2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
39 #include <asm/dbdma.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
46 #include <asm/mediabay.h>
48 #define DRV_NAME "ide-pmac"
52 #define DMA_WAIT_TIMEOUT 50
54 typedef struct pmac_ide_hwif
{
55 unsigned long regbase
;
59 unsigned broken_dma
: 1;
60 unsigned broken_dma_warn
: 1;
61 struct device_node
* node
;
62 struct macio_dev
*mdev
;
64 volatile u32 __iomem
* *kauai_fcr
;
67 /* Those fields are duplicating what is in hwif. We currently
68 * can't use the hwif ones because of some assumptions that are
69 * beeing done by the generic code about the kind of dma controller
70 * and format of the dma table. This will have to be fixed though.
72 volatile struct dbdma_regs __iomem
* dma_regs
;
73 struct dbdma_cmd
* dma_table_cpu
;
77 controller_ohare
, /* OHare based */
78 controller_heathrow
, /* Heathrow/Paddington */
79 controller_kl_ata3
, /* KeyLargo ATA-3 */
80 controller_kl_ata4
, /* KeyLargo ATA-4 */
81 controller_un_ata6
, /* UniNorth2 ATA-6 */
82 controller_k2_ata6
, /* K2 ATA-6 */
83 controller_sh_ata6
, /* Shasta ATA-6 */
86 static const char* model_name
[] = {
87 "OHare ATA", /* OHare based */
88 "Heathrow ATA", /* Heathrow/Paddington */
89 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
90 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
91 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
92 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
93 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
97 * Extra registers, both 32-bit little-endian
99 #define IDE_TIMING_CONFIG 0x200
100 #define IDE_INTERRUPT 0x300
102 /* Kauai (U2) ATA has different register setup */
103 #define IDE_KAUAI_PIO_CONFIG 0x200
104 #define IDE_KAUAI_ULTRA_CONFIG 0x210
105 #define IDE_KAUAI_POLL_CONFIG 0x220
108 * Timing configuration register definitions
111 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
112 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
113 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
114 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
115 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
117 /* 133Mhz cell, found in shasta.
118 * See comments about 100 Mhz Uninorth 2...
119 * Note that PIO_MASK and MDMA_MASK seem to overlap
121 #define TR_133_PIOREG_PIO_MASK 0xff000fff
122 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
123 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
124 #define TR_133_UDMAREG_UDMA_EN 0x00000001
126 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
127 * this one yet, it appears as a pci device (106b/0033) on uninorth
128 * internal PCI bus and it's clock is controlled like gem or fw. It
129 * appears to be an evolution of keylargo ATA4 with a timing register
130 * extended to 2 32bits registers and a similar DBDMA channel. Other
131 * registers seem to exist but I can't tell much about them.
133 * So far, I'm using pre-calculated tables for this extracted from
134 * the values used by the MacOS X driver.
136 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
137 * register controls the UDMA timings. At least, it seems bit 0
138 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
139 * cycle time in units of 10ns. Bits 8..15 are used by I don't
140 * know their meaning yet
142 #define TR_100_PIOREG_PIO_MASK 0xff000fff
143 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
144 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
145 #define TR_100_UDMAREG_UDMA_EN 0x00000001
148 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
149 * 40 connector cable and to 4 on 80 connector one.
150 * Clock unit is 15ns (66Mhz)
152 * 3 Values can be programmed:
153 * - Write data setup, which appears to match the cycle time. They
154 * also call it DIOW setup.
155 * - Ready to pause time (from spec)
156 * - Address setup. That one is weird. I don't see where exactly
157 * it fits in UDMA cycles, I got it's name from an obscure piece
158 * of commented out code in Darwin. They leave it to 0, we do as
159 * well, despite a comment that would lead to think it has a
161 * Apple also add 60ns to the write data setup (or cycle time ?) on
164 #define TR_66_UDMA_MASK 0xfff00000
165 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
166 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
167 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
168 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
169 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
170 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
171 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
172 #define TR_66_MDMA_MASK 0x000ffc00
173 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
174 #define TR_66_MDMA_RECOVERY_SHIFT 15
175 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
176 #define TR_66_MDMA_ACCESS_SHIFT 10
177 #define TR_66_PIO_MASK 0x000003ff
178 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
179 #define TR_66_PIO_RECOVERY_SHIFT 5
180 #define TR_66_PIO_ACCESS_MASK 0x0000001f
181 #define TR_66_PIO_ACCESS_SHIFT 0
183 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
184 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
186 * The access time and recovery time can be programmed. Some older
187 * Darwin code base limit OHare to 150ns cycle time. I decided to do
188 * the same here fore safety against broken old hardware ;)
189 * The HalfTick bit, when set, adds half a clock (15ns) to the access
190 * time and removes one from recovery. It's not supported on KeyLargo
191 * implementation afaik. The E bit appears to be set for PIO mode 0 and
192 * is used to reach long timings used in this mode.
194 #define TR_33_MDMA_MASK 0x003ff800
195 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
196 #define TR_33_MDMA_RECOVERY_SHIFT 16
197 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
198 #define TR_33_MDMA_ACCESS_SHIFT 11
199 #define TR_33_MDMA_HALFTICK 0x00200000
200 #define TR_33_PIO_MASK 0x000007ff
201 #define TR_33_PIO_E 0x00000400
202 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
203 #define TR_33_PIO_RECOVERY_SHIFT 5
204 #define TR_33_PIO_ACCESS_MASK 0x0000001f
205 #define TR_33_PIO_ACCESS_SHIFT 0
208 * Interrupt register definitions
210 #define IDE_INTR_DMA 0x80000000
211 #define IDE_INTR_DEVICE 0x40000000
214 * FCR Register on Kauai. Not sure what bit 0x4 is ...
216 #define KAUAI_FCR_UATA_MAGIC 0x00000004
217 #define KAUAI_FCR_UATA_RESET_N 0x00000002
218 #define KAUAI_FCR_UATA_ENABLE 0x00000001
220 /* Rounded Multiword DMA timings
222 * I gave up finding a generic formula for all controller
223 * types and instead, built tables based on timing values
224 * used by Apple in Darwin's implementation.
