return 0;
3031 /* If the set in I2 needs to be kept around, we must make a copy of
3032 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3033 PATTERN (I2), we are only substituting for the original I1DEST, not into
3034 an already-substituted copy. This also prevents making self-referential
3035 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3036 I2DEST. */
3038 if (added_sets_2)
3040 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3041 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3042 else
3043 i2pat = copy_rtx (PATTERN (i2));
3046 if (added_sets_1)
3048 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3049 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3050 else
3051 i1pat = copy_rtx (PATTERN (i1));
3054 if (added_sets_0)
3056 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3057 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3058 else
3059 i0pat = copy_rtx (PATTERN (i0));
3062 combine_merges++;
3064 /* Substitute in the latest insn for the regs set by the earlier ones. */
3066 maxreg = max_reg_num ();
3068 subst_insn = i3;
3070 #ifndef HAVE_cc0
3071 /* Many machines that don't use CC0 have insns that can both perform an
3072 arithmetic operation and set the condition code. These operations will
3073 be represented as a PARALLEL with the first element of the vector
3074 being a COMPARE of an arithmetic operation with the constant zero.
3075 The second element of the vector will set some pseudo to the result
3076 of the same arithmetic operation. If we simplify the COMPARE, we won't
3077 match such a pattern and so will generate an extra insn. Here we test
3078 for this case, where both the comparison and the operation result are
3079 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3080 I2SRC. Later we will make the PARALLEL that contains I2. */
3082 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3083 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3084 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3085 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3087 rtx newpat_dest;
3088 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3089 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3090 enum machine_mode compare_mode, orig_compare_mode;
3091 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3093 newpat = PATTERN (i3);
3094 newpat_dest = SET_DEST (newpat);
3095 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3097 if (undobuf.other_insn == 0
3098 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3099 &cc_use_insn)))
3101 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3102 compare_code = simplify_compare_const (compare_code,
3103 op0, &op1);
3104 #ifdef CANONICALIZE_COMPARISON
3105 CANONICALIZE_COMPARISON (compare_code, op0, op1);
3106 #endif
3109 /* Do the rest only if op1 is const0_rtx, which may be the
3110 result of simplification. */
3111 if (op1 == const0_rtx)
3113 /* If a single use of the CC is found, prepare to modify it
3114 when SELECT_CC_MODE returns a new CC-class mode, or when
3115 the above simplify_compare_const() returned a new comparison
3116 operator. undobuf.other_insn is assigned the CC use insn
3117 when modifying it. */
3118 if (cc_use_loc)
3120 #ifdef SELECT_CC_MODE
3121 enum machine_mode new_mode
3122 = SELECT_CC_MODE (compare_code, op0, op1);
3123 if (new_mode != orig_compare_mode
3124 && can_change_dest_mode (SET_DEST (newpat),
3125 added_sets_2, new_mode))
3127 unsigned int regno = REGNO (newpat_dest);
3128 compare_mode = new_mode;
3129 if (regno < FIRST_PSEUDO_REGISTER)
3130 newpat_dest = gen_rtx_REG (compare_mode, regno);
3131 else
3133 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3134 newpat_dest = regno_reg_rtx[regno];
3137 #endif
3138 /* Cases for modifying the CC-using comparison. */
3139 if (compare_code != orig_compare_code
3140 /* ??? Do we need to verify the zero rtx? */
3141 && XEXP (*cc_use_loc, 1) == const0_rtx)
3143 /* Replace cc_use_loc with entire new RTX. */
3144 SUBST (*cc_use_loc,
3145 gen_rtx_fmt_ee (compare_code, compare_mode,
3146 newpat_dest, const0_rtx));
3147 undobuf.other_insn = cc_use_insn;
3149 else if (compare_mode != orig_compare_mode)
3151 /* Just replace the CC reg with a new mode. */
3152 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3153 undobuf.other_insn = cc_use_insn;
3157 /* Now we modify the current newpat:
3158 First, SET_DEST(newpat) is updated if the CC mode has been
3159 altered. For targets without SELECT_CC_MODE, this should be
3160 optimized away. */
3161 if (compare_mode != orig_compare_mode)
3162 SUBST (SET_DEST (newpat), newpat_dest);
3163 /* This is always done to propagate i2src into newpat. */
3164 SUBST (SET_SRC (newpat),
3165 gen_rtx_COMPARE (compare_mode, op0, op1));
3166 /* Create new version of i2pat if needed; the below PARALLEL
3167 creation needs this to work correctly. */
3168 if (! rtx_equal_p (i2src, op0))
3169 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3170 i2_is_used = 1;
3173 #endif
3175 if (i2_is_used == 0)
3177 /* It is possible that the source of I2 or I1 may be performing
3178 an unneeded operation, such as a ZERO_EXTEND of something
3179 that is known to have the high part zero. Handle that case
3180 by letting subst look at the inner insns.
3182 Another way to do this would be to have a function that tries
3183 to simplify a single insn instead of merging two or more
3184 insns. We don't do this because of the potential of infinite
3185 loops and because of the potential extra memory required.
3186 However, doing it the way we are is a bit of a kludge and
3187 doesn't catch all cases.
3189 But only do this if -fexpensive-optimizations since it slows
3190 things down and doesn't usually win.
3192 This is not done in the COMPARE case above because the
3193 unmodified I2PAT is used in the PARALLEL and so a pattern
3194 with a modified I2SRC would not match. */
3196 if (flag_expensive_optimizations)
3198 /* Pass pc_rtx so no substitutions are done, just
3199 simplifications. */
3200 if (i1)
3202 subst_low_luid = DF_INSN_LUID (i1);
3203 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3206 subst_low_luid = DF_INSN_LUID (i2);
3207 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3210 n_occurrences = 0; /* `subst' counts here */
3211 subst_low_luid = DF_INSN_LUID (i2);
3213 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3214 copy of I2SRC each time we substitute it, in order to avoid creating
3215 self-referential RTL when we will be substituting I1SRC for I1DEST
3216 later. Likewise if I0 feeds into I2, either directly or indirectly
3217 through I1, and I0DEST is in I0SRC. */
3218 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3219 (i1_feeds_i2_n && i1dest_in_i1src)
3220 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3221 && i0dest_in_i0src));
3222 substed_i2 = 1;
3224 /* Record whether I2's body now appears within I3's body. */
3225 i2_is_used = n_occurrences;
3228 /* If we already got a failure, don't try to do more. Otherwise, try to
3229 substitute I1 if we have it. */
3231 if (i1 && GET_CODE (newpat) != CLOBBER)
3233 /* Check that an autoincrement side-effect on I1 has not been lost.
3234 This happens if I1DEST is mentioned in I2 and dies there, and
3235 has disappeared from the new pattern. */
3236 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3237 && i1_feeds_i2_n
3238 && dead_or_set_p (i2, i1dest)
3239 && !reg_overlap_mentioned_p (i1dest, newpat))
3240 /* Before we can do this substitution, we must redo the test done
3241 above (see detailed comments there) that ensures I1DEST isn't
3242 mentioned in any SETs in NEWPAT that are field assignments. */
3243 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3244 0, 0, 0))
3246 undo_all ();
3247 return 0;
3250 n_occurrences = 0;
3251 subst_low_luid = DF_INSN_LUID (i1);
3253 /* If the following substitution will modify I1SRC, make a copy of it
3254 for the case where it is substituted for I1DEST in I2PAT later. */
3255 if (added_sets_2 && i1_feeds_i2_n)
3256 i1src_copy = copy_rtx (i1src);
3258 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3259 copy of I1SRC each time we substitute it, in order to avoid creating
3260 self-referential RTL when we will be substituting I0SRC for I0DEST
3261 later. */
3262 newpat = subst (newpat, i1dest, i1src, 0, 0,
3263 i0_feeds_i1_n && i0dest_in_i0src);
3264 substed_i1 = 1;
3266 /* Record whether I1's body now appears within I3's body. */
3267 i1_is_used = n_occurrences;
3270 /* Likewise for I0 if we have it. */
3272 if (i0 && GET_CODE (newpat) != CLOBBER)
3274 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3275 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3276 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3277 && !reg_overlap_mentioned_p (i0dest, newpat))
3278 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3279 0, 0, 0))
3281 undo_all ();
3282 return 0;
3285 /* If the following substitution will modify I0SRC, make a copy of it
3286 for the case where it is substituted for I0DEST in I1PAT later. */
3287 if (added_sets_1 && i0_feeds_i1_n)
3288 i0src_copy = copy_rtx (i0src);
3289 /* And a copy for I0DEST in I2PAT substitution. */
3290 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3291 || (i0_feeds_i2_n)))
3292 i0src_copy2 = copy_rtx (i0src);
3294 n_occurrences = 0;
3295 subst_low_luid = DF_INSN_LUID (i0);
3296 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3297 substed_i0 = 1;
3300 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3301 to count all the ways that I2SRC and I1SRC can be used. */
3302 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3303 && i2_is_used + added_sets_2 > 1)
3304 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3305 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3306 > 1))
3307 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3308 && (n_occurrences + added_sets_0
3309 + (added_sets_1 && i0_feeds_i1_n)
3310 + (added_sets_2 && i0_feeds_i2_n)
3311 > 1))
3312 /* Fail if we tried to make a new register. */
3313 || max_reg_num () != maxreg
3314 /* Fail if we couldn't do something and have a CLOBBER. */
3315 || GET_CODE (newpat) == CLOBBER
3316 /* Fail if this new pattern is a MULT and we didn't have one before
3317 at the outer level. */
3318 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3319 && ! have_mult))
3321 undo_all ();
3322 return 0;
3325 /* If the actions of the earlier insns must be kept
3326 in addition to substituting them into the latest one,
3327 we must make a new PARALLEL for the latest insn
3328 to hold additional the SETs. */
3330 if (added_sets_0 || added_sets_1 || added_sets_2)
3332 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3333 combine_extras++;
3335 if (GET_CODE (newpat) == PARALLEL)
3337 rtvec old = XVEC (newpat, 0);
3338 total_sets = XVECLEN (newpat, 0) + extra_sets;
3339 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3340 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3341 sizeof (old->elem[0]) * old->num_elem);
3343 else
3345 rtx old = newpat;
3346 total_sets = 1 + extra_sets;
3347 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3348 XVECEXP (newpat, 0, 0) = old;
3351 if (added_sets_0)
3352 XVECEXP (newpat, 0, --total_sets) = i0pat;
3354 if (added_sets_1)
3356 rtx t = i1pat;
3357 if (i0_feeds_i1_n)
3358 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3360 XVECEXP (newpat, 0, --total_sets) = t;
3362 if (added_sets_2)
3364 rtx t = i2pat;
3365 if (i1_feeds_i2_n)
3366 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3367 i0_feeds_i1_n && i0dest_in_i0src);
3368 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3369 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3371 XVECEXP (newpat, 0, --total_sets) = t;
3375 validate_replacement:
3377 /* Note which hard regs this insn has as inputs. */
3378 mark_used_regs_combine (newpat);
3380 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3381 consider splitting this pattern, we might need these clobbers. */
3382 if (i1 && GET_CODE (newpat) == PARALLEL
3383 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3385 int len = XVECLEN (newpat, 0);
3387 newpat_vec_with_clobbers = rtvec_alloc (len);
3388 for (i = 0; i < len; i++)
3389 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3392 /* Is the result of combination a valid instruction? */
3393 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3395 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3396 the second SET's destination is a register that is unused and isn't
3397 marked as an instruction that might trap in an EH region. In that case,
3398 we just need the first SET. This can occur when simplifying a divmod
3399 insn. We *must* test for this case here because the code below that
3400 splits two independent SETs doesn't handle this case correctly when it
3401 updates the register status.
3403 It's pointless doing this if we originally had two sets, one from
3404 i3, and one from i2. Combining then splitting the parallel results
3405 in the original i2 again plus an invalid insn (which we delete).
3406 The net effect is only to move instructions around, which makes
3407 debug info less accurate.
3409 Also check the case where the first SET's destination is unused.
3410 That would not cause incorrect code, but does cause an unneeded
3411 insn to remain. */
3413 if (insn_code_number < 0
3414 && !(added_sets_2 && i1 == 0)
3415 && GET_CODE (newpat) == PARALLEL
3416 && XVECLEN (newpat, 0) == 2
3417 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3418 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3419 && asm_noperands (newpat) < 0)
3421 rtx set0 = XVECEXP (newpat, 0, 0);
3422 rtx set1 = XVECEXP (newpat, 0, 1);
3424 if (((REG_P (SET_DEST (set1))
3425 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3426 || (GET_CODE (SET_DEST (set1)) == SUBREG
3427 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3428 && insn_nothrow_p (i3)
3429 && !side_effects_p (SET_SRC (set1)))
3431 newpat = set0;
3432 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3435 else if (((REG_P (SET_DEST (set0))
3436 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3437 || (GET_CODE (SET_DEST (set0)) == SUBREG
3438 && find_reg_note (i3, REG_UNUSED,
3439 SUBREG_REG (SET_DEST (set0)))))
3440 && insn_nothrow_p (i3)
3441 && !side_effects_p (SET_SRC (set0)))
3443 newpat = set1;
3444 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3446 if (insn_code_number >= 0)
3447 changed_i3_dest = 1;
3451 /* If we were combining three insns and the result is a simple SET
3452 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3453 insns. There are two ways to do this. It can be split using a
3454 machine-specific method (like when you have an addition of a large
3455 constant) or by combine in the function find_split_point. */
3457 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3458 && asm_noperands (newpat) < 0)
3460 rtx parallel, m_split, *split;
3462 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3463 use I2DEST as a scratch register will help. In the latter case,
3464 convert I2DEST to the mode of the source of NEWPAT if we can. */
3466 m_split = combine_split_insns (newpat, i3);
3468 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3469 inputs of NEWPAT. */
3471 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3472 possible to try that as a scratch reg. This would require adding
3473 more code to make it work though. */
3475 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3477 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3479 /* First try to split using the original register as a
3480 scratch register. */
3481 parallel = gen_rtx_PARALLEL (VOIDmode,
3482 gen_rtvec (2, newpat,
3483 gen_rtx_CLOBBER (VOIDmode,
3484 i2dest)));
3485 m_split = combine_split_insns (parallel, i3);
3487 /* If that didn't work, try changing the mode of I2DEST if
3488 we can. */
3489 if (m_split == 0
3490 && new_mode != GET_MODE (i2dest)
3491 && new_mode != VOIDmode
3492 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3494 enum machine_mode old_mode = GET_MODE (i2dest);
3495 rtx ni2dest;
3497 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3498 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3499 else
3501 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3502 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3505 parallel = (gen_rtx_PARALLEL
3506 (VOIDmode,
3507 gen_rtvec (2, newpat,
3508 gen_rtx_CLOBBER (VOIDmode,
3509 ni2dest))));
3510 m_split = combine_split_insns (parallel, i3);
3512 if (m_split == 0
3513 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3515 struct undo *buf;
3517 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3518 buf = undobuf.undos;
3519 undobuf.undos = buf->next;
3520 buf->next = undobuf.frees;
3521 undobuf.frees = buf;
3525 i2scratch = m_split != 0;
3528 /* If recog_for_combine has discarded clobbers, try to use them
3529 again for the split. */
3530 if (m_split == 0 && newpat_vec_with_clobbers)
3532 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3533 m_split = combine_split_insns (parallel, i3);
3536 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3538 m_split = PATTERN (m_split);
3539 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3540 if (insn_code_number >= 0)
3541 newpat = m_split;
3543 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3544 && (next_nonnote_nondebug_insn (i2) == i3
3545 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3547 rtx i2set, i3set;
3548 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3549 newi2pat = PATTERN (m_split);
3551 i3set = single_set (NEXT_INSN (m_split));
3552 i2set = single_set (m_split);
3554 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3556 /* If I2 or I3 has multiple SETs, we won't know how to track
3557 register status, so don't use these insns. If I2's destination
3558 is used between I2 and I3, we also can't use these insns. */
3560 if (i2_code_number >= 0 && i2set && i3set
3561 && (next_nonnote_nondebug_insn (i2) == i3
3562 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3563 insn_code_number = recog_for_combine (&newi3pat, i3,
3564 &new_i3_notes);
3565 if (insn_code_number >= 0)
3566 newpat = newi3pat;
3568 /* It is possible that both insns now set the destination of I3.
3569 If so, we must show an extra use of it. */
3571 if (insn_code_number >= 0)
3573 rtx new_i3_dest = SET_DEST (i3set);
3574 rtx new_i2_dest = SET_DEST (i2set);
3576 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3577 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3578 || GET_CODE (new_i3_dest) == SUBREG)
3579 new_i3_dest = XEXP (new_i3_dest, 0);
3581 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3582 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3583 || GET_CODE (new_i2_dest) == SUBREG)
3584 new_i2_dest = XEXP (new_i2_dest, 0);
3586 if (REG_P (new_i3_dest)
3587 && REG_P (new_i2_dest)
3588 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3589 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3593 /* If we can split it and use I2DEST, go ahead and see if that
3594 helps things be recognized. Verify that none of the registers
3595 are set between I2 and I3. */
3596 if (insn_code_number < 0
3597 && (split = find_split_point (&newpat, i3, false)) != 0
3598 #ifdef HAVE_cc0
3599 && REG_P (i2dest)
3600 #endif
3601 /* We need I2DEST in the proper mode. If it is a hard register
3602 or the only use of a pseudo, we can change its mode.
3603 Make sure we don't change a hard register to have a mode that
3604 isn't valid for it, or change the number of registers. */
3605 && (GET_MODE (*split) == GET_MODE (i2dest)
3606 || GET_MODE (*split) == VOIDmode
3607 || can_change_dest_mode (i2dest, added_sets_2,
3608 GET_MODE (*split)))
3609 && (next_nonnote_nondebug_insn (i2) == i3
3610 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3611 /* We can't overwrite I2DEST if its value is still used by
3612 NEWPAT. */
3613 && ! reg_referenced_p (i2dest, newpat))
3615 rtx newdest = i2dest;
3616 enum rtx_code split_code = GET_CODE (*split);
3617 enum machine_mode split_mode = GET_MODE (*split);
3618 bool subst_done = false;
3619 newi2pat = NULL_RTX;
3621 i2scratch = true;
3623 /* *SPLIT may be part of I2SRC, so make sure we have the
3624 original expression around for later debug processing.
3625 We should not need I2SRC any more in other cases. */
3626 if (MAY_HAVE_DEBUG_INSNS)
3627 i2src = copy_rtx (i2src);
3628 else
3629 i2src = NULL;
3631 /* Get NEWDEST as a register in the proper mode. We have already
3632 validated that we can do this. */
3633 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3635 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3636 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3637 else
3639 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3640 newdest = regno_reg_rtx[REGNO (i2dest)];
3644 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3645 an ASHIFT. This can occur if it was inside a PLUS and hence
3646 appeared to be a memory address. This is a kludge. */
3647 if (split_code == MULT
3648 && CONST_INT_P (XEXP (*split, 1))
3649 && INTVAL (XEXP (*split, 1)) > 0
3650 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3652 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3653 XEXP (*split, 0), GEN_INT (i)));
3654 /* Update split_code because we may not have a multiply
3655 anymore. */
3656 split_code = GET_CODE (*split);
3659 #ifdef INSN_SCHEDULING
3660 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3661 be written as a ZERO_EXTEND. */
3662 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3664 #ifdef LOAD_EXTEND_OP
3665 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3666 what it really is. */
3667 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3668 == SIGN_EXTEND)
3669 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3670 SUBREG_REG (*split)));
3671 else
3672 #endif
3673 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3674 SUBREG_REG (*split)));
3676 #endif
3678 /* Attempt to split binary operators using arithmetic identities. */
3679 if (BINARY_P (SET_SRC (newpat))
3680 && split_mode == GET_MODE (SET_SRC (newpat))
3681 && ! side_effects_p (SET_SRC (newpat)))
3683 rtx setsrc = SET_SRC (newpat);
3684 enum machine_mode mode = GET_MODE (setsrc);
3685 enum rtx_code code = GET_CODE (setsrc);
3686 rtx src_op0 = XEXP (setsrc, 0);
3687 rtx src_op1 = XEXP (setsrc, 1);
3689 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3690 if (rtx_equal_p (src_op0, src_op1))
3692 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3693 SUBST (XEXP (setsrc, 0), newdest);
3694 SUBST (XEXP (setsrc, 1), newdest);
3695 subst_done = true;
3697 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3698 else if ((code == PLUS || code == MULT)
3699 && GET_CODE (src_op0) == code
3700 && GET_CODE (XEXP (src_op0, 0)) == code
3701 && (INTEGRAL_MODE_P (mode)
3702 || (FLOAT_MODE_P (mode)
3703 && flag_unsafe_math_optimizations)))
3705 rtx p = XEXP (XEXP (src_op0, 0), 0);
3706 rtx q = XEXP (XEXP (src_op0, 0), 1);
3707 rtx r = XEXP (src_op0, 1);
3708 rtx s = src_op1;
3710 /* Split both "((X op Y) op X) op Y" and
3711 "((X op Y) op Y) op X" as "T op T" where T is
3712 "X op Y". */
3713 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3714 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3716 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3717 XEXP (src_op0, 0));
3718 SUBST (XEXP (setsrc, 0), newdest);
3719 SUBST (XEXP (setsrc, 1), newdest);
3720 subst_done = true;
3722 /* Split "((X op X) op Y) op Y)" as "T op T" where
3723 T is "X op Y". */
3724 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3726 rtx tmp = simplify_gen_binary (code, mode, p, r);
3727 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3728 SUBST (XEXP (setsrc, 0), newdest);
3729 SUBST (XEXP (setsrc, 1), newdest);
3730 subst_done = true;
3735 if (!subst_done)
3737 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3738 SUBST (*split, newdest);
3741 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3743 /* recog_for_combine might have added CLOBBERs to newi2pat.
3744 Make sure NEWPAT does not depend on the clobbered regs. */
3745 if (GET_CODE (newi2pat) == PARALLEL)
3746 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3747 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3749 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3750 if (reg_overlap_mentioned_p (reg, newpat))
3752 undo_all ();
3753 return 0;
3757 /* If the split point was a MULT and we didn't have one before,
3758 don't use one now. */
3759 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3760 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3764 /* Check for a case where we loaded from memory in a narrow mode and
3765 then sign extended it, but we need both registers. In that case,
3766 we have a PARALLEL with both loads from the same memory location.
3767 We can split this into a load from memory followed by a register-register
3768 copy. This saves at least one insn, more if register allocation can
3769 eliminate the copy.
3771 We cannot do this if the destination of the first assignment is a
3772 condition code register or cc0. We eliminate this case by making sure
3773 the SET_DEST and SET_SRC have the same mode.
3775 We cannot do this if the destination of the second assignment is
3776 a register that we have already assumed is zero-extended. Similarly
3777 for a SUBREG of such a register. */
3779 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3780 && GET_CODE (newpat) == PARALLEL
3781 && XVECLEN (newpat, 0) == 2
3782 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3783 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3784 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3785 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3786 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3787 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3788 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3789 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3790 DF_INSN_LUID (i2))
3791 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3792 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3793 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3794 (REG_P (temp)
3795 && VEC_index (reg_stat_type, reg_stat,
3796 REGNO (temp))->nonzero_bits != 0
3797 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3798 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3799 && (VEC_index (reg_stat_type, reg_stat,
3800 REGNO (temp))->nonzero_bits
3801 != GET_MODE_MASK (word_mode))))
3802 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3803 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3804 (REG_P (temp)
3805 && VEC_index (reg_stat_type, reg_stat,
3806 REGNO (temp))->nonzero_bits != 0
3807 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3808 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3809 && (VEC_index (reg_stat_type, reg_stat,
3810 REGNO (temp))->nonzero_bits
3811 != GET_MODE_MASK (word_mode)))))
3812 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3813 SET_SRC (XVECEXP (newpat, 0, 1)))
3814 && ! find_reg_note (i3, REG_UNUSED,
3815 SET_DEST (XVECEXP (newpat, 0, 0))))
3817 rtx ni2dest;
3819 newi2pat = XVECEXP (newpat, 0, 0);
3820 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3821 newpat = XVECEXP (newpat, 0, 1);
3822 SUBST (SET_SRC (newpat),
3823 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3824 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3826 if (i2_code_number >= 0)
3827 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3829 if (insn_code_number >= 0)
3830 swap_i2i3 = 1;
3833 /* Similarly, check for a case where we have a PARALLEL of two independent
3834 SETs but we started with three insns. In this case, we can do the sets
3835 as two separate insns. This case occurs when some SET allows two
3836 other insns to combine, but the destination of that SET is still live. */
3838 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3839 && GET_CODE (newpat) == PARALLEL
3840 && XVECLEN (newpat, 0) == 2
3841 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3842 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3843 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3844 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3845 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3846 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3847 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3848 XVECEXP (newpat, 0, 0))
3849 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3850 XVECEXP (newpat, 0, 1))
3851 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3852 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3854 /* Normally, it doesn't matter which of the two is done first,
3855 but the one that references cc0 can't be the second, and
3856 one which uses any regs/memory set in between i2 and i3 can't
3857 be first. */
3858 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3859 DF_INSN_LUID (i2))
3860 #ifdef HAVE_cc0
3861 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3862 #endif
3865 newi2pat = XVECEXP (newpat, 0, 1);
3866 newpat = XVECEXP (newpat, 0, 0);
3868 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3869 DF_INSN_LUID (i2))
3870 #ifdef HAVE_cc0
3871 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3872 #endif
3875 newi2pat = XVECEXP (newpat, 0, 0);
3876 newpat = XVECEXP (newpat, 0, 1);
3878 else
3880 undo_all ();
3881 return 0;
3884 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3886 if (i2_code_number >= 0)
3888 /* recog_for_combine might have added CLOBBERs to newi2pat.
3889 Make sure NEWPAT does not depend on the clobbered regs. */
3890 if (GET_CODE (newi2pat) == PARALLEL)
3892 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3893 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3895 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3896 if (reg_overlap_mentioned_p (reg, newpat))
3898 undo_all ();
3899 return 0;
3904 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3908 /* If it still isn't recognized, fail and change things back the way they
3909 were. */
3910 if ((insn_code_number < 0
3911 /* Is the result a reasonable ASM_OPERANDS? */
3912 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3914 undo_all ();
3915 return 0;
3918 /* If we had to change another insn, make sure it is valid also. */
3919 if (undobuf.other_insn)
3921 CLEAR_HARD_REG_SET (newpat_used_regs);
3923 other_pat = PATTERN (undobuf.other_insn);
3924 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3925 &new_other_notes);
3927 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3929 undo_all ();
3930 return 0;
3934 #ifdef HAVE_cc0
3935 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3936 they are adjacent to each other or not. */
3938 rtx p = prev_nonnote_insn (i3);
3939 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3940 && sets_cc0_p (newi2pat))
3942 undo_all ();
3943 return 0;
3946 #endif
3948 /* Only allow this combination if insn_rtx_costs reports that the
3949 replacement instructions are cheaper than the originals. */
3950 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3952 undo_all ();
3953 return 0;
3956 if (MAY_HAVE_DEBUG_INSNS)
3958 struct undo *undo;
3960 for (undo = undobuf.undos; undo; undo = undo->next)
3961 if (undo->kind == UNDO_MODE)
3963 rtx reg = *undo->where.r;
3964 enum machine_mode new_mode = GET_MODE (reg);
3965 enum machine_mode old_mode = undo->old_contents.m;
3967 /* Temporarily revert mode back. */
3968 adjust_reg_mode (reg, old_mode);
3970 if (reg == i2dest && i2scratch)
3972 /* If we used i2dest as a scratch register with a
3973 different mode, substitute it for the original
3974 i2src while its original mode is temporarily
3975 restored, and then clear i2scratch so that we don't
3976 do it again later. */
3977 propagate_for_debug (i2, last_combined_insn, reg, i2src);
3978 i2scratch = false;
3979 /* Put back the new mode. */
3980 adjust_reg_mode (reg, new_mode);
3982 else
3984 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3985 rtx first, last;
3987 if (reg == i2dest)
3989 first = i2;
3990 last = last_combined_insn;
3992 else
3994 first = i3;
3995 last = undobuf.other_insn;
3996 gcc_assert (last);
3997 if (DF_INSN_LUID (last)
3998 < DF_INSN_LUID (last_combined_insn))
3999 last = last_combined_insn;
4002 /* We're dealing with a reg that changed mode but not
4003 meaning, so we want to turn it into a subreg for
4004 the new mode. However, because of REG sharing and
4005 because its mode had already changed, we have to do
4006 it in two steps. First, replace any debug uses of
4007 reg, with its original mode temporarily restored,
4008 with this copy we have created; then, replace the
4009 copy with the SUBREG of the original shared reg,
4010 once again changed to the new mode. */
4011 propagate_for_debug (first, last, reg, tempreg);
4012 adjust_reg_mode (reg, new_mode);
4013 propagate_for_debug (first, last, tempreg,
4014 lowpart_subreg (old_mode, reg, new_mode));
4019 /* If we will be able to accept this, we have made a
4020 change to the destination of I3. This requires us to
4021 do a few adjustments. */
4023 if (changed_i3_dest)
4025 PATTERN (i3) = newpat;
4026 adjust_for_new_dest (i3);
4029 /* We now know that we can do this combination. Merge the insns and
4030 update the status of registers and LOG_LINKS. */
4032 if (undobuf.other_insn)
4034 rtx note, next;
4036 PATTERN (undobuf.other_insn) = other_pat;
4038 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
4039 are still valid. Then add any non-duplicate notes added by
4040 recog_for_combine. */
4041 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4043 next = XEXP (note, 1);
4045 if (REG_NOTE_KIND (note) == REG_UNUSED
4046 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
4047 remove_note (undobuf.other_insn, note);
4050 distribute_notes (new_other_notes, undobuf.other_insn,
4051 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4052 NULL_RTX);
4055 if (swap_i2i3)
4057 rtx insn;
4058 struct insn_link *link;
4059 rtx ni2dest;
4061 /* I3 now uses what used to be its destination and which is now
4062 I2's destination. This requires us to do a few adjustments. */
4063 PATTERN (i3) = newpat;
4064 adjust_for_new_dest (i3);
4066 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4067 so we still will.
4069 However, some later insn might be using I2's dest and have
4070 a LOG_LINK pointing at I3. We must remove this link.
4071 The simplest way to remove the link is to point it at I1,
4072 which we know will be a NOTE. */
4074 /* newi2pat is usually a SET here; however, recog_for_combine might
4075 have added some clobbers. */
4076 if (GET_CODE (newi2pat) == PARALLEL)
4077 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4078 else
4079 ni2dest = SET_DEST (newi2pat);
4081 for (insn = NEXT_INSN (i3);
4082 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4083 || insn != BB_HEAD (this_basic_block->next_bb));
4084 insn = NEXT_INSN (insn))
4086 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4088 FOR_EACH_LOG_LINK (link, insn)
4089 if (link->insn == i3)
4090 link->insn = i1;
4092 break;
4098 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4099 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4100 rtx midnotes = 0;
4101 int from_luid;
4102 /* Compute which registers we expect to eliminate. newi2pat may be setting
4103 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4104 same as i3dest, in which case newi2pat may be setting i1dest. */
4105 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4106 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4107 || !i2dest_killed
4108 ? 0 : i2dest);
4109 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4110 || (newi2pat && reg_set_p (i1dest, newi2pat))
4111 || !i1dest_killed
4112 ? 0 : i1dest);
4113 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4114 || (newi2pat && reg_set_p (i0dest, newi2pat))
4115 || !i0dest_killed
4116 ? 0 : i0dest);
4118 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4119 clear them. */
4120 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4121 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4122 if (i1)
4123 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4124 if (i0)
4125 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4127 /* Ensure that we do not have something that should not be shared but
4128 occurs multiple times in the new insns. Check this by first
4129 resetting all the `used' flags and then copying anything is shared. */
4131 reset_used_flags (i3notes);
4132 reset_used_flags (i2notes);
4133 reset_used_flags (i1notes);
4134 reset_used_flags (i0notes);
4135 reset_used_flags (newpat);
4136 reset_used_flags (newi2pat);
4137 if (undobuf.other_insn)
4138 reset_used_flags (PATTERN (undobuf.other_insn));
4140 i3notes = copy_rtx_if_shared (i3notes);
4141 i2notes = copy_rtx_if_shared (i2notes);
4142 i1notes = copy_rtx_if_shared (i1notes);
4143 i0notes = copy_rtx_if_shared (i0notes);
4144 newpat = copy_rtx_if_shared (newpat);
4145 newi2pat = copy_rtx_if_shared (newi2pat);
4146 if (undobuf.other_insn)
4147 reset_used_flags (PATTERN (undobuf.other_insn));
4149 INSN_CODE (i3) = insn_code_number;
4150 PATTERN (i3) = newpat;
4152 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4154 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4156 reset_used_flags (call_usage);
4157 call_usage = copy_rtx (call_usage);
4159 if (substed_i2)
4161 /* I2SRC must still be meaningful at this point. Some splitting
4162 operations can invalidate I2SRC, but those operations do not
4163 apply to calls. */
4164 gcc_assert (i2src);
4165 replace_rtx (call_usage, i2dest, i2src);
4168 if (substed_i1)
4169 replace_rtx (call_usage, i1dest, i1src);
4170 if (substed_i0)
4171 replace_rtx (call_usage, i0dest, i0src);
4173 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4176 if (undobuf.other_insn)
4177 INSN_CODE (undobuf.other_insn) = other_code_number;
4179 /* We had one special case above where I2 had more than one set and
4180 we replaced a destination of one of those sets with the destination
4181 of I3. In that case, we have to update LOG_LINKS of insns later
4182 in this basic block. Note that this (expensive) case is rare.
4184 Also, in this case, we must pretend that all REG_NOTEs for I2
4185 actually came from I3, so that REG_UNUSED notes from I2 will be
4186 properly handled. */
4188 if (i3_subst_into_i2)
4190 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4191 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4192 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4193 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4194 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4195 && ! find_reg_note (i2, REG_UNUSED,
4196 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4197 for (temp = NEXT_INSN (i2);
4198 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4199 || BB_HEAD (this_basic_block) != temp);
4200 temp = NEXT_INSN (temp))
4201 if (temp != i3 && INSN_P (temp))
4202 FOR_EACH_LOG_LINK (link, temp)
4203 if (link->insn == i2)
4204 link->insn = i3;
4206 if (i3notes)
4208 rtx link = i3notes;
4209 while (XEXP (link, 1))
4210 link = XEXP (link, 1);
4211 XEXP (link, 1) = i2notes;
4213 else
4214 i3notes = i2notes;
4215 i2notes = 0;
4218 LOG_LINKS (i3) = NULL;
4219 REG_NOTES (i3) = 0;
4220 LOG_LINKS (i2) = NULL;
4221 REG_NOTES (i2) = 0;
4223 if (newi2pat)
4225 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4226 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4227 INSN_CODE (i2) = i2_code_number;
4228 PATTERN (i2) = newi2pat;
4230 else
4232 if (MAY_HAVE_DEBUG_INSNS && i2src)
4233 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4234 SET_INSN_DELETED (i2);
4237 if (i1)
4239 LOG_LINKS (i1) = NULL;
4240 REG_NOTES (i1) = 0;
4241 if (MAY_HAVE_DEBUG_INSNS)
4242 propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4243 SET_INSN_DELETED (i1);
4246 if (i0)
4248 LOG_LINKS (i0) = NULL;
4249 REG_NOTES (i0) = 0;
4250 if (MAY_HAVE_DEBUG_INSNS)
4251 propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4252 SET_INSN_DELETED (i0);
4255 /* Get death notes for everything that is now used in either I3 or
4256 I2 and used to die in a previous insn. If we built two new
4257 patterns, move from I1 to I2 then I2 to I3 so that we get the
4258 proper movement on registers that I2 modifies. */
4260 if (i0)
4261 from_luid = DF_INSN_LUID (i0);
4262 else if (i1)
4263 from_luid = DF_INSN_LUID (i1);
4264 else
4265 from_luid = DF_INSN_LUID (i2);
4266 if (newi2pat)
4267 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4268 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4270 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4271 if (i3notes)
4272 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4273 elim_i2, elim_i1, elim_i0);
4274 if (i2notes)
4275 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4276 elim_i2, elim_i1, elim_i0);
4277 if (i1notes)
4278 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4279 elim_i2, elim_i1, elim_i0);
4280 if (i0notes)
4281 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4282 elim_i2, elim_i1, elim_i0);
4283 if (midnotes)
4284 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4285 elim_i2, elim_i1, elim_i0);
4287 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4288 know these are REG_UNUSED and want them to go to the desired insn,
4289 so we always pass it as i3. */
4291 if (newi2pat && new_i2_notes)
4292 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4293 NULL_RTX);
4295 if (new_i3_notes)
4296 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4297 NULL_RTX);
4299 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4300 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4301 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4302 in that case, it might delete I2. Similarly for I2 and I1.
