* config/arm/arm.c (use_return_insn): Do not use a single return instruction
[official-gcc.git] / gcc / ra-colorize.c
blob074f7356dac95b4e2b9a54c931a3b6ccedaa1fd9
1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
15 details.
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "df.h"
32 #include "output.h"
33 #include "ra.h"
35 /* This file is part of the graph coloring register allocator.
36 It contains the graph colorizer. Given an interference graph
37 as set up in ra-build.c the toplevel function in this file
38 (ra_colorize_graph) colorizes the graph, leaving a list
39 of colored, coalesced and spilled nodes.
41 The algorithm used is a merge of George & Appels iterative coalescing
42 and optimistic coalescing, switchable at runtime. The current default
43 is "optimistic coalescing +", which is based on the normal Briggs/Cooper
44 framework. We can also use biased coloring. Most of the structure
45 here follows the different papers.
47 Additionally there is a custom step to locally improve the overall
48 spill cost of the colored graph (recolor_spills). */
50 static void push_list PARAMS ((struct dlist *, struct dlist **));
51 static void push_list_end PARAMS ((struct dlist *, struct dlist **));
52 static void free_dlist PARAMS ((struct dlist **));
53 static void put_web_at_end PARAMS ((struct web *, enum node_type));
54 static void put_move PARAMS ((struct move *, enum move_type));
55 static void build_worklists PARAMS ((struct df *));
56 static void enable_move PARAMS ((struct web *));
57 static void decrement_degree PARAMS ((struct web *, int));
58 static void simplify PARAMS ((void));
59 static void remove_move_1 PARAMS ((struct web *, struct move *));
60 static void remove_move PARAMS ((struct web *, struct move *));
61 static void add_worklist PARAMS ((struct web *));
62 static int ok PARAMS ((struct web *, struct web *));
63 static int conservative PARAMS ((struct web *, struct web *));
64 static inline unsigned int simplify_p PARAMS ((enum node_type));
65 static void combine PARAMS ((struct web *, struct web *));
66 static void coalesce PARAMS ((void));
67 static void freeze_moves PARAMS ((struct web *));
68 static void freeze PARAMS ((void));
69 static void select_spill PARAMS ((void));
70 static int color_usable_p PARAMS ((int, HARD_REG_SET, HARD_REG_SET,
71 enum machine_mode));
72 int get_free_reg PARAMS ((HARD_REG_SET, HARD_REG_SET, enum machine_mode));
73 static int get_biased_reg PARAMS ((HARD_REG_SET, HARD_REG_SET, HARD_REG_SET,
74 HARD_REG_SET, enum machine_mode));
75 static int count_long_blocks PARAMS ((HARD_REG_SET, int));
76 static char * hardregset_to_string PARAMS ((HARD_REG_SET));
77 static void calculate_dont_begin PARAMS ((struct web *, HARD_REG_SET *));
78 static void colorize_one_web PARAMS ((struct web *, int));
79 static void assign_colors PARAMS ((void));
80 static void try_recolor_web PARAMS ((struct web *));
81 static void insert_coalesced_conflicts PARAMS ((void));
82 static int comp_webs_maxcost PARAMS ((const void *, const void *));
83 static void recolor_spills PARAMS ((void));
84 static void check_colors PARAMS ((void));
85 static void restore_conflicts_from_coalesce PARAMS ((struct web *));
86 static void break_coalesced_spills PARAMS ((void));
87 static void unalias_web PARAMS ((struct web *));
88 static void break_aliases_to_web PARAMS ((struct web *));
89 static void break_precolored_alias PARAMS ((struct web *));
90 static void init_web_pairs PARAMS ((void));
91 static void add_web_pair_cost PARAMS ((struct web *, struct web *,
92 unsigned HOST_WIDE_INT, unsigned int));
93 static int comp_web_pairs PARAMS ((const void *, const void *));
94 static void sort_and_combine_web_pairs PARAMS ((int));
95 static void aggressive_coalesce PARAMS ((void));
96 static void extended_coalesce_2 PARAMS ((void));
97 static void check_uncoalesced_moves PARAMS ((void));
99 static struct dlist *mv_worklist, *mv_coalesced, *mv_constrained;
100 static struct dlist *mv_frozen, *mv_active;
102 /* Push a node onto the front of the list. */
104 static void
105 push_list (x, list)
106 struct dlist *x;
107 struct dlist **list;
109 if (x->next || x->prev)
110 abort ();
111 x->next = *list;
112 if (*list)
113 (*list)->prev = x;
114 *list = x;
117 static void
118 push_list_end (x, list)
119 struct dlist *x;
120 struct dlist **list;
122 if (x->prev || x->next)
123 abort ();
124 if (!*list)
126 *list = x;
127 return;
129 while ((*list)->next)
130 list = &((*list)->next);
131 x->prev = *list;
132 (*list)->next = x;
135 /* Remove a node from the list. */
137 void
138 remove_list (x, list)
139 struct dlist *x;
140 struct dlist **list;
142 struct dlist *y = x->prev;
143 if (y)
144 y->next = x->next;
145 else
146 *list = x->next;
147 y = x->next;
148 if (y)
149 y->prev = x->prev;
150 x->next = x->prev = NULL;
153 /* Pop the front of the list. */
155 struct dlist *
156 pop_list (list)
157 struct dlist **list;
159 struct dlist *r = *list;
160 if (r)
161 remove_list (r, list);
162 return r;
165 /* Free the given double linked list. */
167 static void
168 free_dlist (list)
169 struct dlist **list;
171 *list = NULL;
174 /* The web WEB should get the given new TYPE. Put it onto the
175 appropriate list.
176 Inline, because it's called with constant TYPE every time. */
178 inline void
179 put_web (web, type)
180 struct web *web;
181 enum node_type type;
183 switch (type)
185 case INITIAL:
186 case FREE:
187 case FREEZE:
188 case SPILL:
189 case SPILLED:
190 case COALESCED:
191 case COLORED:
192 case SELECT:
193 push_list (web->dlink, &WEBS(type));
194 break;
195 case PRECOLORED:
196 push_list (web->dlink, &WEBS(INITIAL));
197 break;
198 case SIMPLIFY:
199 if (web->spill_temp)
200 push_list (web->dlink, &WEBS(type = SIMPLIFY_SPILL));
201 else if (web->add_hardregs)
202 push_list (web->dlink, &WEBS(type = SIMPLIFY_FAT));
203 else
204 push_list (web->dlink, &WEBS(SIMPLIFY));
205 break;
206 default:
207 abort ();
209 web->type = type;
212 /* After we are done with the whole pass of coloring/spilling,
213 we reset the lists of webs, in preparation of the next pass.
214 The spilled webs become free, colored webs go to the initial list,
215 coalesced webs become free or initial, according to what type of web
216 they are coalesced to. */
218 void
219 reset_lists ()
221 struct dlist *d;
222 unsigned int i;
223 if (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_SPILL) || WEBS(SIMPLIFY_FAT)
224 || WEBS(FREEZE) || WEBS(SPILL) || WEBS(SELECT))
225 abort ();
227 while ((d = pop_list (&WEBS(COALESCED))) != NULL)
229 struct web *web = DLIST_WEB (d);
230 struct web *aweb = alias (web);
231 /* Note, how alias() becomes invalid through the two put_web()'s
232 below. It might set the type of a web to FREE (from COALESCED),
233 which itself is a target of aliasing (i.e. in the middle of
234 an alias chain). We can handle this by checking also for
235 type == FREE. Note nevertheless, that alias() is invalid
236 henceforth. */
237 if (aweb->type == SPILLED || aweb->type == FREE)
238 put_web (web, FREE);
239 else
240 put_web (web, INITIAL);
242 while ((d = pop_list (&WEBS(SPILLED))) != NULL)
243 put_web (DLIST_WEB (d), FREE);
244 while ((d = pop_list (&WEBS(COLORED))) != NULL)
245 put_web (DLIST_WEB (d), INITIAL);
247 /* All free webs have no conflicts anymore. */
248 for (d = WEBS(FREE); d; d = d->next)
250 struct web *web = DLIST_WEB (d);
251 BITMAP_XFREE (web->useless_conflicts);
252 web->useless_conflicts = NULL;
255 /* Sanity check, that we only have free, initial or precolored webs. */
256 for (i = 0; i < num_webs; i++)
258 struct web *web = ID2WEB (i);
259 if (web->type != INITIAL && web->type != FREE && web->type != PRECOLORED)
260 abort ();
262 free_dlist (&mv_worklist);
263 free_dlist (&mv_coalesced);
264 free_dlist (&mv_constrained);
265 free_dlist (&mv_frozen);
266 free_dlist (&mv_active);
269 /* Similar to put_web(), but add the web to the end of the appropriate
270 list. Additionally TYPE may not be SIMPLIFY. */
272 static void
273 put_web_at_end (web, type)
274 struct web *web;
275 enum node_type type;
277 if (type == PRECOLORED)
278 type = INITIAL;
279 else if (type == SIMPLIFY)
280 abort ();
281 push_list_end (web->dlink, &WEBS(type));
282 web->type = type;
285 /* Unlink WEB from the list it's currently on (which corresponds to
286 its current type). */
288 void
289 remove_web_from_list (web)
290 struct web *web;
292 if (web->type == PRECOLORED)
293 remove_list (web->dlink, &WEBS(INITIAL));
294 else
295 remove_list (web->dlink, &WEBS(web->type));
298 /* Give MOVE the TYPE, and link it into the correct list. */
300 static inline void
301 put_move (move, type)
302 struct move *move;
303 enum move_type type;
305 switch (type)
307 case WORKLIST:
308 push_list (move->dlink, &mv_worklist);
309 break;
310 case MV_COALESCED:
311 push_list (move->dlink, &mv_coalesced);
312 break;
313 case CONSTRAINED:
314 push_list (move->dlink, &mv_constrained);
315 break;
316 case FROZEN:
317 push_list (move->dlink, &mv_frozen);
318 break;
319 case ACTIVE:
320 push_list (move->dlink, &mv_active);
321 break;
322 default:
323 abort ();
325 move->type = type;
328 /* Build the worklists we are going to process. */
330 static void
331 build_worklists (df)
332 struct df *df ATTRIBUTE_UNUSED;
334 struct dlist *d, *d_next;
335 struct move_list *ml;
337 /* If we are not the first pass, put all stackwebs (which are still
338 backed by a new pseudo, but conceptually can stand for a stackslot,
339 i.e. it doesn't really matter if they get a color or not), on
340 the SELECT stack first, those with lowest cost first. This way
341 they will be colored last, so do not constrain the coloring of the
342 normal webs. But still those with the highest count are colored
343 before, i.e. get a color more probable. The use of stackregs is
344 a pure optimization, and all would work, if we used real stackslots
345 from the begin. */
346 if (ra_pass > 1)
348 unsigned int i, num, max_num;
349 struct web **order2web;
350 max_num = num_webs - num_subwebs;
351 order2web = (struct web **) xmalloc (max_num * sizeof (order2web[0]));
352 for (i = 0, num = 0; i < max_num; i++)
353 if (id2web[i]->regno >= max_normal_pseudo)
354 order2web[num++] = id2web[i];
355 if (num)
357 qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
358 for (i = num - 1;; i--)
360 struct web *web = order2web[i];
361 struct conflict_link *wl;
362 remove_list (web->dlink, &WEBS(INITIAL));
363 put_web (web, SELECT);
364 for (wl = web->conflict_list; wl; wl = wl->next)
366 struct web *pweb = wl->t;
367 pweb->num_conflicts -= 1 + web->add_hardregs;
369 if (i == 0)
370 break;
373 free (order2web);
376 /* For all remaining initial webs, classify them. */
377 for (d = WEBS(INITIAL); d; d = d_next)
379 struct web *web = DLIST_WEB (d);
380 d_next = d->next;
381 if (web->type == PRECOLORED)
382 continue;
384 remove_list (d, &WEBS(INITIAL));
385 if (web->num_conflicts >= NUM_REGS (web))
386 put_web (web, SPILL);
387 else if (web->moves)
388 put_web (web, FREEZE);
389 else
390 put_web (web, SIMPLIFY);
393 /* And put all moves on the worklist for iterated coalescing.