226 struct mdma_timings_t
{
232 struct mdma_timings_t mdma_timings_33
[] =
245 struct mdma_timings_t mdma_timings_33k
[] =
258 struct mdma_timings_t mdma_timings_66
[] =
271 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
273 int addrSetup
; /* ??? */
276 } kl66_udma_timings
[] =
278 { 0, 180, 120 }, /* Mode 0 */
279 { 0, 150, 90 }, /* 1 */
280 { 0, 120, 60 }, /* 2 */
281 { 0, 90, 45 }, /* 3 */
282 { 0, 90, 30 } /* 4 */
285 /* UniNorth 2 ATA/100 timings */
286 struct kauai_timing
{
291 static struct kauai_timing kauai_pio_timings
[] =
293 { 930 , 0x08000fff },
294 { 600 , 0x08000a92 },
295 { 383 , 0x0800060f },
296 { 360 , 0x08000492 },
297 { 330 , 0x0800048f },
298 { 300 , 0x080003cf },
299 { 270 , 0x080003cc },
300 { 240 , 0x0800038b },
301 { 239 , 0x0800030c },
302 { 180 , 0x05000249 },
303 { 120 , 0x04000148 },
307 static struct kauai_timing kauai_mdma_timings
[] =
309 { 1260 , 0x00fff000 },
310 { 480 , 0x00618000 },
311 { 360 , 0x00492000 },
312 { 270 , 0x0038e000 },
313 { 240 , 0x0030c000 },
314 { 210 , 0x002cb000 },
315 { 180 , 0x00249000 },
316 { 150 , 0x00209000 },
317 { 120 , 0x00148000 },
321 static struct kauai_timing kauai_udma_timings
[] =
323 { 120 , 0x000070c0 },
332 static struct kauai_timing shasta_pio_timings
[] =
334 { 930 , 0x08000fff },
335 { 600 , 0x0A000c97 },
336 { 383 , 0x07000712 },
337 { 360 , 0x040003cd },
338 { 330 , 0x040003cd },
339 { 300 , 0x040003cd },
340 { 270 , 0x040003cd },
341 { 240 , 0x040003cd },
342 { 239 , 0x040003cd },
343 { 180 , 0x0400028b },
344 { 120 , 0x0400010a },
348 static struct kauai_timing shasta_mdma_timings
[] =
350 { 1260 , 0x00fff000 },
351 { 480 , 0x00820800 },
352 { 360 , 0x00820800 },
353 { 270 , 0x00820800 },
354 { 240 , 0x00820800 },
355 { 210 , 0x00820800 },
356 { 180 , 0x00820800 },
357 { 150 , 0x0028b000 },
358 { 120 , 0x001ca000 },
362 static struct kauai_timing shasta_udma133_timings
[] =
364 { 120 , 0x00035901, },
365 { 90 , 0x000348b1, },
366 { 60 , 0x00033881, },
367 { 45 , 0x00033861, },
368 { 30 , 0x00033841, },
369 { 20 , 0x00033031, },
370 { 15 , 0x00033021, },
376 kauai_lookup_timing(struct kauai_timing
* table
, int cycle_time
)
380 for (i
=0; table
[i
].cycle_time
; i
++)
381 if (cycle_time
> table
[i
+1].cycle_time
)
382 return table
[i
].timing_reg
;
387 /* allow up to 256 DBDMA commands per xfer */
388 #define MAX_DCMDS 256
391 * Wait 1s for disk to answer on IDE bus after a hard reset
392 * of the device (via GPIO/FCR).
394 * Some devices seem to "pollute" the bus even after dropping
395 * the BSY bit (typically some combo drives slave on the UDMA
396 * bus) after a hard reset. Since we hard reset all drives on
397 * KeyLargo ATA66, we have to keep that delay around. I may end
398 * up not hard resetting anymore on these and keep the delay only
399 * for older interfaces instead (we have to reset when coming
400 * from MacOS...) --BenH.
402 #define IDE_WAKEUP_DELAY (1*HZ)
404 static int pmac_ide_init_dma(ide_hwif_t
*, const struct ide_port_info
*);
406 #define PMAC_IDE_REG(x) \
407 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
410 * Apply the timings of the proper unit (master/slave) to the shared
411 * timing register when selecting that unit. This version is for
412 * ASICs with a single timing register
414 static void pmac_ide_apply_timings(ide_drive_t
*drive
)
416 ide_hwif_t
*hwif
= drive
->hwif
;
417 pmac_ide_hwif_t
*pmif
=
418 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
421 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
423 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
424 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
428 * Apply the timings of the proper unit (master/slave) to the shared
429 * timing register when selecting that unit. This version is for
430 * ASICs with a dual timing register (Kauai)
432 static void pmac_ide_kauai_apply_timings(ide_drive_t
*drive
)
434 ide_hwif_t
*hwif
= drive
->hwif
;
435 pmac_ide_hwif_t
*pmif
=
436 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
439 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
440 writel(pmif
->timings
[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
442 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
443 writel(pmif
->timings
[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
445 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
449 * Force an update of controller timing values for a given drive
452 pmac_ide_do_update_timings(ide_drive_t
*drive
)
454 ide_hwif_t
*hwif
= drive
->hwif
;
455 pmac_ide_hwif_t
*pmif
=
456 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
458 if (pmif
->kind
== controller_sh_ata6
||
459 pmif
->kind
== controller_un_ata6
||
460 pmif
->kind
== controller_k2_ata6
)
461 pmac_ide_kauai_apply_timings(drive
);
463 pmac_ide_apply_timings(drive
);
466 static void pmac_dev_select(ide_drive_t
*drive
)
468 pmac_ide_apply_timings(drive
);
470 writeb(drive
->select
| ATA_DEVICE_OBS
,
471 (void __iomem
*)drive
->hwif
->io_ports
.device_addr
);
474 static void pmac_kauai_dev_select(ide_drive_t
*drive
)
476 pmac_ide_kauai_apply_timings(drive
);
478 writeb(drive
->select
| ATA_DEVICE_OBS
,
479 (void __iomem
*)drive
->hwif
->io_ports
.device_addr
);
482 static void pmac_exec_command(ide_hwif_t
*hwif
, u8 cmd
)
484 writeb(cmd
, (void __iomem
*)hwif
->io_ports
.command_addr
);
485 (void)readl((void __iomem
*)(hwif
->io_ports
.data_addr
486 + IDE_TIMING_CONFIG
));
489 static void pmac_write_devctl(ide_hwif_t
*hwif
, u8 ctl
)
491 writeb(ctl
, (void __iomem
*)hwif
->io_ports
.ctl_addr
);
492 (void)readl((void __iomem
*)(hwif
->io_ports
.data_addr
493 + IDE_TIMING_CONFIG
));
497 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
499 static void pmac_ide_set_pio_mode(ide_hwif_t