4303 Show an additional death due to the REG_DEAD note we make here. If
4304 we discard it in distribute_notes, we will decrement it again. */
4306 if (i3dest_killed)
4308 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4309 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4310 NULL_RTX),
4311 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4312 else
4313 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4314 NULL_RTX),
4315 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4316 elim_i2, elim_i1, elim_i0);
4319 if (i2dest_in_i2src)
4321 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4322 if (newi2pat && reg_set_p (i2dest, newi2pat))
4323 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4324 NULL_RTX, NULL_RTX);
4325 else
4326 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4327 NULL_RTX, NULL_RTX, NULL_RTX);
4330 if (i1dest_in_i1src)
4332 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4333 if (newi2pat && reg_set_p (i1dest, newi2pat))
4334 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4335 NULL_RTX, NULL_RTX);
4336 else
4337 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4338 NULL_RTX, NULL_RTX, NULL_RTX);
4341 if (i0dest_in_i0src)
4343 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4344 if (newi2pat && reg_set_p (i0dest, newi2pat))
4345 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4346 NULL_RTX, NULL_RTX);
4347 else
4348 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4349 NULL_RTX, NULL_RTX, NULL_RTX);
4352 distribute_links (i3links);
4353 distribute_links (i2links);
4354 distribute_links (i1links);
4355 distribute_links (i0links);
4357 if (REG_P (i2dest))
4359 struct insn_link *link;
4360 rtx i2_insn = 0, i2_val = 0, set;
4362 /* The insn that used to set this register doesn't exist, and
4363 this life of the register may not exist either. See if one of
4364 I3's links points to an insn that sets I2DEST. If it does,
4365 that is now the last known value for I2DEST. If we don't update
4366 this and I2 set the register to a value that depended on its old
4367 contents, we will get confused. If this insn is used, thing
4368 will be set correctly in combine_instructions. */
4369 FOR_EACH_LOG_LINK (link, i3)
4370 if ((set = single_set (link->insn)) != 0
4371 && rtx_equal_p (i2dest, SET_DEST (set)))
4372 i2_insn = link->insn, i2_val = SET_SRC (set);
4374 record_value_for_reg (i2dest, i2_insn, i2_val);
4376 /* If the reg formerly set in I2 died only once and that was in I3,
4377 zero its use count so it won't make `reload' do any work. */
4378 if (! added_sets_2
4379 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4380 && ! i2dest_in_i2src)
4381 INC_REG_N_SETS (REGNO (i2dest), -1);
4384 if (i1 && REG_P (i1dest))
4386 struct insn_link *link;
4387 rtx i1_insn = 0, i1_val = 0, set;
4389 FOR_EACH_LOG_LINK (link, i3)
4390 if ((set = single_set (link->insn)) != 0
4391 && rtx_equal_p (i1dest, SET_DEST (set)))
4392 i1_insn = link->insn, i1_val = SET_SRC (set);
4394 record_value_for_reg (i1dest, i1_insn, i1_val);
4396 if (! added_sets_1 && ! i1dest_in_i1src)
4397 INC_REG_N_SETS (REGNO (i1dest), -1);
4400 if (i0 && REG_P (i0dest))
4402 struct insn_link *link;
4403 rtx i0_insn = 0, i0_val = 0, set;
4405 FOR_EACH_LOG_LINK (link, i3)
4406 if ((set = single_set (link->insn)) != 0
4407 && rtx_equal_p (i0dest, SET_DEST (set)))
4408 i0_insn = link->insn, i0_val = SET_SRC (set);
4410 record_value_for_reg (i0dest, i0_insn, i0_val);
4412 if (! added_sets_0 && ! i0dest_in_i0src)
4413 INC_REG_N_SETS (REGNO (i0dest), -1);
4416 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4417 been made to this insn. The order of
4418 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4419 can affect nonzero_bits of newpat */
4420 if (newi2pat)
4421 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4422 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4425 if (undobuf.other_insn != NULL_RTX)
4427 if (dump_file)
4429 fprintf (dump_file, "modifying other_insn ");
4430 dump_insn_slim (dump_file, undobuf.other_insn);
4432 df_insn_rescan (undobuf.other_insn);
4435 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4437 if (dump_file)
4439 fprintf (dump_file, "modifying insn i1 ");
4440 dump_insn_slim (dump_file, i0);
4442 df_insn_rescan (i0);
4445 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4447 if (dump_file)
4449 fprintf (dump_file, "modifying insn i1 ");
4450 dump_insn_slim (dump_file, i1);
4452 df_insn_rescan (i1);
4455 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4457 if (dump_file)
4459 fprintf (dump_file, "modifying insn i2 ");
4460 dump_insn_slim (dump_file, i2);
4462 df_insn_rescan (i2);
4465 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4467 if (dump_file)
4469 fprintf (dump_file, "modifying insn i3 ");
4470 dump_insn_slim (dump_file, i3);
4472 df_insn_rescan (i3);
4475 /* Set new_direct_jump_p if a new return or simple jump instruction
4476 has been created. Adjust the CFG accordingly. */
4478 if (returnjump_p (i3) || any_uncondjump_p (i3))
4480 *new_direct_jump_p = 1;
4481 mark_jump_label (PATTERN (i3), i3, 0);
4482 update_cfg_for_uncondjump (i3);
4485 if (undobuf.other_insn != NULL_RTX
4486 && (returnjump_p (undobuf.other_insn)
4487 || any_uncondjump_p (undobuf.other_insn)))
4489 *new_direct_jump_p = 1;
4490 update_cfg_for_uncondjump (undobuf.other_insn);
4493 /* A noop might also need cleaning up of CFG, if it comes from the
4494 simplification of a jump. */
4495 if (JUMP_P (i3)
4496 && GET_CODE (newpat) == SET
4497 && SET_SRC (newpat) == pc_rtx
4498 && SET_DEST (newpat) == pc_rtx)
4500 *new_direct_jump_p = 1;
4501 update_cfg_for_uncondjump (i3);
4504 if (undobuf.other_insn != NULL_RTX
4505 && JUMP_P (undobuf.other_insn)
4506 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4507 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4508 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4510 *new_direct_jump_p = 1;
4511 update_cfg_for_uncondjump (undobuf.other_insn);
4514 combine_successes++;
4515 undo_commit ();
4517 if (added_links_insn
4518 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4519 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4520 return added_links_insn;
4521 else
4522 return newi2pat ? i2 : i3;
4525 /* Undo all the modifications recorded in undobuf. */
4527 static void
4528 undo_all (void)
4530 struct undo *undo, *next;
4532 for (undo = undobuf.undos; undo; undo = next)
4534 next = undo->next;
4535 switch (undo->kind)
4537 case UNDO_RTX:
4538 *undo->where.r = undo->old_contents.r;
4539 break;
4540 case UNDO_INT:
4541 *undo->where.i = undo->old_contents.i;
4542 break;
4543 case UNDO_MODE:
4544 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4545 break;
4546 case UNDO_LINKS:
4547 *undo->where.l = undo->old_contents.l;
4548 break;
4549 default:
4550 gcc_unreachable ();
4553 undo->next = undobuf.frees;
4554 undobuf.frees = undo;
4557 undobuf.undos = 0;
4560 /* We've committed to accepting the changes we made. Move all
4561 of the undos to the free list. */
4563 static void
4564 undo_commit (void)
4566 struct undo *undo, *next;
4568 for (undo = undobuf.undos; undo; undo = next)
4570 next = undo->next;
4571 undo->next = undobuf.frees;
4572 undobuf.frees = undo;
4574 undobuf.undos = 0;
4577 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4578 where we have an arithmetic expression and return that point. LOC will
4579 be inside INSN.
4581 try_combine will call this function to see if an insn can be split into
4582 two insns. */
4584 static rtx *
4585 find_split_point (rtx *loc, rtx insn, bool set_src)
4587 rtx x = *loc;
4588 enum rtx_code code = GET_CODE (x);
4589 rtx *split;
4590 unsigned HOST_WIDE_INT len = 0;
4591 HOST_WIDE_INT pos = 0;
4592 int unsignedp = 0;
4593 rtx inner = NULL_RTX;
4595 /* First special-case some codes. */
4596 switch (code)
4598 case SUBREG:
4599 #ifdef INSN_SCHEDULING
4600 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4601 point. */
4602 if (MEM_P (SUBREG_REG (x)))
4603 return loc;
4604 #endif
4605 return find_split_point (&SUBREG_REG (x), insn, false);
4607 case MEM:
4608 #ifdef HAVE_lo_sum
4609 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4610 using LO_SUM and HIGH. */
4611 if (GET_CODE (XEXP (x, 0)) == CONST
4612 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4614 enum machine_mode address_mode
4615 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4617 SUBST (XEXP (x, 0),
4618 gen_rtx_LO_SUM (address_mode,
4619 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4620 XEXP (x, 0)));
4621 return &XEXP (XEXP (x, 0), 0);
4623 #endif
4625 /* If we have a PLUS whose second operand is a constant and the
4626 address is not valid, perhaps will can split it up using
4627 the machine-specific way to split large constants. We use
4628 the first pseudo-reg (one of the virtual regs) as a placeholder;
4629 it will not remain in the result. */
4630 if (GET_CODE (XEXP (x, 0)) == PLUS
4631 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4632 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4633 MEM_ADDR_SPACE (x)))
4635 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4636 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4637 XEXP (x, 0)),
4638 subst_insn);
4640 /* This should have produced two insns, each of which sets our
4641 placeholder. If the source of the second is a valid address,
4642 we can make put both sources together and make a split point
4643 in the middle. */
4645 if (seq
4646 && NEXT_INSN (seq) != NULL_RTX
4647 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4648 && NONJUMP_INSN_P (seq)
4649 && GET_CODE (PATTERN (seq)) == SET
4650 && SET_DEST (PATTERN (seq)) == reg
4651 && ! reg_mentioned_p (reg,
4652 SET_SRC (PATTERN (seq)))
4653 && NONJUMP_INSN_P (NEXT_INSN (seq))
4654 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4655 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4656 && memory_address_addr_space_p
4657 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4658 MEM_ADDR_SPACE (x)))
4660 rtx src1 = SET_SRC (PATTERN (seq));
4661 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4663 /* Replace the placeholder in SRC2 with SRC1. If we can
4664 find where in SRC2 it was placed, that can become our
4665 split point and we can replace this address with SRC2.
4666 Just try two obvious places. */
4668 src2 = replace_rtx (src2, reg, src1);
4669 split = 0;
4670 if (XEXP (src2, 0) == src1)
4671 split = &XEXP (src2, 0);
4672 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4673 && XEXP (XEXP (src2, 0), 0) == src1)
4674 split = &XEXP (XEXP (src2, 0), 0);
4676 if (split)
4678 SUBST (XEXP (x, 0), src2);
4679 return split;
4683 /* If that didn't work, perhaps the first operand is complex and
4684 needs to be computed separately, so make a split point there.
4685 This will occur on machines that just support REG + CONST
4686 and have a constant moved through some previous computation. */
4688 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4689 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4690 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4691 return &XEXP (XEXP (x, 0), 0);
4694 /* If we have a PLUS whose first operand is complex, try computing it
4695 separately by making a split there. */
4696 if (GET_CODE (XEXP (x, 0)) == PLUS
4697 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4698 MEM_ADDR_SPACE (x))
4699 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4700 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4701 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4702 return &XEXP (XEXP (x, 0), 0);
4703 break;
4705 case SET:
4706 #ifdef HAVE_cc0
4707 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4708 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4709 we need to put the operand into a register. So split at that
4710 point. */
4712 if (SET_DEST (x) == cc0_rtx
4713 && GET_CODE (SET_SRC (x)) != COMPARE
4714 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4715 && !OBJECT_P (SET_SRC (x))
4716 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4717 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4718 return &SET_SRC (x);
4719 #endif
4721 /* See if we can split SET_SRC as it stands. */
4722 split = find_split_point (&SET_SRC (x), insn, true);
4723 if (split && split != &SET_SRC (x))
4724 return split;
4726 /* See if we can split SET_DEST as it stands. */
4727 split = find_split_point (&SET_DEST (x), insn, false);
4728 if (split && split != &SET_DEST (x))
4729 return split;
4731 /* See if this is a bitfield assignment with everything constant. If
4732 so, this is an IOR of an AND, so split it into that. */
4733 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4734 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4735 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4736 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4737 && CONST_INT_P (SET_SRC (x))
4738 && ((INTVAL (XEXP (SET_DEST (x), 1))
4739 + INTVAL (XEXP (SET_DEST (x), 2)))
4740 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4741 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4743 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4744 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4745 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4746 rtx dest = XEXP (SET_DEST (x), 0);
4747 enum machine_mode mode = GET_MODE (dest);
4748 unsigned HOST_WIDE_INT mask
4749 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4750 rtx or_mask;
4752 if (BITS_BIG_ENDIAN)
4753 pos = GET_MODE_PRECISION (mode) - len - pos;
4755 or_mask = gen_int_mode (src << pos, mode);
4756 if (src == mask)
4757 SUBST (SET_SRC (x),
4758 simplify_gen_binary (IOR, mode, dest, or_mask));
4759 else
4761 rtx negmask = gen_int_mode (~(mask << pos), mode);
4762 SUBST (SET_SRC (x),
4763 simplify_gen_binary (IOR, mode,
4764 simplify_gen_binary (AND, mode,
4765 dest, negmask),
4766 or_mask));
4769 SUBST (SET_DEST (x), dest);
4771 split = find_split_point (&SET_SRC (x), insn, true);
4772 if (split && split != &SET_SRC (x))
4773 return split;
4776 /* Otherwise, see if this is an operation that we can split into two.
4777 If so, try to split that. */
4778 code = GET_CODE (SET_SRC (x));
4780 switch (code)
4782 case AND:
4783 /* If we are AND'ing with a large constant that is only a single
4784 bit and the result is only being used in a context where we
4785 need to know if it is zero or nonzero, replace it with a bit
4786 extraction. This will avoid the large constant, which might
4787 have taken more than one insn to make. If the constant were
4788 not a valid argument to the AND but took only one insn to make,
4789 this is no worse, but if it took more than one insn, it will
4790 be better. */
4792 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4793 && REG_P (XEXP (SET_SRC (x), 0))
4794 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4795 && REG_P (SET_DEST (x))
4796 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4797 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4798 && XEXP (*split, 0) == SET_DEST (x)
4799 && XEXP (*split, 1) == const0_rtx)
4801 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4802 XEXP (SET_SRC (x), 0),
4803 pos, NULL_RTX, 1, 1, 0, 0);
4804 if (extraction != 0)
4806 SUBST (SET_SRC (x), extraction);
4807 return find_split_point (loc, insn, false);
4810 break;
4812 case NE:
4813 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4814 is known to be on, this can be converted into a NEG of a shift. */
4815 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4816 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4817 && 1 <= (pos = exact_log2
4818 (nonzero_bits (XEXP (SET_SRC (x), 0),
4819 GET_MODE (XEXP (SET_SRC (x), 0))))))
4821 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4823 SUBST (SET_SRC (x),
4824 gen_rtx_NEG (mode,
4825 gen_rtx_LSHIFTRT (mode,
4826 XEXP (SET_SRC (x), 0),
4827 GEN_INT (pos))));
4829 split = find_split_point (&SET_SRC (x), insn, true);
4830 if (split && split != &SET_SRC (x))
4831 return split;
4833 break;
4835 case SIGN_EXTEND:
4836 inner = XEXP (SET_SRC (x), 0);
4838 /* We can't optimize if either mode is a partial integer
4839 mode as we don't know how many bits are significant
4840 in those modes. */
4841 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4842 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4843 break;
4845 pos = 0;
4846 len = GET_MODE_PRECISION (GET_MODE (inner));
4847 unsignedp = 0;
4848 break;
4850 case SIGN_EXTRACT:
4851 case ZERO_EXTRACT:
4852 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4853 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4855 inner = XEXP (SET_SRC (x), 0);
4856 len = INTVAL (XEXP (SET_SRC (x), 1));
4857 pos = INTVAL (XEXP (SET_SRC (x), 2));
4859 if (BITS_BIG_ENDIAN)
4860 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4861 unsignedp = (code == ZERO_EXTRACT);
4863 break;
4865 default:
4866 break;
4869 if (len && pos >= 0
4870 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4872 enum machine_mode mode = GET_MODE (SET_SRC (x));
4874 /* For unsigned, we have a choice of a shift followed by an
4875 AND or two shifts. Use two shifts for field sizes where the
4876 constant might be too large. We assume here that we can
4877 always at least get 8-bit constants in an AND insn, which is
4878 true for every current RISC. */
4880 if (unsignedp && len <= 8)
4882 SUBST (SET_SRC (x),
4883 gen_rtx_AND (mode,
4884 gen_rtx_LSHIFTRT
4885 (mode, gen_lowpart (mode, inner),
4886 GEN_INT (pos)),
4887 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4888 - 1)));
4890 split = find_split_point (&SET_SRC (x), insn, true);
4891 if (split && split != &SET_SRC (x))
4892 return split;
4894 else
4896 SUBST (SET_SRC (x),
4897 gen_rtx_fmt_ee
4898 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4899 gen_rtx_ASHIFT (mode,
4900 gen_lowpart (mode, inner),
4901 GEN_INT (GET_MODE_PRECISION (mode)
4902 - len - pos)),
4903 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4905 split = find_split_point (&SET_SRC (x), insn, true);
4906 if (split && split != &SET_SRC (x))
4907 return split;
4911 /* See if this is a simple operation with a constant as the second
4912 operand. It might be that this constant is out of range and hence
4913 could be used as a split point. */
4914 if (BINARY_P (SET_SRC (x))
4915 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4916 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4917 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4918 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4919 return &XEXP (SET_SRC (x), 1);
4921 /* Finally, see if this is a simple operation with its first operand
4922 not in a register. The operation might require this operand in a
4923 register, so return it as a split point. We can always do this
4924 because if the first operand were another operation, we would have
4925 already found it as a split point. */
4926 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4927 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4928 return &XEXP (SET_SRC (x), 0);
4930 return 0;
4932 case AND:
4933 case IOR:
4934 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4935 it is better to write this as (not (ior A B)) so we can split it.
4936 Similarly for IOR. */
4937 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4939 SUBST (*loc,
4940 gen_rtx_NOT (GET_MODE (x),
4941 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4942 GET_MODE (x),
4943 XEXP (XEXP (x, 0), 0),
4944 XEXP (XEXP (x, 1), 0))));
4945 return find_split_point (loc, insn, set_src);
4948 /* Many RISC machines have a large set of logical insns. If the
4949 second operand is a NOT, put it first so we will try to split the
4950 other operand first. */
4951 if (GET_CODE (XEXP (x, 1)) == NOT)
4953 rtx tem = XEXP (x, 0);
4954 SUBST (XEXP (x, 0), XEXP (x, 1));
4955 SUBST (XEXP (x, 1), tem);
4957 break;
4959 case PLUS:
4960 case MINUS:
4961 /* Canonicalization can produce (minus A (mult B C)), where C is a
4962 constant. It may be better to try splitting (plus (mult B -C) A)
4963 instead if this isn't a multiply by a power of two. */
4964 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4965 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4966 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4968 enum machine_mode mode = GET_MODE (x);
4969 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4970 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4971 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4972 XEXP (XEXP (x, 1), 0),
4973 GEN_INT (other_int)),
4974 XEXP (x, 0)));
4975 return find_split_point (loc, insn, set_src);
4978 /* Split at a multiply-accumulate instruction. However if this is
4979 the SET_SRC, we likely do not have such an instruction and it's
4980 worthless to try this split. */
4981 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4982 return loc;
4984 default:
4985 break;
4988 /* Otherwise, select our actions depending on our rtx class. */
4989 switch (GET_RTX_CLASS (code))
4991 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4992 case RTX_TERNARY:
4993 split = find_split_point (&XEXP (x, 2), insn, false);
4994 if (split)
4995 return split;
4996 /* ... fall through ... */
4997 case RTX_BIN_ARITH:
4998 case RTX_COMM_ARITH:
4999 case RTX_COMPARE:
5000 case RTX_COMM_COMPARE:
5001 split = find_split_point (&XEXP (x, 1), insn, false);
5002 if (split)
5003 return split;
5004 /* ... fall through ... */
5005 case RTX_UNARY:
5006 /* Some machines have (and (shift ...) ...) insns. If X is not
5007 an AND, but XEXP (X, 0) is, use it as our split point. */
5008 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5009 return &XEXP (x, 0);
5011 split = find_split_point (&XEXP (x, 0), insn, false);
5012 if (split)
5013 return split;
5014 return loc;
5016 default:
5017 /* Otherwise, we don't have a split point. */
5018 return 0;
5022 /* Throughout X, replace FROM with TO, and return the result.
5023 The result is TO if X is FROM;
5024 otherwise the result is X, but its contents may have been modified.
5025 If they were modified, a record was made in undobuf so that
5026 undo_all will (among other things) return X to its original state.
5028 If the number of changes necessary is too much to record to undo,
5029 the excess changes are not made, so the result is invalid.
5030 The changes already made can still be undone.
5031 undobuf.num_undo is incremented for such changes, so by testing that
5032 the caller can tell whether the result is valid.
5034 `n_occurrences' is incremented each time FROM is replaced.
5036 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5038 IN_COND is nonzero if we are at the top level of a condition.
5040 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5041 by copying if `n_occurrences' is nonzero. */
5043 static rtx
5044 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5046 enum rtx_code code = GET_CODE (x);
5047 enum machine_mode op0_mode = VOIDmode;
5048 const char *fmt;
5049 int len, i;
5050 rtx new_rtx;
5052 /* Two expressions are equal if they are identical copies of a shared
5053 RTX or if they are both registers with the same register number
5054 and mode. */
5056 #define COMBINE_RTX_EQUAL_P(X,Y) \
5057 ((X) == (Y) \
5058 || (REG_P (X) && REG_P (Y) \
5059 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5061 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5063 n_occurrences++;
5064 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5067 /* If X and FROM are the same register but different modes, they
5068 will not have been seen as equal above. However, the log links code
5069 will make a LOG_LINKS entry for that case. If we do nothing, we
5070 will try to rerecognize our original insn and, when it succeeds,
5071 we will delete the feeding insn, which is incorrect.
5073 So force this insn not to match in this (rare) case. */
5074 if (! in_dest && code == REG && REG_P (from)
5075 && reg_overlap_mentioned_p (x, from))
5076 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5078 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5079 of which may contain things that can be combined. */
5080 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5081 return x;
5083 /* It is possible to have a subexpression appear twice in the insn.
5084 Suppose that FROM is a register that appears within TO.
5085 Then, after that subexpression has been scanned once by `subst',
5086 the second time it is scanned, TO may be found. If we were
5087 to scan TO here, we would find FROM within it and create a
5088 self-referent rtl structure which is completely wrong. */
5089 if (COMBINE_RTX_EQUAL_P (x, to))
5090 return to;
5092 /* Parallel asm_operands need special attention because all of the
5093 inputs are shared across the arms. Furthermore, unsharing the
5094 rtl results in recognition failures. Failure to handle this case
5095 specially can result in circular rtl.
5097 Solve this by doing a normal pass across the first entry of the
5098 parallel, and only processing the SET_DESTs of the subsequent
5099 entries. Ug. */
5101 if (code == PARALLEL
5102 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5103 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5105 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5107 /* If this substitution failed, this whole thing fails. */
5108 if (GET_CODE (new_rtx) == CLOBBER
5109 && XEXP (new_rtx, 0) == const0_rtx)
5110 return new_rtx;
5112 SUBST (XVECEXP (x, 0, 0), new_rtx);
5114 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5116 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5118 if (!REG_P (dest)
5119 && GET_CODE (dest) != CC0
5120 && GET_CODE (dest) != PC)
5122 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5124 /* If this substitution failed, this whole thing fails. */
5125 if (GET_CODE (new_rtx) == CLOBBER
5126 && XEXP (new_rtx, 0) == const0_rtx)
5127 return new_rtx;
5129 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5133 else
5135 len = GET_RTX_LENGTH (code);
5136 fmt = GET_RTX_FORMAT (code);
5138 /* We don't need to process a SET_DEST that is a register, CC0,
5139 or PC, so set up to skip this common case. All other cases
5140 where we want to suppress replacing something inside a
5141 SET_SRC are handled via the IN_DEST operand. */
5142 if (code == SET
5143 && (REG_P (SET_DEST (x))
5144 || GET_CODE (SET_DEST (x)) == CC0
5145 || GET_CODE (SET_DEST (x)) == PC))
5146 fmt = "ie";
5148 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5149 constant. */
5150 if (fmt[0] == 'e')
5151 op0_mode = GET_MODE (XEXP (x, 0));
5153 for (i = 0; i < len; i++)
5155 if (fmt[i] == 'E')
5157 int j;
5158 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5160 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5162 new_rtx = (unique_copy && n_occurrences
5163 ? copy_rtx (to) : to);
5164 n_occurrences++;
5166 else
5168 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5169 unique_copy);
5171 /* If this substitution failed, this whole thing
5172 fails. */
5173 if (GET_CODE (new_rtx) == CLOBBER
5174 && XEXP (new_rtx, 0) == const0_rtx)
5175 return new_rtx;
5178 SUBST (XVECEXP (x, i, j), new_rtx);
5181 else if (fmt[i] == 'e')
5183 /* If this is a register being set, ignore it. */
5184 new_rtx = XEXP (x, i);
5185 if (in_dest
5186 && i == 0
5187 && (((code == SUBREG || code == ZERO_EXTRACT)
5188 && REG_P (new_rtx))
5189 || code == STRICT_LOW_PART))
5192 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5194 /* In general, don't install a subreg involving two
5195 modes not tieable. It can worsen register
5196 allocation, and can even make invalid reload
5197 insns, since the reg inside may need to be copied
5198 from in the outside mode, and that may be invalid
5199 if it is an fp reg copied in integer mode.
5201 We allow two exceptions to this: It is valid if
5202 it is inside another SUBREG and the mode of that
5203 SUBREG and the mode of the inside of TO is
5204 tieable and it is valid if X is a SET that copies
5205 FROM to CC0. */
5207 if (GET_CODE (to) == SUBREG
5208 && ! MODES_TIEABLE_P (GET_MODE (to),
5209 GET_MODE (SUBREG_REG (to)))
5210 && ! (code == SUBREG
5211 && MODES_TIEABLE_P (GET_MODE (x),
5212 GET_MODE (SUBREG_REG (to))))
5213 #ifdef HAVE_cc0
5214 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5215 #endif
5217 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5219 #ifdef CANNOT_CHANGE_MODE_CLASS
5220 if (code == SUBREG
5221 && REG_P (to)
5222 && REGNO (to) < FIRST_PSEUDO_REGISTER
5223 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5224 GET_MODE (to),
5225 GET_MODE (x)))
5226 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5227 #endif
5229 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5230 n_occurrences++;
5232 else
5233 /* If we are in a SET_DEST, suppress most cases unless we
5234 have gone inside a MEM, in which case we want to
5235 simplify the address. We assume here that things that
5236 are actually part of the destination have their inner
5237 parts in the first expression. This is true for SUBREG,
5238 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5239 things aside from REG and MEM that should appear in a
5240 SET_DEST. */
5241 new_rtx = subst (XEXP (x, i), from, to,
5242 (((in_dest
5243 && (code == SUBREG || code == STRICT_LOW_PART
5244 || code == ZERO_EXTRACT))
5245 || code == SET)
5246 && i == 0),
5247 code == IF_THEN_ELSE && i == 0,
5248 unique_copy);
5250 /* If we found that we will have to reject this combination,
5251 indicate that by returning the CLOBBER ourselves, rather than
5252 an expression containing it. This will speed things up as
5253 well as prevent accidents where two CLOBBERs are considered
5254 to be equal, thus producing an incorrect simplification. */
5256 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5257 return new_rtx;
5259 if (GET_CODE (x) == SUBREG
5260 && (CONST_INT_P (new_rtx)
5261 || GET_CODE (new_rtx) == CONST_DOUBLE))
5263 enum machine_mode mode = GET_MODE (x);
5265 x = simplify_subreg (GET_MODE (x), new_rtx,
5266 GET_MODE (SUBREG_REG (x)),
5267 SUBREG_BYTE (x));
5268 if (! x)
5269 x = gen_rtx_CLOBBER (mode, const0_rtx);
5271 else if (CONST_INT_P (new_rtx)
5272 && GET_CODE (x) == ZERO_EXTEND)
5274 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5275 new_rtx, GET_MODE (XEXP (x, 0)));
5276 gcc_assert (x);
5278 else
5279 SUBST (XEXP (x, i), new_rtx);
5284 /* Check if we are loading something from the constant pool via float
5285 extension; in this case we would undo compress_float_constant
5286 optimization and degenerate constant load to an immediate value. */
5287 if (GET_CODE (x) == FLOAT_EXTEND
5288 && MEM_P (XEXP (x, 0))
5289 && MEM_READONLY_P (XEXP (x, 0)))
5291 rtx tmp = avoid_constant_pool_reference (x);
5292 if (x != tmp)
5293 return x;
5296 /* Try to simplify X. If the simplification changed the code, it is likely
5297 that further simplification will help, so loop, but limit the number
5298 of repetitions that will be performed. */
5300 for (i = 0; i < 4; i++)
5302 /* If X is sufficiently simple, don't bother trying to do anything
5303 with it. */
5304 if (code != CONST_INT && code != REG && code != CLOBBER)
5305 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5307 if (GET_CODE (x) == code)
5308 break;
5310 code = GET_CODE (x);
5312 /* We no longer know the original mode of operand 0 since we
5313 have changed the form of X) */
5314 op0_mode = VOIDmode;
5317 return x;
5320 /* Simplify X, a piece of RTL. We just operate on the expression at the
5321 outer level; call `subst' to simplify recursively. Return the new
5322 expression.
5324 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5325 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5326 of a condition. */
5328 static rtx
5329 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5330 int in_cond)
5332 enum rtx_code code = GET_CODE (x);
5333 enum machine_mode mode = GET_MODE (x);
5334 rtx temp;
5335 int i;
5337 /* If this is a commutative operation, put a constant last and a complex
5338 expression first. We don't need to do this for comparisons here. */
5339 if (COMMUTATIVE_ARITH_P (x)
5340 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5342 temp = XEXP (x, 0);
5343 SUBST (XEXP (x, 0), XEXP (x, 1));
5344 SUBST (XEXP (x, 1), temp);
5347 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5348 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5349 things. Check for cases where both arms are testing the same
5350 condition.
5352 Don't do anything if all operands are very simple. */
5354 if ((BINARY_P (x)
5355 && ((!OBJECT_P (XEXP (x, 0))
5356 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5357 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5358 || (!OBJECT_P (XEXP (x, 1))
5359 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5360 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5361 || (UNARY_P (x)
5362 && (!OBJECT_P (XEXP (x, 0))
5363 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5364 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5366 rtx cond, true_rtx, false_rtx;
5368 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5369 if (cond != 0
5370 /* If everything is a comparison, what we have is highly unlikely
5371 to be simpler, so don't use it. */
5372 && ! (COMPARISON_P (x)
5373 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5375 rtx cop1 = const0_rtx;
5376 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5378 if (cond_code == NE && COMPARISON_P (cond))
5379 return x;
5381 /* Simplify the alternative arms; this may collapse the true and
5382 false arms to store-flag values. Be careful to use copy_rtx
5383 here since true_rtx or false_rtx might share RTL with x as a
5384 result of the if_then_else_cond call above. */
5385 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5386 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5388 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5389 is unlikely to be simpler. */
5390 if (general_operand (true_rtx, VOIDmode)
5391 && general_operand (false_rtx, VOIDmode))
5393 enum rtx_code reversed;
5395 /* Restarting if we generate a store-flag expression will cause
5396 us to loop. Just drop through in this case. */
5398 /* If the result values are STORE_FLAG_VALUE and zero, we can
5399 just make the comparison operation. */
5400 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5401 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5402 cond, cop1);
5403 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5404 && ((reversed = reversed_comparison_code_parts
5405 (cond_code, cond, cop1, NULL))
5406 != UNKNOWN))
5407 x = simplify_gen_relational (reversed, mode, VOIDmode,
5408 cond, cop1);
5410 /* Likewise, we can make the negate of a comparison operation
5411 if the result values are - STORE_FLAG_VALUE and zero. */
5412 else if (CONST_INT_P (true_rtx)
5413 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5414 && false_rtx == const0_rtx)
5415 x = simplify_gen_unary (NEG, mode,
5416 simplify_gen_relational (cond_code,
5417 mode, VOIDmode,
5418 cond, cop1),
5419 mode);
5420 else if (CONST_INT_P (false_rtx)
5421 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5422 && true_rtx == const0_rtx
5423 && ((reversed = reversed_comparison_code_parts
5424 (cond_code, cond, cop1, NULL))
5425 != UNKNOWN))
5426 x = simplify_gen_unary (NEG, mode,
5427 simplify_gen_relational (reversed,
5428 mode, VOIDmode,
5429 cond, cop1),
5430 mode);
5431 else
5432 return gen_rtx_IF_THEN_ELSE (mode,
5433 simplify_gen_relational (cond_code,
5434 mode,
5435 VOIDmode,
5436 cond,
5437 cop1),
5438 true_rtx, false_rtx);
5440 code = GET_CODE (x);
5441 op0_mode = VOIDmode;
5446 /* Try to fold this expression in case we have constants that weren't
5447 present before. */
5448 temp = 0;
5449 switch (GET_RTX_CLASS (code))
5451 case RTX_UNARY:
5452 if (op0_mode == VOIDmode)
5453 op0_mode = GET_MODE (XEXP (x, 0));
5454 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5455 break;
5456 case RTX_COMPARE:
5457 case RTX_COMM_COMPARE:
5459 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5460 if (cmp_mode == VOIDmode)
5462 cmp_mode = GET_MODE (XEXP (x, 1));
5463 if (cmp_mode == VOIDmode)
5464 cmp_mode = op0_mode;
5466 temp = simplify_relational_operation (code, mode, cmp_mode,
5467 XEXP (x, 0), XEXP (x, 1));
5469 break;
5470 case RTX_COMM_ARITH:
5471 case RTX_BIN_ARITH:
5472 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5473 break;
5474 case RTX_BITFIELD_OPS:
5475 case RTX_TERNARY:
5476 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5477 XEXP (x, 1), XEXP (x, 2));
5478 break;
5479 default:
5480 break;
5483 if (temp)
5485 x = temp;
5486 code = GET_CODE (temp);
5487 op0_mode = VOIDmode;
5488 mode = GET_MODE (temp);
5491 /* First see if we can apply the inverse distributive law. */
5492 if (code == PLUS || code == MINUS
5493 || code == AND || code == IOR || code == XOR)
5495 x = apply_distributive_law (x);
5496 code = GET_CODE (x);
5497 op0_mode = VOIDmode;
5500 /* If CODE is an associative operation not otherwise handled, see if we
5501 can associate some operands. This can win if they are constants or
5502 if they are logically related (i.e. (a & b) & a). */
5503 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5504 || code == AND || code == IOR || code == XOR
5505 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5506 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5507 || (flag_associative_math && FLOAT_MODE_P (mode))))
5509 if (GET_CODE (XEXP (x, 0)) == code)
5511 rtx other = XEXP (XEXP (x, 0), 0);
5512 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5513 rtx inner_op1 = XEXP (x, 1);
5514 rtx inner;
5516 /* Make sure we pass the constant operand if any as the second
5517 one if this is a commutative operation. */
5518 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5520 rtx tem = inner_op0;
5521 inner_op0 = inner_op1;
5522 inner_op1 = tem;
5524 inner = simplify_binary_operation (code == MINUS ? PLUS
5525 : code == DIV ? MULT
5526 : code,
5527 mode, inner_op0, inner_op1);
5529 /* For commutative operations, try the other pair if that one
5530 didn't simplify. */
5531 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5533 other = XEXP (XEXP (x, 0), 1);
5534 inner = simplify_binary_operation (code, mode,
5535 XEXP (XEXP (x, 0), 0),
5536 XEXP (x, 1));
5539 if (inner)
5540 return simplify_gen_binary (code, mode, other, inner);
5544 /* A little bit of algebraic simplification here. */
5545 switch (code)
5547 case MEM:
5548 /* Ensure that our address has any ASHIFTs converted to MULT in case
5549 address-recognizing predicates are called later. */
5550 temp = make_compound_operation (XEXP (x, 0), MEM);
5551 SUBST (XEXP (x, 0), temp);
5552 break;
5554 case SUBREG:
5555 if (op0_mode == VOIDmode)
5556 op0_mode = GET_MODE (SUBREG_REG (x));
5558 /* See if this can be moved to simplify_subreg. */
5559 if (CONSTANT_P (SUBREG_REG (x))
5560 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5561 /* Don't call gen_lowpart if the inner mode
5562 is VOIDmode and we cannot simplify it, as SUBREG without
5563 inner mode is invalid. */
5564 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5565 || gen_lowpart_common (mode, SUBREG_REG (x))))
5566 return gen_lowpart (mode, SUBREG_REG (x));
5568 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5569 break;
5571 rtx temp;
5572 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5573 SUBREG_BYTE (x));
5574 if (temp)
5575 return temp;
5578 /* Don't change the mode of the MEM if that would change the meaning
5579 of the address. */
5580 if (MEM_P (SUBREG_REG (x))
5581 && (MEM_VOLATILE_P (SUBREG_REG (x))
5582 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5583 return gen_rtx_CLOBBER (mode, const0_rtx);
5585 /* Note that we cannot do any narrowing for non-constants since
5586 we might have been counting on using the fact that some bits were
5587 zero. We now do this in the SET. */
5589 break;
5591 case NEG:
5592 temp = expand_compound_operation (XEXP (x, 0));
5594 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5595 replaced by (lshiftrt X C). This will convert
5596 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5598 if (GET_CODE (temp) == ASHIFTRT
5599 && CONST_INT_P (XEXP (temp, 1))
5600 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5601 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5602 INTVAL (XEXP (temp, 1)));
5604 /* If X has only a single bit that might be nonzero, say, bit I, convert
5605 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5606 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5607 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5608 or a SUBREG of one since we'd be making the expression more
5609 complex if it was just a register. */
5611 if (!REG_P (temp)
5612 && ! (GET_CODE (temp) == SUBREG
5613 && REG_P (SUBREG_REG (temp)))
5614 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5616 rtx temp1 = simplify_shift_const
5617 (NULL_RTX, ASHIFTRT, mode,
5618 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5619 GET_MODE_PRECISION (mode) - 1 - i),
5620 GET_MODE_PRECISION (mode) - 1 - i);
5622 /* If all we did was surround TEMP with the two shifts, we
5623 haven't improved anything, so don't use it. Otherwise,
5624 we are better off with TEMP1. */
5625 if (GET_CODE (temp1) != ASHIFTRT
5626 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5627 || XEXP (XEXP (temp1, 0), 0) != temp)
5628 return temp1;
5630 break;
5632 case TRUNCATE:
5633 /* We can't handle truncation to a partial integer mode here
5634 because we don't know the real bitsize of the partial
5635 integer mode. */
5636 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5637 break;
5639 if (HWI_COMPUTABLE_MODE_P (mode))
5640 SUBST (XEXP (x, 0),
5641 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5642 GET_MODE_MASK (mode), 0));
5644 /* We can truncate a constant value and return it. */
5645 if (CONST_INT_P (XEXP (x, 0)))
5646 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5648 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5649 whose value is a comparison can be replaced with a subreg if
5650 STORE_FLAG_VALUE permits. */
5651 if (HWI_COMPUTABLE_MODE_P (mode)
5652 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5653 && (temp = get_last_value (XEXP (x, 0)))
5654 && COMPARISON_P (temp))
5655 return gen_lowpart (mode, XEXP (x, 0));
5656 break;
5658 case CONST:
5659 /* (const (const X)) can become (const X). Do it this way rather than
5660 returning the inner CONST since CONST can be shared with a
5661 REG_EQUAL note. */
5662 if (GET_CODE (XEXP (x, 0)) == CONST)
5663 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5664 break;
5666 #ifdef HAVE_lo_sum
5667 case LO_SUM:
5668 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5669 can add in an offset. find_split_point will split this address up
5670 again if it doesn't match. */
5671 if (GET_CODE (XEXP (x, 0)) == HIGH
5672 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5673 return XEXP (x, 1);
5674 break;
5675 #endif
5677 case PLUS:
5678 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5679 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5680 bit-field and can be replaced by either a sign_extend or a
5681 sign_extract. The `and' may be a zero_extend and the two
5682 <c>, -<c> constants may be reversed. */
5683 if (GET_CODE (XEXP (x, 0)) == XOR
5684 && CONST_INT_P (XEXP (x, 1))
5685 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5686 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5687 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5688 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5689 && HWI_COMPUTABLE_MODE_P (mode)
5690 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5691 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5692 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5693 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5694 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5695 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5696 == (unsigned int) i + 1))))
5697 return simplify_shift_const
5698 (NULL_RTX, ASHIFTRT, mode,
5699 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5700 XEXP (XEXP (XEXP (x, 0), 0), 0),
5701 GET_MODE_PRECISION (mode) - (i + 1)),
5702 GET_MODE_PRECISION (mode) - (i + 1));
5704 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5705 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5706 the bitsize of the mode - 1. This allows simplification of
5707 "a = (b & 8) == 0;" */
5708 if (XEXP (x, 1) == constm1_rtx
5709 && !REG_P (XEXP (x, 0))
5710 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5711 && REG_P (SUBREG_REG (XEXP (x, 0))))
5712 && nonzero_bits (XEXP (x, 0), mode) == 1)
5713 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5714 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5715 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5716 GET_MODE_PRECISION (mode) - 1),
5717 GET_MODE_PRECISION (mode) - 1);
5719 /* If we are adding two things that have no bits in common, convert
5720 the addition into an IOR. This will often be further simplified,
5721 for example in cases like ((a & 1) + (a & 2)), which can
5722 become a & 3. */
5724 if (HWI_COMPUTABLE_MODE_P (mode)
5725 && (nonzero_bits (XEXP (x, 0), mode)
5726 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5728 /* Try to simplify the expression further. */
5729 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5730 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5732 /* If we could, great. If not, do not go ahead with the IOR
5733 replacement, since PLUS appears in many special purpose
5734 address arithmetic instructions. */
5735 if (GET_CODE (temp) != CLOBBER
5736 && (GET_CODE (temp) != IOR
5737 || ((XEXP (temp, 0) != XEXP (x, 0)
5738 || XEXP (temp, 1) != XEXP (x, 1))
5739 && (XEXP (temp, 0) != XEXP (x, 1)
5740 || XEXP (temp, 1) != XEXP (x, 0)))))
5741 return temp;
5743 break;
5745 case MINUS:
5746 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5747 (and <foo> (const_int pow2-1)) */
5748 if (GET_CODE (XEXP (x, 1)) == AND
5749 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5750 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5751 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5752 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5753 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5754 break;
5756 case MULT:
5757 /* If we have (mult (plus A B) C), apply the distributive law and then
5758 the inverse distributive law to see if things simplify. This
5759 occurs mostly in addresses, often when unrolling loops. */
5761 if (GET_CODE (XEXP (x, 0)) == PLUS)
5763 rtx result = distribute_and_simplify_rtx (x, 0);
5764 if (result)
5765 return result;
5768 /* Try simplify a*(b/c) as (a*b)/c. */
5769 if (FLOAT_MODE_P (mode) && flag_associative_math
5770 && GET_CODE (XEXP (x, 0)) == DIV)
5772 rtx tem = simplify_binary_operation (MULT, mode,
5773 XEXP (XEXP (x, 0), 0),
5774 XEXP (x, 1));
5775 if (tem)
5776 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5778 break;
5780 case UDIV:
5781 /* If this is a divide by a power of two, treat it as a shift if
5782 its first operand is a shift. */
5783 if (CONST_INT_P (XEXP (x, 1))
5784 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5785 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5786 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5787 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5788 || GET_CODE (XEXP (x, 0)) == ROTATE
5789 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5790 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5791 break;
5793 case EQ: case NE:
5794 case GT: case GTU: case GE: case GEU:
5795 case LT: case LTU: case LE: case LEU:
5796 case UNEQ: case LTGT:
5797 case UNGT: case UNGE:
5798 case UNLT: case UNLE:
5799 case UNORDERED: case ORDERED:
5800 /* If the first operand is a condition code, we can't do anything
5801 with it. */
5802 if (GET_CODE (XEXP (x, 0)) == COMPARE
5803 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5804 && ! CC0_P (XEXP (x, 0))))
5806 rtx op0 = XEXP (x, 0);
5807 rtx op1 = XEXP (x, 1);
5808 enum rtx_code new_code;
5810 if (GET_CODE (op0) == COMPARE)
5811 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5813 /* Simplify our comparison, if possible. */
5814 new_code = simplify_comparison (code, &op0, &op1);
5816 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5817 if only the low-order bit is possibly nonzero in X (such as when
5818 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5819 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5820 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5821 (plus X 1).