394 Note, that if iterated coalescing is off, then wl_moves doesn't
395 contain any moves. */
396 for (ml = wl_moves; ml; ml = ml->next)
397 if (ml->move)
399 struct move *m = ml->move;
400 d = (struct dlist *) ra_calloc (sizeof (struct dlist));
401 DLIST_MOVE (d) = m;
402 m->dlink = d;
403 put_move (m, WORKLIST);
407 /* Enable the active moves, in which WEB takes part, to be processed. */
409 static void
410 enable_move (web)
411 struct web *web;
413 struct move_list *ml;
414 for (ml = web->moves; ml; ml = ml->next)
415 if (ml->move->type == ACTIVE)
417 remove_list (ml->move->dlink, &mv_active);
418 put_move (ml->move, WORKLIST);
422 /* Decrement the degree of node WEB by the amount DEC.
423 Possibly change the type of WEB, if the number of conflicts is
424 now smaller than its freedom. */
426 static void
427 decrement_degree (web, dec)
428 struct web *web;
429 int dec;
431 int before = web->num_conflicts;
432 web->num_conflicts -= dec;
433 if (web->num_conflicts < NUM_REGS (web) && before >= NUM_REGS (web))
435 struct conflict_link *a;
436 enable_move (web);
437 for (a = web->conflict_list; a; a = a->next)
439 struct web *aweb = a->t;
440 if (aweb->type != SELECT && aweb->type != COALESCED)
441 enable_move (aweb);
443 if (web->type != FREEZE)
445 remove_web_from_list (web);
446 if (web->moves)
447 put_web (web, FREEZE);
448 else
449 put_web (web, SIMPLIFY);
454 /* Repeatedly simplify the nodes on the simplify worklists. */
456 static void
457 simplify ()
459 struct dlist *d;
460 struct web *web;
461 struct conflict_link *wl;
462 while (1)
464 /* We try hard to color all the webs resulting from spills first.
465 Without that on register starved machines (x86 e.g) with some live
466 DImode pseudos, -fPIC, and an asm requiring %edx, it might be, that
467 we do rounds over rounds, because the conflict graph says, we can
468 simplify those short webs, but later due to irregularities we can't
469 color those pseudos. So we have to spill them, which in later rounds
470 leads to other spills. */
471 d = pop_list (&WEBS(SIMPLIFY));
472 if (!d)
473 d = pop_list (&WEBS(SIMPLIFY_FAT));
474 if (!d)
475 d = pop_list (&WEBS(SIMPLIFY_SPILL));
476 if (!d)
477 break;
478 web = DLIST_WEB (d);
479 ra_debug_msg (DUMP_PROCESS, " simplifying web %3d, conflicts = %d\n",
480 web->id, web->num_conflicts);
481 put_web (web, SELECT);
482 for (wl = web->conflict_list; wl; wl = wl->next)
484 struct web *pweb = wl->t;
485 if (pweb->type != SELECT && pweb->type != COALESCED)
487 decrement_degree (pweb, 1 + web->add_hardregs);
493 /* Helper function to remove a move from the movelist of the web. */
495 static void
496 remove_move_1 (web, move)
497 struct web *web;
498 struct move *move;
500 struct move_list *ml = web->moves;
501 if (!ml)
502 return;
503 if (ml->move == move)
505 web->moves = ml->next;
506 return;
508 for (; ml->next && ml->next->move != move; ml = ml->next) ;
509 if (!ml->next)
510 return;
511 ml->next = ml->next->next;
514 /* Remove a move from the movelist of the web. Actually this is just a
515 wrapper around remove_move_1(), making sure, the removed move really is
516 not in the list anymore. */
518 static void
519 remove_move (web, move)
520 struct web *web;
521 struct move *move;
523 struct move_list *ml;
524 remove_move_1 (web, move);
525 for (ml = web->moves; ml; ml = ml->next)
526 if (ml->move == move)
527 abort ();
530 /* Merge the moves for the two webs into the first web's movelist. */
532 void
533 merge_moves (u, v)
534 struct web *u, *v;
536 regset seen;
537 struct move_list *ml;
539 seen = BITMAP_XMALLOC ();
540 for (ml = u->moves; ml; ml = ml->next)
541 bitmap_set_bit (seen, INSN_UID (ml->move->insn));
542 for (ml = v->moves; ml; ml = ml->next)
544 if (! bitmap_bit_p (seen, INSN_UID (ml->move->insn)))
546 ml->next = u->moves;
547 u->moves = ml;
550 BITMAP_XFREE (seen);
551 v->moves = NULL;
554 /* Add a web to the simplify worklist, from the freeze worklist. */
556 static void
557 add_worklist (web)
558 struct web *web;
560 if (web->type != PRECOLORED && !web->moves
561 && web->num_conflicts < NUM_REGS (web))
563 remove_list (web->dlink, &WEBS(FREEZE));
564 put_web (web, SIMPLIFY);
568 /* Precolored node coalescing heuristic. */
570 static int
571 ok (target, source)
572 struct web *target, *source;
574 struct conflict_link *wl;
575 int i;
576 int color = source->color;
577 int size;
579 /* Normally one would think, the next test wouldn't be needed.
580 We try to coalesce S and T, and S has already a color, and we checked
581 when processing the insns, that both have the same mode. So naively
582 we could conclude, that of course that mode was valid for this color.
583 Hah. But there is sparc. Before reload there are copy insns
584 (e.g. the ones copying arguments to locals) which happily refer to
585 colors in invalid modes. We can't coalesce those things. */
586 if (! HARD_REGNO_MODE_OK (source->color, GET_MODE (target->orig_x)))
587 return 0;
589 /* Sanity for funny modes. */
590 size = HARD_REGNO_NREGS (color, GET_MODE (target->orig_x));
591 if (!size)
592 return 0;
594 /* We can't coalesce target with a precolored register which isn't in
595 usable_regs. */
596 for (i = size; i--;)
597 if (TEST_HARD_REG_BIT (never_use_colors, color + i)
598 || !TEST_HARD_REG_BIT (target->usable_regs, color + i)
599 /* Before usually calling ok() at all, we already test, if the
600 candidates conflict in sup_igraph. But when wide webs are
601 coalesced to hardregs, we only test the hardweb coalesced into.
602 This is only the begin color. When actually coalescing both,
603 it will also take the following size colors, i.e. their webs.
604 We nowhere checked if the candidate possibly conflicts with
605 one of _those_, which is possible with partial conflicts,
606 so we simply do it here (this does one bit-test more than
607 necessary, the first color). Note, that if X is precolored
608 bit [X*num_webs + Y] can't be set (see add_conflict_edge()). */
609 || TEST_BIT (sup_igraph,
610 target->id * num_webs + hardreg2web[color + i]->id))
611 return 0;
613 for (wl = target->conflict_list; wl; wl = wl->next)
615 struct web *pweb = wl->t;
616 if (pweb->type == SELECT || pweb->type == COALESCED)
617 continue;
619 /* Coalescing target (T) and source (S) is o.k, if for
620 all conflicts C of T it is true, that:
621 1) C will be colored, or
622 2) C is a hardreg (precolored), or
623 3) C already conflicts with S too, or
624 4) a web which contains C conflicts already with S.
625 XXX: we handle here only the special case of 4), that C is
626 a subreg, and the containing thing is the reg itself, i.e.
627 we dont handle the situation, were T conflicts with
628 (subreg:SI x 1), and S conflicts with (subreg:DI x 0), which
629 would be allowed also, as the S-conflict overlaps
630 the T-conflict.
631 So, we first test the whole web for any of these conditions, and
632 continue with the next C, if 1, 2 or 3 is true. */
633 if (pweb->num_conflicts < NUM_REGS (pweb)
634 || pweb->type == PRECOLORED
635 || TEST_BIT (igraph, igraph_index (source->id, pweb->id)) )
636 continue;
638 /* This is reached, if not one of 1, 2 or 3 was true. In the case C has
639 no subwebs, 4 can't be true either, so we can't coalesce S and T. */
640 if (wl->sub == NULL)
641 return 0;
642 else
644 /* The main webs do _not_ conflict, only some parts of both. This
645 means, that 4 is possibly true, so we need to check this too.
646 For this we go thru all sub conflicts between T and C, and see if
647 the target part of C already conflicts with S. When this is not
648 the case we disallow coalescing. */
649 struct sub_conflict *sl;
650 for (sl = wl->sub; sl; sl = sl->next)
652 if (!TEST_BIT (igraph, igraph_index (source->id, sl->t->id)))
653 return 0;
657 return 1;
660 /* Non-precolored node coalescing heuristic. */
662 static int
663 conservative (target, source)
664 struct web *target, *source;
666 unsigned int k;
667 unsigned int loop;
668 regset seen;
669 struct conflict_link *wl;
670 unsigned int num_regs = NUM_REGS (target); /* XXX */
672 /* k counts the resulting conflict weight, if target and source
673 would be merged, and all low-degree neighbors would be
674 removed. */
675 k = 0 * MAX (target->add_hardregs, source->add_hardregs);
676 seen = BITMAP_XMALLOC ();
677 for (loop = 0; loop < 2; loop++)
678 for (wl = ((loop == 0) ? target : source)->conflict_list;
679 wl; wl = wl->next)
681 struct web *pweb = wl->t;
682 if (pweb->type != SELECT && pweb->type != COALESCED
683 && pweb->num_conflicts >= NUM_REGS (pweb)
684 && ! REGNO_REG_SET_P (seen, pweb->id))
686 SET_REGNO_REG_SET (seen, pweb->id);
687 k += 1 + pweb->add_hardregs;
690 BITMAP_XFREE (seen);
692 if (k >= num_regs)
693 return 0;
694 return 1;
697 /* If the web is coalesced, return it's alias. Otherwise, return what
698 was passed in. */
700 struct web *
701 alias (web)
702 struct web *web;
704 while (web->type == COALESCED)
705 web = web->alias;
706 return web;
709 /* Returns nonzero, if the TYPE belongs to one of those representing
710 SIMPLIFY types. */
712 static inline unsigned int
713 simplify_p (type)
714 enum node_type type;
716 return type == SIMPLIFY || type == SIMPLIFY_SPILL || type == SIMPLIFY_FAT;
719 /* Actually combine two webs, that can be coalesced. */
721 static void
722 combine (u, v)
723 struct web *u, *v;
725 int i;
726 struct conflict_link *wl;
727 if (u == v || v->type == COALESCED)
728 abort ();
729 if ((u->regno >= max_normal_pseudo) != (v->regno >= max_normal_pseudo))
730 abort ();
731 remove_web_from_list (v);
732 put_web (v, COALESCED);
733 v->alias = u;
734 u->is_coalesced = 1;
735 v->is_coalesced = 1;
736 u->num_aliased += 1 + v->num_aliased;
737 if (flag_ra_merge_spill_costs && u->type != PRECOLORED)
738 u->spill_cost += v->spill_cost;
739 /*u->spill_cost = MAX (u->spill_cost, v->spill_cost);*/
740 merge_moves (u, v);
741 /* combine add_hardregs's of U and V. */
743 for (wl = v->conflict_list; wl; wl = wl->next)
745 struct web *pweb = wl->t;
746 /* We don't strictly need to move conflicts between webs which are
747 already coalesced or selected, if we do iterated coalescing, or
748 better if we need not to be able to break aliases again.
749 I.e. normally we would use the condition
750 (pweb->type != SELECT && pweb->type != COALESCED).