*hwif
, ide_drive_t
*drive
)
501 pmac_ide_hwif_t
*pmif
=
502 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
503 const u8 pio
= drive
->pio_mode
- XFER_PIO_0
;
504 struct ide_timing
*tim
= ide_timing_find_mode(XFER_PIO_0
+ pio
);
506 unsigned accessTicks
, recTicks
;
507 unsigned accessTime
, recTime
;
508 unsigned int cycle_time
;
510 /* which drive is it ? */
511 timings
= &pmif
->timings
[drive
->dn
& 1];
514 cycle_time
= ide_pio_cycle_time(drive
, pio
);
516 switch (pmif
->kind
) {
517 case controller_sh_ata6
: {
519 u32 tr
= kauai_lookup_timing(shasta_pio_timings
, cycle_time
);
520 t
= (t
& ~TR_133_PIOREG_PIO_MASK
) | tr
;
523 case controller_un_ata6
:
524 case controller_k2_ata6
: {
526 u32 tr
= kauai_lookup_timing(kauai_pio_timings
, cycle_time
);
527 t
= (t
& ~TR_100_PIOREG_PIO_MASK
) | tr
;
530 case controller_kl_ata4
:
532 recTime
= cycle_time
- tim
->active
- tim
->setup
;
533 recTime
= max(recTime
, 150U);
534 accessTime
= tim
->active
;
535 accessTime
= max(accessTime
, 150U);
536 accessTicks
= SYSCLK_TICKS_66(accessTime
);
537 accessTicks
= min(accessTicks
, 0x1fU
);
538 recTicks
= SYSCLK_TICKS_66(recTime
);
539 recTicks
= min(recTicks
, 0x1fU
);
540 t
= (t
& ~TR_66_PIO_MASK
) |
541 (accessTicks
<< TR_66_PIO_ACCESS_SHIFT
) |
542 (recTicks
<< TR_66_PIO_RECOVERY_SHIFT
);
547 recTime
= cycle_time
- tim
->active
- tim
->setup
;
548 recTime
= max(recTime
, 150U);
549 accessTime
= tim
->active
;
550 accessTime
= max(accessTime
, 150U);
551 accessTicks
= SYSCLK_TICKS(accessTime
);
552 accessTicks
= min(accessTicks
, 0x1fU
);
553 accessTicks
= max(accessTicks
, 4U);
554 recTicks
= SYSCLK_TICKS(recTime
);
555 recTicks
= min(recTicks
, 0x1fU
);
556 recTicks
= max(recTicks
, 5U) - 4;
558 recTicks
--; /* guess, but it's only for PIO0, so... */
561 t
= (t
& ~TR_33_PIO_MASK
) |
562 (accessTicks
<< TR_33_PIO_ACCESS_SHIFT
) |
563 (recTicks
<< TR_33_PIO_RECOVERY_SHIFT
);
570 #ifdef IDE_PMAC_DEBUG
571 printk(KERN_ERR
"%s: Set PIO timing for mode %d, reg: 0x%08x\n",
572 drive
->name
, pio
, *timings
);
576 pmac_ide_do_update_timings(drive
);
580 * Calculate KeyLargo ATA/66 UDMA timings
583 set_timings_udma_ata4(u32
*timings
, u8 speed
)
585 unsigned rdyToPauseTicks
, wrDataSetupTicks
, addrTicks
;
587 if (speed
> XFER_UDMA_4
)
590 rdyToPauseTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].rdy2pause
);
591 wrDataSetupTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].wrDataSetup
);
592 addrTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].addrSetup
);
594 *timings
= ((*timings
) & ~(TR_66_UDMA_MASK
| TR_66_MDMA_MASK
)) |
595 (wrDataSetupTicks
<< TR_66_UDMA_WRDATASETUP_SHIFT
) |
596 (rdyToPauseTicks
<< TR_66_UDMA_RDY2PAUS_SHIFT
) |
597 (addrTicks
<<TR_66_UDMA_ADDRSETUP_SHIFT
) |
599 #ifdef IDE_PMAC_DEBUG
600 printk(KERN_ERR
"ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
601 speed
& 0xf, *timings
);
608 * Calculate Kauai ATA/100 UDMA timings
611 set_timings_udma_ata6(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
613 struct ide_timing
*t
= ide_timing_find_mode(speed
);
616 if (speed
> XFER_UDMA_5
|| t
== NULL
)
618 tr
= kauai_lookup_timing(kauai_udma_timings
, (int)t
->udma
);
619 *ultra_timings
= ((*ultra_timings
) & ~TR_100_UDMAREG_UDMA_MASK
) | tr
;
620 *ultra_timings
= (*ultra_timings
) | TR_100_UDMAREG_UDMA_EN
;
626 * Calculate Shasta ATA/133 UDMA timings
629 set_timings_udma_shasta(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
631 struct ide_timing
*t
= ide_timing_find_mode(speed
);
634 if (speed
> XFER_UDMA_6
|| t
== NULL
)
636 tr
= kauai_lookup_timing(shasta_udma133_timings
, (int)t
->udma
);
637 *ultra_timings
= ((*ultra_timings
) & ~TR_133_UDMAREG_UDMA_MASK
) | tr
;
638 *ultra_timings
= (*ultra_timings
) | TR_133_UDMAREG_UDMA_EN
;
644 * Calculate MDMA timings for all cells
647 set_timings_mdma(ide_drive_t
*drive
, int intf_type
, u32
*timings
, u32
*timings2
,
651 int cycleTime
, accessTime
= 0, recTime
= 0;
652 unsigned accessTicks
, recTicks
;
653 struct mdma_timings_t
* tm
= NULL
;
656 /* Get default cycle time for mode */
657 switch(speed
& 0xf) {
658 case 0: cycleTime
= 480; break;
659 case 1: cycleTime
= 150; break;
660 case 2: cycleTime
= 120; break;
666 /* Check if drive provides explicit DMA cycle time */
667 if ((id
[ATA_ID_FIELD_VALID
] & 2) && id
[ATA_ID_EIDE_DMA_TIME
])
668 cycleTime
= max_t(int, id
[ATA_ID_EIDE_DMA_TIME
], cycleTime
);
670 /* OHare limits according to some old Apple sources */
671 if ((intf_type
== controller_ohare
) && (cycleTime
< 150))
673 /* Get the proper timing array for this controller */
675 case controller_sh_ata6
:
676 case controller_un_ata6
:
677 case controller_k2_ata6
:
679 case controller_kl_ata4
:
680 tm
= mdma_timings_66
;
682 case controller_kl_ata3
:
683 tm
= mdma_timings_33k
;
686 tm
= mdma_timings_33
;
690 /* Lookup matching access & recovery times */
693 if (tm
[i
+1].cycleTime
< cycleTime
)
697 cycleTime
= tm
[i
].cycleTime
;
698 accessTime
= tm
[i
].accessTime
;
699 recTime
= tm
[i
].recoveryTime
;
701 #ifdef IDE_PMAC_DEBUG
702 printk(KERN_ERR
"%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
703 drive
->name
, cycleTime
, accessTime
, recTime
);
707 case controller_sh_ata6
: {
709 u32 tr
= kauai_lookup_timing(shasta_mdma_timings
, cycleTime
);
710 *timings
= ((*timings
) & ~TR_133_PIOREG_MDMA_MASK
) | tr
;
711 *timings2
= (*timings2
) & ~TR_133_UDMAREG_UDMA_EN
;
713 case controller_un_ata6
:
714 case controller_k2_ata6
: {
716 u32 tr
= kauai_lookup_timing(kauai_mdma_timings
, cycleTime
);
717 *timings
= ((*timings
) & ~TR_100_PIOREG_MDMA_MASK
) | tr
;
718 *timings2
= (*timings2
) & ~TR_100_UDMAREG_UDMA_EN
;
721 case controller_kl_ata4
:
723 accessTicks
= SYSCLK_TICKS_66(accessTime
);