5823 Remove any ZERO_EXTRACT we made when thinking this was a
5824 comparison. It may now be simpler to use, e.g., an AND. If a
5825 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5826 the call to make_compound_operation in the SET case.
5828 Don't apply these optimizations if the caller would
5829 prefer a comparison rather than a value.
5830 E.g., for the condition in an IF_THEN_ELSE most targets need
5831 an explicit comparison. */
5833 if (in_cond)
5836 else if (STORE_FLAG_VALUE == 1
5837 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5838 && op1 == const0_rtx
5839 && mode == GET_MODE (op0)
5840 && nonzero_bits (op0, mode) == 1)
5841 return gen_lowpart (mode,
5842 expand_compound_operation (op0));
5844 else if (STORE_FLAG_VALUE == 1
5845 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5846 && op1 == const0_rtx
5847 && mode == GET_MODE (op0)
5848 && (num_sign_bit_copies (op0, mode)
5849 == GET_MODE_PRECISION (mode)))
5851 op0 = expand_compound_operation (op0);
5852 return simplify_gen_unary (NEG, mode,
5853 gen_lowpart (mode, op0),
5854 mode);
5857 else if (STORE_FLAG_VALUE == 1
5858 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5859 && op1 == const0_rtx
5860 && mode == GET_MODE (op0)
5861 && nonzero_bits (op0, mode) == 1)
5863 op0 = expand_compound_operation (op0);
5864 return simplify_gen_binary (XOR, mode,
5865 gen_lowpart (mode, op0),
5866 const1_rtx);
5869 else if (STORE_FLAG_VALUE == 1
5870 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5871 && op1 == const0_rtx
5872 && mode == GET_MODE (op0)
5873 && (num_sign_bit_copies (op0, mode)
5874 == GET_MODE_PRECISION (mode)))
5876 op0 = expand_compound_operation (op0);
5877 return plus_constant (gen_lowpart (mode, op0), 1);
5880 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5881 those above. */
5882 if (in_cond)
5885 else if (STORE_FLAG_VALUE == -1
5886 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5887 && op1 == const0_rtx
5888 && (num_sign_bit_copies (op0, mode)
5889 == GET_MODE_PRECISION (mode)))
5890 return gen_lowpart (mode,
5891 expand_compound_operation (op0));
5893 else if (STORE_FLAG_VALUE == -1
5894 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5895 && op1 == const0_rtx
5896 && mode == GET_MODE (op0)
5897 && nonzero_bits (op0, mode) == 1)
5899 op0 = expand_compound_operation (op0);
5900 return simplify_gen_unary (NEG, mode,
5901 gen_lowpart (mode, op0),
5902 mode);
5905 else if (STORE_FLAG_VALUE == -1
5906 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5907 && op1 == const0_rtx
5908 && mode == GET_MODE (op0)
5909 && (num_sign_bit_copies (op0, mode)
5910 == GET_MODE_PRECISION (mode)))
5912 op0 = expand_compound_operation (op0);
5913 return simplify_gen_unary (NOT, mode,
5914 gen_lowpart (mode, op0),
5915 mode);
5918 /* If X is 0/1, (eq X 0) is X-1. */
5919 else if (STORE_FLAG_VALUE == -1
5920 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5921 && op1 == const0_rtx
5922 && mode == GET_MODE (op0)
5923 && nonzero_bits (op0, mode) == 1)
5925 op0 = expand_compound_operation (op0);
5926 return plus_constant (gen_lowpart (mode, op0), -1);
5929 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5930 one bit that might be nonzero, we can convert (ne x 0) to
5931 (ashift x c) where C puts the bit in the sign bit. Remove any
5932 AND with STORE_FLAG_VALUE when we are done, since we are only
5933 going to test the sign bit. */
5934 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5935 && HWI_COMPUTABLE_MODE_P (mode)
5936 && val_signbit_p (mode, STORE_FLAG_VALUE)
5937 && op1 == const0_rtx
5938 && mode == GET_MODE (op0)
5939 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5941 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5942 expand_compound_operation (op0),
5943 GET_MODE_PRECISION (mode) - 1 - i);
5944 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5945 return XEXP (x, 0);
5946 else
5947 return x;
5950 /* If the code changed, return a whole new comparison. */
5951 if (new_code != code)
5952 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5954 /* Otherwise, keep this operation, but maybe change its operands.
5955 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5956 SUBST (XEXP (x, 0), op0);
5957 SUBST (XEXP (x, 1), op1);
5959 break;
5961 case IF_THEN_ELSE:
5962 return simplify_if_then_else (x);
5964 case ZERO_EXTRACT:
5965 case SIGN_EXTRACT:
5966 case ZERO_EXTEND:
5967 case SIGN_EXTEND:
5968 /* If we are processing SET_DEST, we are done. */
5969 if (in_dest)
5970 return x;
5972 return expand_compound_operation (x);
5974 case SET:
5975 return simplify_set (x);
5977 case AND:
5978 case IOR:
5979 return simplify_logical (x);
5981 case ASHIFT:
5982 case LSHIFTRT:
5983 case ASHIFTRT:
5984 case ROTATE:
5985 case ROTATERT:
5986 /* If this is a shift by a constant amount, simplify it. */
5987 if (CONST_INT_P (XEXP (x, 1)))
5988 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5989 INTVAL (XEXP (x, 1)));
5991 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5992 SUBST (XEXP (x, 1),
5993 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5994 ((unsigned HOST_WIDE_INT) 1
5995 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5996 - 1,
5997 0));
5998 break;
6000 default:
6001 break;
6004 return x;
6007 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6009 static rtx
6010 simplify_if_then_else (rtx x)
6012 enum machine_mode mode = GET_MODE (x);
6013 rtx cond = XEXP (x, 0);
6014 rtx true_rtx = XEXP (x, 1);
6015 rtx false_rtx = XEXP (x, 2);
6016 enum rtx_code true_code = GET_CODE (cond);
6017 int comparison_p = COMPARISON_P (cond);
6018 rtx temp;
6019 int i;
6020 enum rtx_code false_code;
6021 rtx reversed;
6023 /* Simplify storing of the truth value. */
6024 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6025 return simplify_gen_relational (true_code, mode, VOIDmode,
6026 XEXP (cond, 0), XEXP (cond, 1));
6028 /* Also when the truth value has to be reversed. */
6029 if (comparison_p
6030 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6031 && (reversed = reversed_comparison (cond, mode)))
6032 return reversed;
6034 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6035 in it is being compared against certain values. Get the true and false
6036 comparisons and see if that says anything about the value of each arm. */
6038 if (comparison_p
6039 && ((false_code = reversed_comparison_code (cond, NULL))
6040 != UNKNOWN)
6041 && REG_P (XEXP (cond, 0)))
6043 HOST_WIDE_INT nzb;
6044 rtx from = XEXP (cond, 0);
6045 rtx true_val = XEXP (cond, 1);
6046 rtx false_val = true_val;
6047 int swapped = 0;
6049 /* If FALSE_CODE is EQ, swap the codes and arms. */
6051 if (false_code == EQ)
6053 swapped = 1, true_code = EQ, false_code = NE;
6054 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6057 /* If we are comparing against zero and the expression being tested has
6058 only a single bit that might be nonzero, that is its value when it is
6059 not equal to zero. Similarly if it is known to be -1 or 0. */
6061 if (true_code == EQ && true_val == const0_rtx
6062 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6064 false_code = EQ;
6065 false_val = gen_int_mode (nzb, GET_MODE (from));
6067 else if (true_code == EQ && true_val == const0_rtx
6068 && (num_sign_bit_copies (from, GET_MODE (from))
6069 == GET_MODE_PRECISION (GET_MODE (from))))
6071 false_code = EQ;
6072 false_val = constm1_rtx;
6075 /* Now simplify an arm if we know the value of the register in the
6076 branch and it is used in the arm. Be careful due to the potential
6077 of locally-shared RTL. */
6079 if (reg_mentioned_p (from, true_rtx))
6080 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6081 from, true_val),
6082 pc_rtx, pc_rtx, 0, 0, 0);
6083 if (reg_mentioned_p (from, false_rtx))
6084 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6085 from, false_val),
6086 pc_rtx, pc_rtx, 0, 0, 0);
6088 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6089 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6091 true_rtx = XEXP (x, 1);
6092 false_rtx = XEXP (x, 2);
6093 true_code = GET_CODE (cond);
6096 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6097 reversed, do so to avoid needing two sets of patterns for
6098 subtract-and-branch insns. Similarly if we have a constant in the true
6099 arm, the false arm is the same as the first operand of the comparison, or
6100 the false arm is more complicated than the true arm. */
6102 if (comparison_p
6103 && reversed_comparison_code (cond, NULL) != UNKNOWN
6104 && (true_rtx == pc_rtx
6105 || (CONSTANT_P (true_rtx)
6106 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6107 || true_rtx == const0_rtx
6108 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6109 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6110 && !OBJECT_P (false_rtx))
6111 || reg_mentioned_p (true_rtx, false_rtx)
6112 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6114 true_code = reversed_comparison_code (cond, NULL);
6115 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6116 SUBST (XEXP (x, 1), false_rtx);
6117 SUBST (XEXP (x, 2), true_rtx);
6119 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6120 cond = XEXP (x, 0);
6122 /* It is possible that the conditional has been simplified out. */
6123 true_code = GET_CODE (cond);
6124 comparison_p = COMPARISON_P (cond);
6127 /* If the two arms are identical, we don't need the comparison. */
6129 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6130 return true_rtx;
6132 /* Convert a == b ? b : a to "a". */
6133 if (true_code == EQ && ! side_effects_p (cond)
6134 && !HONOR_NANS (mode)
6135 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6136 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6137 return false_rtx;
6138 else if (true_code == NE && ! side_effects_p (cond)
6139 && !HONOR_NANS (mode)
6140 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6141 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6142 return true_rtx;
6144 /* Look for cases where we have (abs x) or (neg (abs X)). */
6146 if (GET_MODE_CLASS (mode) == MODE_INT
6147 && comparison_p
6148 && XEXP (cond, 1) == const0_rtx
6149 && GET_CODE (false_rtx) == NEG
6150 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6151 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6152 && ! side_effects_p (true_rtx))
6153 switch (true_code)
6155 case GT:
6156 case GE:
6157 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6158 case LT:
6159 case LE:
6160 return
6161 simplify_gen_unary (NEG, mode,
6162 simplify_gen_unary (ABS, mode, true_rtx, mode),
6163 mode);
6164 default:
6165 break;
6168 /* Look for MIN or MAX. */
6170 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6171 && comparison_p
6172 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6173 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6174 && ! side_effects_p (cond))
6175 switch (true_code)
6177 case GE:
6178 case GT:
6179 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6180 case LE:
6181 case LT:
6182 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6183 case GEU:
6184 case GTU:
6185 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6186 case LEU:
6187 case LTU:
6188 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6189 default:
6190 break;
6193 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6194 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6195 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6196 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6197 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6198 neither 1 or -1, but it isn't worth checking for. */
6200 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6201 && comparison_p
6202 && GET_MODE_CLASS (mode) == MODE_INT
6203 && ! side_effects_p (x))
6205 rtx t = make_compound_operation (true_rtx, SET);
6206 rtx f = make_compound_operation (false_rtx, SET);
6207 rtx cond_op0 = XEXP (cond, 0);
6208 rtx cond_op1 = XEXP (cond, 1);
6209 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6210 enum machine_mode m = mode;
6211 rtx z = 0, c1 = NULL_RTX;
6213 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6214 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6215 || GET_CODE (t) == ASHIFT
6216 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6217 && rtx_equal_p (XEXP (t, 0), f))
6218 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6220 /* If an identity-zero op is commutative, check whether there
6221 would be a match if we swapped the operands. */
6222 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6223 || GET_CODE (t) == XOR)
6224 && rtx_equal_p (XEXP (t, 1), f))
6225 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6226 else if (GET_CODE (t) == SIGN_EXTEND
6227 && (GET_CODE (XEXP (t, 0)) == PLUS
6228 || GET_CODE (XEXP (t, 0)) == MINUS
6229 || GET_CODE (XEXP (t, 0)) == IOR
6230 || GET_CODE (XEXP (t, 0)) == XOR
6231 || GET_CODE (XEXP (t, 0)) == ASHIFT
6232 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6233 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6234 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6235 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6236 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6237 && (num_sign_bit_copies (f, GET_MODE (f))
6238 > (unsigned int)
6239 (GET_MODE_PRECISION (mode)
6240 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6242 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6243 extend_op = SIGN_EXTEND;
6244 m = GET_MODE (XEXP (t, 0));
6246 else if (GET_CODE (t) == SIGN_EXTEND
6247 && (GET_CODE (XEXP (t, 0)) == PLUS
6248 || GET_CODE (XEXP (t, 0)) == IOR
6249 || GET_CODE (XEXP (t, 0)) == XOR)
6250 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6251 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6252 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6253 && (num_sign_bit_copies (f, GET_MODE (f))
6254 > (unsigned int)
6255 (GET_MODE_PRECISION (mode)
6256 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6258 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6259 extend_op = SIGN_EXTEND;
6260 m = GET_MODE (XEXP (t, 0));
6262 else if (GET_CODE (t) == ZERO_EXTEND
6263 && (GET_CODE (XEXP (t, 0)) == PLUS
6264 || GET_CODE (XEXP (t, 0)) == MINUS
6265 || GET_CODE (XEXP (t, 0)) == IOR
6266 || GET_CODE (XEXP (t, 0)) == XOR
6267 || GET_CODE (XEXP (t, 0)) == ASHIFT
6268 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6269 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6270 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6271 && HWI_COMPUTABLE_MODE_P (mode)
6272 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6273 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6274 && ((nonzero_bits (f, GET_MODE (f))
6275 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6276 == 0))
6278 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6279 extend_op = ZERO_EXTEND;
6280 m = GET_MODE (XEXP (t, 0));
6282 else if (GET_CODE (t) == ZERO_EXTEND
6283 && (GET_CODE (XEXP (t, 0)) == PLUS
6284 || GET_CODE (XEXP (t, 0)) == IOR
6285 || GET_CODE (XEXP (t, 0)) == XOR)
6286 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6287 && HWI_COMPUTABLE_MODE_P (mode)
6288 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6289 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6290 && ((nonzero_bits (f, GET_MODE (f))
6291 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6292 == 0))
6294 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6295 extend_op = ZERO_EXTEND;
6296 m = GET_MODE (XEXP (t, 0));
6299 if (z)
6301 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6302 cond_op0, cond_op1),
6303 pc_rtx, pc_rtx, 0, 0, 0);
6304 temp = simplify_gen_binary (MULT, m, temp,
6305 simplify_gen_binary (MULT, m, c1,
6306 const_true_rtx));
6307 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6308 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6310 if (extend_op != UNKNOWN)
6311 temp = simplify_gen_unary (extend_op, mode, temp, m);
6313 return temp;
6317 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6318 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6319 negation of a single bit, we can convert this operation to a shift. We
6320 can actually do this more generally, but it doesn't seem worth it. */
6322 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6323 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6324 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6325 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6326 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6327 == GET_MODE_PRECISION (mode))
6328 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6329 return
6330 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6331 gen_lowpart (mode, XEXP (cond, 0)), i);
6333 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6334 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6335 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6336 && GET_MODE (XEXP (cond, 0)) == mode
6337 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6338 == nonzero_bits (XEXP (cond, 0), mode)
6339 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6340 return XEXP (cond, 0);
6342 return x;
6345 /* Simplify X, a SET expression. Return the new expression. */
6347 static rtx
6348 simplify_set (rtx x)
6350 rtx src = SET_SRC (x);
6351 rtx dest = SET_DEST (x);
6352 enum machine_mode mode
6353 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6354 rtx other_insn;
6355 rtx *cc_use;
6357 /* (set (pc) (return)) gets written as (return). */
6358 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6359 return src;
6361 /* Now that we know for sure which bits of SRC we are using, see if we can
6362 simplify the expression for the object knowing that we only need the
6363 low-order bits. */
6365 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6367 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6368 SUBST (SET_SRC (x), src);
6371 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6372 the comparison result and try to simplify it unless we already have used
6373 undobuf.other_insn. */
6374 if ((GET_MODE_CLASS (mode) == MODE_CC
6375 || GET_CODE (src) == COMPARE
6376 || CC0_P (dest))
6377 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6378 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6379 && COMPARISON_P (*cc_use)
6380 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6382 enum rtx_code old_code = GET_CODE (*cc_use);
6383 enum rtx_code new_code;
6384 rtx op0, op1, tmp;
6385 int other_changed = 0;
6386 rtx inner_compare = NULL_RTX;
6387 enum machine_mode compare_mode = GET_MODE (dest);
6389 if (GET_CODE (src) == COMPARE)
6391 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6392 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6394 inner_compare = op0;
6395 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6398 else
6399 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6401 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6402 op0, op1);
6403 if (!tmp)
6404 new_code = old_code;
6405 else if (!CONSTANT_P (tmp))
6407 new_code = GET_CODE (tmp);
6408 op0 = XEXP (tmp, 0);
6409 op1 = XEXP (tmp, 1);
6411 else
6413 rtx pat = PATTERN (other_insn);
6414 undobuf.other_insn = other_insn;
6415 SUBST (*cc_use, tmp);
6417 /* Attempt to simplify CC user. */
6418 if (GET_CODE (pat) == SET)
6420 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6421 if (new_rtx != NULL_RTX)
6422 SUBST (SET_SRC (pat), new_rtx);
6425 /* Convert X into a no-op move. */
6426 SUBST (SET_DEST (x), pc_rtx);
6427 SUBST (SET_SRC (x), pc_rtx);
6428 return x;
6431 /* Simplify our comparison, if possible. */
6432 new_code = simplify_comparison (new_code, &op0, &op1);
6434 #ifdef SELECT_CC_MODE
6435 /* If this machine has CC modes other than CCmode, check to see if we
6436 need to use a different CC mode here. */
6437 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6438 compare_mode = GET_MODE (op0);
6439 else if (inner_compare
6440 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6441 && new_code == old_code
6442 && op0 == XEXP (inner_compare, 0)
6443 && op1 == XEXP (inner_compare, 1))
6444 compare_mode = GET_MODE (inner_compare);
6445 else
6446 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6448 #ifndef HAVE_cc0
6449 /* If the mode changed, we have to change SET_DEST, the mode in the
6450 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6451 a hard register, just build new versions with the proper mode. If it
6452 is a pseudo, we lose unless it is only time we set the pseudo, in
6453 which case we can safely change its mode. */
6454 if (compare_mode != GET_MODE (dest))
6456 if (can_change_dest_mode (dest, 0, compare_mode))
6458 unsigned int regno = REGNO (dest);
6459 rtx new_dest;
6461 if (regno < FIRST_PSEUDO_REGISTER)
6462 new_dest = gen_rtx_REG (compare_mode, regno);
6463 else
6465 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6466 new_dest = regno_reg_rtx[regno];
6469 SUBST (SET_DEST (x), new_dest);
6470 SUBST (XEXP (*cc_use, 0), new_dest);
6471 other_changed = 1;
6473 dest = new_dest;
6476 #endif /* cc0 */
6477 #endif /* SELECT_CC_MODE */
6479 /* If the code changed, we have to build a new comparison in
6480 undobuf.other_insn. */
6481 if (new_code != old_code)
6483 int other_changed_previously = other_changed;
6484 unsigned HOST_WIDE_INT mask;
6485 rtx old_cc_use = *cc_use;
6487 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6488 dest, const0_rtx));
6489 other_changed = 1;
6491 /* If the only change we made was to change an EQ into an NE or
6492 vice versa, OP0 has only one bit that might be nonzero, and OP1
6493 is zero, check if changing the user of the condition code will
6494 produce a valid insn. If it won't, we can keep the original code
6495 in that insn by surrounding our operation with an XOR. */
6497 if (((old_code == NE && new_code == EQ)
6498 || (old_code == EQ && new_code == NE))
6499 && ! other_changed_previously && op1 == const0_rtx
6500 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6501 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6503 rtx pat = PATTERN (other_insn), note = 0;
6505 if ((recog_for_combine (&pat, other_insn, &note) < 0
6506 && ! check_asm_operands (pat)))
6508 *cc_use = old_cc_use;
6509 other_changed = 0;
6511 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6512 op0, GEN_INT (mask));
6517 if (other_changed)
6518 undobuf.other_insn = other_insn;
6520 /* Otherwise, if we didn't previously have a COMPARE in the
6521 correct mode, we need one. */
6522 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6524 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6525 src = SET_SRC (x);
6527 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6529 SUBST (SET_SRC (x), op0);
6530 src = SET_SRC (x);
6532 /* Otherwise, update the COMPARE if needed. */
6533 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6535 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6536 src = SET_SRC (x);
6539 else
6541 /* Get SET_SRC in a form where we have placed back any
6542 compound expressions. Then do the checks below. */
6543 src = make_compound_operation (src, SET);
6544 SUBST (SET_SRC (x), src);
6547 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6548 and X being a REG or (subreg (reg)), we may be able to convert this to
6549 (set (subreg:m2 x) (op)).
6551 We can always do this if M1 is narrower than M2 because that means that
6552 we only care about the low bits of the result.
6554 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6555 perform a narrower operation than requested since the high-order bits will
6556 be undefined. On machine where it is defined, this transformation is safe
6557 as long as M1 and M2 have the same number of words. */
6559 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6560 && !OBJECT_P (SUBREG_REG (src))
6561 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6562 / UNITS_PER_WORD)
6563 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6564 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6565 #ifndef WORD_REGISTER_OPERATIONS
6566 && (GET_MODE_SIZE (GET_MODE (src))
6567 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6568 #endif
6569 #ifdef CANNOT_CHANGE_MODE_CLASS
6570 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6571 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6572 GET_MODE (SUBREG_REG (src)),
6573 GET_MODE (src)))
6574 #endif
6575 && (REG_P (dest)
6576 || (GET_CODE (dest) == SUBREG
6577 && REG_P (SUBREG_REG (dest)))))
6579 SUBST (SET_DEST (x),
6580 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6581 dest));
6582 SUBST (SET_SRC (x), SUBREG_REG (src));
6584 src = SET_SRC (x), dest = SET_DEST (x);
6587 #ifdef HAVE_cc0
6588 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6589 in SRC. */
6590 if (dest == cc0_rtx
6591 && GET_CODE (src) == SUBREG
6592 && subreg_lowpart_p (src)
6593 && (GET_MODE_PRECISION (GET_MODE (src))
6594 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6596 rtx inner = SUBREG_REG (src);
6597 enum machine_mode inner_mode = GET_MODE (inner);
6599 /* Here we make sure that we don't have a sign bit on. */
6600 if (val_signbit_known_clear_p (GET_MODE (src),
6601 nonzero_bits (inner, inner_mode)))
6603 SUBST (SET_SRC (x), inner);
6604 src = SET_SRC (x);
6607 #endif
6609 #ifdef LOAD_EXTEND_OP
6610 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6611 would require a paradoxical subreg. Replace the subreg with a
6612 zero_extend to avoid the reload that would otherwise be required. */
6614 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6615 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6616 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6617 && SUBREG_BYTE (src) == 0
6618 && paradoxical_subreg_p (src)
6619 && MEM_P (SUBREG_REG (src)))
6621 SUBST (SET_SRC (x),
6622 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6623 GET_MODE (src), SUBREG_REG (src)));
6625 src = SET_SRC (x);
6627 #endif
6629 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6630 are comparing an item known to be 0 or -1 against 0, use a logical
6631 operation instead. Check for one of the arms being an IOR of the other
6632 arm with some value. We compute three terms to be IOR'ed together. In
6633 practice, at most two will be nonzero. Then we do the IOR's. */
6635 if (GET_CODE (dest) != PC
6636 && GET_CODE (src) == IF_THEN_ELSE
6637 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6638 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6639 && XEXP (XEXP (src, 0), 1) == const0_rtx
6640 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6641 #ifdef HAVE_conditional_move
6642 && ! can_conditionally_move_p (GET_MODE (src))
6643 #endif
6644 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6645 GET_MODE (XEXP (XEXP (src, 0), 0)))
6646 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6647 && ! side_effects_p (src))
6649 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6650 ? XEXP (src, 1) : XEXP (src, 2));
6651 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6652 ? XEXP (src, 2) : XEXP (src, 1));
6653 rtx term1 = const0_rtx, term2, term3;
6655 if (GET_CODE (true_rtx) == IOR
6656 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6657 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6658 else if (GET_CODE (true_rtx) == IOR
6659 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6660 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6661 else if (GET_CODE (false_rtx) == IOR
6662 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6663 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6664 else if (GET_CODE (false_rtx) == IOR
6665 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6666 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6668 term2 = simplify_gen_binary (AND, GET_MODE (src),
6669 XEXP (XEXP (src, 0), 0), true_rtx);
6670 term3 = simplify_gen_binary (AND, GET_MODE (src),
6671 simplify_gen_unary (NOT, GET_MODE (src),
6672 XEXP (XEXP (src, 0), 0),
6673 GET_MODE (src)),
6674 false_rtx);
6676 SUBST (SET_SRC (x),
6677 simplify_gen_binary (IOR, GET_MODE (src),
6678 simplify_gen_binary (IOR, GET_MODE (src),
6679 term1, term2),
6680 term3));
6682 src = SET_SRC (x);
6685 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6686 whole thing fail. */
6687 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6688 return src;
6689 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6690 return dest;
6691 else
6692 /* Convert this into a field assignment operation, if possible. */
6693 return make_field_assignment (x);
6696 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6697 result. */
6699 static rtx
6700 simplify_logical (rtx x)
6702 enum machine_mode mode = GET_MODE (x);
6703 rtx op0 = XEXP (x, 0);
6704 rtx op1 = XEXP (x, 1);
6706 switch (GET_CODE (x))
6708 case AND:
6709 /* We can call simplify_and_const_int only if we don't lose
6710 any (sign) bits when converting INTVAL (op1) to
6711 "unsigned HOST_WIDE_INT". */
6712 if (CONST_INT_P (op1)
6713 && (HWI_COMPUTABLE_MODE_P (mode)
6714 || INTVAL (op1) > 0))
6716 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6717 if (GET_CODE (x) != AND)
6718 return x;
6720 op0 = XEXP (x, 0);
6721 op1 = XEXP (x, 1);
6724 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6725 apply the distributive law and then the inverse distributive
6726 law to see if things simplify. */
6727 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6729 rtx result = distribute_and_simplify_rtx (x, 0);
6730 if (result)
6731 return result;
6733 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6735 rtx result = distribute_and_simplify_rtx (x, 1);
6736 if (result)
6737 return result;
6739 break;
6741 case IOR:
6742 /* If we have (ior (and A B) C), apply the distributive law and then
6743 the inverse distributive law to see if things simplify. */
6745 if (GET_CODE (op0) == AND)
6747 rtx result = distribute_and_simplify_rtx (x, 0);
6748 if (result)
6749 return result;
6752 if (GET_CODE (op1) == AND)
6754 rtx result = distribute_and_simplify_rtx (x, 1);
6755 if (result)
6756 return result;
6758 break;
6760 default:
6761 gcc_unreachable ();
6764 return x;
6767 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6768 operations" because they can be replaced with two more basic operations.
6769 ZERO_EXTEND is also considered "compound" because it can be replaced with
6770 an AND operation, which is simpler, though only one operation.
6772 The function expand_compound_operation is called with an rtx expression
6773 and will convert it to the appropriate shifts and AND operations,
6774 simplifying at each stage.
6776 The function make_compound_operation is called to convert an expression
6777 consisting of shifts and ANDs into the equivalent compound expression.
6778 It is the inverse of this function, loosely speaking. */
6780 static rtx
6781 expand_compound_operation (rtx x)
6783 unsigned HOST_WIDE_INT pos = 0, len;
6784 int unsignedp = 0;
6785 unsigned int modewidth;
6786 rtx tem;
6788 switch (GET_CODE (x))
6790 case ZERO_EXTEND:
6791 unsignedp = 1;
6792 case SIGN_EXTEND:
6793 /* We can't necessarily use a const_int for a multiword mode;
6794 it depends on implicitly extending the value.
6795 Since we don't know the right way to extend it,
6796 we can't tell whether the implicit way is right.
6798 Even for a mode that is no wider than a const_int,
6799 we can't win, because we need to sign extend one of its bits through
6800 the rest of it, and we don't know which bit. */
6801 if (CONST_INT_P (XEXP (x, 0)))
6802 return x;
6804 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6805 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6806 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6807 reloaded. If not for that, MEM's would very rarely be safe.
6809 Reject MODEs bigger than a word, because we might not be able
6810 to reference a two-register group starting with an arbitrary register
6811 (and currently gen_lowpart might crash for a SUBREG). */
6813 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6814 return x;
6816 /* Reject MODEs that aren't scalar integers because turning vector
6817 or complex modes into shifts causes problems. */
6819 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6820 return x;
6822 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6823 /* If the inner object has VOIDmode (the only way this can happen
6824 is if it is an ASM_OPERANDS), we can't do anything since we don't
6825 know how much masking to do. */
6826 if (len == 0)
6827 return x;
6829 break;
6831 case ZERO_EXTRACT:
6832 unsignedp = 1;
6834 /* ... fall through ... */
6836 case SIGN_EXTRACT:
6837 /* If the operand is a CLOBBER, just return it. */
6838 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6839 return XEXP (x, 0);
6841 if (!CONST_INT_P (XEXP (x, 1))
6842 || !CONST_INT_P (XEXP (x, 2))
6843 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6844 return x;
6846 /* Reject MODEs that aren't scalar integers because turning vector
6847 or complex modes into shifts causes problems. */
6849 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6850 return x;
6852 len = INTVAL (XEXP (x, 1));
6853 pos = INTVAL (XEXP (x, 2));
6855 /* This should stay within the object being extracted, fail otherwise. */
6856 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6857 return x;
6859 if (BITS_BIG_ENDIAN)
6860 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6862 break;
6864 default:
6865 return x;
6867 /* Convert sign extension to zero extension, if we know that the high
6868 bit is not set, as this is easier to optimize. It will be converted
6869 back to cheaper alternative in make_extraction. */
6870 if (GET_CODE (x) == SIGN_EXTEND
6871 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6872 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6873 & ~(((unsigned HOST_WIDE_INT)
6874 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6875 >> 1))
6876 == 0)))
6878 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6879 rtx temp2 = expand_compound_operation (temp);
6881 /* Make sure this is a profitable operation. */
6882 if (set_src_cost (x, optimize_this_for_speed_p)
6883 > set_src_cost (temp2, optimize_this_for_speed_p))
6884 return temp2;
6885 else if (set_src_cost (x, optimize_this_for_speed_p)
6886 > set_src_cost (temp, optimize_this_for_speed_p))
6887 return temp;
6888 else
6889 return x;
6892 /* We can optimize some special cases of ZERO_EXTEND. */
6893 if (GET_CODE (x) == ZERO_EXTEND)
6895 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6896 know that the last value didn't have any inappropriate bits
6897 set. */
6898 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6899 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6900 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6901 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6902 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6903 return XEXP (XEXP (x, 0), 0);
6905 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6906 if (GET_CODE (XEXP (x, 0)) == SUBREG
6907 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6908 && subreg_lowpart_p (XEXP (x, 0))
6909 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6910 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6911 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6912 return SUBREG_REG (XEXP (x, 0));
6914 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6915 is a comparison and STORE_FLAG_VALUE permits. This is like
6916 the first case, but it works even when GET_MODE (x) is larger
6917 than HOST_WIDE_INT. */
6918 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6919 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6920 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6921 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6922 <= HOST_BITS_PER_WIDE_INT)
6923 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6924 return XEXP (XEXP (x, 0), 0);
6926 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6927 if (GET_CODE (XEXP (x, 0)) == SUBREG
6928 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6929 && subreg_lowpart_p (XEXP (x, 0))
6930 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6931 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6932 <= HOST_BITS_PER_WIDE_INT)
6933 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6934 return SUBREG_REG (XEXP (x, 0));
6938 /* If we reach here, we want to return a pair of shifts. The inner
6939 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6940 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6941 logical depending on the value of UNSIGNEDP.
6943 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6944 converted into an AND of a shift.
6946 We must check for the case where the left shift would have a negative
6947 count. This can happen in a case like (x >> 31) & 255 on machines
6948 that can't shift by a constant. On those machines, we would first
6949 combine the shift with the AND to produce a variable-position
6950 extraction. Then the constant of 31 would be substituted in
6951 to produce such a position. */
6953 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6954 if (modewidth >= pos + len)
6956 enum machine_mode mode = GET_MODE (x);
6957 tem = gen_lowpart (mode, XEXP (x, 0));
6958 if (!tem || GET_CODE (tem) == CLOBBER)
6959 return x;
6960 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6961 tem, modewidth - pos - len);
6962 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6963 mode, tem, modewidth - len);
6965 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6966 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6967 simplify_shift_const (NULL_RTX, LSHIFTRT,
6968 GET_MODE (x),
6969 XEXP (x, 0), pos),
6970 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6971 else
6972 /* Any other cases we can't handle. */
6973 return x;
6975 /* If we couldn't do this for some reason, return the original
6976 expression. */
6977 if (GET_CODE (tem) == CLOBBER)
6978 return x;
6980 return tem;
6983 /* X is a SET which contains an assignment of one object into
6984 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6985 or certain SUBREGS). If possible, convert it into a series of
6986 logical operations.