751 But for now we simply merge all conflicts. It doesn't take that
752 much time. */
753 if (1)
755 struct web *web = u;
756 int nregs = 1 + v->add_hardregs;
757 if (u->type == PRECOLORED)
758 nregs = HARD_REGNO_NREGS (u->color, GET_MODE (v->orig_x));
760 /* For precolored U's we need to make conflicts between V's
761 neighbors and as many hardregs from U as V needed if it gets
762 color U. For now we approximate this by V->add_hardregs, which
763 could be too much in multi-length classes. We should really
764 count how many hardregs are needed for V with color U. When U
765 isn't precolored this loop breaks out after one iteration. */
766 for (i = 0; i < nregs; i++)
768 if (u->type == PRECOLORED)
769 web = hardreg2web[i + u->color];
770 if (wl->sub == NULL)
771 record_conflict (web, pweb);
772 else
774 struct sub_conflict *sl;
775 /* So, between V and PWEB there are sub_conflicts. We
776 need to relocate those conflicts to be between WEB (==
777 U when it wasn't precolored) and PWEB. In the case
778 only a part of V conflicted with (part of) PWEB we
779 nevertheless make the new conflict between the whole U
780 and the (part of) PWEB. Later we might try to find in
781 U the correct subpart corresponding (by size and
782 offset) to the part of V (sl->s) which was the source
783 of the conflict. */
784 for (sl = wl->sub; sl; sl = sl->next)
786 /* Beware: sl->s is no subweb of web (== U) but of V.
787 We try to search a corresponding subpart of U.
788 If we found none we let it conflict with the whole U.
789 Note that find_subweb() only looks for mode and
790 subreg_byte of the REG rtx but not for the pseudo
791 reg number (otherwise it would be guaranteed to
792 _not_ find any subpart). */
793 struct web *sweb = NULL;
794 if (SUBWEB_P (sl->s))
795 sweb = find_subweb (web, sl->s->orig_x);
796 if (!sweb)
797 sweb = web;
798 record_conflict (sweb, sl->t);
801 if (u->type != PRECOLORED)
802 break;
804 if (pweb->type != SELECT && pweb->type != COALESCED)
805 decrement_degree (pweb, 1 + v->add_hardregs);
809 /* Now merge the usable_regs together. */
810 /* XXX That merging might normally make it necessary to
811 adjust add_hardregs, which also means to adjust neighbors. This can
812 result in making some more webs trivially colorable, (or the opposite,
813 if this increases our add_hardregs). Because we intersect the
814 usable_regs it should only be possible to decrease add_hardregs. So a
815 conservative solution for now is to simply don't change it. */
816 u->use_my_regs = 1;
817 AND_HARD_REG_SET (u->usable_regs, v->usable_regs);
818 u->regclass = reg_class_subunion[u->regclass][v->regclass];
819 /* Count number of possible hardregs. This might make U a spillweb,
820 but that could also happen, if U and V together had too many
821 conflicts. */
822 u->num_freedom = hard_regs_count (u->usable_regs);
823 u->num_freedom -= u->add_hardregs;
824 /* The next would mean an invalid coalesced move (both webs have no
825 possible hardreg in common), so abort. */
826 if (!u->num_freedom)
827 abort();
829 if (u->num_conflicts >= NUM_REGS (u)
830 && (u->type == FREEZE || simplify_p (u->type)))
832 remove_web_from_list (u);
833 put_web (u, SPILL);
836 /* We want the most relaxed combination of spill_temp state.
837 I.e. if any was no spilltemp or a spilltemp2, the result is so too,
838 otherwise if any is short, the result is too. It remains, when both
839 are normal spilltemps. */
840 if (v->spill_temp == 0)
841 u->spill_temp = 0;
842 else if (v->spill_temp == 2 && u->spill_temp != 0)
843 u->spill_temp = 2;
844 else if (v->spill_temp == 3 && u->spill_temp == 1)
845 u->spill_temp = 3;
848 /* Attempt to coalesce the first thing on the move worklist.
849 This is used only for iterated coalescing. */
851 static void
852 coalesce ()
854 struct dlist *d = pop_list (&mv_worklist);
855 struct move *m = DLIST_MOVE (d);
856 struct web *source = alias (m->source_web);
857 struct web *target = alias (m->target_web);
859 if (target->type == PRECOLORED)
861 struct web *h = source;
862 source = target;
863 target = h;
865 if (source == target)
867 remove_move (source, m);
868 put_move (m, MV_COALESCED);
869 add_worklist (source);
871 else if (target->type == PRECOLORED
872 || TEST_BIT (sup_igraph, source->id * num_webs + target->id)
873 || TEST_BIT (sup_igraph, target->id * num_webs + source->id))
875 remove_move (source, m);
876 remove_move (target, m);
877 put_move (m, CONSTRAINED);
878 add_worklist (source);
879 add_worklist (target);
881 else if ((source->type == PRECOLORED && ok (target, source))
882 || (source->type != PRECOLORED
883 && conservative (target, source)))
885 remove_move (source, m);
886 remove_move (target, m);
887 put_move (m, MV_COALESCED);
888 combine (source, target);
889 add_worklist (source);
891 else
892 put_move (m, ACTIVE);
895 /* Freeze the moves associated with the web. Used for iterated coalescing. */
897 static void
898 freeze_moves (web)
899 struct web *web;
901 struct move_list *ml, *ml_next;
902 for (ml = web->moves; ml; ml = ml_next)
904 struct move *m = ml->move;
905 struct web *src, *dest;
906 ml_next = ml->next;
907 if (m->type == ACTIVE)
908 remove_list (m->dlink, &mv_active);
909 else
910 remove_list (m->dlink, &mv_worklist);
911 put_move (m, FROZEN);
912 remove_move (web, m);
913 src = alias (m->source_web);
914 dest = alias (m->target_web);
915 src = (src == web) ? dest : src;
916 remove_move (src, m);
917 /* XXX GA use the original v, instead of alias(v) */
918 if (!src->moves && src->num_conflicts < NUM_REGS (src))
920 remove_list (src->dlink, &WEBS(FREEZE));
921 put_web (src, SIMPLIFY);
926 /* Freeze the first thing on the freeze worklist (only for iterated
927 coalescing). */
929 static void
930 freeze ()
932 struct dlist *d = pop_list (&WEBS(FREEZE));
933 put_web (DLIST_WEB (d), SIMPLIFY);
934 freeze_moves (DLIST_WEB (d));
937 /* The current spill heuristic. Returns a number for a WEB.
938 Webs with higher numbers are selected later. */
940 static unsigned HOST_WIDE_INT (*spill_heuristic) PARAMS ((struct web *));
942 static unsigned HOST_WIDE_INT default_spill_heuristic PARAMS ((struct web *));
944 /* Our default heuristic is similar to spill_cost / num_conflicts.
945 Just scaled for integer arithmetic, and it favors coalesced webs,
946 and webs which span more insns with deaths. */
948 static unsigned HOST_WIDE_INT
949 default_spill_heuristic (web)
950 struct web *web;
952 unsigned HOST_WIDE_INT ret;
953 unsigned int divisor = 1;
954 /* Make coalesce targets cheaper to spill, because they will be broken
955 up again into smaller parts. */
956 if (flag_ra_break_aliases)
957 divisor += web->num_aliased;
958 divisor += web->num_conflicts;
959 ret = ((web->spill_cost << 8) + divisor - 1) / divisor;
960 /* It is better to spill webs that span more insns (deaths in our
961 case) than other webs with the otherwise same spill_cost. So make
962 them a little bit cheaper. Remember that spill_cost is unsigned. */
963 if (web->span_deaths < ret)
964 ret -= web->span_deaths;
965 return ret;
968 /* Select the cheapest spill to be potentially spilled (we don't
969 *actually* spill until we need to). */
971 static void
972 select_spill ()
974 unsigned HOST_WIDE_INT best = (unsigned HOST_WIDE_INT) -1;
975 struct dlist *bestd = NULL;
976 unsigned HOST_WIDE_INT best2 = (unsigned HOST_WIDE_INT) -1;
977 struct dlist *bestd2 = NULL;
978 struct dlist *d;
979 for (d = WEBS(SPILL); d; d = d->next)
981 struct web *w = DLIST_WEB (d);
982 unsigned HOST_WIDE_INT cost = spill_heuristic (w);
983 if ((!w->spill_temp) && cost < best)
985 best = cost;
986 bestd = d;
988 /* Specially marked spill temps can be spilled. Also coalesce
989 targets can. Eventually they will be broken up later in the
990 colorizing process, so if we have nothing better take that. */
991 else if ((w->spill_temp == 2 || w->is_coalesced) && cost < best2)
993 best2 = cost;
994 bestd2 = d;
997 if (!bestd)
999 bestd = bestd2;
1000 best = best2;
1002 if (!bestd)
1003 abort ();
1005 /* Note the potential spill. */
1006 DLIST_WEB (bestd)->was_spilled = 1;
1007 remove_list (bestd, &WEBS(SPILL));
1008 put_web (DLIST_WEB (bestd), SIMPLIFY);
1009 freeze_moves (DLIST_WEB (bestd));
1010 ra_debug_msg (DUMP_PROCESS, " potential spill web %3d, conflicts = %d\n",
1011 DLIST_WEB (bestd)->id, DLIST_WEB (bestd)->num_conflicts);
1014 /* Given a set of forbidden colors to begin at, and a set of still
1015 free colors, and MODE, returns nonzero of color C is still usable. */
1017 static int
1018 color_usable_p (c, dont_begin_colors, free_colors, mode)
1019 int c;
1020 HARD_REG_SET dont_begin_colors, free_colors;
1021 enum machine_mode mode;
1023 if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
1024 && TEST_HARD_REG_BIT (free_colors, c)
1025 && HARD_REGNO_MODE_OK (c, mode))
1027 int i, size;
1028 size = HARD_REGNO_NREGS (c, mode);
1029 for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
1030 if (i == size)
1031 return 1;
1033 return 0;
1036 /* I don't want to clutter up the actual code with ifdef's. */
1037 #ifdef REG_ALLOC_ORDER
1038 #define INV_REG_ALLOC_ORDER(c) inv_reg_alloc_order[c]
1039 #else
1040 #define INV_REG_ALLOC_ORDER(c) c
1041 #endif
1043 /* Searches in FREE_COLORS for a block of hardregs of the right length
1044 for MODE, which doesn't begin at a hardreg mentioned in DONT_BEGIN_COLORS.
1045 If it needs more than one hardreg it prefers blocks beginning
1046 at an even hardreg, and only gives an odd begin reg if no other
1047 block could be found. */
1050 get_free_reg (dont_begin_colors, free_colors, mode)
1051 HARD_REG_SET dont_begin_colors, free_colors;
1052 enum machine_mode mode;
1054 int c;
1055 int last_resort_reg = -1;
1056 int pref_reg = -1;
1057 int pref_reg_order = INT_MAX;
1058 int last_resort_reg_order = INT_MAX;
1060 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
1061 if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
1062 && TEST_HARD_REG_BIT (free_colors, c)
1063 && HARD_REGNO_MODE_OK (c, mode))
1065 int i, size;
1066 size = HARD_REGNO_NREGS (c, mode);
1067 for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
1068 if (i != size)
1070 c += i;
1071 continue;
1073 if (i == size)
1075 if (size < 2 || (c & 1) == 0)
1077 if (INV_REG_ALLOC_ORDER (c) < pref_reg_order)
1079 pref_reg = c;
1080 pref_reg_order = INV_REG_ALLOC_ORDER (c);
1083 else if (INV_REG_ALLOC_ORDER (c) < last_resort_reg_order)
1085 last_resort_reg = c;
1086 last_resort_reg_order = INV_REG_ALLOC_ORDER (c);
1089 else
1090 c += i;
1092 return pref_reg >= 0 ? pref_reg : last_resort_reg;
1095 /* Similar to get_free_reg(), but first search in colors provided
1096 by BIAS _and_ PREFER_COLORS, then in BIAS alone, then in PREFER_COLORS
1097 alone, and only then for any free color. If flag_ra_biased is zero
1098 only do the last two steps. */
1100 static int
1101 get_biased_reg (dont_begin_colors, bias, prefer_colors, free_colors, mode)
1102 HARD_REG_SET dont_begin_colors, bias, prefer_colors, free_colors;
1103 enum machine_mode mode;
1105 int c = -1;
1106 HARD_REG_SET s;
1107 if (flag_ra_biased)
1109 COPY_HARD_REG_SET (s, dont_begin_colors);
1110 IOR_COMPL_HARD_REG_SET (s, bias);
1111 IOR_COMPL_HARD_REG_SET (s, prefer_colors);
1112 c = get_free_reg (s, free_colors, mode);
1113 if (c >= 0)
1114 return c;
1115 COPY_HARD_REG_SET (s, dont_begin_colors);
1116 IOR_COMPL_HARD_REG_SET (s, bias);
1117 c = get_free_reg (s, free_colors, mode);
1118 if (c >= 0)
1119 return c;
1121 COPY_HARD_REG_SET (s, dont_begin_colors);
1122 IOR_COMPL_HARD_REG_SET (s, prefer_colors);
1123 c = get_free_reg (s, free_colors, mode);
1124 if (c >= 0)
1125 return c;
1126 c = get_free_reg (dont_begin_colors, free_colors, mode);
1127 return c;
1130 /* Counts the number of non-overlapping bitblocks of length LEN
1131 in FREE_COLORS. */
1133 static int
1134 count_long_blocks (free_colors, len)
1135 HARD_REG_SET free_colors;
1136 int len;
1138 int i, j;
1139 int count = 0;
1140 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1142 if (!TEST_HARD_REG_BIT (free_colors, i))
1143 continue;
1144 for (j = 1; j < len; j++)
1145 if (!TEST_HARD_REG_BIT (free_colors, i + j))
1146 break;
1147 /* Bits [i .. i+j-1] are free. */
1148 if (j == len)
1149 count++;
1150 i += j - 1;
1152 return count;
1155 /* Given a hardreg set S, return a string representing it.