724 accessTicks
= min(accessTicks
, 0x1fU
);
725 accessTicks
= max(accessTicks
, 0x1U
);
726 recTicks
= SYSCLK_TICKS_66(recTime
);
727 recTicks
= min(recTicks
, 0x1fU
);
728 recTicks
= max(recTicks
, 0x3U
);
729 /* Clear out mdma bits and disable udma */
730 *timings
= ((*timings
) & ~(TR_66_MDMA_MASK
| TR_66_UDMA_MASK
)) |
731 (accessTicks
<< TR_66_MDMA_ACCESS_SHIFT
) |
732 (recTicks
<< TR_66_MDMA_RECOVERY_SHIFT
);
734 case controller_kl_ata3
:
735 /* 33Mhz cell on KeyLargo */
736 accessTicks
= SYSCLK_TICKS(accessTime
);
737 accessTicks
= max(accessTicks
, 1U);
738 accessTicks
= min(accessTicks
, 0x1fU
);
739 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
740 recTicks
= SYSCLK_TICKS(recTime
);
741 recTicks
= max(recTicks
, 1U);
742 recTicks
= min(recTicks
, 0x1fU
);
743 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
744 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
745 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
748 /* 33Mhz cell on others */
750 int origAccessTime
= accessTime
;
751 int origRecTime
= recTime
;
753 accessTicks
= SYSCLK_TICKS(accessTime
);
754 accessTicks
= max(accessTicks
, 1U);
755 accessTicks
= min(accessTicks
, 0x1fU
);
756 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
757 recTicks
= SYSCLK_TICKS(recTime
);
758 recTicks
= max(recTicks
, 2U) - 1;
759 recTicks
= min(recTicks
, 0x1fU
);
760 recTime
= (recTicks
+ 1) * IDE_SYSCLK_NS
;
761 if ((accessTicks
> 1) &&
762 ((accessTime
- IDE_SYSCLK_NS
/2) >= origAccessTime
) &&
763 ((recTime
- IDE_SYSCLK_NS
/2) >= origRecTime
)) {
767 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
768 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
769 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
771 *timings
|= TR_33_MDMA_HALFTICK
;
774 #ifdef IDE_PMAC_DEBUG
775 printk(KERN_ERR
"%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
776 drive
->name
, speed
& 0xf, *timings
);
780 static void pmac_ide_set_dma_mode(ide_hwif_t
*hwif
, ide_drive_t
*drive
)
782 pmac_ide_hwif_t
*pmif
=
783 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
785 u32
*timings
, *timings2
, tl
[2];
786 u8 unit
= drive
->dn
& 1;
787 const u8 speed
= drive
->dma_mode
;
789 timings
= &pmif
->timings
[unit
];
790 timings2
= &pmif
->timings
[unit
+2];
792 /* Copy timings to local image */
796 if (speed
>= XFER_UDMA_0
) {
797 if (pmif
->kind
== controller_kl_ata4
)
798 ret
= set_timings_udma_ata4(&tl
[0], speed
);
799 else if (pmif
->kind
== controller_un_ata6
800 || pmif
->kind
== controller_k2_ata6
)
801 ret
= set_timings_udma_ata6(&tl
[0], &tl
[1], speed
);
802 else if (pmif
->kind
== controller_sh_ata6
)
803 ret
= set_timings_udma_shasta(&tl
[0], &tl
[1], speed
);
807 set_timings_mdma(drive
, pmif
->kind
, &tl
[0], &tl
[1], speed
);
812 /* Apply timings to controller */
816 pmac_ide_do_update_timings(drive
);
820 * Blast some well known "safe" values to the timing registers at init or
821 * wakeup from sleep time, before we do real calculation
824 sanitize_timings(pmac_ide_hwif_t
*pmif
)
826 unsigned int value
, value2
= 0;
829 case controller_sh_ata6
:
833 case controller_un_ata6
:
834 case controller_k2_ata6
:
838 case controller_kl_ata4
:
841 case controller_kl_ata3
:
844 case controller_heathrow
:
845 case controller_ohare
:
850 pmif
->timings
[0] = pmif
->timings
[1] = value
;
851 pmif
->timings
[2] = pmif
->timings
[3] = value2
;
854 static int on_media_bay(pmac_ide_hwif_t
*pmif
)
856 return pmif
->mdev
&& pmif
->mdev
->media_bay
!= NULL
;
859 /* Suspend call back, should be called after the child devices
860 * have actually been suspended
862 static int pmac_ide_do_suspend(pmac_ide_hwif_t
*pmif
)
864 /* We clear the timings */
865 pmif
->timings
[0] = 0;
866 pmif
->timings
[1] = 0;
868 disable_irq(pmif
->irq
);
870 /* The media bay will handle itself just fine */
871 if (on_media_bay(pmif
))
874 /* Kauai has bus control FCRs directly here */
875 if (pmif
->kauai_fcr
) {
876 u32 fcr
= readl(pmif
->kauai_fcr
);
877 fcr
&= ~(KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
);
878 writel(fcr
, pmif
->kauai_fcr
);
881 /* Disable the bus on older machines and the cell on kauai */
882 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
,
888 /* Resume call back, should be called before the child devices
891 static int pmac_ide_do_resume(pmac_ide_hwif_t
*pmif
)
893 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
894 if (!on_media_bay(pmif
)) {
895 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 1);
896 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
, 1);
898 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 0);
900 /* Kauai has it different */
901 if (pmif
->kauai_fcr
) {
902 u32 fcr
= readl(pmif
->kauai_fcr
);
903 fcr
|= KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
;
904 writel(fcr
, pmif
->kauai_fcr
);
907 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
910 /* Sanitize drive timings */
911 sanitize_timings(pmif
);
913 enable_irq(pmif
->irq
);
918 static u8
pmac_ide_cable_detect(ide_hwif_t
*hwif
)
920 pmac_ide_hwif_t
*pmif
=
921 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
922 struct device_node
*np
= pmif
->node
;
923 const char *cable
= of_get_property(np
, "cable-type", NULL
);
924 struct device_node
*root
= of_find_node_by_path("/");
925 const char *model
= of_get_property(root
, "model", NULL
);
927 /* Get cable type from device-tree. */
928 if (cable
&& !strncmp(cable
, "80-", 3)) {
929 /* Some drives fail to detect 80c cable in PowerBook */
930 /* These machine use proprietary short IDE cable anyway */
931 if (!strncmp(model
, "PowerBook", 9))
932 return ATA_CBL_PATA40_SHORT
;
934 return ATA_CBL_PATA80
;
938 * G5's seem to have incorrect cable type in device-tree.