6988 We half-heartedly support variable positions, but do not at all
6989 support variable lengths. */
6991 static const_rtx
6992 expand_field_assignment (const_rtx x)
6994 rtx inner;
6995 rtx pos; /* Always counts from low bit. */
6996 int len;
6997 rtx mask, cleared, masked;
6998 enum machine_mode compute_mode;
7000 /* Loop until we find something we can't simplify. */
7001 while (1)
7003 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7004 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7006 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7007 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7008 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7010 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7011 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7013 inner = XEXP (SET_DEST (x), 0);
7014 len = INTVAL (XEXP (SET_DEST (x), 1));
7015 pos = XEXP (SET_DEST (x), 2);
7017 /* A constant position should stay within the width of INNER. */
7018 if (CONST_INT_P (pos)
7019 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7020 break;
7022 if (BITS_BIG_ENDIAN)
7024 if (CONST_INT_P (pos))
7025 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7026 - INTVAL (pos));
7027 else if (GET_CODE (pos) == MINUS
7028 && CONST_INT_P (XEXP (pos, 1))
7029 && (INTVAL (XEXP (pos, 1))
7030 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7031 /* If position is ADJUST - X, new position is X. */
7032 pos = XEXP (pos, 0);
7033 else
7034 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7035 GEN_INT (GET_MODE_PRECISION (
7036 GET_MODE (inner))
7037 - len),
7038 pos);
7042 /* A SUBREG between two modes that occupy the same numbers of words
7043 can be done by moving the SUBREG to the source. */
7044 else if (GET_CODE (SET_DEST (x)) == SUBREG
7045 /* We need SUBREGs to compute nonzero_bits properly. */
7046 && nonzero_sign_valid
7047 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7048 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7049 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7050 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7052 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7053 gen_lowpart
7054 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7055 SET_SRC (x)));
7056 continue;
7058 else
7059 break;
7061 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7062 inner = SUBREG_REG (inner);
7064 compute_mode = GET_MODE (inner);
7066 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7067 if (! SCALAR_INT_MODE_P (compute_mode))
7069 enum machine_mode imode;
7071 /* Don't do anything for vector or complex integral types. */
7072 if (! FLOAT_MODE_P (compute_mode))
7073 break;
7075 /* Try to find an integral mode to pun with. */
7076 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7077 if (imode == BLKmode)
7078 break;
7080 compute_mode = imode;
7081 inner = gen_lowpart (imode, inner);
7084 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7085 if (len >= HOST_BITS_PER_WIDE_INT)
7086 break;
7088 /* Now compute the equivalent expression. Make a copy of INNER
7089 for the SET_DEST in case it is a MEM into which we will substitute;
7090 we don't want shared RTL in that case. */
7091 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7092 cleared = simplify_gen_binary (AND, compute_mode,
7093 simplify_gen_unary (NOT, compute_mode,
7094 simplify_gen_binary (ASHIFT,
7095 compute_mode,
7096 mask, pos),
7097 compute_mode),
7098 inner);
7099 masked = simplify_gen_binary (ASHIFT, compute_mode,
7100 simplify_gen_binary (
7101 AND, compute_mode,
7102 gen_lowpart (compute_mode, SET_SRC (x)),
7103 mask),
7104 pos);
7106 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7107 simplify_gen_binary (IOR, compute_mode,
7108 cleared, masked));
7111 return x;
7114 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7115 it is an RTX that represents a variable starting position; otherwise,
7116 POS is the (constant) starting bit position (counted from the LSB).
7118 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7119 signed reference.
7121 IN_DEST is nonzero if this is a reference in the destination of a
7122 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7123 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7124 be used.
7126 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7127 ZERO_EXTRACT should be built even for bits starting at bit 0.
7129 MODE is the desired mode of the result (if IN_DEST == 0).
7131 The result is an RTX for the extraction or NULL_RTX if the target
7132 can't handle it. */
7134 static rtx
7135 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7136 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7137 int in_dest, int in_compare)
7139 /* This mode describes the size of the storage area
7140 to fetch the overall value from. Within that, we
7141 ignore the POS lowest bits, etc. */
7142 enum machine_mode is_mode = GET_MODE (inner);
7143 enum machine_mode inner_mode;
7144 enum machine_mode wanted_inner_mode;
7145 enum machine_mode wanted_inner_reg_mode = word_mode;
7146 enum machine_mode pos_mode = word_mode;
7147 enum machine_mode extraction_mode = word_mode;
7148 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7149 rtx new_rtx = 0;
7150 rtx orig_pos_rtx = pos_rtx;
7151 HOST_WIDE_INT orig_pos;
7153 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7155 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7156 consider just the QI as the memory to extract from.
7157 The subreg adds or removes high bits; its mode is
7158 irrelevant to the meaning of this extraction,
7159 since POS and LEN count from the lsb. */
7160 if (MEM_P (SUBREG_REG (inner)))
7161 is_mode = GET_MODE (SUBREG_REG (inner));
7162 inner = SUBREG_REG (inner);
7164 else if (GET_CODE (inner) == ASHIFT
7165 && CONST_INT_P (XEXP (inner, 1))
7166 && pos_rtx == 0 && pos == 0
7167 && len > UINTVAL (XEXP (inner, 1)))
7169 /* We're extracting the least significant bits of an rtx
7170 (ashift X (const_int C)), where LEN > C. Extract the
7171 least significant (LEN - C) bits of X, giving an rtx
7172 whose mode is MODE, then shift it left C times. */
7173 new_rtx = make_extraction (mode, XEXP (inner, 0),
7174 0, 0, len - INTVAL (XEXP (inner, 1)),
7175 unsignedp, in_dest, in_compare);
7176 if (new_rtx != 0)
7177 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7180 inner_mode = GET_MODE (inner);
7182 if (pos_rtx && CONST_INT_P (pos_rtx))
7183 pos = INTVAL (pos_rtx), pos_rtx = 0;
7185 /* See if this can be done without an extraction. We never can if the
7186 width of the field is not the same as that of some integer mode. For
7187 registers, we can only avoid the extraction if the position is at the
7188 low-order bit and this is either not in the destination or we have the
7189 appropriate STRICT_LOW_PART operation available.
7191 For MEM, we can avoid an extract if the field starts on an appropriate
7192 boundary and we can change the mode of the memory reference. */
7194 if (tmode != BLKmode
7195 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7196 && !MEM_P (inner)
7197 && (inner_mode == tmode
7198 || !REG_P (inner)
7199 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7200 || reg_truncated_to_mode (tmode, inner))
7201 && (! in_dest
7202 || (REG_P (inner)
7203 && have_insn_for (STRICT_LOW_PART, tmode))))
7204 || (MEM_P (inner) && pos_rtx == 0
7205 && (pos
7206 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7207 : BITS_PER_UNIT)) == 0
7208 /* We can't do this if we are widening INNER_MODE (it
7209 may not be aligned, for one thing). */
7210 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7211 && (inner_mode == tmode
7212 || (! mode_dependent_address_p (XEXP (inner, 0))
7213 && ! MEM_VOLATILE_P (inner))))))
7215 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7216 field. If the original and current mode are the same, we need not
7217 adjust the offset. Otherwise, we do if bytes big endian.
7219 If INNER is not a MEM, get a piece consisting of just the field
7220 of interest (in this case POS % BITS_PER_WORD must be 0). */
7222 if (MEM_P (inner))
7224 HOST_WIDE_INT offset;
7226 /* POS counts from lsb, but make OFFSET count in memory order. */
7227 if (BYTES_BIG_ENDIAN)
7228 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7229 else
7230 offset = pos / BITS_PER_UNIT;
7232 new_rtx = adjust_address_nv (inner, tmode, offset);
7234 else if (REG_P (inner))
7236 if (tmode != inner_mode)
7238 /* We can't call gen_lowpart in a DEST since we
7239 always want a SUBREG (see below) and it would sometimes
7240 return a new hard register. */
7241 if (pos || in_dest)
7243 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7245 if (WORDS_BIG_ENDIAN
7246 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7247 final_word = ((GET_MODE_SIZE (inner_mode)
7248 - GET_MODE_SIZE (tmode))
7249 / UNITS_PER_WORD) - final_word;
7251 final_word *= UNITS_PER_WORD;
7252 if (BYTES_BIG_ENDIAN &&
7253 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7254 final_word += (GET_MODE_SIZE (inner_mode)
7255 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7257 /* Avoid creating invalid subregs, for example when
7258 simplifying (x>>32)&255. */
7259 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7260 return NULL_RTX;
7262 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7264 else
7265 new_rtx = gen_lowpart (tmode, inner);
7267 else
7268 new_rtx = inner;
7270 else
7271 new_rtx = force_to_mode (inner, tmode,
7272 len >= HOST_BITS_PER_WIDE_INT
7273 ? ~(unsigned HOST_WIDE_INT) 0
7274 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7277 /* If this extraction is going into the destination of a SET,
7278 make a STRICT_LOW_PART unless we made a MEM. */
7280 if (in_dest)
7281 return (MEM_P (new_rtx) ? new_rtx
7282 : (GET_CODE (new_rtx) != SUBREG
7283 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7284 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7286 if (mode == tmode)
7287 return new_rtx;
7289 if (CONST_INT_P (new_rtx)
7290 || GET_CODE (new_rtx) == CONST_DOUBLE)
7291 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7292 mode, new_rtx, tmode);
7294 /* If we know that no extraneous bits are set, and that the high
7295 bit is not set, convert the extraction to the cheaper of
7296 sign and zero extension, that are equivalent in these cases. */
7297 if (flag_expensive_optimizations
7298 && (HWI_COMPUTABLE_MODE_P (tmode)
7299 && ((nonzero_bits (new_rtx, tmode)
7300 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7301 == 0)))
7303 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7304 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7306 /* Prefer ZERO_EXTENSION, since it gives more information to
7307 backends. */
7308 if (set_src_cost (temp, optimize_this_for_speed_p)
7309 <= set_src_cost (temp1, optimize_this_for_speed_p))
7310 return temp;
7311 return temp1;
7314 /* Otherwise, sign- or zero-extend unless we already are in the
7315 proper mode. */
7317 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7318 mode, new_rtx));
7321 /* Unless this is a COMPARE or we have a funny memory reference,
7322 don't do anything with zero-extending field extracts starting at
7323 the low-order bit since they are simple AND operations. */
7324 if (pos_rtx == 0 && pos == 0 && ! in_dest
7325 && ! in_compare && unsignedp)
7326 return 0;
7328 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7329 if the position is not a constant and the length is not 1. In all
7330 other cases, we would only be going outside our object in cases when
7331 an original shift would have been undefined. */
7332 if (MEM_P (inner)
7333 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7334 || (pos_rtx != 0 && len != 1)))
7335 return 0;
7337 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7338 and the mode for the result. */
7339 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7341 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7342 pos_mode = mode_for_extraction (EP_insv, 2);
7343 extraction_mode = mode_for_extraction (EP_insv, 3);
7346 if (! in_dest && unsignedp
7347 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7349 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7350 pos_mode = mode_for_extraction (EP_extzv, 3);
7351 extraction_mode = mode_for_extraction (EP_extzv, 0);
7354 if (! in_dest && ! unsignedp
7355 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7357 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7358 pos_mode = mode_for_extraction (EP_extv, 3);
7359 extraction_mode = mode_for_extraction (EP_extv, 0);
7362 /* Never narrow an object, since that might not be safe. */
7364 if (mode != VOIDmode
7365 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7366 extraction_mode = mode;
7368 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7369 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7370 pos_mode = GET_MODE (pos_rtx);
7372 /* If this is not from memory, the desired mode is the preferred mode
7373 for an extraction pattern's first input operand, or word_mode if there
7374 is none. */
7375 if (!MEM_P (inner))
7376 wanted_inner_mode = wanted_inner_reg_mode;
7377 else
7379 /* Be careful not to go beyond the extracted object and maintain the
7380 natural alignment of the memory. */
7381 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7382 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7383 > GET_MODE_BITSIZE (wanted_inner_mode))
7385 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7386 gcc_assert (wanted_inner_mode != VOIDmode);
7389 /* If we have to change the mode of memory and cannot, the desired mode
7390 is EXTRACTION_MODE. */
7391 if (inner_mode != wanted_inner_mode
7392 && (mode_dependent_address_p (XEXP (inner, 0))
7393 || MEM_VOLATILE_P (inner)
7394 || pos_rtx))
7395 wanted_inner_mode = extraction_mode;
7398 orig_pos = pos;
7400 if (BITS_BIG_ENDIAN)
7402 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7403 BITS_BIG_ENDIAN style. If position is constant, compute new
7404 position. Otherwise, build subtraction.
7405 Note that POS is relative to the mode of the original argument.
7406 If it's a MEM we need to recompute POS relative to that.
7407 However, if we're extracting from (or inserting into) a register,
7408 we want to recompute POS relative to wanted_inner_mode. */
7409 int width = (MEM_P (inner)
7410 ? GET_MODE_BITSIZE (is_mode)
7411 : GET_MODE_BITSIZE (wanted_inner_mode));
7413 if (pos_rtx == 0)
7414 pos = width - len - pos;
7415 else
7416 pos_rtx
7417 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7418 /* POS may be less than 0 now, but we check for that below.
7419 Note that it can only be less than 0 if !MEM_P (inner). */
7422 /* If INNER has a wider mode, and this is a constant extraction, try to
7423 make it smaller and adjust the byte to point to the byte containing
7424 the value. */
7425 if (wanted_inner_mode != VOIDmode
7426 && inner_mode != wanted_inner_mode
7427 && ! pos_rtx
7428 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7429 && MEM_P (inner)
7430 && ! mode_dependent_address_p (XEXP (inner, 0))
7431 && ! MEM_VOLATILE_P (inner))
7433 int offset = 0;
7435 /* The computations below will be correct if the machine is big
7436 endian in both bits and bytes or little endian in bits and bytes.
7437 If it is mixed, we must adjust. */
7439 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7440 adjust OFFSET to compensate. */
7441 if (BYTES_BIG_ENDIAN
7442 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7443 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7445 /* We can now move to the desired byte. */
7446 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7447 * GET_MODE_SIZE (wanted_inner_mode);
7448 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7450 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7451 && is_mode != wanted_inner_mode)
7452 offset = (GET_MODE_SIZE (is_mode)
7453 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7455 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7458 /* If INNER is not memory, get it into the proper mode. If we are changing
7459 its mode, POS must be a constant and smaller than the size of the new
7460 mode. */
7461 else if (!MEM_P (inner))
7463 /* On the LHS, don't create paradoxical subregs implicitely truncating
7464 the register unless TRULY_NOOP_TRUNCATION. */
7465 if (in_dest
7466 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7467 wanted_inner_mode))
7468 return NULL_RTX;
7470 if (GET_MODE (inner) != wanted_inner_mode
7471 && (pos_rtx != 0
7472 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7473 return NULL_RTX;
7475 if (orig_pos < 0)
7476 return NULL_RTX;
7478 inner = force_to_mode (inner, wanted_inner_mode,
7479 pos_rtx
7480 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7481 ? ~(unsigned HOST_WIDE_INT) 0
7482 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7483 << orig_pos),
7487 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7488 have to zero extend. Otherwise, we can just use a SUBREG. */
7489 if (pos_rtx != 0
7490 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7492 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7494 /* If we know that no extraneous bits are set, and that the high
7495 bit is not set, convert extraction to cheaper one - either
7496 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7497 cases. */
7498 if (flag_expensive_optimizations
7499 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7500 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7501 & ~(((unsigned HOST_WIDE_INT)
7502 GET_MODE_MASK (GET_MODE (pos_rtx)))
7503 >> 1))
7504 == 0)))
7506 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7508 /* Prefer ZERO_EXTENSION, since it gives more information to
7509 backends. */
7510 if (set_src_cost (temp1, optimize_this_for_speed_p)
7511 < set_src_cost (temp, optimize_this_for_speed_p))
7512 temp = temp1;
7514 pos_rtx = temp;
7516 else if (pos_rtx != 0
7517 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7518 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7520 /* Make POS_RTX unless we already have it and it is correct. If we don't
7521 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7522 be a CONST_INT. */
7523 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7524 pos_rtx = orig_pos_rtx;
7526 else if (pos_rtx == 0)
7527 pos_rtx = GEN_INT (pos);
7529 /* Make the required operation. See if we can use existing rtx. */
7530 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7531 extraction_mode, inner, GEN_INT (len), pos_rtx);
7532 if (! in_dest)
7533 new_rtx = gen_lowpart (mode, new_rtx);
7535 return new_rtx;
7538 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7539 with any other operations in X. Return X without that shift if so. */
7541 static rtx
7542 extract_left_shift (rtx x, int count)
7544 enum rtx_code code = GET_CODE (x);
7545 enum machine_mode mode = GET_MODE (x);
7546 rtx tem;
7548 switch (code)
7550 case ASHIFT:
7551 /* This is the shift itself. If it is wide enough, we will return
7552 either the value being shifted if the shift count is equal to
7553 COUNT or a shift for the difference. */
7554 if (CONST_INT_P (XEXP (x, 1))
7555 && INTVAL (XEXP (x, 1)) >= count)
7556 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7557 INTVAL (XEXP (x, 1)) - count);
7558 break;
7560 case NEG: case NOT:
7561 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7562 return simplify_gen_unary (code, mode, tem, mode);
7564 break;
7566 case PLUS: case IOR: case XOR: case AND:
7567 /* If we can safely shift this constant and we find the inner shift,
7568 make a new operation. */
7569 if (CONST_INT_P (XEXP (x, 1))
7570 && (UINTVAL (XEXP (x, 1))
7571 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7572 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7573 return simplify_gen_binary (code, mode, tem,
7574 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7576 break;
7578 default:
7579 break;
7582 return 0;
7585 /* Look at the expression rooted at X. Look for expressions
7586 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7587 Form these expressions.
7589 Return the new rtx, usually just X.
7591 Also, for machines like the VAX that don't have logical shift insns,
7592 try to convert logical to arithmetic shift operations in cases where
7593 they are equivalent. This undoes the canonicalizations to logical
7594 shifts done elsewhere.
7596 We try, as much as possible, to re-use rtl expressions to save memory.
7598 IN_CODE says what kind of expression we are processing. Normally, it is
7599 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7600 being kludges), it is MEM. When processing the arguments of a comparison
7601 or a COMPARE against zero, it is COMPARE. */
7603 static rtx
7604 make_compound_operation (rtx x, enum rtx_code in_code)
7606 enum rtx_code code = GET_CODE (x);
7607 enum machine_mode mode = GET_MODE (x);
7608 int mode_width = GET_MODE_PRECISION (mode);
7609 rtx rhs, lhs;
7610 enum rtx_code next_code;
7611 int i, j;
7612 rtx new_rtx = 0;
7613 rtx tem;
7614 const char *fmt;
7616 /* Select the code to be used in recursive calls. Once we are inside an
7617 address, we stay there. If we have a comparison, set to COMPARE,
7618 but once inside, go back to our default of SET. */
7620 next_code = (code == MEM ? MEM
7621 : ((code == PLUS || code == MINUS)
7622 && SCALAR_INT_MODE_P (mode)) ? MEM
7623 : ((code == COMPARE || COMPARISON_P (x))
7624 && XEXP (x, 1) == const0_rtx) ? COMPARE
7625 : in_code == COMPARE ? SET : in_code);
7627 /* Process depending on the code of this operation. If NEW is set
7628 nonzero, it will be returned. */
7630 switch (code)
7632 case ASHIFT:
7633 /* Convert shifts by constants into multiplications if inside
7634 an address. */
7635 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7636 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7637 && INTVAL (XEXP (x, 1)) >= 0
7638 && SCALAR_INT_MODE_P (mode))
7640 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7641 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7643 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7644 if (GET_CODE (new_rtx) == NEG)
7646 new_rtx = XEXP (new_rtx, 0);
7647 multval = -multval;
7649 multval = trunc_int_for_mode (multval, mode);
7650 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7652 break;
7654 case PLUS:
7655 lhs = XEXP (x, 0);
7656 rhs = XEXP (x, 1);
7657 lhs = make_compound_operation (lhs, next_code);
7658 rhs = make_compound_operation (rhs, next_code);
7659 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7660 && SCALAR_INT_MODE_P (mode))
7662 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7663 XEXP (lhs, 1));
7664 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7666 else if (GET_CODE (lhs) == MULT
7667 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7669 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7670 simplify_gen_unary (NEG, mode,
7671 XEXP (lhs, 1),
7672 mode));
7673 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7675 else
7677 SUBST (XEXP (x, 0), lhs);
7678 SUBST (XEXP (x, 1), rhs);
7679 goto maybe_swap;
7681 x = gen_lowpart (mode, new_rtx);
7682 goto maybe_swap;
7684 case MINUS:
7685 lhs = XEXP (x, 0);
7686 rhs = XEXP (x, 1);
7687 lhs = make_compound_operation (lhs, next_code);
7688 rhs = make_compound_operation (rhs, next_code);
7689 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7690 && SCALAR_INT_MODE_P (mode))
7692 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7693 XEXP (rhs, 1));
7694 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7696 else if (GET_CODE (rhs) == MULT
7697 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7699 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7700 simplify_gen_unary (NEG, mode,
7701 XEXP (rhs, 1),
7702 mode));
7703 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7705 else
7707 SUBST (XEXP (x, 0), lhs);
7708 SUBST (XEXP (x, 1), rhs);
7709 return x;
7711 return gen_lowpart (mode, new_rtx);
7713 case AND:
7714 /* If the second operand is not a constant, we can't do anything
7715 with it. */
7716 if (!CONST_INT_P (XEXP (x, 1)))
7717 break;
7719 /* If the constant is a power of two minus one and the first operand
7720 is a logical right shift, make an extraction. */
7721 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7722 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7724 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7725 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7726 0, in_code == COMPARE);
7729 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7730 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7731 && subreg_lowpart_p (XEXP (x, 0))
7732 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7733 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7735 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7736 next_code);
7737 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7738 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7739 0, in_code == COMPARE);
7741 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7742 else if ((GET_CODE (XEXP (x, 0)) == XOR
7743 || GET_CODE (XEXP (x, 0)) == IOR)
7744 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7745 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7746 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7748 /* Apply the distributive law, and then try to make extractions. */
7749 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7750 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7751 XEXP (x, 1)),
7752 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7753 XEXP (x, 1)));
7754 new_rtx = make_compound_operation (new_rtx, in_code);
7757 /* If we are have (and (rotate X C) M) and C is larger than the number
7758 of bits in M, this is an extraction. */
7760 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7761 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7762 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7763 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7765 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7766 new_rtx = make_extraction (mode, new_rtx,
7767 (GET_MODE_PRECISION (mode)
7768 - INTVAL (XEXP (XEXP (x, 0), 1))),
7769 NULL_RTX, i, 1, 0, in_code == COMPARE);
7772 /* On machines without logical shifts, if the operand of the AND is
7773 a logical shift and our mask turns off all the propagated sign
7774 bits, we can replace the logical shift with an arithmetic shift. */
7775 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7776 && !have_insn_for (LSHIFTRT, mode)
7777 && have_insn_for (ASHIFTRT, mode)
7778 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7779 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7780 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7781 && mode_width <= HOST_BITS_PER_WIDE_INT)
7783 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7785 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7786 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7787 SUBST (XEXP (x, 0),
7788 gen_rtx_ASHIFTRT (mode,
7789 make_compound_operation
7790 (XEXP (XEXP (x, 0), 0), next_code),
7791 XEXP (XEXP (x, 0), 1)));
7794 /* If the constant is one less than a power of two, this might be
7795 representable by an extraction even if no shift is present.
7796 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7797 we are in a COMPARE. */
7798 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7799 new_rtx = make_extraction (mode,
7800 make_compound_operation (XEXP (x, 0),
7801 next_code),
7802 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7804 /* If we are in a comparison and this is an AND with a power of two,
7805 convert this into the appropriate bit extract. */
7806 else if (in_code == COMPARE
7807 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7808 new_rtx = make_extraction (mode,
7809 make_compound_operation (XEXP (x, 0),
7810 next_code),
7811 i, NULL_RTX, 1, 1, 0, 1);
7813 break;
7815 case LSHIFTRT:
7816 /* If the sign bit is known to be zero, replace this with an
7817 arithmetic shift. */
7818 if (have_insn_for (ASHIFTRT, mode)
7819 && ! have_insn_for (LSHIFTRT, mode)
7820 && mode_width <= HOST_BITS_PER_WIDE_INT
7821 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7823 new_rtx = gen_rtx_ASHIFTRT (mode,
7824 make_compound_operation (XEXP (x, 0),
7825 next_code),
7826 XEXP (x, 1));
7827 break;
7830 /* ... fall through ... */
7832 case ASHIFTRT:
7833 lhs = XEXP (x, 0);
7834 rhs = XEXP (x, 1);
7836 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7837 this is a SIGN_EXTRACT. */
7838 if (CONST_INT_P (rhs)
7839 && GET_CODE (lhs) == ASHIFT
7840 && CONST_INT_P (XEXP (lhs, 1))
7841 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7842 && INTVAL (XEXP (lhs, 1)) >= 0
7843 && INTVAL (rhs) < mode_width)
7845 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7846 new_rtx = make_extraction (mode, new_rtx,
7847 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7848 NULL_RTX, mode_width - INTVAL (rhs),
7849 code == LSHIFTRT, 0, in_code == COMPARE);
7850 break;
7853 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7854 If so, try to merge the shifts into a SIGN_EXTEND. We could
7855 also do this for some cases of SIGN_EXTRACT, but it doesn't
7856 seem worth the effort; the case checked for occurs on Alpha. */
7858 if (!OBJECT_P (lhs)
7859 && ! (GET_CODE (lhs) == SUBREG
7860 && (OBJECT_P (SUBREG_REG (lhs))))
7861 && CONST_INT_P (rhs)
7862 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7863 && INTVAL (rhs) < mode_width
7864 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7865 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7866 0, NULL_RTX, mode_width - INTVAL (rhs),
7867 code == LSHIFTRT, 0, in_code == COMPARE);
7869 break;
7871 case SUBREG:
7872 /* Call ourselves recursively on the inner expression. If we are
7873 narrowing the object and it has a different RTL code from
7874 what it originally did, do this SUBREG as a force_to_mode. */
7876 rtx inner = SUBREG_REG (x), simplified;
7878 tem = make_compound_operation (inner, in_code);
7880 simplified
7881 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7882 if (simplified)
7883 tem = simplified;
7885 if (GET_CODE (tem) != GET_CODE (inner)
7886 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7887 && subreg_lowpart_p (x))
7889 rtx newer
7890 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7892 /* If we have something other than a SUBREG, we might have
7893 done an expansion, so rerun ourselves. */
7894 if (GET_CODE (newer) != SUBREG)
7895 newer = make_compound_operation (newer, in_code);
7897 /* force_to_mode can expand compounds. If it just re-expanded the
7898 compound, use gen_lowpart to convert to the desired mode. */
7899 if (rtx_equal_p (newer, x)
7900 /* Likewise if it re-expanded the compound only partially.
7901 This happens for SUBREG of ZERO_EXTRACT if they extract
7902 the same number of bits. */
7903 || (GET_CODE (newer) == SUBREG
7904 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7905 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7906 && GET_CODE (inner) == AND
7907 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7908 return gen_lowpart (GET_MODE (x), tem);
7910 return newer;
7913 if (simplified)
7914 return tem;
7916 break;
7918 default:
7919 break;
7922 if (new_rtx)
7924 x = gen_lowpart (mode, new_rtx);
7925 code = GET_CODE (x);
7928 /* Now recursively process each operand of this operation. We need to
7929 handle ZERO_EXTEND specially so that we don't lose track of the
7930 inner mode. */
7931 if (GET_CODE (x) == ZERO_EXTEND)
7933 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7934 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7935 new_rtx, GET_MODE (XEXP (x, 0)));
7936 if (tem)
7937 return tem;
7938 SUBST (XEXP (x, 0), new_rtx);
7939 return x;
7942 fmt = GET_RTX_FORMAT (code);
7943 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7944 if (fmt[i] == 'e')
7946 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7947 SUBST (XEXP (x, i), new_rtx);
7949 else if (fmt[i] == 'E')
7950 for (j = 0; j < XVECLEN (x, i); j++)
7952 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7953 SUBST (XVECEXP (x, i, j), new_rtx);
7956 maybe_swap:
7957 /* If this is a commutative operation, the changes to the operands
7958 may have made it noncanonical. */
7959 if (COMMUTATIVE_ARITH_P (x)
7960 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7962 tem = XEXP (x, 0);
7963 SUBST (XEXP (x, 0), XEXP (x, 1));
7964 SUBST (XEXP (x, 1), tem);
7967 return x;
7970 /* Given M see if it is a value that would select a field of bits
7971 within an item, but not the entire word. Return -1 if not.
7972 Otherwise, return the starting position of the field, where 0 is the
7973 low-order bit.
7975 *PLEN is set to the length of the field. */
7977 static int
7978 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7980 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7981 int pos = m ? ctz_hwi (m) : -1;
7982 int len = 0;
7984 if (pos >= 0)
7985 /* Now shift off the low-order zero bits and see if we have a
7986 power of two minus 1. */
7987 len = exact_log2 ((m >> pos) + 1);
7989 if (len <= 0)
7990 pos = -1;
7992 *plen = len;
7993 return pos;
7996 /* If X refers to a register that equals REG in value, replace these
7997 references with REG. */
7998 static rtx
7999 canon_reg_for_combine (rtx x, rtx reg)
8001 rtx op0, op1, op2;
8002 const char *fmt;
8003 int i;
8004 bool copied;
8006 enum rtx_code code = GET_CODE (x);
8007 switch (GET_RTX_CLASS (code))
8009 case RTX_UNARY:
8010 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8011 if (op0 != XEXP (x, 0))
8012 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8013 GET_MODE (reg));
8014 break;
8016 case RTX_BIN_ARITH:
8017 case RTX_COMM_ARITH:
8018 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8019 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8020 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8021 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8022 break;
8024 case RTX_COMPARE:
8025 case RTX_COMM_COMPARE:
8026 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8027 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8028 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8029 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8030 GET_MODE (op0), op0, op1);
8031 break;
8033 case RTX_TERNARY:
8034 case RTX_BITFIELD_OPS:
8035 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8036 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8037 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8038 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8039 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8040 GET_MODE (op0), op0, op1, op2);
8042 case RTX_OBJ:
8043 if (REG_P (x))
8045 if (rtx_equal_p (get_last_value (reg), x)
8046 || rtx_equal_p (reg, get_last_value (x)))
8047 return reg;
8048 else
8049 break;
8052 /* fall through */
8054 default:
8055 fmt = GET_RTX_FORMAT (code);
8056 copied = false;
8057 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8058 if (fmt[i] == 'e')
8060 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8061 if (op != XEXP (x, i))
8063 if (!copied)
8065 copied = true;
8066 x = copy_rtx (x);
8068 XEXP (x, i) = op;
8071 else if (fmt[i] == 'E')
8073 int j;
8074 for (j = 0; j < XVECLEN (x, i); j++)
8076 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8077 if (op != XVECEXP (x, i, j))
8079 if (!copied)
8081 copied = true;
8082 x = copy_rtx (x);
8084 XVECEXP (x, i, j) = op;
8089 break;
8092 return x;
8095 /* Return X converted to MODE. If the value is already truncated to
8096 MODE we can just return a subreg even though in the general case we
8097 would need an explicit truncation. */
8099 static rtx
8100 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8102 if (!CONST_INT_P (x)
8103 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8104 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8105 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8107 /* Bit-cast X into an integer mode. */
8108 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8109 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8110 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8111 x, GET_MODE (x));
8114 return gen_lowpart (mode, x);
8117 /* See if X can be simplified knowing that we will only refer to it in
8118 MODE and will only refer to those bits that are nonzero in MASK.
8119 If other bits are being computed or if masking operations are done
8120 that select a superset of the bits in MASK, they can sometimes be
8121 ignored.
8123 Return a possibly simplified expression, but always convert X to
8124 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8126 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8127 are all off in X. This is used when X will be complemented, by either
8128 NOT, NEG, or XOR. */
8130 static rtx
8131 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8132 int just_select)
8134 enum rtx_code code = GET_CODE (x);
8135 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8136 enum machine_mode op_mode;
8137 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8138 rtx op0, op1, temp;
8140 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8141 code below will do the wrong thing since the mode of such an
8142 expression is VOIDmode.
8144 Also do nothing if X is a CLOBBER; this can happen if X was
8145 the return value from a call to gen_lowpart. */
8146 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8147 return x;
8149 /* We want to perform the operation is its present mode unless we know
8150 that the operation is valid in MODE, in which case we do the operation
8151 in MODE. */
8152 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8153 && have_insn_for (code, mode))
8154 ? mode : GET_MODE (x));
8156 /* It is not valid to do a right-shift in a narrower mode
8157 than the one it came in with. */
8158 if ((code == LSHIFTRT || code == ASHIFTRT)
8159 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8160 op_mode = GET_MODE (x);
8162 /* Truncate MASK to fit OP_MODE. */
8163 if (op_mode)
8164 mask &= GET_MODE_MASK (op_mode);
8166 /* When we have an arithmetic operation, or a shift whose count we
8167 do not know, we need to assume that all bits up to the highest-order
8168 bit in MASK will be needed. This is how we form such a mask. */
8169 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8170 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8171 else
8172 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8173 - 1);
8175 /* Determine what bits of X are guaranteed to be (non)zero. */
8176 nonzero = nonzero_bits (x, mode);
8178 /* If none of the bits in X are needed, return a zero. */
8179 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8180 x = const0_rtx;
8182 /* If X is a CONST_INT, return a new one. Do this here since the
8183 test below will fail. */
8184 if (CONST_INT_P (x))
8186 if (SCALAR_INT_MODE_P (mode))
8187 return gen_int_mode (INTVAL (x) & mask, mode);
8188 else
8190 x = GEN_INT (INTVAL (x) & mask);
8191 return gen_lowpart_common (mode, x);
8195 /* If X is narrower than MODE and we want all the bits in X's mode, just
8196 get X in the proper mode. */
8197 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8198 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8199 return gen_lowpart (mode, x);
8201 /* We can ignore the effect of a SUBREG if it narrows the mode or
8202 if the constant masks to zero all the bits the mode doesn't have. */
8203 if (GET_CODE (x) == SUBREG
8204 && subreg_lowpart_p (x)
8205 && ((GET_MODE_SIZE (GET_MODE (x))
8206 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8207 || (0 == (mask
8208 & GET_MODE_MASK (GET_MODE (x))
8209 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8210 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8212 /* The arithmetic simplifications here only work for scalar integer modes. */
8213 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8214 return gen_lowpart_or_truncate (mode, x);
8216 switch (code)
8218 case CLOBBER:
8219 /* If X is a (clobber (const_int)), return it since we know we are
8220 generating something that won't match. */
8221 return x;
8223 case SIGN_EXTEND:
8224 case ZERO_EXTEND:
8225 case ZERO_EXTRACT:
8226 case SIGN_EXTRACT:
8227 x = expand_compound_operation (x);
8228 if (GET_CODE (x) != code)
8229 return force_to_mode (x, mode, mask, next_select);
8230 break;
8232 case TRUNCATE:
8233 /* Similarly for a truncate. */
8234 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8236 case AND:
8237 /* If this is an AND with a constant, convert it into an AND
8238 whose constant is the AND of that constant with MASK. If it
8239 remains an AND of MASK, delete it since it is redundant. */
8241 if (CONST_INT_P (XEXP (x, 1)))
8243 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8244 mask & INTVAL (XEXP (x, 1)));
8246 /* If X is still an AND, see if it is an AND with a mask that
8247 is just some low-order bits. If so, and it is MASK, we don't
8248 need it. */
8250 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8251 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8252 == mask))
8253 x = XEXP (x, 0);
8255 /* If it remains an AND, try making another AND with the bits
8256 in the mode mask that aren't in MASK turned on. If the
8257 constant in the AND is wide enough, this might make a
8258 cheaper constant. */
8260 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8261 && GET_MODE_MASK (GET_MODE (x)) != mask
8262 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8264 unsigned HOST_WIDE_INT cval
8265 = UINTVAL (XEXP (x, 1))
8266 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8267 int width = GET_MODE_PRECISION (GET_MODE (x));
8268 rtx y;
8270 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8271 number, sign extend it. */
8272 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8273 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8274 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8276 y = simplify_gen_binary (AND, GET_MODE (x),
8277 XEXP (x, 0), GEN_INT (cval));
8278 if (set_src_cost (y, optimize_this_for_speed_p)
8279 < set_src_cost (x, optimize_this_for_speed_p))
8280 x = y;
8283 break;
8286 goto binop;
8288 case PLUS:
8289 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8290 low-order bits (as in an alignment operation) and FOO is already
8291 aligned to that boundary, mask C1 to that boundary as well.
8292 This may eliminate that PLUS and, later, the AND. */
8295 unsigned int width = GET_MODE_PRECISION (mode);
8296 unsigned HOST_WIDE_INT smask = mask;
8298 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8299 number, sign extend it. */
8301 if (width < HOST_BITS_PER_WIDE_INT
8302 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8303 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8305 if (CONST_INT_P (XEXP (x, 1))
8306 && exact_log2 (- smask) >= 0
8307 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8308 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8309 return force_to_mode (plus_constant (XEXP (x, 0),
8310 (INTVAL (XEXP (x, 1)) & smask)),
8311 mode, smask, next_select);
8314 /* ... fall through ... */
8316 case MULT:
8317 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8318 most significant bit in MASK since carries from those bits will
8319 affect the bits we are interested in. */
8320 mask = fuller_mask;
8321 goto binop;
8323 case MINUS:
8324 /* If X is (minus C Y) where C's least set bit is larger than any bit
8325 in the mask, then we may replace with (neg Y). */
8326 if (CONST_INT_P (XEXP (x, 0))
8327 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8328 & -INTVAL (XEXP (x, 0))))
8329 > mask))
8331 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8332 GET_MODE (x));
8333 return force_to_mode (x, mode, mask, next_select);
8336 /* Similarly, if C contains every bit in the fuller_mask, then we may
8337 replace with (not Y). */
8338 if (CONST_INT_P (XEXP (x, 0))
8339 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8341 x = simplify_gen_unary (NOT, GET_MODE (x),
8342 XEXP (x, 1), GET_MODE (x));
8343 return force_to_mode (x, mode, mask, next_select);
8346 mask = fuller_mask;
8347 goto binop;
8349 case IOR:
8350 case XOR:
8351 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8352 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8353 operation which may be a bitfield extraction. Ensure that the
8354 constant we form is not wider than the mode of X. */
8356 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8357 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8358 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8359 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8360 && CONST_INT_P (XEXP (x, 1))
8361 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8362 + floor_log2 (INTVAL (XEXP (x, 1))))
8363 < GET_MODE_PRECISION (GET_MODE (x)))
8364 && (UINTVAL (XEXP (x, 1))
8365 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8367 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8368 << INTVAL (XEXP (XEXP (x, 0), 1)));
8369 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8370 XEXP (XEXP (x, 0), 0), temp);
8371 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8372 XEXP (XEXP (x, 0), 1));
8373 return force_to_mode (x, mode, mask, next_select);
8376 binop:
8377 /* For most binary operations, just propagate into the operation and
8378 change the mode if we have an operation of that mode. */
8380 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8381 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8383 /* If we ended up truncating both operands, truncate the result of the
8384 operation instead. */
8385 if (GET_CODE (op0) == TRUNCATE
8386 && GET_CODE (op1) == TRUNCATE)
8388 op0 = XEXP (op0, 0);
8389 op1 = XEXP (op1, 0);
8392 op0 = gen_lowpart_or_truncate (op_mode, op0);
8393 op1 = gen_lowpart_or_truncate (op_mode, op1);
8395 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8396 x = simplify_gen_binary (code, op_mode, op0, op1);
8397 break;
8399 case ASHIFT:
8400 /* For left shifts, do the same, but just for the first operand.