1156 Either as 0/1 string, or as hex value depending on the implementation
1157 of hardreg sets. Note that this string is statically allocated. */
1159 static char *
1160 hardregset_to_string (s)
1161 HARD_REG_SET s;
1163 static char string[/*FIRST_PSEUDO_REGISTER + 30*/1024];
1164 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDE_INT
1165 sprintf (string, HOST_WIDE_INT_PRINT_HEX, s);
1166 #else
1167 char *c = string;
1168 int i,j;
1169 c += sprintf (c, "{ ");
1170 for (i = 0;i < HARD_REG_SET_LONGS; i++)
1172 for (j = 0; j < HOST_BITS_PER_WIDE_INT; j++)
1173 c += sprintf (c, "%s", ( 1 << j) & s[i] ? "1" : "0");
1174 c += sprintf (c, "%s", i ? ", " : "");
1176 c += sprintf (c, " }");
1177 #endif
1178 return string;
1181 /* For WEB, look at its already colored neighbors, and calculate
1182 the set of hardregs which is not allowed as color for WEB. Place
1183 that set int *RESULT. Note that the set of forbidden begin colors
1184 is not the same as all colors taken up by neighbors. E.g. suppose
1185 two DImode webs, but only the lo-part from one conflicts with the
1186 hipart from the other, and suppose the other gets colors 2 and 3
1187 (it needs two SImode hardregs). Now the first can take also color
1188 1 or 2, although in those cases there's a partial overlap. Only
1189 3 can't be used as begin color. */
1191 static void
1192 calculate_dont_begin (web, result)
1193 struct web *web;
1194 HARD_REG_SET *result;
1196 struct conflict_link *wl;
1197 HARD_REG_SET dont_begin;
1198 /* The bits set in dont_begin correspond to the hardregs, at which
1199 WEB may not begin. This differs from the set of _all_ hardregs which
1200 are taken by WEB's conflicts in the presence of wide webs, where only
1201 some parts conflict with others. */
1202 CLEAR_HARD_REG_SET (dont_begin);
1203 for (wl = web->conflict_list; wl; wl = wl->next)
1205 struct web *w;
1206 struct web *ptarget = alias (wl->t);
1207 struct sub_conflict *sl = wl->sub;
1208 w = sl ? sl->t : wl->t;
1209 while (w)
1211 if (ptarget->type == COLORED || ptarget->type == PRECOLORED)
1213 struct web *source = (sl) ? sl->s : web;
1214 unsigned int tsize = HARD_REGNO_NREGS (ptarget->color,
1215 GET_MODE (w->orig_x));
1216 /* ssize is only a first guess for the size. */
1217 unsigned int ssize = HARD_REGNO_NREGS (ptarget->color, GET_MODE
1218 (source->orig_x));
1219 unsigned int tofs = 0;
1220 unsigned int sofs = 0;
1221 /* C1 and C2 can become negative, so unsigned
1222 would be wrong. */
1223 int c1, c2;
1225 if (SUBWEB_P (w)
1226 && GET_MODE_SIZE (GET_MODE (w->orig_x)) >= UNITS_PER_WORD)
1227 tofs = (SUBREG_BYTE (w->orig_x) / UNITS_PER_WORD);
1228 if (SUBWEB_P (source)
1229 && GET_MODE_SIZE (GET_MODE (source->orig_x))
1230 >= UNITS_PER_WORD)
1231 sofs = (SUBREG_BYTE (source->orig_x) / UNITS_PER_WORD);
1232 c1 = ptarget->color + tofs - sofs - ssize + 1;
1233 c2 = ptarget->color + tofs + tsize - 1 - sofs;
1234 if (c2 >= 0)
1236 if (c1 < 0)
1237 c1 = 0;
1238 /* Because ssize was only guessed above, which influenced our
1239 begin color (c1), we need adjustment, if for that color
1240 another size would be needed. This is done by moving
1241 c1 to a place, where the last of sources hardregs does not
1242 overlap the first of targets colors. */
1243 while (c1 + sofs
1244 + HARD_REGNO_NREGS (c1, GET_MODE (source->orig_x)) - 1
1245 < ptarget->color + tofs)
1246 c1++;
1247 while (c1 > 0 && c1 + sofs
1248 + HARD_REGNO_NREGS (c1, GET_MODE (source->orig_x)) - 1
1249 > ptarget->color + tofs)
1250 c1--;
1251 for (; c1 <= c2; c1++)
1252 SET_HARD_REG_BIT (dont_begin, c1);
1255 /* The next if() only gets true, if there was no wl->sub at all, in
1256 which case we are only making one go thru this loop with W being
1257 a whole web. */
1258 if (!sl)
1259 break;
1260 sl = sl->next;
1261 w = sl ? sl->t : NULL;
1264 COPY_HARD_REG_SET (*result, dont_begin);
1267 /* Try to assign a color to WEB. If HARD if nonzero, we try many
1268 tricks to get it one color, including respilling already colored
1269 neighbors.
1271 We also trie very hard, to not constrain the uncolored non-spill
1272 neighbors, which need more hardregs than we. Consider a situation, 2
1273 hardregs free for us (0 and 1), and one of our neighbors needs 2
1274 hardregs, and only conflicts with us. There are 3 hardregs at all. Now
1275 a simple minded method might choose 1 as color for us. Then our neighbor
1276 has two free colors (0 and 2) as it should, but they are not consecutive,
1277 so coloring it later would fail. This leads to nasty problems on
1278 register starved machines, so we try to avoid this. */
1280 static void
1281 colorize_one_web (web, hard)
1282 struct web *web;
1283 int hard;
1285 struct conflict_link *wl;
1286 HARD_REG_SET colors, dont_begin;
1287 int c = -1;
1288 int bestc = -1;
1289 int neighbor_needs= 0;
1290 struct web *fats_parent = NULL;
1291 int num_fat = 0;
1292 int long_blocks = 0;
1293 int best_long_blocks = -1;
1294 HARD_REG_SET fat_colors;
1295 HARD_REG_SET bias;
1297 CLEAR_HARD_REG_SET (fat_colors);
1299 if (web->regno >= max_normal_pseudo)
1300 hard = 0;
1302 /* First we want to know the colors at which we can't begin. */
1303 calculate_dont_begin (web, &dont_begin);
1304 CLEAR_HARD_REG_SET (bias);
1306 /* Now setup the set of colors used by our neighbors neighbors,
1307 and search the biggest noncolored neighbor. */
1308 neighbor_needs = web->add_hardregs + 1;
1309 for (wl = web->conflict_list; wl; wl = wl->next)
1311 struct web *w;
1312 struct web *ptarget = alias (wl->t);
1313 struct sub_conflict *sl = wl->sub;
1314 IOR_HARD_REG_SET (bias, ptarget->bias_colors);
1315 w = sl ? sl->t : wl->t;
1316 if (ptarget->type != COLORED && ptarget->type != PRECOLORED
1317 && !ptarget->was_spilled)
1318 while (w)
1320 if (find_web_for_subweb (w)->type != COALESCED
1321 && w->add_hardregs >= neighbor_needs)
1323 neighbor_needs = w->add_hardregs;
1324 fats_parent = ptarget;
1325 num_fat++;
1327 if (!sl)
1328 break;
1329 sl = sl->next;
1330 w = sl ? sl->t : NULL;
1334 ra_debug_msg (DUMP_COLORIZE, "colorize web %d [don't begin at %s]", web->id,
1335 hardregset_to_string (dont_begin));
1337 /* If there are some fat neighbors, remember their usable regs,
1338 and how many blocks are free in it for that neighbor. */
1339 if (num_fat)
1341 COPY_HARD_REG_SET (fat_colors, fats_parent->usable_regs);
1342 long_blocks = count_long_blocks (fat_colors, neighbor_needs + 1);
1345 /* We break out, if we found a color which doesn't constrain
1346 neighbors, or if we can't find any colors. */
1347 while (1)
1349 HARD_REG_SET call_clobbered;
1351 /* Here we choose a hard-reg for the current web. For non spill
1352 temporaries we first search in the hardregs for it's preferred
1353 class, then, if we found nothing appropriate, in those of the
1354 alternate class. For spill temporaries we only search in
1355 usable_regs of this web (which is probably larger than that of
1356 the preferred or alternate class). All searches first try to
1357 find a non-call-clobbered hard-reg.