939 * Let's assume they have a 80 conductor cable, this seem
940 * to be always the case unless the user mucked around.
942 if (of_device_is_compatible(np
, "K2-UATA") ||
943 of_device_is_compatible(np
, "shasta-ata"))
944 return ATA_CBL_PATA80
;
946 return ATA_CBL_PATA40
;
949 static void pmac_ide_init_dev(ide_drive_t
*drive
)
951 ide_hwif_t
*hwif
= drive
->hwif
;
952 pmac_ide_hwif_t
*pmif
=
953 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
955 if (on_media_bay(pmif
)) {
956 if (check_media_bay(pmif
->mdev
->media_bay
) == MB_CD
) {
957 drive
->dev_flags
&= ~IDE_DFLAG_NOPROBE
;
960 drive
->dev_flags
|= IDE_DFLAG_NOPROBE
;
964 static const struct ide_tp_ops pmac_tp_ops
= {
965 .exec_command
= pmac_exec_command
,
966 .read_status
= ide_read_status
,
967 .read_altstatus
= ide_read_altstatus
,
968 .write_devctl
= pmac_write_devctl
,
970 .dev_select
= pmac_dev_select
,
971 .tf_load
= ide_tf_load
,
972 .tf_read
= ide_tf_read
,
974 .input_data
= ide_input_data
,
975 .output_data
= ide_output_data
,
978 static const struct ide_tp_ops pmac_ata6_tp_ops
= {
979 .exec_command
= pmac_exec_command
,
980 .read_status
= ide_read_status
,
981 .read_altstatus
= ide_read_altstatus
,
982 .write_devctl
= pmac_write_devctl
,
984 .dev_select
= pmac_kauai_dev_select
,
985 .tf_load
= ide_tf_load
,
986 .tf_read
= ide_tf_read
,
988 .input_data
= ide_input_data
,
989 .output_data
= ide_output_data
,
992 static const struct ide_port_ops pmac_ide_ata4_port_ops
= {
993 .init_dev
= pmac_ide_init_dev
,
994 .set_pio_mode
= pmac_ide_set_pio_mode
,
995 .set_dma_mode
= pmac_ide_set_dma_mode
,
996 .cable_detect
= pmac_ide_cable_detect
,
999 static const struct ide_port_ops pmac_ide_port_ops
= {
1000 .init_dev
= pmac_ide_init_dev
,
1001 .set_pio_mode
= pmac_ide_set_pio_mode
,
1002 .set_dma_mode
= pmac_ide_set_dma_mode
,
1005 static const struct ide_dma_ops pmac_dma_ops
;
1007 static const struct ide_port_info pmac_port_info
= {
1009 .init_dma
= pmac_ide_init_dma
,
1010 .chipset
= ide_pmac
,
1011 .tp_ops
= &pmac_tp_ops
,
1012 .port_ops
= &pmac_ide_port_ops
,
1013 .dma_ops
= &pmac_dma_ops
,
1014 .host_flags
= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
|
1015 IDE_HFLAG_POST_SET_MODE
|
1017 IDE_HFLAG_UNMASK_IRQS
,
1018 .pio_mask
= ATA_PIO4
,
1019 .mwdma_mask
= ATA_MWDMA2
,
1023 * Setup, register & probe an IDE channel driven by this driver, this is
1024 * called by one of the 2 probe functions (macio or PCI).