8401 However, we cannot do anything with shifts where we cannot
8402 guarantee that the counts are smaller than the size of the mode
8403 because such a count will have a different meaning in a
8404 wider mode. */
8406 if (! (CONST_INT_P (XEXP (x, 1))
8407 && INTVAL (XEXP (x, 1)) >= 0
8408 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8409 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8410 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8411 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8412 break;
8414 /* If the shift count is a constant and we can do arithmetic in
8415 the mode of the shift, refine which bits we need. Otherwise, use the
8416 conservative form of the mask. */
8417 if (CONST_INT_P (XEXP (x, 1))
8418 && INTVAL (XEXP (x, 1)) >= 0
8419 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8420 && HWI_COMPUTABLE_MODE_P (op_mode))
8421 mask >>= INTVAL (XEXP (x, 1));
8422 else
8423 mask = fuller_mask;
8425 op0 = gen_lowpart_or_truncate (op_mode,
8426 force_to_mode (XEXP (x, 0), op_mode,
8427 mask, next_select));
8429 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8430 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8431 break;
8433 case LSHIFTRT:
8434 /* Here we can only do something if the shift count is a constant,
8435 this shift constant is valid for the host, and we can do arithmetic
8436 in OP_MODE. */
8438 if (CONST_INT_P (XEXP (x, 1))
8439 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8440 && HWI_COMPUTABLE_MODE_P (op_mode))
8442 rtx inner = XEXP (x, 0);
8443 unsigned HOST_WIDE_INT inner_mask;
8445 /* Select the mask of the bits we need for the shift operand. */
8446 inner_mask = mask << INTVAL (XEXP (x, 1));
8448 /* We can only change the mode of the shift if we can do arithmetic
8449 in the mode of the shift and INNER_MASK is no wider than the
8450 width of X's mode. */
8451 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8452 op_mode = GET_MODE (x);
8454 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8456 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8457 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8460 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8461 shift and AND produces only copies of the sign bit (C2 is one less
8462 than a power of two), we can do this with just a shift. */
8464 if (GET_CODE (x) == LSHIFTRT
8465 && CONST_INT_P (XEXP (x, 1))
8466 /* The shift puts one of the sign bit copies in the least significant
8467 bit. */
8468 && ((INTVAL (XEXP (x, 1))
8469 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8470 >= GET_MODE_PRECISION (GET_MODE (x)))
8471 && exact_log2 (mask + 1) >= 0
8472 /* Number of bits left after the shift must be more than the mask
8473 needs. */
8474 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8475 <= GET_MODE_PRECISION (GET_MODE (x)))
8476 /* Must be more sign bit copies than the mask needs. */
8477 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8478 >= exact_log2 (mask + 1)))
8479 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8480 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8481 - exact_log2 (mask + 1)));
8483 goto shiftrt;
8485 case ASHIFTRT:
8486 /* If we are just looking for the sign bit, we don't need this shift at
8487 all, even if it has a variable count. */
8488 if (val_signbit_p (GET_MODE (x), mask))
8489 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8491 /* If this is a shift by a constant, get a mask that contains those bits
8492 that are not copies of the sign bit. We then have two cases: If
8493 MASK only includes those bits, this can be a logical shift, which may
8494 allow simplifications. If MASK is a single-bit field not within
8495 those bits, we are requesting a copy of the sign bit and hence can
8496 shift the sign bit to the appropriate location. */
8498 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8499 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8501 int i;
8503 /* If the considered data is wider than HOST_WIDE_INT, we can't
8504 represent a mask for all its bits in a single scalar.
8505 But we only care about the lower bits, so calculate these. */
8507 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8509 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8511 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8512 is the number of bits a full-width mask would have set.
8513 We need only shift if these are fewer than nonzero can
8514 hold. If not, we must keep all bits set in nonzero. */
8516 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8517 < HOST_BITS_PER_WIDE_INT)
8518 nonzero >>= INTVAL (XEXP (x, 1))
8519 + HOST_BITS_PER_WIDE_INT
8520 - GET_MODE_PRECISION (GET_MODE (x)) ;
8522 else
8524 nonzero = GET_MODE_MASK (GET_MODE (x));
8525 nonzero >>= INTVAL (XEXP (x, 1));
8528 if ((mask & ~nonzero) == 0)
8530 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8531 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8532 if (GET_CODE (x) != ASHIFTRT)
8533 return force_to_mode (x, mode, mask, next_select);
8536 else if ((i = exact_log2 (mask)) >= 0)
8538 x = simplify_shift_const
8539 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8540 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8542 if (GET_CODE (x) != ASHIFTRT)
8543 return force_to_mode (x, mode, mask, next_select);
8547 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8548 even if the shift count isn't a constant. */
8549 if (mask == 1)
8550 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8551 XEXP (x, 0), XEXP (x, 1));
8553 shiftrt:
8555 /* If this is a zero- or sign-extension operation that just affects bits
8556 we don't care about, remove it. Be sure the call above returned
8557 something that is still a shift. */
8559 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8560 && CONST_INT_P (XEXP (x, 1))
8561 && INTVAL (XEXP (x, 1)) >= 0
8562 && (INTVAL (XEXP (x, 1))
8563 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8564 && GET_CODE (XEXP (x, 0)) == ASHIFT
8565 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8566 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8567 next_select);
8569 break;
8571 case ROTATE:
8572 case ROTATERT:
8573 /* If the shift count is constant and we can do computations
8574 in the mode of X, compute where the bits we care about are.
8575 Otherwise, we can't do anything. Don't change the mode of
8576 the shift or propagate MODE into the shift, though. */
8577 if (CONST_INT_P (XEXP (x, 1))
8578 && INTVAL (XEXP (x, 1)) >= 0)
8580 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8581 GET_MODE (x), GEN_INT (mask),
8582 XEXP (x, 1));
8583 if (temp && CONST_INT_P (temp))
8584 SUBST (XEXP (x, 0),
8585 force_to_mode (XEXP (x, 0), GET_MODE (x),
8586 INTVAL (temp), next_select));
8588 break;
8590 case NEG:
8591 /* If we just want the low-order bit, the NEG isn't needed since it
8592 won't change the low-order bit. */
8593 if (mask == 1)
8594 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8596 /* We need any bits less significant than the most significant bit in
8597 MASK since carries from those bits will affect the bits we are
8598 interested in. */
8599 mask = fuller_mask;
8600 goto unop;
8602 case NOT:
8603 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8604 same as the XOR case above. Ensure that the constant we form is not
8605 wider than the mode of X. */
8607 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8608 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8609 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8610 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8611 < GET_MODE_PRECISION (GET_MODE (x)))
8612 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8614 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8615 GET_MODE (x));
8616 temp = simplify_gen_binary (XOR, GET_MODE (x),
8617 XEXP (XEXP (x, 0), 0), temp);
8618 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8619 temp, XEXP (XEXP (x, 0), 1));
8621 return force_to_mode (x, mode, mask, next_select);
8624 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8625 use the full mask inside the NOT. */
8626 mask = fuller_mask;
8628 unop:
8629 op0 = gen_lowpart_or_truncate (op_mode,
8630 force_to_mode (XEXP (x, 0), mode, mask,
8631 next_select));
8632 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8633 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8634 break;
8636 case NE:
8637 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8638 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8639 which is equal to STORE_FLAG_VALUE. */
8640 if ((mask & ~STORE_FLAG_VALUE) == 0
8641 && XEXP (x, 1) == const0_rtx
8642 && GET_MODE (XEXP (x, 0)) == mode
8643 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8644 && (nonzero_bits (XEXP (x, 0), mode)
8645 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8646 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8648 break;
8650 case IF_THEN_ELSE:
8651 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8652 written in a narrower mode. We play it safe and do not do so. */
8654 SUBST (XEXP (x, 1),
8655 gen_lowpart_or_truncate (GET_MODE (x),
8656 force_to_mode (XEXP (x, 1), mode,
8657 mask, next_select)));
8658 SUBST (XEXP (x, 2),
8659 gen_lowpart_or_truncate (GET_MODE (x),
8660 force_to_mode (XEXP (x, 2), mode,
8661 mask, next_select)));
8662 break;
8664 default:
8665 break;
8668 /* Ensure we return a value of the proper mode. */
8669 return gen_lowpart_or_truncate (mode, x);
8672 /* Return nonzero if X is an expression that has one of two values depending on
8673 whether some other value is zero or nonzero. In that case, we return the
8674 value that is being tested, *PTRUE is set to the value if the rtx being
8675 returned has a nonzero value, and *PFALSE is set to the other alternative.
8677 If we return zero, we set *PTRUE and *PFALSE to X. */
8679 static rtx
8680 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8682 enum machine_mode mode = GET_MODE (x);
8683 enum rtx_code code = GET_CODE (x);
8684 rtx cond0, cond1, true0, true1, false0, false1;
8685 unsigned HOST_WIDE_INT nz;
8687 /* If we are comparing a value against zero, we are done. */
8688 if ((code == NE || code == EQ)
8689 && XEXP (x, 1) == const0_rtx)
8691 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8692 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8693 return XEXP (x, 0);
8696 /* If this is a unary operation whose operand has one of two values, apply
8697 our opcode to compute those values. */
8698 else if (UNARY_P (x)
8699 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8701 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8702 *pfalse = simplify_gen_unary (code, mode, false0,
8703 GET_MODE (XEXP (x, 0)));
8704 return cond0;
8707 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8708 make can't possibly match and would suppress other optimizations. */
8709 else if (code == COMPARE)
8712 /* If this is a binary operation, see if either side has only one of two
8713 values. If either one does or if both do and they are conditional on
8714 the same value, compute the new true and false values. */
8715 else if (BINARY_P (x))
8717 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8718 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8720 if ((cond0 != 0 || cond1 != 0)
8721 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8723 /* If if_then_else_cond returned zero, then true/false are the
8724 same rtl. We must copy one of them to prevent invalid rtl
8725 sharing. */
8726 if (cond0 == 0)
8727 true0 = copy_rtx (true0);
8728 else if (cond1 == 0)
8729 true1 = copy_rtx (true1);
8731 if (COMPARISON_P (x))
8733 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8734 true0, true1);
8735 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8736 false0, false1);
8738 else
8740 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8741 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8744 return cond0 ? cond0 : cond1;
8747 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8748 operands is zero when the other is nonzero, and vice-versa,
8749 and STORE_FLAG_VALUE is 1 or -1. */
8751 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8752 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8753 || code == UMAX)
8754 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8756 rtx op0 = XEXP (XEXP (x, 0), 1);
8757 rtx op1 = XEXP (XEXP (x, 1), 1);
8759 cond0 = XEXP (XEXP (x, 0), 0);
8760 cond1 = XEXP (XEXP (x, 1), 0);
8762 if (COMPARISON_P (cond0)
8763 && COMPARISON_P (cond1)
8764 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8765 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8766 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8767 || ((swap_condition (GET_CODE (cond0))
8768 == reversed_comparison_code (cond1, NULL))
8769 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8770 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8771 && ! side_effects_p (x))
8773 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8774 *pfalse = simplify_gen_binary (MULT, mode,
8775 (code == MINUS
8776 ? simplify_gen_unary (NEG, mode,
8777 op1, mode)
8778 : op1),
8779 const_true_rtx);
8780 return cond0;
8784 /* Similarly for MULT, AND and UMIN, except that for these the result
8785 is always zero. */
8786 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8787 && (code == MULT || code == AND || code == UMIN)
8788 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8790 cond0 = XEXP (XEXP (x, 0), 0);
8791 cond1 = XEXP (XEXP (x, 1), 0);
8793 if (COMPARISON_P (cond0)
8794 && COMPARISON_P (cond1)
8795 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8796 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8797 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8798 || ((swap_condition (GET_CODE (cond0))
8799 == reversed_comparison_code (cond1, NULL))
8800 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8801 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8802 && ! side_effects_p (x))
8804 *ptrue = *pfalse = const0_rtx;
8805 return cond0;
8810 else if (code == IF_THEN_ELSE)
8812 /* If we have IF_THEN_ELSE already, extract the condition and
8813 canonicalize it if it is NE or EQ. */
8814 cond0 = XEXP (x, 0);
8815 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8816 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8817 return XEXP (cond0, 0);
8818 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8820 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8821 return XEXP (cond0, 0);
8823 else
8824 return cond0;
8827 /* If X is a SUBREG, we can narrow both the true and false values
8828 if the inner expression, if there is a condition. */
8829 else if (code == SUBREG
8830 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8831 &true0, &false0)))
8833 true0 = simplify_gen_subreg (mode, true0,
8834 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8835 false0 = simplify_gen_subreg (mode, false0,
8836 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8837 if (true0 && false0)
8839 *ptrue = true0;
8840 *pfalse = false0;
8841 return cond0;
8845 /* If X is a constant, this isn't special and will cause confusions
8846 if we treat it as such. Likewise if it is equivalent to a constant. */
8847 else if (CONSTANT_P (x)
8848 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8851 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8852 will be least confusing to the rest of the compiler. */
8853 else if (mode == BImode)
8855 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8856 return x;
8859 /* If X is known to be either 0 or -1, those are the true and
8860 false values when testing X. */
8861 else if (x == constm1_rtx || x == const0_rtx
8862 || (mode != VOIDmode
8863 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8865 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8866 return x;
8869 /* Likewise for 0 or a single bit. */
8870 else if (HWI_COMPUTABLE_MODE_P (mode)
8871 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8873 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8874 return x;
8877 /* Otherwise fail; show no condition with true and false values the same. */
8878 *ptrue = *pfalse = x;
8879 return 0;
8882 /* Return the value of expression X given the fact that condition COND
8883 is known to be true when applied to REG as its first operand and VAL
8884 as its second. X is known to not be shared and so can be modified in
8885 place.
8887 We only handle the simplest cases, and specifically those cases that
8888 arise with IF_THEN_ELSE expressions. */
8890 static rtx
8891 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8893 enum rtx_code code = GET_CODE (x);
8894 rtx temp;
8895 const char *fmt;
8896 int i, j;
8898 if (side_effects_p (x))
8899 return x;
8901 /* If either operand of the condition is a floating point value,
8902 then we have to avoid collapsing an EQ comparison. */
8903 if (cond == EQ
8904 && rtx_equal_p (x, reg)
8905 && ! FLOAT_MODE_P (GET_MODE (x))
8906 && ! FLOAT_MODE_P (GET_MODE (val)))
8907 return val;
8909 if (cond == UNEQ && rtx_equal_p (x, reg))
8910 return val;
8912 /* If X is (abs REG) and we know something about REG's relationship
8913 with zero, we may be able to simplify this. */
8915 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8916 switch (cond)
8918 case GE: case GT: case EQ:
8919 return XEXP (x, 0);
8920 case LT: case LE:
8921 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8922 XEXP (x, 0),
8923 GET_MODE (XEXP (x, 0)));
8924 default:
8925 break;
8928 /* The only other cases we handle are MIN, MAX, and comparisons if the
8929 operands are the same as REG and VAL. */
8931 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8933 if (rtx_equal_p (XEXP (x, 0), val))
8934 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8936 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8938 if (COMPARISON_P (x))
8940 if (comparison_dominates_p (cond, code))
8941 return const_true_rtx;
8943 code = reversed_comparison_code (x, NULL);
8944 if (code != UNKNOWN
8945 && comparison_dominates_p (cond, code))
8946 return const0_rtx;
8947 else
8948 return x;
8950 else if (code == SMAX || code == SMIN
8951 || code == UMIN || code == UMAX)
8953 int unsignedp = (code == UMIN || code == UMAX);
8955 /* Do not reverse the condition when it is NE or EQ.
8956 This is because we cannot conclude anything about
8957 the value of 'SMAX (x, y)' when x is not equal to y,
8958 but we can when x equals y. */
8959 if ((code == SMAX || code == UMAX)
8960 && ! (cond == EQ || cond == NE))
8961 cond = reverse_condition (cond);
8963 switch (cond)
8965 case GE: case GT:
8966 return unsignedp ? x : XEXP (x, 1);
8967 case LE: case LT:
8968 return unsignedp ? x : XEXP (x, 0);
8969 case GEU: case GTU:
8970 return unsignedp ? XEXP (x, 1) : x;
8971 case LEU: case LTU:
8972 return unsignedp ? XEXP (x, 0) : x;
8973 default:
8974 break;
8979 else if (code == SUBREG)
8981 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8982 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8984 if (SUBREG_REG (x) != r)
8986 /* We must simplify subreg here, before we lose track of the
8987 original inner_mode. */
8988 new_rtx = simplify_subreg (GET_MODE (x), r,
8989 inner_mode, SUBREG_BYTE (x));
8990 if (new_rtx)
8991 return new_rtx;
8992 else
8993 SUBST (SUBREG_REG (x), r);
8996 return x;
8998 /* We don't have to handle SIGN_EXTEND here, because even in the
8999 case of replacing something with a modeless CONST_INT, a
9000 CONST_INT is already (supposed to be) a valid sign extension for
9001 its narrower mode, which implies it's already properly
9002 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9003 story is different. */
9004 else if (code == ZERO_EXTEND)
9006 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9007 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9009 if (XEXP (x, 0) != r)
9011 /* We must simplify the zero_extend here, before we lose
9012 track of the original inner_mode. */
9013 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9014 r, inner_mode);
9015 if (new_rtx)
9016 return new_rtx;
9017 else
9018 SUBST (XEXP (x, 0), r);
9021 return x;
9024 fmt = GET_RTX_FORMAT (code);
9025 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9027 if (fmt[i] == 'e')
9028 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9029 else if (fmt[i] == 'E')
9030 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9031 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9032 cond, reg, val));
9035 return x;
9038 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9039 assignment as a field assignment. */
9041 static int
9042 rtx_equal_for_field_assignment_p (rtx x, rtx y)
9044 if (x == y || rtx_equal_p (x, y))
9045 return 1;
9047 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9048 return 0;
9050 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9051 Note that all SUBREGs of MEM are paradoxical; otherwise they
9052 would have been rewritten. */
9053 if (MEM_P (x) && GET_CODE (y) == SUBREG
9054 && MEM_P (SUBREG_REG (y))
9055 && rtx_equal_p (SUBREG_REG (y),
9056 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9057 return 1;
9059 if (MEM_P (y) && GET_CODE (x) == SUBREG
9060 && MEM_P (SUBREG_REG (x))
9061 && rtx_equal_p (SUBREG_REG (x),
9062 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9063 return 1;
9065 /* We used to see if get_last_value of X and Y were the same but that's
9066 not correct. In one direction, we'll cause the assignment to have
9067 the wrong destination and in the case, we'll import a register into this
9068 insn that might have already have been dead. So fail if none of the
9069 above cases are true. */
9070 return 0;
9073 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9074 Return that assignment if so.
9076 We only handle the most common cases. */
9078 static rtx
9079 make_field_assignment (rtx x)
9081 rtx dest = SET_DEST (x);
9082 rtx src = SET_SRC (x);
9083 rtx assign;
9084 rtx rhs, lhs;
9085 HOST_WIDE_INT c1;
9086 HOST_WIDE_INT pos;
9087 unsigned HOST_WIDE_INT len;
9088 rtx other;
9089 enum machine_mode mode;
9091 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9092 a clear of a one-bit field. We will have changed it to
9093 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9094 for a SUBREG. */
9096 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9097 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9098 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9099 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9101 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9102 1, 1, 1, 0);
9103 if (assign != 0)
9104 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9105 return x;
9108 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9109 && subreg_lowpart_p (XEXP (src, 0))
9110 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9111 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9112 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9113 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9114 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9115 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9117 assign = make_extraction (VOIDmode, dest, 0,
9118 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9119 1, 1, 1, 0);
9120 if (assign != 0)
9121 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9122 return x;
9125 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9126 one-bit field. */
9127 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9128 && XEXP (XEXP (src, 0), 0) == const1_rtx
9129 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9131 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9132 1, 1, 1, 0);
9133 if (assign != 0)
9134 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9135 return x;
9138 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9139 SRC is an AND with all bits of that field set, then we can discard
9140 the AND. */
9141 if (GET_CODE (dest) == ZERO_EXTRACT
9142 && CONST_INT_P (XEXP (dest, 1))
9143 && GET_CODE (src) == AND
9144 && CONST_INT_P (XEXP (src, 1)))
9146 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9147 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9148 unsigned HOST_WIDE_INT ze_mask;
9150 if (width >= HOST_BITS_PER_WIDE_INT)
9151 ze_mask = -1;
9152 else
9153 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9155 /* Complete overlap. We can remove the source AND. */
9156 if ((and_mask & ze_mask) == ze_mask)
9157 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9159 /* Partial overlap. We can reduce the source AND. */
9160 if ((and_mask & ze_mask) != and_mask)
9162 mode = GET_MODE (src);
9163 src = gen_rtx_AND (mode, XEXP (src, 0),
9164 gen_int_mode (and_mask & ze_mask, mode));
9165 return gen_rtx_SET (VOIDmode, dest, src);
9169 /* The other case we handle is assignments into a constant-position
9170 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9171 a mask that has all one bits except for a group of zero bits and
9172 OTHER is known to have zeros where C1 has ones, this is such an
9173 assignment. Compute the position and length from C1. Shift OTHER
9174 to the appropriate position, force it to the required mode, and
9175 make the extraction. Check for the AND in both operands. */
9177 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9178 return x;
9180 rhs = expand_compound_operation (XEXP (src, 0));
9181 lhs = expand_compound_operation (XEXP (src, 1));
9183 if (GET_CODE (rhs) == AND
9184 && CONST_INT_P (XEXP (rhs, 1))
9185 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9186 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9187 else if (GET_CODE (lhs) == AND
9188 && CONST_INT_P (XEXP (lhs, 1))
9189 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9190 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9191 else
9192 return x;
9194 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9195 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9196 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9197 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9198 return x;
9200 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9201 if (assign == 0)
9202 return x;
9204 /* The mode to use for the source is the mode of the assignment, or of
9205 what is inside a possible STRICT_LOW_PART. */
9206 mode = (GET_CODE (assign) == STRICT_LOW_PART
9207 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9209 /* Shift OTHER right POS places and make it the source, restricting it
9210 to the proper length and mode. */
9212 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9213 GET_MODE (src),
9214 other, pos),
9215 dest);
9216 src = force_to_mode (src, mode,
9217 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9218 ? ~(unsigned HOST_WIDE_INT) 0
9219 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9222 /* If SRC is masked by an AND that does not make a difference in
9223 the value being stored, strip it. */
9224 if (GET_CODE (assign) == ZERO_EXTRACT
9225 && CONST_INT_P (XEXP (assign, 1))
9226 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9227 && GET_CODE (src) == AND
9228 && CONST_INT_P (XEXP (src, 1))
9229 && UINTVAL (XEXP (src, 1))
9230 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9231 src = XEXP (src, 0);
9233 return gen_rtx_SET (VOIDmode, assign, src);
9236 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9237 if so. */
9239 static rtx
9240 apply_distributive_law (rtx x)
9242 enum rtx_code code = GET_CODE (x);
9243 enum rtx_code inner_code;
9244 rtx lhs, rhs, other;
9245 rtx tem;
9247 /* Distributivity is not true for floating point as it can change the
9248 value. So we don't do it unless -funsafe-math-optimizations. */
9249 if (FLOAT_MODE_P (GET_MODE (x))
9250 && ! flag_unsafe_math_optimizations)
9251 return x;
9253 /* The outer operation can only be one of the following: */
9254 if (code != IOR && code != AND && code != XOR
9255 && code != PLUS && code != MINUS)
9256 return x;
9258 lhs = XEXP (x, 0);
9259 rhs = XEXP (x, 1);
9261 /* If either operand is a primitive we can't do anything, so get out
9262 fast. */
9263 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9264 return x;
9266 lhs = expand_compound_operation (lhs);
9267 rhs = expand_compound_operation (rhs);
9268 inner_code = GET_CODE (lhs);
9269 if (inner_code != GET_CODE (rhs))
9270 return x;
9272 /* See if the inner and outer operations distribute. */
9273 switch (inner_code)
9275 case LSHIFTRT:
9276 case ASHIFTRT:
9277 case AND:
9278 case IOR:
9279 /* These all distribute except over PLUS. */
9280 if (code == PLUS || code == MINUS)
9281 return x;
9282 break;
9284 case MULT:
9285 if (code != PLUS && code != MINUS)
9286 return x;
9287 break;
9289 case ASHIFT:
9290 /* This is also a multiply, so it distributes over everything. */
9291 break;
9293 /* This used to handle SUBREG, but this turned out to be counter-
9294 productive, since (subreg (op ...)) usually is not handled by
9295 insn patterns, and this "optimization" therefore transformed
9296 recognizable patterns into unrecognizable ones. Therefore the
9297 SUBREG case was removed from here.
9299 It is possible that distributing SUBREG over arithmetic operations
9300 leads to an intermediate result than can then be optimized further,
9301 e.g. by moving the outer SUBREG to the other side of a SET as done
9302 in simplify_set. This seems to have been the original intent of
9303 handling SUBREGs here.
9305 However, with current GCC this does not appear to actually happen,
9306 at least on major platforms. If some case is found where removing
9307 the SUBREG case here prevents follow-on optimizations, distributing
9308 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9310 default:
9311 return x;
9314 /* Set LHS and RHS to the inner operands (A and B in the example
9315 above) and set OTHER to the common operand (C in the example).
9316 There is only one way to do this unless the inner operation is
9317 commutative. */
9318 if (COMMUTATIVE_ARITH_P (lhs)
9319 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9320 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9321 else if (COMMUTATIVE_ARITH_P (lhs)
9322 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9323 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9324 else if (COMMUTATIVE_ARITH_P (lhs)
9325 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9326 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9327 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9328 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9329 else
9330 return x;
9332 /* Form the new inner operation, seeing if it simplifies first. */
9333 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9335 /* There is one exception to the general way of distributing:
9336 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9337 if (code == XOR && inner_code == IOR)
9339 inner_code = AND;
9340 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9343 /* We may be able to continuing distributing the result, so call
9344 ourselves recursively on the inner operation before forming the
9345 outer operation, which we return. */
9346 return simplify_gen_binary (inner_code, GET_MODE (x),
9347 apply_distributive_law (tem), other);
9350 /* See if X is of the form (* (+ A B) C), and if so convert to
9351 (+ (* A C) (* B C)) and try to simplify.
9353 Most of the time, this results in no change. However, if some of
9354 the operands are the same or inverses of each other, simplifications
9355 will result.
9357 For example, (and (ior A B) (not B)) can occur as the result of
9358 expanding a bit field assignment. When we apply the distributive
9359 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9360 which then simplifies to (and (A (not B))).
9362 Note that no checks happen on the validity of applying the inverse
9363 distributive law. This is pointless since we can do it in the
9364 few places where this routine is called.
9366 N is the index of the term that is decomposed (the arithmetic operation,
9367 i.e. (+ A B) in the first example above). !N is the index of the term that
9368 is distributed, i.e. of C in the first example above. */
9369 static rtx
9370 distribute_and_simplify_rtx (rtx x, int n)
9372 enum machine_mode mode;
9373 enum rtx_code outer_code, inner_code;
9374 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9376 /* Distributivity is not true for floating point as it can change the
9377 value. So we don't do it unless -funsafe-math-optimizations. */
9378 if (FLOAT_MODE_P (GET_MODE (x))
9379 && ! flag_unsafe_math_optimizations)
9380 return NULL_RTX;
9382 decomposed = XEXP (x, n);
9383 if (!ARITHMETIC_P (decomposed))
9384 return NULL_RTX;
9386 mode = GET_MODE (x);
9387 outer_code = GET_CODE (x);
9388 distributed = XEXP (x, !n);
9390 inner_code = GET_CODE (decomposed);
9391 inner_op0 = XEXP (decomposed, 0);
9392 inner_op1 = XEXP (decomposed, 1);
9394 /* Special case (and (xor B C) (not A)), which is equivalent to
9395 (xor (ior A B) (ior A C)) */
9396 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9398 distributed = XEXP (distributed, 0);
9399 outer_code = IOR;
9402 if (n == 0)
9404 /* Distribute the second term. */
9405 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9406 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9408 else
9410 /* Distribute the first term. */
9411 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9412 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9415 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9416 new_op0, new_op1));
9417 if (GET_CODE (tmp) != outer_code
9418 && (set_src_cost (tmp, optimize_this_for_speed_p)
9419 < set_src_cost (x, optimize_this_for_speed_p)))
9420 return tmp;
9422 return NULL_RTX;
9425 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9426 in MODE. Return an equivalent form, if different from (and VAROP
9427 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9429 static rtx
9430 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9431 unsigned HOST_WIDE_INT constop)
9433 unsigned HOST_WIDE_INT nonzero;
9434 unsigned HOST_WIDE_INT orig_constop;
9435 rtx orig_varop;
9436 int i;
9438 orig_varop = varop;
9439 orig_constop = constop;
9440 if (GET_CODE (varop) == CLOBBER)
9441 return NULL_RTX;
9443 /* Simplify VAROP knowing that we will be only looking at some of the
9444 bits in it.
9446 Note by passing in CONSTOP, we guarantee that the bits not set in
9447 CONSTOP are not significant and will never be examined. We must
9448 ensure that is the case by explicitly masking out those bits
9449 before returning. */
9450 varop = force_to_mode (varop, mode, constop, 0);
9452 /* If VAROP is a CLOBBER, we will fail so return it. */
9453 if (GET_CODE (varop) == CLOBBER)
9454 return varop;
9456 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9457 to VAROP and return the new constant. */
9458 if (CONST_INT_P (varop))
9459 return gen_int_mode (INTVAL (varop) & constop, mode);
9461 /* See what bits may be nonzero in VAROP. Unlike the general case of
9462 a call to nonzero_bits, here we don't care about bits outside
9463 MODE. */
9465 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9467 /* Turn off all bits in the constant that are known to already be zero.
9468 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9469 which is tested below. */
9471 constop &= nonzero;
9473 /* If we don't have any bits left, return zero. */
9474 if (constop == 0)
9475 return const0_rtx;
9477 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9478 a power of two, we can replace this with an ASHIFT. */
9479 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9480 && (i = exact_log2 (constop)) >= 0)
9481 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9483 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9484 or XOR, then try to apply the distributive law. This may eliminate
9485 operations if either branch can be simplified because of the AND.
9486 It may also make some cases more complex, but those cases probably
9487 won't match a pattern either with or without this. */
9489 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9490 return
9491 gen_lowpart
9492 (mode,
9493 apply_distributive_law
9494 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9495 simplify_and_const_int (NULL_RTX,
9496 GET_MODE (varop),
9497 XEXP (varop, 0),
9498 constop),
9499 simplify_and_const_int (NULL_RTX,
9500 GET_MODE (varop),
9501 XEXP (varop, 1),
9502 constop))));
9504 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9505 the AND and see if one of the operands simplifies to zero. If so, we
9506 may eliminate it. */
9508 if (GET_CODE (varop) == PLUS
9509 && exact_log2 (constop + 1) >= 0)
9511 rtx o0, o1;
9513 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9514 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9515 if (o0 == const0_rtx)
9516 return o1;
9517 if (o1 == const0_rtx)
9518 return o0;
9521 /* Make a SUBREG if necessary. If we can't make it, fail. */
9522 varop = gen_lowpart (mode, varop);
9523 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9524 return NULL_RTX;
9526 /* If we are only masking insignificant bits, return VAROP. */
9527 if (constop == nonzero)
9528 return varop;
9530 if (varop == orig_varop && constop == orig_constop)
9531 return NULL_RTX;
9533 /* Otherwise, return an AND. */
9534 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9538 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9539 in MODE.
9541 Return an equivalent form, if different from X. Otherwise, return X. If
9542 X is zero, we are to always construct the equivalent form. */
9544 static rtx
9545 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9546 unsigned HOST_WIDE_INT constop)
9548 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9549 if (tem)
9550 return tem;
9552 if (!x)
9553 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9554 gen_int_mode (constop, mode));
9555 if (GET_MODE (x) != mode)
9556 x = gen_lowpart (mode, x);
9557 return x;
9560 /* Given a REG, X, compute which bits in X can be nonzero.
9561 We don't care about bits outside of those defined in MODE.
9563 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9564 a shift, AND, or zero_extract, we can do better. */
9566 static rtx
9567 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9568 const_rtx known_x ATTRIBUTE_UNUSED,
9569 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9570 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9571 unsigned HOST_WIDE_INT *nonzero)
9573 rtx tem;
9574 reg_stat_type *rsp;
9576 /* If X is a register whose nonzero bits value is current, use it.
9577 Otherwise, if X is a register whose value we can find, use that
9578 value. Otherwise, use the previously-computed global nonzero bits
9579 for this register. */
9581 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9582 if (rsp->last_set_value != 0
9583 && (rsp->last_set_mode == mode
9584 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9585 && GET_MODE_CLASS (mode) == MODE_INT))
9586 && ((rsp->last_set_label >= label_tick_ebb_start
9587 && rsp->last_set_label < label_tick)
9588 || (rsp->last_set_label == label_tick
9589 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9590 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9591 && REG_N_SETS (REGNO (x)) == 1
9592 && !REGNO_REG_SET_P
9593 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9595 *nonzero &= rsp->last_set_nonzero_bits;
9596 return NULL;
9599 tem = get_last_value (x);
9601 if (tem)
9603 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9604 /* If X is narrower than MODE and TEM is a non-negative
9605 constant that would appear negative in the mode of X,
9606 sign-extend it for use in reg_nonzero_bits because some
9607 machines (maybe most) will actually do the sign-extension
9608 and this is the conservative approach.
9610 ??? For 2.5, try to tighten up the MD files in this regard
9611 instead of this kludge. */
9613 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9614 && CONST_INT_P (tem)
9615 && INTVAL (tem) > 0
9616 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9617 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9618 #endif
9619 return tem;
9621 else if (nonzero_sign_valid && rsp->nonzero_bits)
9623 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9625 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9626 /* We don't know anything about the upper bits. */
9627 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9628 *nonzero &= mask;
9631 return NULL;
9634 /* Return the number of bits at the high-order end of X that are known to
9635 be equal to the sign bit. X will be used in mode MODE; if MODE is
9636 VOIDmode, X will be used in its own mode. The returned value will always
9637 be between 1 and the number of bits in MODE. */
9639 static rtx
9640 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9641 const_rtx known_x ATTRIBUTE_UNUSED,
9642 enum machine_mode known_mode
9643 ATTRIBUTE_UNUSED,
9644 unsigned int known_ret ATTRIBUTE_UNUSED,
9645 unsigned int *result)
9647 rtx tem;
9648 reg_stat_type *rsp;
9650 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9651 if (rsp->last_set_value != 0
9652 && rsp->last_set_mode == mode
9653 && ((rsp->last_set_label >= label_tick_ebb_start
9654 && rsp->last_set_label < label_tick)
9655 || (rsp->last_set_label == label_tick
9656 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9657 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9658 && REG_N_SETS (REGNO (x)) == 1
9659 && !REGNO_REG_SET_P
9660 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9662 *result = rsp->last_set_sign_bit_copies;
9663 return NULL;
9666 tem = get_last_value (x);
9667 if (tem != 0)
9668 return tem;
9670 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9671 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9672 *result = rsp->sign_bit_copies;
9674 return NULL;
9677 /* Return the number of "extended" bits there are in X, when interpreted
9678 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9679 unsigned quantities, this is the number of high-order zero bits.
9680 For signed quantities, this is the number of copies of the sign bit
9681 minus 1. In both case, this function returns the number of "spare"
9682 bits. For example, if two quantities for which this function returns
9683 at least 1 are added, the addition is known not to overflow.
9685 This function will always return 0 unless called during combine, which
9686 implies that it must be called from a define_split. */
9688 unsigned int
9689 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9691 if (nonzero_sign_valid == 0)
9692 return 0;
9694 return (unsignedp
9695 ? (HWI_COMPUTABLE_MODE_P (mode)
9696 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9697 - floor_log2 (nonzero_bits (x, mode)))
9698 : 0)
9699 : num_sign_bit_copies (x, mode) - 1);
9702 /* This function is called from `simplify_shift_const' to merge two
9703 outer operations. Specifically, we have already found that we need
9704 to perform operation *POP0 with constant *PCONST0 at the outermost
9705 position. We would now like to also perform OP1 with constant CONST1
9706 (with *POP0 being done last).
9708 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9709 the resulting operation. *PCOMP_P is set to 1 if we would need to
9710 complement the innermost operand, otherwise it is unchanged.
9712 MODE is the mode in which the operation will be done. No bits outside
9713 the width of this mode matter. It is assumed that the width of this mode
9714 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9716 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9717 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9718 result is simply *PCONST0.
9720 If the resulting operation cannot be expressed as one operation, we
9721 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9723 static int
9724 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9726 enum rtx_code op0 = *pop0;
9727 HOST_WIDE_INT const0 = *pconst0;
9729 const0 &= GET_MODE_MASK (mode);
9730 const1 &= GET_MODE_MASK (mode);
9732 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9733 if (op0 == AND)
9734 const1 &= const0;
9736 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9737 if OP0 is SET. */
9739 if (op1 == UNKNOWN || op0 == SET)
9740 return 1;
9742 else if (op0 == UNKNOWN)
9743 op0 = op1, const0 = const1;
9745 else if (op0 == op1)
9747 switch (op0)
9749 case AND:
9750 const0 &= const1;
9751 break;
9752 case IOR:
9753 const0 |= const1;
9754 break;
9755 case XOR:
9756 const0 ^= const1;
9757 break;
9758 case PLUS:
9759 const0 += const1;
9760 break;
9761 case NEG:
9762 op0 = UNKNOWN;
9763 break;
9764 default:
9765 break;
9769 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9770 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9771 return 0;
9773 /* If the two constants aren't the same, we can't do anything. The
9774 remaining six cases can all be done. */
9775 else if (const0 != const1)
9776 return 0;
9778 else
9779 switch (op0)
9781 case IOR:
9782 if (op1 == AND)
9783 /* (a & b) | b == b */
9784 op0 = SET;
9785 else /* op1 == XOR */
9786 /* (a ^ b) | b == a | b */
9788 break;
9790 case XOR:
9791 if (op1 == AND)
9792 /* (a & b) ^ b == (~a) & b */
9793 op0 = AND, *pcomp_p = 1;
9794 else /* op1 == IOR */
9795 /* (a | b) ^ b == a & ~b */
9796 op0 = AND, const0 = ~const0;
9797 break;
9799 case AND:
9800 if (op1 == IOR)
9801 /* (a | b) & b == b */
9802 op0 = SET;
9803 else /* op1 == XOR */
9804 /* (a ^ b) & b) == (~a) & b */
9805 *pcomp_p = 1;
9806 break;
9807 default:
9808 break;
9811 /* Check for NO-OP cases. */
9812 const0 &= GET_MODE_MASK (mode);
9813 if (const0 == 0
9814 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9815 op0 = UNKNOWN;
9816 else if (const0 == 0 && op0 == AND)
9817 op0 = SET;
9818 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9819 && op0 == AND)
9820 op0 = UNKNOWN;
9822 *pop0 = op0;
9824 /* ??? Slightly redundant with the above mask, but not entirely.