1358 XXX this should be more finegraned... First look into preferred
1359 non-callclobbered hardregs, then _if_ the web crosses calls, in
1360 alternate non-cc hardregs, and only _then_ also in preferred cc
1361 hardregs (and alternate ones). Currently we don't track the number
1362 of calls crossed for webs. We should. */
1363 if (web->use_my_regs)
1365 COPY_HARD_REG_SET (colors, web->usable_regs);
1366 AND_HARD_REG_SET (colors,
1367 usable_regs[reg_preferred_class (web->regno)]);
1369 else
1370 COPY_HARD_REG_SET (colors,
1371 usable_regs[reg_preferred_class (web->regno)]);
1372 #ifdef CLASS_CANNOT_CHANGE_MODE
1373 if (web->mode_changed)
1374 AND_COMPL_HARD_REG_SET (colors, reg_class_contents[
1375 (int) CLASS_CANNOT_CHANGE_MODE]);
1376 #endif
1377 COPY_HARD_REG_SET (call_clobbered, colors);
1378 AND_HARD_REG_SET (call_clobbered, call_used_reg_set);
1380 /* If this web got a color in the last pass, try to give it the
1381 same color again. This will to much better colorization
1382 down the line, as we spilled for a certain coloring last time. */
1383 if (web->old_color)
1385 c = web->old_color - 1;
1386 if (!color_usable_p (c, dont_begin, colors,
1387 PSEUDO_REGNO_MODE (web->regno)))
1388 c = -1;
1390 else
1391 c = -1;
1392 if (c < 0)
1393 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1394 call_clobbered, PSEUDO_REGNO_MODE (web->regno));
1395 if (c < 0)
1396 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1397 colors, PSEUDO_REGNO_MODE (web->regno));
1399 if (c < 0)
1401 if (web->use_my_regs)
1402 IOR_HARD_REG_SET (colors, web->usable_regs);
1403 else
1404 IOR_HARD_REG_SET (colors, usable_regs
1405 [reg_alternate_class (web->regno)]);
1406 #ifdef CLASS_CANNOT_CHANGE_MODE
1407 if (web->mode_changed)
1408 AND_COMPL_HARD_REG_SET (colors, reg_class_contents[
1409 (int) CLASS_CANNOT_CHANGE_MODE]);
1410 #endif
1411 COPY_HARD_REG_SET (call_clobbered, colors);
1412 AND_HARD_REG_SET (call_clobbered, call_used_reg_set);
1414 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1415 call_clobbered, PSEUDO_REGNO_MODE (web->regno));
1416 if (c < 0)
1417 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1418 colors, PSEUDO_REGNO_MODE (web->regno));
1420 if (c < 0)
1421 break;
1422 if (bestc < 0)
1423 bestc = c;
1424 /* If one of the yet uncolored neighbors, which is not a potential
1425 spill needs a block of hardregs be sure, not to destroy such a block
1426 by coloring one reg in the middle. */
1427 if (num_fat)
1429 int i;
1430 int new_long;
1431 HARD_REG_SET colors1;
1432 COPY_HARD_REG_SET (colors1, fat_colors);
1433 for (i = 0; i < 1 + web->add_hardregs; i++)
1434 CLEAR_HARD_REG_BIT (colors1, c + i);
1435 new_long = count_long_blocks (colors1, neighbor_needs + 1);
1436 /* If we changed the number of long blocks, and it's now smaller
1437 than needed, we try to avoid this color. */
1438 if (long_blocks != new_long && new_long < num_fat)
1440 if (new_long > best_long_blocks)
1442 best_long_blocks = new_long;
1443 bestc = c;
1445 SET_HARD_REG_BIT (dont_begin, c);
1446 ra_debug_msg (DUMP_COLORIZE, " avoid %d", c);
1448 else
1449 /* We found a color which doesn't destroy a block. */
1450 break;
1452 /* If we havee no fat neighbors, the current color won't become
1453 "better", so we've found it. */
1454 else
1455 break;
1457 ra_debug_msg (DUMP_COLORIZE, " --> got %d", c < 0 ? bestc : c);
1458 if (bestc >= 0 && c < 0 && !web->was_spilled)
1460 /* This is a non-potential-spill web, which got a color, which did
1461 destroy a hardreg block for one of it's neighbors. We color
1462 this web anyway and hope for the best for the neighbor, if we are
1463 a spill temp. */
1464 if (1 || web->spill_temp)
1465 c = bestc;
1466 ra_debug_msg (DUMP_COLORIZE, " [constrains neighbors]");
1468 ra_debug_msg (DUMP_COLORIZE, "\n");
1470 if (c < 0)
1472 /* Guard against a simplified node being spilled. */
1473 /* Don't abort. This can happen, when e.g. enough registers
1474 are available in colors, but they are not consecutive. This is a
1475 very serious issue if this web is a short live one, because
1476 even if we spill this one here, the situation won't become better
1477 in the next iteration. It probably will have the same conflicts,
1478 those will have the same colors, and we would come here again, for
1479 all parts, in which this one gets splitted by the spill. This
1480 can result in endless iteration spilling the same register again and
1481 again. That's why we try to find a neighbor, which spans more
1482 instructions that ourself, and got a color, and try to spill _that_.
1484 if (DLIST_WEB (d)->was_spilled < 0)
1485 abort (); */
1486 if (hard && (!web->was_spilled || web->spill_temp))
1488 unsigned int loop;
1489 struct web *try = NULL;
1490 struct web *candidates[8];
1492 ra_debug_msg (DUMP_COLORIZE, " *** %d spilled, although %s ***\n",
1493 web->id, web->spill_temp ? "spilltemp" : "non-spill");
1494 /* We make multiple passes over our conflicts, first trying to
1495 spill those webs, which only got a color by chance, but
1496 were potential spill ones, and if that isn't enough, in a second
1497 pass also to spill normal colored webs. If we still didn't find
1498 a candidate, but we are a spill-temp, we make a third pass
1499 and include also webs, which were targets for coalescing, and
1500 spill those. */
1501 memset (candidates, 0, sizeof candidates);
1502 #define set_cand(i, w) \
1503 do { \
1504 if (!candidates[(i)] \
1505 || (candidates[(i)]->spill_cost < (w)->spill_cost)) \
1506 candidates[(i)] = (w); \
1507 } while (0)
1508 for (wl = web->conflict_list; wl; wl = wl->next)
1510 struct web *w = wl->t;
1511 struct web *aw = alias (w);
1512 /* If we are a spill-temp, we also look at webs coalesced
1513 to precolored ones. Otherwise we only look at webs which
1514 themselves were colored, or coalesced to one. */
1515 if (aw->type == PRECOLORED && w != aw && web->spill_temp
1516 && flag_ra_optimistic_coalescing)
1518 if (!w->spill_temp)
1519 set_cand (4, w);
1520 else if (web->spill_temp == 2
1521 && w->spill_temp == 2
1522 && w->spill_cost < web->spill_cost)
1523 set_cand (5, w);
1524 else if (web->spill_temp != 2
1525 && (w->spill_temp == 2
1526 || w->spill_cost < web->spill_cost))
1527 set_cand (6, w);
1528 continue;
1530 if (aw->type != COLORED)
1531 continue;
1532 if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
1533 && w->was_spilled)
1535 if (w->spill_cost < web->spill_cost)
1536 set_cand (0, w);
1537 else if (web->spill_temp)
1538 set_cand (1, w);
1540 if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
1541 && !w->was_spilled)
1543 if (w->spill_cost < web->spill_cost)
1544 set_cand (2, w);
1545 else if (web->spill_temp && web->spill_temp != 2)
1546 set_cand (3, w);
1548 if (web->spill_temp)
1550 if (w->type == COLORED && w->spill_temp == 2
1551 && !w->is_coalesced
1552 && (w->spill_cost < web->spill_cost
1553 || web->spill_temp != 2))
1554 set_cand (4, w);
1555 if (!aw->spill_temp)
1556 set_cand (5, aw);
1557 if (aw->spill_temp == 2
1558 && (aw->spill_cost < web->spill_cost
1559 || web->spill_temp != 2))
1560 set_cand (6, aw);
1561 /* For boehm-gc/misc.c. If we are a difficult spilltemp,
1562 also coalesced neighbors are a chance, _even_ if they
1563 too are spilltemps. At least their coalescing can be
1564 broken up, which may be reset usable_regs, and makes
1565 it easier colorable. */
1566 if (web->spill_temp != 2 && aw->is_coalesced
1567 && flag_ra_optimistic_coalescing)
1568 set_cand (7, aw);
1571 for (loop = 0; try == NULL && loop < 8; loop++)
1572 if (candidates[loop])
1573 try = candidates[loop];
1574 #undef set_cand
1575 if (try)
1577 int old_c = try->color;
1578 if (try->type == COALESCED)
1580 if (alias (try)->type != PRECOLORED)
1581 abort ();
1582 ra_debug_msg (DUMP_COLORIZE, " breaking alias %d -> %d\n",
1583 try->id, alias (try)->id);
1584 break_precolored_alias (try);
1585 colorize_one_web (web, hard);
1587 else
1589 remove_list (try->dlink, &WEBS(COLORED));
1590 put_web (try, SPILLED);
1591 /* Now try to colorize us again. Can recursively make other
1592 webs also spill, until there are no more unspilled
1593 neighbors. */
1594 ra_debug_msg (DUMP_COLORIZE, " trying to spill %d\n", try->id);
1595 colorize_one_web (web, hard);
1596 if (web->type != COLORED)
1598 /* We tried recursively to spill all already colored
1599 neighbors, but we are still uncolorable. So it made
1600 no sense to spill those neighbors. Recolor them. */
1601 remove_list (try->dlink, &WEBS(SPILLED));
1602 put_web (try, COLORED);
1603 try->color = old_c;
1604 ra_debug_msg (DUMP_COLORIZE,
1605 " spilling %d was useless\n", try->id);
1607 else
1609 ra_debug_msg (DUMP_COLORIZE,
1610 " to spill %d was a good idea\n",
1611 try->id);
1612 remove_list (try->dlink, &WEBS(SPILLED));
1613 if (try->was_spilled)
1614 colorize_one_web (try, 0);
1615 else
1616 colorize_one_web (try, hard - 1);
1620 else
1621 /* No more chances to get a color, so give up hope and
1622 spill us. */
1623 put_web (web, SPILLED);
1625 else
1626 put_web (web, SPILLED);
1628 else
1630 put_web (web, COLORED);
1631 web->color = c;
1632 if (flag_ra_biased)
1634 int nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
1635 for (wl = web->conflict_list; wl; wl = wl->next)
1637 struct web *ptarget = alias (wl->t);
1638 int i;
1639 for (i = 0; i < nregs; i++)
1640 SET_HARD_REG_BIT (ptarget->bias_colors, c + i);
1644 if (web->regno >= max_normal_pseudo && web->type == SPILLED)
1646 web->color = an_unusable_color;
1647 remove_list (web->dlink, &WEBS(SPILLED));
1648 put_web (web, COLORED);
1650 if (web->type == SPILLED && flag_ra_optimistic_coalescing
1651 && web->is_coalesced)
1653 ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
1654 restore_conflicts_from_coalesce (web);
1655 break_aliases_to_web (web);
1656 insert_coalesced_conflicts ();
1657 ra_debug_msg (DUMP_COLORIZE, "\n");
1658 remove_list (web->dlink, &WEBS(SPILLED));
1659 put_web (web, SELECT);
1660 web->color = -1;
1664 /* Assign the colors to all nodes on the select stack. And update the
1665 colors of coalesced webs. */
1667 static void
1668 assign_colors ()
1670 struct dlist *d;
1672 while (WEBS(SELECT))
1674 d = pop_list (&WEBS(SELECT));
1675 colorize_one_web (DLIST_WEB (d), 1);
1678 for (d = WEBS(COALESCED); d; d = d->next)
1680 struct web *a = alias (DLIST_WEB (d));
1681 DLIST_WEB (d)->color = a->color;
1685 /* WEB is a spilled web. Look if we can improve the cost of the graph,
1686 by coloring WEB, even if we then need to spill some of it's neighbors.
1687 For this we calculate the cost for each color C, that results when we
1688 _would_ give WEB color C (i.e. the cost of the then spilled neighbors).
1689 If the lowest cost among them is smaller than the spillcost of WEB, we
1690 do that recoloring, and instead spill the neighbors.