1026 static int __devinit
pmac_ide_setup_device(pmac_ide_hwif_t
*pmif
,
1029 struct device_node
*np
= pmif
->node
;
1031 struct ide_host
*host
;
1033 struct ide_hw
*hws
[] = { hw
};
1034 struct ide_port_info d
= pmac_port_info
;
1037 pmif
->broken_dma
= pmif
->broken_dma_warn
= 0;
1038 if (of_device_is_compatible(np
, "shasta-ata")) {
1039 pmif
->kind
= controller_sh_ata6
;
1040 d
.tp_ops
= &pmac_ata6_tp_ops
;
1041 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1042 d
.udma_mask
= ATA_UDMA6
;
1043 } else if (of_device_is_compatible(np
, "kauai-ata")) {
1044 pmif
->kind
= controller_un_ata6
;
1045 d
.tp_ops
= &pmac_ata6_tp_ops
;
1046 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1047 d
.udma_mask
= ATA_UDMA5
;
1048 } else if (of_device_is_compatible(np
, "K2-UATA")) {
1049 pmif
->kind
= controller_k2_ata6
;
1050 d
.tp_ops
= &pmac_ata6_tp_ops
;
1051 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1052 d
.udma_mask
= ATA_UDMA5
;
1053 } else if (of_device_is_compatible(np
, "keylargo-ata")) {
1054 if (strcmp(np
->name
, "ata-4") == 0) {
1055 pmif
->kind
= controller_kl_ata4
;
1056 d
.port_ops
= &pmac_ide_ata4_port_ops
;
1057 d
.udma_mask
= ATA_UDMA4
;
1059 pmif
->kind
= controller_kl_ata3
;
1060 } else if (of_device_is_compatible(np
, "heathrow-ata")) {
1061 pmif
->kind
= controller_heathrow
;
1063 pmif
->kind
= controller_ohare
;
1064 pmif
->broken_dma
= 1;
1067 bidp
= of_get_property(np
, "AAPL,bus-id", NULL
);
1068 pmif
->aapl_bus_id
= bidp
? *bidp
: 0;
1070 /* On Kauai-type controllers, we make sure the FCR is correct */
1071 if (pmif
->kauai_fcr
)
1072 writel(KAUAI_FCR_UATA_MAGIC
|
1073 KAUAI_FCR_UATA_RESET_N
|
1074 KAUAI_FCR_UATA_ENABLE
, pmif
->kauai_fcr
);
1076 /* Make sure we have sane timings */
1077 sanitize_timings(pmif
);
1079 /* If we are on a media bay, wait for it to settle and lock it */
1081 lock_media_bay(pmif
->mdev
->media_bay
);
1083 host
= ide_host_alloc(&d
, hws
, 1);
1088 hwif
= pmif
->hwif
= host
->ports
[0];
1090 if (on_media_bay(pmif
)) {
1091 /* Fixup bus ID for media bay */
1093 pmif
->aapl_bus_id
= 1;
1094 } else if (pmif
->kind
== controller_ohare
) {
1095 /* The code below is having trouble on some ohare machines
1096 * (timing related ?). Until I can put my hand on one of these
1097 * units, I keep the old way
1099 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, 0, 1);
1101 /* This is necessary to enable IDE when net-booting */
1102 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 1);
1103 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, pmif
->aapl_bus_id
, 1);
1105 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 0);
1106 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1109 printk(KERN_INFO DRV_NAME
": Found Apple %s controller (%s), "
1110 "bus ID %d%s, irq %d\n", model_name
[pmif
->kind
],
1111 pmif
->mdev
? "macio" : "PCI", pmif
->aapl_bus_id
,
1112 on_media_bay(pmif
) ? " (mediabay)" : "", hw
->irq
);
1114 rc
= ide_host_register(host
, &d
, hws
);
1119 unlock_media_bay(pmif
->mdev
->media_bay
);
1123 ide_host_free(host
);
1127 static void __devinit
pmac_ide_init_ports(struct ide_hw
*hw
, unsigned long base
)
1131 for (i
= 0; i
< 8; ++i
)
1132 hw
->io_ports_array
[i
] = base
+ i
* 0x10;
1134 hw
->io_ports
.ctl_addr
= base
+ 0x160;
1138 * Attach to a macio probed interface
1140 static int __devinit
1141 pmac_ide_macio_attach(struct macio_dev
*mdev
, const struct of_device_id
*match
)
1144 unsigned long regbase
;
1145 pmac_ide_hwif_t
*pmif
;
1149 pmif
= kzalloc(sizeof(*pmif
), GFP_KERNEL
);
1153 if (macio_resource_count(mdev
) == 0) {
1154 printk(KERN_WARNING
"ide-pmac: no address for %s\n",
1155 mdev
->ofdev
.node
->full_name
);
1160 /* Request memory resource for IO ports */
1161 if (macio_request_resource(mdev
, 0, "ide-pmac (ports)")) {
1162 printk(KERN_ERR
"ide-pmac: can't request MMIO resource for "
1163 "%s!\n", mdev
->ofdev
.node
->full_name
);
1168 /* XXX This is bogus. Should be fixed in the registry by checking
1169 * the kind of host interrupt controller, a bit like gatwick
1170 * fixes in irq.c. That works well enough for the single case
1171 * where that happens though...
1173 if (macio_irq_count(mdev
) == 0) {
1174 printk(KERN_WARNING
"ide-pmac: no intrs for device %s, using "
1175 "13\n", mdev
->ofdev
.node
->full_name
);
1176 irq
= irq_create_mapping(NULL
, 13);
1178 irq
= macio_irq(mdev
, 0);
1180 base
= ioremap(macio_resource_start(mdev
, 0), 0x400);
1181 regbase
= (unsigned long) base
;
1184 pmif
->node
= mdev
->ofdev
.node
;
1185 pmif
->regbase
= regbase
;
1187 pmif
->kauai_fcr
= NULL
;
1189 if (macio_resource_count(mdev
) >= 2) {
1190 if (macio_request_resource(mdev
, 1, "ide-pmac (dma)"))
1191 printk(KERN_WARNING
"ide-pmac: can't request DMA "
1192 "resource for %s!\n",
1193 mdev
->ofdev
.node
->full_name
);
1195 pmif
->dma_regs
= ioremap(macio_resource_start(mdev
, 1), 0x1000);
1197 pmif
->dma_regs
= NULL
;
1199 dev_set_drvdata(&mdev
->ofdev
.dev
, pmif
);
1201 memset(&hw
, 0, sizeof(hw
));
1202 pmac_ide_init_ports(&hw
, pmif
->regbase
);
1204 hw
.dev
= &mdev
->bus
->pdev
->dev
;
1205 hw
.parent
= &mdev
->ofdev
.dev
;
1207 rc
= pmac_ide_setup_device(pmif
, &hw
);
1209 /* The inteface is released to the common IDE layer */
1210 dev_set_drvdata(&mdev
->ofdev
.dev
, NULL
);
1212 if (pmif
->dma_regs
) {
1213 iounmap(pmif
->dma_regs
);
1214 macio_release_resource(mdev
, 1);
1216 macio_release_resource(mdev
, 0);
1228 pmac_ide_macio_suspend(struct macio_dev
*mdev
, pm_message_t mesg
)
1230 pmac_ide_hwif_t
*pmif
=
1231 (pmac_ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1234 if (mesg
.event
!= mdev
->ofdev
.dev
.power
.power_state
.event
1235 && (mesg
.event
& PM_EVENT_SLEEP
)) {
1236 rc
= pmac_ide_do_suspend(pmif
);
1238 mdev