9825 Moving this above means we'd have to sign-extend the mode mask
9826 for the final test. */
9827 if (op0 != UNKNOWN && op0 != NEG)
9828 *pconst0 = trunc_int_for_mode (const0, mode);
9830 return 1;
9833 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9834 the shift in. The original shift operation CODE is performed on OP in
9835 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9836 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9837 result of the shift is subject to operation OUTER_CODE with operand
9838 OUTER_CONST. */
9840 static enum machine_mode
9841 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9842 enum machine_mode orig_mode, enum machine_mode mode,
9843 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9845 if (orig_mode == mode)
9846 return mode;
9847 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9849 /* In general we can't perform in wider mode for right shift and rotate. */
9850 switch (code)
9852 case ASHIFTRT:
9853 /* We can still widen if the bits brought in from the left are identical
9854 to the sign bit of ORIG_MODE. */
9855 if (num_sign_bit_copies (op, mode)
9856 > (unsigned) (GET_MODE_PRECISION (mode)
9857 - GET_MODE_PRECISION (orig_mode)))
9858 return mode;
9859 return orig_mode;
9861 case LSHIFTRT:
9862 /* Similarly here but with zero bits. */
9863 if (HWI_COMPUTABLE_MODE_P (mode)
9864 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9865 return mode;
9867 /* We can also widen if the bits brought in will be masked off. This
9868 operation is performed in ORIG_MODE. */
9869 if (outer_code == AND)
9871 int care_bits = low_bitmask_len (orig_mode, outer_const);
9873 if (care_bits >= 0
9874 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9875 return mode;
9877 /* fall through */
9879 case ROTATE:
9880 return orig_mode;
9882 case ROTATERT:
9883 gcc_unreachable ();
9885 default:
9886 return mode;
9890 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9891 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9892 if we cannot simplify it. Otherwise, return a simplified value.
9894 The shift is normally computed in the widest mode we find in VAROP, as
9895 long as it isn't a different number of words than RESULT_MODE. Exceptions
9896 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9898 static rtx
9899 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9900 rtx varop, int orig_count)
9902 enum rtx_code orig_code = code;
9903 rtx orig_varop = varop;
9904 int count;
9905 enum machine_mode mode = result_mode;
9906 enum machine_mode shift_mode, tmode;
9907 unsigned int mode_words
9908 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9909 /* We form (outer_op (code varop count) (outer_const)). */
9910 enum rtx_code outer_op = UNKNOWN;
9911 HOST_WIDE_INT outer_const = 0;
9912 int complement_p = 0;
9913 rtx new_rtx, x;
9915 /* Make sure and truncate the "natural" shift on the way in. We don't
9916 want to do this inside the loop as it makes it more difficult to
9917 combine shifts. */
9918 if (SHIFT_COUNT_TRUNCATED)
9919 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9921 /* If we were given an invalid count, don't do anything except exactly
9922 what was requested. */
9924 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9925 return NULL_RTX;
9927 count = orig_count;
9929 /* Unless one of the branches of the `if' in this loop does a `continue',
9930 we will `break' the loop after the `if'. */
9932 while (count != 0)
9934 /* If we have an operand of (clobber (const_int 0)), fail. */
9935 if (GET_CODE (varop) == CLOBBER)
9936 return NULL_RTX;
9938 /* Convert ROTATERT to ROTATE. */
9939 if (code == ROTATERT)
9941 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9942 code = ROTATE;
9943 if (VECTOR_MODE_P (result_mode))
9944 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9945 else
9946 count = bitsize - count;
9949 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9950 mode, outer_op, outer_const);
9952 /* Handle cases where the count is greater than the size of the mode
9953 minus 1. For ASHIFT, use the size minus one as the count (this can
9954 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9955 take the count modulo the size. For other shifts, the result is
9956 zero.
9958 Since these shifts are being produced by the compiler by combining
9959 multiple operations, each of which are defined, we know what the
9960 result is supposed to be. */
9962 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9964 if (code == ASHIFTRT)
9965 count = GET_MODE_PRECISION (shift_mode) - 1;
9966 else if (code == ROTATE || code == ROTATERT)
9967 count %= GET_MODE_PRECISION (shift_mode);
9968 else
9970 /* We can't simply return zero because there may be an
9971 outer op. */
9972 varop = const0_rtx;
9973 count = 0;
9974 break;
9978 /* If we discovered we had to complement VAROP, leave. Making a NOT
9979 here would cause an infinite loop. */
9980 if (complement_p)
9981 break;
9983 /* An arithmetic right shift of a quantity known to be -1 or 0
9984 is a no-op. */
9985 if (code == ASHIFTRT
9986 && (num_sign_bit_copies (varop, shift_mode)
9987 == GET_MODE_PRECISION (shift_mode)))
9989 count = 0;
9990 break;
9993 /* If we are doing an arithmetic right shift and discarding all but
9994 the sign bit copies, this is equivalent to doing a shift by the
9995 bitsize minus one. Convert it into that shift because it will often
9996 allow other simplifications. */
9998 if (code == ASHIFTRT
9999 && (count + num_sign_bit_copies (varop, shift_mode)
10000 >= GET_MODE_PRECISION (shift_mode)))
10001 count = GET_MODE_PRECISION (shift_mode) - 1;
10003 /* We simplify the tests below and elsewhere by converting
10004 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10005 `make_compound_operation' will convert it to an ASHIFTRT for
10006 those machines (such as VAX) that don't have an LSHIFTRT. */
10007 if (code == ASHIFTRT
10008 && val_signbit_known_clear_p (shift_mode,
10009 nonzero_bits (varop, shift_mode)))
10010 code = LSHIFTRT;
10012 if (((code == LSHIFTRT
10013 && HWI_COMPUTABLE_MODE_P (shift_mode)
10014 && !(nonzero_bits (varop, shift_mode) >> count))
10015 || (code == ASHIFT
10016 && HWI_COMPUTABLE_MODE_P (shift_mode)
10017 && !((nonzero_bits (varop, shift_mode) << count)
10018 & GET_MODE_MASK (shift_mode))))
10019 && !side_effects_p (varop))
10020 varop = const0_rtx;
10022 switch (GET_CODE (varop))
10024 case SIGN_EXTEND:
10025 case ZERO_EXTEND:
10026 case SIGN_EXTRACT:
10027 case ZERO_EXTRACT:
10028 new_rtx = expand_compound_operation (varop);
10029 if (new_rtx != varop)
10031 varop = new_rtx;
10032 continue;
10034 break;
10036 case MEM:
10037 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10038 minus the width of a smaller mode, we can do this with a
10039 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10040 if ((code == ASHIFTRT || code == LSHIFTRT)
10041 && ! mode_dependent_address_p (XEXP (varop, 0))
10042 && ! MEM_VOLATILE_P (varop)
10043 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10044 MODE_INT, 1)) != BLKmode)
10046 new_rtx = adjust_address_nv (varop, tmode,
10047 BYTES_BIG_ENDIAN ? 0
10048 : count / BITS_PER_UNIT);
10050 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10051 : ZERO_EXTEND, mode, new_rtx);
10052 count = 0;
10053 continue;
10055 break;
10057 case SUBREG:
10058 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10059 the same number of words as what we've seen so far. Then store
10060 the widest mode in MODE. */
10061 if (subreg_lowpart_p (varop)
10062 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10063 > GET_MODE_SIZE (GET_MODE (varop)))
10064 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10065 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10066 == mode_words
10067 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10068 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10070 varop = SUBREG_REG (varop);
10071 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10072 mode = GET_MODE (varop);
10073 continue;
10075 break;
10077 case MULT:
10078 /* Some machines use MULT instead of ASHIFT because MULT
10079 is cheaper. But it is still better on those machines to
10080 merge two shifts into one. */
10081 if (CONST_INT_P (XEXP (varop, 1))
10082 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10084 varop
10085 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10086 XEXP (varop, 0),
10087 GEN_INT (exact_log2 (
10088 UINTVAL (XEXP (varop, 1)))));
10089 continue;
10091 break;
10093 case UDIV:
10094 /* Similar, for when divides are cheaper. */
10095 if (CONST_INT_P (XEXP (varop, 1))
10096 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10098 varop
10099 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10100 XEXP (varop, 0),
10101 GEN_INT (exact_log2 (
10102 UINTVAL (XEXP (varop, 1)))));
10103 continue;
10105 break;
10107 case ASHIFTRT:
10108 /* If we are extracting just the sign bit of an arithmetic
10109 right shift, that shift is not needed. However, the sign
10110 bit of a wider mode may be different from what would be
10111 interpreted as the sign bit in a narrower mode, so, if
10112 the result is narrower, don't discard the shift. */
10113 if (code == LSHIFTRT
10114 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10115 && (GET_MODE_BITSIZE (result_mode)
10116 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10118 varop = XEXP (varop, 0);
10119 continue;
10122 /* ... fall through ... */
10124 case LSHIFTRT:
10125 case ASHIFT:
10126 case ROTATE:
10127 /* Here we have two nested shifts. The result is usually the
10128 AND of a new shift with a mask. We compute the result below. */
10129 if (CONST_INT_P (XEXP (varop, 1))
10130 && INTVAL (XEXP (varop, 1)) >= 0
10131 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10132 && HWI_COMPUTABLE_MODE_P (result_mode)
10133 && HWI_COMPUTABLE_MODE_P (mode)
10134 && !VECTOR_MODE_P (result_mode))
10136 enum rtx_code first_code = GET_CODE (varop);
10137 unsigned int first_count = INTVAL (XEXP (varop, 1));
10138 unsigned HOST_WIDE_INT mask;
10139 rtx mask_rtx;
10141 /* We have one common special case. We can't do any merging if
10142 the inner code is an ASHIFTRT of a smaller mode. However, if
10143 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10144 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10145 we can convert it to
10146 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10147 This simplifies certain SIGN_EXTEND operations. */
10148 if (code == ASHIFT && first_code == ASHIFTRT
10149 && count == (GET_MODE_PRECISION (result_mode)
10150 - GET_MODE_PRECISION (GET_MODE (varop))))
10152 /* C3 has the low-order C1 bits zero. */
10154 mask = GET_MODE_MASK (mode)
10155 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10157 varop = simplify_and_const_int (NULL_RTX, result_mode,
10158 XEXP (varop, 0), mask);
10159 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10160 varop, count);
10161 count = first_count;
10162 code = ASHIFTRT;
10163 continue;
10166 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10167 than C1 high-order bits equal to the sign bit, we can convert
10168 this to either an ASHIFT or an ASHIFTRT depending on the
10169 two counts.
10171 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10173 if (code == ASHIFTRT && first_code == ASHIFT
10174 && GET_MODE (varop) == shift_mode
10175 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10176 > first_count))
10178 varop = XEXP (varop, 0);
10179 count -= first_count;
10180 if (count < 0)
10182 count = -count;
10183 code = ASHIFT;
10186 continue;
10189 /* There are some cases we can't do. If CODE is ASHIFTRT,
10190 we can only do this if FIRST_CODE is also ASHIFTRT.
10192 We can't do the case when CODE is ROTATE and FIRST_CODE is
10193 ASHIFTRT.
10195 If the mode of this shift is not the mode of the outer shift,
10196 we can't do this if either shift is a right shift or ROTATE.
10198 Finally, we can't do any of these if the mode is too wide
10199 unless the codes are the same.
10201 Handle the case where the shift codes are the same
10202 first. */
10204 if (code == first_code)
10206 if (GET_MODE (varop) != result_mode
10207 && (code == ASHIFTRT || code == LSHIFTRT
10208 || code == ROTATE))
10209 break;
10211 count += first_count;
10212 varop = XEXP (varop, 0);
10213 continue;
10216 if (code == ASHIFTRT
10217 || (code == ROTATE && first_code == ASHIFTRT)
10218 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10219 || (GET_MODE (varop) != result_mode
10220 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10221 || first_code == ROTATE
10222 || code == ROTATE)))
10223 break;
10225 /* To compute the mask to apply after the shift, shift the
10226 nonzero bits of the inner shift the same way the
10227 outer shift will. */
10229 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10231 mask_rtx
10232 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10233 GEN_INT (count));
10235 /* Give up if we can't compute an outer operation to use. */
10236 if (mask_rtx == 0
10237 || !CONST_INT_P (mask_rtx)
10238 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10239 INTVAL (mask_rtx),
10240 result_mode, &complement_p))
10241 break;
10243 /* If the shifts are in the same direction, we add the
10244 counts. Otherwise, we subtract them. */
10245 if ((code == ASHIFTRT || code == LSHIFTRT)
10246 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10247 count += first_count;
10248 else
10249 count -= first_count;
10251 /* If COUNT is positive, the new shift is usually CODE,
10252 except for the two exceptions below, in which case it is
10253 FIRST_CODE. If the count is negative, FIRST_CODE should
10254 always be used */
10255 if (count > 0
10256 && ((first_code == ROTATE && code == ASHIFT)
10257 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10258 code = first_code;
10259 else if (count < 0)
10260 code = first_code, count = -count;
10262 varop = XEXP (varop, 0);
10263 continue;
10266 /* If we have (A << B << C) for any shift, we can convert this to
10267 (A << C << B). This wins if A is a constant. Only try this if
10268 B is not a constant. */
10270 else if (GET_CODE (varop) == code
10271 && CONST_INT_P (XEXP (varop, 0))
10272 && !CONST_INT_P (XEXP (varop, 1)))
10274 rtx new_rtx = simplify_const_binary_operation (code, mode,
10275 XEXP (varop, 0),
10276 GEN_INT (count));
10277 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10278 count = 0;
10279 continue;
10281 break;
10283 case NOT:
10284 if (VECTOR_MODE_P (mode))
10285 break;
10287 /* Make this fit the case below. */
10288 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10289 GEN_INT (GET_MODE_MASK (mode)));
10290 continue;
10292 case IOR:
10293 case AND:
10294 case XOR:
10295 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10296 with C the size of VAROP - 1 and the shift is logical if
10297 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10298 we have an (le X 0) operation. If we have an arithmetic shift
10299 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10300 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10302 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10303 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10304 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10305 && (code == LSHIFTRT || code == ASHIFTRT)
10306 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10307 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10309 count = 0;
10310 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10311 const0_rtx);
10313 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10314 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10316 continue;
10319 /* If we have (shift (logical)), move the logical to the outside
10320 to allow it to possibly combine with another logical and the
10321 shift to combine with another shift. This also canonicalizes to
10322 what a ZERO_EXTRACT looks like. Also, some machines have
10323 (and (shift)) insns. */
10325 if (CONST_INT_P (XEXP (varop, 1))
10326 /* We can't do this if we have (ashiftrt (xor)) and the
10327 constant has its sign bit set in shift_mode. */
10328 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10329 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10330 shift_mode))
10331 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10332 XEXP (varop, 1),
10333 GEN_INT (count))) != 0
10334 && CONST_INT_P (new_rtx)
10335 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10336 INTVAL (new_rtx), result_mode, &complement_p))
10338 varop = XEXP (varop, 0);
10339 continue;
10342 /* If we can't do that, try to simplify the shift in each arm of the
10343 logical expression, make a new logical expression, and apply
10344 the inverse distributive law. This also can't be done
10345 for some (ashiftrt (xor)). */
10346 if (CONST_INT_P (XEXP (varop, 1))
10347 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10348 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10349 shift_mode)))
10351 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10352 XEXP (varop, 0), count);
10353 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10354 XEXP (varop, 1), count);
10356 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10357 lhs, rhs);
10358 varop = apply_distributive_law (varop);
10360 count = 0;
10361 continue;
10363 break;
10365 case EQ:
10366 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10367 says that the sign bit can be tested, FOO has mode MODE, C is
10368 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10369 that may be nonzero. */
10370 if (code == LSHIFTRT
10371 && XEXP (varop, 1) == const0_rtx
10372 && GET_MODE (XEXP (varop, 0)) == result_mode
10373 && count == (GET_MODE_PRECISION (result_mode) - 1)
10374 && HWI_COMPUTABLE_MODE_P (result_mode)
10375 && STORE_FLAG_VALUE == -1
10376 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10377 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10378 &complement_p))
10380 varop = XEXP (varop, 0);
10381 count = 0;
10382 continue;
10384 break;
10386 case NEG:
10387 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10388 than the number of bits in the mode is equivalent to A. */
10389 if (code == LSHIFTRT
10390 && count == (GET_MODE_PRECISION (result_mode) - 1)
10391 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10393 varop = XEXP (varop, 0);
10394 count = 0;
10395 continue;
10398 /* NEG commutes with ASHIFT since it is multiplication. Move the
10399 NEG outside to allow shifts to combine. */
10400 if (code == ASHIFT
10401 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10402 &complement_p))
10404 varop = XEXP (varop, 0);
10405 continue;
10407 break;
10409 case PLUS:
10410 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10411 is one less than the number of bits in the mode is
10412 equivalent to (xor A 1). */
10413 if (code == LSHIFTRT
10414 && count == (GET_MODE_PRECISION (result_mode) - 1)
10415 && XEXP (varop, 1) == constm1_rtx
10416 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10417 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10418 &complement_p))
10420 count = 0;
10421 varop = XEXP (varop, 0);
10422 continue;
10425 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10426 that might be nonzero in BAR are those being shifted out and those
10427 bits are known zero in FOO, we can replace the PLUS with FOO.
10428 Similarly in the other operand order. This code occurs when
10429 we are computing the size of a variable-size array. */
10431 if ((code == ASHIFTRT || code == LSHIFTRT)
10432 && count < HOST_BITS_PER_WIDE_INT
10433 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10434 && (nonzero_bits (XEXP (varop, 1), result_mode)
10435 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10437 varop = XEXP (varop, 0);
10438 continue;
10440 else if ((code == ASHIFTRT || code == LSHIFTRT)
10441 && count < HOST_BITS_PER_WIDE_INT
10442 && HWI_COMPUTABLE_MODE_P (result_mode)
10443 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10444 >> count)
10445 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10446 & nonzero_bits (XEXP (varop, 1),
10447 result_mode)))
10449 varop = XEXP (varop, 1);
10450 continue;
10453 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10454 if (code == ASHIFT
10455 && CONST_INT_P (XEXP (varop, 1))
10456 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10457 XEXP (varop, 1),
10458 GEN_INT (count))) != 0
10459 && CONST_INT_P (new_rtx)
10460 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10461 INTVAL (new_rtx), result_mode, &complement_p))
10463 varop = XEXP (varop, 0);
10464 continue;
10467 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10468 signbit', and attempt to change the PLUS to an XOR and move it to
10469 the outer operation as is done above in the AND/IOR/XOR case
10470 leg for shift(logical). See details in logical handling above
10471 for reasoning in doing so. */
10472 if (code == LSHIFTRT
10473 && CONST_INT_P (XEXP (varop, 1))
10474 && mode_signbit_p (result_mode, XEXP (varop, 1))
10475 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10476 XEXP (varop, 1),
10477 GEN_INT (count))) != 0
10478 && CONST_INT_P (new_rtx)
10479 && merge_outer_ops (&outer_op, &outer_const, XOR,
10480 INTVAL (new_rtx), result_mode, &complement_p))
10482 varop = XEXP (varop, 0);
10483 continue;
10486 break;
10488 case MINUS:
10489 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10490 with C the size of VAROP - 1 and the shift is logical if
10491 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10492 we have a (gt X 0) operation. If the shift is arithmetic with
10493 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10494 we have a (neg (gt X 0)) operation. */
10496 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10497 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10498 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10499 && (code == LSHIFTRT || code == ASHIFTRT)
10500 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10501 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10502 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10504 count = 0;
10505 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10506 const0_rtx);
10508 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10509 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10511 continue;
10513 break;
10515 case TRUNCATE:
10516 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10517 if the truncate does not affect the value. */
10518 if (code == LSHIFTRT
10519 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10520 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10521 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10522 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10523 - GET_MODE_PRECISION (GET_MODE (varop)))))
10525 rtx varop_inner = XEXP (varop, 0);
10527 varop_inner
10528 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10529 XEXP (varop_inner, 0),
10530 GEN_INT
10531 (count + INTVAL (XEXP (varop_inner, 1))));
10532 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10533 count = 0;
10534 continue;
10536 break;
10538 default:
10539 break;
10542 break;
10545 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10546 outer_op, outer_const);
10548 /* We have now finished analyzing the shift. The result should be
10549 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10550 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10551 to the result of the shift. OUTER_CONST is the relevant constant,
10552 but we must turn off all bits turned off in the shift. */
10554 if (outer_op == UNKNOWN
10555 && orig_code == code && orig_count == count
10556 && varop == orig_varop
10557 && shift_mode == GET_MODE (varop))
10558 return NULL_RTX;
10560 /* Make a SUBREG if necessary. If we can't make it, fail. */
10561 varop = gen_lowpart (shift_mode, varop);
10562 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10563 return NULL_RTX;
10565 /* If we have an outer operation and we just made a shift, it is
10566 possible that we could have simplified the shift were it not
10567 for the outer operation. So try to do the simplification
10568 recursively. */
10570 if (outer_op != UNKNOWN)
10571 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10572 else
10573 x = NULL_RTX;
10575 if (x == NULL_RTX)
10576 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10578 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10579 turn off all the bits that the shift would have turned off. */
10580 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10581 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10582 GET_MODE_MASK (result_mode) >> orig_count);
10584 /* Do the remainder of the processing in RESULT_MODE. */
10585 x = gen_lowpart_or_truncate (result_mode, x);
10587 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10588 operation. */
10589 if (complement_p)
10590 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10592 if (outer_op != UNKNOWN)
10594 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10595 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10596 outer_const = trunc_int_for_mode (outer_const, result_mode);
10598 if (outer_op == AND)
10599 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10600 else if (outer_op == SET)
10602 /* This means that we have determined that the result is
10603 equivalent to a constant. This should be rare. */
10604 if (!side_effects_p (x))
10605 x = GEN_INT (outer_const);
10607 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10608 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10609 else
10610 x = simplify_gen_binary (outer_op, result_mode, x,
10611 GEN_INT (outer_const));
10614 return x;
10617 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10618 The result of the shift is RESULT_MODE. If we cannot simplify it,
10619 return X or, if it is NULL, synthesize the expression with
10620 simplify_gen_binary. Otherwise, return a simplified value.
10622 The shift is normally computed in the widest mode we find in VAROP, as
10623 long as it isn't a different number of words than RESULT_MODE. Exceptions
10624 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10626 static rtx
10627 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10628 rtx varop, int count)
10630 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10631 if (tem)
10632 return tem;
10634 if (!x)
10635 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10636 if (GET_MODE (x) != result_mode)
10637 x = gen_lowpart (result_mode, x);
10638 return x;
10642 /* Like recog, but we receive the address of a pointer to a new pattern.
10643 We try to match the rtx that the pointer points to.
10644 If that fails, we may try to modify or replace the pattern,
10645 storing the replacement into the same pointer object.
10647 Modifications include deletion or addition of CLOBBERs.
10649 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10650 the CLOBBERs are placed.
10652 The value is the final insn code from the pattern ultimately matched,
10653 or -1. */
10655 static int
10656 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10658 rtx pat = *pnewpat;
10659 int insn_code_number;
10660 int num_clobbers_to_add = 0;
10661 int i;
10662 rtx notes = 0;
10663 rtx old_notes, old_pat;
10665 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10666 we use to indicate that something didn't match. If we find such a
10667 thing, force rejection. */
10668 if (GET_CODE (pat) == PARALLEL)
10669 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10670 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10671 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10672 return -1;
10674 old_pat = PATTERN (insn);
10675 old_notes = REG_NOTES (insn);
10676 PATTERN (insn) = pat;
10677 REG_NOTES (insn) = 0;
10679 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10680 if (dump_file && (dump_flags & TDF_DETAILS))
10682 if (insn_code_number < 0)
10683 fputs ("Failed to match this instruction:\n", dump_file);
10684 else
10685 fputs ("Successfully matched this instruction:\n", dump_file);
10686 print_rtl_single (dump_file, pat);
10689 /* If it isn't, there is the possibility that we previously had an insn
10690 that clobbered some register as a side effect, but the combined
10691 insn doesn't need to do that. So try once more without the clobbers
10692 unless this represents an ASM insn. */
10694 if (insn_code_number < 0 && ! check_asm_operands (pat)
10695 && GET_CODE (pat) == PARALLEL)
10697 int pos;
10699 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10700 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10702 if (i != pos)
10703 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10704 pos++;
10707 SUBST_INT (XVECLEN (pat, 0), pos);
10709 if (pos == 1)
10710 pat = XVECEXP (pat, 0, 0);
10712 PATTERN (insn) = pat;
10713 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10714 if (dump_file && (dump_flags & TDF_DETAILS))
10716 if (insn_code_number < 0)
10717 fputs ("Failed to match this instruction:\n", dump_file);
10718 else
10719 fputs ("Successfully matched this instruction:\n", dump_file);
10720 print_rtl_single (dump_file, pat);
10723 PATTERN (insn) = old_pat;
10724 REG_NOTES (insn) = old_notes;
10726 /* Recognize all noop sets, these will be killed by followup pass. */
10727 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10728 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10730 /* If we had any clobbers to add, make a new pattern than contains
10731 them. Then check to make sure that all of them are dead. */
10732 if (num_clobbers_to_add)
10734 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10735 rtvec_alloc (GET_CODE (pat) == PARALLEL
10736 ? (XVECLEN (pat, 0)
10737 + num_clobbers_to_add)
10738 : num_clobbers_to_add + 1));
10740 if (GET_CODE (pat) == PARALLEL)
10741 for (i = 0; i < XVECLEN (pat, 0); i++)
10742 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10743 else
10744 XVECEXP (newpat, 0, 0) = pat;
10746 add_clobbers (newpat, insn_code_number);
10748 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10749 i < XVECLEN (newpat, 0); i++)
10751 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10752 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10753 return -1;
10754 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10756 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10757 notes = alloc_reg_note (REG_UNUSED,
10758 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10761 pat = newpat;
10764 *pnewpat = pat;
10765 *pnotes = notes;
10767 return insn_code_number;
10770 /* Like gen_lowpart_general but for use by combine. In combine it
10771 is not possible to create any new pseudoregs. However, it is
10772 safe to create invalid memory addresses, because combine will
10773 try to recognize them and all they will do is make the combine
10774 attempt fail.
10776 If for some reason this cannot do its job, an rtx
10777 (clobber (const_int 0)) is returned.
10778 An insn containing that will not be recognized. */
10780 static rtx
10781 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10783 enum machine_mode imode = GET_MODE (x);
10784 unsigned int osize = GET_MODE_SIZE (omode);
10785 unsigned int isize = GET_MODE_SIZE (imode);
10786 rtx result;
10788 if (omode == imode)
10789 return x;
10791 /* Return identity if this is a CONST or symbolic reference. */
10792 if (omode == Pmode
10793 && (GET_CODE (x) == CONST
10794 || GET_CODE (x) == SYMBOL_REF
10795 || GET_CODE (x) == LABEL_REF))
10796 return x;
10798 /* We can only support MODE being wider than a word if X is a
10799 constant integer or has a mode the same size. */
10800 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10801 && ! ((imode == VOIDmode
10802 && (CONST_INT_P (x)
10803 || GET_CODE (x) == CONST_DOUBLE))
10804 || isize == osize))
10805 goto fail;
10807 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10808 won't know what to do. So we will strip off the SUBREG here and
10809 process normally. */
10810 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10812 x = SUBREG_REG (x);
10814 /* For use in case we fall down into the address adjustments
10815 further below, we need to adjust the known mode and size of
10816 x; imode and isize, since we just adjusted x. */
10817 imode = GET_MODE (x);
10819 if (imode == omode)
10820 return x;
10822 isize = GET_MODE_SIZE (imode);
10825 result = gen_lowpart_common (omode, x);
10827 if (result)
10828 return result;
10830 if (MEM_P (x))
10832 int offset = 0;
10834 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10835 address. */
10836 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10837 goto fail;
10839 /* If we want to refer to something bigger than the original memref,
10840 generate a paradoxical subreg instead. That will force a reload
10841 of the original memref X. */
10842 if (isize < osize)
10843 return gen_rtx_SUBREG (omode, x, 0);
10845 if (WORDS_BIG_ENDIAN)
10846 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10848 /* Adjust the address so that the address-after-the-data is
10849 unchanged. */
10850 if (BYTES_BIG_ENDIAN)
10851 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10853 return adjust_address_nv (x, omode, offset);
10856 /* If X is a comparison operator, rewrite it in a new mode. This
10857 probably won't match, but may allow further simplifications. */
10858 else if (COMPARISON_P (x))
10859 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10861 /* If we couldn't simplify X any other way, just enclose it in a
10862 SUBREG. Normally, this SUBREG won't match, but some patterns may
10863 include an explicit SUBREG or we may simplify it further in combine. */
10864 else
10866 int offset = 0;
10867 rtx res;
10869 offset = subreg_lowpart_offset (omode, imode);
10870 if (imode == VOIDmode)
10872 imode = int_mode_for_mode (omode);
10873 x = gen_lowpart_common (imode, x);
10874 if (x == NULL)
10875 goto fail;
10877 res = simplify_gen_subreg (omode, x, imode, offset);
10878 if (res)
10879 return res;
10882 fail:
10883 return gen_rtx_CLOBBER (omode, const0_rtx);
10886 /* Try to simplify a comparison between OP0 and a constant OP1,
10887 where CODE is the comparison code that will be tested, into a
10888 (CODE OP0 const0_rtx) form.
10890 The result is a possibly different comparison code to use.
10891 *POP1 may be updated. */
10893 static enum rtx_code
10894 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10896 enum machine_mode mode = GET_MODE (op0);
10897 unsigned int mode_width = GET_MODE_PRECISION (mode);
10898 HOST_WIDE_INT const_op = INTVAL (*pop1);
10900 /* Get the constant we are comparing against and turn off all bits
10901 not on in our mode. */
10902 if (mode != VOIDmode)
10903 const_op = trunc_int_for_mode (const_op, mode);
10905 /* If we are comparing against a constant power of two and the value
10906 being compared can only have that single bit nonzero (e.g., it was
10907 `and'ed with that bit), we can replace this with a comparison
10908 with zero. */
10909 if (const_op
10910 && (code == EQ || code == NE || code == GE || code == GEU
10911 || code == LT || code == LTU)
10912 && mode_width <= HOST_BITS_PER_WIDE_INT
10913 && exact_log2 (const_op) >= 0
10914 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10916 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10917 const_op = 0;
10920 /* Similarly, if we are comparing a value known to be either -1 or
10921 0 with -1, change it to the opposite comparison against zero. */
10922 if (const_op == -1
10923 && (code == EQ || code == NE || code == GT || code == LE
10924 || code == GEU || code == LTU)
10925 && num_sign_bit_copies (op0, mode) == mode_width)
10927 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10928 const_op = 0;
10931 /* Do some canonicalizations based on the comparison code. We prefer
10932 comparisons against zero and then prefer equality comparisons.
10933 If we can reduce the size of a constant, we will do that too. */
10934 switch (code)
10936 case LT:
10937 /* < C is equivalent to <= (C - 1) */
10938 if (const_op > 0)
10940 const_op -= 1;
10941 code = LE;
10942 /* ... fall through to LE case below. */
10944 else
10945 break;
10947 case LE:
10948 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10949 if (const_op < 0)
10951 const_op += 1;
10952 code = LT;
10955 /* If we are doing a <= 0 comparison on a value known to have
10956 a zero sign bit, we can replace this with == 0. */
10957 else if (const_op == 0
10958 && mode_width <= HOST_BITS_PER_WIDE_INT
10959 && (nonzero_bits (op0, mode)
10960 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10961 == 0)
10962 code = EQ;
10963 break;
10965 case GE:
10966 /* >= C is equivalent to > (C - 1). */
10967 if (const_op > 0)
10969 const_op -= 1;
10970 code = GT;
10971 /* ... fall through to GT below. */
10973 else
10974 break;
10976 case GT:
10977 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10978 if (const_op < 0)
10980 const_op += 1;
10981 code = GE;
10984 /* If we are doing a > 0 comparison on a value known to have
10985 a zero sign bit, we can replace this with != 0. */
10986 else if (const_op == 0
10987 && mode_width <= HOST_BITS_PER_WIDE_INT
10988 && (nonzero_bits (op0, mode)
10989 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10990 == 0)
10991 code = NE;
10992 break;
10994 case LTU:
10995 /* < C is equivalent to <= (C - 1). */
10996 if (const_op > 0)
10998 const_op -= 1;
10999 code = LEU;
11000 /* ... fall through ... */
11002 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11003 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11004 && (unsigned HOST_WIDE_INT) const_op
11005 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11007 const_op = 0;
11008 code = GE;
11009 break;
11011 else
11012 break;
11014 case LEU:
11015 /* unsigned <= 0 is equivalent to == 0 */
11016 if (const_op == 0)
11017 code = EQ;
11018 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11019 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11020 && (unsigned HOST_WIDE_INT) const_op
11021 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11023 const_op = 0;
11024 code = GE;
11026 break;
11028 case GEU:
11029 /* >= C is equivalent to > (C - 1). */
11030 if (const_op > 1)
11032 const_op -= 1;
11033 code = GTU;
11034 /* ... fall through ... */
11037 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11038 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11039 && (unsigned HOST_WIDE_INT) const_op
11040 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11042 const_op = 0;
11043 code = LT;
11044 break;
11046 else
11047 break;
11049 case GTU:
11050 /* unsigned > 0 is equivalent to != 0 */
11051 if (const_op == 0)
11052 code = NE;
11053 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11054 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11055 && (unsigned HOST_WIDE_INT) const_op
11056 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11058 const_op = 0;
11059 code = LT;
11061 break;
11063 default:
11064 break;
11067 *pop1 = GEN_INT (const_op);
11068 return code;
11071 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11072 comparison code that will be tested.
11074 The result is a possibly different comparison code to use. *POP0 and
11075 *POP1 may be updated.
11077 It is possible that we might detect that a comparison is either always
11078 true or always false. However, we do not perform general constant
11079 folding in combine, so this knowledge isn't useful. Such tautologies
11080 should have been detected earlier. Hence we ignore all such cases. */
11082 static enum rtx_code
11083 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11085 rtx op0 = *pop0;
11086 rtx op1 = *pop1;
11087 rtx tem, tem1;
11088 int i;
11089 enum machine_mode mode, tmode;
11091 /* Try a few ways of applying the same transformation to both operands. */
11092 while (1)
11094 #ifndef WORD_REGISTER_OPERATIONS
11095 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11096 so check specially. */
11097 if (code != GTU && code != GEU && code != LTU && code != LEU
11098 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11099 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11100 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11101 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11102 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11103 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11104 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11105 && CONST_INT_P (XEXP (op0, 1))
11106 && XEXP (op0, 1) == XEXP (op1, 1)
11107 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11108 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11109 && (INTVAL (XEXP (op0, 1))
11110 == (GET_MODE_PRECISION (GET_MODE (op0))
11111 - (GET_MODE_PRECISION
11112 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11114 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11115 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11117 #endif
11119 /* If both operands are the same constant shift, see if we can ignore the
11120 shift. We can if the shift is a rotate or if the bits shifted out of
11121 this shift are known to be zero for both inputs and if the type of
11122 comparison is compatible with the shift. */
11123 if (GET_CODE (op0) == GET_CODE (op1)
11124 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11125 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11126 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11127 && (code != GT && code != LT && code != GE && code != LE))
11128 || (GET_CODE (op0) == ASHIFTRT
11129 && (code != GTU && code != LTU
11130 && code != GEU && code != LEU)))
11131 && CONST_INT_P (XEXP (op0, 1))
11132 && INTVAL (XEXP (op0, 1)) >= 0
11133 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11134 && XEXP (op0, 1) == XEXP (op1, 1))
11136 enum machine_mode mode = GET_MODE (op0);
11137 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11138 int shift_count = INTVAL (XEXP (op0, 1));
11140 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11141 mask &= (mask >> shift_count) << shift_count;
11142 else if (GET_CODE (op0) == ASHIFT)
11143 mask = (mask & (mask << shift_count)) >> shift_count;
11145 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11146 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11147 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11148 else
11149 break;
11152 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11153 SUBREGs are of the same mode, and, in both cases, the AND would
11154 be redundant if the comparison was done in the narrower mode,
11155 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11156 and the operand's possibly nonzero bits are 0xffffff01; in that case
11157 if we only care about QImode, we don't need the AND). This case
11158 occurs if the output mode of an scc insn is not SImode and
11159 STORE_FLAG_VALUE == 1 (e.g., the 386).
11161 Similarly, check for a case where the AND's are ZERO_EXTEND
11162 operations from some narrower mode even though a SUBREG is not
11163 present. */
11165 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11166 && CONST_INT_P (XEXP (op0, 1))
11167 && CONST_INT_P (XEXP (op1, 1)))
11169 rtx inner_op0 = XEXP (op0, 0);
11170 rtx inner_op1 = XEXP (op1, 0);
11171 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11172 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11173 int changed = 0;
11175 if (paradoxical_subreg_p (inner_op0)
11176 && GET_CODE (inner_op1) == SUBREG
11177 && (GET_MODE (SUBREG_REG (inner_op0))
11178 == GET_MODE (SUBREG_REG (inner_op1)))
11179 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11180 <= HOST_BITS_PER_WIDE_INT)
11181 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11182 GET_MODE (SUBREG_REG (inner_op0)))))
11183 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11184 GET_MODE (SUBREG_REG (inner_op1))))))
11186 op0 = SUBREG_REG (inner_op0);
11187 op1 = SUBREG_REG (inner_op1);
11189 /* The resulting comparison is always unsigned since we masked
11190 off the original sign bit. */
11191 code = unsigned_condition (code);
11193 changed = 1;
11196 else if (c0 == c1)
11197 for (tmode = GET_CLASS_NARROWEST_MODE
11198 (GET_MODE_CLASS (GET_MODE (op0)));
11199 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11200 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11202 op0 = gen_lowpart (tmode, inner_op0);
11203 op1 = gen_lowpart (tmode, inner_op1);
11204 code = unsigned_condition (code);
11205 changed = 1;
11206 break;
11209 if (! changed)
11210 break;
11213 /* If both operands are NOT, we can strip off the outer operation
11214 and adjust the comparison code for swapped operands; similarly for
11215 NEG, except that this must be an equality comparison. */
11216 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11217 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11218 && (code == EQ || code == NE)))
11219 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11221 else
11222 break;
11225 /* If the first operand is a constant, swap the operands and adjust the
11226 comparison code appropriately, but don't do this if the second operand
11227 is already a constant integer. */
11228 if (swap_commutative_operands_p (op0, op1))
11230 tem = op0, op0 = op1, op1 = tem;
11231 code = swap_condition (code);
11234 /* We now enter a loop during which we will try to simplify the comparison.