1692 This can sometime help, when due to irregularities in register file,
1693 and due to multi word pseudos, the colorization is suboptimal. But
1694 be aware, that currently this pass is quite slow. */
1696 static void
1697 try_recolor_web (web)
1698 struct web *web;
1700 struct conflict_link *wl;
1701 unsigned HOST_WIDE_INT *cost_neighbors;
1702 unsigned int *min_color;
1703 int newcol, c;
1704 HARD_REG_SET precolored_neighbors, spill_temps;
1705 HARD_REG_SET possible_begin, wide_seen;
1706 cost_neighbors = (unsigned HOST_WIDE_INT *)
1707 xcalloc (FIRST_PSEUDO_REGISTER, sizeof (cost_neighbors[0]));
1708 /* For each hard-regs count the number of preceding hardregs, which
1709 would overlap this color, if used in WEB's mode. */
1710 min_color = (unsigned int *) xcalloc (FIRST_PSEUDO_REGISTER, sizeof (int));
1711 CLEAR_HARD_REG_SET (possible_begin);
1712 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
1714 int i, nregs;
1715 if (!HARD_REGNO_MODE_OK (c, GET_MODE (web->orig_x)))
1716 continue;
1717 nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
1718 for (i = 0; i < nregs; i++)
1719 if (!TEST_HARD_REG_BIT (web->usable_regs, c + i))
1720 break;
1721 if (i < nregs || nregs == 0)
1722 continue;
1723 SET_HARD_REG_BIT (possible_begin, c);
1724 for (; nregs--;)
1725 if (!min_color[c + nregs])
1726 min_color[c + nregs] = 1 + c;
1728 CLEAR_HARD_REG_SET (precolored_neighbors);
1729 CLEAR_HARD_REG_SET (spill_temps);
1730 CLEAR_HARD_REG_SET (wide_seen);
1731 for (wl = web->conflict_list; wl; wl = wl->next)
1733 HARD_REG_SET dont_begin;
1734 struct web *web2 = alias (wl->t);
1735 struct conflict_link *nn;
1736 int c1, c2;
1737 int wide_p = 0;
1738 if (wl->t->type == COALESCED || web2->type != COLORED)
1740 if (web2->type == PRECOLORED)
1742 c1 = min_color[web2->color];
1743 c1 = (c1 == 0) ? web2->color : (c1 - 1);
1744 c2 = web2->color;
1745 for (; c1 <= c2; c1++)
1746 SET_HARD_REG_BIT (precolored_neighbors, c1);
1748 continue;
1750 /* Mark colors for which some wide webs are involved. For
1751 those the independent sets are not simply one-node graphs, so
1752 they can't be recolored independ from their neighborhood. This
1753 means, that our cost calculation can be incorrect (assuming it
1754 can avoid spilling a web because it thinks some colors are available,
1755 although it's neighbors which itself need recoloring might take
1756 away exactly those colors). */
1757 if (web2->add_hardregs)
1758 wide_p = 1;
1759 for (nn = web2->conflict_list; nn && !wide_p; nn = nn->next)
1760 if (alias (nn->t)->add_hardregs)
1761 wide_p = 1;
1762 calculate_dont_begin (web2, &dont_begin);
1763 c1 = min_color[web2->color];
1764 /* Note that min_color[] contains 1-based values (zero means
1765 undef). */
1766 c1 = c1 == 0 ? web2->color : (c1 - 1);
1767 c2 = web2->color + HARD_REGNO_NREGS (web2->color, GET_MODE
1768 (web2->orig_x)) - 1;
1769 for (; c1 <= c2; c1++)
1770 if (TEST_HARD_REG_BIT (possible_begin, c1))
1772 int nregs;
1773 HARD_REG_SET colors;
1774 nregs = HARD_REGNO_NREGS (c1, GET_MODE (web->orig_x));
1775 COPY_HARD_REG_SET (colors, web2->usable_regs);
1776 for (; nregs--;)
1777 CLEAR_HARD_REG_BIT (colors, c1 + nregs);
1778 if (wide_p)
1779 SET_HARD_REG_BIT (wide_seen, c1);
1780 if (get_free_reg (dont_begin, colors,
1781 GET_MODE (web2->orig_x)) < 0)
1783 if (web2->spill_temp)
1784 SET_HARD_REG_BIT (spill_temps, c1);
1785 else
1786 cost_neighbors[c1] += web2->spill_cost;
1790 newcol = -1;
1791 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
1792 if (TEST_HARD_REG_BIT (possible_begin, c)
1793 && !TEST_HARD_REG_BIT (precolored_neighbors, c)
1794 && !TEST_HARD_REG_BIT (spill_temps, c)
1795 && (newcol == -1
1796 || cost_neighbors[c] < cost_neighbors[newcol]))
1797 newcol = c;
1798 if (newcol >= 0 && cost_neighbors[newcol] < web->spill_cost)
1800 int nregs = HARD_REGNO_NREGS (newcol, GET_MODE (web->orig_x));
1801 unsigned HOST_WIDE_INT cost = 0;
1802 int *old_colors;
1803 struct conflict_link *wl_next;
1804 ra_debug_msg (DUMP_COLORIZE, "try to set web %d to color %d\n", web->id,
1805 newcol);
1806 remove_list (web->dlink, &WEBS(SPILLED));
1807 put_web (web, COLORED);
1808 web->color = newcol;
1809 old_colors = (int *) xcalloc (num_webs, sizeof (int));
1810 for (wl = web->conflict_list; wl; wl = wl_next)
1812 struct web *web2 = alias (wl->t);
1813 /* If web2 is a coalesce-target, and will become spilled
1814 below in colorize_one_web(), and the current conflict wl
1815 between web and web2 was only the result of that coalescing
1816 this conflict will be deleted, making wl invalid. So save
1817 the next conflict right now. Note that if web2 has indeed
1818 such state, then wl->next can not be deleted in this
1819 iteration. */
1820 wl_next = wl->next;
1821 if (web2->type == COLORED)
1823 int nregs2 = HARD_REGNO_NREGS (web2->color, GET_MODE
1824 (web2->orig_x));
1825 if (web->color >= web2->color + nregs2
1826 || web2->color >= web->color + nregs)
1827 continue;
1828 old_colors[web2->id] = web2->color + 1;
1829 web2->color = -1;
1830 remove_list (web2->dlink, &WEBS(COLORED));
1831 web2->type = SELECT;
1832 /* Allow webs to be spilled. */
1833 if (web2->spill_temp == 0 || web2->spill_temp == 2)
1834 web2->was_spilled = 1;
1835 colorize_one_web (web2, 1);
1836 if (web2->type == SPILLED)
1837 cost += web2->spill_cost;
1840 /* The actual cost may be smaller than the guessed one, because
1841 partial conflicts could result in some conflicting webs getting
1842 a color, where we assumed it must be spilled. See the comment
1843 above what happens, when wide webs are involved, and why in that
1844 case there might actually be some webs spilled although thought to
1845 be colorable. */
1846 if (cost > cost_neighbors[newcol]
1847 && nregs == 1 && !TEST_HARD_REG_BIT (wide_seen, newcol))
1848 abort ();
1849 /* But if the new spill-cost is higher than our own, then really loose.
1850 Respill us and recolor neighbors as before. */
1851 if (cost > web->spill_cost)
1853 ra_debug_msg (DUMP_COLORIZE,
1854 "reset coloring of web %d, too expensive\n", web->id);
1855 remove_list (web->dlink, &WEBS(COLORED));
1856 web->color = -1;
1857 put_web (web, SPILLED);
1858 for (wl = web->conflict_list; wl; wl = wl->next)
1860 struct web *web2 = alias (wl->t);
1861 if (old_colors[web2->id])
1863 if (web2->type == SPILLED)
1865 remove_list (web2->dlink, &WEBS(SPILLED));
1866 web2->color = old_colors[web2->id] - 1;
1867 put_web (web2, COLORED);
1869 else if (web2->type == COLORED)
1870 web2->color = old_colors[web2->id] - 1;
1871 else if (web2->type == SELECT)
1872 /* This means, that WEB2 once was a part of a coalesced
1873 web, which got spilled in the above colorize_one_web()
1874 call, and whose parts then got splitted and put back
1875 onto the SELECT stack. As the cause for that splitting
1876 (the coloring of WEB) was worthless, we should again
1877 coalesce the parts, as they were before. For now we
1878 simply leave them SELECTed, for our caller to take
1879 care. */
1881 else
1882 abort ();
1886 free (old_colors);
1888 free (min_color);
1889 free (cost_neighbors);
1892 /* This ensures that all conflicts of coalesced webs are seen from
1893 the webs coalesced into. combine() only adds the conflicts which
1894 at the time of combining were not already SELECTed or COALESCED
1895 to not destroy num_conflicts. Here we add all remaining conflicts
1896 and thereby destroy num_conflicts. This should be used when num_conflicts
1897 isn't used anymore, e.g. on a completely colored graph. */
1899 static void
1900 insert_coalesced_conflicts ()
1902 struct dlist *d;
1903 for (d = WEBS(COALESCED); 0 && d; d = d->next)
1905 struct web *web = DLIST_WEB (d);
1906 struct web *aweb = alias (web);
1907 struct conflict_link *wl;
1908 for (wl = web->conflict_list; wl; wl = wl->next)
1910 struct web *tweb = aweb;
1911 int i;
1912 int nregs = 1 + web->add_hardregs;
1913 if (aweb->type == PRECOLORED)
1914 nregs = HARD_REGNO_NREGS (aweb->color, GET_MODE (web->orig_x));
1915 for (i = 0; i < nregs; i++)
1917 if (aweb->type == PRECOLORED)
1918 tweb = hardreg2web[i + aweb->color];
1919 /* There might be some conflict edges laying around
1920 where the usable_regs don't intersect. This can happen
1921 when first some webs were coalesced and conflicts
1922 propagated, then some combining narrowed usable_regs and
1923 further coalescing ignored those conflicts. Now there are
1924 some edges to COALESCED webs but not to it's alias.
1925 So abort only when they really should conflict. */
1926 if ((!(tweb->type == PRECOLORED
1927 || TEST_BIT (sup_igraph, tweb->id * num_webs + wl->t->id))
1928 || !(wl->t->type == PRECOLORED
1929 || TEST_BIT (sup_igraph,
1930 wl->t->id * num_webs + tweb->id)))
1931 && hard_regs_intersect_p (&tweb->usable_regs,
1932 &wl->t->usable_regs))
1933 abort ();
1934 /*if (wl->sub == NULL)
1935 record_conflict (tweb, wl->t);
1936 else
1938 struct sub_conflict *sl;
1939 for (sl = wl->sub; sl; sl = sl->next)
1940 record_conflict (tweb, sl->t);
1942 if (aweb->type != PRECOLORED)
1943 break;
1949 /* A function suitable to pass to qsort(). Compare the spill costs
1950 of webs W1 and W2. When used by qsort, this would order webs with
1951 largest cost first. */
1953 static int
1954 comp_webs_maxcost (w1, w2)
1955 const void *w1, *w2;
1957 struct web *web1 = *(struct web **)w1;
1958 struct web *web2 = *(struct web **)w2;
1959 if (web1->spill_cost > web2->spill_cost)
1960 return -1;
1961 else if (web1->spill_cost < web2->spill_cost)
1962 return 1;
1963 else
1964 return 0;
1967 /* This tries to recolor all spilled webs. See try_recolor_web()
1968 how this is done. This just calls it for each spilled web. */
1970 static void
1971 recolor_spills ()
1973 unsigned int i, num;
1974 struct web **order2web;
1975 num = num_webs - num_subwebs;
1976 order2web = (struct web **) xmalloc (num * sizeof (order2web[0]));
1977 for (i = 0; i < num; i++)
1979 order2web[i] = id2web[i];
1980 /* If we aren't breaking aliases, combine() wasn't merging the
1981 spill_costs. So do that here to have sane measures. */
1982 if (!flag_ra_merge_spill_costs && id2web[i]->type == COALESCED)
1983 alias (id2web[i])->spill_cost += id2web[i]->spill_cost;
1985 qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
1986 insert_coalesced_conflicts ();
1987 dump_graph_cost (DUMP_COSTS, "before spill-recolor");
1988 for (i = 0; i < num; i++)
1990 struct web *web = order2web[i];
1991 if (web->type == SPILLED)
1992 try_recolor_web (web);
1994 /* It might have been decided in try_recolor_web() (in colorize_one_web())
1995 that a coalesced web should be spilled, so it was put on the
1996 select stack. Those webs need recoloring again, and all remaining
1997 coalesced webs might need their color updated, so simply call
1998 assign_colors() again. */
1999 assign_colors ();
2000 free (order2web);
2003 /* This checks the current color assignment for obvious errors,
2004 like two conflicting webs overlapping in colors, or the used colors
2005 not being in usable regs. */
2007 static void
2008 check_colors ()
2010 unsigned int i;
2011 for (i = 0; i < num_webs - num_subwebs; i++)
2013 struct web *web = id2web[i];
2014 struct web *aweb = alias (web);
2015 struct conflict_link *wl;
2016 int nregs, c;
2017 if (aweb->type == SPILLED || web->regno >= max_normal_pseudo)
2018 continue;
2019 else if (aweb->type == COLORED)
2020 nregs = HARD_REGNO_NREGS (aweb->color, GET_MODE (web->orig_x));
2021 else if (aweb->type == PRECOLORED)
2022 nregs = 1;
2023 else
2024 abort ();
2025 /* The color must be valid for the original usable_regs. */
2026 for (c = 0; c < nregs; c++)
2027 if (!TEST_HARD_REG_BIT (web->usable_regs, aweb->color + c))
2028 abort ();
2029 /* Search the original (pre-coalesce) conflict list. In the current
2030 one some imprecise conflicts may be noted (due to combine() or
2031 insert_coalesced_conflicts() relocating partial conflicts) making
2032 it look like some wide webs are in conflict and having the same
2033 color. */
2034 wl = (web->have_orig_conflicts ? web->orig_conflict_list
2035 : web->conflict_list);
2036 for (; wl; wl = wl->next)
2037 if (wl->t->regno >= max_normal_pseudo)
2038 continue;
2039 else if (!wl->sub)
2041 struct web *web2 = alias (wl->t);
2042 int nregs2;
2043 if (web2->type == COLORED)
2044 nregs2 = HARD_REGNO_NREGS (web2->color, GET_MODE (web2->orig_x));
2045 else if (web2->type == PRECOLORED)
2046 nregs2 = 1;
2047 else
2048 continue;
2049 if (aweb->color >= web2->color + nregs2
2050 || web2->color >= aweb->color + nregs)
2051 continue;
2052 abort ();
2054 else
2056 struct sub_conflict *sl;
2057 int scol = aweb->color;
2058 int tcol = alias (wl->t)->color;
2059 if (alias (wl->t)->type == SPILLED)
2060 continue;
2061 for (sl = wl->sub; sl; sl = sl->next)
2063 int ssize = HARD_REGNO_NREGS (scol, GET_MODE (sl->s->orig_x));
2064 int tsize = HARD_REGNO_NREGS (tcol, GET_MODE (sl->t->orig_x));
2065 int sofs = 0, tofs = 0;
2066 if (SUBWEB_P (sl->t)
2067 && GET_MODE_SIZE (GET_MODE (sl->t->orig_x)) >= UNITS_PER_WORD)
2068 tofs = (SUBREG_BYTE (sl->t->orig_x) / UNITS_PER_WORD);
2069 if (SUBWEB_P (sl->s)
2070 && GET_MODE_SIZE (GET_MODE (sl->s->orig_x))
2071 >= UNITS_PER_WORD)
2072 sofs = (SUBREG_BYTE (sl->s->orig_x) / UNITS_PER_WORD);
2073 if ((tcol + tofs >= scol + sofs + ssize)
2074 || (scol + sofs >= tcol + tofs + tsize))
2075 continue;
2076 abort ();
2082 /* WEB was a coalesced web. Make it unaliased again, and put it
2083 back onto SELECT stack. */
2085 static void
2086 unalias_web (web)
2087 struct web *web;
2089 web->alias = NULL;
2090 web->is_coalesced = 0;
2091 web->color = -1;
2092 /* Well, initially everything was spilled, so it isn't incorrect,
2093 that also the individual parts can be spilled.
