2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 static char sccsid
[] = "@(#)lgamma.c 8.2 (Berkeley) 11/30/93";
39 * Coded by Peter McIlroy, Nov 1992;
41 * The financial support of UUNET Communications Services is greatfully
50 /* Log gamma function.
51 * Error: x > 0 error < 1.3ulp.
52 * x > 4, error < 1ulp.
53 * x > 9, error < .6ulp.
54 * x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
57 * Use the asymptotic expansion (Stirling's Formula)
59 * Use gamma(x+1) = x*gamma(x) for argument reduction.
60 * Use rational approximation in
62 * Two approximations are used, one centered at the
63 * minimum to ensure monotonicity; one centered at 2
64 * to maintain small relative error.
66 * Use the reflection formula,
67 * G(1-x)G(x) = PI/sin(PI*x)
69 * non-positive integer returns +Inf.
73 #if defined(vax) || defined(tahoe)
75 /* double and float have same size exponent field */
76 #define TRUNC(x) x = (double) (float) (x)
79 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
83 static double small_lgam(double);
84 static double large_lgam(double);
85 static double neg_lgam(double);
86 static double zero
= 0.0, one
= 1.0;
89 #define UNDERFL (1e-1020 * 1e-1020)
91 #define LEFT (1.0 - (x0 + .25))
92 #define RIGHT (x0 - .218)
94 * Constants for approximation in [1.244,1.712]
96 #define x0 0.461632144968362356785
97 #define x0_lo -.000000000000000015522348162858676890521
98 #define a0_hi -0.12148629128932952880859
99 #define a0_lo .0000000007534799204229502
100 #define r0 -2.771227512955130520e-002
101 #define r1 -2.980729795228150847e-001
102 #define r2 -3.257411333183093394e-001
103 #define r3 -1.126814387531706041e-001
104 #define r4 -1.129130057170225562e-002
105 #define r5 -2.259650588213369095e-005
106 #define s0 1.714457160001714442e+000
107 #define s1 2.786469504618194648e+000
108 #define s2 1.564546365519179805e+000
109 #define s3 3.485846389981109850e-001
110 #define s4 2.467759345363656348e-002
112 * Constants for approximation in [1.71, 2.5]
114 #define a1_hi 4.227843350984671344505727574870e-01
115 #define a1_lo 4.670126436531227189e-18
116 #define p0 3.224670334241133695662995251041e-01
117 #define p1 3.569659696950364669021382724168e-01
118 #define p2 1.342918716072560025853732668111e-01
119 #define p3 1.950702176409779831089963408886e-02
120 #define p4 8.546740251667538090796227834289e-04
121 #define q0 1.000000000000000444089209850062e+00
122 #define q1 1.315850076960161985084596381057e+00
123 #define q2 6.274644311862156431658377186977e-01
124 #define q3 1.304706631926259297049597307705e-01
125 #define q4 1.102815279606722369265536798366e-02
126 #define q5 2.512690594856678929537585620579e-04
127 #define q6 -1.003597548112371003358107325598e-06
129 * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
131 #define lns2pi .418938533204672741780329736405
132 #define pb0 8.33333333333333148296162562474e-02
133 #define pb1 -2.77777777774548123579378966497e-03
134 #define pb2 7.93650778754435631476282786423e-04
135 #define pb3 -5.95235082566672847950717262222e-04
136 #define pb4 8.41428560346653702135821806252e-04
137 #define pb5 -1.89773526463879200348872089421e-03
138 #define pb6 5.69394463439411649408050664078e-03
139 #define pb7 -1.44705562421428915453880392761e-02
148 endian
= ((*(int *) &one
)) ? 1 : 0;
153 else return (infnan(EDOM
));
159 } else if (x
> 1e-16) {
160 return (small_lgam(x
));
161 } else if (x
> -1e-16) {
163 signgam
= -1, x
= -x
;
166 return (neg_lgam(x
));
175 struct Double t
, u
, v
;
181 v
.b
= (x
- v
.a
) - 0.5;
183 t
.b
= x
*u
.b
+ v
.b
*u
.a
;
184 if (_IEEE
== 0 && !finite(t
.a
))
185 return(infnan(ERANGE
));
190 p
= pb0
+z
*(pb1
+z
*(pb2
+z
*(pb3
+z
*(pb4
+z
*(pb5
+z
*(pb6
+z
*pb7
))))));
191 /* error in approximation = 2.8e-19 */
193 p
= p
*x1
; /* error < 2.3e-18 absolute */
194 /* 0 < p < 1/64 (at x = 5.5) */
196 TRUNC(v
.a
); /* truncate v.a to 26 bits. */
198 t
.a
= v
.a
*u
.a
; /* t = (x-.5)*(log(x)-1) */
199 t
.b
= v
.b
*u
.a
+ x
*u
.b
;
200 t
.b
+= p
; t
.b
+= lns2pi
; /* return t + lns2pi + p */
208 double y
, z
, t
, r
= 0, p
, q
, hi
, lo
;
212 if (x_int
<= 2 && y
> RIGHT
) {
216 } else if (y
< -LEFT
) {
220 p
= r0
+z
*(r1
+z
*(r2
+z
*(r3
+z
*(r4
+z
*r5
))));
221 q
= s0
+z
*(s1
+z
*(s2
+z
*(s3
+z
*s4
)));
222 r
= t
*(z
*(p
/q
) - x0_lo
);
227 case 5: z
*= (y
+ 4);
228 case 4: z
*= (y
+ 3);
229 case 3: z
*= (y
+ 2);
231 rr
.b
+= a0_lo
; rr
.a
+= a0_hi
;
232 return(((r
+rr
.b
)+t
+rr
.a
));
233 case 2: return(((r
+a0_lo
)+t
)+a0_hi
);
234 case 0: r
-= log1p(x
);
235 default: rr
= __log__D(x
);
236 rr
.a
-= a0_hi
; rr
.b
-= a0_lo
;
237 return(((r
- rr
.b
) + t
) - rr
.a
);
240 p
= p0
+y
*(p1
+y
*(p2
+y
*(p3
+y
*p4
)));
241 q
= q0
+y
*(q1
+y
*(q2
+y
*(q3
+y
*(q4
+y
*(q5
+y
*q6
)))));
243 t
= (double)(float) y
;
245 hi
= (double)(float) (p
+a1_hi
);
246 lo
= a1_hi
- hi
; lo
+= p
; lo
+= a1_lo
;
247 r
= lo
*y
+ z
*hi
; /* q + r = y*(a0+p/q) */
252 case 5: z
*= (y
+ 4);
253 case 4: z
*= (y
+ 3);
254 case 3: z
*= (y
+ 2);
258 case 2: return (q
+ r
);
259 case 0: rr
= __log__D(x
);
260 r
-= rr
.b
; r
-= log1p(x
);
263 default: rr
= __log__D(x
);
275 double y
, z
, one
= 1.0, zero
= 0.0;
276 extern double gamma();
278 /* avoid destructive cancellation as much as possible */
285 return(infnan(ERANGE
));
289 y
= -y
, signgam
= -1;
293 if (z
== x
) { /* convention: G(-(integer)) -> +Inf */
297 return (infnan(ERANGE
));
303 z
= fabs(x
+ z
); /* 0 < z <= .5 */
307 z
= cos(M_PI
*(0.5-z
));