11235 For the most part, we only are concerned with comparisons with zero,
11236 but some things may really be comparisons with zero but not start
11237 out looking that way. */
11239 while (CONST_INT_P (op1))
11241 enum machine_mode mode = GET_MODE (op0);
11242 unsigned int mode_width = GET_MODE_PRECISION (mode);
11243 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11244 int equality_comparison_p;
11245 int sign_bit_comparison_p;
11246 int unsigned_comparison_p;
11247 HOST_WIDE_INT const_op;
11249 /* We only want to handle integral modes. This catches VOIDmode,
11250 CCmode, and the floating-point modes. An exception is that we
11251 can handle VOIDmode if OP0 is a COMPARE or a comparison
11252 operation. */
11254 if (GET_MODE_CLASS (mode) != MODE_INT
11255 && ! (mode == VOIDmode
11256 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11257 break;
11259 /* Try to simplify the compare to constant, possibly changing the
11260 comparison op, and/or changing op1 to zero. */
11261 code = simplify_compare_const (code, op0, &op1);
11262 const_op = INTVAL (op1);
11264 /* Compute some predicates to simplify code below. */
11266 equality_comparison_p = (code == EQ || code == NE);
11267 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11268 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11269 || code == GEU);
11271 /* If this is a sign bit comparison and we can do arithmetic in
11272 MODE, say that we will only be needing the sign bit of OP0. */
11273 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11274 op0 = force_to_mode (op0, mode,
11275 (unsigned HOST_WIDE_INT) 1
11276 << (GET_MODE_PRECISION (mode) - 1),
11279 /* Now try cases based on the opcode of OP0. If none of the cases
11280 does a "continue", we exit this loop immediately after the
11281 switch. */
11283 switch (GET_CODE (op0))
11285 case ZERO_EXTRACT:
11286 /* If we are extracting a single bit from a variable position in
11287 a constant that has only a single bit set and are comparing it
11288 with zero, we can convert this into an equality comparison
11289 between the position and the location of the single bit. */
11290 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11291 have already reduced the shift count modulo the word size. */
11292 if (!SHIFT_COUNT_TRUNCATED
11293 && CONST_INT_P (XEXP (op0, 0))
11294 && XEXP (op0, 1) == const1_rtx
11295 && equality_comparison_p && const_op == 0
11296 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11298 if (BITS_BIG_ENDIAN)
11300 enum machine_mode new_mode
11301 = mode_for_extraction (EP_extzv, 1);
11302 if (new_mode == MAX_MACHINE_MODE)
11303 i = BITS_PER_WORD - 1 - i;
11304 else
11306 mode = new_mode;
11307 i = (GET_MODE_PRECISION (mode) - 1 - i);
11311 op0 = XEXP (op0, 2);
11312 op1 = GEN_INT (i);
11313 const_op = i;
11315 /* Result is nonzero iff shift count is equal to I. */
11316 code = reverse_condition (code);
11317 continue;
11320 /* ... fall through ... */
11322 case SIGN_EXTRACT:
11323 tem = expand_compound_operation (op0);
11324 if (tem != op0)
11326 op0 = tem;
11327 continue;
11329 break;
11331 case NOT:
11332 /* If testing for equality, we can take the NOT of the constant. */
11333 if (equality_comparison_p
11334 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11336 op0 = XEXP (op0, 0);
11337 op1 = tem;
11338 continue;
11341 /* If just looking at the sign bit, reverse the sense of the
11342 comparison. */
11343 if (sign_bit_comparison_p)
11345 op0 = XEXP (op0, 0);
11346 code = (code == GE ? LT : GE);
11347 continue;
11349 break;
11351 case NEG:
11352 /* If testing for equality, we can take the NEG of the constant. */
11353 if (equality_comparison_p
11354 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11356 op0 = XEXP (op0, 0);
11357 op1 = tem;
11358 continue;
11361 /* The remaining cases only apply to comparisons with zero. */
11362 if (const_op != 0)
11363 break;
11365 /* When X is ABS or is known positive,
11366 (neg X) is < 0 if and only if X != 0. */
11368 if (sign_bit_comparison_p
11369 && (GET_CODE (XEXP (op0, 0)) == ABS
11370 || (mode_width <= HOST_BITS_PER_WIDE_INT
11371 && (nonzero_bits (XEXP (op0, 0), mode)
11372 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11373 == 0)))
11375 op0 = XEXP (op0, 0);
11376 code = (code == LT ? NE : EQ);
11377 continue;
11380 /* If we have NEG of something whose two high-order bits are the
11381 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11382 if (num_sign_bit_copies (op0, mode) >= 2)
11384 op0 = XEXP (op0, 0);
11385 code = swap_condition (code);
11386 continue;
11388 break;
11390 case ROTATE:
11391 /* If we are testing equality and our count is a constant, we
11392 can perform the inverse operation on our RHS. */
11393 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11394 && (tem = simplify_binary_operation (ROTATERT, mode,
11395 op1, XEXP (op0, 1))) != 0)
11397 op0 = XEXP (op0, 0);
11398 op1 = tem;
11399 continue;
11402 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11403 a particular bit. Convert it to an AND of a constant of that
11404 bit. This will be converted into a ZERO_EXTRACT. */
11405 if (const_op == 0 && sign_bit_comparison_p
11406 && CONST_INT_P (XEXP (op0, 1))
11407 && mode_width <= HOST_BITS_PER_WIDE_INT)
11409 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11410 ((unsigned HOST_WIDE_INT) 1
11411 << (mode_width - 1
11412 - INTVAL (XEXP (op0, 1)))));
11413 code = (code == LT ? NE : EQ);
11414 continue;
11417 /* Fall through. */
11419 case ABS:
11420 /* ABS is ignorable inside an equality comparison with zero. */
11421 if (const_op == 0 && equality_comparison_p)
11423 op0 = XEXP (op0, 0);
11424 continue;
11426 break;
11428 case SIGN_EXTEND:
11429 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11430 (compare FOO CONST) if CONST fits in FOO's mode and we
11431 are either testing inequality or have an unsigned
11432 comparison with ZERO_EXTEND or a signed comparison with
11433 SIGN_EXTEND. But don't do it if we don't have a compare
11434 insn of the given mode, since we'd have to revert it
11435 later on, and then we wouldn't know whether to sign- or
11436 zero-extend. */
11437 mode = GET_MODE (XEXP (op0, 0));
11438 if (GET_MODE_CLASS (mode) == MODE_INT
11439 && ! unsigned_comparison_p
11440 && HWI_COMPUTABLE_MODE_P (mode)
11441 && trunc_int_for_mode (const_op, mode) == const_op
11442 && have_insn_for (COMPARE, mode))
11444 op0 = XEXP (op0, 0);
11445 continue;
11447 break;
11449 case SUBREG:
11450 /* Check for the case where we are comparing A - C1 with C2, that is
11452 (subreg:MODE (plus (A) (-C1))) op (C2)
11454 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11455 comparison in the wider mode. One of the following two conditions
11456 must be true in order for this to be valid:
11458 1. The mode extension results in the same bit pattern being added
11459 on both sides and the comparison is equality or unsigned. As
11460 C2 has been truncated to fit in MODE, the pattern can only be
11461 all 0s or all 1s.
11463 2. The mode extension results in the sign bit being copied on
11464 each side.
11466 The difficulty here is that we have predicates for A but not for
11467 (A - C1) so we need to check that C1 is within proper bounds so
11468 as to perturbate A as little as possible. */
11470 if (mode_width <= HOST_BITS_PER_WIDE_INT
11471 && subreg_lowpart_p (op0)
11472 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11473 && GET_CODE (SUBREG_REG (op0)) == PLUS
11474 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11476 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11477 rtx a = XEXP (SUBREG_REG (op0), 0);
11478 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11480 if ((c1 > 0
11481 && (unsigned HOST_WIDE_INT) c1
11482 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11483 && (equality_comparison_p || unsigned_comparison_p)
11484 /* (A - C1) zero-extends if it is positive and sign-extends
11485 if it is negative, C2 both zero- and sign-extends. */
11486 && ((0 == (nonzero_bits (a, inner_mode)
11487 & ~GET_MODE_MASK (mode))
11488 && const_op >= 0)
11489 /* (A - C1) sign-extends if it is positive and 1-extends
11490 if it is negative, C2 both sign- and 1-extends. */
11491 || (num_sign_bit_copies (a, inner_mode)
11492 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11493 - mode_width)
11494 && const_op < 0)))
11495 || ((unsigned HOST_WIDE_INT) c1
11496 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11497 /* (A - C1) always sign-extends, like C2. */
11498 && num_sign_bit_copies (a, inner_mode)
11499 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11500 - (mode_width - 1))))
11502 op0 = SUBREG_REG (op0);
11503 continue;
11507 /* If the inner mode is narrower and we are extracting the low part,
11508 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11509 if (subreg_lowpart_p (op0)
11510 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11511 /* Fall through */ ;
11512 else
11513 break;
11515 /* ... fall through ... */
11517 case ZERO_EXTEND:
11518 mode = GET_MODE (XEXP (op0, 0));
11519 if (GET_MODE_CLASS (mode) == MODE_INT
11520 && (unsigned_comparison_p || equality_comparison_p)
11521 && HWI_COMPUTABLE_MODE_P (mode)
11522 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11523 && const_op >= 0
11524 && have_insn_for (COMPARE, mode))
11526 op0 = XEXP (op0, 0);
11527 continue;
11529 break;
11531 case PLUS:
11532 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11533 this for equality comparisons due to pathological cases involving
11534 overflows. */
11535 if (equality_comparison_p
11536 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11537 op1, XEXP (op0, 1))))
11539 op0 = XEXP (op0, 0);
11540 op1 = tem;
11541 continue;
11544 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11545 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11546 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11548 op0 = XEXP (XEXP (op0, 0), 0);
11549 code = (code == LT ? EQ : NE);
11550 continue;
11552 break;
11554 case MINUS:
11555 /* We used to optimize signed comparisons against zero, but that
11556 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11557 arrive here as equality comparisons, or (GEU, LTU) are
11558 optimized away. No need to special-case them. */
11560 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11561 (eq B (minus A C)), whichever simplifies. We can only do
11562 this for equality comparisons due to pathological cases involving
11563 overflows. */
11564 if (equality_comparison_p
11565 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11566 XEXP (op0, 1), op1)))
11568 op0 = XEXP (op0, 0);
11569 op1 = tem;
11570 continue;
11573 if (equality_comparison_p
11574 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11575 XEXP (op0, 0), op1)))
11577 op0 = XEXP (op0, 1);
11578 op1 = tem;
11579 continue;
11582 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11583 of bits in X minus 1, is one iff X > 0. */
11584 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11585 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11586 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11587 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11589 op0 = XEXP (op0, 1);
11590 code = (code == GE ? LE : GT);
11591 continue;
11593 break;
11595 case XOR:
11596 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11597 if C is zero or B is a constant. */
11598 if (equality_comparison_p
11599 && 0 != (tem = simplify_binary_operation (XOR, mode,
11600 XEXP (op0, 1), op1)))
11602 op0 = XEXP (op0, 0);
11603 op1 = tem;
11604 continue;
11606 break;
11608 case EQ: case NE:
11609 case UNEQ: case LTGT:
11610 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11611 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11612 case UNORDERED: case ORDERED:
11613 /* We can't do anything if OP0 is a condition code value, rather
11614 than an actual data value. */
11615 if (const_op != 0
11616 || CC0_P (XEXP (op0, 0))
11617 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11618 break;
11620 /* Get the two operands being compared. */
11621 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11622 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11623 else
11624 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11626 /* Check for the cases where we simply want the result of the
11627 earlier test or the opposite of that result. */
11628 if (code == NE || code == EQ
11629 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11630 && (code == LT || code == GE)))
11632 enum rtx_code new_code;
11633 if (code == LT || code == NE)
11634 new_code = GET_CODE (op0);
11635 else
11636 new_code = reversed_comparison_code (op0, NULL);
11638 if (new_code != UNKNOWN)
11640 code = new_code;
11641 op0 = tem;
11642 op1 = tem1;
11643 continue;
11646 break;
11648 case IOR:
11649 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11650 iff X <= 0. */
11651 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11652 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11653 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11655 op0 = XEXP (op0, 1);
11656 code = (code == GE ? GT : LE);
11657 continue;
11659 break;
11661 case AND:
11662 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11663 will be converted to a ZERO_EXTRACT later. */
11664 if (const_op == 0 && equality_comparison_p
11665 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11666 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11668 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11669 XEXP (XEXP (op0, 0), 1));
11670 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11671 continue;
11674 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11675 zero and X is a comparison and C1 and C2 describe only bits set
11676 in STORE_FLAG_VALUE, we can compare with X. */
11677 if (const_op == 0 && equality_comparison_p
11678 && mode_width <= HOST_BITS_PER_WIDE_INT
11679 && CONST_INT_P (XEXP (op0, 1))
11680 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11681 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11682 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11683 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11685 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11686 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11687 if ((~STORE_FLAG_VALUE & mask) == 0
11688 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11689 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11690 && COMPARISON_P (tem))))
11692 op0 = XEXP (XEXP (op0, 0), 0);
11693 continue;
11697 /* If we are doing an equality comparison of an AND of a bit equal
11698 to the sign bit, replace this with a LT or GE comparison of
11699 the underlying value. */
11700 if (equality_comparison_p
11701 && const_op == 0
11702 && CONST_INT_P (XEXP (op0, 1))
11703 && mode_width <= HOST_BITS_PER_WIDE_INT
11704 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11705 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11707 op0 = XEXP (op0, 0);
11708 code = (code == EQ ? GE : LT);
11709 continue;
11712 /* If this AND operation is really a ZERO_EXTEND from a narrower
11713 mode, the constant fits within that mode, and this is either an
11714 equality or unsigned comparison, try to do this comparison in
11715 the narrower mode.
11717 Note that in:
11719 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11720 -> (ne:DI (reg:SI 4) (const_int 0))
11722 unless TRULY_NOOP_TRUNCATION allows it or the register is
11723 known to hold a value of the required mode the
11724 transformation is invalid. */
11725 if ((equality_comparison_p || unsigned_comparison_p)
11726 && CONST_INT_P (XEXP (op0, 1))
11727 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11728 & GET_MODE_MASK (mode))
11729 + 1)) >= 0
11730 && const_op >> i == 0
11731 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11732 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11733 || (REG_P (XEXP (op0, 0))
11734 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11736 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11737 continue;
11740 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11741 fits in both M1 and M2 and the SUBREG is either paradoxical
11742 or represents the low part, permute the SUBREG and the AND
11743 and try again. */
11744 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11746 unsigned HOST_WIDE_INT c1;
11747 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11748 /* Require an integral mode, to avoid creating something like
11749 (AND:SF ...). */
11750 if (SCALAR_INT_MODE_P (tmode)
11751 /* It is unsafe to commute the AND into the SUBREG if the
11752 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11753 not defined. As originally written the upper bits
11754 have a defined value due to the AND operation.
11755 However, if we commute the AND inside the SUBREG then
11756 they no longer have defined values and the meaning of
11757 the code has been changed. */
11758 && (0
11759 #ifdef WORD_REGISTER_OPERATIONS
11760 || (mode_width > GET_MODE_PRECISION (tmode)
11761 && mode_width <= BITS_PER_WORD)
11762 #endif
11763 || (mode_width <= GET_MODE_PRECISION (tmode)
11764 && subreg_lowpart_p (XEXP (op0, 0))))
11765 && CONST_INT_P (XEXP (op0, 1))
11766 && mode_width <= HOST_BITS_PER_WIDE_INT
11767 && HWI_COMPUTABLE_MODE_P (tmode)
11768 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11769 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11770 && c1 != mask
11771 && c1 != GET_MODE_MASK (tmode))
11773 op0 = simplify_gen_binary (AND, tmode,
11774 SUBREG_REG (XEXP (op0, 0)),
11775 gen_int_mode (c1, tmode));
11776 op0 = gen_lowpart (mode, op0);
11777 continue;
11781 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11782 if (const_op == 0 && equality_comparison_p
11783 && XEXP (op0, 1) == const1_rtx
11784 && GET_CODE (XEXP (op0, 0)) == NOT)
11786 op0 = simplify_and_const_int (NULL_RTX, mode,
11787 XEXP (XEXP (op0, 0), 0), 1);
11788 code = (code == NE ? EQ : NE);
11789 continue;
11792 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11793 (eq (and (lshiftrt X) 1) 0).
11794 Also handle the case where (not X) is expressed using xor. */
11795 if (const_op == 0 && equality_comparison_p
11796 && XEXP (op0, 1) == const1_rtx
11797 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11799 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11800 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11802 if (GET_CODE (shift_op) == NOT
11803 || (GET_CODE (shift_op) == XOR
11804 && CONST_INT_P (XEXP (shift_op, 1))
11805 && CONST_INT_P (shift_count)
11806 && HWI_COMPUTABLE_MODE_P (mode)
11807 && (UINTVAL (XEXP (shift_op, 1))
11808 == (unsigned HOST_WIDE_INT) 1
11809 << INTVAL (shift_count))))
11812 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11813 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11814 code = (code == NE ? EQ : NE);
11815 continue;
11818 break;
11820 case ASHIFT:
11821 /* If we have (compare (ashift FOO N) (const_int C)) and
11822 the high order N bits of FOO (N+1 if an inequality comparison)
11823 are known to be zero, we can do this by comparing FOO with C
11824 shifted right N bits so long as the low-order N bits of C are
11825 zero. */
11826 if (CONST_INT_P (XEXP (op0, 1))
11827 && INTVAL (XEXP (op0, 1)) >= 0
11828 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11829 < HOST_BITS_PER_WIDE_INT)
11830 && (((unsigned HOST_WIDE_INT) const_op
11831 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11832 - 1)) == 0)
11833 && mode_width <= HOST_BITS_PER_WIDE_INT
11834 && (nonzero_bits (XEXP (op0, 0), mode)
11835 & ~(mask >> (INTVAL (XEXP (op0, 1))
11836 + ! equality_comparison_p))) == 0)
11838 /* We must perform a logical shift, not an arithmetic one,
11839 as we want the top N bits of C to be zero. */
11840 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11842 temp >>= INTVAL (XEXP (op0, 1));
11843 op1 = gen_int_mode (temp, mode);
11844 op0 = XEXP (op0, 0);
11845 continue;
11848 /* If we are doing a sign bit comparison, it means we are testing
11849 a particular bit. Convert it to the appropriate AND. */
11850 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11851 && mode_width <= HOST_BITS_PER_WIDE_INT)
11853 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11854 ((unsigned HOST_WIDE_INT) 1
11855 << (mode_width - 1
11856 - INTVAL (XEXP (op0, 1)))));
11857 code = (code == LT ? NE : EQ);
11858 continue;
11861 /* If this an equality comparison with zero and we are shifting
11862 the low bit to the sign bit, we can convert this to an AND of the
11863 low-order bit. */
11864 if (const_op == 0 && equality_comparison_p
11865 && CONST_INT_P (XEXP (op0, 1))
11866 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11868 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11869 continue;
11871 break;
11873 case ASHIFTRT:
11874 /* If this is an equality comparison with zero, we can do this
11875 as a logical shift, which might be much simpler. */
11876 if (equality_comparison_p && const_op == 0
11877 && CONST_INT_P (XEXP (op0, 1)))
11879 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11880 XEXP (op0, 0),
11881 INTVAL (XEXP (op0, 1)));
11882 continue;
11885 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11886 do the comparison in a narrower mode. */
11887 if (! unsigned_comparison_p
11888 && CONST_INT_P (XEXP (op0, 1))
11889 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11890 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11891 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11892 MODE_INT, 1)) != BLKmode
11893 && (((unsigned HOST_WIDE_INT) const_op
11894 + (GET_MODE_MASK (tmode) >> 1) + 1)
11895 <= GET_MODE_MASK (tmode)))
11897 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11898 continue;
11901 /* Likewise if OP0 is a PLUS of a sign extension with a
11902 constant, which is usually represented with the PLUS
11903 between the shifts. */
11904 if (! unsigned_comparison_p
11905 && CONST_INT_P (XEXP (op0, 1))
11906 && GET_CODE (XEXP (op0, 0)) == PLUS
11907 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11908 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11909 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11910 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11911 MODE_INT, 1)) != BLKmode
11912 && (((unsigned HOST_WIDE_INT) const_op
11913 + (GET_MODE_MASK (tmode) >> 1) + 1)
11914 <= GET_MODE_MASK (tmode)))
11916 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11917 rtx add_const = XEXP (XEXP (op0, 0), 1);
11918 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11919 add_const, XEXP (op0, 1));
11921 op0 = simplify_gen_binary (PLUS, tmode,
11922 gen_lowpart (tmode, inner),
11923 new_const);
11924 continue;
11927 /* ... fall through ... */
11928 case LSHIFTRT:
11929 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11930 the low order N bits of FOO are known to be zero, we can do this
11931 by comparing FOO with C shifted left N bits so long as no
11932 overflow occurs. Even if the low order N bits of FOO aren't known
11933 to be zero, if the comparison is >= or < we can use the same
11934 optimization and for > or <= by setting all the low
11935 order N bits in the comparison constant. */
11936 if (CONST_INT_P (XEXP (op0, 1))
11937 && INTVAL (XEXP (op0, 1)) > 0
11938 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11939 && mode_width <= HOST_BITS_PER_WIDE_INT
11940 && (((unsigned HOST_WIDE_INT) const_op
11941 + (GET_CODE (op0) != LSHIFTRT
11942 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11943 + 1)
11944 : 0))
11945 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11947 unsigned HOST_WIDE_INT low_bits
11948 = (nonzero_bits (XEXP (op0, 0), mode)
11949 & (((unsigned HOST_WIDE_INT) 1
11950 << INTVAL (XEXP (op0, 1))) - 1));
11951 if (low_bits == 0 || !equality_comparison_p)
11953 /* If the shift was logical, then we must make the condition
11954 unsigned. */
11955 if (GET_CODE (op0) == LSHIFTRT)
11956 code = unsigned_condition (code);
11958 const_op <<= INTVAL (XEXP (op0, 1));
11959 if (low_bits != 0
11960 && (code == GT || code == GTU
11961 || code == LE || code == LEU))
11962 const_op
11963 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11964 op1 = GEN_INT (const_op);
11965 op0 = XEXP (op0, 0);
11966 continue;
11970 /* If we are using this shift to extract just the sign bit, we
11971 can replace this with an LT or GE comparison. */
11972 if (const_op == 0
11973 && (equality_comparison_p || sign_bit_comparison_p)
11974 && CONST_INT_P (XEXP (op0, 1))
11975 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11977 op0 = XEXP (op0, 0);
11978 code = (code == NE || code == GT ? LT : GE);
11979 continue;
11981 break;
11983 default:
11984 break;
11987 break;
11990 /* Now make any compound operations involved in this comparison. Then,
11991 check for an outmost SUBREG on OP0 that is not doing anything or is
11992 paradoxical. The latter transformation must only be performed when
11993 it is known that the "extra" bits will be the same in op0 and op1 or
11994 that they don't matter. There are three cases to consider:
11996 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11997 care bits and we can assume they have any convenient value. So
11998 making the transformation is safe.
12000 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12001 In this case the upper bits of op0 are undefined. We should not make
12002 the simplification in that case as we do not know the contents of
12003 those bits.
12005 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12006 UNKNOWN. In that case we know those bits are zeros or ones. We must
12007 also be sure that they are the same as the upper bits of op1.
12009 We can never remove a SUBREG for a non-equality comparison because
12010 the sign bit is in a different place in the underlying object. */
12012 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12013 op1 = make_compound_operation (op1, SET);
12015 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12016 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12017 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12018 && (code == NE || code == EQ))
12020 if (paradoxical_subreg_p (op0))
12022 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12023 implemented. */
12024 if (REG_P (SUBREG_REG (op0)))
12026 op0 = SUBREG_REG (op0);
12027 op1 = gen_lowpart (GET_MODE (op0), op1);
12030 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12031 <= HOST_BITS_PER_WIDE_INT)
12032 && (nonzero_bits (SUBREG_REG (op0),
12033 GET_MODE (SUBREG_REG (op0)))
12034 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12036 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12038 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12039 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12040 op0 = SUBREG_REG (op0), op1 = tem;
12044 /* We now do the opposite procedure: Some machines don't have compare
12045 insns in all modes. If OP0's mode is an integer mode smaller than a
12046 word and we can't do a compare in that mode, see if there is a larger
12047 mode for which we can do the compare. There are a number of cases in
12048 which we can use the wider mode. */
12050 mode = GET_MODE (op0);
12051 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12052 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12053 && ! have_insn_for (COMPARE, mode))
12054 for (tmode = GET_MODE_WIDER_MODE (mode);
12055 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12056 tmode = GET_MODE_WIDER_MODE (tmode))
12057 if (have_insn_for (COMPARE, tmode))
12059 int zero_extended;
12061 /* If this is a test for negative, we can make an explicit
12062 test of the sign bit. Test this first so we can use
12063 a paradoxical subreg to extend OP0. */
12065 if (op1 == const0_rtx && (code == LT || code == GE)
12066 && HWI_COMPUTABLE_MODE_P (mode))
12068 op0 = simplify_gen_binary (AND, tmode,
12069 gen_lowpart (tmode, op0),
12070 GEN_INT ((unsigned HOST_WIDE_INT) 1
12071 << (GET_MODE_BITSIZE (mode)
12072 - 1)));
12073 code = (code == LT) ? NE : EQ;
12074 break;
12077 /* If the only nonzero bits in OP0 and OP1 are those in the
12078 narrower mode and this is an equality or unsigned comparison,
12079 we can use the wider mode. Similarly for sign-extended
12080 values, in which case it is true for all comparisons. */
12081 zero_extended = ((code == EQ || code == NE
12082 || code == GEU || code == GTU
12083 || code == LEU || code == LTU)
12084 && (nonzero_bits (op0, tmode)
12085 & ~GET_MODE_MASK (mode)) == 0
12086 && ((CONST_INT_P (op1)
12087 || (nonzero_bits (op1, tmode)
12088 & ~GET_MODE_MASK (mode)) == 0)));
12090 if (zero_extended
12091 || ((num_sign_bit_copies (op0, tmode)
12092 > (unsigned int) (GET_MODE_PRECISION (tmode)
12093 - GET_MODE_PRECISION (mode)))
12094 && (num_sign_bit_copies (op1, tmode)
12095 > (unsigned int) (GET_MODE_PRECISION (tmode)
12096 - GET_MODE_PRECISION (mode)))))
12098 /* If OP0 is an AND and we don't have an AND in MODE either,
12099 make a new AND in the proper mode. */
12100 if (GET_CODE (op0) == AND
12101 && !have_insn_for (AND, mode))
12102 op0 = simplify_gen_binary (AND, tmode,
12103 gen_lowpart (tmode,
12104 XEXP (op0, 0)),
12105 gen_lowpart (tmode,
12106 XEXP (op0, 1)));
12107 else
12109 if (zero_extended)
12111 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12112 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12114 else
12116 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12117 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12119 break;
12124 #ifdef CANONICALIZE_COMPARISON
12125 /* If this machine only supports a subset of valid comparisons, see if we
12126 can convert an unsupported one into a supported one. */
12127 CANONICALIZE_COMPARISON (code, op0, op1);
12128 #endif
12130 *pop0 = op0;
12131 *pop1 = op1;
12133 return code;
12136 /* Utility function for record_value_for_reg. Count number of
12137 rtxs in X. */
12138 static int
12139 count_rtxs (rtx x)
12141 enum rtx_code code = GET_CODE (x);
12142 const char *fmt;
12143 int i, j, ret = 1;
12145 if (GET_RTX_CLASS (code) == '2'
12146 || GET_RTX_CLASS (code) == 'c')
12148 rtx x0 = XEXP (x, 0);
12149 rtx x1 = XEXP (x, 1);
12151 if (x0 == x1)
12152 return 1 + 2 * count_rtxs (x0);
12154 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12155 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12156 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12157 return 2 + 2 * count_rtxs (x0)
12158 + count_rtxs (x == XEXP (x1, 0)
12159 ? XEXP (x1, 1) : XEXP (x1, 0));
12161 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12162 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12163 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12164 return 2 + 2 * count_rtxs (x1)
12165 + count_rtxs (x == XEXP (x0, 0)
12166 ? XEXP (x0, 1) : XEXP (x0, 0));
12169 fmt = GET_RTX_FORMAT (code);
12170 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12171 if (fmt[i] == 'e')
12172 ret += count_rtxs (XEXP (x, i));
12173 else if (fmt[i] == 'E')
12174 for (j = 0; j < XVECLEN (x, i); j++)
12175 ret += count_rtxs (XVECEXP (x, i, j));
12177 return ret;
12180 /* Utility function for following routine. Called when X is part of a value
12181 being stored into last_set_value. Sets last_set_table_tick
12182 for each register mentioned. Similar to mention_regs in cse.c */
12184 static void
12185 update_table_tick (rtx x)
12187 enum rtx_code code = GET_CODE (x);
12188 const char *fmt = GET_RTX_FORMAT (code);
12189 int i, j;
12191 if (code == REG)
12193 unsigned int regno = REGNO (x);
12194 unsigned int endregno = END_REGNO (x);
12195 unsigned int r;
12197 for (r = regno; r < endregno; r++)
12199 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12200 rsp->last_set_table_tick = label_tick;
12203 return;
12206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12207 if (fmt[i] == 'e')
12209 /* Check for identical subexpressions. If x contains
12210 identical subexpression we only have to traverse one of
12211 them. */
12212 if (i == 0 && ARITHMETIC_P (x))
12214 /* Note that at this point x1 has already been
12215 processed. */
12216 rtx x0 = XEXP (x, 0);
12217 rtx x1 = XEXP (x, 1);
12219 /* If x0 and x1 are identical then there is no need to
12220 process x0. */
12221 if (x0 == x1)
12222 break;
12224 /* If x0 is identical to a subexpression of x1 then while
12225 processing x1, x0 has already been processed. Thus we
12226 are done with x. */
12227 if (ARITHMETIC_P (x1)
12228 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12229 break;
12231 /* If x1 is identical to a subexpression of x0 then we
12232 still have to process the rest of x0. */
12233 if (ARITHMETIC_P (x0)
12234 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12236 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12237 break;
12241 update_table_tick (XEXP (x, i));
12243 else if (fmt[i] == 'E')
12244 for (j = 0; j < XVECLEN (x, i); j++)
12245 update_table_tick (XVECEXP (x, i, j));
12248 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12249 are saying that the register is clobbered and we no longer know its
12250 value. If INSN is zero, don't update reg_stat[].last_set; this is
12251 only permitted with VALUE also zero and is used to invalidate the
12252 register. */
12254 static void
12255 record_value_for_reg (rtx reg, rtx insn, rtx value)
12257 unsigned int regno = REGNO (reg);
12258 unsigned int endregno = END_REGNO (reg);
12259 unsigned int i;
12260 reg_stat_type *rsp;
12262 /* If VALUE contains REG and we have a previous value for REG, substitute
12263 the previous value. */
12264 if (value && insn && reg_overlap_mentioned_p (reg, value))
12266 rtx tem;
12268 /* Set things up so get_last_value is allowed to see anything set up to
12269 our insn. */
12270 subst_low_luid = DF_INSN_LUID (insn);
12271 tem = get_last_value (reg);
12273 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12274 it isn't going to be useful and will take a lot of time to process,
12275 so just use the CLOBBER. */
12277 if (tem)
12279 if (ARITHMETIC_P (tem)
12280 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12281 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12282 tem = XEXP (tem, 0);
12283 else if (count_occurrences (value, reg, 1) >= 2)
12285 /* If there are two or more occurrences of REG in VALUE,
12286 prevent the value from growing too much. */
12287 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12288 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12291 value = replace_rtx (copy_rtx (value), reg, tem);
12295 /* For each register modified, show we don't know its value, that
12296 we don't know about its bitwise content, that its value has been
12297 updated, and that we don't know the location of the death of the
12298 register. */
12299 for (i = regno; i < endregno; i++)
12301 rsp = VEC_index (reg_stat_type, reg_stat, i);
12303 if (insn)
12304 rsp->last_set = insn;
12306 rsp->last_set_value = 0;
12307 rsp->last_set_mode = VOIDmode;
12308 rsp->last_set_nonzero_bits = 0;
12309 rsp->last_set_sign_bit_copies = 0;
12310 rsp->last_death = 0;
12311 rsp->truncated_to_mode = VOIDmode;
12314 /* Mark registers that are being referenced in this value. */
12315 if (value)
12316 update_table_tick (value);
12318 /* Now update the status of each register being set.
12319 If someone is using this register in this block, set this register
12320 to invalid since we will get confused between the two lives in this
12321 basic block. This makes using this register always invalid. In cse, we
12322 scan the table to invalidate all entries using this register, but this
12323 is too much work for us. */
12325 for (i = regno; i < endregno; i++)
12327 rsp = VEC_index (reg_stat_type, reg_stat, i);
12328 rsp->last_set_label = label_tick;
12329 if (!insn
12330 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12331 rsp->last_set_invalid = 1;
12332 else
12333 rsp->last_set_invalid = 0;
12336 /* The value being assigned might refer to X (like in "x++;"). In that
12337 case, we must replace it with (clobber (const_int 0)) to prevent
12338 infinite loops. */
12339 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12340 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12342 value = copy_rtx (value);
12343 if (!get_last_value_validate (&value, insn, label_tick, 1))
12344 value = 0;
12347 /* For the main register being modified, update the value, the mode, the
12348 nonzero bits, and the number of sign bit copies. */
12350 rsp->last_set_value = value;
12352 if (value)
12354 enum machine_mode mode = GET_MODE (reg);
12355 subst_low_luid = DF_INSN_LUID (insn);
12356 rsp->last_set_mode = mode;
12357 if (GET_MODE_CLASS (mode) == MODE_INT
12358 && HWI_COMPUTABLE_MODE_P (mode))
12359 mode = nonzero_bits_mode;
12360 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12361 rsp->last_set_sign_bit_copies
12362 = num_sign_bit_copies (value, GET_MODE (reg));
12366 /* Called via note_stores from record_dead_and_set_regs to handle one
12367 SET or CLOBBER in an insn. DATA is the instruction in which the
12368 set is occurring. */
12370 static void
12371 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12373 rtx record_dead_insn = (rtx) data;
12375 if (GET_CODE (dest) == SUBREG)
12376 dest = SUBREG_REG (dest);
12378 if (!record_dead_insn)
12380 if (REG_P (dest))
12381 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12382 return;
12385 if (REG_P (dest))
12387 /* If we are setting the whole register, we know its value. Otherwise
12388 show that we don't know the value. We can handle SUBREG in
12389 some cases. */
12390 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12391 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12392 else if (GET_CODE (setter) == SET
12393 && GET_CODE (SET_DEST (setter)) == SUBREG
12394 && SUBREG_REG (SET_DEST (setter)) == dest
12395 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12396 && subreg_lowpart_p (SET_DEST (setter)))
12397 record_value_for_reg (dest, record_dead_insn,
12398 gen_lowpart (GET_MODE (dest),
12399 SET_SRC (setter)));
12400 else
12401 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12403 else if (MEM_P (dest)
12404 /* Ignore pushes, they clobber nothing. */
12405 && ! push_operand (dest, GET_MODE (dest)))
12406 mem_last_set = DF_INSN_LUID (record_dead_insn);
12409 /* Update the records of when each REG was most recently set or killed
12410 for the things done by INSN. This is the last thing done in processing
12411 INSN in the combiner loop.
12413 We update reg_stat[], in particular fields last_set, last_set_value,
12414 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12415 last_death, and also the similar information mem_last_set (which insn
12416 most recently modified memory) and last_call_luid (which insn was the
12417 most recent subroutine call). */
12419 static void
12420 record_dead_and_set_regs (rtx insn)
12422 rtx link;
12423 unsigned int i;
12425 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12427 if (REG_NOTE_KIND (link) == REG_DEAD
12428 && REG_P (XEXP (link, 0)))
12430 unsigned int regno = REGNO (XEXP (link, 0));
12431 unsigned int endregno = END_REGNO (XEXP (link, 0));
12433 for (i = regno; i < endregno; i++)
12435 reg_stat_type *rsp;
12437 rsp = VEC_index (reg_stat_type, reg_stat, i);
12438 rsp->last_death = insn;
12441 else if (REG_NOTE_KIND (link) == REG_INC)
12442 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12445 if (CALL_P (insn))
12447 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12448 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12450 reg_stat_type *rsp;
12452 rsp = VEC_index (reg_stat_type, reg_stat, i);
12453 rsp->last_set_invalid = 1;
12454 rsp->last_set = insn;
12455 rsp->last_set_value = 0;
12456 rsp->last_set_mode = VOIDmode;
12457 rsp->last_set_nonzero_bits = 0;
12458 rsp->last_set_sign_bit_copies = 0;
12459 rsp->last_death = 0;
12460 rsp->truncated_to_mode = VOIDmode;
12463 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12465 /* We can't combine into a call pattern. Remember, though, that
12466 the return value register is set at this LUID. We could
12467 still replace a register with the return value from the
12468 wrong subroutine call! */
12469 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12471 else
12472 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12475 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12476 register present in the SUBREG, so for each such SUBREG go back and
12477 adjust nonzero and sign bit information of the registers that are
12478 known to have some zero/sign bits set.
12480 This is needed because when combine blows the SUBREGs away, the
12481 information on zero/sign bits is lost and further combines can be
12482 missed because of that. */
12484 static void
12485 record_promoted_value (rtx insn, rtx subreg)
12487 struct insn_link *links;
12488 rtx set;
12489 unsigned int regno = REGNO (SUBREG_REG (subreg));
12490 enum machine_mode mode = GET_MODE (subreg);
12492 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12493 return;
12495 for (links = LOG_LINKS (insn); links;)
12497 reg_stat_type *rsp;
12499 insn = links->insn;
12500 set = single_set (insn);
12502 if (! set || !REG_P (SET_DEST (set))
12503 || REGNO (SET_DEST (set)) != regno
12504 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12506 links = links->next;
12507 continue;
12510 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12511 if (rsp->last_set == insn)
12513 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12514 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12517 if (REG_P (SET_SRC (set)))
12519 regno = REGNO (SET_SRC (set));
12520 links = LOG_LINKS (insn);
12522 else
12523 break;
12527 /* Check if X, a register, is known to contain a value already
12528 truncated to MODE. In this case we can use a subreg to refer to
12529 the truncated value even though in the generic case we would need
12530 an explicit truncation. */
12532 static bool
12533 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12535 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12536 enum machine_mode truncated = rsp->truncated_to_mode;
12538 if (truncated == 0
12539 || rsp->truncation_label < label_tick_ebb_start)
12540 return false;
12541 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12542 return true;
12543 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12544 return true;
12545 return false;
12548 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12549 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12550 might be able to turn a truncate into a subreg using this information.