->ofdev
.dev
.power
.power_state
= mesg
;
1245 pmac_ide_macio_resume(struct macio_dev
*mdev
)
1247 pmac_ide_hwif_t
*pmif
=
1248 (pmac_ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1251 if (mdev
->ofdev
.dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1252 rc
= pmac_ide_do_resume(pmif
);
1254 mdev
->ofdev
.dev
.power
.power_state
= PMSG_ON
;
1261 * Attach to a PCI probed interface
1263 static int __devinit
1264 pmac_ide_pci_attach(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1266 struct device_node
*np
;
1267 pmac_ide_hwif_t
*pmif
;
1269 unsigned long rbase
, rlen
;
1273 np
= pci_device_to_OF_node(pdev
);
1275 printk(KERN_ERR
"ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1279 pmif
= kzalloc(sizeof(*pmif
), GFP_KERNEL
);
1283 if (pci_enable_device(pdev
)) {
1284 printk(KERN_WARNING
"ide-pmac: Can't enable PCI device for "
1285 "%s\n", np
->full_name
);
1289 pci_set_master(pdev
);
1291 if (pci_request_regions(pdev
, "Kauai ATA")) {
1292 printk(KERN_ERR
"ide-pmac: Cannot obtain PCI resources for "
1293 "%s\n", np
->full_name
);
1301 rbase
= pci_resource_start(pdev
, 0);
1302 rlen
= pci_resource_len(pdev
, 0);
1304 base
= ioremap(rbase
, rlen
);
1305 pmif
->regbase
= (unsigned long) base
+ 0x2000;
1306 pmif
->dma_regs
= base
+ 0x1000;
1307 pmif
->kauai_fcr
= base
;
1308 pmif
->irq
= pdev
->irq
;
1310 pci_set_drvdata(pdev
, pmif
);
1312 memset(&hw
, 0, sizeof(hw
));
1313 pmac_ide_init_ports(&hw
, pmif
->regbase
);
1315 hw
.dev
= &pdev
->dev
;
1317 rc
= pmac_ide_setup_device(pmif
, &hw
);
1319 /* The inteface is released to the common IDE layer */
1320 pci_set_drvdata(pdev
, NULL
);
1322 pci_release_regions(pdev
);
1334 pmac_ide_pci_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
1336 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)pci_get_drvdata(pdev
);
1339 if (mesg
.event
!= pdev
->dev
.power
.power_state
.event
1340 && (mesg
.event
& PM_EVENT_SLEEP
)) {
1341 rc
= pmac_ide_do_suspend(pmif
);
1343 pdev
->dev
.power
.power_state
= mesg
;
1350 pmac_ide_pci_resume(struct pci_dev
*pdev
)
1352 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)pci_get_drvdata(pdev
);
1355 if (pdev
->dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1356 rc
= pmac_ide_do_resume(pmif
);
1358 pdev
->dev
.power
.power_state
= PMSG_ON
;
1364 #ifdef CONFIG_PMAC_MEDIABAY
1365 static void pmac_ide_macio_mb_event(struct macio_dev
* mdev
, int mb_state
)
1367 pmac_ide_hwif_t
*pmif
=
1368 (pmac_ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1372 if (!pmif
->hwif
->present
)
1373 ide_port_scan(pmif
->hwif
);
1376 if (pmif
->hwif
->present
)
1377 ide_port_unregister_devices(pmif
->hwif
);
1380 #endif /* CONFIG_PMAC_MEDIABAY */
1383 static struct of_device_id pmac_ide_macio_match
[] =
1400 static struct macio_driver pmac_ide_macio_driver
=
1403 .match_table
= pmac_ide_macio_match
,
1404 .probe
= pmac_ide_macio_attach
,
1405 .suspend
= pmac_ide_macio_suspend
,
1406 .resume
= pmac_ide_macio_resume
,
1407 #ifdef CONFIG_PMAC_MEDIABAY
1408 .mediabay_event
= pmac_ide_macio_mb_event
,
1412 static const struct pci_device_id pmac_ide_pci_match
[] = {
1413 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_ATA
), 0 },
1414 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_IPID_ATA100
), 0 },
1415 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_K2_ATA100
), 0 },
1416 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_SH_ATA
), 0 },
1417 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_IPID2_ATA
), 0 },
1421 static struct pci_driver pmac_ide_pci_driver
= {
1423 .id_table
= pmac_ide_pci_match
,
1424 .probe
= pmac_ide_pci_attach
,
1425 .suspend
= pmac_ide_pci_suspend
,
1426 .resume
= pmac_ide_pci_resume
,
1428 MODULE_DEVICE_TABLE(pci
, pmac_ide_pci_match
);
1430 int __init
pmac_ide_probe(void)
1434 if (!machine_is(powermac
))
1437 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1438 error
= pci_register_driver(&pmac_ide_pci_driver
);
1441 error
= macio_register_driver(&pmac_ide_macio_driver
);
1443 pci_unregister_driver(&pmac_ide_pci_driver
);
1447 error
= macio_register_driver(&pmac_ide_macio_driver
);
1450 error
= pci_register_driver(&pmac_ide_pci_driver
);
1452 macio_unregister_driver(&pmac_ide_macio_driver
);
1461 * pmac_ide_build_dmatable builds the DBDMA command list
1462 * for a transfer and sets the DBDMA channel to point to it.
1464 static int pmac_ide_build_dmatable(ide_drive_t
*drive
, struct ide_cmd
*cmd
)
1466 ide_hwif_t
*hwif
= drive
->hwif
;
1467 pmac_ide_hwif_t
*pmif
=
1468 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1469 struct dbdma_cmd
*table
;
1470 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1471 struct scatterlist
*sg
;
1472 int wr
= !!(cmd
->tf_flags
& IDE_TFLAG_WRITE
);
1473 int i
= cmd
->sg_nents
, count
= 0;
1475 /* DMA table is already aligned */
1476 table
= (struct dbdma_cmd
*) pmif
->dma_table_cpu
;
1478 /* Make sure DMA controller is stopped (necessary ?) */
1479 writel((RUN
|PAUSE
|FLUSH
|WAKE
|DEAD
) << 16, &dma
->control
);
1480 while (readl(&dma
->status
) & RUN
)
1483 /* Build DBDMA commands list */
1484 sg
= hwif
->sg_table
;
1485 while (i
&& sg_dma_len(sg
)) {
1489 cur_addr
= sg_dma_address(sg
);
1490 cur_len
= sg_dma_len(sg
);
1492 if (pmif
->broken_dma
&& cur_addr
& (L1_CACHE_BYTES
- 1)) {
1493 if (pmif
->broken_dma_warn
== 0) {
1494 printk(KERN_WARNING
"%s: DMA on non aligned address, "
1495 "switching to PIO on Ohare chipset\n", drive
->name
);
1496 pmif
->broken_dma_warn
= 1;
1501 unsigned int tc
= (cur_len
< 0xfe00)? cur_len
: 0xfe00;
1503 if (count
++ >= MAX_DCMDS
) {
1504 printk(KERN_WARNING
"%s: DMA table too small\n",
1508 st_le16(&table
->command
, wr
? OUTPUT_MORE
: INPUT_MORE
);
1509 st_le16(&table
->req_count
, tc
);
1510 st_le32(&table