2094 XXX this isn't entirely correct, as we also relaxed the
2095 spill_temp flag in combine(), which might have made components
2096 spill, although they were a short or spilltemp web. */
2097 web->was_spilled = 1;
2098 remove_list (web->dlink, &WEBS(COALESCED));
2099 /* Spilltemps must be colored right now (i.e. as early as possible),
2100 other webs can be deferred to the end (the code building the
2101 stack assumed that in this stage only one web was colored). */
2102 if (web->spill_temp && web->spill_temp != 2)
2103 put_web (web, SELECT);
2104 else
2105 put_web_at_end (web, SELECT);
2108 /* WEB is a _target_ for coalescing which got spilled.
2109 Break all aliases to WEB, and restore some of its member to the state
2110 they were before coalescing. Due to the suboptimal structure of
2111 the interference graph we need to go through all coalesced webs.
2112 Somewhen we'll change this to be more sane. */
2114 static void
2115 break_aliases_to_web (web)
2116 struct web *web;
2118 struct dlist *d, *d_next;
2119 if (web->type != SPILLED)
2120 abort ();
2121 for (d = WEBS(COALESCED); d; d = d_next)
2123 struct web *other = DLIST_WEB (d);
2124 d_next = d->next;
2125 /* Beware: Don't use alias() here. We really want to check only
2126 one level of aliasing, i.e. only break up webs directly
2127 aliased to WEB, not also those aliased through other webs. */
2128 if (other->alias == web)
2130 unalias_web (other);
2131 ra_debug_msg (DUMP_COLORIZE, " %d", other->id);
2134 web->spill_temp = web->orig_spill_temp;
2135 web->spill_cost = web->orig_spill_cost;
2136 /* Beware: The following possibly widens usable_regs again. While
2137 it was narrower there might have been some conflicts added which got
2138 ignored because of non-intersecting hardregsets. All those conflicts
2139 would now matter again. Fortunately we only add conflicts when
2140 coalescing, which is also the time of narrowing. And we remove all
2141 those added conflicts again now that we unalias this web.
2142 Therefore this is safe to do. */
2143 COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
2144 web->is_coalesced = 0;
2145 web->num_aliased = 0;
2146 web->was_spilled = 1;
2147 /* Reset is_coalesced flag for webs which itself are target of coalescing.
2148 It was cleared above if it was coalesced to WEB. */
2149 for (d = WEBS(COALESCED); d; d = d->next)
2150 DLIST_WEB (d)->alias->is_coalesced = 1;
2153 /* WEB is a web coalesced into a precolored one. Break that alias,
2154 making WEB SELECTed again. Also restores the conflicts which resulted
2155 from initially coalescing both. */
2157 static void
2158 break_precolored_alias (web)
2159 struct web *web;
2161 struct web *pre = web->alias;
2162 struct conflict_link *wl;
2163 unsigned int c = pre->color;
2164 unsigned int nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
2165 if (pre->type != PRECOLORED)
2166 abort ();
2167 unalias_web (web);
2168 /* Now we need to look at each conflict X of WEB, if it conflicts
2169 with [PRE, PRE+nregs), and remove such conflicts, of X has not other
2170 conflicts, which are coalesced into those precolored webs. */
2171 for (wl = web->conflict_list; wl; wl = wl->next)
2173 struct web *x = wl->t;
2174 struct web *y;
2175 unsigned int i;
2176 struct conflict_link *wl2;
2177 struct conflict_link **pcl;
2178 HARD_REG_SET regs;
2179 if (!x->have_orig_conflicts)
2180 continue;
2181 /* First look at which colors can not go away, due to other coalesces
2182 still existing. */
2183 CLEAR_HARD_REG_SET (regs);
2184 for (i = 0; i < nregs; i++)
2185 SET_HARD_REG_BIT (regs, c + i);
2186 for (wl2 = x->conflict_list; wl2; wl2 = wl2->next)
2187 if (wl2->t->type == COALESCED && alias (wl2->t)->type == PRECOLORED)
2188 CLEAR_HARD_REG_BIT (regs, alias (wl2->t)->color);
2189 /* Now also remove the colors of those conflicts which already
2190 were there before coalescing at all. */
2191 for (wl2 = x->orig_conflict_list; wl2; wl2 = wl2->next)
2192 if (wl2->t->type == PRECOLORED)
2193 CLEAR_HARD_REG_BIT (regs, wl2->t->color);
2194 /* The colors now still set are those for which WEB was the last
2195 cause, i.e. those which can be removed. */
2196 y = NULL;
2197 for (i = 0; i < nregs; i++)
2198 if (TEST_HARD_REG_BIT (regs, c + i))
2200 struct web *sub;
2201 y = hardreg2web[c + i];
2202 RESET_BIT (sup_igraph, x->id * num_webs + y->id);
2203 RESET_BIT (sup_igraph, y->id * num_webs + x->id);
2204 RESET_BIT (igraph, igraph_index (x->id, y->id));
2205 for (sub = x->subreg_next; sub; sub = sub->subreg_next)
2206 RESET_BIT (igraph, igraph_index (sub->id, y->id));
2208 if (!y)
2209 continue;
2210 pcl = &(x->conflict_list);
2211 while (*pcl)
2213 struct web *y = (*pcl)->t;
2214 if (y->type != PRECOLORED || !TEST_HARD_REG_BIT (regs, y->color))
2215 pcl = &((*pcl)->next);
2216 else
2217 *pcl = (*pcl)->next;
2222 /* WEB is a spilled web which was target for coalescing.
2223 Delete all interference edges which were added due to that coalescing,
2224 and break up the coalescing. */
2226 static void
2227 restore_conflicts_from_coalesce (web)
2228 struct web *web;
2230 struct conflict_link **pcl;
2231 struct conflict_link *wl;
2232 pcl = &(web->conflict_list);
2233 /* No original conflict list means no conflict was added at all
2234 after building the graph. So neither we nor any neighbors have
2235 conflicts due to this coalescing. */
2236 if (!web->have_orig_conflicts)
2237 return;
2238 while (*pcl)
2240 struct web *other = (*pcl)->t;
2241 for (wl = web->orig_conflict_list; wl; wl = wl->next)
2242 if (wl->t == other)
2243 break;
2244 if (wl)
2246 /* We found this conflict also in the original list, so this
2247 was no new conflict. */
2248 pcl = &((*pcl)->next);
2250 else
2252 /* This is a new conflict, so delete it from us and
2253 the neighbor. */
2254 struct conflict_link **opcl;
2255 struct conflict_link *owl;
2256 struct sub_conflict *sl;
2257 wl = *pcl;
2258 *pcl = wl->next;
2259 if (!other->have_orig_conflicts && other->type != PRECOLORED)
2260 abort ();
2261 for (owl = other->orig_conflict_list; owl; owl = owl->next)
2262 if (owl->t == web)
2263 break;
2264 if (owl)
2265 abort ();
2266 opcl = &(other->conflict_list);
2267 while (*opcl)
2269 if ((*opcl)->t == web)
2271 owl = *opcl;
2272 *opcl = owl->next;
2273 break;
2275 else
2277 opcl = &((*opcl)->next);
2280 if (!owl && other->type != PRECOLORED)
2281 abort ();
2282 /* wl and owl contain the edge data to be deleted. */
2283 RESET_BIT (sup_igraph, web->id * num_webs + other->id);
2284 RESET_BIT (sup_igraph, other->id * num_webs + web->id);
2285 RESET_BIT (igraph, igraph_index (web->id, other->id));
2286 for (sl = wl->sub; sl; sl = sl->next)
2287 RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
2288 if (other->type != PRECOLORED)
2290 for (sl = owl->sub; sl; sl = sl->next)
2291 RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
2296 /* We must restore usable_regs because record_conflict will use it. */
2297 COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
2298 /* We might have deleted some conflicts above, which really are still
2299 there (diamond pattern coalescing). This is because we don't reference
2300 count interference edges but some of them were the result of different
2301 coalesces. */
2302 for (wl = web->conflict_list; wl; wl = wl->next)
2303 if (wl->t->type == COALESCED)
2305 struct web *tweb;
2306 for (tweb = wl->t->alias; tweb; tweb = tweb->alias)
2308 if (wl->sub == NULL)
2309 record_conflict (web, tweb);
2310 else
2312 struct sub_conflict *sl;
2313 for (sl = wl->sub; sl; sl = sl->next)
2315 struct web *sweb = NULL;
2316 if (SUBWEB_P (sl->t))
2317 sweb = find_subweb (tweb, sl->t->orig_x);
2318 if (!sweb)
2319 sweb = tweb;
2320 record_conflict (sl->s, sweb);
2323 if (tweb->type != COALESCED)
2324 break;
2329 /* Repeatedly break aliases for spilled webs, which were target for
2330 coalescing, and recolorize the resulting parts. Do this as long as
2331 there are any spilled coalesce targets. */
2333 static void
2334 break_coalesced_spills ()
2336 int changed = 0;
2337 while (1)
2339 struct dlist *d;
2340 struct web *web;
2341 for (d = WEBS(SPILLED); d; d = d->next)
2342 if (DLIST_WEB (d)->is_coalesced)
2343 break;
2344 if (!d)
2345 break;
2346 changed = 1;
2347 web = DLIST_WEB (d);
2348 ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
2349 restore_conflicts_from_coalesce (web);
2350 break_aliases_to_web (web);
2351 /* WEB was a spilled web and isn't anymore. Everything coalesced
2352 to WEB is now SELECTed and might potentially get a color.
2353 If those other webs were itself targets of coalescing it might be
2354 that there are still some conflicts from aliased webs missing,
2355 because they were added in combine() right into the now
2356 SELECTed web. So we need to add those missing conflicts here. */
2357 insert_coalesced_conflicts ();
2358 ra_debug_msg (DUMP_COLORIZE, "\n");
2359 remove_list (d, &WEBS(SPILLED));
2360 put_web (web, SELECT);
2361 web->color = -1;
2362 while (WEBS(SELECT))
2364 d = pop_list (&WEBS(SELECT));
2365 colorize_one_web (DLIST_WEB (d), 1);
2368 if (changed)
2370 struct dlist *d;
2371 for (d = WEBS(COALESCED); d; d = d->next)
2373 struct web *a = alias (DLIST_WEB (d));
2374 DLIST_WEB (d)->color = a->color;
2377 dump_graph_cost (DUMP_COSTS, "after alias-breaking");
2380 /* A structure for fast hashing of a pair of webs.