12551 Return -1 if traversing *P is complete or 0 otherwise. */
12553 static int
12554 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12556 rtx x = *p;
12557 enum machine_mode truncated_mode;
12558 reg_stat_type *rsp;
12560 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12562 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12563 truncated_mode = GET_MODE (x);
12565 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12566 return -1;
12568 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12569 return -1;
12571 x = SUBREG_REG (x);
12573 /* ??? For hard-regs we now record everything. We might be able to
12574 optimize this using last_set_mode. */
12575 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12576 truncated_mode = GET_MODE (x);
12577 else
12578 return 0;
12580 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12581 if (rsp->truncated_to_mode == 0
12582 || rsp->truncation_label < label_tick_ebb_start
12583 || (GET_MODE_SIZE (truncated_mode)
12584 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12586 rsp->truncated_to_mode = truncated_mode;
12587 rsp->truncation_label = label_tick;
12590 return -1;
12593 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12594 the modes they are used in. This can help truning TRUNCATEs into
12595 SUBREGs. */
12597 static void
12598 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12600 for_each_rtx (x, record_truncated_value, NULL);
12603 /* Scan X for promoted SUBREGs. For each one found,
12604 note what it implies to the registers used in it. */
12606 static void
12607 check_promoted_subreg (rtx insn, rtx x)
12609 if (GET_CODE (x) == SUBREG
12610 && SUBREG_PROMOTED_VAR_P (x)
12611 && REG_P (SUBREG_REG (x)))
12612 record_promoted_value (insn, x);
12613 else
12615 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12616 int i, j;
12618 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12619 switch (format[i])
12621 case 'e':
12622 check_promoted_subreg (insn, XEXP (x, i));
12623 break;
12624 case 'V':
12625 case 'E':
12626 if (XVEC (x, i) != 0)
12627 for (j = 0; j < XVECLEN (x, i); j++)
12628 check_promoted_subreg (insn, XVECEXP (x, i, j));
12629 break;
12634 /* Verify that all the registers and memory references mentioned in *LOC are
12635 still valid. *LOC was part of a value set in INSN when label_tick was
12636 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12637 the invalid references with (clobber (const_int 0)) and return 1. This
12638 replacement is useful because we often can get useful information about
12639 the form of a value (e.g., if it was produced by a shift that always
12640 produces -1 or 0) even though we don't know exactly what registers it
12641 was produced from. */
12643 static int
12644 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12646 rtx x = *loc;
12647 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12648 int len = GET_RTX_LENGTH (GET_CODE (x));
12649 int i, j;
12651 if (REG_P (x))
12653 unsigned int regno = REGNO (x);
12654 unsigned int endregno = END_REGNO (x);
12655 unsigned int j;
12657 for (j = regno; j < endregno; j++)
12659 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12660 if (rsp->last_set_invalid
12661 /* If this is a pseudo-register that was only set once and not
12662 live at the beginning of the function, it is always valid. */
12663 || (! (regno >= FIRST_PSEUDO_REGISTER
12664 && REG_N_SETS (regno) == 1
12665 && (!REGNO_REG_SET_P
12666 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12667 && rsp->last_set_label > tick))
12669 if (replace)
12670 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12671 return replace;
12675 return 1;
12677 /* If this is a memory reference, make sure that there were no stores after
12678 it that might have clobbered the value. We don't have alias info, so we
12679 assume any store invalidates it. Moreover, we only have local UIDs, so
12680 we also assume that there were stores in the intervening basic blocks. */
12681 else if (MEM_P (x) && !MEM_READONLY_P (x)
12682 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12684 if (replace)
12685 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12686 return replace;
12689 for (i = 0; i < len; i++)
12691 if (fmt[i] == 'e')
12693 /* Check for identical subexpressions. If x contains
12694 identical subexpression we only have to traverse one of
12695 them. */
12696 if (i == 1 && ARITHMETIC_P (x))
12698 /* Note that at this point x0 has already been checked
12699 and found valid. */
12700 rtx x0 = XEXP (x, 0);
12701 rtx x1 = XEXP (x, 1);
12703 /* If x0 and x1 are identical then x is also valid. */
12704 if (x0 == x1)
12705 return 1;
12707 /* If x1 is identical to a subexpression of x0 then
12708 while checking x0, x1 has already been checked. Thus
12709 it is valid and so as x. */
12710 if (ARITHMETIC_P (x0)
12711 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12712 return 1;
12714 /* If x0 is identical to a subexpression of x1 then x is
12715 valid iff the rest of x1 is valid. */
12716 if (ARITHMETIC_P (x1)
12717 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12718 return
12719 get_last_value_validate (&XEXP (x1,
12720 x0 == XEXP (x1, 0) ? 1 : 0),
12721 insn, tick, replace);
12724 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12725 replace) == 0)
12726 return 0;
12728 else if (fmt[i] == 'E')
12729 for (j = 0; j < XVECLEN (x, i); j++)
12730 if (get_last_value_validate (&XVECEXP (x, i, j),
12731 insn, tick, replace) == 0)
12732 return 0;
12735 /* If we haven't found a reason for it to be invalid, it is valid. */
12736 return 1;
12739 /* Get the last value assigned to X, if known. Some registers
12740 in the value may be replaced with (clobber (const_int 0)) if their value
12741 is known longer known reliably. */
12743 static rtx
12744 get_last_value (const_rtx x)
12746 unsigned int regno;
12747 rtx value;
12748 reg_stat_type *rsp;
12750 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12751 then convert it to the desired mode. If this is a paradoxical SUBREG,
12752 we cannot predict what values the "extra" bits might have. */
12753 if (GET_CODE (x) == SUBREG
12754 && subreg_lowpart_p (x)
12755 && !paradoxical_subreg_p (x)
12756 && (value = get_last_value (SUBREG_REG (x))) != 0)
12757 return gen_lowpart (GET_MODE (x), value);
12759 if (!REG_P (x))
12760 return 0;
12762 regno = REGNO (x);
12763 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12764 value = rsp->last_set_value;
12766 /* If we don't have a value, or if it isn't for this basic block and
12767 it's either a hard register, set more than once, or it's a live
12768 at the beginning of the function, return 0.
12770 Because if it's not live at the beginning of the function then the reg
12771 is always set before being used (is never used without being set).
12772 And, if it's set only once, and it's always set before use, then all
12773 uses must have the same last value, even if it's not from this basic
12774 block. */
12776 if (value == 0
12777 || (rsp->last_set_label < label_tick_ebb_start
12778 && (regno < FIRST_PSEUDO_REGISTER
12779 || REG_N_SETS (regno) != 1
12780 || REGNO_REG_SET_P
12781 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12782 return 0;
12784 /* If the value was set in a later insn than the ones we are processing,
12785 we can't use it even if the register was only set once. */
12786 if (rsp->last_set_label == label_tick
12787 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12788 return 0;
12790 /* If the value has all its registers valid, return it. */
12791 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12792 return value;
12794 /* Otherwise, make a copy and replace any invalid register with
12795 (clobber (const_int 0)). If that fails for some reason, return 0. */
12797 value = copy_rtx (value);
12798 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12799 return value;
12801 return 0;
12804 /* Return nonzero if expression X refers to a REG or to memory
12805 that is set in an instruction more recent than FROM_LUID. */
12807 static int
12808 use_crosses_set_p (const_rtx x, int from_luid)
12810 const char *fmt;
12811 int i;
12812 enum rtx_code code = GET_CODE (x);
12814 if (code == REG)
12816 unsigned int regno = REGNO (x);
12817 unsigned endreg = END_REGNO (x);
12819 #ifdef PUSH_ROUNDING
12820 /* Don't allow uses of the stack pointer to be moved,
12821 because we don't know whether the move crosses a push insn. */
12822 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12823 return 1;
12824 #endif
12825 for (; regno < endreg; regno++)
12827 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12828 if (rsp->last_set
12829 && rsp->last_set_label == label_tick
12830 && DF_INSN_LUID (rsp->last_set) > from_luid)
12831 return 1;
12833 return 0;
12836 if (code == MEM && mem_last_set > from_luid)
12837 return 1;
12839 fmt = GET_RTX_FORMAT (code);
12841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12843 if (fmt[i] == 'E')
12845 int j;
12846 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12847 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12848 return 1;
12850 else if (fmt[i] == 'e'
12851 && use_crosses_set_p (XEXP (x, i), from_luid))
12852 return 1;
12854 return 0;
12857 /* Define three variables used for communication between the following
12858 routines. */
12860 static unsigned int reg_dead_regno, reg_dead_endregno;
12861 static int reg_dead_flag;
12863 /* Function called via note_stores from reg_dead_at_p.
12865 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12866 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12868 static void
12869 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12871 unsigned int regno, endregno;
12873 if (!REG_P (dest))
12874 return;
12876 regno = REGNO (dest);
12877 endregno = END_REGNO (dest);
12878 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12879 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12882 /* Return nonzero if REG is known to be dead at INSN.
12884 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12885 referencing REG, it is dead. If we hit a SET referencing REG, it is
12886 live. Otherwise, see if it is live or dead at the start of the basic
12887 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12888 must be assumed to be always live. */
12890 static int
12891 reg_dead_at_p (rtx reg, rtx insn)
12893 basic_block block;
12894 unsigned int i;
12896 /* Set variables for reg_dead_at_p_1. */
12897 reg_dead_regno = REGNO (reg);
12898 reg_dead_endregno = END_REGNO (reg);
12900 reg_dead_flag = 0;
12902 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12903 we allow the machine description to decide whether use-and-clobber
12904 patterns are OK. */
12905 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12907 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12908 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12909 return 0;
12912 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12913 beginning of basic block. */
12914 block = BLOCK_FOR_INSN (insn);
12915 for (;;)
12917 if (INSN_P (insn))
12919 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12920 if (reg_dead_flag)
12921 return reg_dead_flag == 1 ? 1 : 0;
12923 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12924 return 1;
12927 if (insn == BB_HEAD (block))
12928 break;
12930 insn = PREV_INSN (insn);
12933 /* Look at live-in sets for the basic block that we were in. */
12934 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12935 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12936 return 0;
12938 return 1;
12941 /* Note hard registers in X that are used. */
12943 static void
12944 mark_used_regs_combine (rtx x)
12946 RTX_CODE code = GET_CODE (x);
12947 unsigned int regno;
12948 int i;
12950 switch (code)
12952 case LABEL_REF:
12953 case SYMBOL_REF:
12954 case CONST_INT:
12955 case CONST:
12956 case CONST_DOUBLE:
12957 case CONST_VECTOR:
12958 case PC:
12959 case ADDR_VEC:
12960 case ADDR_DIFF_VEC:
12961 case ASM_INPUT:
12962 #ifdef HAVE_cc0
12963 /* CC0 must die in the insn after it is set, so we don't need to take
12964 special note of it here. */
12965 case CC0:
12966 #endif
12967 return;
12969 case CLOBBER:
12970 /* If we are clobbering a MEM, mark any hard registers inside the
12971 address as used. */
12972 if (MEM_P (XEXP (x, 0)))
12973 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12974 return;
12976 case REG:
12977 regno = REGNO (x);
12978 /* A hard reg in a wide mode may really be multiple registers.
12979 If so, mark all of them just like the first. */
12980 if (regno < FIRST_PSEUDO_REGISTER)
12982 /* None of this applies to the stack, frame or arg pointers. */
12983 if (regno == STACK_POINTER_REGNUM
12984 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12985 || regno == HARD_FRAME_POINTER_REGNUM
12986 #endif
12987 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12988 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12989 #endif
12990 || regno == FRAME_POINTER_REGNUM)
12991 return;
12993 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12995 return;
12997 case SET:
12999 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13000 the address. */
13001 rtx testreg = SET_DEST (x);
13003 while (GET_CODE (testreg) == SUBREG
13004 || GET_CODE (testreg) == ZERO_EXTRACT
13005 || GET_CODE (testreg) == STRICT_LOW_PART)
13006 testreg = XEXP (testreg, 0);
13008 if (MEM_P (testreg))
13009 mark_used_regs_combine (XEXP (testreg, 0));
13011 mark_used_regs_combine (SET_SRC (x));
13013 return;
13015 default:
13016 break;
13019 /* Recursively scan the operands of this expression. */
13022 const char *fmt = GET_RTX_FORMAT (code);
13024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13026 if (fmt[i] == 'e')
13027 mark_used_regs_combine (XEXP (x, i));
13028 else if (fmt[i] == 'E')
13030 int j;
13032 for (j = 0; j < XVECLEN (x, i); j++)
13033 mark_used_regs_combine (XVECEXP (x, i, j));
13039 /* Remove register number REGNO from the dead registers list of INSN.
13041 Return the note used to record the death, if there was one. */
13044 remove_death (unsigned int regno, rtx insn)
13046 rtx note = find_regno_note (insn, REG_DEAD, regno);
13048 if (note)
13049 remove_note (insn, note);
13051 return note;
13054 /* For each register (hardware or pseudo) used within expression X, if its
13055 death is in an instruction with luid between FROM_LUID (inclusive) and
13056 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13057 list headed by PNOTES.
13059 That said, don't move registers killed by maybe_kill_insn.
13061 This is done when X is being merged by combination into TO_INSN. These
13062 notes will then be distributed as needed. */
13064 static void
13065 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13066 rtx *pnotes)
13068 const char *fmt;
13069 int len, i;
13070 enum rtx_code code = GET_CODE (x);
13072 if (code == REG)
13074 unsigned int regno = REGNO (x);
13075 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13077 /* Don't move the register if it gets killed in between from and to. */
13078 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13079 && ! reg_referenced_p (x, maybe_kill_insn))
13080 return;
13082 if (where_dead
13083 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13084 && DF_INSN_LUID (where_dead) >= from_luid
13085 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13087 rtx note = remove_death (regno, where_dead);
13089 /* It is possible for the call above to return 0. This can occur
13090 when last_death points to I2 or I1 that we combined with.
13091 In that case make a new note.
13093 We must also check for the case where X is a hard register
13094 and NOTE is a death note for a range of hard registers
13095 including X. In that case, we must put REG_DEAD notes for
13096 the remaining registers in place of NOTE. */
13098 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13099 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13100 > GET_MODE_SIZE (GET_MODE (x))))
13102 unsigned int deadregno = REGNO (XEXP (note, 0));
13103 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13104 unsigned int ourend = END_HARD_REGNO (x);
13105 unsigned int i;
13107 for (i = deadregno; i < deadend; i++)
13108 if (i < regno || i >= ourend)
13109 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13112 /* If we didn't find any note, or if we found a REG_DEAD note that
13113 covers only part of the given reg, and we have a multi-reg hard
13114 register, then to be safe we must check for REG_DEAD notes
13115 for each register other than the first. They could have
13116 their own REG_DEAD notes lying around. */
13117 else if ((note == 0
13118 || (note != 0
13119 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13120 < GET_MODE_SIZE (GET_MODE (x)))))
13121 && regno < FIRST_PSEUDO_REGISTER
13122 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13124 unsigned int ourend = END_HARD_REGNO (x);
13125 unsigned int i, offset;
13126 rtx oldnotes = 0;
13128 if (note)
13129 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13130 else
13131 offset = 1;
13133 for (i = regno + offset; i < ourend; i++)
13134 move_deaths (regno_reg_rtx[i],
13135 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13138 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13140 XEXP (note, 1) = *pnotes;
13141 *pnotes = note;
13143 else
13144 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13147 return;
13150 else if (GET_CODE (x) == SET)
13152 rtx dest = SET_DEST (x);
13154 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13156 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13157 that accesses one word of a multi-word item, some
13158 piece of everything register in the expression is used by
13159 this insn, so remove any old death. */
13160 /* ??? So why do we test for equality of the sizes? */
13162 if (GET_CODE (dest) == ZERO_EXTRACT
13163 || GET_CODE (dest) == STRICT_LOW_PART
13164 || (GET_CODE (dest) == SUBREG
13165 && (((GET_MODE_SIZE (GET_MODE (dest))
13166 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13167 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13168 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13170 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13171 return;
13174 /* If this is some other SUBREG, we know it replaces the entire
13175 value, so use that as the destination. */
13176 if (GET_CODE (dest) == SUBREG)
13177 dest = SUBREG_REG (dest);
13179 /* If this is a MEM, adjust deaths of anything used in the address.
13180 For a REG (the only other possibility), the entire value is
13181 being replaced so the old value is not used in this insn. */
13183 if (MEM_P (dest))
13184 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13185 to_insn, pnotes);
13186 return;
13189 else if (GET_CODE (x) == CLOBBER)
13190 return;
13192 len = GET_RTX_LENGTH (code);
13193 fmt = GET_RTX_FORMAT (code);
13195 for (i = 0; i < len; i++)
13197 if (fmt[i] == 'E')
13199 int j;
13200 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13201 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13202 to_insn, pnotes);
13204 else if (fmt[i] == 'e')
13205 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13209 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13210 pattern of an insn. X must be a REG. */
13212 static int
13213 reg_bitfield_target_p (rtx x, rtx body)
13215 int i;
13217 if (GET_CODE (body) == SET)
13219 rtx dest = SET_DEST (body);
13220 rtx target;
13221 unsigned int regno, tregno, endregno, endtregno;
13223 if (GET_CODE (dest) == ZERO_EXTRACT)
13224 target = XEXP (dest, 0);
13225 else if (GET_CODE (dest) == STRICT_LOW_PART)
13226 target = SUBREG_REG (XEXP (dest, 0));
13227 else
13228 return 0;
13230 if (GET_CODE (target) == SUBREG)
13231 target = SUBREG_REG (target);
13233 if (!REG_P (target))
13234 return 0;
13236 tregno = REGNO (target), regno = REGNO (x);
13237 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13238 return target == x;
13240 endtregno = end_hard_regno (GET_MODE (target), tregno);
13241 endregno = end_hard_regno (GET_MODE (x), regno);
13243 return endregno > tregno && regno < endtregno;
13246 else if (GET_CODE (body) == PARALLEL)
13247 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13248 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13249 return 1;
13251 return 0;
13254 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13255 as appropriate. I3 and I2 are the insns resulting from the combination
13256 insns including FROM (I2 may be zero).
13258 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13259 not need REG_DEAD notes because they are being substituted for. This
13260 saves searching in the most common cases.
13262 Each note in the list is either ignored or placed on some insns, depending
13263 on the type of note. */
13265 static void
13266 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13267 rtx elim_i1, rtx elim_i0)
13269 rtx note, next_note;
13270 rtx tem;
13272 for (note = notes; note; note = next_note)
13274 rtx place = 0, place2 = 0;
13276 next_note = XEXP (note, 1);
13277 switch (REG_NOTE_KIND (note))
13279 case REG_BR_PROB:
13280 case REG_BR_PRED:
13281 /* Doesn't matter much where we put this, as long as it's somewhere.
13282 It is preferable to keep these notes on branches, which is most
13283 likely to be i3. */
13284 place = i3;
13285 break;
13287 case REG_NON_LOCAL_GOTO:
13288 if (JUMP_P (i3))
13289 place = i3;
13290 else
13292 gcc_assert (i2 && JUMP_P (i2));
13293 place = i2;
13295 break;
13297 case REG_EH_REGION:
13298 /* These notes must remain with the call or trapping instruction. */
13299 if (CALL_P (i3))
13300 place = i3;
13301 else if (i2 && CALL_P (i2))
13302 place = i2;
13303 else
13305 gcc_assert (cfun->can_throw_non_call_exceptions);
13306 if (may_trap_p (i3))
13307 place = i3;
13308 else if (i2 && may_trap_p (i2))
13309 place = i2;
13310 /* ??? Otherwise assume we've combined things such that we
13311 can now prove that the instructions can't trap. Drop the
13312 note in this case. */
13314 break;
13316 case REG_ARGS_SIZE:
13317 /* ??? How to distribute between i3-i1. Assume i3 contains the
13318 entire adjustment. Assert i3 contains at least some adjust. */
13319 if (!noop_move_p (i3))
13321 int old_size, args_size = INTVAL (XEXP (note, 0));
13322 /* fixup_args_size_notes looks at REG_NORETURN note,
13323 so ensure the note is placed there first. */
13324 if (CALL_P (i3))
13326 rtx *np;
13327 for (np = &next_note; *np; np = &XEXP (*np, 1))
13328 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13330 rtx n = *np;
13331 *np = XEXP (n, 1);
13332 XEXP (n, 1) = REG_NOTES (i3);
13333 REG_NOTES (i3) = n;
13334 break;
13337 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13338 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13339 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13340 gcc_assert (old_size != args_size
13341 || (CALL_P (i3)
13342 && !ACCUMULATE_OUTGOING_ARGS
13343 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13345 break;
13347 case REG_NORETURN:
13348 case REG_SETJMP:
13349 case REG_TM:
13350 /* These notes must remain with the call. It should not be
13351 possible for both I2 and I3 to be a call. */
13352 if (CALL_P (i3))
13353 place = i3;
13354 else
13356 gcc_assert (i2 && CALL_P (i2));
13357 place = i2;
13359 break;
13361 case REG_UNUSED:
13362 /* Any clobbers for i3 may still exist, and so we must process
13363 REG_UNUSED notes from that insn.
13365 Any clobbers from i2 or i1 can only exist if they were added by
13366 recog_for_combine. In that case, recog_for_combine created the
13367 necessary REG_UNUSED notes. Trying to keep any original
13368 REG_UNUSED notes from these insns can cause incorrect output
13369 if it is for the same register as the original i3 dest.
13370 In that case, we will notice that the register is set in i3,
13371 and then add a REG_UNUSED note for the destination of i3, which
13372 is wrong. However, it is possible to have REG_UNUSED notes from
13373 i2 or i1 for register which were both used and clobbered, so
13374 we keep notes from i2 or i1 if they will turn into REG_DEAD
13375 notes. */
13377 /* If this register is set or clobbered in I3, put the note there
13378 unless there is one already. */
13379 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13381 if (from_insn != i3)
13382 break;
13384 if (! (REG_P (XEXP (note, 0))
13385 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13386 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13387 place = i3;
13389 /* Otherwise, if this register is used by I3, then this register
13390 now dies here, so we must put a REG_DEAD note here unless there
13391 is one already. */
13392 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13393 && ! (REG_P (XEXP (note, 0))
13394 ? find_regno_note (i3, REG_DEAD,
13395 REGNO (XEXP (note, 0)))
13396 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13398 PUT_REG_NOTE_KIND (note, REG_DEAD);
13399 place = i3;
13401 break;
13403 case REG_EQUAL:
13404 case REG_EQUIV:
13405 case REG_NOALIAS:
13406 /* These notes say something about results of an insn. We can
13407 only support them if they used to be on I3 in which case they
13408 remain on I3. Otherwise they are ignored.
13410 If the note refers to an expression that is not a constant, we
13411 must also ignore the note since we cannot tell whether the
13412 equivalence is still true. It might be possible to do
13413 slightly better than this (we only have a problem if I2DEST
13414 or I1DEST is present in the expression), but it doesn't
13415 seem worth the trouble. */
13417 if (from_insn == i3
13418 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13419 place = i3;
13420 break;
13422 case REG_INC:
13423 /* These notes say something about how a register is used. They must
13424 be present on any use of the register in I2 or I3. */
13425 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13426 place = i3;
13428 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13430 if (place)
13431 place2 = i2;
13432 else
13433 place = i2;
13435 break;
13437 case REG_LABEL_TARGET:
13438 case REG_LABEL_OPERAND:
13439 /* This can show up in several ways -- either directly in the
13440 pattern, or hidden off in the constant pool with (or without?)
13441 a REG_EQUAL note. */
13442 /* ??? Ignore the without-reg_equal-note problem for now. */
13443 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13444 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13445 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13446 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13447 place = i3;
13449 if (i2
13450 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13451 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13452 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13453 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13455 if (place)
13456 place2 = i2;
13457 else
13458 place = i2;
13461 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13462 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13463 there. */
13464 if (place && JUMP_P (place)
13465 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13466 && (JUMP_LABEL (place) == NULL
13467 || JUMP_LABEL (place) == XEXP (note, 0)))
13469 rtx label = JUMP_LABEL (place);
13471 if (!label)
13472 JUMP_LABEL (place) = XEXP (note, 0);
13473 else if (LABEL_P (label))
13474 LABEL_NUSES (label)--;
13477 if (place2 && JUMP_P (place2)
13478 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13479 && (JUMP_LABEL (place2) == NULL
13480 || JUMP_LABEL (place2) == XEXP (note, 0)))
13482 rtx label = JUMP_LABEL (place2);
13484 if (!label)
13485 JUMP_LABEL (place2) = XEXP (note, 0);
13486 else if (LABEL_P (label))
13487 LABEL_NUSES (label)--;
13488 place2 = 0;
13490 break;
13492 case REG_NONNEG:
13493 /* This note says something about the value of a register prior
13494 to the execution of an insn. It is too much trouble to see
13495 if the note is still correct in all situations. It is better
13496 to simply delete it. */
13497 break;
13499 case REG_DEAD:
13500 /* If we replaced the right hand side of FROM_INSN with a
13501 REG_EQUAL note, the original use of the dying register
13502 will not have been combined into I3 and I2. In such cases,
13503 FROM_INSN is guaranteed to be the first of the combined
13504 instructions, so we simply need to search back before
13505 FROM_INSN for the previous use or set of this register,
13506 then alter the notes there appropriately.
13508 If the register is used as an input in I3, it dies there.
13509 Similarly for I2, if it is nonzero and adjacent to I3.
13511 If the register is not used as an input in either I3 or I2
13512 and it is not one of the registers we were supposed to eliminate,
13513 there are two possibilities. We might have a non-adjacent I2
13514 or we might have somehow eliminated an additional register
13515 from a computation. For example, we might have had A & B where
13516 we discover that B will always be zero. In this case we will
13517 eliminate the reference to A.
13519 In both cases, we must search to see if we can find a previous
13520 use of A and put the death note there. */
13522 if (from_insn
13523 && from_insn == i2mod
13524 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13525 tem = from_insn;
13526 else
13528 if (from_insn
13529 && CALL_P (from_insn)
13530 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13531 place = from_insn;
13532 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13533 place = i3;
13534 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13535 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13536 place = i2;
13537 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13538 && !(i2mod
13539 && reg_overlap_mentioned_p (XEXP (note, 0),
13540 i2mod_old_rhs)))
13541 || rtx_equal_p (XEXP (note, 0), elim_i1)
13542 || rtx_equal_p (XEXP (note, 0), elim_i0))
13543 break;
13544 tem = i3;
13547 if (place == 0)
13549 basic_block bb = this_basic_block;
13551 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13553 if (!NONDEBUG_INSN_P (tem))
13555 if (tem == BB_HEAD (bb))
13556 break;
13557 continue;
13560 /* If the register is being set at TEM, see if that is all
13561 TEM is doing. If so, delete TEM. Otherwise, make this
13562 into a REG_UNUSED note instead. Don't delete sets to
13563 global register vars. */
13564 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13565 || !global_regs[REGNO (XEXP (note, 0))])
13566 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13568 rtx set = single_set (tem);
13569 rtx inner_dest = 0;
13570 #ifdef HAVE_cc0
13571 rtx cc0_setter = NULL_RTX;
13572 #endif
13574 if (set != 0)
13575 for (inner_dest = SET_DEST (set);
13576 (GET_CODE (inner_dest) == STRICT_LOW_PART
13577 || GET_CODE (inner_dest) == SUBREG
13578 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13579 inner_dest = XEXP (inner_dest, 0))
13582 /* Verify that it was the set, and not a clobber that
13583 modified the register.
13585 CC0 targets must be careful to maintain setter/user
13586 pairs. If we cannot delete the setter due to side
13587 effects, mark the user with an UNUSED note instead
13588 of deleting it. */
13590 if (set != 0 && ! side_effects_p (SET_SRC (set))
13591 && rtx_equal_p (XEXP (note, 0), inner_dest)
13592 #ifdef HAVE_cc0
13593 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13594 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13595 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13596 #endif
13599 /* Move the notes and links of TEM elsewhere.
13600 This might delete other dead insns recursively.
13601 First set the pattern to something that won't use
13602 any register. */
13603 rtx old_notes = REG_NOTES (tem);
13605 PATTERN (tem) = pc_rtx;
13606 REG_NOTES (tem) = NULL;
13608 distribute_notes (old_notes, tem, tem, NULL_RTX,
13609 NULL_RTX, NULL_RTX, NULL_RTX);
13610 distribute_links (LOG_LINKS (tem));
13612 SET_INSN_DELETED (tem);
13613 if (tem == i2)
13614 i2 = NULL_RTX;
13616 #ifdef HAVE_cc0
13617 /* Delete the setter too. */
13618 if (cc0_setter)
13620 PATTERN (cc0_setter) = pc_rtx;
13621 old_notes = REG_NOTES (cc0_setter);
13622 REG_NOTES (cc0_setter) = NULL;
13624 distribute_notes (old_notes, cc0_setter,
13625 cc0_setter, NULL_RTX,
13626 NULL_RTX, NULL_RTX, NULL_RTX);
13627 distribute_links (LOG_LINKS (cc0_setter));
13629 SET_INSN_DELETED (cc0_setter);
13630 if (cc0_setter == i2)
13631 i2 = NULL_RTX;
13633 #endif
13635 else
13637 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13639 /* If there isn't already a REG_UNUSED note, put one
13640 here. Do not place a REG_DEAD note, even if
13641 the register is also used here; that would not
13642 match the algorithm used in lifetime analysis
13643 and can cause the consistency check in the
13644 scheduler to fail. */
13645 if (! find_regno_note (tem, REG_UNUSED,
13646 REGNO (XEXP (note, 0))))
13647 place = tem;
13648 break;
13651 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13652 || (CALL_P (tem)
13653 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13655 place = tem;
13657 /* If we are doing a 3->2 combination, and we have a
13658 register which formerly died in i3 and was not used
13659 by i2, which now no longer dies in i3 and is used in
13660 i2 but does not die in i2, and place is between i2
13661 and i3, then we may need to move a link from place to
13662 i2. */
13663 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13664 && from_insn
13665 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13666 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13668 struct insn_link *links = LOG_LINKS (place);
13669 LOG_LINKS (place) = NULL;
13670 distribute_links (links);
13672 break;
13675 if (tem == BB_HEAD (bb))
13676 break;
13681 /* If the register is set or already dead at PLACE, we needn't do
13682 anything with this note if it is still a REG_DEAD note.
13683 We check here if it is set at all, not if is it totally replaced,
13684 which is what `dead_or_set_p' checks, so also check for it being
13685 set partially. */
13687 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13689 unsigned int regno = REGNO (XEXP (note, 0));
13690 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13692 if (dead_or_set_p (place, XEXP (note, 0))
13693 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13695 /* Unless the register previously died in PLACE, clear
13696 last_death. [I no longer understand why this is
13697 being done.] */
13698 if (rsp->last_death != place)
13699 rsp->last_death = 0;
13700 place = 0;
13702 else
13703 rsp->last_death = place;
13705 /* If this is a death note for a hard reg that is occupying
13706 multiple registers, ensure that we are still using all
13707 parts of the object. If we find a piece of the object
13708 that is unused, we must arrange for an appropriate REG_DEAD
13709 note to be added for it. However, we can't just emit a USE
13710 and tag the note to it, since the register might actually
13711 be dead; so we recourse, and the recursive call then finds
13712 the previous insn that used this register. */
13714 if (place && regno < FIRST_PSEUDO_REGISTER
13715 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13717 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13718 int all_used = 1;
13719 unsigned int i;
13721 for (i = regno; i < endregno; i++)
13722 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13723 && ! find_regno_fusage (place, USE, i))
13724 || dead_or_set_regno_p (place, i))
13725 all_used = 0;
13727 if (! all_used)
13729 /* Put only REG_DEAD notes for pieces that are
13730 not already dead or set. */
13732 for (i = regno; i < endregno;
13733 i += hard_regno_nregs[i][reg_raw_mode[i]])
13735 rtx piece = regno_reg_rtx[i];
13736 basic_block bb = this_basic_block;
13738 if (! dead_or_set_p (place, piece)
13739 && ! reg_bitfield_target_p (piece,
13740 PATTERN (place)))
13742 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13743 NULL_RTX);
13745 distribute_notes (new_note, place, place,
13746 NULL_RTX, NULL_RTX, NULL_RTX,
13747 NULL_RTX);
13749 else if (! refers_to_regno_p (i, i + 1,
13750 PATTERN (place), 0)
13751 && ! find_regno_fusage (place, USE, i))
13752 for (tem = PREV_INSN (place); ;
13753 tem = PREV_INSN (tem))
13755 if (!NONDEBUG_INSN_P (tem))
13757 if (tem == BB_HEAD (bb))
13758 break;
13759 continue;
13761 if (dead_or_set_p (tem, piece)
13762 || reg_bitfield_target_p (piece,
13763 PATTERN (tem)))
13765 add_reg_note (tem, REG_UNUSED, piece);
13766 break;
13772 place = 0;
13776 break;
13778 default:
13779 /* Any other notes should not be present at this point in the
13780 compilation. */
13781 gcc_unreachable ();
13784 if (place)
13786 XEXP (note, 1) = REG_NOTES (place);
13787 REG_NOTES (place) = note;
13790 if (place2)
13791 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13795 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13796 I3, I2, and I1 to new locations. This is also called to add a link
13797 pointing at I3 when I3's destination is changed. */
13799 static void
13800 distribute_links (struct insn_link *links)
13802 struct insn_link *link, *next_link;
13804 for (link = links; link; link = next_link)
13806 rtx place = 0;
13807 rtx insn;
13808 rtx set, reg;
13810 next_link = link->next;
13812 /* If the insn that this link points to is a NOTE or isn't a single
13813 set, ignore it. In the latter case, it isn't clear what we
13814 can do other than ignore the link, since we can't tell which
13815 register it was for. Such links wouldn't be used by combine
13816 anyway.
13818 It is not possible for the destination of the target of the link to
13819 have been changed by combine. The only potential of this is if we
13820 replace I3, I2, and I1 by I3 and I2. But in that case the
13821 destination of I2 also remains unchanged. */
13823 if (NOTE_P (link->insn)
13824 || (set = single_set (link->insn)) == 0)
13825 continue;
13827 reg = SET_DEST (set);
13828 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13829 || GET_CODE (reg) == STRICT_LOW_PART)
13830 reg = XEXP (reg, 0);
13832 /* A LOG_LINK is defined as being placed on the first insn that uses
13833 a register and points to the insn that sets the register. Start
13834 searching at the next insn after the target of the link and stop
13835 when we reach a set of the register or the end of the basic block.
13837 Note that this correctly handles the link that used to point from
13838 I3 to I2. Also note that not much searching is typically done here
13839 since most links don't point very far away. */
13841 for (insn = NEXT_INSN (link->insn);
13842 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13843 || BB_HEAD (this_basic_block->next_bb) != insn));
13844 insn = NEXT_INSN (insn))
13845 if (DEBUG_INSN_P (insn))
13846 continue;
13847 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13849 if (reg_referenced_p (reg, PATTERN (insn)))
13850 place = insn;
13851 break;
13853 else if (CALL_P (insn)
13854 && find_reg_fusage (insn, USE, reg))
13856 place = insn;
13857 break;
13859 else if (INSN_P (insn) && reg_set_p (reg, insn))
13860 break;
13862 /* If we found a place to put the link, place it there unless there
13863 is already a link to the same insn as LINK at that point. */
13865 if (place)
13867 struct insn_link *link2;
13869 FOR_EACH_LOG_LINK (link2, place)
13870 if (link2->insn == link->insn)
13871 break;
13873 if (link2 == NULL)
13875 link->next = LOG_LINKS (place);
13876 LOG_LINKS (place) = link;
13878 /* Set added_links_insn to the earliest insn we added a
13879 link to. */
13880 if (added_links_insn == 0
13881 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13882 added_links_insn = place;
13888 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13889 Check whether the expression pointer to by LOC is a register or
13890 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13891 Otherwise return zero. */
13893 static int
13894 unmentioned_reg_p_1 (rtx *loc, void *expr)
13896 rtx x = *loc;
13898 if (x != NULL_RTX
13899 && (REG_P (x) || MEM_P (x))
13900 && ! reg_mentioned_p (x, (rtx) expr))
13901 return 1;
13902 return 0;
13905 /* Check for any register or memory mentioned in EQUIV that is not
13906 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13907 of EXPR where some registers may have been replaced by constants. */
13909 static bool
13910 unmentioned_reg_p (rtx equiv, rtx expr)
13912 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13915 void
13916 dump_combine_stats (FILE *file)
13918 fprintf
13919 (file,
13920 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13921 combine_attempts, combine_merges, combine_extras, combine_successes);
13924 void
13925 dump_combine_total_stats (FILE *file)
13927 fprintf
13928 (file,
13929 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13930 total_attempts, total_merges, total_extras, total_successes);
13933 static bool
13934 gate_handle_combine (void)
13936 return (optimize > 0);
13939 /* Try combining insns through substitution. */
13940 static unsigned int
13941 rest_of_handle_combine (void)
13943 int rebuild_jump_labels_after_combine;
13945 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13946 df_note_add_problem ();
13947 df_analyze ();
13949 regstat_init_n_sets_and_refs ();
13951 rebuild_jump_labels_after_combine
13952 = combine_instructions (get_insns (), max_reg_num ());
13954 /* Combining insns may have turned an indirect jump into a
13955 direct jump. Rebuild the JUMP_LABEL fields of jumping
13956 instructions. */
13957 if (rebuild_jump_labels_after_combine)
13959 timevar_push (TV_JUMP);
13960 rebuild_jump_labels (get_insns ());
13961 cleanup_cfg (0);
13962 timevar_pop (TV_JUMP);
13965 regstat_free_n_sets_and_refs ();
13966 return 0;
13969 struct rtl_opt_pass pass_combine =
13972 RTL_PASS,
13973 "combine", /* name */
13974 gate_handle_combine, /* gate */
13975 rest_of_handle_combine, /* execute */
13976 NULL, /* sub */
13977 NULL, /* next */
13978 0, /* static_pass_number */
13979 TV_COMBINE, /* tv_id */
13980 PROP_cfglayout, /* properties_required */
13981 0, /* properties_provided */
13982 0, /* properties_destroyed */
13983 0, /* todo_flags_start */
13984 TODO_df_finish | TODO_verify_rtl_sharing |
13985 TODO_ggc_collect, /* todo_flags_finish */