->phy_addr
, cur_addr
);
1512 table
->xfer_status
= 0;
1513 table
->res_count
= 0;
1522 /* convert the last command to an input/output last command */
1524 st_le16(&table
[-1].command
, wr
? OUTPUT_LAST
: INPUT_LAST
);
1525 /* add the stop command to the end of the list */
1526 memset(table
, 0, sizeof(struct dbdma_cmd
));
1527 st_le16(&table
->command
, DBDMA_STOP
);
1529 writel(hwif
->dmatable_dma
, &dma
->cmdptr
);
1533 printk(KERN_DEBUG
"%s: empty DMA table?\n", drive
->name
);
1535 return 0; /* revert to PIO for this request */
1539 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1540 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1542 static int pmac_ide_dma_setup(ide_drive_t
*drive
, struct ide_cmd
*cmd
)
1544 ide_hwif_t
*hwif
= drive
->hwif
;
1545 pmac_ide_hwif_t
*pmif
=
1546 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1547 u8 unit
= drive
->dn
& 1, ata4
= (pmif
->kind
== controller_kl_ata4
);
1548 u8 write
= !!(cmd
->tf_flags
& IDE_TFLAG_WRITE
);
1550 if (pmac_ide_build_dmatable(drive
, cmd
) == 0)
1553 /* Apple adds 60ns to wrDataSetup on reads */
1554 if (ata4
&& (pmif
->timings
[unit
] & TR_66_UDMA_EN
)) {
1555 writel(pmif
->timings
[unit
] + (write
? 0 : 0x00800000UL
),
1556 PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1557 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1564 * Kick the DMA controller into life after the DMA command has been issued
1568 pmac_ide_dma_start(ide_drive_t
*drive
)
1570 ide_hwif_t
*hwif
= drive
->hwif
;
1571 pmac_ide_hwif_t
*pmif
=
1572 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1573 volatile struct dbdma_regs __iomem
*dma
;
1575 dma
= pmif
->dma_regs
;
1577 writel((RUN
<< 16) | RUN
, &dma
->control
);
1578 /* Make sure it gets to the controller right now */
1579 (void)readl(&dma
->control
);
1583 * After a DMA transfer, make sure the controller is stopped
1586 pmac_ide_dma_end (ide_drive_t
*drive
)
1588 ide_hwif_t
*hwif
= drive
->hwif
;
1589 pmac_ide_hwif_t
*pmif
=
1590 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1591 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1594 dstat
= readl(&dma
->status
);
1595 writel(((RUN
|WAKE
|DEAD
) << 16), &dma
->control
);
1597 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1598 * in theory, but with ATAPI decices doing buffer underruns, that would
1599 * cause us to disable DMA, which isn't what we want
1601 return (dstat
& (RUN
|DEAD
)) != RUN
;
1605 * Check out that the interrupt we got was for us. We can't always know this
1606 * for sure with those Apple interfaces (well, we could on the recent ones but
1607 * that's not implemented yet), on the other hand, we don't have shared interrupts
1608 * so it's not really a problem
1611 pmac_ide_dma_test_irq (ide_drive_t
*drive
)
1613 ide_hwif_t
*hwif
= drive
->hwif
;
1614 pmac_ide_hwif_t
*pmif
=
1615 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1616 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1617 unsigned long status
, timeout
;
1619 /* We have to things to deal with here:
1621 * - The dbdma won't stop if the command was started
1622 * but completed with an error without transferring all
1623 * datas. This happens when bad blocks are met during
1624 * a multi-block transfer.
1626 * - The dbdma fifo hasn't yet finished flushing to
1627 * to system memory when the disk interrupt occurs.
1631 /* If ACTIVE is cleared, the STOP command have passed and
1632 * transfer is complete.
1634 status
= readl(&dma
->status
);
1635 if (!(status
& ACTIVE
))
1638 /* If dbdma didn't execute the STOP command yet, the
1639 * active bit is still set. We consider that we aren't
1640 * sharing interrupts (which is hopefully the case with
1641 * those controllers) and so we just try to flush the
1642 * channel for pending data in the fifo
1645 writel((FLUSH
<< 16) | FLUSH
, &dma
->control
);
1649 status
= readl(&dma
->status
);
1650 if ((status
& FLUSH
) == 0)
1652 if (++timeout
> 100) {
1653 printk(KERN_WARNING
"ide%d, ide_dma_test_irq timeout flushing channel\n",
1661 static void pmac_ide_dma_host_set(ide_drive_t
*drive
, int on
)
1666 pmac_ide_dma_lost_irq (ide_drive_t
*drive
)
1668 ide_hwif_t
*hwif
= drive
->hwif
;
1669 pmac_ide_hwif_t
*pmif
=
1670 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1671 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1672 unsigned long status
= readl(&dma
->status
);
1674 printk(KERN_ERR
"ide-pmac lost interrupt, dma status: %lx\n", status
);
1677 static const struct ide_dma_ops pmac_dma_ops
= {
1678 .dma_host_set
= pmac_ide_dma_host_set
,
1679 .dma_setup
= pmac_ide_dma_setup
,
1680 .dma_start
= pmac_ide_dma_start
,
1681 .dma_end
= pmac_ide_dma_end
,
1682 .dma_test_irq
= pmac_ide_dma_test_irq
,
1683 .dma_lost_irq
= pmac_ide_dma_lost_irq
,
1687 * Allocate the data structures needed for using DMA with an interface
1688 * and fill the proper list of functions pointers
1690 static int __devinit
pmac_ide_init_dma(ide_hwif_t
*hwif
,
1691 const struct ide_port_info
*d
)
1693 pmac_ide_hwif_t
*pmif
=
1694 (pmac_ide_hwif_t
*)dev_get_drvdata(hwif
->gendev
.parent
);
1695 struct pci_dev
*dev
= to_pci_dev(hwif
->dev
);
1697 /* We won't need pci_dev if we switch to generic consistent
1700 if (dev
== NULL
|| pmif
->dma_regs
== 0)
1703 * Allocate space for the DBDMA commands.
1704 * The +2 is +1 for the stop command and +1 to allow for
1705 * aligning the start address to a multiple of 16 bytes.
1707 pmif
->dma_table_cpu
= pci_alloc_consistent(
1709 (MAX_DCMDS
+ 2) * sizeof(struct dbdma_cmd
),
1710 &hwif
->dmatable_dma
);
1711 if (pmif
->dma_table_cpu
== NULL
) {
1712 printk(KERN_ERR
"%s: unable to allocate DMA command list\n",
1717 hwif
->sg_max_nents
= MAX_DCMDS
;
1722 module_init(pmac_ide_probe
);
1724 MODULE_LICENSE("GPL");