2381 Used to cumulate savings (from removing copy insns) for coalesced webs.
2382 All the pairs are also put into a single linked list. */
2383 struct web_pair
2385 struct web_pair *next_hash;
2386 struct web_pair *next_list;
2387 struct web *smaller;
2388 struct web *larger;
2389 unsigned int conflicts;
2390 unsigned HOST_WIDE_INT cost;
2393 /* The actual hash table. */
2394 #define WEB_PAIR_HASH_SIZE 8192
2395 static struct web_pair *web_pair_hash[WEB_PAIR_HASH_SIZE];
2396 static struct web_pair *web_pair_list;
2397 static unsigned int num_web_pairs;
2399 /* Clear the hash table of web pairs. */
2401 static void
2402 init_web_pairs ()
2404 memset (web_pair_hash, 0, sizeof web_pair_hash);
2405 num_web_pairs = 0;
2406 web_pair_list = NULL;
2409 /* Given two webs connected by a move with cost COST which together
2410 have CONFLICTS conflicts, add that pair to the hash table, or if
2411 already in, cumulate the costs and conflict number. */
2413 static void
2414 add_web_pair_cost (web1, web2, cost, conflicts)
2415 struct web *web1, *web2;
2416 unsigned HOST_WIDE_INT cost;
2417 unsigned int conflicts;
2419 unsigned int hash;
2420 struct web_pair *p;
2421 if (web1->id > web2->id)
2423 struct web *h = web1;
2424 web1 = web2;
2425 web2 = h;
2427 hash = (web1->id * num_webs + web2->id) % WEB_PAIR_HASH_SIZE;
2428 for (p = web_pair_hash[hash]; p; p = p->next_hash)
2429 if (p->smaller == web1 && p->larger == web2)
2431 p->cost += cost;
2432 p->conflicts += conflicts;
2433 return;
2435 p = (struct web_pair *) ra_alloc (sizeof *p);
2436 p->next_hash = web_pair_hash[hash];
2437 p->next_list = web_pair_list;
2438 p->smaller = web1;
2439 p->larger = web2;
2440 p->conflicts = conflicts;
2441 p->cost = cost;
2442 web_pair_hash[hash] = p;
2443 web_pair_list = p;
2444 num_web_pairs++;
2447 /* Suitable to be passed to qsort(). Sort web pairs so, that those
2448 with more conflicts and higher cost (which actually is a saving
2449 when the moves are removed) come first. */
2451 static int
2452 comp_web_pairs (w1, w2)
2453 const void *w1, *w2;
2455 struct web_pair *p1 = *(struct web_pair **)w1;
2456 struct web_pair *p2 = *(struct web_pair **)w2;
2457 if (p1->conflicts > p2->conflicts)
2458 return -1;
2459 else if (p1->conflicts < p2->conflicts)
2460 return 1;
2461 else if (p1->cost > p2->cost)
2462 return -1;
2463 else if (p1->cost < p2->cost)
2464 return 1;
2465 else
2466 return 0;
2469 /* Given the list of web pairs, begin to combine them from the one
2470 with the most savings. */
2472 static void
2473 sort_and_combine_web_pairs (for_move)
2474 int for_move;
2476 unsigned int i;
2477 struct web_pair **sorted;
2478 struct web_pair *p;
2479 if (!num_web_pairs)
2480 return;
2481 sorted = (struct web_pair **) xmalloc (num_web_pairs * sizeof (sorted[0]));
2482 for (p = web_pair_list, i = 0; p; p = p->next_list)
2483 sorted[i++] = p;
2484 if (i != num_web_pairs)
2485 abort ();
2486 qsort (sorted, num_web_pairs, sizeof (sorted[0]), comp_web_pairs);
2488 /* After combining one pair, we actually should adjust the savings
2489 of the other pairs, if they are connected to one of the just coalesced
2490 pair. Later. */
2491 for (i = 0; i < num_web_pairs; i++)
2493 struct web *w1, *w2;
2494 p = sorted[i];
2495 w1 = alias (p->smaller);
2496 w2 = alias (p->larger);
2497 if (!for_move && (w1->type == PRECOLORED || w2->type == PRECOLORED))
2498 continue;
2499 else if (w2->type == PRECOLORED)
2501 struct web *h = w1;
2502 w1 = w2;
2503 w2 = h;
2505 if (w1 != w2
2506 && !TEST_BIT (sup_igraph, w1->id * num_webs + w2->id)
2507 && !TEST_BIT (sup_igraph, w2->id * num_webs + w1->id)
2508 && w2->type != PRECOLORED
2509 && hard_regs_intersect_p (&w1->usable_regs, &w2->usable_regs))
2511 if (w1->type != PRECOLORED
2512 || (w1->type == PRECOLORED && ok (w2, w1)))
2513 combine (w1, w2);
2514 else if (w1->type == PRECOLORED)
2515 SET_HARD_REG_BIT (w2->prefer_colors, w1->color);
2518 free (sorted);
2521 /* Greedily coalesce all moves possible. Begin with the web pair
2522 giving the most saving if coalesced. */
2524 static void
2525 aggressive_coalesce ()
2527 struct dlist *d;
2528 struct move *m;
2529 init_web_pairs ();
2530 while ((d = pop_list (&mv_worklist)) != NULL)
2531 if ((m = DLIST_MOVE (d)))
2533 struct web *s = alias (m->source_web);
2534 struct web *t = alias (m->target_web);
2535 if (t->type == PRECOLORED)
2537 struct web *h = s;
2538 s = t;
2539 t = h;
2541 if (s != t
2542 && t->type != PRECOLORED
2543 && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
2544 && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
2546 if ((s->type == PRECOLORED && ok (t, s))
2547 || s->type != PRECOLORED)
2549 put_move (m, MV_COALESCED);
2550 add_web_pair_cost (s, t, BLOCK_FOR_INSN (m->insn)->frequency,
2553 else if (s->type == PRECOLORED)
2554 /* It is !ok(t, s). But later when coloring the graph it might
2555 be possible to take that color. So we remember the preferred
2556 color to try that first. */
2558 put_move (m, CONSTRAINED);
2559 SET_HARD_REG_BIT (t->prefer_colors, s->color);
2562 else
2564 put_move (m, CONSTRAINED);
2567 sort_and_combine_web_pairs (1);
2570 /* This is the difference between optimistic coalescing and
2571 optimistic coalescing+. Extended coalesce tries to coalesce also
2572 non-conflicting nodes, not related by a move. The criteria here is,
2573 the one web must be a source, the other a destination of the same insn.
2574 This actually makes sense, as (because they are in the same insn) they
2575 share many of their neighbors, and if they are coalesced, reduce the
2576 number of conflicts of those neighbors by one. For this we sort the
2577 candidate pairs again according to savings (and this time also conflict
2578 number).
2580 This is also a comparatively slow operation, as we need to go through
2581 all insns, and for each insn, through all defs and uses. */
2583 static void
2584 extended_coalesce_2 ()
2586 rtx insn;
2587 struct ra_insn_info info;
2588 unsigned int n;
2589 init_web_pairs ();
2590 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2591 if (INSN_P (insn) && (info = insn_df[INSN_UID (insn)]).num_defs)
2592 for (n = 0; n < info.num_defs; n++)
2594 struct web *dest = def2web[DF_REF_ID (info.defs[n])];
2595 dest = alias (find_web_for_subweb (dest));
2596 if (dest->type != PRECOLORED && dest->regno < max_normal_pseudo)
2598 unsigned int n2;
2599 for (n2 = 0; n2 < info.num_uses; n2++)
2601 struct web *source = use2web[DF_REF_ID (info.uses[n2])];
2602 source = alias (find_web_for_subweb (source));
2603 if (source->type != PRECOLORED
2604 && source != dest
2605 && source->regno < max_normal_pseudo
2606 /* Coalesced webs end up using the same REG rtx in
2607 emit_colors(). So we can only coalesce something
2608 of equal modes. */
2609 && GET_MODE (source->orig_x) == GET_MODE (dest->orig_x)
2610 && !TEST_BIT (sup_igraph,
2611 dest->id * num_webs + source->id)
2612 && !TEST_BIT (sup_igraph,
2613 source->id * num_webs + dest->id)
2614 && hard_regs_intersect_p (&source->usable_regs,
2615 &dest->usable_regs))
2616 add_web_pair_cost (dest, source,
2617 BLOCK_FOR_INSN (insn)->frequency,
2618 dest->num_conflicts
2619 + source->num_conflicts);
2623 sort_and_combine_web_pairs (0);
2626 /* Check if we forgot to coalesce some moves. */
2628 static void
2629 check_uncoalesced_moves ()
2631 struct move_list *ml;
2632 struct move *m;
2633 for (ml = wl_moves; ml; ml = ml->next)
2634 if ((m = ml->move))
2636 struct web *s = alias (m->source_web);
2637 struct web *t = alias (m->target_web);
2638 if (t->type == PRECOLORED)
2640 struct web *h = s;
2641 s = t;
2642 t = h;
2644 if (s != t
2645 && m->type != CONSTRAINED
2646 /* Following can happen when a move was coalesced, but later
2647 broken up again. Then s!=t, but m is still MV_COALESCED. */
2648 && m->type != MV_COALESCED
2649 && t->type != PRECOLORED
2650 && ((s->type == PRECOLORED && ok (t, s))
2651 || s->type != PRECOLORED)
2652 && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
2653 && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
2654 abort ();
2658 /* The toplevel function in this file. Precondition is, that
2659 the interference graph is built completely by ra-build.c. This
2660 produces a list of spilled, colored and coalesced nodes. */
2662 void
2663 ra_colorize_graph (df)
2664 struct df *df;
2666 if (rtl_dump_file)
2667 dump_igraph (df);
2668 build_worklists (df);
2670 /* With optimistic coalescing we coalesce everything we can. */
2671 if (flag_ra_optimistic_coalescing)
2673 aggressive_coalesce ();
2674 extended_coalesce_2 ();
2677 /* Now build the select stack. */
2680 simplify ();
2681 if (mv_worklist)
2682 coalesce ();
2683 else if (WEBS(FREEZE))
2684 freeze ();
2685 else if (WEBS(SPILL))
2686 select_spill ();
2688 while (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_FAT) || WEBS(SIMPLIFY_SPILL)
2689 || mv_worklist || WEBS(FREEZE) || WEBS(SPILL));
2690 if (flag_ra_optimistic_coalescing)
2691 check_uncoalesced_moves ();
2693 /* Actually colorize the webs from the select stack. */
2694 assign_colors ();
2695 check_colors ();
2696 dump_graph_cost (DUMP_COSTS, "initially");
2697 if (flag_ra_break_aliases)
2698 break_coalesced_spills ();
2699 check_colors ();
2701 /* And try to improve the cost by recoloring spilled webs. */
2702 recolor_spills ();
2703 dump_graph_cost (DUMP_COSTS, "after spill-recolor");
2704 check_colors ();
2707 /* Initialize this module. */
2709 void ra_colorize_init ()
2711 /* FIXME: Choose spill heuristic for platform if we have one */
2712 spill_heuristic = default_spill_heuristic;
2715 /* Free all memory. (Note that we don't need to free any per pass
2716 memory). */
2718 void
2719 ra_colorize_free_all ()
2721 struct dlist *d;
2722 while ((d = pop_list (&WEBS(FREE))) != NULL)
2723 put_web (DLIST_WEB (d), INITIAL);
2724 while ((d = pop_list (&WEBS(INITIAL))) != NULL)
2726 struct web *web =DLIST_WEB (d);
2727 struct web *wnext;
2728 web->orig_conflict_list = NULL;
2729 web->conflict_list = NULL;
2730 for (web = web->subreg_next; web; web = wnext)
2732 wnext = web->subreg_next;
2733 free (web);
2735 free (DLIST_WEB (d));
2740 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: